Lecture 8

Graphs of Functions

- Represent Functions by graphs
- Visualize behavior of Functions through graphs
- How to use graphs of simple functions to create graphs of complicated functions

Definition of Graph of a function

- We saw earlier the relationship between graph and its equation
- A graph of an equation is just the points on the xy- plane that satisfy the equation
- Similarly, the graph of a Function f in the xy-plane is the GRAPH of the equation y = f(x)

Example

Sketch the graph of f(x) = x + 2

By definition, the graph of f is the graph of y = x + 2. This is just a line with y-intercept 2 and slope 1. We saw how to plot lines in a previous lecture

graph of
$$f(x) = x + 2$$

Example

Sketch the graph of f(x) = |x|

The graph will be that of y = |x|

Remember that absolute value is defined as

$$y = |x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

Remember that absolute value function is PIECEWISE defined. The top part is the function y = f(x) = x, the bottom is the function y = f(x) = -x

y = x is just a straight line through the origin with slope 1, but is only defined for x > 0. y = -x is a straight line through the origin with slope -1 but defined only for x < 0. Here is the GRAPH

EXAMPLE

$$t(x) = \frac{x^2 - 4}{x - 2}$$

This is the same as t(x) = x + 2 $x \neq 2$

Graph will be of y = x + 2, $x \ne 2$

Remember from Lecture 6??

t(x) is the same as in example 1, except that 2 is not part of the domain, which means there is no y value corresponding to x = 2. So there is a HOLE in the graph.

Picture

EXAMPLE

$$g(x) = \begin{cases} 1 & \text{if } x \le 2\\ x+2 & \text{if } x > 2 \end{cases}$$

Graph will be of

$$y = \begin{cases} 1 & \text{if } x \le 2\\ x+2 & \text{if } x > 2 \end{cases}$$

For x is less than or equal to 2, the graph is just at y = 1. This is a straight line with slope 0. For x is greater than 2, the graph is the line x+2

Graphing functions by Translations

Suppose the graph of f(x) is known.

Then we can find the graphs of y = f(x) + c, y = f(x) - c, y = f(x+c), y = f(x-c).

c is any POSITIVE constant.

- If a positive constant c is added to f(x), the geometric effect is the translation of the graph of y=f(x) UP by c units.
- If a positive constant c is subtracted from f (x) the geometric effect is the translation of the graph of y=f(x) DOWN by c units.
- If a positive constant c is added to the independent variable x of f(x), the geometric effect is the translation of the graph of y=f(x) LEFT by c units.
- If a positive constant c is subtracted from the independent variable x of f(x), the geometric effect is the translation of the graph of y=f(x) RIGHT by c units.

Here is a table summarizing what we just talked about in terms of translations of function

$$y = f(x) + c$$
 graph of $f(x)$ translates UP by c units

 $y = f(x) - c$ graph of $f(x)$ translates $DOWN$ by c units

 $y = f(x + c)$ graph of $f(x)$ translates $LEFT$ by c units

 $y = f(x - c)$ graph of $f(x)$ translates $RIGHT$ by c units

Example

Sketch the graph of y = f(x) = |x-3| + 2

This graph can be obtained by two translations

Translate the graph of y = |x| 3 units to the RIGHT to get the graph of y = |x-3|.

Translate the graph of y = |x-3| 2 units UP to get the graph of y = f(x) = |x-3| + 2.

Example

Sketch graph of
$$y = x^2 - 4x + 5$$

Complete the square

Divide the co-efficient of x by 2

Square this result and add to the both sides of your equation

$$y+4=(x^2-4x+5)+4$$

$$y = (x^2 - 4x + 4) + 5 - 4$$

$$y = (x-2)^2 + 1$$

This equation is the same as the original

Graph

$$y = x^2$$

Shift it RIGHT by 2 units to get graph of $y = (x-2)^2$

Shift this UP by 1 Unit to get $y = (x-2)^2 + 1$

Reflections

From Lecture 3

- (-x, y) is the reflection of (x, y) about the y-axis
- (x, -y) is the reflection of (x, y) about the x-axis

Graphs of y = f(x) and y = f(-x) are reflections of one another about the y-axis.

Graphs of y = f(x) and y = -f(x) are reflections of one another about the x-axis.

Example

Sketch the graph of
$$y = \sqrt[3]{2-x}$$

We can always plot points by choosing x-values and getting the corresponding y-values. Better if we get the graph by REFELCTION and TRANSLATION

Here is HOW

- First graph $y = \sqrt[3]{x}$
- Reflect it about the y-axis to get graph of $y = \sqrt[3]{-x}$ Remember that negative numbers HAVE cube roots
- Translate this graph RIGHT by 2 units to get graph of

$$y = \sqrt[3]{2-x} = \sqrt[3]{-x+2} = \sqrt[3]{-(x-2)}$$
 scaling.

If f(x) is MULTIPLIED by a POSITIVE constant c, then the following geometric effects take place

- The graph of f(x) is COMPRESSED vertically if 0 < c < 1
- The graph of f(x) is STRETCHED vertically if c > 1
- This is called VERTICAL Scaling by a factor of *c*.

•

Example

$$y = 2\sin(x)$$

$$y = \sin(x)$$

$$y = \frac{1}{2}\sin(x)$$

c = 2 and c = 1/2 is used and here are the corresponding graphs with appropriate VERTICAL SCALINGS

Vertical Line Test

- So far we have started with a function equation, and drawn its graph
- What if we have a graph given. Must it be the graph of a function??
- Not every curve or graph in the xy-plane is that of a function

Example

Here is a graph which is not the graph of a function. Figure 2.3.12

Its not a graph because if you draw a VERTICAL line through the point x = a, then the line crosses the graph in two points with y values y = b, y = c.

This gives you two points on the graph namely

But this cannot be a function by the definition of a function.

VERTICAL LINE TEST

A graph in the plane is the graph of a function if and only if NO VERTICAL line intersects the graph more than once.

Example

$$x^2 + y^2 = 25$$

The graph of this equation is a CIRLCE. Various vertical lines cross the graph in more than 2 places. So the graph is not that of a function which means that equations of Circles are not functions x as a function of y. A given graph can be a function with y independent and x dependent. That is why, it could be the graph of an equation like x = g(y).

This would happen if the graph passes the HORIZONTAL LINE test.

This is so because for each y, there can be only one x by definition of FUNCTION.

Also,

$$y = x^2$$
 Gives

$$g(y) = x = \pm \sqrt{y}$$

SO for each x, two y's and its not a function in y as clear from the graph of the function

