Recall: First Fundamental Theorem of Calculus (FTC 1)

If f is continuous and F’ = f, then
b

f(@)de = F(b) — F(a)

We can also write that as
=b

/;  flayde = [ @]

Do all continuous functions have antiderivatives? Yes. However...
What about a function like this?
/ e~ dy =77

Yes, this antiderivative exists. No, it’s not a function we’ve met before: it’s a new function.

=a

The new function is defined as an integral:
F(x) :/ et dt
0

It will have the property that F’(:c) = e—”z,

Smx,sin(arz), cos(z?),. ..

. . e a2 2
Other new functions include antiderivatives of e™* ,a:l/ Zem2,

Second Fundamental Theorem of Calculus (FTC 2)

x

If F(x) = / f(t)dt and f is continuous, then
F'(z) = f(x)

Geometric Proof of FTC 2: Use the area interpretation: F(z) equals the area under the curve
between a and z.

AF = F(x+ Az)— F(z)
AF = (base)(height) ~ (Az)f(x) (See Figure [1])
AF
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But, by the definition of the derivative:
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Figure 1: Geometric Proof of FTC 2.

Therefore,

Another way to prove FTC 2 is as follows:

/a”“f@d, /jmdt]
1

rz+Azx
= = / f(®)dt (which is the “average value” of f on the interval z <t <z + Az.)
€ x

ar 1
Az Az

As the length Az of the interval tends to 0, this average tends to f(x).

Proof of FTC 1 (using FTC 2)

x

Start with F' = f (we assume that f is continuous). Next, define G(z) :/ f(t)dt. By FTC2,

G'(z) = f(x). Therefore, (F —G) =F -G = f—f=0. Thus, F -G = constant. (Recall we
used the Mean Value Theorem to show this).

Hence, F(z) = G(z) + ¢. Finally since G(a) = 0,
b
/ ft)dt = G(b) = G(b) = G(a) = [F(b) — ] = [F(a) — ] = F(b) — F(a)

which is FTC 1.

Remark. In the preceding proof G was a definite integral and F' could be any antiderivative. Let
us illustrate with the example f(z) = sinz. Taking a = 0 in the proof of FTC 1,

G(z) :/ costdt = sint‘x =sinz and G(0) = 0.
0 0



If, for example, F(z) = sinx 4+ 21. Then F'(z) = cosz and
b
/ sinzdx = F(b) — F(a) = (sinb+ 21) — (sina + 21) = sinb — sina

Every function of the form F(z) = G(z) + ¢ works in FTC 1.

Examples of “new” functions
The error function, which is often used in statistics and probability, is defined as

2 T
erf(z) = —/ e tdt
) v Jo
and lim erf(z) = 1 (See Figure
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Figure 2: Graph of the error function.

Another “new” function of this type, called the logarithmic integral, is defined as

x
Li(x) = ld—t
5 Int

This function gives the approximate number of prime numbers less than x. A common encryption
technique involves encoding sensitive information like your bank account number so that it can be
sent over an insecure communication channel. The message can only be decoded using a secret
prime number. To know how safe the secret is, a cryptographer needs to know roughly how many
200-digit primes there are. You can find out by estimating the following integral:

/10201 dt
10200 Int

In102°° = 2001n(10) ~ 200(2.3) = 460 and 1n10?°! = 2011n(10) ~ 462

We know that



We will approximate to one significant figure: Int ~ 500 for 200 < ¢t < 102°,
With all of that in mind, the number of 200-digit primes is roughly E]

201 201
/10 at /10 a1 (102! — 1020) ~ 9102 ~ 10198
10200 Int 10200 500 500 500

There are LOTS of 200-digit primes. The odds of some hacker finding the 200-digit prime required
to break into your bank account number are very very slim.

Another set of “new” functions are the Fresnel functions, which arise in optics:

C(z) = /Omcos(tQ)dt

/ sin(t?)dt
0

Bessel functions often arise in problems with circular symmetry:

e
&
[

1 ™
Jo(z) = %/0 cos(x sin 6)db

On the homework, you are asked to find C’(x). That’s easy!

C'(x) = cos(z?)

“dt
We will use FTC 2 to discuss the function L(z) = / ¥ from first principles next lecture.
1

I The middle equality in this approximation is a very basic and useful fact

./abcd:r:c(bfa)

Think of this as finding the area of a rectangle with base (b — a) and height ¢. In the computation above, a =
10209, p = 10201, ¢ =

1
500





