MTH101 Solution: Practice Questions Lecture No. 44 to 45

Question 1: Find the radius of convergence for the following power series:

$$\sum_{1}^{\infty} \frac{n! \cdot x^{n}}{(3n)!}.$$

Solution

Here
$$a_n = \frac{n! \cdot x^n}{(3n)!}$$
,
so $a_{n+1} = \frac{(n+1)! \cdot x^{n+1}}{(3n+3)!}$.

Now,

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)! \cdot x^{n+1}}{(3n+3)!} \cdot \frac{(3n)!}{n! \cdot x^n} \right|,$$

$$= \lim_{n \to \infty} \frac{(n+1)n!}{(3n+3)(3n+2)(3n+1)(3n)!} \cdot \frac{(3n)!}{n!} |x|,$$

$$= \lim_{n \to \infty} \frac{n+1}{(3n+3)(3n+2)(3n+1)} |x|,$$

$$= 0$$

Thus the series converges absolutely $\forall x$ and radius of convergence $= \infty$.

Question 2: Show that $\sum_{n=1}^{\infty} |a_n|$ is divergent for the following alternating series:

$$\sum_{1}^{\infty} \frac{(-1)^n \cdot n^n}{2n!}.$$

Solution:

Here
$$a_n = \frac{(-1)^n \cdot n^n}{2n!}$$
,
so $|a_n| = \frac{n^n}{2n!}$,
and $|a_{n+1}| = \frac{(n+1)^{n+1}}{2(n+1)!}$.
Now $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{(n+1)^{n+1}}{2(n+1)!} \cdot \frac{2n!}{n^n}$,
 $= \lim_{n \to \infty} (\frac{n+1}{n})^n$,
 $= \lim_{n \to \infty} (1 + \frac{1}{n})^n$,
 $= e > 1$

Thus the given series is diverges.

Question 3: Find the first two terms of Tylor series for $f(x) = \ln x$ at x = 2.

Solution:

$$f(x) = \ln x, \qquad f(2) = \ln 2,$$

$$f'(x) = \frac{1}{x}, \qquad f'(2) = \frac{1}{2}.$$

 \therefore Taylor polynomial for f about x = a:

$$p_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n,$$

$$\Rightarrow p_0(x) = f(2) = \ln 2,$$

$$\Rightarrow p_1(x) = f(2) + f'(2)(x-2) = \ln 2 + \frac{1}{2}(x-2).$$

Question 4: Find the first four terms of the Taylor series generated by f at x=2 where

$$f(x) = \frac{1}{x+1}.$$

Solution:

$$f'(x) = \frac{1}{x+1} = (x+1)^{-1} \quad \text{and} \quad f(2) = \frac{1}{2+1} = \frac{1}{3},$$

$$f'(x) = -(x+1)^{-2} = -\frac{1}{(x+1)^2} \quad \text{and} \quad f'(2) = -\frac{1}{(2+1)^2} = -\frac{1}{3^2},$$

$$f''(x) = 2(x+1)^{-3} = \frac{2}{(x+1)^3} \quad \text{and} \quad f''(2) = \frac{2}{(2+1)^3} = \frac{2}{3^3},$$

$$f'''(x) = -6(x+1)^{-4} = -\frac{6}{(x+1)^4} \quad \text{and} \quad f'''(2) = -\frac{6}{(2+1)^4} = -\frac{6}{3^4}.$$

: Taylor Series

$$p_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots$$

$$= \frac{1}{3} + \frac{-\frac{1}{3^2}}{1!}(x-2) + \frac{\frac{2}{3^3}}{2!}(x-2)^2 + \frac{-\frac{6}{3^4}}{3!}(x-2)^3 + \dots$$

$$\Rightarrow \frac{1}{x+1} = \frac{1}{3} - \frac{1}{9}(x-2) + \frac{1}{27}(x-2)^2 - \frac{1}{81}(x-2)^3 + \dots$$