MTH101: Solution of Practice Exercise Lecture No.6: Functions

Q.No. 1

Find the natural domain and the range of the given function

$$
h(x)=\cos ^{2}(\sqrt{x}) .
$$

Solution:

As we know that the \sqrt{x} is defined on non-negative real numbers $x \geq 0$. This means that the natural domain of $h(x)$ is the set of positive real numbers.
Therefore, the natural domain of $h(x)=[0,+\infty)$.
As we also know that the range of trigonometric function $\cos x$ is $[-1,1]$.
The function $\cos ^{2} \sqrt{x}$ always gives positive real values within the range 0 and 1 both inclusive.
From this we conclude that the range of $h(x)=[0,1]$.

Q.No. 2

Find the domain and range of function f defined by $f(x)=x^{2}-2$.

Solution:

$$
\because \quad f(x)=x^{2}-2
$$

The domain of this function is the set of all real numbers.
The range is the set of values that $f(x)$ takes as x varies. If x is a real number, x^{2} is either positive or zero. Hence we can write the following:

$$
x^{2} \geq 0
$$

Subtract -2 on both sides to obtain

$$
x^{2}-2 \geq-2
$$

The last inequality indicates that $x^{2}-2$ takes all values greater than or equal to -2 . The range of function f is the set of all values of $f(x)$ in the interval $[-2,+\infty)$.

Q.No. 3

Determine whether $y= \pm \sqrt{x+3}$ is a function or not? Justify your answer.

Solution:

$$
\because \quad y= \pm \sqrt{x+3}
$$

This is not a function because each value that is assigned to ' x ' gives two values of y So this is not a function. For example, if $x=1$ then

$$
\begin{aligned}
& y= \pm \sqrt{1+3}, \\
& y= \pm \sqrt{4}, \\
& y= \pm 2 .
\end{aligned}
$$

Q.No. 4

Determine whether $y=\frac{x+2}{x+3}$ is a function or not? Justify your answer.

Solution:

$$
\because y=\frac{x+2}{x+3}
$$

This is a function because each value that is assigned to ' x ' gives only one value of y So this is a function. For example if $x=1$ then

$$
\begin{aligned}
& y=\frac{1+2}{1+3} \\
& y=\frac{3}{4} \\
& y=0.75
\end{aligned}
$$

Q.No. 5

(a) Find the natural domain of the function $f(x)=\frac{x^{2}-16}{x-4}$.
(b) Find the domain of function f defined by $f(x)=\frac{-1}{(x+5)}$.

Solution:

(a)

$$
\begin{aligned}
\because \quad f(x) & =\frac{x^{2}-16}{x-4}, \\
\Rightarrow \quad f(x) & =\frac{(x+4)(x-4)}{(x-4)}, \\
& =(x+4) \quad ; x \neq 4 .
\end{aligned}
$$

This function consists of all real numbers x, except $x=4$.
(b)

$$
\because \quad f(x)=\frac{-1}{(x+5)}
$$

This function consists of all real numbers x, except $x=-5$. Since $x=-5$ would make the denominator equal to zero and the division by zero is not allowed in mathematics.
Hence the domain in interval notation is given by $(-\infty,-5) \cup(-5,+\infty)$.

