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Preface

The purpose of this book is to help students understand and use the calculus. Everything has been aimed
toward making this easier, especially for students with limited background in mathematics or for readers who
have forgotten their earlier training in mathematics. The topics covered include all the material of standard
courses in elementary and intermediate calculus. The direct and concise exposition typical of the Schaum
Outline series has been amplified by a large number of examples, followed by many carefully solved prob-
lems. In choosing these problems, we have attempted to anticipate the difficulties that normally beset the
beginner. In addition, each chapter concludes with a collection of supplementary exercises with answers.
This fifth edition has enlarged the number of solved problems and supplementary exercises. Moreover, we
have made a great effort to go over ticklish points of algebra or geometry that are likely to confuse the student.
The author believes that most of the mistakes that students make in a calculus course are not due to a deficient
comprehension of the principles of calculus, but rather to their weakness in high-school algebra or geometry.
Students are urged to continue the study of each chapter until they are confident about their mastery of the
material. A good test of that accomplishment would be their ability to answer the supplementary problems.
The author would like to thank many people who have written to me with corrections and suggestions, in
particular Danielle Cing-Mars, Lawrence Collins, L.D. De Jonge, Konrad Duch, Stephanie Happ, Lindsey Oh,
and Stephen B. Soffer. He is also grateful to his editor, Charles Wall, for all his patient help and guidance.

ELLIOTT MENDELSON
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Linear Coordinate Systems.
Absolute Value. Inequalities

Linear Coordinate System

A linear coordinate system is a graphical representation of the real numbers as the points of a straight line. To
each number corresponds one and only one point, and to each point corresponds one and only one number.

To set up a linear coordinate system on a given line: (1) select any point of the line as the origin and let
that point correspond to the number 0; (2) choose a positive direction on the line and indicate that direction
by an arrow; (3) choose a fixed distance as a unit of measure. If x is a positive number, find the point cor-
responding to x by moving a distance of x units from the origin in the positive direction. If x is negative,
find the point corresponding to x by moving a distance of —x units from the origin in the negative direction.
(For example, if x = -2, then —x = 2 and the corresponding point lies 2 units from the origin in the negative
direction.) See Fig. 1-1.

L L L L L L L L L L L Ll L [r—

] ] ] 1 ] L 1
-4 -3 -52 -2-317 -1 0 12 1 V2 2 3% 4

Fig. 1-1

The number assigned to a point by a coordinate system is called the coordinate of that point. We often
will talk as if there is no distinction between a point and its coordinate. Thus, we might refer to “the point 3”
rather than to “the point with coordinate 3.”

The absolute value Ixl of a number x is defined as follows:

x  if x is zero or a positive number
Ixl=
—x if x is a negative number

For example, 14| =4, |-31 = —(=3) = 3, and |0l = 0. Notice that, if x is a negative number, then —x is positive.
Thus, x| > 0 for all x.
The following properties hold for any numbers x and y.

1.1) |—=xl=1x
When x =0, |—xI =1-0l = 10l = Ixl.
When x>0, —x < 0 and | —x| = —(—x) = x = Ixl.
When x <0, —x >0, and | —x| = —x = Ixl.
1.2)  Ix—yl=Ily—xl
This follows from (1.1), since y —x = —(x — y).
(1.3)  Ixl =c implies that x = *c.
For example, if Ix| = 2, then x = 2. For the proof, assume lx| = c.
Ifx>0,x=Ixl=c. If x<0, —x=Ixl =c; then x = —(—x) = —c.
1.4) IkPP=x?
Ifx>0,Ixl=xand x> =x2. If x <0, Ixl = —x and IxI* = (—x)> = x%.
1.5)  Ixyl=Ixl- Iyl
By (1.4), Ixyl> = (xy)* = x2y* = IxI?lyl*> = (Ixl - ly])>. Since absolute values are nonnegative, taking
square roots yields lxyl = Ix| - Iyl.

Copyright © 2009, 1999, 1990, 1962 by The McGraw-H!},gﬁpﬂ@ﬁmmifﬁﬁrefpgerms of use.
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x| xl .
(1.6) §_|y_|1fy¢0
X X .
By (1.5), Iyl i =‘y-§‘= [xl. Divide by Iyl .

(1.7)  Ixl=1lyl implies that x = *y
Assume Ixl = Iyl. If y=0, IxI =101 = 0 and (1.3) yields x = 0. If y # 0, then by (1.6),

d
y

I

_|y_|=1

So, by (1.3), x/y = 1. Hence, x = ty.

(1.8) Letc=0. Then Ixl < ¢ if and only if —c <x < c. See Fig. 1-2.
Assume x > 0. Then Ix| = x. Also, since ¢ 20, —c <0 < x. So, x| < ¢ if and only if —c <x < ¢. Now
assume x < 0. Then Ixl = —x. Also, x < 0 < ¢. Moreover, —x < ¢ if and only if —c < x. (Multiplying
or dividing an equality by a negative number reverses the inequality.) Hence, Ixl < ¢ if and only if

—-c<x<c
(1.9) Letc=0.Then Ixl < cif and only if —c < x < ¢. See Fig. 1-2. The reasoning here is similar to that for
(1.8).
|xif c x| <e
& } & - O $ :;,‘ =
-c 0 c -c 0 c

Fig. 1-2

(1.10) —Ixl<x<lal
If x>0, x=Ixl. If x <0, IxI = —x and, therefore, x = —Ixl.
(1.11)  Ix+yl < Ixl + Iyl (triangle inequality)
By (1.8), —Ixl £ x < Ixl and —lyl £y < lyl. Adding, we obtain —(Ixl + Iyl) < x + y < Ixl + Iyl. Then
Ix + yl < IxI + Iyl by (1.8). [In (1.8), replace ¢ by Ix| + |yl and x by x + y.]
Let a coordinate system be given on a line. Let P, and P, be points on the line having coordinates x; and x,.
See Fig. 1-3. Then:

(1.12) Ix; — x,l = P, P, = distance between P, and P,.
This is clear when 0 < x; < x, and when x; < x, < 0. When x, < 0 < x,, and if we denote the origin
by O, then P\P,=P,0+ OP,=(—x) + x,=x, —x; =Ix, — x;| = Ix; — x,l.
As a special case of (1.12), when P, is the origin (and x, = 0):
(1.13) Ix,| = distance between P, and the origin.

o
o

el
~
_.k T

Fig. 1-3

Finite Intervals

Leta<b.

The open interval (a, b) is defined to be the set of all numbers between a and b, that is, the set of all x such
that a < x < b. We shall use the term open interval and the notation (a, b) also for all the points between the
points with coordinates a and b on a line. Notice that the open interval (a, ) does not contain the endpoints
a and b. See Fig. 1-4.

The closed interval [a, b] is defined to be the set of all numbers between a and b or equal to a or b, that is,
the set of all x such that a < x < b. As in the case of open intervals, we extend the terminology and notation
to points. Notice that the closed interval [a, b] contains both endpoints a and b. See Fig. 1-4.

sap.nedjamiat.org
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a b a vl)
Open interval (a, b): a<x<b Closed interval [a,b]: a=x=<b

Fig. 1-4

By a half-open interval we mean an open interval (a, b) together with one of its endpoints. There are two
such intervals: [a, b) is the set of all x such that a < x < b, and (a, b] is the set of all x such that a < x < b.

Infinite Intervals
Let (a, =) denote the set of all x such that a < x.
Let [a, =) denote the set of all x such that a < x.
Let (—eo, b) denote the set of all x such that x < b.
Let (—eo, b] denote the set of all x such that x < b.

Inequalities
Any inequality, such as 2x —3 >0 or 5 < 3x + 10 £ 16, determines an interval. To solve an inequality means

to determine the corresponding interval of numbers that satisfy the inequality.

EXAMPLE 1.1: Solve 2x—-3>0.
2x-3>0

2x>3  (Adding 3)
(Dividing by 2

fw

x>

Thus, the corresponding interval is (3,9).

EXAMPLE 1.2: Solve 5 <3x+10<16.
5<3x+10<16

—5<3x<6 (Subtracting 10)
—3<x<2 (Dividing by 3)

Thus, the corresponding interval is (-3, 2].
EXAMPLE 1.3: Solve 2x+3<7.
2x+3<7
—2x<4  (Subtracting 3)
x>-2 (Dividing by —2)

(Recall that dividing by a negative number reverses an inequality.) Thus, the corresponding interval is (=2, o).

SOLVED PROBLEMS

Describe and diagram the following intervals, and write their interval notation, (a) -3 <x < 5; () 2<x < 6;
(©)4<x20;(d)x>5()x<2;(f)3x—4<8;(g) 1 <5-3x<11.

(a) All numbers greater than —3 and less than 5; the interval notation is (=3, 5):

1.

£
L

~
-3 5

sap.nedjamiat.org
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(b) All numbers equal to or greater than 2 and less than or equal to 6; [2, 6]:

& -
2 6

(c) All numbers greater than —4 and less than or equal to 0; (—4, 0]:

O g
0

(d) All numbers greater than 5; (5, o):

5
A
5

(e) All numbers less than or equal to 2; (—oo, 2]:

(f) 3x—4<8isequivalent to 3x < 12 and, therefore, to x < 4. Thus, we get (—oo, 4]:

. -
4
(2) 1<5-3x<11

—4<-3x<6 (Subtracting 5)

—2<x<% (Dividing by — 3; note the reversal of inequalities)

Thus, we obtain (-2, $):

O N
O O
2

Describe and diagram the intervals determined by the following inequalities, (a) lxl <2; (b) IxI > 3; (c) Ix =3I < 1;
(d) Ix— 2l < dwhere 6> 0; (e) Ix+ 21 <3; (f) 0 < Ix — 4l < § where 6> 0.

(a) By property (1.9), this is equivalent to —2 < x < 2, defining the open interval (-2, 2).

O O
O O
2

-2

(b) By property (1.8), lxl < 3 is equivalent to —3 < x < 3. Taking negations, |x| > 3 is equivalent to x <=3 or x > 3,
which defines the union of the intervals (—e, —3) and (3, o).

O O
0 \®
3 3

(c) By property (1.12), this says that the distance between x and 3 is less than 1, which is equivalent to 2 < x < 4.
This defines the open interval (2, 4).

O
2

»> 0

We can also note that Ix — 31 < 1 is equivalent to -1 < x — 3 < 1. Adding 3, we obtain 2 < x < 4.

(d) This is equivalent to saying that the distance between x and 2 is less than 8, or that 2 — § < x < 2 + 6, which
defines the open interval (2 — 8, 2 + ). This interval is called the d-neighborhood of 2:

TO
¢

sap.nedjamiat.org
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(e) Ix+2l<3isequivalent to —3 < x + 2 < 3. Subtracting 2, we obtain —5 < x < 1, which defines the open
interval (-5, 1):

O
2 %
5

- Q

(f) The inequality |x — 4] < § determines the interval 4 — § < x <4 + 8. The additional condition 0 < |x — 4] tells
us that x # 4. Thus, we get the union of the two intervals (4 — 6, 4) and (4, 4 + §). The result is called the
deleted &-neighborhood of 4:

PN N .
&, L &
- 4

4-5 4+5
3. Describe and diagram the intervals determined by the following inequalities, (a) IS — x| < 3; (b) 2x - 31 < 5;

(©) 11 —4xl < 1.

(a) Since |5 — x| =Ix —5l, we have |x — 51 < 3, which is equivalent to -3 <x —5 < 3. Adding 5, we get 2 <x <8,
which defines the closed interval [2, 8]:

& . g
2 8

(b) 12x -3l <5 is equivalent to =5 < 2x — 3 < 5. Adding 3, we have —2 < 2x < 8; then dividing by 2 yields
—1 < x <4, which defines the open interval (-1, 4):

Iy .
(c) Since 1 —4xl = l4x — 11, we have |4x — 1| < {, which is equivalent to —1 <4x—1< 1 Adding 1, we get
4 < 4x < 3. Dividing by 4, we obtain § < x <%, which defines the open interval (3, ):

178 378
4. Solve the inequalities: (a) 18x — 3x> > 0; (b) (x + 3)(x — 2)(x — 4) < 0; (¢) (x + )*(x — 3) > 0, and diagram the solutions.

(a) Set 18x — 3x? = 3x(6 — x) = 0, obtaining x = 0 and x = 6. We need to determine the sign of 18x — 3x? on each
of the intervals x < 0, 0 < x < 6, and x > 6, to determine where 18x — 3x> > 0. Note that it is negative when
x <0 (since x is negative and 6 — x is positive). It becomes positive when we pass from left to right through
0 (since x changes sign but 6 — x remains positive), and it becomes negative when we pass through 6 (since x
remains positive but 6 — x changes to negative). Hence, it is positive when and only when 0 < x < 6.

20

O
g
6

(b) The crucial points are x = -3, x =2, and x = 4. Note that (x + 3)(x — 2)(x — 4) is negative for x < =3 (since
each of the factors is negative) and that it changes sign when we pass through each of the crucial points.
Hence, it is negative for x < -3 and for 2 < x < 4:

O O O
A d Al g
-3 2 4

(c) Note that (x + 1) is always positive (except at x = —1, where it is 0). Hence (x + 1)? (x — 3) > 0 when and only
when x — 3 > 0, that is, for x > 3:

O
O
3

5. Solve I3x—71=28.
By (1.3), I13x — 7l = 8 if and only if 3x — 7 = £8. Thus, we need to solve 3x — 7 = 8 and 3x — 7 = —8. Hence, we
getx=50rx=—%.
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2x+1
X+3
Case 1: x + 3 > 0. Multiply by x + 3 to obtain 2x + 1 > 3x + 9, which reduces to —8 > x. However, since x + 3 > 0,
it must be that x > —3. Thus, this case yields no solutions.
Case 2: x + 3 < 0. Multiply by x + 3 to obtain 2x + 1 < 3x + 9. (Note that the inequality is reversed, since we
multiplied by a negative number.) This yields —8 < x. Since x + 3 < 0, we have x < -3. Thus, the only solutions
are -8 <x<-3.

Solve > 3.

Solve <5.

£
X

The given inequality is equivalent to =5 < 2 — 3 < 5. Add 3 to obtain —2 < 2/x < 8, and divide by 2 to get
-1 <lx<4.

Case 1: x > 0. Multiply by x to get —x < 1 < 4x. Then x > 4 and x > —1; these two inequalities are equivalent to
the single inequality x > .

Case 2: x < 0. Multiply by x to obtain —x > 1 > 4x. (Note that the inequalities have been reversed, since we
multiplied by the negative number x.) Then x < 4 and x < —1. These two inequalities are equivalent to x < —1.

Thus, the solutions are x > 4 or x < —1, the union of the two infinite intervals (, o) and (—ee, —1).

Solve 12x — 51 = 3.
Let us first solve the negation 12x — 5| < 3. The latter is equivalent to —3 < 2x — 5 < 3. Add 5 to obtain 2 < 2x < §,

and divide by 2 to obtain 1 < x < 4. Since this is the solution of the negation, the original inequality has the solution
x<lorxz=4.

9.

Solve: x> < 3x + 10.

x> <3x+10
x>*—=3x—10<0 (Subtract 3x + 10)
x=5x+2)<0

The crucial numbers are —2 and 5. (x — 5)(x + 2) > 0 when x < -2 (since both x — 5 and x + 2 are negative);
it becomes negative as we pass through —2 (since x + 2 changes sign); and then it becomes positive as we pass
through 5 (since x — 5 changes sign). Thus, the solutions are —2 < x < 5.

SUPPLEMENTARY PROBLEMS

10.

11.

Describe and diagram the set determined by each of the following conditions:
(a) -5<x<0 (b) x<0

(c) 2<x<3 d x=>1

(e) Ixl<3 ) IxI=5

(g) Ix-2l<+% (h) Ix-3I>1

(i O0<kk-2I<1 (j) O<Ix+3l<+

k) x-21=1.

Ans. () -3<x<3; (HHx=25 orx<-5; (g3<x<3; (hyx>2orx<—4; ()x#2and 1 <x<3;
() “H<x<—4; ®KWx=30rx<1

Describe and diagram the set determined by each of the following conditions:

(a) Bx—-71<2
(b) Mx-12=>1

©

R

<
3 <4
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(d) ‘3—2 <4
X

© p+is1
X

() ‘i <3
X

Ans. (A)3<x<3;(b)x2Lorx<0;(c)-6<x<18;(d)x<-3orx=4;(e)x>00rx<—lor—4<x<0;
(fyx>4orx<—%

12. Describe and diagram the set determined by each of the following conditions:

(a) x(x—5)<0

b)) x=2)x—6)>0

) x+Dhx-2)<0

(d) x(x-2)x+3)>0

(&) x+2)x+3)x+4)<0
) x-Dxx+DHx-2)x+3)>0
@ (=1x+4)>0

(h) (x=3)(x+5)x-4)12<0
1 x-2Y>0

() (+17<0

k) x=2Px+D<0

O x-13x+1)<0

(m) Bx-D2x+3)>0

n) x—4)2x-3)<0

Ans. (@)0<x<5;(b)x>60rx<2;(c)-1<x<2;(d)x>20or-3<x<0;(e)-3<x<-2orx<-4,;
f)x>2or—1<x<1 orx<-3;(g)x>-4andx#1;(h)-5<x<3;({)x>2;(jx<-1;
kK -1l<x<2;(Dx<landx#-1;(m)x>%orx<-3;(n)3<x<4

13. Describe and diagram the set determined by each of the following conditions:

(a) x*<4

(b) x*=9

(c) (x—2)2<16
d @x+1)2>1
() X¥*+3x—-4>0
f) x¥*+6x+8<0
(g) ¥*<5x+14
(h) 2x*>x+6

(i) 6x*+13x<5
(j) *+3x2>10x

Ans. (@) 2<x<2;(b)x=230rx<-3;(c)2<x<6;(d)x>00rx<-1;(e)x>lorx<—4;(f)4<x<-2
(g)2<x<7;(h)x>20rx<—%;(1) —3<x<3; (j)-5<x<0orx>2

14. Solve: (a) —4<2-x<7 (b) Zxx_1<3 (© —x12<1
3x-1 2x-1
d 575>3 (e) ‘ ‘>2 B —]s2

Ans. (a)-5<x<6;(b)x>00orx<—1;(c)x>-2;(d) —L<x<3;(e)x<0orO0<x<t;f)x<—4orx=>-1
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15. Solve:

(@) Mx-51=3

(b) Ix+6l=2

(c) Bx—4l=12x+1l
(d Ix+1l=k+2l
() x+1l=3x-1
) Ik+U<Bx-11
(g) Bx—4z12x+ 1l

Ans. (@x=2orx=%;(b)x=—4orx=-8;(c)x=5orx=3;(d)x=-3; x=1;)x>1orx<0;
(g)x=50rx< 4

16. Prove:

(a) 1% =Ixl%

(b) Ix"l = IxI" for every integer n;

© Wi=x%

(d) Ix—yl <lxl+1yl;

) lx—yl=Ixl =1yl

[Hint: In (e), prove that Ix — yl > IxI — Iyl and Ix —yl > [yl — Ixl.]
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Rectangular Coordinate
Systems

Coordinate Axes

In any plane P, choose a pair of perpendicular lines. Let one of the lines be horizontal. Then the other line
must be vertical. The horizontal line is called the x axis, and the vertical line the y axis. (See Fig. 2-1.)

