
Solution of Practice Exercise For Lecture 22 
 

Q1. Find the vertical asymptotes for the function ( ) 2
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 Solution. 
 The vertical asymptotes occur at the points where ( )f x → ±∞ i.e 2 25 0x − =
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 Thus vertical asymptotes at 5x = ±  
 

Q2. Find the horizontal asymptotes for the function( ) 2
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 Solution. 
 Horizontal asymptote can be found by evaluate lim (x)
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 Divide numerator and denominator by 2x , 
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Hence horizontal asymptotes at 0y =  
 
Q3. If ( ) 4 22 16f x x x= − , determine all relative extrema for the function using First 

derivative test. 
 Solution. 
 First we will find critical points by putting / (x) 0f =  
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 Because / ( )f x  changes from negative to positive around −2 and 2, f has a 

relative minimum at x = −2 and x = 2, . Also, / ( )f x  changes from positive to 
negative around 0, and hence, f has a relative maximum at x = 0.    

 
Q4. Find the relative extrema of (x) sin cos [0,2 ]f x xon π= −  usind 2nd derivative 

test. 
 Solution. 
 First we will find critical points by putting / (x) 0f = , 
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 Because / ( )f x  changes from negative to positive around 
7
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π= , f has a 

relative minimum at 
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 Using 2nd derivative test 
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Answer. relative maximum at 
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4
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π= , relative minimum at 
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Q5. Find the critical points of 
4 1

3 3( ) 4f x x x= − . 
 Solution. 
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