

Solution

The area between the curves $x = y^2$, y = x - 2: $\frac{9}{2}$ Steps The area between curves definition The area between curves is the area between a curve f(x) and a curve g(x) on an interval [a,b] given by $A = \int_{a}^{b} |f(x) - g(x)| dx$ Isolate y for $x = y^2$: $y = \sqrt{x}$, $y = -\sqrt{x}$ Show Steps 🕀 $f_1(x) = \sqrt{x}$ $f_2(x) = -\sqrt{x}$ $f_3(x) = x - 2$ If the interval is not specified find the curves intersection points. To find the intersection points solve $f_i(x) = f_j(x)$ Hide Steps 🖨 $\sqrt{x} = -\sqrt{x} : x = 0$ $\sqrt{x} = -\sqrt{x}$ Add \sqrt{x} to both sides $\sqrt{x} + \sqrt{x} = -\sqrt{x} + \sqrt{x}$ Simplify $2\sqrt{x} = 0$ Divide both sides by $2\,$ $\frac{2\sqrt{x}}{2} = \frac{0}{2}$ Simplify $\sqrt{x} = 0$ Square both sides $\left(\sqrt{x}\right)^2 = 0^2$ Hide Steps 🖨 Expand $(\sqrt{x})^2$: x $(\sqrt{x})^2$ $\sqrt{a} = a^{\frac{1}{2}}$ $=(x^{\frac{1}{2}})^2$ Apply exponent rule: $(a^b)^c = a^{bc}$ $=x^{\frac{1}{2}\cdot 2}$ Hide Steps 🖨 $\frac{1}{2} \cdot 2 = 1$ Multiply fractions: $a \cdot \frac{b}{c} = \frac{a \cdot b}{c}$

```
Cancel the common factor: \boldsymbol{2}
      =1
    = x
                                                                                                                                                                                          Hide Steps 🖨
  \operatorname{Expand} \boldsymbol{0}^2 \!\!: \quad \boldsymbol{0}
   0^2
   Apply rule 0^a = 0
   =0
x = 0
  Verify Solutions: x = 0 True
                                                                                                                                                                                          Hide Steps 🖨
   Check the solutions by plugging them into \sqrt{x} = -\sqrt{x}
   Remove the ones that don't agree with the equation.
    Plug x = 0: True
                                                                                                                                                                                        Hide Steps 🖨
      \sqrt{0} = -\sqrt{0}
                                                                                                                                                                                      Hide Steps 🖨
        \sqrt{0} = 0
        \sqrt{0}
         Apply rule \sqrt{0} = 0
         =0
                                                                                                                                                                                      Hide Steps 🖨
        -\sqrt{0} = 0
        -\sqrt{0}
         Apply rule \sqrt{0}\,=0
         = -0
         =0
      0 = 0
     True
 The final solution is
x = 0
                                                                                                                                                                                            Hide Steps 🖨
\sqrt{x} = x - 2 \quad : \quad x = 4
\sqrt{x} = x - 2
 Square both sides
\left(\sqrt{x}\right)^2 = (x-2)^2
                                                                                                                                                                                          Hide Steps 🖨
 Expand (\sqrt{x})^2: x
  (\sqrt{x})^2
   \sqrt{a} = a^{\frac{1}{2}}
   =\left(x^{\frac{1}{2}}\right)^2
   Apply exponent rule: (a^b)^c = a^{bc}
```

```
Hide Steps 🖨
    Multiply fractions: a \cdot \frac{b}{c} = \frac{a \cdot b}{c}
    =\frac{1\cdot 2}{2}
    Cancel the common factor: 2
    =1
  = x
                                                                                                                                                           Hide Steps
 Expand (x-2)^2: x^2-4x+4
 (x-2)^2
  Apply Perfect Square Formula: (a-b)^2 = a^2 - 2ab + b^2
  a = x, b = 2
  =x^2-2x\cdot 2+2^2
                                                                                                                                                         Hide Steps 🖨
   Simplify x^2 - 2x \cdot 2 + 2^2: x^2 - 4x + 4
   x^2 - 2x \cdot 2 + 2^2
    Multiply the numbers: 2 \cdot 2 = 4
    =x^2-4x+2^2
    2^2 = 4
    =x^2-4x+4
  =x^2-4x+4
x = x^2 - 4x + 4
                                                                                                                                                           Hide Steps 🖨
 Solve x = x^2 - 4x + 4: x = 4, x = 1
 x = x^2 - 4x + 4
  Switch sides
 x^2 - 4x + 4 = x
  Subtract x from both sides
 x^2 - 4x + 4 - x = x - x
  Simplify
  x^2 - 5x + 4 = 0
  Solve with the quadratic formula
  Quadratic Equation Formula:
    For a quadratic equation of the form ax^2 + bx + c = 0 the solutions are
                                                                                                                                                         Hide Steps 🖨
```

```
Add the numbers: 5+3=8
 Divide the numbers: \frac{8}{2} = 4
                                                                                                                                                                                 Hide Steps 🖨
x = \frac{-(-5) - \sqrt{(-5)^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1} : \quad 1
 Apply rule -(-a) = a
 = \frac{5 - \sqrt{(-5)^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1}
  5 - \sqrt{(-5)^2 - 4 \cdot 1 \cdot 4} = 5 - \sqrt{9}
                                                                                                                                                                               Hide Steps 🖨
   5 - \sqrt{(-5)^2 - 4 \cdot 1 \cdot 4}