Fig. 2-1

Now choose linear coordinate systems on the x axis and the y axis satisfying the following conditions:
The origin for each coordinate system is the point O at which the axes intersect. The x axis is directed from
left to right, and the y axis from bottom to top. The part of the x axis with positive coordinates is called the
positive x axis, and the part of the y axis with positive coordinates is called the positive y axis.

We shall establish a correspondence between the points of the plane % and pairs of real numbers.

Coordinates

Consider any point P of the plane (Fig. 2-1). The vertical line through P intersects the x axis at a unique
point; let a be the coordinate of this point on the x axis. The number a is called the x coordinate of P (or the
abscissa of P). The horizontal line through P intersects the y axis at a unique point; let b be the coordinate
of this point on the y axis. The number b is called the y coordinate of P (or the ordinate of P). In this way,
every point P has a unique pair (a, b) of real numbers associated with it. Conversely, every pair (a, b) of real
numbers is associated with a unique point in the plane.

The coordinates of several points are shown in Fig. 2-2. For the sake of simplicity, we have limited them
to integers.
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y
8-
-3,7Ne 7
6 -
5+
4 |- ®(5,4)
3 ®(3,3)
(-4,2)® 2
1 - (6,0)
! S B . S Il 11 1 i & 3
-4 -3 -2 -1 0 i 2 3 4 5 6
1
_2 =
-3@ (0,-3)
-3, -4e -4 - ® (4,-4)
,5 -
Fig. 2-2

EXAMPLE 2.1: In the coordinate system of Fig. 2-3, to find the point having coordinates (2, 3), start at the origin,
move two units to the right, and then three units upward.

y
4 =
3 (2,3
I
I
®(-4,2) - |‘
¢ |
! 1+ |
] |
b | I 1 x
-4 -3 -2 -1 0 1 2
(-3,-1)® -1
_2 —
_,3 —
Fig. 2-3

To find the point with coordinates (-4, 2), start at the origin, move four units to the /eft, and then two units upward.

To find the point with coordinates (=3, —1), start at the origin, move three units to the /eft, and then one unit downward.

The order of these moves is not important. Hence, for example, the point (2, 3) can also be reached by starting at
the origin, moving three units upward, and then two units to the right.

Quadrants

Assume that a coordinate system has been established in the plane %. Then the whole plane %, with the
exception of the coordinate axes, can be divided into four equal parts, called quadrants. All points with both
coordinates positive form the first quadrant, called quadrant I, in the upper-right-hand corner (see Fig. 2-4).
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Quadrant 11 consists of all points with negative x coordinate and positive y coordinate. Quadrants 11 and IV
are also shown in Fig. 2-4.

y
(1 1
(- %) (+.+)
(-1,2)¢ 2
1 (3,1
] 1 1 ] ] ] x
-3 -2 -1 0 1 2 3
(-2, -1e -1
-2 ®(2,-2)
I v
(==) (+,-)
Fig. 2-4

The points on the x axis have coordinates of the form (a, 0). The y axis consists of the points with coor-
dinates of the form (0, b).

Given a coordinate system, it is customary to refer to the point with coordinates (a, b) as “the point
(a, b).” For example, one might say, “The point (0, 1) lies on the y axis.”

The Distance Formula

The distance P P, between poinits P, and P, with coordinates (x,, y,) and (x,, y,) in a given coordinate system
(see Fig. 2-5) is given by the following distance formula:

PP, =(x,—x, +(y, - y,)? @.1)
y
Yo — — Py(x3, y2)
]
|
|
|
|
I T D R(x;, 1)
’ P(x )] S
|
! |
' |
I |
Ay 1A, N
x] X2

Fig. 2-5

To see this, let R be the point where the vertical line through P, intersects the horizontal line through P,. The
x coordinate of R is x,, the same as that of P,. The y coordinate of R is y,, the same as that of P,. By the Pythago-
rean theorem, (P,P,)* = (P,R)> + (P,R)*. If A, and A, are the projections of P, and P, on the x axis, the segments
P R and A A, are opposite sides of a rectangle, so that FR: AA,. But AA, = Ix,—x,| by property (1.12).
So, Pl_R = lx, —x,l- Similarly, ﬁ: ly, = y,- Hence, (PP,)? =lx,—x,P +ly, -y, = (x, = x,)? + (3, = y,)*-
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Taking square roots, we obtain the distance formula. (It can be checked that the formula also is valid when
P, and P, lie on the same vertical or horizontal line.)

EXAMPLES:
(a) The distance between (2, 5) and (7, 17) is

=72+ =17 = /(=57 +(=12)> =25+ 144 =./169 =13
(b) The distance between (1, 4) and (5, 2) is

JA=57 +(4=2) = /(=4 +(2)> =16 +4 =20 =45 =25

The Midpoint Formulas

The point M(x, y) that is the midpoint of the segment connecting the points P (x,, y,) and P,(x,, y,) has the
coordinates

X, +x +
=Lt y:yl Y2

5 3 2.2)

Thus, the coordinates of the midpoints are the averages of the coordinates of the endpoints. See Fig. 2-6.

Py(xy, ¥3)

Fig. 26

To see this, let A, B, C be the projections of P, M, P, on the x axis.ﬂe X co@in_ates of A, B, C are
x,, X, x,. Since the lines P/A, MB, and P,C are parallel, the ratios M /MP, and AB/BC are equal. Since

PM = MP,, AB=BC. Since AB=x—x, and BC = x, - x,

X=X =X,—X
2x=x, +x,
A%
2
(The same equation holds when P, is to the left of P, in which case AB=x,—x and BC =x-1x,.)

Similarly, y = (y, + y,)/2.

EXAMPLES:

(a) The midpoint of the segment connecting (2, 9) and (4, 3) is (#, 9—;3) =(3, 6).

(b) The point halfway between (=5, 1) and (1, 4) is (_5; ! , %j - (_2, %)
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Proofs of Geometric Theorems
Proofs of geometric theorems can often be given more easily by use of coordinates than by deductions from
axioms and previously derived theorems. Proofs by means of coordinates are called analytic, in contrast to
so-called synthetic proofs from axioms.

EXAMPLE 2.2: Let us prove analytically that the segment joining the midpoints of two sides of a triangle is one-half
the length of the third side. Construct a coordinate system so that the third side AB lies on the positive x axis, A is the
origin, and the third vertex C lies above the x axis, as in Fig. 2-7.

Clu, v)

(0,0) (b,0)

Fig. 2-7

Let b be the x coordinate of B. (In other words, let »=AB.) Let C have coordinates (i, v). Let M , and M, be the

midpoints of sides AC and BC, respectively. By the midpoint formulas (2.2), the coordinates of M, are (l 2), and the

2’2
coordinates of M, are (” '5 b ) %) By the distance formula (2.1),

which is half the length of side AB.

SOLVED PROBLEMS

1. Show that the distance between a point P(x, y) and the origin is ,/x2 + y2.

Since the origin has coordinates (0, 0), the distance formula yields \/ (x=0+(y-0)2= \/xz +y2.

2. Is the triangle with vertices A(1, 5), B(4, 2), and C(5, 6) isosceles?

AB=J(1=4Y +(5-27 = /(37 +(3)? =0+9 =18

AC=J0=57 +(5-6) =[(=4) + (1} =16 +1=+17

BC=J(4-57 +(2-6) =/(-1)> +(—4)> =1+16 =17

Since AC = BC, the triangle is isosceles.

3. Is the triangle with vertices A(=5, 6), B(2, 3), and C(5, 10) a right triangle?
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AB=J(55-27 +(6-3) =<7 +(3) =49+ 9 = /58

AC=\(-5-57 + (610 = (=10 + (-4
— J100+16 = /116
BC=J2=57 +(B—10) =/(-3)> +(=7)* =/9+49 = /58

Since AC "=AB + R’z, the converse of the Pythagorean theorem tells us that AABC is a right triangle, with
right angle at B; in fact, since AB= BC, AABC is an isosceles right triangle.

Prove analytically that, if the medians to two sides of a triangle are equal, then those sides are equal. (Recall that
a median of a triangle is a line segment joining a vertex to the midpoint of the opposite side.)

In AABC, let M, and M, be the midpoints of sides AC and BC, respectively. Construct a coordinate system
so that A is the origin, B lies on the positive x axis, and C lies above the x axis (see Fig. 2-8). Assume that
AM , = BM,. We must prove that AC = BC. Let b be the x coordinate of B, and let C have coordinates (u, ).

Then, by the midpoint formulas, M| has coordinates (%, %), and M, has coordinates (u -5 b i %)

Hence,

C(u, v)

Since AM, =BM |,

() () 3] - (5)- () - (5)

2 2
Hence, (u t‘b) + ”Tz _ _421’) + %2 and, therefore, (u + b)> = (u — 2b)>. So, u+b=+(u —2b). Ifu+ b=

u — 2b, then b =—2b, and therefore, b = 0, which is impossible, since A # B. Hence, u + b=— (u —2b) =—u +2b,
whence 2u = b. Now BC = \[(u —b)* + v* = J(u—2u)* +v* = J(~u)? +v? =Ju? +* ,and AC=~/u> + 7.
Thus, AC = BC.

Find the coordinates (x, y) of the point Q on the line segment joining P (1, 2) and P,(6, 7), such that Q divides the
segment in the ratio 2: 3, that is, such that PI_Q/Q_P2 =2,
Let the projections of P, O, and P, on the x axis be A, Q’, and A,, with x coordinates 1, x, and 6, respectively

(see Fig. 2-9). Now AQ'/Q’A, = POIQP, = %+ (When two lines are cut by three parallel lines, corresponding
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segments are in proportion.) But A,Q’=x—1,and Q’A, =6—x. So gT_)lc = % , and cross-multiplying yields

3x —3 =12 —2x. Hence 5x = 15, whence x = 3. By similar reasoning, %}_—2 =2 , from which it follows that y =4.

-y 3
y
N P,(6,7)
|
B |
o |
2 |
|
- |
P, ] I
L | |
4 | |Q. IA
L T D x
1 X 6
Fig. 2-9
SUPPLEMENTARY PROBLEMS
6. In Fig. 2-10, find the coordinates of points A, B, C, D, E, and F.
y
Y of Ee
3l Ce
2 o F
Ae 1
1 1 i 1 1 1 1 1 L 1 ] 1 X
-5 -4 -3 -2 -1 1 2 3 4 5 6 7
—14 B
De -2

Fig. 2-10

Ans. (A)=(=2,1); B)= (0, -1); (C)=(1, 3); (D) = (-4, -2); (E) = (4, 4); (F) = (7, 2).

7. Draw a coordinate system and show the points having the following coordinates: (2, -3), (3, 3), (-1, 1), (2, -2),
(0’ 3)s (37 0)’ (_29 3)

8. Find the distances between the following pairs of points:
(@ (3,4 and (3, 0) () (2,5)and (2,-2) ()3, Dand (2, 1)
(d) (2,3)and (5,7) (e) (2,4)and (3,0) (f) (_2’ %) and (4, -1)

Ans. (a) 2;(b) 7; (¢) 1; (d) 5; (e) ~41; () 317

9. Draw the triangle with vertices A(2, 5), B(2, —5), and C(-3, 5), and find its area.

Ans. Area=25
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

CHAPTER 2 Rectangular Coordinate Systems

If (2, 2), (2, -4), and (5, 2) are three vertices of a rectangle, find the fourth vertex.

Ans. (5,-4)

If the points (2, 4) and (-1, 3) are the opposite vertices of a rectangle whose sides are parallel to the coordinate
axes (that is, the x and y axes), find the other two vertices.

Ans. (-=1,4)and (2, 3)

Determine whether the following triples of points are the vertices of an isosceles triangle: (a) (4, 3), (1, 4),
(3, 10); (b) (=1, 1), (3, 3), (1, —=1); (¢) (2, 4), (5, 2), (6, 5).

Ans. (a) no; (b) yes; (c) no

Determine whether the following triples of points are the vertices of a right triangle. For those that are, find the
area of the right triangle: (a) (10, 6), (3, 3), (6, —4); (b) (3, 1), (1, =2), (=3, =1); (c) (5, -2), (0, 3), (2, 4).

Ans. (a) yes, area = 29; (b) no; (c) yes, area = %

Find the perimeter of the triangle with vertices A(4, 9), B(-3, 2), and C(8, -5).

Ans. T2 +170 + 2453

Find the value or values of y for which (6, y) is equidistant from (4, 2) and (9, 7).

Ans. 5

Find the midpoints of the line segments with the following endpoints: (a) (2, —3) and (7, 4); (b) ( % , 2) and
4, 1); (¢) (/3,0) and (1, 4).

9 1 17 3 1+/3
Ans. () (2’ 2); (b) ( 6° 2); (©) (Tf 2)
Find the point (x, y) such that (2, 4) is the midpoint of the line segment connecting (x, y) and (1, 5).

Ans. (3,3)

Determine the point that is equidistant from the points A(-1, 7), B(6, 6), and C(5, —1).

ol
G

Ans. ( ) %)
Prove analytically that the midpoint of the hypotenuse of a right triangle is equidistant from the three vertices.

Show analytically that the sum of the squares of the distance of any point P from two opposite vertices of a
rectangle is equal to the sum of the squares of its distances from the other two vertices.

Prove analytically that the sum of the squares of the four sides of a parallelogram is equal to the sum of the
squares of the diagonals.
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22,

23.

24.

25.

Prove analytically that the sum of the squares of the medians of a triangle is equal to three-fourths the sum of the
squares of the sides.

Prove analytically that the line segments joining the midpoints of opposite sides of a quadrilateral bisect each
other.

Prove that the coordinates (x, y) of the point Q that divides the line segments from P,(x,, y,) to P,(x,, y,) in the
ratio r,: r, are determined by the formulas

_ nx, +nx
ntn

_h) +ny

and
T

(Hint: Use the reasoning of Problem 5.)

Find the coordinates of the point Q on the segment P, P, such that P]_Q/Q_P2 =2,if (@) P,=(0,0), P,=(7,9);
() P, =(-1,0),P,=(0,7);(c) P, =(-7,-2), P,=(2,7); (d) P, = (1, 3), P,=(4,2).

Ans. (@) (5.2); 0) (-3, %) © (-5,3): @ (¥,%)
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Lines

The Steepness of a Line

The steepness of a line is measured by a number called the slope of the line. Let & be any line, and let P (x,, y,)
and P (x,, y,) be two points of ££. The slope of ¥ is defined to be the number m = % The slope is the
2 1

ratio of a change in the y coordinate to the corresponding change in the x coordinate. (See Fig. 3-1.)

/

Fig. 3-1

For the definition of the slope to make sense, it is necessary to check that the number m is independent
of the choice of the points P, and P,. If we choose another pair P,(x,, y,) and P (x,, y,), the same value of m
must result. In Fig. 3-2, triangle P,P,T is similar to triangle P,P,Q. Hence,

TP, Vo=V Vi Y

— = or = ===

PlQ P3T Xy =4 Xy =X

Therefore, P . and P, determine the same slope as P, and P,

EXAMPLE 3.1: The slope of the line joining the points (1, 2) and (4, 6) in Fig. 3-3 is 6;_% = % Hence, as a point on

the line moves 3 units to the right, it moves 4 units upwards. Moreover, the slope is not affected by the order in which
2-6_4_4 y0eperal, 220 -0 T2

1-4 -3 3 X, =X X =X

the points are given:

The Sign of the Slope

The sign of the slope has significance. Consider, for example, a line & that moves upward as it moves to the
Yo~ N

right, as in Fig. 3-4(a). Since y, >y, and x, > x,, we have m = x> 0. The slope of &£ is positive.
2 1
Now consider a line &£ that moves downward as it moves to the right, as in Fig. 3-4(b). Here y, <y, while
x,>x,; hence, m = yz—:i:] < 0. The slope of & is negative.

2 1
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Py(x5, ¥,)

—_ 4T
Py(x5, ¥4)

Fig. 3-2 Fig. 3-3

Now let the line & be horizontal, as in Fig. 3-4(c). Here y, = y,, so that y, — y, = 0. In addition, x, — x, # 0.
0 _0. The slope of & is zero.

2 1

Line & is vertical in Fig. 3-4(d), where we see that y, —y > 0 while x, — x, = 0. Thus, the expression
% is undefined. The slope is not defined for a vertical line £. (Sometimes we describe this situation by
2 1

saying that the slope of & is “infinite.”)

