Solution of Practice Exercise For Lecture 22

- Q1. Find the vertical asymptotes for the function $f(x) = \frac{x+4}{x^2-25}$. Solution. The vertical asymptotes occur at the points where $f(x) \rightarrow \pm \infty$ i.e $x^2 - 25 = 0$ $x^2 - 25 = 0$ $\Rightarrow x = \pm 5$ Thus vertical asymptotes at $x = \pm 5$
- Q2. Find the horizontal asymptotes for the function $f(x) = \frac{x+4}{x^2-25}$. Solution.

Horizontal asymptote can be found by evaluate $\lim_{x \to \infty} f(x)$

$$\lim_{x \to +\infty} f(\mathbf{x}) = \lim_{x \to +\infty} \frac{x+4}{x^2 - 25}$$

Divide numerator and denominator by x^2 ,

$$\lim_{x \to +\infty} f(\mathbf{x}) = \lim_{x \to +\infty} \frac{\frac{1}{x} + \frac{4}{x^2}}{1 - \frac{25}{x^2}} = \frac{0 + 0}{1 - 0} = 0$$

Hence horizontal asymptotes at y = 0

Q3. If $f(x) = 2x^4 - 16x^2$, determine all relative extrema for the function using First derivative test. Solution.

First we will find critical points by putting f'(x) = 0

 $\Rightarrow 8x^3 - 32x = 0$

 $\Rightarrow 8x(x^2-4) = 0 \Rightarrow x = 0, x = \pm 2$

Because f'(x) changes from negative to positive around -2 and 2, f has a relative minimum at x = -2 and x = 2, Also, f'(x) changes from positive to negative around 0, and hence, f has a relative maximum at x = 0.

Q4. Find the relative extrema of $f(x) = \sin x - \cos x \, on[0, 2\pi]$ usind 2nd derivative test.

Solution.

First we will find critical points by putting f'(x) = 0,

$$\Rightarrow \cos x + \sin x = 0$$

$$\Rightarrow \cos x = -\sin x$$

$$\Rightarrow \frac{\sin x}{\cos x} = -1 \Rightarrow \tan x = -1 \Rightarrow x = \frac{3\pi}{4}, x = \frac{7\pi}{4}$$

Because f'(x) changes from negative to positive around $x = \frac{7\pi}{4}$, *f* has a relative minimum at $x = \frac{7\pi}{4}$. Also, f'(x) changes from positive to negative around $x = \frac{3\pi}{4}$, and hence, *f* has a relative maximum at $x = \frac{3\pi}{4}$.

- Using 2nd derivative test $f''(x) = -\sin x + \cos x$ $f''(\frac{3\pi}{4}) = -\sin \frac{3\pi}{4} + \cos \frac{3\pi}{4}$ = -0.707 - 0.707 < 0 \Rightarrow relative maximum at $\frac{3\pi}{4}$ $f''(\frac{7\pi}{4}) = -\sin \frac{7\pi}{4} + \cos \frac{7\pi}{4}$ = 0.707 + 0.707 > 0 \Rightarrow relative minimum at $\frac{7\pi}{4}$
- Answer. relative maximum at $x = \frac{3\pi}{4}$, relative minimum at $x = \frac{7\pi}{4}$ Q5. Find the critical points of $f(x) = x^{\frac{4}{3}} - 4x^{\frac{1}{3}}$. Solution.

For critical point put

$$f'(\mathbf{x}) = 0 \Longrightarrow \frac{4}{3} x^{\frac{1}{3}} - \frac{4}{3} x^{-\frac{2}{3}} = 0$$
$$\Longrightarrow \frac{4}{3} x^{\frac{1}{3}} - \frac{4}{3x^{\frac{2}{3}}} = 0$$
$$\Longrightarrow \frac{4}{3} \left(\frac{x-1}{x^{\frac{2}{3}}} \right) = 0$$
$$\Longrightarrow \frac{x-1}{x^{\frac{2}{3}}} = 0$$

critical points occur where numerator and denominator is zero. i.e

$$x-1=0, x^{2/3}=0$$

$$\Rightarrow x=1, x=0$$