MTH101 Solution: Practice Questions
Lecture No. 44 to 45

Question 1: Find the radius of convergence for the following power series:
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Thus the series converges absolutely vV x and radius of convergence = oo.
Question 2: Show that Z|an| is divergent for the following alternating series:
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Thus the given series is diverges.

Question 3: Find the first two terms of Tylor series for f(x) =Inx atx = 2.

Solution:
f(x)=Inx, f(2)=1In2,
= f'(x) =1, f'(2):1.
X 2
.+ Taylor polynomial for f about x = a:
" (n)
p.(x)= f(a)+ f'(a)(x—a)+ fz(f‘) (x—a)2 s+ nl(a) (x—a)",

= p,(x) = f(2)=In2,
= p,(x) = F(2)+ f'(2)(x-2) = In2+%(x—2).

Question 4: Find the first four terms of the Taylor series generated by f at x = 2 where
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and f(2)=i=%,
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