Hence, m =

y
y ¥
A, Y2) Pl(xlh
P(x, y/)/ \( %)
~ . \ i
¥
(a) (®
y y
Pyx;, y3)
Pl(xnv}ﬂ) Py(x,, y,) b P.(x,, ¥,)
o x
(o) (d)
Fig. 3-4

Slope and Steepness

Consider any line &£ with positive slope, passing through a point P (x , y,); such a line is shown in Fig. 3-5.
Choose the point P(x,, y,) on & such that x, — x, = 1. Then the slope m of &£ is equal to the distance AP,.
As the steepness of the line increases, AP, increases without limit, as shown in Fig. 3-6(a). Thus, the slope
of & increases without bound from 0 (when & is horizontal) to +e (when the line is vertical). By a similar
argument, using Fig. 3-6(b), we can show that as a negatively sloped line becomes steeper, the slope steadily
decreases from O (when the line is horizontal) to —eo (when the line is vertical).
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y
A
|Pz(xz’)'2)
|
Pi(x,, y,) ____,IA
! 1
! I
V4 1 ' X
Xy X2
Ve
Fig. 3-5

(b)
Fig. 36

Equations of Lines
Let & be a line that passes through a point P (x,, y,) and has slope m, as in Fig. 3-7(a). For any other point
P(x, y) on the line, the slope m is, by definition, the ratio of y —y, to x —x,. Thus, for any point (x, y) on &,

_Y=)
R 3.1

Conversely, if P(x, y) is not on line & as in Fig. 3-7(b), then the slope i Y of the line PP is different

from the slope m of &; hence (3.1) does not hold for points that are not on £. Thus the line consists of only
those points (x, y) that satisfy (3.1). In such a case, we say that & is the graph of (3.1).

y g

P(x, y) P(x, y)

/ Pi(x,y) x //
/

P(x, y,)

(a) (b)
Fig. 3-7
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A Point-Slope Equation

A point-slope equation of the line & is any equation of the form (3.1). If the slope m of & is known, then
each point (x,, y,) of £ yields a point—slope equation of &£. Hence, there is an infinite number of point-slope
equations for &. Equation (3.1) is equivalent to y — y, = m(x — x ).

EXAMPLE 3.2: (a) The line passing through the point (2, 5) with slope 3 has a point-slope equation )yc:; =3.
(b) Let & be the line through the points (3, —1) and (2, 3). Its slope is m = 32%(_31) = —il =—4. Two point-slope equations
of Lare XL =4 and y=3 =—4.

x=3 x=2

Slope—-intercept Equation

If we multiply (3.1) by x — x,, we obtain the equation y — y, =m(x — x,), which can be reduced first to y — y, =
mx — mx,, and then to y = mx + (y, — mx,). Let b stand for the number y, — mx . Then the equation for line
& becomes

y=mx+b (3.2)
Equation (3.2) yields the value y = b when x = 0, so the point (0, b) lies on &. Thus, b is the y coordinate

of the intersection of & and the y axis, as shown in Fig. 3-8. The number b is called the y intercept of &, and
(3.2) is called the slope—intercept equation for .

y

(0,)

pd ,
-

Fig. 3-8

EXAMPLE 3.3: The line through the points (2, 3) and (4, 9) has slope

6
m:mziz:;

Its slope—intercept equation has the form y = 3x + b. Since the point (2, 3) lies on the line, (2, 3) must satisfy this
equation. Substitution yields 3 = 3(2) + b, from which we find b = -3. Thus, the slope—intercept equation is y = 3x — 3.

y=3_
) =3. Then

Another method for finding this equation is to write a point—slope equation of the line, say "

multiplying by x — 2 and adding 3 yields y = 3x — 3.

Parallel Lines

Let £ and £, be parallel nonvertical lines, and let A| and A, be the points at which &£, and £, intersect the
y axis, as in Fig. 3-9(a). Further, let B, be one unit to the right of A|, and B, one unit to the right of A,. Let
C, and C, be the intersections of the verticals through B, and B, with &£, and £,. Now, triangle A B C, is

congruent to triangle A,B,C, (by the angle—side—angle congruence theorem). Hence, B,C, = B,C, and

BC, B,C
%: 22 =slopeof £,

Slopeof £, = I
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Thus, parallel lines have equal slopes.

\
™~

(a) (b)

Fig. 3-9

Conversely, assume that two different lines &£, and &, are not parallel, and let them meet at point P, as in
Fig. 3-9(b). If £ and &£, had the same slope, then they would have to be the same line. Hence, £, and &£,
have different slopes.

Theorem 3.1: Two distinct nonvertical lines are parallel if and only if their slopes are equal.

EXAMPLE 3.4: Find the slope—intercept equation of the line & through (4, 1) and parallel to the line .l having the
equation 4x — 2y =S5.

By solving the latter equation for y, we see that Jl has the slope—intercept equation y = 2x—%. Hence,

J has slope 2. The slope of the parallel line & also must be 2. So the slope—intercept equation of & has the
form y = 2x + b. Since (4, 1) lies on &, we can write 1 = 2(4) + b. Hence, b = -7, and the slope—intercept
equation of £ is y =2x - 7.

Perpendicular Lines
In Problem 5 we shall prove the following:

Theorem 3.2: Two nonvertical lines are perpendicular if and only if the product of their slopes is —1.

If m, and m, are the slopes of perpendicular lines, then m m,=—1. This is equivalent to m, = —mL; hence,
the slopes of perpendicular lines are negative reciprocals of each other. !

SOLVED PROBLEMS

1. Find the slope of the line having the equation 3x — 4y = 8. Draw the line. Do the points (6, 2) and (12, 7) lie on
the line?

Solving the equation for y yields y = % x — 2. This is the slope—intercept equation; the slope is 2 and the y
intercept is —2.

Substituting O for x shows that the line passes through the point (0, —2). To draw the line, we need another
point. If we substitute 4 for x in the slope—intercept equation, we get y=2(4) —2=1. So, (4, 1) also lies on the
line, which is drawn in Fig. 3-10. (We could have found other points on the line by substituting numbers other
than 4 for x.)

To test whether (6, 2) is on the line, we substitute 6 for x and 2 for y in the original equation, 3x — 4y = 8. The two
sides turn out to be unequal; hence, (6, 2) is not on the line. The same procedure shows that (12, 7) lies on the line.
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A8 @ | S

\
1 1Ly 1+ \‘f
3 4
i 1 ] 1 1 _x
-2 -1 0 1 2 3 4
b
Fig. 3-10 Fig. 3-11

2. Let & be the perpendicular bisector of the line segment joining the points A(—1, 2) and B(3, 4), as shown in
Fig. 3-11. Find an equation for £.

& passes through the midpoint M of segment AB. By the midpoint formulas (2.2), the coordinates of M are (1, 3).
The slope of the line through A and B is 34_;(_21) = % =5 Let m be the slope of £. By Theorem 3.2, +m = —1,
whence m = -2.

The slope—intercept equation for & has the form y = —2x + b. Since M (1, 3) lies on &£, we have 3 =-2(1) + b.

Hence, b = 5, and the slope—intercept equation of &£ is y = —2x + 5.

3. Determine whether the points A(1, —1), B(3, 2), and C(7, 8) are collinear, that is, lie on the same line.

A, B, and C are collinear if and only if the line AB is identical with the line AC, which is equivalent to the
2-(-D_3 _ 8-(-D_9_3

slope of AB being equal to the slope of AC. The slopes of AB and AC are 3.7 5> and = 6=

Hence, A, B, and C are collinear.

4. Prove analytically that the figure obtained by joining the midpoints of consecutive sides of a quadrilateral is a
parallelogram.
Locate a quadrilateral with consecutive vertices, A, B, C, and D on a coordinate system so that A is the origin, B
lies on the positive x axis, and C and D lie above the x axis. (See Fig. 3-12.) Let b be the x coordinate of B, (i, v) the
coordinates of C, and (x, y) the coordinates of D. Then, by the midpoint formula (2.2), the midpoints M|, M,, M,, and

+
M, of sides AB,BC,CD, and DA have coordinates (% 0), (” e ), (x tu Y 5 yj, and (% %), respectively.

2 0202
We must show that M, M, M .M, is a parallelogram. To do this, it suffices to prove that lines MM, and M .M, are
parallel and that lines M, M, and M M, are parallel. Let us calculate the slopes of these lines:

Z-0 % y_ytv _w
SlOpe(Mle)zui’b—bz%zﬁ Slope(MsMA‘):%:_g:%
2 2 2 2 2 2
ytv o Yy X—O
_ 2 2 2 _ Y _2 __y
Slope(M2M3)_x+u_u+b_x—b_x—b slope(M]M4)_£_2_x_b
2 2 2 2 2

Since slope(M,M,) = slope(M,M,), MM, and M M, are parallel. Since slope(M,M,) = slope(M M), M,M, and
M M, are parallel. Thus, M M, M .M, is a parallelogram.
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Fig. 3-12

Prove Theorem 3.2.

First we assume £, and &£, are perpendicular nonvertical lines with slopes m, and m,. We must show that
m,m,=—1. Let M, and .M, be the lines through the origin O that are parallel to £ , and §£2, as shown in Fig. 3-13(a).
Then the slope of Jit, is m,, and the slope of ., is m, (by Theorem 3.1). Moreover, J, and ., are perpendicular,
since & and &, are perpendicular.

(a) (b)
Fig. 3-13
Now let A be the point on JI/LI with x coordinate 1, and let B be the point on ./I/Lz with x coordinate 1, as in

Fig. 3-13(b). The slope—intercept equation of Jt, is y = m x; therefore, the y coordinate of A is m,, since its x
coordinate is 1. Similarly, the y coordinate of B is m,. By the distance formula (2.1),

OB =[(1-0) + (m, — 0)* = [1+m’

OA = [(1-0)* +(m, = 0)* =/l +m]

BA= (-1 +(m, —m)* = [(m, —m, )’
Then by the Pythagorean theorem for right triangle BOA,
BA'=0B" +0A’
or (my,—m)?*=1+m3)+A+m})
m3 —2m,m, + m} =2+ m? + m}

mym, =—1
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Now, conversely, we assume that m m, = —1, where m, and m, are the slopes of nonvertical lines £ , and $2.
Then £ | is not parallel to ENPZ. (Otherwise, by Theorem 3.1, m, = m, and, therefore, m} =—1, which contradicts the
fact that the square of a real number is never negative.) We must show that £ , and SNPZ are perpendicular. Let P be
the intersection of &, and &£, (see Fig. 3-14). Let £, be the line through P that is perpendicular to &£,. If m, is the
slope of $3, then, by the first part of the proof, m m, = -1 and, therefore, m m, = m m,. Since mm, = -1, m #0;
therefore, m, = m,. Since SNPZ and 553 pass through the same point P and have the same slope, they must coincide.
Since &, and &£, are perpendicular, &£, and &£, are also perpendicular.

y

A £
%

7 ,
Fig. 314

6. Show that, if a and b are not both zero, then the equation ax + by = c is the equation of a line and, conversely,

every line has an equation of that form.

Assume b # 0. Then, if the equation ax + by = c is solved for y, we obtain a slope—intercept equation
y=(—alb) x + c/b of aline. If b = 0, then a # 0, and the equation ax + by = ¢ reduces to ax = c; this is equivalent
to x = c/a, the equation of a vertical line.

Conversely, every nonvertical line has a slope—intercept equation y = mx + b, which is equivalent to —mx +y = b,
an equation of the desired form. A vertical line has an equation of the form x = ¢, which is also an equation of the
required form with a =1 and b =0.

7. Show that the line y = x makes an angle of 45° with the positive x axis (that is, that angle BOA in Fig. 3-15
contains 45°).

A(1,1)

* x
B

Fig. 3-15

Let A be the point on the line y = x with coordinates (1, 1). Drop a perpendicular AB to the positive x axis.
Then AB=1 and OB =1. Hence, angle OAB = angle BOA, since they are the base angles of isosceles triangle
BOA. Since angle OBA is a right angle,

Angle OAB + angle BOA =180° — angle OBA =180° — 90° = 90°

Since angle BOA = angle OAB, they each contain 45°.
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Show that the distance d from a point P(x, y,) to a line & with equation ax + by = c is given by the formula
d= lax+ by —cl

Let .l be the line through P that is perpendicular to . Then . intersects &£ at some point Q with coordinates
(u, v), as in Fig. 3-16. Clearly, d is the length PQ, so if we can find « and », we can compute d with the distance
formula. The slope of &£ is —a/b. Hence, by Theorem 3.2, the slope of J is b/a. Then a point—slope equation of

M is @ = %. Thus, u and » are the solutions of the pair of equations au + bv = c and Z:—y' = %. Tedious
1
algebraic calculations yield the solution

N 2
_ac+b’x, +aby,

" _ bc—abx, +a’y,
oy ——a

and =
a’ +b*

The distance formula, together with further calculations, yields

_lax; +by, —cl

d=PQ=\J(x ~u)’ +(y ~v)* = NS

y M

P(x,, y,)

/ N\ x

Fig. 3-16

SUPPLEMENTARY PROBLEMS

9.

10.

Find a point-slope equation for the line through each of the following pairs of points: (a) (3, 6) and (2, —4);
(b) (8,5) and (4, 0); (c) (1, 3) and the origin; (d) (2, 4) and (-2, 4).

6

Y= 3 _aqy 24
Ans. (a) =3 1—3, (d) x—2_0

—10: () X2 5. oy Y
_10’(b) X—8_4’(C)

—
Find the slope—intercept equation of each line:

(a) Through the points (4, =2) and (1, 7)

(b) Having slope 3 and y intercept 4

(c) Through the points (-1, 0) and (0, 3)

(d) Through (2, —3) and parallel to the x axis

(e) Through (2, 3) and rising 4 units for every unit increase in x

(f) Through (-2, 2) and falling 2 units for every unit increase in x

(g) Through (3, —4) and parallel to the line with equation 5x — 2y =4

(h) Through the origin and parallel to the line with equation y =2

(i) Through (-2, 5) and perpendicular to the line with equation 4x + 8y =3
(j) Through the origin and perpendicular to the line with equation 3x — 2y =1
(k) Through (2, 1) and perpendicular to the line with equation x =2

(1) Through the origin and bisecting the angle between the positive x axis and the positive y axis

Ans. (a)y=-3x+10;(b) y=3x+3;(c) y=3x+3;(d) y=-3;(e) y=4x -5, () y=-2x-2; (g) y=3x— 3}
M)y=0;0)y=2x+9%@) y=—3x;Ky=L0y=x
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11. (a) Describe the lines having equations of the form x = a.
(b) Describe the lines having equations of the form y = b.
(c) Describe the line having the equation y = —x.

12. (a) Find the slopes and y intercepts of the lines that have the following equations: (i) y = 3x — 2; (ii) 2x — 5y =3;
(if) y=4x = 3; (V) y= -3 () § +5 =1
(b) Find the coordinates of a point other than (0, b) on each of the lines of part (a).

Ans. (@)())m=3,b=-2;(i) m=% b=-2% (iiym=4,b=-3;(iv)m=0,b=-3;, vy m=—%;b=2;
(b) () (1, 1); (i) (=6, =3); (iii) (1, 1); (iv) (1, =3); (v) (3, 0)

13. If the point (3, k) lies on the line with slope m = -2 passing through the point (2, 5), find .

Ans. k=3

14. Does the point (3, —2) lie on the line through the points (8, 0) and (-7, —6)?

Ans. Yes

15. Use slopes to determine whether the points (7, —1), (10, 1), and (6, 7) are the vertices of a right triangle.

Ans. They are.

16. Use slopes to determine whether (8, 0), (-1, =2), (-2, 3), and (7, 5) are the vertices of a parallelogram.

Ans. They are.

17. Under what conditions are the points (u, v + w), (v, u + w), and (w, u + v) collinear?

Ans.  Always.

18. Determine k so that the points A(7, 3), B(—1, 0), and C(k, —2) are the vertices of a right triangle with right angle at B.

Ans. k=1

19. Determine whether the following pairs of lines are parallel, perpendicular, or neither:

(@ y=3x+2andy=3x-2
(b) y=2x—-4andy=3x+5
(¢) 3x—2y=5and2x+3y=4
(d) 6x+3y=1and4x+2y=3
() x=3andy=-4

f) Sx+4y=1land4x+5y=2
(g) x=—2andx=7

Ans. (a) Parallel; (b) neither; (c) perpendicular; (d) parallel; (e) perpendicular; (f) neither; (g) parallel

20. Draw the line determined by the equation 2x + S5y = 10. Determine whether the points (10, 2) and (12, 3) lie on
this line.
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CHAPTER 3 Lines

For what values of k will the line kx — 3y = 4k have the following properties: (a) have slope 1; (b) have y intercept 2;
(c) pass through the point (2, 4); (d) be parallel to the line 2x — 4y = 1; (e) be perpendicular to the line x — 6y = 2?

Ans. (@) k=3;(b) k=—2; () k=—6; (d) k=2; (e) k=—18

Describe geometrically the families of lines (a) y = mx — 3 and (b) y = 4x + b, where m and b are any real
numbers.

Ans. (a) Lines with y intercept —3; (b) lines with slope 4

In the triangle with vertices, A(0, 0), B(2, 0), and C(3, 3), find equations for (a) the median from B to the
midpoint of the opposite side; (b) the perpendicular bisector of side BC; and (c) the altitude from B to the
opposite side.

Ans. (@)y=-3x+6;(b)x+3y=7;(c)y=—x+2
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Circles

Equations of Circles

For a point P(x, y) to lie on the circle with center C(a, b) and radius r, the distance PC must be equal to r
(see Fig. 4-1). By the distance formula (2.1),

PC=(x~a)y+(y—b)’

Thus, P lies on the circle if and only if

(x—a)*+(y-b)*=r? “4.1)

Equation (4.1) is called the standard equation of the circle with center at (a, b) and radius r.

