MTH101 Practice Questions/ Solutions Lecture No. 23 to 45

Lecture No. 23: Maximum and Minimum Values of Functions

Q 1: Find the minimum value of the function $f(x) = x^3 - 27x + 4$ attains in the interval [4,-4].

Solution:

First of all we have to find critical points by putting f'(x)=0

$$f(x) = x^3 - 27x + 4$$

$$f'(x) = 3x^2 - 27$$

$$put f'(x) = 0$$

$$\Rightarrow$$
 3 $x^2 - 27 = 0$

$$\Rightarrow$$
 3($x^2 - 9$) = 0

$$\Rightarrow x^2 - 9 = 0 \Rightarrow x = -3.3$$

now we have points 4,-4, -3 and 3 we will check on all these points

$$f(4) = (4)^3 - 27(4) + 4 = -40$$

$$f(-2) = (-4)^3 - 27(-4) + 4 = 48$$

$$f(3) = (3)^3 - 27(3) + 4 = -50$$

$$f(-3) = (-3)^3 - 27(-3) + 4 = 58$$

So minimum value = -50

Q 2: Find the maximum value of the function $f(x) = x^3 + 3x^2 - 9x$ attains in the interval [-4, 3].

Solution:

First of all we have to find critical points by putting f'(x) = 0

$$f(x) = x^3 + 3x^2 - 9x$$

$$f'(x) = 3x^2 + 6x - 9$$

$$put f'(x) = 0$$

$$\Rightarrow 3x^2 + 6x - 9 = 0$$

$$\Rightarrow x^2 + 2x - 3 = 0$$

$$\Rightarrow x^2 + 3x - x - 3 = 0$$

$$\Rightarrow x(x+3)-(x+3)=0$$

$$\Rightarrow$$
 $(x-1)(x+3) = 0 \Rightarrow x = 1, x = -3$

now we have points 1,-3, 3 and -4 we will check on all these points

$$f(1) = (1)^3 + 3(1)^2 - 9(1) = -5$$

$$f(-3) = (-3)^3 + 3(-3)^2 - 9(-3) = 27$$

$$f(3) = (3)^3 + 3(3)^2 - 9(3) = 27$$

$$f(-4) = (-4)^3 + 3(-4)^2 - 9(-4) = 20$$

Hence maximum value = f(-3) = f(3) = 27

Q 3: Find the absolute maximum and absolute minimum values of the function $f(x) = 4 - x^2$ on interval $-3 \le x \le 1$.

Solution:

First we will find critical points:

$$\operatorname{put} f'(x) = 0$$

$$\Rightarrow -2x = 0$$

$$\Rightarrow x = 0$$

Now we find value of f(x) at critical point and at the end points of interval:

$$f(0) = 4 - (0)^2 = 4$$

$$f(1) = 4 - (1)^2 = 3$$

$$f(-3) = 4 - (-3)^2 = -5$$

Hence absolute maximum = 4 and absolute minimum = -5

Q 4: Find the absolute maximum and absolute minimum values of the function f(x) = 2 + x on interval $-2 \le x \le 2$.

Solution:

First we will find critical points:

Since f'(x) = 1, so there is no critical points.

Now we find value of f(x) at the end points of interval:

$$f(-2) = 2 - 2 = 0$$

$$f(2) = 2 + 2 = 4$$

Hence absolute maximum = 4 and absolute minimum = 0

Q 5: Find the maximum and minimum value of the function $f(x) = 3x^4 - 24x^2 + 1$ on the interval $(-\infty, +\infty)$.

Solution:

This is a continuous function on the given interval and

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (3x^4 - 24x^2 + 1) = +\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (3x^4 - 24x^2 + 1) = +\infty$$

So f has a minimum but no maximum value in the interval $(-\infty, +\infty)$. To find the minimum value put f'(x) = 0 i.e

$$f'(x) = 12x^3 - 48x = 0 \Rightarrow 12x(x^2 - 4) = 0 \Rightarrow x = 0$$
 and $x = \pm 2$ are the critical points.

At
$$x = 0$$
, $f(0) = 1$,

at
$$x = 2$$
, $f(2) = 3(2)^4 - 24(2)^2 + 1 = -47$ and

at
$$x = -2$$
, $f(-2) = 3(-2)^4 - 24(-2)^2 + 1 = -47$

so minimum value occurs at $x = \pm 2$ and it is equal to f(x) = -47

Lecture No. 24: Newton's Method, Rolle's Theorem and Mean Value Theorem

Lecture No. 25: Integrations

Q 1: Check the validity of Mean Value Theorem for $f(x) = 3x - x^3$ on the interval [0,2]. Also find 'c' if possible

Solution: Because f is a polynomial so continuous and differentiable everywhere hence on [0,2]. As hypothesis of the mean value theorem is satisfied so we can Find a 'c' such that

$$\frac{f(b)-f(a)}{b-a} = f'(c)$$
 where $f(a) = f(0) = 0$ and $f(b) = f(2) = -2$

$$f'(x) = 3 - 3x^2$$

$$f'(c) = 3 - 3c^2$$

$$\frac{-2-0}{2-0} = 3-3c^2$$

$$3 - 3c^2 = -1$$

$$\Rightarrow 3(1-c^2) = -1$$

$$\Rightarrow 1 - c^2 = -\frac{1}{3}$$

$$\Rightarrow c^2 = \frac{4}{3}$$

$$\Rightarrow c = \pm \frac{2}{\sqrt{3}}$$

As
$$c = \frac{2}{\sqrt{3}} \in (0,2)$$
 and $c = -\frac{2}{\sqrt{3}} \notin (0,2)$ so value of $c = \frac{2}{\sqrt{3}}$.