                                                                                                                                                                             Hide Steps 🖨
     \sqrt{(-5)^2 - 4 \cdot 1 \cdot 4} = \sqrt{9}
      \sqrt{(-5)^2 - 4 \cdot 1 \cdot 4}
       (-5)^2 = 25
                                                                                                                                                                           Show Steps 🕀
       4\cdot \ 1\cdot \ 4=16
                                                                                                                                                                           Show Steps 🕀
      =\sqrt{25-16}
      Subtract the numbers: 25-16=9
      =\sqrt{9}
    =5-\sqrt{9}
 Multiply the numbers: 2\cdot\ 1=2
                                                                                                                                                                               Hide Steps 🖨
   \sqrt{9} = 3
    Factor the number: 9 = 3^2
    Apply radical rule: \sqrt[n]{a^n} = a
    \sqrt{3^2} = 3
    =3
 Subtract the numbers: 5-3=2
```

```
Apply rule \frac{a}{a} = 1
     =1
  The final solutions to the quadratic equation are:
  x = 4, x = 1
x = 4, x = 1
                                                                                                                                                            Hide Steps 🖨
 Verify Solutions: x = 4 True, x = 1 False
  Check the solutions by plugging them into \sqrt{x} = x - 2
  Remove the ones that don't agree with the equation.
                                                                                                                                                          Hide Steps 🖨
   Plug x = 4: True
    \sqrt{4} = 4 - 2
                                                                                                                                                         Hide Steps 🖨
      \sqrt{4} = 2
       \sqrt{4}
       Factor the number: 4 = 2^2
       =\sqrt{2^2}
       Apply radical rule: \sqrt[n]{a^n} = a
       \sqrt{2^2} = 2
       =2
                                                                                                                                                         Hide Steps 🖨
      4 - 2 = 2
      4 - 2
       Subtract the numbers: 4-2=2
       =2
     2 = 2
    True
                                                                                                                                                          Hide Steps 🖨
   Plug x = 1: False
    \sqrt{1} = 1 - 2
                                                                                                                                                         Hide Steps 🖨
      \sqrt{1} = 1
       \sqrt{1}
       Apply rule \sqrt{1} = 1
       =1
                                                                                                                                                         Hide Steps 🖨
      1 - 2 = -1
      1 - 2
      Subtract the numbers: 1-2=-1
    1 = -1
    False
```

```
The final solution is
x = 4
                                                                                                                                                                                     Hide Steps 🖨
-\sqrt{x} = x - 2 \quad : \quad x = 1
-\sqrt{x} = x - 2
 Square both sides
(-\sqrt{x})^2 = (x-2)^2
                                                                                                                                                                                   Hide Steps 🖨
 Expand (-\sqrt{x})^2: x
  (-\sqrt{x})^2
   Apply exponent rule: (-a)^n = a^n, if n is even
   \left(-\sqrt{x}\right)^2 = \left(\sqrt{x}\right)^2
   =(\sqrt{x})^2
   \sqrt{a} = a^{\frac{1}{2}}
   =\left(x^{\frac{1}{2}}\right)^2
   Apply exponent rule: (a^b)^c = a^{bc}
   =x^{\frac{1}{2}\cdot 2}
                                                                                                                                                                                  Hide Steps 🖨
    \frac{1}{2}\cdot\ 2=1
     \frac{1}{2} · 2
     Multiply fractions: a \cdot \frac{b}{c} = \frac{a \cdot b}{c}
      Cancel the common factor: 2
                                                                                                                                                                                   Hide Steps 🖨
  Expand (x-2)^2: x^2 - 4x + 4
   (x-2)^2
   Apply Perfect Square Formula: (a-b)^2 = a^2 - 2ab + b^2
   a = x, \ b = 2
   =x^2-2x\cdot 2+2^2
    Simplify x^2 - 2x \cdot 2 + 2^2: x^2 - 4x + 4
                                                                                                                                                                                  Hide Steps 🖨
     x^2 - 2x \cdot 2 + 2^2
      Multiply the numbers: 2 \cdot 2 = 4
      =x^2-4x+2^2
      2^2 = 4
      =x^2 - 4x + 4
   =x^2-4x+4
```



```
Subtract the numbers: 25-16=9
       =\sqrt{9}
     =5+\sqrt{9}
  = \frac{5 + \sqrt{9}}{2 \cdot 1}
 Multiply the numbers: 2\cdot\ 1=2
                                                                                                                                                                                       Hide Steps
   \sqrt{9} = 3
    Factor the number: 9 = 3^2
    =\sqrt{3^2}
    Apply radical rule: \sqrt[n]{a^n} = a
    \sqrt{3^2} = 3
    =3
 =\frac{5+3}{2}
 Add the numbers: 5+3=8
 =\frac{8}{2}
 Divide the numbers: \frac{8}{2} = 4