Y —T T T P
e ~._ P(x,y)
// \\
// A
/ r \
/ \
/ |
‘ |
\ Cla, b)
\ /
\ /
\ A
\\\ ///
Fig. 4-1

EXAMPLE 4.1:

(a) The circle with center (3, 1) and radius 2 has the equation (x — 3)>+ (y — 1)>=4.
(b) The circle with center (2, —1) and radius 3 has the equation (x — 2)>+ (y + 1)2=09.
(c) What is the set of points satisfying the equation (x — 4)> + (y — 5)*> = 25?

By (4.1), this is the equation of the circle with center at (4, 5) and radius 5. That circle is said to be the graph of the
given equation, that is, the set of points satisfying the equation.

(d) The graph of the equation (x + 3)? + y> = 2 is the circle with center at (-3, 0) and radius \/5 .
grap. q

The Standard Equation of a Circle

The standard equation of a circle with center at the origin (0, 0) and radius r is

xX2+y*=r? 4.2)

For example, x* + y* = 1 is the equation of the circle with center at the origin and radius 1. The graph of
x*+y? =5 is the circle with center at the origin and radius /5.
The equation of a circle sometimes appears in a disguised form. For example, the equation

x> +y?+8x—6y+21=0 4.3)
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turns out to be equivalent to
(x+4)»+(y-3)7*=4 4.4)

Equation (4.4) is the standard equation of a circle with center at (—4, 3) and radius 2.
Equation (4.4) is obtained from (4.3) by a process called completing the square. In general terms, the
process involves finding the number that must be added to the sum x? + Ax to obtain a square.

A 2 A 2 A 2
Here, we note that (x + —j =x2+Ax+ (7) . Thus, in general, we must add (7) to x? + Ax to obtain

2 2
the square (x + 7) . For example, to get a square from x? + 8x, we add (5) , that is, 16.

The result is x> + 8x + 16, which is (x + 4)% This is the process of completing the square.

Consider the original (4.3): x> + y*> + 8x — 6y + 21 = 0. To complete the square in x*> + 8x, we add 16. To
2

complete the square in y*> — 6y, we add | — ik which is 9. Of course, since we added 16 and 9 to the left side

of the equation, we must also add them to the right side, obtaining
(x*+8x+16)+(»* —6y+9)+21=16+9
This is equivalent to
(x+4)?*+(y-3+21=25
and subtraction of 21 from both sides yields (4.4).

EXAMPLE 4.2: Consider the equation x> + y* — 4x — 10y + 20 = 0. Completing the square yields
(X —4x+4)+(* —10y+25)+20=4+25
(x=27+(y-5*=9
Thus, the original equation is the equation of a circle with center at (2, 5) and radius 3.

The process of completing the square can be applied to any equation of the form

X*+y*+Ax+By+C=0 4.5)
to obtain
AY BY A? B
(x+7j +(y+7) +C=T+T
(Hé)Z(NEJZZM
or 2 2 4 (4.6)

There are three different cases, depending on whether A? + B> — 4C is positive, zero, or negative.

Case 1: A2+ B2 — 4C > 0. In this case, (4.6) is the standard equation of a circle with center at (—%,—g)
VA*+ B*—4C
—s
Case 2: A+ B?> — 4C = 0. A sum of the squares of two quantities is zero when and only when each of the
quantities is zero. Hence, (4.6) is equivalent to the conjunction of the equations x + A/2=0and y+ B/2=01in
this case, and the only solution of (4.6) is the point (-A/2, —B/2). Hence, the graph of (4.5) is a single point,
which may be considered a degenerate circle of radius O.
Case 3: A>+ B2 — 4C < 0. A sum of two squares cannot be negative. So, in this case, (4.5) has no solution at all.
We can show that any circle has an equation of the form (4.5). Suppose its center is (a, b) and its radius
is r; then its standard equation is

and radius

(x=ay +(y=b7 =1
Expanding yields x> — 2ax + a® + y* — 2by + b* =12, or
X2+ y*—=2ax—2by+(a®> +b*-r*)=0
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SOLVED PROBLEMS

1. Identify the graphs of (a) 2x* +2y* —4x+y+ 1=0; (b) x> +y? =4y +7=0; (c) ¥* + y* — 6x -2y + 10 =0.
(a) First divide by 2, obtaining x* + y*> — 2x + + y + + = 0. Then complete the squares:
(=2x+D+ (P +3y+p)+i=l+5=57
=D +O+D=F-t=H-t%=1

Thus, the graph is the circle with center (1, —%) and radius 3.

(b) Complete the square:
X2+ (y=2)+7=4
x2+(y—2)=-3

Because the right side is negative, there are no points in the graph.

(c) Complete the square:
(x=32+(y-1)*+10=9+1
(x=3+(-1*=0

The only solution is the point (3, 1).

2. Find the standard equation of the circle with center at C(2, 3) and passing through the point P(-1, 5).
The radius of the circle is the distance

CP=(5-3) +(-1-2)? =22 +(-3)* =/4+9 =413
So the standard equation is (x — 2)2+ (y — 3)*=13.

3. Find the standard equation of the circle passing through the points P(3, 8), Q(9, 6), and R(13, -2).
First method: The circle has an equation of the form x? + y? + Ax + By + C = 0. Substitute the values of x and y
at point P, to obtain 9 + 64 + 3A + 8B+ C=0or

3A+8B+C=-73 0))]
A similar procedure for points Q and R yields the equations
9A+6B+C=-117 2
13A-2B+C=-173 3)
Eliminate C from (1) and (2) by subtracting (2) from (1):
—-6A+2B=44 or -3A+B=22 “
Eliminate C from (1) and (3) by subtracting (3) from (1):
-10A+10B=100 or -A+B=10 ®)]

Eliminate B from (4) and (5) by subtracting (5) from (4), obtaining A = —6. Substitute this value in (5) to find that
B =4. Then solve for Cin (1): C=-87.
Hence, the original equation for the circle is x* + y* — 6x + 4y — 87 = 0. Completing the squares then yields

(x=3)+(y+2?>=87+9+4=100

Thus, the circle has center (3, —2) and radius 10.

Second method: The perpendicular bisector of any chord of a circle passes through the center of the circle.
Hence, the perpendicular bisector & of chord PQ will intersect the perpendicular bisector Jl of chord QR at the
center of the circle (see Fig. 4-2).

sap.nedjamiat.org


sap.nedjamiat.org

CHAPTER 4 Circles

Y P@3,8) &

0(9,6)

R(13, -2)

A

Fig. 4-2

The slope of line PQ is —+. So, by Theorem 3.2, the slope of & is 3. Also, &£ passes through the midpoint
y—

(6, 7) of segment PQ. Hence a point—slope equation of & is Z =3, and therefore its slope—intercept equation

is y =3x — 11. Similarly, the slope of line QR is —2, and therefore the slope of JL is 4, Since Jl passes through
y-2 _
x—11"
equation y =+ x — Z. Hence, the coordinates of the center of the circle satisfy the two equations y =3x — 11 and

the midpoint (11, 2) of segment QR, it has a point—slope equation %, which yields the slope—intercept

y=+x—7 and we may write
3x—11=3x-71
from which we find that x = 3. Therefore,
y=3x-11=33)-11=-2
So the center is at (3, —2). The radius is the distance between the center and the point (3, 8):
J(=2-8)2 +(3-3)* =/(-10)> =100 =10
Thus, the standard equation of the circle is (x — 3)> + (y + 2)> = 100.

Find the center and radius of the circle that passes through P(1, 1) and is tangent to the line y = 2x — 3 at the point
0(3, 3). (See Fig. 4-3.)

Fig. 4-3

The line & perpendicular to y = 2x — 3 at (3, 3) must pass through the center of the circle. By Theorem 3.2, the
slope of &£ is —+. Therefore, the slope—intercept equation of & has the form y=—Lx+b. Since (3, 3) is on &£, we
have 3=-%(3) + b; hence, b =3, and & has the equation y=—+x+ 3.
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CHAPTER 4 Circles

The perpendicular bisector Al of chord PQ in Fig. 4-3 also passes through the center of the circle, so the
intersection of &£ and Jl will be the center of the circle. The slope of PQ is 1. Hence, by Theorem 3.2, the slope
of JL is —1. So J has the slope—intercept equation y = —x + b’. Since the midpoint (2, 2) of chord PQ is a point on
M, we have 2 =—(2) + b"; hence, b” = 4, and the equation of il is y = —x + 4. We must find the common solution
ofy=-x+4and y=—%x+3. Setting

—x+4=—1x+%

yields x = —liherefore, y=-x+4=-(-1)+4=5, and the center C of the circle is (-1, 5). The radius is
the distance PC = \/(—1 —3)2 +(5-3)% =/16 + 4 =20 . The standard equation of the circle is then
x+ 12+ (y-5)2=20.

Find the standard equation of every circle that passes through the points P(1, —1) and Q(3, 1) and is tangent to the
line y = —3x.

Let C(c, d) be the center of one of the circles, and let A be the point of tangency (see Fig. 4-4). Then, because
CP = CQ. we have

CP =CQ° or (c—1)2+(d+1)>=(c=3)>+(d -1

Expanding and simplifying, we obtain

c+d=2 (D
y=-3x
y
//,_‘\
/ AN oG, 1)
J //*' \\\\
ya N .
. / // N
- \\
[P(1,-1) \
Cle, d) }
/
A //
\ /
N s
AN e
S~
Fig. 4-4

— — 3c+d —2 —
In addition, CP = CA, and by the formula of Problem 8 in Chapter 3, CA = CW Setting CP’ =CA’ thus yields

3c+d)?
(c=D*+d+1)?*= % Substituting (1) in the right-hand side and multiplying by 10 then yields

10[(c =1)* +(d+1)*]=(2c+2)* from which 3¢ +5d> - 14¢+10d +8=0
By (1), we can replace d by 2 — ¢, obtaining
2¢2=11c+12=0 or (2c-3)c-4)=0

Hence, ¢ =3 or ¢ =4. Then (1) gives us the two solutions ¢ = 3, d=1% and c =4, d = -2. Since the radius

— 1o
CA= Jetd , these solutions produce radii of —2= = @ and 10
J10 1

Jio 2 J10

=.10. Thus, there are two such circles, and
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CHAPTER 4 Circles

their standard equations are

—§2+ LI (x—4) +(y+2)? =10
*=3 Y=3) 732 * Y =

SUPPLEMENTARY PROBLEMS

10.

11.

12.

13.

Find the standard equations of the circles satisfying the following conditions:

(a) center at (3, 5) and radius 2 (b) center at (4, —1) and radius 1
(c) center at (5, 0) and radius /3 (d) center at (=2, —2) and radius 52
(e) center at (-2, 3) and passing through (3, -2) (f) center at (6, 1) and passing through the origin

Ans. (@) (x=3) "+ —-52=4;(b) (x -4+ (y+1)*=1;(c) x =52 +y*=3; (d) (x +2)*+ (y +2)>*=50;
(e) (x+27+ (y—3)*=50; (f) (x— 6)*+ (y — 1)>=37

Identify the graphs of the following equations:

(@) x*+y*+16x-12y+10=0 b)) X*+y?—4x+5y+10=0
©) X*+y*+x-y=0 (d) 4x®+4y*+8y-3=0
(e) X+y*—x-2y+3=0 ) ¥*+y*+/2x-2=0

Ans. (a) circle, center at (-8, 6), radius 3J10 ; (b) circle, center at (2, —3), radius 1; () circle, center at (—+,%),
radius ~/2/ 2; (d) circle, center at (0, —1), radius Z; (e) empty graph; (f) circle, center at (—\/5 /2,0),
radius /5/2

Find the standard equations of the circles through (a) (=2, 1), (1, 4), and (-3, 2); (b) (0, 1), (2, 3), and (1,1+ \/g);
() (6, 1), (2, -5), and (1, —4); (d) (2, 3), (-6, —3), and (1, 4).

Ans. (@ @+ 12+ (y=-32=50)x-22+(y—-1)*=4;c) (x—4)*+(+2=13;(d) (x+2)2+y*=25

For what values of k does the circle (x + 2k)? + (y — 3k)> = 10 pass through the point (1, 0)?

Ans. k=% ork=-1

Find the standard equations of the circles of radius 2 that are tangent to both the lines x =1 and y = 3.

Ans. (x+ 1)+ (y-1)=4x+1)*+(-52=4x-32+(y—-12=4; x-3)2+(y—-5)*=4

Find the value of k so that x> + y? + 4x — 6y + k = 0 is the equation of a circle of radius 5.

Ans. k=-12

Find the standard equation of the circle having as a diameter the segment joining (2, —3) and (6, 5).

Ans. (x—4)?2+(y—-1)*=20

Find the standard equation of every circle that passes through the origin, has radius 5, and is such that the y
coordinate of its center is —4.

Ans. (x=3Y+(y+4=250r (x+3)>+(y+4)*=25
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14.

15.

16.

17.

18.

19.

20.

21.

22.

Find the standard equation of the circle that passes through the points (8, —5) and (-1, 4) and has its center on the
line 2x + 3y =3.

Ans. (x—3)*+(y+1)*=41

Find the standard equation of the circle with center (3, 5) that is tangent to the line 12x — 5y +2 =0.

Ans. (x=3P2+(y-5P=1

Find the standard equation of the circle that passes through the point (1, 3 + J2) and is tangent to the linex+y =2
at (2, 0).

Ans. (x=5?2+(y—-3)*=18

Prove analytically that an angle inscribed in a semicircle is a right angle. (See Fig. 4-5.)

Find the length of a tangent from (6, —2) to the circle (x — 1)>+ (y — 3)> = 1. (See Fig. 4-6.)

Ans. 7

X x
(=r.0) \

(6,-2)

Fig. 4-5 Fig. 4-6

Find the standard equations of the circles that pass through (2, 3) and are tangent to both the lines 3x — 4y = -1
and 4x + 3y ="17.

) ) 6\ 12
Ans. (x—2) +(y—8) =25 and x_g + y_? =1

Find the standard equations of the circles that have their centers on the line 4x + 3y = 8 and are tangent to both
the lines x + y=-2 and 7x — y = —6.

Ans. (x=1+y*=2and (x+4)>+(y-8)*=18

Find the standard equation of the circle that is concentric with the circle x> + y*> — 2x — 8y + 1 = 0 and is tangent to
the line 2x — y =3.

Ans. (x—12+(y—-4)?*=5

Find the standard equations of the circles that have radius 10 and are tangent to the circle x* + y> = 25 at the point (3, 4).

Ans. (x—9)*+ (y—12)>=100 and (x + 3)* + (y + 4)* = 100
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23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

CHAPTER 4 Circles

Find the longest and shortest distances from the point (7, 12) to the circle x> + y? 4+ 2x + 6y — 15 =0.

Ans. 22 and 12

Let €, and 6, be two intersecting circles determined by the equations x* + y*+ A x + By + C, = 0 and x* + y* +
Ax+ B,y + C,=0. For any number k # —1, show that

X+ +Ax+By+C +k(x*+y*+A,x+B,y+C,)=0

is the equation of a circle through the intersection points of ‘6, and ‘6,. Show, conversely, that every such circle
may be represented by such an equation for a suitable .

Find the standard equation of the circle passing through the point (-3, 1) and containing the points of intersection
of the circles x> + y* + Sx=1and x> + y* + y=T7.

2
Ans. (Use Problem 24.) 2 ( i) _569
(x+1)"+ Y+ 75 100

Find the standard equations of the circles that have centers on the line 5x — 2y = —21 and are tangent to both
coordinate axes.

Ans. (x+7)P+(y+7)P*=49and (x+3)+(y—-3)0=9

(@) Iftwocircles x* +y*+Ax+ By + C, =0and x>+ y*+ A x + B,y + C, = 0 intersect at two points, find an
equation of the line through their points of intersection.

(b) Prove that if two circles intersect at two points, then the line through their points of intersection is
perpendicular to the line through their centers.

Ans. () (A, —A)x+ (B, —B,)y+(C,—C)=0

Find the points of intersection of the circles x> + y? + 8y — 64 =0 and x> + y> — 6x — 16 = 0.

Ans. (8,0)and (%’ %)

Find the equations of the lines through (4, 10) and tangent to the circle x> + y* — 4y — 36 = 0.

Ans. y=-3x+22andx—-3y+26=0

(GC) Use a graphing calculator to draw the circles in Problems 7(d), 10, 14, and 15. (Note: It may be necessary
to solve for y.)

(GC) (a) Use a graphing calculator to shade the interior of the circle with center at the origin and radius 3.
(b) Use a graphing calculator to shade the exterior of the circle x> + (y — 2)*= 1.

(GC) Use a graphing calculator to graph the following inequalities: (a) (x — )2+ y2 < 4; (b) X2+ y? — 6x — 8y > 0.
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Equations and Their Graphs

The Graph of an Equation

The graph of an equation involving x and y as its only variables consists of all points (x, y) satisfying the
equation.

EXAMPLE 5.1: (a) What is the graph of the equation 2x — y = 3?

The equation is equivalent to y = 2x — 3, which we know is the slope—intercept equation of the line with slope 2
and y intercept —3.
(b) What is the graph of the equation x*> + y* — 2x + 4y — 4 =0?

Completing the square shows that the given equation is equivalent to the equation (x — 1)? + (y + 2)> = 9. Hence, its
graph is the circle with center (1, —2) and radius 3.

Parabolas

Consider the equation y = x2. If we substitute a few values for x and calculate the associated values of y, we
obtain the results tabulated in Fig. 5-1. We can plot the corresponding points, as shown in the figure. These
points suggest the heavy curve, which belongs to a family of curves called parabolas. In particular, the
graphs of equations of the form y = cx?, where ¢ is a nonzero constant, are parabolas, as are any other curves
obtained from them by translations and rotations.

