MTH101 Solution: Practice Questions Lecture No. 26 to 28

Question 1: Evaluate the integral by using substitution method: $\int \frac{1}{t^2} \cos\left(\frac{1}{t} - 1\right) dt$.

Answer: $-\sin\left(\frac{1}{t}-1\right)+C$

Solution:

Let
$$u = \frac{1}{t} - 1$$
,
 $\Rightarrow du = -\frac{1}{t^2} dt \Rightarrow \frac{1}{t^2} dt = -du$,
 $\therefore \int \frac{1}{t^2} \cos\left(\frac{1}{t} - 1\right) dt = \int \cos u (-du)$,
 $= -\sin u + C$,
 $= -\sin\left(\frac{1}{t} - 1\right) + C$. (: by replacing with the original value)

Question 2: Evaluate the indefinite integral by substitution method: $\int \frac{(1+\ln x)^3}{x} dx.$

Answer:
$$\frac{(1+\ln x)^4}{4} + C$$

Solution:

Let
$$t = 1 + \ln x$$
,
 $\Rightarrow dt = \frac{1}{x} dx$,
Hence, $\int \frac{(1 + \ln x)^3}{x} dx = \int t^3 dt = \frac{t^4}{4} + C = \frac{(1 + \ln x)^4}{4} + C$.

Question 3: Evaluate the sum: $\sum_{k=1}^{7} (k^2 - 6)$.

Answer: 98

Solution:

$$\sum_{k=1}^{7} (k^2 - 6) = \sum_{k=1}^{7} k^2 - \sum_{k=1}^{7} 6,$$

= $\frac{7(7+1)(2(7)+1)}{6} - 6(7),$
= $\frac{840}{6} - 42,$
= 98.

Question 4: Express $\sum_{k=2}^{5} 3^{k-2}$ in sigma notation so that the lower limit is '0' rather than '2'. Answer: $\sum_{j=0}^{3} 3^{j}$

Solution:

We will define a new summation index 'j' by the relation j = k - 2 or j + 2 = k, Now when k = 2, j = 2 - 2 = 0, When k = 5, j = 5 - 2 = 3, So the new summation will become $\sum_{j=0}^{3} 3^{j+2-2} = \sum_{j=0}^{3} 3^{j}$.

Question 5: Find the area of the kth rectangle below the curve $y = x^2$ on the interval [0,2] by taking x_k^* as

- i. Right end point
- ii. Left end point

Answer: (i) $\frac{8k^2}{n^3}$ (ii) $\frac{8(k-1)^2}{n^3}$

Solution:

In order to find the area of k^{th} rectangle, first of all we will find the width or base of the rectangle that is Δx .

$$\Delta x = \frac{b-a}{n} = \frac{2}{n}.$$
$$x_k^* = a + k\Delta x,$$
$$= 0 + k \cdot \frac{2}{n} = \frac{2k}{n}$$

Right end point

The height of the rectangle is

$$f(\mathbf{x}_k^*) = \left(\frac{2k}{n}\right)^2 = \frac{4k^2}{n^2}.$$

Thus, the area of the \boldsymbol{k}^{th} rectangle will be

Area=height×base

$$= f(\mathbf{x}_{k}^{*}) \Delta x,$$

$$= \frac{4k^{2}}{n^{2}} \cdot \frac{2}{n} = \frac{8k^{2}}{n^{3}}.$$

$$x_{k}^{*} = a + (k-1)\Delta x,$$

$$= 0 + (k-1) \cdot \frac{2}{n} = \frac{2(k-1)}{n}.$$

Left end point

The height of the rectangle is

$$f(\mathbf{x}_{k}^{*}) = \left(\frac{2(k-1)}{n}\right)^{2} = \frac{4(k-1)^{2}}{n^{2}}.$$

Thus, the area of the k^{th} rectangle will be

Area=height×base

$$= f(\mathbf{x}_{k}^{*}).\Delta x,$$

= $\frac{4(k-1)^{2}}{n^{2}}.\frac{2}{n} = \frac{8(k-1)^{2}}{n^{3}}.$

Question 6: Find the approximate area under the graph of function y = x over the interval 2

[0,2] by taking
$$\Delta x = \frac{2}{n}$$
 and $x_k^* = \frac{2\kappa}{n}$.
Answer: 2

Solution:

Given that
$$\Delta x = \frac{2}{n}$$
 and $x_k^* = \frac{2k}{n}$,
 $f(\mathbf{x}_k^*) = \frac{2k}{n}$,
 $f(\mathbf{x}_k^*) \cdot \Delta \mathbf{x} = \frac{2k}{n} \cdot \frac{2}{n} = \frac{4k}{n^2}$,

$$\sum_{k=1}^{n} f(\mathbf{x}_{k}^{*}) \Delta \mathbf{x} = \sum_{k=1}^{n} \frac{4k}{n^{2}},$$

$$= \frac{4}{n^{2}} \sum_{k=1}^{n} k,$$

$$= \frac{4}{n^{2}} \frac{n(n+1)}{2} = \frac{2(n+1)}{n} = 2\left(1 + \frac{1}{n}\right).$$

Area =
$$\lim_{n \to \infty} \left(\sum_{k=1}^{n} f(\mathbf{x}_{k}^{*}) \Delta \mathbf{x}\right) = \lim_{n \to \infty} 2\left(1 + \frac{1}{n}\right) = 2.$$