                                                                                                                                                                                        Hide Steps 🖨
x = \frac{-(-5) - \sqrt{(-5)^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1} : \quad 1
 -(-5) - \sqrt{(-5)^2 - 4 \cdot 1 \cdot 4}
2 · 1
 Apply rule -(-a)=a
  = \frac{5 - \sqrt{(-5)^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1}
                                                                                                                                                                                       Hide Steps 🖨
  5 - \sqrt{(-5)^2 - 4 \cdot 1 \cdot 4} = 5 - \sqrt{9}
   5 - \sqrt{(-5)^2 - 4 \cdot 1 \cdot 4}
                                                                                                                                                                                     Hide Steps 🖨
     \sqrt{(-5)^2 - 4 \cdot 1 \cdot 4} = \sqrt{9}
      \sqrt{(-5)^2 - 4 \cdot 1 \cdot 4}
        (-5)^2 = 25
                                                                                                                                                                                   Hide Steps 🖨
         (-5)^2
         Apply exponent rule: (-a)^n = a^n, if n is even
          (-5)^2 = 5^2
          =5^{2}
          5^2 = 25
```

```
= 25
                                                                                                                                                            Hide Steps 🖨
           4 \cdot 1 \cdot 4 = 16
            4 \cdot 1 \cdot 4
            Multiply the numbers: 4\cdot\ 1\cdot\ 4=16
            = 16
         =\sqrt{25-16}
         Subtract the numbers: 25 - 16 = 9
        =5-\sqrt{9}
     Multiply the numbers: 2\cdot\ 1=2
                                                                                                                                                               Hide Steps 🖨
      \sqrt{9} = 3
       \sqrt{9}
       Factor the number: 9 = 3^2
       =\sqrt{3^2}
       Apply radical rule: \sqrt[n]{a^n} = a
       \sqrt{3^2} = 3
       =3
     Subtract the numbers: 5-3=2
     =\frac{2}{2}
     Apply rule \frac{a}{a} = 1
     =1
  The final solutions to the quadratic equation are:
  x=4, x=1
x = 4, x = 1
                                                                                                                                                                   Hide Steps 🖨
 Verify Solutions: x = 4 False, x = 1 True
   Check the solutions by plugging them into \,-\sqrt{x}\,=x-2\,
   Remove the ones that don't agree with the equation.
                                                                                                                                                                 Hide Steps 🖨
   Plug x = 4: False
     -\sqrt{4} = 4 - 2
                                                                                                                                                               Hide Steps 🖨
      -\sqrt{4} = -2
                                                                                                                                                              Hide Steps 🖨
        \sqrt{4} = 2
```

```
Factor the number: 4 = 2^2
               =\sqrt{2^2}
               Apply radical rule: \sqrt[n]{a^n} = a
               =2
            = -2
                                                                                                                                                                                                        Hide Steps 🖨
           4 - 2 = 2
            Subtract the numbers: 4-2=2
            =2
          -2 = 2
         False
                                                                                                                                                                                                         Hide Steps 🖨
       Plug x = 1: True
         -\sqrt{1} = 1 - 2
                                                                                                                                                                                                       Hide Steps
           -\sqrt{1} = -1
           -\sqrt{1}
            Apply rule \sqrt{1} = 1
                                                                                                                                                                                                        Hide Steps 🖨
           1 - 2 = -1
           1 - 2
            Subtract the numbers: 1-2=-1
            = -1
          -1 = -1
         True
   The final solution is
A = \int_0^1 |f_1(x) - f_2(x)| dx + \int_1^4 |f_1(x) - f_3(x)| dx
A = \int_{0}^{1} \left| \sqrt{x} - \left( -\sqrt{x} \right) \right| dx + \int_{1}^{4} \left| \sqrt{x} - (x - 2) \right| dx
 \int_0^1 \left| \sqrt{x} - \left( -\sqrt{x} \right) \right| dx = \frac{4}{3}
                                                                                                                                                                                                             Hide Steps 🖨
  \int_0^1 \left| \sqrt{x} - \left( -\sqrt{x} \right) \right| dx
                                                                                                                                                                                                           Hide Steps 🖨
    Eliminate Absolutes
      Find the equivalent expressions to \left|\sqrt{x}-\left(-\sqrt{x}\right)\right| at 0\leq x\leq 1 without the absolutes
      =\int_0^1 \left(\sqrt{x} - \left(-\sqrt{x}\right)\right) dx
```