Y
— 10
X y L s
3 9 (—x,y) - (x,y)
2 4 6
1 1 -
0 0 L 4
_1 1 -
-2 4 - 2
-3 9 N
D W W T { Ll L1 X
-3 -2 -1 (o} 2
Fig. 5-1

In Fig. 5-1, we note that the graph of y = x* contains the origin (0, 0) but all its other points lie above the
X axis, since x? is positive except when x = 0. When x is positive and increasing, y increases without bound.
Hence, in the first quadrant, the graph moves up without bound as it moves right. Since (—x)* = x?, it follows
that, if any point (x, y) lies on the graph in the first quadrant, then the point (—x, y) also lies on the graph in
the second quadrant. Thus, the graph is symmetric with respect to the y axis. The y axis is called the axis of
symmetry of this parabola.
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Ellipses

2 2
To construct the graph of the equation -5+ Y - 1, we again compute a few values and plot the correspond-
ing points, as shown in Fig. 5-2. The graph suggested by these points is also drawn in the flgure 1t isa

member of a family of curves called ellipses. In particular, the graph of an equation of the form Z—z =1
is an ellipse, as is any curve obtained from it by translation or rotation. 2 2
Note that, in contrast to parabolas, ellipses are bounded. In fact, if (x, y) is on the graph of 9 y4 =1, then
2 2 2
R S A 1, and, therefore, x2 < 9. Hence, —3 < x < 3. So, the graph lies between the vertical lines x = -3

and x = 3. Its rightmost point is (3, 0), and its leftmost point is (=3, 0). A similar argument shows that the
graph lies between the horizontal lines y = -2 and y =2, and that its lowest point is (0, —2) and its highest point
is (0, 2). In the first quadrant, as x increases from 0 to 3, y decreases from 2 to 0. If (x, y) is any point on the
graph, then (—x, y) also is on the graph. Hence, the graph is symmetric with respect to the y axis. Similarly, if
(x, y) is on the graph, so is (x, —y), and therefore the graph is symmetric with respect to the x axis.

3 0 3
+2 =
2 _iv—s +1.5 (=1, ) L . y)
1 +3V2==+19 . L
0 *2 -3 -2 -1 0 1 2 3 x
-1 i%\/f ik (x,~»)
-2 =43
-3 0 -2
Fig. 5-2
2 2

When a = b, the ellipse — + ZZ =1 is the circle with the equation x? + y> = ¢, that is, a circle with center
at the origin and radius a. Thus, circles are special cases of ellipses.

Hyperbolas

2 2
Consider the graph of the equation % - yT =1. Some of the points on this graph are tabulated and plotted in

Fig. 5-3. These points suggest the curve shown in the2 figurze, which is a member of a family of curves called

=1 are hyperbolas, as are any curves obtained

hyperbolas. The graphs of equations of the form % - %

from them by translations and rotations.

¥
x Vv
*3 0
4 |£3VI==176
5 +$=~+267 >
+6 +2V3=+3.46 ,
-2
~
Fig. 53
x2 y2 xZ y2
Let us look at the hyperbola o F= 1 in more detail. Since o= =1+ T > 1, it follows that x>>9, and

therefore, lxl = 3. Hence, there are no points on the graph between the vertical lines x = -3 and x = 3. If (x, y)
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is on the graph, so is (—x, y); thus, the graph is symmetric with respect to the y axis. Similarly, the graph is
symmetric with respect to the x axis. In the first quadrant, as x increases, y increases without bound.

Fig. 5-4

Note the dashed lines in Fig. 5-3; they are the lines y =% x and y=—%x, and they are called the asymp-
totes of the hyperbola: Points on the hyperbola get closer and closer to these asymptotes as they recede from
2 2
the origin. In general, the asymptotes of the hyperbola % - z—Z =1 are the lines y = 2" and y= -4
Conic Sections
Parabolas, ellipses, and hyperbolas together make up a class of curves called conic sections. They can be
defined geometrically as the intersections of planes with the surface of a right circular cone, as shown in

Fig. 5-4.

SOLVED PROBLEMS

1. Sketch the graph of the cubic curve y = x3.

The graph passes through the origin (0, 0). Also, for any point (x, y) on the graph, x and y have the same sign;
hence, the graph lies in the first and third quadrants. In the first quadrant, as x increases, y increases without
bound. Moreover, if (x, y) lies on the graph, then (—x, —y) also lies on the graph. Since the origin is the midpoint
of the segment connecting the points (x, y) and (—x, —y), the graph is symmetric with respect to the origin. Some
points on the graph are tabulated and shown in Fig. 5-5; these points suggest the heavy curve in the figure.

x y

0 0
172 1/8

1 1
3/2 27/8

2 8
—-1/2 -1/8
-1 -1
-3/2 —27/8
-2 -8

Fig. 5-5
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Sketch the graph of the equation y = —x2.

If (x, y) is on the graph of the parabola y = x? (Fig. 5-1), then (x, —y) is on the graph of y = —x2, and vice
versa. Hence, the graph of y = —x? is the reflection in the x axis of the graph of y = x2. The result is the parabola
in Fig. 5-6.

Sketch the graph of x = y2.
This graph is obtained from the parabola y = x> by exchanging the roles of x and y. The resulting curve is a
parabola with the x axis as its axis of symmetry and its “nose” at the origin (see Fig. 5-7). A point (x, y) is on

the graph of x = y? if and only if (y, x) is on the graph of y = x2. Since the segment connecting the points (x, y)
x+y x+y

2 2
is on the line y = x (see Fig. 5-8), the parabola x = y? is obtained from the parabola y = x? by reflection in the

and (y, x) is perpendicular to the diagonal line y = x (why?), and the midpoint

of that segment

line y = x.
y
-3 -2 -1 0 1 2 3
T 1 L x
—-1
— -2
-3
~ -4
—-s
— -6
- -7
- -8
-9
Fig. 5-6
y y
.(X. y)
T \
2 | N
'L \
I} 1 L 1 1 I L 1 { X
1 2 3 4 5 6 7 8 9 ®(y, x)
ok
_3 —
Fig. 5-7
Fig. 5-8

Let & be a line, and let F be a point not on &£. Show that the set of all points equidistant from F and & is a
parabola.

Construct a coordinate system such that F lies on the positive y axis, and the x axis is parallel to & and
halfway between F and &. (See Fig. 5-9.) Let 2p be the distance between F and &. Then & has the equation y = —p,
and the coordinates of F are (0, p).

sap.nedjamiat.org


sap.nedjamiat.org

CHAPTER 5 Equations and Their Graphs

Consider an arbitrary point P(x, y). Its distance from & is ly + pl, and its distance from F is m .
Thus, for the point to be equidistant from F and &£, we must have ly + pl = /x> + (y — p)* . Squaring yields
(y+p)?=x2+ (y —p)?, from which we find that 4py = x2. This is the equation of a parabola with the y axis as its
axis of symmetry. The point F is called the focus of the parabola, and the line & is called its directrix. The chord
AB through the focus and parallel to & is called the latus rectum. The “nose” of the parabola at (0, 0) is called its
vertex.

Plx. y)

Fig. 5-9

5. Find the length of the latus rectum of a parabola 4py = x.
The y coordinate of the endpoints A and B of the lactus rectum (see Fig. 5-9) is p. Hence, at these points, 4p? = x*
and, therefore, x = +2p. Thus, the length AB of the latus rectum is 4p.

6. Find the focus, directrix, and the length of the latus rectum of the parabola y=+x? and draw its graph.
The equation of the parabola can be written as 2y = x?. Hence, 4p =2 and p=+. Therefore, the focus is
at (0, ), the equation of the directix is y=—1%, and the length of the latus rectum is 2. The graph is shown in
Fig. 5-10.

Y
4 -
3
> L
] =
F
A B
! | ) 1 ] 1 X
-3 -2 -1 1 2 3
Fig. 5-10

7. LetFand F’ be two distinct points at a distance 2¢ from each other. Show that the set of all points P(x, y) such
that PF + PF’ =2a, a > c is an ellipse.
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Construct a coordinate system such that the x axis passes through F and F”, the origin is the midpoint of the
segment FF’, and F lies on the positive x axis. Then the coordinates of F and F” are (c, 0) and (—c, 0).

B(0, b)

P(x, y)
f\. X
A e O)QO‘ F(c,0) / A(a,0)

B'(0, —b)

Fig. 5-11

(See Fig. 5-11.) Thus, the condition PF + PF’=2a is equivalent to \/(x -’ +y* + \/(x +¢)* +y? =2a.
After rearranging and squaring twice (to eliminate the square roots) and performing indicated operations, we
obtain

(@®—cA)x* +a*y* = a*(a®> - c?) (D

Since a > ¢, a* — ¢*> 0. Let b=+/a®> — ¢*. Then (1) becomes b?x? + a?y> = a*b?, which we may rewrite as

x2 2
ex + e 1, the equation of an ellipse.

When y = 0, x> = a%; hence, the ellipse intersects the x axis at the points A’(—a, 0), and A(a, 0), called the
vertices of the ellipse (Fig. 5-11). The segment A’A is called the major axis; the segment OA is called the
semimajor axis and has length a. The origin is the center of the ellipse. F and F” are called the foci (each is
a focus). When x = 0, y> = b2 Hence, the ellipse intersects the y axis at the points B’(0, —b) and B(0, b). The
segment B’B is called the minor axis; the segment OB is called the semiminor axis and has length b. Note that
b=va? - ¢* <+Ja* = a. Hence, the semiminor axis is smaller than the semimajor axis. The basic relation among
a,b,and cis a®> = b*+ %

The eccentricity of an ellipse is defined to be e = c¢/a. Note that 0 < e < 1. Moreover, e = Ja? =b?la= \/ 1-(bla)*.
Hence, when e is very small, b/a is very close to 1, the minor axis is close in size to the major axis, and the ellipse
is close to being a circle. On the other hand, when e is close to 1, b/a is close to zero, the minor axis is very small in
comparison with the major axis, and the ellipse is very “flat.”

Identify the graph of the equation 9x? + 16y* = 144.
The given equation is equivalent to x/16 + y?/9 = 1. Hence, the graph is an ellipse with semimajor axis
of length a = 4 and semiminor axis of length b = 3. (See Fig. 5-12.) The vertices are (—4, 0) and (4, 0). Since

c=+Ja*—b? =J16 -9 =+/7, the eccentricity e is ¢/a = J774=0.6614.

Identify the graph of the equation 25x> + 4y? = 100.

The given equation is equivalent to x*/4 + y?/25 = 1, an ellipse. Since the denominator under y? is larger
than the denominator under x2, the graph is an ellipse with the major axis on the y axis and the minor axis on
the x axis (see Fig. 5-13). The vertices are at (0, —=5) and (0, 5). Since ¢ = Ja? —b? =21, the eccentricity is
V21/5=0.9165.
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10.

Fig. 5-12 Fig. 5-13

Let F and F” be distinct points at a distance of 2¢ from each other. Find the set of all points P(x, y) such that
|P_F—W =2a,fora<c.

Choose a coordinate system such that the x axis passes through F and F’, with the origin as the midpoint of
the segment FF” and with F on the positive x axis (see Fig. 5-14). The coordinates of F and F” are (c, 0) and
(—c, 0). Hence, the given condition is equivalent to \/(x - +y - \/(x +¢)* + y* =22a. After manipulations
required to eliminate the square roots, this yields

(¢ —a®)x* —a?y* =a*(c? — a?) 1)

Since ¢ > a, ¢? —Za2 >20. Let b=+/c* — a*. (Notice that a®> + b*> = ¢%.) Then (1) becomes b*x* — a*y* = a*b?, which
X
we rewrite as 7 7 = 1, the equation of a hyperbola.

When y = 0, x = +a. Hence, the hyperbola intersects the x axis at the points A’(-a, 0) and A(a, 0), which are
called the vertices of the hyperbola. The asymptotes are y= i%x. The segment A’A is called the fransverse axis.
The segment connecting the points (0, —b) and (0, b) is called the conjugate axis. The center of the hyperbola is
c _Nat+b* 1+(b ?

the origin. The points F and F” are called the foci. The eccentricity is defined to be ¢ = = 7
Since ¢ >a, e > 1. When e is close to 1, b is very small relative to a, and the hyperbola has a very pointed “nose”;

when e is very large, b is very large relative to a, and the hyperbola is very “flat.”

Fig. 5-14
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11. Identify the graph of the equation 25x? — 16y* = 400.
The given equation is equivalent to x/16 — y?/25 = 1. This is the equation of a hyperbola with the x axis as its
transverse axis, vertices (—4, 0) and (4, 0), and asymptotes y =+3 x. (See Fig. 5.15.)

Fig. 5-15

12. Identify the graph of the equation y* — 4x§ = 4.2

The given equation is equivalent to yT —2_ =1, Thisis the equation of a hyperbola, with the roles of x and

y interchanged. Thus, the transverse axis is the y axis, the conjugate axis is the x axis, and the vertices are (0, —2)
and (0, 2). The asymptotes are x =+ y or, equivalently, y = +2x. (See Fig. 5-16.)

13. Identify the graph of the equation y = (x — 1)
A point (u, v) is on the graph of y = (x — 1)? if and only if the point (z — 1, v) is on the graph of y = x%. Hence,
the desired graph is obtained from the parabola y = x* by moving each point of the latter one unit to the right.
(See Fig. 5-17.)

-1 (=2 _

14. Identify the graph of the equation + ( 1.
A point (u, v) is on the graph if and only if the point (u — 1, v — 2) is on the graph of the equation x%/4 + y%/9 = 1.
Hence, the desired graph is obtained by moving the ellipse x%/4 + y*/9 = 1 one unit to the right and two units
upward. (See Fig. 5-18.) The center of the ellipse is at (1, 2), the major axis is along the line x = 1, and the minor
axis is along the line y = 2.

Fig. 5-16
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(1,5)

(-1,2) (1,2) 3.2)

(I,-1

Fig. 518

Fig. 5-17

15. How is the graph of an equation F(x — a, y — b) = 0 related to the graph of the equation F(x, y) =07?
A point (u, v) is on the graph of F(x — a, y — b) =0 if and only if the point (u — a, v — b) is on the graph of
F(x, y) =0. Hence, the graph of F(x — a, y — b) = 0 is obtained by moving each point of the graph of F(x, y) =0
by a units to the right and b units upward. (If a is negative, we move the point lal units to the left. If b is negative,
we move the point |l units downward.) Such a motion is called a translation.

16. Identify the graph of the equation y = x? — 2x.

Competing the square in x, we obtain y + 1 = (x — 1)?. Based on the results of Problem 15, the graph is

obtained by a translation of the parabola y = x? so that the new vertex is (1, —1). [Notice that y + 1 is y — (-=1).] It
is shown in Fig. 5-19.

Fig. 5-19
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17. Identify the graph of 4x> — 9y? — 16x + 18y — 29 =0.

18.

Factoring yields 4(x? — 4x) — 9(y* — 2y) — 29 =0, and then completing the square in x and y produces

)2 1\
4(x =27 = 9(y — 1 = 36. Dividing by 36 then yields - 92) _U 41)

2 2
graph of this equation is obtained by translating the hyperbola % — yT =1 two units to the right and one unit

upward, so that the new center of symmetry of the hyperbola is (2, 1). (See Fig. 5-20.)

=1. By the results of Problem 15, the

Draw the graph of the equation xy = 1.

Some points of the graph are tabulated and plotted in Fig. 5-21. The curve suggested by these points is shown
dashed as well. It can be demonstrated that this curve is a hyperbola with the line y = x as transverse axis, the line
y = —x as converse axis, vertices (—1, —1) and (1, 1), and the x axis and y axis as asymptotes. Similarly, the graph
of any equation xy = d, where d is a positive constant, is a hyperbola with y = x as transverse axis and y = —x as

converse axis, and with the coordinate axes as asymptotes. Such hyperbolas are called equilateral hyperbolas.
They can be shown to be rotations of hyperbolas of the form x%/a? — y*/a® = 1.

y
~ 7~
AN rd
~ //
~ 7~
< 7
~ e
s
)
- ~
e N x
- ~
- ~
- ~
e ~
s ~
v ~
Fig. 5-20
y
(
ot
1
x y 3_;
3 1/3 \\
2 1/2 2} §
1 1 \\
1/2 2 %
1/3 3 N~
-4 -3 -2 -1 ~————
1/4 4 1 | 1 ] ] I tT---- x
-u4 | -4 TTTTS *~eal o
-1/3 -3 “n L,
_ _ \
1/2 2 \
-1 -1 S
-2 -1/2 \|
-3 -1/3 Vs
\
1
¢ -4
]
Fig. 5-21
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SUPPLEMENTARY PROBLEMS

19.

20.

21.

22,

23.

24.

25.

26.

(a) On the same sheet of paper, draw the graphs of the following parabolas:

i) y=2x4 (i) y=3x4 (i) y = 4%
(iv) y=3x% (V) y=%x%
(b) (GC) Use a graphing calculator to check your answers to (a).

(a) On the same sheet of paper, draw the graphs of the following parabolas and indicate points of intersection:
i y=x% (i) y=-x% (iii) x = y*

(iv) x=—-y%
(b) (GC) Use a graphing calculator to check your answers to (a).

Draw the graphs of the following equations:

(@ y=x'-1 (b) y=(x-2y © y=@x+17>-2
(d y=-x e y=-(x-1y ) y=-(x-1y+2

(GC) Use a graphing calculator to answer Problem 21.

Identify and draw the graphs of the following equations:

(@) y-x’= (b) 25x%+ 36y =900 ) 2xX—y*=4
d xy=4 () 4 +4y’=1 (f) 8x=y?

(&) 10y=x (h) 4x°+9y>=16 (i) xy=-1
() 3y -x=9

Ans. (a) hyperbola, y axis as transverse axis, vertices (0, 1), asymptotes y = +x; (b) ellipse, vertices (+6, 0)
foci (i\/ﬁ ,0); (c) hyperbola, x axis as transverse axis, vertices (i\/f ,0), asymptotes y = ixﬁx;
(d) hyperbola, y = x as transverse axis, vertices (2, 2) and (-2, —2), x and y axes as asymptotes; (e) circle,
center (0, 0), radius ; () parabola, vertex (0, 0), focus (2, 0), directrix x = —2; (g) parabola, vertex (0, 0),
focus (0, 3), directrix y = -3, (h) ellipse, vertices (+2, 0), foci (i%\/g ,0); (1) hyperbola, y = —x as transverse
axis, vertices (—1, 1) and (1, —1), x and y axes as asymptotes; (j) hyperbola, y axis as transverse axis, vertices
(0, £/3), asymptotes y = +x3x/3

(GC) Use a graphing calculator to draw the graphs in Problem 23.