Q 2: To estimate the solution of the equation $x^3 - 7x - 1 = 0$ by using the newton's method if we start with $x_1 = 2$ then find x_2 .

Solution:

$$f(x) = x^3 - 7x - 1$$

$$f'(x) = 3x^2 - 7$$

$$x_1 = 2 \Rightarrow f(2) = (2)^3 - 7(2) - 1 = -7,$$

$$f'(2) = 3(2)^2 - 7 = 5.$$

By Newton's Method $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ where n = 1, 2, 3,,

So, for
$$n = 1$$
, $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2 - \frac{(-7)}{5} = \frac{17}{5}$.

Q 3: Evaluate the following integrals.

$$I. \qquad \int \sec x (\sec x + \cos x) dx$$

$$\mathbf{H.} \qquad \int \frac{5\sin x - 3\cos^2 x}{\cos^2 x} dx$$

Solution:

(I)
$$\int \sec x (\sec x + \cos x) dx$$
$$= \int (\sec^2 x + \sec x \cos x) dx$$
$$= \int \sec^2 x dx + \int \sec x \cos x dx$$
$$= \tan x + \int \frac{\cos x}{\cos x} dx$$
$$= \tan x + \int dx$$
$$= \tan x + x + c$$
(II)
$$\int \frac{5 \sin x - 3 \cos^2 x}{\cos^2 x} dx$$
$$= \int \left[5 \frac{\sin x}{\cos x \cos x} - 3 \right] dx$$
$$= \int 5 \frac{\sin x}{\cos x} \frac{1}{\cos x} dx - 3 \int dx$$
$$= \int 5 \tan x \sec x dx - 3 \int dx$$
$$= \int \sec x - 3x + c$$

Q 4: Given that $f'(x) = 16x^3 - 4x$, find f(3).

Solution:

First of all, we need to find the function f(x) for which the derivative is given. For that we will integral the derivative function which gives

$$f(x) = \int f'(x)dx$$

$$= \int (16x^3 - 4x)dx$$

$$= \frac{16x^4}{4} - \frac{4x^2}{2} + c$$

$$f(x) = 4x^4 - 2x^2 + c$$

$$f(3) = 4(3)^4 - 2(3)^2 + c$$

$$f(3) = 306 + c$$

Lecture No. 26: Integration by Substitution

Lecture No. 27: Sigma Notation Lecture No. 28: Area as Limit

Q 1: Evaluate the integral by using substitution method: $\int \frac{1}{t^2} \cos\left(\frac{1}{t} - 1\right) dt$.

Solution:

Let
$$u = \frac{1}{t} - 1$$
,

$$\Rightarrow du = -\frac{1}{t^2} dt \Rightarrow \frac{1}{t^2} dt = -du$$
,

$$\therefore \int \frac{1}{t^2} \cos\left(\frac{1}{t} - 1\right) dt = \int \cos u (-du),$$

$$= -\sin u + C,$$

$$= -\sin\left(\frac{1}{t} - 1\right) + C. \quad (\because \text{ by replacing with the original value})$$

Q 2: Evaluate the indefinite integral by substitution method: $\int \frac{(1 + \ln x)^3}{x} dx$.

Solution:

Let
$$t = 1 + \ln x$$
,
 $\Rightarrow dt = \frac{1}{x} dx$,
Hence, $\int \frac{(1 + \ln x)^3}{x} dx = \int t^3 dt = \frac{t^4}{4} + C = \frac{(1 + \ln x)^4}{4} + C$.

Q 3: Evaluate the sum: $\sum_{k=1}^{7} (k^2 - 6)$.

$$\sum_{k=1}^{7} (k^2 - 6) = \sum_{k=1}^{7} k^2 - \sum_{k=1}^{7} 6,$$

$$= \frac{7(7+1)(2(7)+1)}{6} - 6(7),$$

$$= \frac{840}{6} - 42,$$

$$= 98.$$

Q 4: Express $\sum_{k=0}^{3} 3^{k-2}$ in sigma notation so that the lower limit is '0' rather than '2'.

Solution:

We will define a new summation index 'j' by the relation

$$j = k - 2 \text{ or } j + 2 = k,$$

Now when

$$k = 2$$
, $j = 2 - 2 = 0$, $k = 5$, $j = 5 - 2 = 3$,

When

$$k = 5$$
, $j = 5 - 2 = 3$

So the new summation will become $\sum_{j=0}^{3} 3^{j+2-2} = \sum_{j=0}^{3} 3^{j}$.

Q 5: Find the area of the kth rectangle below the curve $y = x^2$ on the interval [0,2] by taking x_k^* as right end point and left end point.

Solution:

In order to find the area of kth rectangle, first of all we will find the width or base of the rectangle that is Δx .

$$\Delta x = \frac{b-a}{n} = \frac{2}{n}$$
.