area x-y-2,y-x-2 - Area Detween Curves Calculator	- Суптротар
$=\frac{3}{2}$	
$\frac{\frac{1}{2}+1}{\frac{3}{2}}$	
<u>3</u>	
$x^{+1} = x^{\frac{3}{2}}$	Hide Steps
1 ₂ +1	
Join $\frac{1}{2} + 1$: $\frac{3}{2}$	Hide Steps 🖨
$\frac{2}{1} + 1$	
<u>7</u> + 1	
Convert element to fraction: $1 = \frac{1 \cdot 2}{2}$	
$=\frac{1}{2}+\frac{1\cdot 2}{2}$	
Since the denominators are equal, combine the fractions: $\frac{a}{c}\pm\frac{b}{c}=\frac{a\pm b}{c}$	
$=\frac{1+1\cdot 2}{2}$	
$1+1\cdot 2=3$ $1+1\cdot 2$	Hide Steps 🖨
. Multiply the numbers: $1\cdot 2=2$	
= 1 + 2	
Add the numbers: $1+2=3$	
= 3	
$=\frac{3}{2}$	
$=x^{\frac{3}{2}}$	
$rac{3}{\sqrt{2}}$	
$\frac{\sqrt{3}}{3}$	
oly the fraction rule: $\frac{a}{\frac{b}{c}} = \frac{a \cdot c}{b}$	
$\frac{x^{\frac{3}{2}} \cdot 2}{3}$	
0.7	
$\frac{2X^2}{3}$	
ply fractions: $a \cdot \frac{b}{c} = \frac{a \cdot b}{c}$	
ply fractions: $a \cdot \frac{b}{c} = \frac{a \cdot b}{c}$	
ply fractions: $a \cdot \frac{b}{c} = \frac{a \cdot b}{c}$ $\frac{\cdot 2 \cdot 2}{3}$ ply the numbers: $2 \cdot 2 = 4$	
$\frac{2x^{\frac{3}{2}}}{3}$ ply fractions: $a \cdot \frac{b}{c} = \frac{a \cdot b}{c}$ $\frac{\cdot 2 \cdot 2}{3}$ ply the numbers: $2 \cdot 2 = 4$	
ply fractions: $a \cdot \frac{b}{c} = \frac{a \cdot b}{c}$ $\frac{\cdot 2 \cdot 2}{3}$ ply the numbers: $2 \cdot 2 = 4$	