Identify and draw the graphs of the following equations:

(a) 4x?-3y>+8x+12y—-4=0 (b) 5x2+y*=20x+6y+25=0 (¢) ¥*-6x—-4y+5=0

d) 22+ —4x+4y+6=0 (€ 3+2y2+12x—dy+15=0 ) (x-D(y+2)=1

(g) xy-3x-2y+5=0[Hint: Compare (f).] (h) 4x2+y*+8x+4y+4=0
(i) 222-8x-y+11=0 (j) 25x%+16y* — 100x — 32y —284=0

Ans. (a) empty graph; (b) ellipse, center at (2, —3); (c) parabola, vertex at (3, —1); (d) single point (1, =2);
(e) empty graph; (f) hyperbola, center at (1, —2); (g) hyperbola, center at (2, 3); (h) ellipse, center at
(-1, 2); (i) parabola, vertex at (2, 3); (j) ellipse, center at (2, 1)

(GC) Use a graphing calculator to draw the graphs in Problem 25.
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27.

28.

29.

30.

31.

32.

33.

CHAPTER 5 Equations and Their Graphs

Find the focus, directrix, and length of the latus rectum of the following parabolas: (a) 10x? = 3y; (b) 2y* =
(©)dy=x*+4x+38; (d) 8y =—x*

Ans. (a) focus at (0, 45), directrix y = —;, latus rectum 3; (b) focus at (3,0), directrix x = — 3, latus rectum 3;
(c) focus at (-2, 2), directrix y = 0, latus rectum 4; (d) focus at (0, —2), directrix y =2, latus rectum 8

Find an equation for each parabola satisfying the following conditions:

(a) Focus at (0, —3), directrix y =3 (b) Focus at (6, 0), directrix x =2

(c) Focus at (1, 4), directrix y =0 (d) Vertex at (1, 2), focus at (1, 4)

(e) Vertex at (3, 0), directrix x =1

(f) Vertex at the origin, y axis as axis of symmetry, contains the point (3, 18)

(g) Vertex at (3, 5), axis of symmetry parallel to the y axis, contains the point (5, 7)

(h) Axis of symmetry parallel to the x axis, contains the points (0, 1), (3, 2), (1, 3)

(i) Latus rectum is the segment joining (2, 4) and (6, 4), contains the point (8, 1)

(j) Contains the points (1, 10) and (2, 4), axis of symmetry is vertical, vertex is on the line 4x — 3y =6

Ans. (@) 12y == (0) 8(x = 4) =% () 8(y = 2) = (v = 1) (d) 8(y = 2) = (x = 1)’ () 8(x = 3) = %
(F)y =205 () 20y = 5) = (=37 () 2(x =) ==5(y =)’ ) 4y = 5) = ~(x = 4%
(Dy-2=2(x-3)or y—4=26(x—-24Y

Find an equation for each ellipse satisfying the following conditions:

(a) Center at the origin, one focus at (0, 5), length of semimajor axis is 13

(b) Center at the origin, major axis on the y axis, contains the points (1, 23 ) and (4, J15 )
(c) Center at (2, 4), focus at (7, 4), contains the point (5, 8)

(d) Center at (0, 1), one vertex at (6, 1), eccentricity %

(e) Fociat (0, +4), contains (£, 1)

() Foci (0, £9), semiminor axis of length 12

X2y y _ (x 2) -4 . x (-DF L W

Ans. (a)m 169 1 (b) 4 _6 1 () +2—0—1,(d)%+2—0—1,(e)x +2—5—1,
x2 y2 B
O Tzt =1

Find an equation for each hyperbola satisfying the following conditions:

(a) Center at the origin, transverse axis the x axis, contains the points (6, 4) and (-3, 1)
(b) Center at the origin, one vertex at (3, 0), one asymptote is y=%x
(c) Has asymptotes y= +./2x, contains the point (1, 2)
(d) Center at the origin, one focus at (4, 0), one vertex at (3, 0)
2 xZ x2 y2

52y . Y e Yy _
Ans. (a) y—f—l,(b) ?_T_l’(c) 7—)6 —1,(d) ?—7—1

Find an equation of the hyperbola consisting of all points P(x, y) such that IPF — PF’|=2/2, where F = W2,42)
and F’ = (—/2,-/2).

Ans. xy=1

2

2
(GC) Use a graphing calculator to draw the hyperbola % - yT =1 and its asymptotes y =+ x.

(GC) Use a graphing calculator to draw the ellipses x2 + 4y> =1 and (x — 3)*> + 4(y — 2)* = 1. How is the latter
graph obtained from the former one?
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CHAPTER 6

Functions

We say that a quantity y is a function of some other quantity x if the value of y is determined by the value of x.
If f denotes the function, then we indicate the dependence of y on x by means of the formula y = f (x). The letter
x is called the independent variable, and the letter y is called the dependent variable. The independent variable
is also called the argument of the function, and the dependent variable is called the value of the function.

For example, the area A of a square is a function of the length s of a side of the square, and that function can
be expressed by the formula A = s°. Here, s is the independent variable and A is the dependent variable.

The domain of a function is the set of numbers to which the function can be applied, that is, the set of
numbers that are assigned to the independent variable. The range of a function is the set of numbers that the
function associates with the numbers in the domain.

EXAMPLE 6.1: The formula f (x) = x* determines a function f that assigns to each real number x its square. The do-
main consists of all real numbers. The range can be seen to consist of all nonnegative real numbers. (In fact, each value
x%is nonnegative. Conversely, if r is any nonnegative real number, then r appears as a value when the function is applied

to \/r, since r = (\/r)2.)

EXAMPLE 6.2: Let g be the function defined by the formula g(x) = x> — 4x + 2 for all real numbers. Thus,
g=1)2 -4 +2=1-4+2=—1
and
g(-2)=(-2)*-4(2)+2=4+8+2=14

Also, for any number a, gla+ 1)=(a+1)*-4(a+ 1)+2=a*>+2a+1-4a-4+2=a>-2a—- 1.

EXAMPLE 6.3: (a) Let the function /(x) = 18x — 3x? be defined for all real numbers x. Thus, the domain is the set of
all real numbers. (b) Let the area A of a certain rectangle, one of whose sides has length x, be given by A = 18x — 3x2.
Both x and A must be positive. Now, by completing the square, we obtain

A=-3(x* —6x)=-3[(x-3)* —9]=27 - 3(x—3)*

Since A >0, 3(x —3)>< 27, (x —3)><9, Ix — 31 < 3. Hence, -3 < x — 3 < 3, 0 < x < 6. Thus, the function determin-
ing A has the open interval (0, 6) as its domain. The graph of A =27 — 3(x — 3)* is the parabola shown in Fig. 6-1.
From the graph, we see that the range of the function is the half-open interval (0, 27).

Notice that the function of part (b) is given by the same formula as the function of part (a), but the domain of the
former is a proper subset of the domain of the latter.

Copyright © 2009, 1999, 1990, 1962 by The McGraw-H@gﬁpﬂ@ﬁmmifﬁﬁrefpgerms of use.
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CHAPTER 6 Functions

27k

Fig. 6-1

The graph of a function f'is defined to be the graph of the equation y = f(x).

EXAMPLE 6.4: (a) Consider the function f{x) = Ixl. Its graph is the graph of the equation y = Ixl, and is indicated in
Fig. 6-2. Notice that f (x) = x when x = 0, whereas f (x) = —x when x < 0. The domain of f consists of all real numbers.
(In general, if a function is given by means of a formula, then, if nothing is said to the contrary, we shall assume that the
domain consists of all numbers for which the formula is defined.) From the graph in Fig. 6-2, we see that the range of
the function consists of all nonnegative real numbers. (In general, the range of a function is the set of y coordinates of
all points in the graph of the function.) (b) The formula g(x) = 2x + 3 defines a function g. The graph of this function is
the graph of the equation y = 2x + 3, which is the straight line with slope 2 and y intercept 3. The set of all real numbers
is both the domain and range of g.

7
-+

Fig. 6-2

EXAMPLE 6.5: Let a function g be defined as follows:

x? if2<x<4
gx)=
x+1 ifl<x<?2

A function defined in this way is said to be defined by cases. Notice that the domain of g is the closed interval [1, 4].

In a rigorous development of mathematics, a function f'is defined to be a set of ordered pairs such that, if
(x, y) and (x, z) are in the set f, then y = z. However, such a definition obscures the intuitive meaning of the
notion of function.
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CHAPTER 6 Functions

SOLVED PROBLEMS

-1
1. Given f(x)= h find (a) £ (0); (b) f (=1); (¢) f (2a); (d) f (1/x); () f (x + h).
0-1 1 -1-1 2 2a—1
@ fO)=577="3 b) fD=g5="3 (©) f(za)zm
Ix-1 x—x* x+h-1 x+h-1
@ =g m=te © Ty T o i 12
2. Iff(x)=2% show that (a) f(x+3)— f(x— 1) =4 f(x) and (b) ]}igt?; = f(4).
r 2x+3
(@) fOr+3)- flx-1=2" =27 =212~ H= 5 f(v) 0 FE =S =2 =)
3. Determine the domains of the functions
(@ y=v4-x’ (b) y=+x*-16 © y=x12
1 X
@ =53 © y=wi7

(a) Since y must be real, 4 — x> > 0, or x> < 4. The domain is the interval =2 < x < 2.
(b) Here, x> — 16 >0, or x> > 16. The domain consists of the intervals x < —4 and x > 4.
(c) The function is defined for every value of x except 2.

(d) The function is defined for x # +3.

(e) Since x>+ 4 # 0 for all x, the domain is the set of all real numbers.

4. Sketch the graph of the function defined as follows:
f(x)=5when0<x<1 f(x)=10whenl<x<2
f(x)=15when2<x<3 f(x)=20when3<x<4 etc.
Determine the domain and range of the function.

The graph is shown in Fig. 6-3. The domain is the set of all positive real numbers, and the range is the set of
integers, 5, 10, 15, 20, . . ..

y
25 Q= — —
20 [0
15 | or—
10 |- [0 e ——
§ Qe

1 1 ) ! 1 x

o] 1 2 3 4 5

Fig. 63

5. Arectangular plot requires 2000 ft of fencing to enclose it. If one of its dimensions is x (in feet), express its area
y (in square feet) as a function of x, and determine the domain of the function.
Since one dimension is x, the other is +(2000 — 2x) = 1000 — x. The area is then y = x(1000 — x), and the
domain of this function is 0 < x < 1000.

6. Express the length / of a chord of a circle of radius 8 as a function of its distance x from the center of the circle.
Determine the domain of the function.
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From Fig. 6-4 we see that $/=+/64 —x?, so that [ =264 — x>. The domain is the interval 0 < x < 8.

/I
/

Fig. 6-4

From each corner of a square of tin, 12 inches on a side, small squares of side x (in inches) are removed, and
the edges are turned up to form an open box (Fig. 6-5). Express the volume V of the box (in cubic inches) as a
function of x, and determine the domain of the function.

Fig. 6-5

The box has a square base of side 12 — 2x and a height of x. The volume of the box is then V=x(12 — 2x)* =
4x(6 — x)>. The domain is the interval 0 < x < 6.

As x increases over its domain, V increases for a time and then decreases thereafter. Thus, among such boxes
that may be constructed, there is one of greatest volume, say M. To determine M, it is necessary to locate the
precise value of x at which V ceases to increase. This problem will be studied in a later chapter.

If f (x) = x* + 2x, find w and interpret the result.

=2a+2+h

fla+h)—f(a) [(a+h)*+2a+h)]-(a*+2a)
h B h

On the graph of the function (Fig. 6-6), locate points P and Q whose respective abscissas are a and a + h.
The ordinate of P is f{a), and that of Q is fla + h). Then

fla+h)— f(a) difference of ordinates

h ~ difference of abscissas

= slope of PQ

Qlath,flat+h}

A ke f(a+h) — f(a)
\ ( z
P(a,i(a))-'v
[~

Fig. 6-6
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9.

10.

Letf (1) = = 2x + 3. Bvaluate (2) £ (3); (0)f (=3); () (=): () (x +2): (@) f (¢ =2); (Df (x + h): () f (6 + ) -
F@: (y LatD =)
I

(@ f(3)=3-23)+3=9-6+3=6

(b) f(-3)=(-3>-2(-3)+3=9+6+3=18

©) f(x)=(=x)?=-2(-x)+3=x*+2x+3

d fx+2)=x+2)>-2x+2)+3=x>+4x+4-2x-4+3=x>+2x+3

€ fx=-2)=(x=-2-2(x=-2)+3=x"—4x+4-2x+4+3=x>-6x+ 11

) fx+h)=x+h?>=-2x+h)+3=x>+2hx+h*-2x-2h+3=x>+ (2h - 2)x+ (h* = 2h + 3)

@ fx+h)—f(X)-[*+Q2h=2)x+(h*=2h+3)] - (2 =2x+3)=2hx+ " —2h=hQx+h-2)

(h) f(x+h)—f(x)=h(2x+h—2)
h

7 =2x+h-2

Draw the graph of the function f(x)=+/4 — x?, and find the domain and range of the function.

The graph of fis the graph of the equation y=+/4 — x?. For points on this graph, y* = 4 — x?; that is, x> + y* = 4.
The graph of the last equation is the circle with center at the origin and radius 2. Since y =~/4 — x* 20, the
desired graph is the upper half of that circle. Fig. 6-7 shows that the domain is the interval -2 < x <2, and the
range is the interval 0 <y < 2.

Fig. 6-7

SUPPLEMENTARY PROBLEMS

11.

12.

13.

14.

15.

If f (x) = x* — 4x + 6, find (a) £ (0); (b) £ (3); (¢) f (=2). Show that f(3) = f(Z) and f (2 — h) =f (2 + h).
Ans.  (a)—6;(b) 3; (c) 18

_ (1 1 1
If f(x)= %, find (a) £ (0); (b) £ (1); (c) f (=2). Show that f(;) =—f(x) and f(—;)z T

Ans. (a)—1;(b)0; (c) 3

If f (x) = x2 — x, show that f (x + 1) = f (—x).

If f (x) = 1/x, show that f(a)— f(b)= f( b“_ba )

5); 3 show that x =f(y).

Ify=f=7—"3
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16. Determine the domain of each of the following functions:

(@) y=x>+4 (b) y=Jx2+4 (©) y=~/x’-4 (d) y:xi3
2x 1 . S

X
(e) y=6:3iyrﬁ (f) y=J6rP» (€9) y:x2+1 (h) y= PR
Ans. (a), (b), (g) all values of x; (¢) IxI 22; () x#=-3; () x#=—-1,2; (f) -3<x<3;(h)0<x<?2

17. Compute w in the following cases:
(a) f(x)zﬁwhenaiZanda+h¢2
(b) f(x)=+vx—4 whena=>4anda+h=4

(© f(x)=%whena¢—l anda+h#-1

1

Ans. @) Gy ® Toraedog © Gib@r e D

18. Draw the graphs of the following functions, and find their domains and ranges:

x—1 if0<x<l1
— 42 —
(@ f=-+1 (b) f(x) - e
(c) f(x)=[x] = the greatest integer less than or equal to x
2 _
@ fw=24 © f@=5-2 ) f@=—4x
(g f)=Ix-3l (h) f(x)=4/x @ fx)=Ixl/x
X ifx>0
(G) f)=x-1I k) JSO= 5 £x <0

Ans. (a) domain, all numbers; range, y <1
(b) domain, x > 0; range, -1<y<QOory=2
(c) domain, all numbers; range, all integers
(d) domain, x #2; range, y #4
(e) domain, all numbers; range, y <5
(f) domain, x = 0; range, y <0
(g) domain, all numbers; range, y =0
(h) domain, x # 0; range, y #0
(i) domain, x # 0; range, {—1, 1}
(j) domain, all numbers; range, y <0
(k) domain, all numbers; range, y =0

19. (GC) Use a graphing calculator to verify your answers to Problem 18.

20. Evaluate the expression w for the following functions f:

(@ f)=3x-x ® f)=2x
© f@)=3x-5 ) f=x-2
2

Ans. (a)3-2x-h ()3 (d) 3x2+3xh + k2

®) L2+ h) +2x

21. Find a formula for the function f whose graph consists of all points satisfying each of the following equations.
(In plain language, solve each equation for y.)

(@ xy+4x-2=0 (b) xzi%i (©) 4’ —4xy+y*=0
2-4 2(x—1
ans. @ £0=2"2 ) f0 =" 0 p =2
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22. Graph the following functions and find their domain and range:

x+2 if-1<x<0 2—x if0<x<?2 x*—4 I
(b) gx)= © hx)=1x-2

X if0<x<l1 x—1 if3<x<4 4 ifx=2

(a) f(X)={

Ans. (a) domain = (-1, 1], range = [0, 2)
(b) domain = union of (0, 2) and [3, 4), range = (0, 3)
(c) domain and range = set of all real numbers

23. (GC) Verity your answers to Problem 22 by means of a graphing calculator.

24. In each of the following cases, define a function that has the given set & as its domain and the given set R as its
range: (a) @ =(0,2) and R = (1,7); (b) D =(0, 1) and R = (1, o0).

1
1-x

Ans. (a) One such function is f (x) = 3x + 1. (b) One such function is f(x)=

25. (a) Prove the vertical line test: A set of points in the xy plane is the graph of a function if and only if the set
intersects every vertical line in at most one point.

(b) Determine whether each set of points in Fig. 6-8 is the graph of a function.