Right end point

$$x_k^* = a + k\Delta x,$$

$$=0+k.\frac{2}{n}=\frac{2k}{n}.$$

The height of the rectangle is

$$f(\mathbf{x}_{k}^{*}) = \left(\frac{2k}{n}\right)^{2} = \frac{4k^{2}}{n^{2}}.$$

Thus, the area of the kth rectangle will be Area=height×base

=
$$f(\mathbf{x}_{k}^{*}).\Delta x$$
,
= $\frac{4k^{2}}{n^{2}}.\frac{2}{n} = \frac{8k^{2}}{n^{3}}$.

Left end point

$$x_k^* = a + (k-1)\Delta x,$$

$$=0+(k-1).\frac{2}{n}=\frac{2(k-1)}{n}.$$

The height of the rectangle is

$$f(\mathbf{x}_k^*) = \left(\frac{2(k-1)}{n}\right)^2 = \frac{4(k-1)^2}{n^2}.$$

Thus, the area of the kth rectangle will be

Area=height×base

$$= f(\mathbf{x}_{k}^{*}).\Delta x,$$

$$= \frac{4(k-1)^{2}}{n^{2}}.\frac{2}{n} = \frac{8(k-1)^{2}}{n^{3}}.$$

Q 6: Find the approximate area under the graph of function y = x over the interval [0,2] by taking $\Delta x = \frac{2}{n}$ and $x_k^* = \frac{2k}{n}$.

Given that
$$\Delta x = \frac{2}{n}$$
 and $x_k^* = \frac{2k}{n}$,

$$f(x_k^*) = \frac{2k}{n},$$

$$f(x_k^*).\Delta x = \frac{2k}{n}.\frac{2}{n} = \frac{4k}{n^2},$$

$$\sum_{k=1}^n f(x_k^*).\Delta x = \sum_{k=1}^n \frac{4k}{n^2},$$

$$= \frac{4}{n^2} \sum_{k=1}^n k,$$

$$= \frac{4}{n^2} \frac{n(n+1)}{2} = \frac{2(n+1)}{n} = 2\left(1 + \frac{1}{n}\right).$$
Area = $\lim_{n \to \infty} \left(\sum_{k=1}^n f(x_k^*).\Delta x\right) = \lim_{n \to \infty} 2\left(1 + \frac{1}{n}\right) = 2.$

Lecture No. 29: Definite Integral

Lecture No. 30: First Fundamental Theorem of Calculus

Lecture No. 31: Evaluating Definite Integral by Substitution

Q 1: Find
$$\int_{2}^{5} f(x)dx$$
 if $\int_{3}^{2} f(x)dx = -5$, $\int_{3}^{4} f(x)dx = 3$, $\int_{5}^{4} f(x)dx = 4$

Solution:

$$\int_{5}^{4} f(x)dx = 4 \Rightarrow \int_{4}^{5} f(x)dx = -4 \text{ and } \int_{3}^{2} f(x)dx = -5 \Rightarrow \int_{2}^{3} f(x)dx = 5$$

$$\therefore \int_{2}^{5} f(x)dx = \int_{2}^{3} f(x)dx + \int_{3}^{4} f(x)dx + \int_{4}^{5} f(x)dx$$

$$= 5 + 3 - 4 = 4$$

Q 2: Express the area of the region below the line 7x + 2y = 25, above x-axis and between the lines x = 0, x = 4 as a definite integral. Also express this integral as a limit of the Riemann Sum.

Solution:

$$7x + 2y = 25$$

$$2y = 25 - 7x \implies y = \frac{25 - 7x}{2}$$

$$\int_{0}^{4} \frac{25 - 7x}{2} dx = \lim_{\max \Delta x_{k} \to 0} \sum_{k=1}^{n} \left(\frac{25 - 7x_{k}^{*}}{2}\right) \Delta x_{k}$$

Q 3: Evaluate the integral $\int_{1}^{3} \frac{x^3 - 1}{x - 1} dx$.

$$\int_{1}^{3} \frac{x^{3} - 1}{x - 1} dx = \int_{1}^{3} \frac{(x - 1)(x^{2} + x + 1)}{x - 1} dx$$

$$= \int_{1}^{3} (x^{2} + x + 1) dx$$

$$= \frac{x^{3}}{3} + \frac{x^{2}}{2} + x \Big|_{1}^{3}$$

$$= \left(\frac{27}{3} + \frac{9}{2} + 3\right) - \left(\frac{1}{3} + \frac{1}{2} + 1\right) = \left(12 + \frac{9}{2}\right) - \left(\frac{2 + 3 + 6}{6}\right)$$

$$= \left(\frac{24 + 9}{2}\right) - \frac{11}{6} = \frac{33}{2} - \frac{11}{6} = \frac{99 - 11}{6} = \frac{88}{6} = \frac{44}{3}$$

Q 4: Evaluate the definite integral $\int_{1}^{4} (3+3\sqrt{x})dx$.

Solution:

$$\int_{1}^{4} (3+3\sqrt{x})dx = 3x + 3\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\Big|_{1}^{4}$$

$$= 3x + 2x^{\frac{3}{2}}\Big|_{1}^{4}$$

$$= \left(3(4) + 2(4)^{\frac{3}{2}}\right) - \left(3(1) + 2(1)^{\frac{3}{2}}\right) = \left(12 + 2(8)\right) - \left(3 + 2\right) = 28 - 5 = 23$$

Q 5: Evaluate the integral $\int \frac{1}{\sqrt{x} \cdot (2 + \sqrt{x})^3} dx$ by using proper substitution.

