MTH101: Solution of Practice Exercise Lecture No.6: Functions

Q.No.1

Find the natural domain and the range of the given function

$$h(x) = \cos^2(\sqrt{x})$$

Solution:

As we know that the \sqrt{x} is defined on non-negative real numbers $x \ge 0$. This means that the natural domain of h(x) is the set of positive real numbers. Therefore, the natural domain of $h(x) = [0, +\infty)$.

- /

As we also know that the range of trigonometric function $\cos x$ is [-1, 1].

The function $\cos^2 \sqrt{x}$ always gives positive real values within the range 0 and 1 both inclusive. From this we conclude that the range of h(x) = [0, 1].

Q.No.2

Find the domain and range of function f defined by $f(x) = x^2 - 2$.

Solution:

$$\therefore f(x) = x^2 - 2$$

The domain of this function is the set of all real numbers.

The range is the set of values that f(x) takes as x varies. If x is a real number, x^2 is either positive or zero. Hence we can write the following:

$$x^2 \ge 0$$
,

Subtract -2 on both sides to obtain

$$x^2 - 2 \ge -2.$$

The last inequality indicates that $x^2 - 2$ takes all values greater than or equal to -2. The range of function f is the set of all values of f(x) in the interval $[-2, +\infty)$.

Q.No.3

Determine whether $y = \pm \sqrt{x+3}$ is a function or not? Justify your answer.

Solution:

$$\therefore y = \pm \sqrt{x+3}$$

This is not a function because each value that is assigned to 'x' gives two values of y So this is not a function. For example, if x=1 then

$$y = \pm \sqrt{1+3}$$
$$y = \pm \sqrt{4},$$
$$y = \pm 2.$$

,

Q.No.4

Determine whether $y = \frac{x+2}{x+3}$ is a function or not? Justify your answer.

Solution:

$$\therefore y = \frac{x+2}{x+3}$$

This is a function because each value that is assigned to 'x' gives only one value of y So this is a function. For example if x=1 then

$$y = \frac{1+2}{1+3},$$

 $y = \frac{3}{4},$
 $y = 0.75.$

Q.No.5

(a) Find the natural domain of the function $f(x) = \frac{x^2 - 16}{x - 4}$.

(**b**) Find the domain of function f defined by $f(x) = \frac{-1}{(x+5)}$.

Solution:

(a)

$$\therefore f(x) = \frac{x^2 - 16}{x - 4},$$

$$\Rightarrow f(x) = \frac{(x + 4)(x - 4)}{(x - 4)},$$

$$= (x + 4) \quad ; x \neq 4$$

This function consists of all real numbers x, except x = 4.

(b)

$$\therefore f(x) = \frac{-1}{(x+5)}$$

This function consists of all real numbers x, except x = -5. Since x = -5 would make the denominator equal to zero and the division by zero is not allowed in mathematics. Hence the domain in interval notation is given by $(-\infty, -5) \cup (-5, +\infty)$.