Ans. Only (b) is the graph of a function.

[
\_+/

(a) (b)

(©) (d
Fig. 68
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Limits

Limit of a Function
If fis a function, then we say:

A is the limit of f(x) as x approaches a

if the value of f(x) gets arbitrarily close to A as x approaches a. This is written in mathematical notation as:
lim f(x) = A
xX—a

For example, lim x? = 9, since x* gets arbitrarily close to 9 as x approaches as close as one wishes to 3. The
definition of im' f(x)=A was stated above in ordinary language. The definition can be stated in more precise
mathematicalxl_ﬁ(hguage as follows: lim f(x) = A if and only if, for any given positive number €, however
small, there exists a positive number o such that, whenever 0 < |x — | < §, then [f(x) — A| < €.

The gist of the definition is illustrated in Fig. 7-1. After € has been chosen [that is, after interval (ii)
has been chosen], then 6 can be found [that is, interval (i) can be determined] so that, whenever x # a is
on interval (i), say at x,, then f(x) is on interval (ii), at f(x ). Notice the important fact that whether or not
liil(} f(x)=A is true does not depend upon the value of f(x) when x = a. In fact, f(x) need not even be defined

when x = a.
Xo f(xo)
O- O O x —0 +—t Oo— f(x)
a—=a a a+é A—¢€ A A+te
(i) (i)
Fig. 7-1
2 _
EXAMPLE 7.1: lim ’;2 _24 =4, although ); 24 is not defined when x = 2. Since
x—2 - -

x2—-4_(x-2)x+2) _
x=-2 " x—=2 =x+2

x*—4
2

2
we see that =——~ approaches 4 as x approaches 2.

x
EXAMPLE 7.2: Letus use the precise definition to show that lim (4x — 5) = 3. Let €> 0 be chosen. We must produce
x—-2

some &> 0 such that, whenever 0 < |x — 2|< §, then |(4x—5)—-3|<e.
First we note that |[(4x — 5) — 3| = |[4x — 8| = 4|x - 2|.
If we take 8 to be € /4, then, whenever 0 < [x—2| < 0, |[(4x—5)-3|=4x-2|<4d=€.

Copyright © 2009, 1999, 1990, 1962 by The McGraw-H@gﬂpﬂ@ﬁmmifﬁﬁrefpgerms of use.
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CHAPTER 7 Limits

Right and Left Limits

Next we want to talk about one-sided limits of f(x) as x approaches a from the right-hand side or from the

left-hand side. By lim f(x) =A we mean that f'is defined in some open interval (¢, a) and f(x) approaches A
as x approaches a through values less than a, that is, as x approaches a from the left. Similarly, hm fx)=A
means that fis defined in some open interval (a, d) and f(x) approaches A as x approaches a from the right.
If f is defined in an interval to the left of @ and in an interval to the right of a, then the statement hm Jx)=Ais
equivalent to the conjunction of the two statements hm f(x)=Aand hm f(x)=A. We shall see by examples
below that the existence of the limit from the left does not imply the ex1stence of the limit from the right, and

conversely.
When a function is defined only on one side of a point a, then we shall identify hm f (x) with the one-sided

limit, if it exists. For example, if f(x) = v/x, then fis defined only at and to the rlght of 0. Hence, since hm

\/— 0, we will also write hm \/— 0. Of course, hm \/_ does not exist, since \/; is not defined when X <

0. This is an example where the existence of the 11m1t from one side does not entail the existence of the limit
from the other side. As another interesting example, consider the function g(x) = +/1/x, which is defined only
for x > 0. In this case, hm v1/x does not exist, since 1/x gets larger and larger without bound as x approaches

0 from the right. Therefore hm ~1/x does not exist.

EXAMPLE 7.3: The function f(x) = /9 —x" has the interval =3 < x < 3 as its domain. If @ is any number on the in-
terval (-3, 3), then lglz J9—x? exists and is equal to /9 —a?. Now consider a = 3. Let x approach 3 from the left; then
lim /9-x* = 0. For x > 3, \/9—x2 is not defined, since 9 — x? is negative. Hence, hm J9—x2 = hm 9-x* =0.

x—3"

Similarly, lim \9-x* = Jim 9-x* =0.

x—>-3%

Theorems on Limits
The following theorems are intuitively clear. Proofs of some of them are given in Problem 11.

Theorem 7.1: If f(x) = ¢, a constant, then lim f(x) = c.

x—a

For the next five theorems, assume lim f(x) = A and hm g(x)=B.

X—a

Theorem 7.2: hm ¢ f(x)=clim f(x)=cA.

x—a

Theorem 7.3:  lim [f(x)+ g(x)]=lim f(x)*+limg(x)=A + B.
Theorem 7.4: lim [ f(x)g(x)]=lim f(x)-lim g(x)=A- B.

.
Theorem 7.5: lim (f(x)):M_A

—al gx) )" Timg(x) ~ B’ if B #0.

Theorem 7.6:  lim¢/f(x) = ,flim f(x) = YA, if YA is defined.

Infinity
Let

lim f(x) = +eo
X—a
mean that, as x approaches a, f(x) eventually becomes greater than any preassigned positive number, however

large. In such a case, we say that f(x) approaches -+ as x approaches a. More precisely, lim f(x) = +e<if and only

if, for any positive number M, there exists a positive number & such that, whenever 0 < |x — a| < 8, then f(x) > M.
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Similarly, let
lim f(x) = —o<

mean that, as x approaches a, f(x) eventually becomes less than any preassigned number. In that case, we say
that f(x) approaches —eo as x approaches a.
Let

lim £ (x) = oo

mean that, as x approaches a, |f(x)| eventually becomes greater than any preassigned positive number. Hence,
lim f(x) = e if and only if lim [f(x)| = +eo.

x—a x—a

These definitions can be extended to one-sided limits in the obvious way.

EXAMPLE 7.4:
. im—L 1
(a) 1}2&7:-’-% (b) 13211 (x—1)? = (©) £1LI(}—=°C
EXAMPLE 7.5:
(@) lim 1 e Asx approaches 0 from the right (that is, through positive numbers), 1/x is positive and eventu-
x=0t X

ally becomes larger than any preassigned number.

(®) lim % = —oco since, as x approaches O from the left (that is, through negative numbers), 1/x is negative and
x—=0"

eventually becomes smaller than any preassigned number.

The limit concepts already introduced can be extended in an obvious way to the case in which the variable
approaches +oo or —eo. For example,

lim f(x)=A

X—>+oo
means that f(x) approaches A as x — +oo, or, in more precise terms, given any positive €, there exists a
number N such that, whenever x > N, then | f(x)— A| < €. Similar definitions can be given for the statements
lim f(x)=A, im f(x)=40cc, lim f(x)=—oco, lim f(x)=—cc, and lim f(x)=4co.
X—>—00 X—>+oo X—>—00 Xx—a X—>—00

EXAMPLE 7.6: lim l=O and lim (2+x—12)=2.

x40 X X400
Caution: When lim f(x) = te< and lim g(x) = Zoo, Theorems 7.3—7.5 do not make sense and cannot be used.

For example, 1imL2 = +oc and 1imL4 = o0, but
x=0 X x=0 X

. 1/x2 —1: 2
lim J = lim =0

Note:  We say that a limit, such as lim f(x) or lim f(x) exists when the limit is a real number, but not when the
x—a X—>+00

2 .
X" =4 exigts. However, although ljml2 = +oc,
2 x—=0 X

L . 2 _
limit is +eo or —oo or oo, For example, since lim & 4 _ 4, we say that lim
1 -2 X—2 =2 X—

we do not say that [im — exists.
X

x—0

SOLVED PROBLEMS

1.  Verify the following limit computations:

(@) lim5x=51itrzlx=5~2=10

x=2
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(b) lim 2x+3)=2limx+lim3=2-2+43=7
() lim(x*—4x+)=4-8+1=-3

lim(x —2)
(@ limi=2=a22— .1
a3 X+2 11n31(x+2) 5
oxP—4_4-4 _
(e Nm g =27470

(f) limy25-x = flim (25-x°) =9 =3

x—4
[Note: Do not assume from these problems that lim f(x) is invariably f(a).]

@ lim< =23 — Jim (x-5)=-10

-5 X+ x—-5

2. Verify the following limit computations:

. xX— T xX— T _l
(@ lm s =lim s a3 =7

The division by x — 4 before passing to the limit is valid since x # 4 as x — 4; hence, x — 4 is never zero.

_ 2
x3—27=1im(x 3)(.X +3x+9)_limx2+3x+9_2

(b) lim g = i = S+ 3y Mm% 2

22
(RS =X i E 2RI = g ZRUEI _ iy (2,04 1) = 2

lim
© 0 h A0 10

h—0

Here, and again in Problems 4 and 5, % is a variable, so that it might be thought that we are dealing with
functions of two variables. However, the fact that x is a variable plays no role in these problems; for the moment,
x can be considered a constant.

—x? 2 _ 2 2
(d lim 4-2 iy BBV HS) @ x)(3+2x +5)=lim(3+\/x2+5)=6
=23-x2+5 =2 B-J2+5)G+J2+5) =2 4-x X2

24y — . —1 2) ..
X+ x 2:]1m(x )+ ):hmx+%=°°;n01imitexists.

() lim= = = im = = lim=—

3. In the following problems (a)—(c), you can interpret lim as either lim or lim : it will not matter which. Verify
the limit computations.

@ fm 2 gy 372 _3-0_1
o+ 7 9+ 7/ 910 3
b g SRl 642kl 64040 _6
®) Im g~ I s34 =5-0+0 3
x24+x=2 x+1/x2=2/x* 0
C 1 —:. ——————  —
© lim o= lim —— s 7=0
. 2x3 . 2x
@ Tim oy = im e =
3
© lim — = lim —2 =t

xotoo X241 xotee 14+ 1/x2

() lim (x°-=7x*-2x+5)=lim x5(1—1—%+i§):+tx since
X X X"

X—>+00 X—>+00

lim (1—1—%+i§):(1—0—0+0):1 and lim x° =+eo
x x*x F—rtos

X—+00

(8 lim (x*-7x*—-2x+5)=lim x5(1—;—%+%)=—m since

X——00 X—>—00 X X
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lim 1—1—%+%)=(1—0—0+0)=1 and lim x° = —co
X——o0 X X X X=mee

Jfx+h) - f(x)
A .

Given f(x) = x> — 3x, find LILI(}

Since f(x) = x2 — 3x, we have f(x + h) = (x + h)* — 3(x + h) and

h—0

— 2 2 _ _ _ 2 _
limf(th fO) _po 4 2hx+ 12 =3x—3h) — (x 3x):1im2hx+22—3h

h—0 ]’l h—0

=£in(}(2x+h—3)=2x—3.

Given f(x)=+5x+1 find %13(} w when x>—%,
tim L 20

h—0

lim\/5x+5h+1—\/5x+1

h—0 h

S5x+5h+1=5x+1 J5x+5h+1+~/5x+1

=1lim
10 h SSx+5h+1+-/5x+1
Ox+5h+1)—(5x+1)
= 1um
=0 h(\[5x +Sh+1+/5x+1)

=1lim S = S
=0 J5x+5h+1+/5x+1 2/5x+1

(a) In each of the following, (a) to (e), determine the points x = a for which each denominator is zero. Then see
what happens to y as x = a~ and as x — a*, and verify the given solutions.
(b) (GC) Check the answers in (a) with a graphing calculator.

(a) y=f(x)=2/x: The denominator is zero when x =0. Asx — 07, y = —o0; as x — 0*, y —> 4oo.

_ _ x—1 . : : — _ _n- —oo* _N1+
(b) y—f(x)——(x+3)(x_2).Thedenomlnatorlszeroforx— 3and x=2. Asx = —-37, y = —oo; as x — —37,

Y=+, Asx — 27,y —> —oojas x — 24, y —> +oo.

© y=fx)= W_@?—l): The denominator is zero for x=—2 and x=1. As x = —27, y —> —oo; as x — —2%,

y—>+o0 Asx — 17,y —> toojasx —> 1%,y —> —oo,

+2)(x—1

(d) y=f(x)=%lThedenominatoriszeroforx=3.Asx%3‘,y—>+oo;asx—>3*,y—>+oo.
+2)1-

(e) y:f(x)=%:Thedenominatoriszeroforx:3‘Asx—>3*,y—>+oo; asx — 3%,y —> —oo,

For each of the functions of Problem 6, determine what happens to y as x — —eo and x — +oo.

(a) Asx — +oo,y=2/x = 0. When x <0, y < 0. Hence, as x — —oo, y = 0~. Similarly, as x — 4o0, y — 0*.

(b) Divide numerator and denominator of m by x? (the highest power of x in the denominator),

obtaining

1/x—1/x2
1+ 3/x)1-2/x)

Hence, as x — *oo,
0-0 0

Y2 TFoa-0) 10

As x — —oo, the factors x — 1, x + 3, and x — 2 are negative, and, therefore, y — 0~. As x — +oo, those factors
are positive, and, therefore, y — 0*.

(¢) Similar to (b).

sap.nedjamiat.org


sap.nedjamiat.org

CHAPTER 7 Limits

10.

11.

(d) x+2)(x-1) _ X +x=2 _1+1/x=2/x’
(x=3)? X2 —=6x+9  1-6/x+9/x*’
power of x in the denominator). Hence, as x — oo, y —

after dividing numerator and denominator by x? (the highest

%tg; 8 = % =1. The denominator (x — 3)*is
always nonnegative. As x — —eo, both x + 2 and x — 1 are negative and their product is positive; hence,
y — 1*. As x = +oo, both x + 2 and x — 1 are positive, as is their product; hence, y — 1*.
© x+2)A-x) _ —x2—x+2 _ —x—14+2/x
x-3 x-3 1-3/x
power of x in the denominator). As x — +eo, 2/x and 3/x approach 0, and — x — 1 approaches + . Thus, the
denominator approaches 1 and the numerator approaches =+ co. As x — —oo, x + 2 and x — 3 are negative and

1 — x is positive; s0, y —> +oo. As x — +oo, x + 2 and x — 3 are positive and 1 — x is negative; so, y —> —oo.

, after dividing numerator and denominator by x (the highest

Examine the function of Problem 4 in Chapter 6 as x — a~ and as x — a* when a is any positive integer.

Consider, as a typical case, a =2. As x — 27, f(x) — 10. As x = 2*, f(x) — 15. Thus, lxi_rgf(x) does not exist.
In general, the limit fails to exist for all positive integers. (Note, however, that lrlgg fx)= JLHJ f(x)=35, since f(x)
is not defined for x <0.)

Use the precise definition to show that lim (x* +3x)=10.

Let €>0 be chosen. Note that (x —2)>=x>—4x + 4, and so, x> + 3x — 10 = (x = 2>+ 7Tx — 14 = (x — 2)* +
7(x —2). Hence |(x* + 3x) — 10| = |(x — 2)* + 7(x — 2)| < |x — 2]* + 7|x — 2|. If we choose & to be the minimum of 1
and €/8, then 8% < §, and, therefore, 0 < |x — 2| < § implies |[(x* +3x)—10|< 8> +76<5+76=80 <€,

If lim g(x) = B # 0, prove that there exists a positive number & such that 0 < |x — a| < & implies |g(x)| > J%l

x—a

Letting € = |B[/2 we obtain a positive & such that 0 < |x — a| < § implies [g(x) — B| < |B|/2. Now, if 0 < [x —a| < &,
then |B| = |g(x) + (B — g(x))| < Ig(x)| + |B — g(x)| < |g(x)| + |B|/2 and, therefore, |B|/2 < |g(x)|.

Assume (I) lim f(x)=A and (II) lim g(x) = B. Prove:

(@ lm[f()+g(]=A+B (b) lim f(g()=AB () lim % =4 B0

(a) Let €>0 be chosen. Then € /2> 0. By (I) and (II), there exist positive &, and &, such that 0 < |x —a| < §,
implies |f(x)—A|<€/2 and 0 < |x — a| < &, implies |g(x) — B| < € /2. Let & be the minimum of &, and J,.
Thus, for 0 < lx —a| < 8, | f(x)— A|< € /2 and |g(x)— B| < € /2. Therefore, for 0 < |x — a| < §,

() + g(x) = (A+ B)| =[(f (x) - A) + (8(x) = B)|

<lf@-Al+lg-Bl<§+S=e

(b) Let €>0 be chosen. Choose € to be the minimum of €/3 and 1 and €/(3|B|) (if B #0), and €/(3|A]) (if
A #0). Note that (€")> < € since € <1 Moreover, |Ble'<e /3 and |A|€"< € /3. By (I) and (II), there exist
positive &, and 8, such that 0 < |x — a| < §, implies |f(x)— A|<€* and 0 < |x — a| < 6, implies |g(x) - B|<€".
Let & be the minimum of &, and &,. Now, for 0 < |x —a| < 6,

| f(x)g(x)— AB|=|(f(x) = A)(g(x) = B) + B(f(x)— A)+ A(g(x) — B)|
<[ ()= A)(g(x) = B)| +[B(f(x) - A)| + |A(g(x) - B)|
=1f(x) - Allg(x) - Bl +|Bllf (x) - Al + |Allg(x) - B|

Y rlBle +Ule<e 1€+ E<ELELE
<(€)+|Bl€ +|Ale'<e t3t3S3+t3+3=¢€
(c) By part (b), it suffices to show that 11mﬁ=%. Let €>0 be chosen. Then B* €/2> 0. Hence, there

x—a &
Bl’e
7

exists a positive &, such that 0 < |x — a| < §, implies |g(x)— B|<
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By Problem 10, there exists a positive &, such that 0 < |x — a| < 6, implies |g(x)| > |B|/2. Let & be the minimum
of &, and §,. Then 0 < |x — a| < § implies that

|1 _1|_1B-s@|_|BPe 2
g0 BT Blel = 2 TBP

=€

12. Prove that, for any polynomial function
f=ax"+a,_x""'+--+ax+a,, lim f(x) = f(a)

This follows from Theorems 7.1-7.4 and the obvious fact that !CILI‘}X =a.