Solution:

Let
$$u = 2 + \sqrt{x}$$

$$\Rightarrow du = \frac{1}{2\sqrt{x}} dx$$

$$\Rightarrow 2du = \frac{1}{\sqrt{x}} dx$$

Putting these values in the given integral, it becomes

$$\int \frac{1}{\sqrt{x} \cdot (2 + \sqrt{x})^3} dx = 2 \int \frac{1}{u^3} du =$$

$$= 2 \int u^{-3} du$$

$$= 2 \left| \frac{u^{-3+1}}{-3+1} \right| = \frac{2}{-2u^2}$$

$$= \frac{-1}{\left(2 + \sqrt{x}\right)^2} + c$$

Q 6: Use the Substitution method to express the following definite integrals in terms of the variable 'u' but do not evaluate the integrals.

i.
$$\int_{0}^{\frac{\pi}{2}} e^{\sin t} \cos t \ dt$$
ii.
$$\int_{0}^{1} 4t \sqrt{1-t^2} \ dt$$

Solution:

i.

Let
$$u = \sin t$$

 $\Rightarrow du = \cos t \, dt$
 $t = 0 \Rightarrow u = \sin 0 = 0$
and $t = \frac{\pi}{2} \Rightarrow u = \sin \frac{\pi}{2} = 1$
as t goes from 0 to $\frac{\pi}{2}$
so u goes from 0 to 1

$$\int_{0}^{\frac{\pi}{2}} e^{\sin t} \cos t \, dt = \int_{0}^{1} e^{u} \left(du \right) = \int_{0}^{1} e^{u} du$$

ii.

Let

$$u = 1 - t^{2}$$

$$\Rightarrow du = -2tdt$$

$$-2du = 4tdt$$

$$t = 1 \Rightarrow u = 1 - (1)^{2} = 0$$
and
$$t = 0 \Rightarrow u = 1 - (0)^{2} = 1$$
as t goes from 0 to 1
so u goes from 1 to 0

$$\int_{0}^{1} 4t \sqrt{1 - t^{2}} dt = -2 \int_{1}^{0} \sqrt{u} du = 2 \int_{0}^{1} \sqrt{u} du \qquad \left(\frac{\because -2tdt = du}{4tdt = -2du}\right)$$

Lecture No. 32: Second Fundamental Theorem of Calculus

Lecture No. 33: Application of Definite Integral

Lecture No. 34: Volume by slicing; Disks and Washers

Q 1: Find a definite integral indicating the area enclosed by the curves $y = x^2 - 6x - 7$ and y = x + 1. But do not evaluate it further.

Solution:

Here
$$y = x^2 - 6x - 7$$
 ______(1),
and $y = x + 1$ ______(2),
equating (1) and (2)

$$\Rightarrow x^2 - 6x - 7 = x + 1,$$

$$x^2 - 6x - 7 - x - 1 = 0,$$

$$x^2 - 7x - 8 = 0,$$

$$x^2 - 8x + x - 8 = 0,$$

$$x(x - 8) + 1(x - 8) = 0,$$

$$\therefore (x - 8)(x + 1) = 0,$$

$$\Rightarrow x = -1 \text{ and } x = 8,$$

as
$$x+1 \ge x^2 - 6x - 7$$
 for $-1 \le x \le 8$,

$$\therefore \int_{-1}^{8} ((x+1) - (x^2 - 6x - 7)) dx.$$

Q 2: Find the area of the region enclosed by the curves $y = x^3$ and y = x between x = 0 and $x = \frac{1}{2}$.

Solution:

Since we have $y = x^3$ and y = x

$$\Rightarrow$$
 $x \ge x^3$ in the interval $\left[0, \frac{1}{3}\right]$.

Thus required area is
$$A = \int_0^{\frac{1}{3}} (x - x^3) dx = \frac{x^2}{2} - \frac{x^4}{4} \Big|_0^{\frac{1}{3}}$$

$$= \frac{1}{2} \left(\frac{1}{3}\right)^2 - \frac{1}{4} \left(\frac{1}{3}\right)^4 = \frac{1}{18} - \frac{1}{324}$$

$$= \frac{17}{324}$$

Q 3: Evaluate
$$\int_{-\pi}^{0} \frac{1 + \sin 2t}{2} dt$$
.

Solution:

$$\int_{\pi}^{0} \frac{1+\sin 2t}{2} dt = \int_{\pi}^{0} \left(\frac{1}{2} + \frac{\sin 2t}{2}\right) dt$$

$$= \int_{\pi}^{0} \frac{1}{2} dt + \int_{\pi}^{0} \frac{\sin 2t}{2} dt$$

$$= \frac{1}{2} |t|_{\pi}^{0} - \frac{1}{4} |\cos 2t|_{\pi}^{0}$$

$$= \frac{1}{2} (0-\pi) - \frac{1}{4} (\cos 0 - \cos 2\pi)$$

$$= -\frac{\pi}{2} - \frac{1}{4} (1-1) = -\frac{\pi}{2}$$

Q 4: Evaluate $\frac{d}{dx} \left[\int_{1}^{x} \cos t dt \right]$ by using second fundamental theorem of calculus. Also

Check the validity of this theorem.