Multiply the numbers: $3 \cdot 2 = 6$ = 6

Adjust Fractions based on the LCM

Hide Steps 🖨

Multiply each numerator by the same amount needed to multiply its corresponding denominator to turn it into the LCM $6\,$

For $\frac{2}{1}$: multiply the denominator and numerator by $\,6\,$

$$\frac{2}{1} = \frac{2 \cdot 6}{1 \cdot 6} = \frac{12}{6}$$

For $\frac{2}{3}$: multiply the denominator and numerator by $\ 2$

$$\frac{2}{3} = \frac{2 \cdot 2}{3 \cdot 2} = \frac{4}{6}$$

For $\frac{1}{2}$: multiply the denominator and numerator by 3

$$\frac{1}{2} = \frac{1 \cdot 3}{2 \cdot 3} = \frac{3}{6}$$

$$= \frac{12}{6} + \frac{4}{6} - \frac{3}{6}$$

Since the denominators are equal, combine the fractions: $\frac{a}{c} \pm \frac{b}{c} = \frac{a \pm b}{c}$

$$=\frac{12+4-3}{6}$$

Add/Subtract the numbers: 12 + 4 - 3 = 13

$$=\frac{13}{6}$$

$$=\frac{13}{6}$$

 $\lim_{x \to 4^{-}} \left(\frac{2}{3} x^{\frac{3}{2}} - \frac{x^{2}}{2} + 2x \right) = \frac{16}{3}$

Hide Steps 🖨

$$\lim_{x \to 4^{-}} \left(\frac{2}{3} x^{\frac{3}{2}} - \frac{x^{2}}{2} + 2x \right)$$

Plug in the value x = 4

$$= \frac{2}{3} \cdot 4^{\frac{3}{2}} - \frac{4^2}{2} + 2 \cdot 4$$

Simplify $\frac{2}{3} \cdot 4^{\frac{3}{2}} - \frac{4^2}{2} + 2 \cdot 4$: $\frac{16}{3}$

Hide Steps 🖨

$$\frac{2}{3} \cdot 4^{\frac{3}{2}} - \frac{4^2}{2} + 2 \cdot 4$$

 $\frac{2}{3} \cdot 4^{\frac{3}{2}} = \frac{16}{3}$

Hide Steps 🖨

$$\frac{2}{3}\cdot 4^{\frac{3}{2}}$$

 $4^{\frac{3}{2}} = 8$

Show Steps 🕕

$$=8\cdot\frac{2}{3}$$

Multiply fractions: $a \cdot \frac{b}{c} = \frac{a \cdot b}{c}$

$$=\frac{2\cdot 8}{3}$$

Multiply the numbers: $2\cdot 8 = 16$

Convert element to fraction: $8 = \frac{8 \cdot 3}{3}$

$$= -\frac{8 \cdot 3}{3} + \frac{40}{3}$$

Since the denominators are equal, combine the fractions: $\frac{a}{c}\pm\frac{b}{c}=\frac{a\pm b}{c}$

$$= \frac{-8 \cdot 3 + 40}{3}$$

$$-8 \cdot 3 + 40 = 16$$

 $-8 \cdot 3 + 40$

Multiply the numbers: $8 \cdot 3 = 24$

= -24 + 40

Add/Subtract the numbers: -24 + 40 = 16

= 16

 $=\frac{16}{3}$

 $=\frac{16}{3}$

$$=\frac{16}{3}-\frac{13}{6}$$

$$=\frac{16}{3}-\frac{15}{6}$$

Simplify

$$=\frac{19}{6}$$

$$=\frac{18}{6}$$

$$A = \frac{4}{3} + \frac{19}{6}$$

Simplify

$$A = \frac{9}{2}$$

Hide Steps 🖨

Graph

