Lecture \# 26

Integration by substitution

This is like the Chain Rule we saw for differentiation. The idea is to integrate functions that are composition of different functions.
$\frac{d}{d u}[G(u)]=f(u)$
Also this means that
$\int f(u) d u=\int \frac{d}{d u}[G(u)] d u=G(u)+C$
Let u be a function of x. Then we have
$\frac{d}{d x}[G(u)]=\frac{d}{d u}[G(u)] \cdot \frac{d u}{d x}=f(u) \frac{d u}{d x}$
Now if we apply the integral on both sides w. r.t X we get
$\int\left(f(u) \frac{d u}{d x}\right) d x=\int \frac{d}{d x}[G(u)] d x=G(u)+C$
\Rightarrow
$\int\left(f(u) \frac{d u}{d x}\right) d x=\int f(u) d u$

Example

$\int\left(x^{2}+1\right)^{50} \cdot 2 x d x$
Let $u=x^{2}+1$. Then $\frac{d u}{d x}=2 x$.
Now we can rewrite the given problem as

$$
\begin{aligned}
\int\left(x^{2}+1\right)^{50} .2 x d x= & \int\left[u^{50} \frac{d u}{d x}\right] d x=\int u^{50} d u \\
& \int\left[f(u) \frac{d u}{d x}\right] d x=\int f(u) d u
\end{aligned}
$$

$$
\int u^{50} d u=\frac{u^{51}}{51}+C=\frac{\left(x^{2}+1\right)^{51}}{51}+C, \text { where } u=x^{2}+1
$$

Caution: Don't feel tempted to just add 1 to the power 50 in the original problem!! That will be incorrect.

The reason is that the "Power Rule" for the integrals is applicable to function which are not a composition of others.
In this example, $\left(x^{2}+1\right)^{50}$ is a composition of two functions.
Here is a summary of the general procedure we need to follow to do integration by \boldsymbol{u}-substitution.

Step 1: Make the choice for u, say $u=g(x)$
Step 2: Compute du/dx $=g^{\prime}(\mathrm{x})$
Step 3: Make the substitution $u=g(x), d u=g^{\prime}(x) d x$ in the original integral.
By this point, the whole original integral should be in terms of u and there should be no x 's in it.
Step 4: Evaluate the resulting integral
Step 5: Replace u by $g(x)$ so the final answer is in x.

- No hard and fast rule for choosing u.
- The choice of u should be such that the resulting calculus
- Results in a simplified integral.
- There may be more than one choice of u in some cases.

Only practice and experience makes things easier.
Think of this choice of u like playing chess. You need to choose it so that the future
looks bright for problem solution!
Integrand is the derivative of a known function with a constant added or subtracted from the independent variable.

If the integrand is the derivative of a known function with a constant added or subtracted from the independent variable, then the substitution is the easiest. Here is table 5.2.1 that we saw earlier. This will help recall BASIC integration formulas.

DIFFERENTIATION FORMULA	INTEGRATION FORMULA
$\frac{d}{d x}[x]=1$	$\int d x=x+C$
$\frac{d}{d x}\left[\frac{x^{r+1}}{r+1}\right]=x^{r}$	$\int x^{r} d x=\frac{x^{r+1}}{r+1}+C(r \neq-1)$
$\frac{d}{d x}[\sin x]=\cos x$	$\int \cos x d x=\sin x+C$
$\frac{d}{d x}[-\cos x]=\sin x$	$\int \sin x d x=-\cos x+C$

DIFFERENTIATION FORMULA	INTEGRATION FORMULA
$\frac{d}{d x}[\tan x]=\sec ^{2} x$	$\int \sec ^{2} x d x=\tan x+C$
$\frac{d}{d x}[-\cot x]=\csc ^{2} x$	$\int \csc ^{2} x d x=-\cot x+C$
$\frac{d}{d x}[\sec x]=\sec x \tan x$	$\int \sec x \tan x d x=\sec x+C$
$\frac{d}{d x}[-\csc x]=\csc x \cot x$	$\int \csc x \cot x d x=-\csc x+C$

We want to integrate a function in which "The integrand is the derivative of a known function with a constant added or subtracted from the independent variable"

Example

$$
\begin{aligned}
& \int \sin (x+9) d x=\int \sin (u) d u=-\cos (u)+C=-\cos (x+9)+C \\
& u=x+9 \\
& \frac{d u}{d x}=1 \Rightarrow d u=1 . d x
\end{aligned}
$$

The integrand sine is the derivative of cosine function

Example

$\int(x-8)^{23} d x=\int u^{23} d u=\frac{u^{24}}{24}+C=\frac{(x-8)^{24}}{24}+C$
$u=x-8 \Rightarrow d u=1 . d x=d x$
Integrand is the derivative of a known function and a constant multiplies the independent variable
Example
$\int \underset{u=5 x}{\cos (5 x)} d x=\int \cos (u) \frac{d u}{5}=\frac{1}{5} \int \cos (u) d u=\frac{1}{5} \sin (u)+C=\frac{1}{5} \sin (5 x)+C$

$$
d u=5 d x \Rightarrow \frac{d u}{5}=d x
$$

Example

$\int \sin ^{2}(x) \cos (x) d x$

Let $u=\sin (x)$, then $d u=\cos (x) d x$
So

$$
\int \sin ^{2}(x) \cos (x) d x=\int u^{2} d u=\frac{u^{3}}{3}+C=\frac{\sin ^{3}(x)}{3}+C
$$

Example

$\int \frac{\cos \sqrt{x}}{\sqrt{x}} d x$
Let $u=\sqrt{x}$, then $d u=\frac{1}{2 \sqrt{x}} d x$
So
$\int \frac{\cos \sqrt{x}}{\sqrt{x}} d x=\int 2 \cos (u) d u=2 \int \cos (u) d u=2 \sin (u)+C=2 \sin (\sqrt{x})+C$

Complicated example

$\int t^{4} \sqrt[3]{3-5 t^{5}} d t$
What should the substitution be?
Well the idea is to get an expression to equal u so that when we differentiate it, we get a formula that involves a $d u$ and everything that was left over in x after the substitution.
$\int t^{4} \sqrt[3]{3-5 t^{5}} d t$
$u=3-5 t^{5}$
$d u=-25 t^{4} d t \Rightarrow-\frac{1}{25} d u=t^{4} d t$
So

$$
\begin{array}{r}
\int t^{4} \sqrt[3]{3-5 t^{5}} d t=-\frac{1}{25} \int \sqrt[3]{u} d u=-\frac{1}{25} \int u^{\frac{1}{3}} d u=-\frac{1}{25} \frac{u^{\frac{4}{3}}}{\frac{4}{3}}+C \\
=-\frac{3}{100}\left(3-5 t^{5}\right)^{\frac{4}{3}}+C
\end{array}
$$