Solution:

Since $f(x) = \cos x$ is continuous on (1, x), so by second fundamental theorem of calculus

$$\frac{d}{dx} \left[\int_{1}^{x} \cos t dt \right] = \cos x$$

Now we will verify this result by evaluating this integral.

$$\int_{1}^{x} \cos t dt = \left| \sin t \right|_{1}^{x} = \sin x - \sin 1$$

$$\Rightarrow \frac{d}{dx} \int_{1}^{x} \cos t dt = \frac{d}{dx} (\sin x - \sin 1) = \cos x = f(x)$$

Q 5: Find the volume of a solid bounded by two parallel planes perpendicular to the x-axis at x = 0 and x = 3, where the cross section perpendicular to the x-axis is a rectangle having dimensions 'a' and 'b'

Solution:

Here dimensions are $a \& b \implies A = ab$

$$V = \int_{0}^{3} ab \, dx \qquad \left(\because V = \int_{c}^{d} A(x) \, dx \right)$$
$$= ab \int_{0}^{3} dx \Rightarrow ab \cdot x \Big|_{0}^{3} \Rightarrow 3ab$$

Q 6: Find the volume of the solid generated when the region between the graphs of $f(x) = \frac{1}{2} + x$ and g(x) = x over the interval [0,2] is revolved about the x-axis.

Solution:

Since the volume enclosed between two curves y = f(x) and y = g(x) revolve about the x-axis so

$$V = \int_{a}^{b} \pi \left(g^{2}(x) - f^{2}(x)\right) dx$$
Here $f(x) = \frac{1}{2} + x$ and $g(x) = x$ as $f(x) \ge g(x)$ for $0 \le x \le 2$

$$a = 0, b = 2,$$
so
$$V = \int_{0}^{2} \pi \left(\frac{1}{2} + x\right)^{2} - x^{2} dx$$

$$V = \int_{0}^{2} \pi \left(\frac{1}{4} + x^{2} + x - x^{2}\right) dx$$

$$= \int_{0}^{2} \pi \left(\frac{1}{4} + x\right) dx \Rightarrow \pi \left[\frac{x}{4} + \frac{x^{2}}{2}\right]^{2} \Rightarrow \frac{5\pi}{2}$$

Lecture No. 35: Volume by Cylindrical Shells

Lecture No. 36: Length of Plane Curves

Lecture No. 37: Area of Surface of Revolution

Q 1: Use cylindrical shells to find the volume of the solid generated when the region 'R' in the first quadrant enclosed between y = 4x and $y = x^3$ is revolved about the y-axis.

Solution:

To find the limit of integration, we will find the point of intersection between two curves.

Equating y = 4x and $y = x^3$, we get

$$x^{3} = 4x,$$

$$\Rightarrow x^{3} - 4x = 0,$$

$$\Rightarrow x(x^{2} - 4) = 0,$$

$$\Rightarrow x = 0, x = \pm 2.$$

Since our region R is in first quadrant so we ignore x = -2. Hence limit of integration is x = 0 to x = 2.

So
$$V = \int_{0}^{2} 2\pi x (4x - x^{3}) dx$$
,
 $= 2\pi \int_{0}^{2} (4x^{2} - x^{4}) dx$,
 $= 2\pi \left| 4\frac{x^{3}}{3} - \frac{x^{5}}{5} \right|_{0}^{2}$.

After simplification, we get

$$V = \frac{128}{15}\pi.$$

Q 2: Use cylindrical shell method to find the volume of the solid generated when the region enclosed between $y = x^3$ and the x-axis in the interval [0,3] is revolved about the y-axis.

Solution:

After simplification, we get $V = \frac{486}{5}\pi$.

Q 3: Find the arc length of the curve $y = \frac{2}{3}(x-1)^{\frac{3}{2}}$ from x = 0 to $x = \frac{1}{2}$. **Solution:**

$$y = \frac{2}{3}(x-1)^{\frac{3}{2}},$$

$$\Rightarrow \frac{dy}{dx} = \frac{2}{3}(\frac{3}{2})(x-1)^{\frac{1}{2}} = (x-1)^{\frac{1}{2}}.$$

$$\therefore L = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} dx,$$

$$\Rightarrow L = \int_{0}^{\frac{1}{2}} \sqrt{1 + [(x-1)^{\frac{1}{2}}]^{2}} dx = \int_{0}^{\frac{1}{2}} \sqrt{(1+x-1)} dx = \int_{0}^{\frac{1}{2}} \sqrt{x} dx,$$

$$= \frac{2}{3}x^{\frac{3}{2}}\Big|_{0}^{\frac{1}{2}},$$

$$= \frac{2}{3}(\frac{1}{2})^{\frac{3}{2}},$$

$$= \frac{1}{3\sqrt{2}}.$$

Q 4: If f is a smooth function on [1,4], then find a definite integral indicating the arc length of the curve $x = y^{\frac{2}{3}}$ from y = 1 to y = 4. **Note**: Do not evaluate it further.

Here
$$x = g(y) = y^{\frac{2}{3}}$$
,

$$\Rightarrow \qquad g'(y) = \frac{2}{3}y^{-\frac{1}{3}}.$$

$$\therefore \text{ Arc length } L = \int_{a}^{b} \sqrt{1 + \left[g'(y)\right]^2} \ dy,$$

$$\therefore \qquad L = \int_{1}^{4} \sqrt{1 + \frac{4}{9}y^{\frac{-2}{3}}} \ dy.$$

Q 5: Find the area of the surface generated by revolving the curve $y = \sqrt{1 - x^2}$; $0 \le x \le 1$ about the x - axis.

Solution:

$$f(x) = y = \sqrt{1 - x^{2}},$$

$$\Rightarrow f'(x) = -\frac{x}{\sqrt{1 - x^{2}}}.$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx,$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx,$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx,$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx,$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx,$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx,$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx,$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx,$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx,$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx,$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx,$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx,$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx,$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx,$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx,$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx,$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx,$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx,$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx,$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx,$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx,$$

$$f'(x) = \int_{a}^{b} 2\pi f(x) dx,$$

$$f'(x) = \int_{a}^{b}$$

Q 6: Write a definite integral indicating the area of the surface generated by revolving the curve $y = x^2$; $0 \le x \le 2$ about the x – axis. **Note**: Do not evaluate it further.

$$y = f(x) = x^{2} ; \quad 0 \le x \le 2,$$

$$\Rightarrow \frac{dy}{dx} = f'(x) = 2x.$$

$$\therefore S = \int_{0}^{2} 2\pi (x^{2}) \sqrt{1 + (2x)^{2}} dx, \qquad \left(\because S = \int_{c}^{d} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx \right)$$

$$= 2\pi \int_{0}^{2} x^{2} \sqrt{1 + 4x^{2}} dx.$$

Lecture No. 38: Work and Definite Integral

Lecture No. 39: Improper Integral Lecture No. 40: L'Hopital's Rule

Q 1: Find the work done by the force 500x if an object moves in the positive direction over the interval [0.16, 0.19]?

Solution:

Here

F(x) =500x; [0.16, 0.19]

$$W = \int_{0.16}^{0.19} 500x \, dx \quad \text{since } W = \int_{a}^{b} F(x) \, dx$$

$$= \left| \frac{500 \, x^{2}}{2} \right|_{0.16}^{0.19}$$

$$= \frac{500}{2} |x^{2}|_{0.16}^{0.19}$$

$$= 250[(0.19)^{2} - (0.16)^{2}]$$

$$= 2.625 \text{ J}$$

Q 2: Find the spring constant if a force took 1800 J of work to stretch a spring from its natural length of 5m to a length of 8m? **Solution:**

The work done by F is W=
$$\int_0^3 F(x)dx$$

$$1800 = \int_0^3 Kx dx$$

$$=k \int_0^3 x dx$$

$$=k \left|\frac{x^2}{2}\right|_0^3$$

$$=\frac{9k}{2}$$
or
$$3600=9k$$
or
$$k=400$$

Q 3: Evaluate the improper integral:

$$\int_{-\infty}^{0} \frac{1}{(2x+1)^3} dx$$

$$\int_{-\infty}^{0} \frac{1}{(2x+1)^3} dx$$

$$= \lim_{t \to \infty} \int_{t}^{0} \frac{1}{(2x+1)^3} dx$$

$$= \lim_{t \to \infty} \frac{1}{2} \int_{t}^{0} \frac{1}{(2x+1)^3} (2dx)$$

$$= \lim_{t \to \infty} \frac{1}{2} \int_{t}^{0} (2x+1)^{-3} (2dx)$$

$$= \lim_{t \to \infty} \frac{1}{2} \left| \frac{(2x+1)^{-2}}{-2} \right|_{t}^{0}$$

$$= \lim_{t \to \infty} \frac{-1}{4} \left| (2x+1)^{-2} \right|_{t}^{0}$$

$$= \frac{-1}{4} \lim_{t \to \infty} \left[1 - (2t+1)^{-2} \right]$$

$$= \frac{-1}{4} \lim_{t \to \infty} \left[1 - \frac{1}{(2t+1)^2} \right]$$

$$= \frac{-1}{4} [1 - 0]$$

$$= \frac{-1}{4}$$

Q 4: Solve the improper integral: $\int_{1}^{5} \frac{1}{(x-2)^{\frac{2}{3}}} dx.$

Solution:

$$\int_{1}^{5} \frac{1}{(x-2)^{\frac{2}{3}}} dx$$

$$= \int_{1}^{2} \frac{dx}{(x-2)^{\frac{2}{3}}} + \int_{2}^{5} \frac{dx}{(x-2)^{\frac{2}{3}}}$$

$$= \int_{1}^{2} (x-2)^{-\frac{2}{3}} dx + \int_{2}^{5} (x-2)^{-\frac{2}{3}} dx$$

$$= 3 \left| (x-2)^{\frac{1}{3}} \right|_{1}^{2} + 3 \left| (x-2)^{\frac{1}{3}} \right|_{2}^{5}$$

$$= 3[0 - (-1)^{1/3}] + 3[(3)^{1/3} - 0]$$

$$= 3[(3)^{1/3} - (-1)^{1/3}]$$

$$= 3[\sqrt[1/3]{3} - \sqrt[1/3]{-1}]$$

Q 5: Use L'Hopital's rule to evaluate the limit:

$$\lim_{x \to \frac{\pi}{2}} \frac{\sin x - 1}{\cos 2x + 1}$$

$$\lim_{x \to \frac{\pi}{2}} \frac{\sin x - 1}{\cos 2x + 1}$$

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{-2 \sin 2x}$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{-2 \sin 2x}$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{-2 \sin 2x}$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{-4 \sin x \cos x}$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{1}{-4 \sin x}$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{1}{-4 \sin x}$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{1}{-4 \sin x}$$

Q 6: Evaluate the limit: $\lim_{x\to\infty} \sqrt{x^2 - 5x} - x$. **Solution:**

$$\lim_{x \to \infty} \sqrt{x^2 - 5x} - x$$

$$= \lim_{x \to \infty} \frac{\sqrt{x^2 - 5x} - x}{\sqrt{x^2 - 5x} + x} \times \sqrt{x^2 - 5x} + x$$

$$= \lim_{x \to \infty} \frac{(\sqrt{x^2 - 5x})^2 - x^2}{\sqrt{x^2 - 5x} + x}$$

$$= \lim_{x \to \infty} \frac{x^2 - 5x - x^2}{\sqrt{x^2 - 5x} + x}$$

$$= \lim_{x \to \infty} \frac{x^2 - 5x - x^2}{\sqrt{x^2 - 5x} + x}$$

$$= \lim_{x \to \infty} \frac{-5x}{\sqrt{x^2 - 5x} + x}$$

$$= \lim_{x \to \infty} \frac{-5x}{\sqrt{x^2 - 5x} + x}$$

$$= \lim_{x \to \infty} \frac{-5x}{\sqrt{(1 - \frac{5}{x})} + x}$$

$$= \lim_{x \to \infty} \frac{-5x}{\sqrt{(1 - \frac{5}{x})} + 1}$$

$$= \lim_{x \to \infty} \frac{-5}{\sqrt{(1 - \frac{5}{x})} + 1}$$

$$= \frac{-5}{2}$$

Lecture No. 41: Sequence

Lecture No. 42: Infinite Series

Lecture No. 43: Additional Convergence tests

Q 1: Determine whether the sequence $\{a_n\}$ converges or diverges? Where $a_n = \frac{n+1}{n^2+3}$.

Solution:

Here
$$a_n = \frac{n+1}{n^2+3}$$

We will calculate the limit $\lim_{n\to\infty} \frac{n+1}{n^2+3}$.

Dividing by 'n2' in denominator and numerator

$$= \lim_{n \to \infty} \frac{\frac{n}{n^2} + \frac{1}{n^2}}{\frac{n^2}{n^2} + \frac{3}{n^2}}$$

$$= \lim_{n \to \infty} \frac{\frac{1}{n} + \frac{1}{n^2}}{1 + \frac{3}{n^2}} = \frac{\frac{1}{\infty} + \frac{1}{\infty}}{1 + \frac{3}{\infty}} = \frac{0}{1} = 0$$

The sequence is convergent and its limit is '0'.

Q 2: Determine whether the following sequence is strictly monotone or not. Justify your answer.

$$a_n = \left\{ \frac{2}{n^2} \right\}$$

Solution:

Hora

$$a_n = \frac{2}{n^2}$$
 and $a_{n+1} = \frac{2}{(n+1)^2}$

$$\frac{a_{n+1}}{a_n} = \frac{2}{(n+1)^2} \times \frac{n^2}{2} = \frac{n^2}{(n+1)^2} < 1$$

$$\frac{a_{n+1}}{a_n} < 1 \Longrightarrow a_{n+1} < a_n$$

So this is a decreasing sequence and hence strictly monotonic.

Q 3: Determine whether the sequence $\{a_n\}$ converges or diverges; if it converges then find its limit; where

$$a_n = [\ln 2n - \ln(n+2)]$$

Solution:

$$\lim_{n \to \infty} \left[\ln 2n - \ln (n+2) = \lim_{n \to \infty} \left[\ln \frac{2n}{n+2} \right] \right]$$
$$= \ln \lim_{n \to \infty} \left[\frac{2n}{n+2} \right]$$

divide numerator and denominator by n,

$$= \ln \lim_{n \to \infty} \left[\frac{2}{1 + \frac{2}{n}} \right]$$

$$= \ln(2)$$

$$\left(\therefore \lim_{n \to \infty} \left[\frac{2}{1 + \frac{2}{n}} \right] = 2 \right)$$

The sequence is convergent and its limit is ln 2.

Q 4: Determine whether the following series converges; if so then find the sum:

$$5 + \frac{5}{2} + \frac{5}{2^2} + \dots + \frac{5}{2^{k-1}} + \dots$$

Solution:

Since
$$5 + \frac{5}{2} + \frac{5}{2^2} + \dots + \frac{5}{2^{k-1}} + \dots$$
 is a geometric series with $a = 5$ and $r = \frac{1}{2}$.

And $|r| = \frac{1}{2} < 1$, therefore the series converges and the sum is

$$\frac{a}{1-r} = \frac{5}{1-\frac{1}{2}} \quad \left(\because \text{ if } |r| < 1, \text{ the series converges then the sum is} \right)$$

$$\frac{a}{1-r} = a + ar + ar^2 + \dots ar^{k-1} + \dots$$

$$= 5\left(\frac{2}{1}\right)$$

$$= 10$$

Q 5: Use the divergence test to show that the given series diverges.

$$\sum_{k=1}^{\infty} \frac{k^2 + k + 2}{3k^2 + 1}$$

Solution:

To show that the given series diverges by using divergence test we have to show that

$$\lim_{k \to \infty} \frac{k^2 + k + 2}{3k^2 + 1} \neq 0$$

Dividing in numerator and denominator by k^2

$$\lim_{k \to \infty} \frac{(k^2 + k + 3) / k^2}{(2k^2 + 1) / k^2} = \lim_{k \to \infty} \frac{1 + \frac{1}{k} + \frac{3}{k^2}}{2 + \frac{1}{k^2}}$$
$$= \frac{1}{3} \neq 0$$

So according to divergence test the series diverges.

$$\sum_{k=1}^{\infty} \frac{k^2 + k + 2}{3k^2 + 1}$$

Q 6: Check the convergence or divergence of the series $\sum_{k=1}^{\infty} \frac{1}{(k+1)!}$ by using the Ratio Test.

Q 7: Find ρ by using the Limit Comparison Test where $\sum a_n = \frac{1}{2n-1}$ and $\sum b_n = \frac{1}{2n}$. **Solution:**

$$\sum a_n = \frac{1}{2n-1} \quad and \quad \sum b_n = \frac{1}{2n}$$

$$\rho = \lim_{n \to +\infty} \frac{\frac{1}{2n-1}}{\frac{1}{2n}} = \lim_{n \to +\infty} \frac{2n}{2n-1} \quad \left(\because \text{ The Limit Comparison test: } \rho = \lim_{n \to +\infty} \frac{a_n}{b_n}\right)$$

$$= \lim_{n \to +\infty} \frac{2}{2 - \frac{1}{n}}$$

$$= \frac{2}{2 - \frac{1}{\infty}} = \frac{2}{2} \qquad \left(\because \frac{a}{\infty} = 0 \right)$$

$$= 1 \qquad \left(\therefore \rho \text{ is finite and } \rho > 0 \right)$$

Lecture No. 44: Alternating Series; Conditional Convergence Lecture No. 45: : Taylor and Maclaurin Series

Q 1: Find the radius of convergence for the following power series: $\sum_{1}^{\infty} \frac{n! \cdot x^{n}}{(3n)!}$

Solution:

Here
$$a_n = \frac{n! \cdot x^n}{(3n)!}$$
,
so $a_{n+1} = \frac{(n+1)! \cdot x^{n+1}}{(3n+3)!}$.

Now,

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)! \cdot x^{n+1}}{(3n+3)!} \cdot \frac{(3n)!}{n! \cdot x^n} \right|,$$

$$= \lim_{n \to \infty} \frac{(n+1)n!}{(3n+3)(3n+2)(3n+1)(3n)!} \cdot \frac{(3n)!}{n!} |x|,$$

$$= \lim_{n \to \infty} \frac{n+1}{(3n+3)(3n+2)(3n+1)} |x|,$$

$$= 0$$

Thus the series converges absolutely $\forall x$ and radius of convergence $= \infty$.

Q 2: Show that $\sum_{1}^{\infty} |a_n|$ is divergent for the following alternating series: $\sum_{1}^{\infty} \frac{(-1)^n \cdot n^n}{2n!}$.

Solution:

Here
$$a_n = \frac{(-1)^n \cdot n^n}{2n!}$$
,
so $|a_n| = \frac{n^n}{2n!}$, and $|a_{n+1}| = \frac{(n+1)^{n+1}}{2(n+1)!}$.
Now $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{(n+1)^{n+1}}{2(n+1)!} \cdot \frac{2n!}{n^n}$
 $= \lim_{n \to \infty} (\frac{n+1}{n})^n$,
 $= \lim_{n \to \infty} (1 + \frac{1}{n})^n$,
 $= e > 1$

Thus the given series is diverges.

Q 3: Find the first two terms of Tylor series for $f(x) = \ln x$ at x = 2.

Solution:

$$f(x) = \ln x, \qquad f(2) = \ln 2,$$

$$f'(x) = \frac{1}{x}, \qquad f'(2) = \frac{1}{2}.$$

 \therefore Taylor polynomial for f about x = a:

$$p_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n,$$

$$\Rightarrow p_0(x) = f(2) = \ln 2,$$

$$\Rightarrow p_1(x) = f(2) + f'(2)(x-2) = \ln 2 + \frac{1}{2}(x-2).$$

Q 4: Find the first four terms of the Taylor series generated by f at x = 2 where

$$f(x) = \frac{1}{x+1}.$$

Solution:

$$f(x) = \frac{1}{x+1} = (x+1)^{-1} \quad \text{and} \quad f(2) = \frac{1}{2+1} = \frac{1}{3},$$

$$f'(x) = -(x+1)^{-2} = -\frac{1}{(x+1)^2} \quad \text{and} \quad f'(2) = -\frac{1}{(2+1)^2} = -\frac{1}{3^2},$$

$$f''(x) = 2(x+1)^{-3} = \frac{2}{(x+1)^3} \quad \text{and} \quad f''(2) = \frac{2}{(2+1)^3} = \frac{2}{3^3},$$

$$f'''(x) = -6(x+1)^{-4} = -\frac{6}{(x+1)^4} \quad \text{and} \quad f'''(2) = -\frac{6}{(2+1)^4} = -\frac{6}{3^4}.$$

: Taylor Series

$$p_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots$$

$$= \frac{1}{3} + \frac{-\frac{1}{3^2}}{1!}(x-2) + \frac{\frac{2}{3^3}}{2!}(x-2)^2 + \frac{-\frac{6}{3^4}}{3!}(x-2)^3 + \dots$$

$$\Rightarrow \frac{1}{x+1} = \frac{1}{3} - \frac{1}{9}(x-2) + \frac{1}{27}(x-2)^2 - \frac{1}{81}(x-2)^3 + \dots$$