13. Prove the following generalizations of the results of Problem 3. Let f(x)=a,x"+a, x"'+---+a,x+a, and
gx)=bx* +b,_x*"+---+bx+b; be two polynomials.

f&x) _a, -
(a) ﬂlm ¢(x) b, ifn=k
(b) xhgrl&]gc 83 0 ifn<k
fo_, . o . .
(¢) xh—> PTes B if n> k. (It is +oo if and only if @ and b, have the same sign.)
JS(x) -+ . .. . ek
(d) thl (%) oo if n > k. (The correct sign is the sign of a b (—1)""*.)
1 X
14. Prove (a) hm N Goy T : (b) }LI?wﬁ om oo

(a) Let M be any negative number. Choose 6 positive and equal to the minimum of 1 and ]ML[ Assume x < 2

and 0 < |x — 2| < & Then |x— 2 < 6° <8< L. Hence, ;3>|M|=—M- But (x - 2)*<0.
M 2]
1 1
Therefore, m: |x 2|3 <M.

(b) Let € be any positive number, and let M =1/e. Assume x > M. Then

|_x o1 11
I+ T xe1 " xr 1 Sx<M~—€

2
(c) Let M be any positive number. Assume x > M + 1. Then 2 x7 =x>M.

x—1

15. Evaluate: (a) lim Jfl; (b) lim J%; © 1imJ£l

(a) When x>0, |x| =ux. Hence, lim J;l =lim 1=1.

x—0

(b) When x <0, |x| = — x. Hence, }LI})}%[= lim —1=-1.

x—0"

- L e
©) llmJ—l does not exist, since lim b # lim J—l
x—0 X x—0- X x—0t X

SUPPLEMENTARY PROBLEMS

16. Evaluate the following limits:

(a) liI121 (x*—4x)

(b) lirg (3 +2x*-3x-4)
3x—1)?

(c) lim ((; + 1))2

sap.nedjamiat.org


sap.nedjamiat.org

CHAPTER 7 Limits

. 375 — 3—.75
(@) M3

.ox—1
) lxligx -1

. x2—4
) lgl%xz—Sx+6

. X2 +3x+2
(®) }Ln—ll x> +4x+3

. X —
(h) lgl; x> —4
. . -2
l X
@ lm —a
. . Ax=2
¢ lm-s—
. (x+hP-x*
() lm=—
O lim—2=1

=l \x?+3-2

Ans.  (a)—4; (0) 0; (¢) 73 (d) 05 (e) 73 (F) —4; (2) %3 (h) 3 (i) 0; (j) e, no limit; (k) 3x% (1) 2

17. Evalute the following limits:

. I’ —4x°+2x-13
(@) xh—grlm =3x° +x% = 5x% +2x

lim 14x3 —5x+27

(b) X—>+oo x*+10

. 2x°+12x+5
© xh—glm Tx3+6

. 2x3+7
d xh—grlm 5x*-3x-4

() lim (3x*—25x—12x—17)

X—>+o0

(f) lim (3x*—25x*-12x—17)

X—>—oo

(g) lim (3x*—25x°-8)

X——o0

Ans.  (a) —%; (b) 0; (c) +o0; (d) —o0; (&) +eo; (f) —o0; () +oo

18. Evaluate the following limits:

@ lim 33

(0 lim o2
© }LIEL x> +5

@ lim XEEEE
© lim x+3

xotee X2 +5Xx+6

f . 3x — 37x
® lim S5
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19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

CHAPTER 7 Limits

3 =3
® lim 375+

Ans. (a) 35 (b) —%:(c) 0; (d) +oo; (e) 0; () 1; () —1

fla+h) - f(a)

Find lim— for the functions f'in Problems 11 12,13, 15, and 16 (a, b, d, g) of Chapter 6.
3
Ans. (11)2614 4; (12) (a+1)2’(13) 2a—-1;(15)— (4a 5)2,(16) (a) 2a, (b) \/ g (@ @+37
a
© @17
(GC) Investigate the behavior of

if x>0
s )_{x+1 if x<0

as x = 0. Draw a graph and verify it with a graphing calculator.

Ans. }Hgl f(x)=0; xhj{)‘ fx)=1; {E%f(x) does not exist.
Use Theorem 7.4 and mathematical induction to prove 1}2} x" =a" for all positive integers n.

For f(x) = 5x — 6, find § > 0 such that, whenever 0 < |x — 4| < §, then | f(x)— 14| < €, when (a) €=% and
(b) € =0.001.

Ans. (a) 757 (b) 00002
Use the precise definition to prove: (a) lim5x=15; (b) lim x*=4; (c) lrigr;(xz -3x+5)=3.

Use the precise definition to prove:
2

@ liml=e  (b) lim Ho=w  (© lim X (d) lim xx—z—oo

=0 X -1 X x—too X — 1 xs—o0 X+ 1

Let f(x), g(x), and h(x) be such that (1) f(x) < g(x) < h(x) for all values in certain intervals to the left and right of
a, and (2) lim f(x)=1im h(x) = A. Prove limg(x)=A.

(Hint: For €> 0, there exists 8 > 0 such that, whenever 0 < |x — a| < 8, then | f(x) — A|<€ and |h(x) - A| < € and,
therefore, A—€< f(x)Sg(xX)Sh(x)<A+€)

Prove: If f(x) < M for all x in an open interval containing a and if lim f(x)=A, then A < M.

(Hint: Assume A > M. Choose €= %(A — M) and derive a contradiction.)
(GC) Use a graphing calculator to confirm the limits found in Problems 1(d, e, f), 2(a, b, d), 16, and 18.

(a) Show that }Lr{logx— x2-1)=0.
(Hint: Multiply and divide by x++/x*—1.)

2 2
(b) Show that the hyperbola % - % =1 gets arbitrarily close to the asymptote y = %x as x approaches co.

\/x+3—\/§.

(a) Find lgr(}
(Hint: Multiply the numerator and denominator by vx+3 + V3)

(b) (GC) Use a graphing calculator to confirm the result of part (a).
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30. Letf(x)= Jx -1 if x >4 and f(x) =x*> — 4x + 1 if x < 4. Find:
(@ lim f&x) () lim f@) (0) lim f)
Ans. (a)1;(b) 1;(c) 1

31. Letg(x)=10x—7if x>1and g(x) =3x+2if x < 1. Find:
(a) lim g(x) (b) lim g)  (¢) lim g(x)
Ans. (a) 3; (b) 5; (c) It does not exist.
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CHAPTER 8

Continuity

Continuous Function
A function f'is defined to be continuous at x, if the following three conditions hold:

(1) f(x,) is defined;

(i) lim f(x) exists;
(iii) lim F0) = f(xy).

For example, f(x) = x> + 1 is continuous at 2, since hm f(x)=5= f(2). Condition (i) implies that a func-

tion can be continuous only at points of its domain. Thus f (x) =+/4—x? is not continuous at 3 because f(3)
is not defined.

Let f'be a function that is defined on an interval (a, x,) to the left of x, and/or on an interval (x, b) to the
right of x,. We say that fis discontinuous at X, if fis not continuous at X that is, if one or more of the condi-
tions (i)—(iii) fails.

EXAMPLE 8.1:
@ f(x= o is discontinuous at 2 because f(2) is not defined and also because hm f(x) does not exist
(since hmf(x)—oo) See Fig. 8-1.

(x+2)(x—2)
x=2 -

14
(b) f(x)=——% is discontinuous at 2 because f(2) is not defined. However, 1irI21 fx)= linzl
lim(x+2) =4 so that condition (ii) holds. ’ '

The discontinuity at 2 in Example 8.1(b) is said to be removable because, if we extended the function f
by defining its value at x =2 to be 4 then the extended function g would be continuous at 2. Note that g(x) =

x+ 2 for all x. The graphs of f(x)=
a “hole.” (See Fig. 8-2.) Removing the discontinuity consists simply of filling the “hole.”

and g(x) =x+2 are identical except at x = 2, where the former has
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/.

/ 0 2

Fig. 8-2

The discontinuity at 2 in Example 8.1(a) is not removable. Redefining the value of f at 2 cannot change
the fact that lin; 1

does not exist.
x-2

We also call a discontinuity of a function fat x, removable when f(x,) is defined and changing the value
of the function at x, produces a function that is continuous at x,.

EXAMPLE 8.2: Define a function f as follows:

X2 ifx#2
f(x)‘{o ifx=2

Here IXILI; f(x)=4, but f(2) = 0. Hence, condition (iii) fails, so that f has a discontinuity at 2. But if we change the
value of fat 2 to be 4, then we obtain a function 4 such that i(x) = x? for all x, and 4 is continuous at 2. Thus, the
discontinuity of fat 2 was removable.

EXAMPLE 8.3: Let f be the function such that f(x)= % for all x # 0. The graph of fis shown in Fig. 8-3. fis dis-
continuous at 0 because f(0) is not defined. Moreover,

. —fim X . i =X —
g Feo=lim =1 and Ji £ = li ZF=—1

Thus, 11151 fx)# lir(r)1+ f(x). Hence, the discontinuity of fat 0 is not removable.

A

\4

Fig. 8-3

The kind of discontinuity shown in Example 8.3 is called a jump discontinuity. In general, a function f
has a jump discontinuity at X, if lim f (x) and lim f(x) both exist and lim f(x) # lim f(x). Such a discontinuity
is not removable. o o o o

EXAMPLE 8.4: The function of Problem 4 in Chapter 6 has a jump discontinuity at every positive integer.

Properties of limits lead to corresponding properties of continuity.
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Theorem 8.1:  Assume that fand g are continuous at x. Then:
(a) The constant function A(x) = ¢ for all x is continuous at every x,,.
(b) cfis continuous at x,, for any constant c. (Recall that cf has the value ¢ - f (x) for each argument x.)
(c) [+ gis continuous at x,.
(d) f- giscontinuous at x,.
(e) fgis continuous at x,,.
(f) flgis continuous at x, if g(x,) # 0.

(2) 4/f is continuous at x,if g/ f(x,) is defined.

These results follow immediately from Theorems 7.1-7.6. For example, (c) holds because

lim (£()+g(x) = lim £(x)+ lim g(x) = f(x,)+g(x)

Theorem 8.2:  The identify function /(x) = x is continuous at every x,,.

This follows from the fact that }15{1 X=X,

We say that a function fis continuous on a set A if fis continuous at every point of A. Moreover, if we just
say that fis continuous, we mean that f is continuous at every real number.

The original intuitive idea behind the notion of continuity was that the graph of a continuous function was
supposed to be “continuous” in the intuitive sense that one could draw the graph without taking the pencil off
the paper. Thus, the graph would not contain any “holes” or “jumps.” However, it turns out that our precise
definition of continuity goes well beyond that original intuitive notion; there are very complicated continuous
functions that could certainly not be drawn on a piece of paper.

Theorem 8.3: Every polynomial function
f=ax"+a,_x""'+--+ax+a,

is continuous.
This is a consequence of Theorems 8.1 (a—e) and 8.2.

EXAMPLE 8.5: As an instance of Theorem 8.3, consider the function x> — 2x + 3. Note that, by Theorem 8.2, the identity
function x is continuous and, therefore, by Theorem 8.1(e), x? is continuous, and, by Theorem 8.1(b), —2x is continuous. By
Theorem 8.1(a), the constant function 3 is continuous. Finally, by Theorem 8.1(c), x> — 2x + 3 is continuous.

Theorem 8.4: Every rational function H (x) = %, where f(x) and g(x) are polynomial functions, is continuous on
the set of all points at which g(x) # 0. g

This follows from Theorems 8.1(f) and 8.3. As examples, the function H (x) = ﬁ is continuous at all

points except 1 and —1, and the function G(x) = 18 continuous at all points (since x*> + 1 is never 0).

+1
We shall use a special notion of continuity with respect to a closed interval [a, b]. First of all, we say that
a function fis continuous on the right at a if f(a) is defined and lim f(x) exists, and lim f(x) = f(a). We say

that f'is continuous on the left at b if f(b) is defined and lir’I} f(x) exists, and lirig f(x)=f().

Definition:  fis continuous on [a, b] if fis continuous at each point on the open interval (a, b), fis continuous on the
right at a, and fis continuous on the left at b.

Note that whether fis continuous on [a, b] does not depend on the values of f; if any, outside of [a, b]. Note

also that every continuous function (that is, a function continuous at all real numbers) must be continuous on
any closed interval. In particular, every polynomial function is continuous on any closed interval.
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We want to discuss certain deep properties of continuous functions that we shall use but whose proofs are
beyond the scope of this book.

Theorem 8.5 (Intermediate Value Theorem): If fis continuous on [a, b] and f(a) # f(b), then, for any number ¢
between f(a) and f(b), there is at least one number X, in the open interval (a, b) for which f(x)) = c.

Figure 8-4(a) is an illustration of Theorem 8.5. Fig. 8-5 shows that continuity throughout the interval
is essential for the validity of the theorem. The following result is a special case of the Intermediate Value
Theorem.

rbt—————

a X
y i
|
(b) f{x)=0 has three roots
between x =a and x = b.
Fig. 8-4
Y
|
|
a |0 |
i b x
x
(b) f(x)=0 has no root
between x =g and x = b.
Fig. 85

Corollary 8.6: If fis continuous on [a, b] and f(a) and f(b) have opposite signs, then the equation f(x) =0 has at least
one root in the open interval (a, b), and, therefore, the graph of f crosses the x-axis at least once between a and b. (See
Fig. 8-4(b).)

Theorem 8.7 (Extreme Value Theorem): If fis continuous on [a, b], then ftakes on a least value m and a greatest
value M on the interval.

As an illustration of the Extreme Value Theorem, look at Fig. 8-6(a), where the minimum value m occurs
at x = ¢ and the maximum value M occurs at x = d. In this case, both ¢ and d lie inside the interval. On
the other hand, in Fig. 8-6(b), the minimum value m occurs at the endpoint x = a and the maximum value
M occurs inside the interval. To see that continuity is necessary for the Extreme Value Theorem to be true,
consider the function whose graph is indicated in Fig. 8-6(c). There is a discontinuity at ¢ inside the interval;
the function has a minimum value at the left endpoint x = a but the function has no maximum value.
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(a) (b)

1
|
I
|
|
|
|
I
|
|
I
|
|
!
c

o ————=

()
Fig. 8-6
Another useful property of continuous functions is given by the following result.

Theorem 8.8: If fis continuous at ¢ and f(c) > 0, then there is a positive number 6 such that, whenever
¢c—8<x<c+ 6, then f(x)>0.

This theorem is illustrated in Fig. 8-7. For a proof, see Problem 3.

fle+3)
f(e)
fle—39)

a
[
|

.// o

Fig. 8-7

SOLVED PROBLEMS

1. Find the discontinuities of the following functions. Determine whether they are removable. If not removable,
determine whether they are jump discontinuities. (GC) Check your answers by showing the graph of the function
on a graphing calculator.

(@ f(x)= % Nonremovable discontinuity at x = 0.
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_ x—1 . . _ _
b fx)= G Nonremovable discontinuities at x = —3 and x = 2.
© flxo= % Nonremovable discontinuity at x = 3.
d fx)= );32_—_297 Has a removable discontinuity at x = 3. (Note that x> — 27 = (x — 3)(x?

+3x+9).) Also has a nonremovable discontinuity at x = —3.
4—x?

© S0

Has a removable discontinuity at x = +2. Note that

2
4—x2 3++x*+5 =3+\/m.

3—Jx2+53+/x2+5

2
) flx)= x(%xD—ZZ Has a nonremovable discontinuity at x = 1.
(g) f(x)=[x]=the greatest integer < x. Has a jump discontinuity at every integer.
(h) f(x)=x-[x]. Has a nonremovable discontinuity at every integer.
1) f)=3x-Tx*+4x-2. A polynomial has no discontinuities.

-

G) fo= {(2) ;f i 4 8 Removable discontinuity at x = 0.

X if x<0.
k) f(x)=4x* if0<x<1 No discontinuities.

2—x ifx2>1.

2. Show that the existence of limw

h—0

implies that f'is continuous at x = a.

lim( f(a+ )~ fla)) = }ing(w : h) -

1imw -lim /2 = lim

h—0 h—0 h—0

fla+h=f@ ,_,
h

But

lim (f(a+h) = f(@)=lim f(a-+h)~lim f(@)=lim f(a+h)- f(a)

Hence, Lm(} f(a+h)= f(a). Note that Lm(} fla+h)=1lim f(x). So, lim f(x)= f(a).

3. Prove Theorem 8.8.
By the continuity of fat c, liin f(x)=f(c). If we let €= f(c)/2 > 0, then there exists a positive J such that 0 <
lx — ¢l < § implies that [f(x) — fx(cSI < f(c)/2. The latter inequality also holds when x = ¢. Thus, |x — ¢l < § implies
If(x) = f(c)l < f(c)/2. The latter implies —f(c)/2 < f(x) — f(c) <f(c)/2. Adding f(c) to the left-hand inequality, we
obtain f(c)/2 < f(x).

SUPPLEMENTARY PROBLEMS

4. Determine the discontinuities of the following functions and state why the function fails to be continuous at those
points. (GC) Check your answers by graphing the function on a graphing calculator.

_x*=3x-10 oy Jx+3 ifx=22
@ JO="=5 ®) j(x)_{x2+l ifr<2

4—x ifx<3
©) f)=Ixl-x (d f(x)=9x-2 if0<x<3
x—1 ifx<0

© f=5=1 (1) fy=EteSLIctlS
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(®) f@)=x =T ) f=—2t
i) feo=5t3tl () =272

Ans. (a) Removable discontinuity at x = —2. (Note that x2 — 3x — 10 = (x + 2)(x — 5).)
(b,c,g) None.
(d) Jump discontinuity at x = 0.
(e) Removable discontinuities at x = + 1.
(f) Removable discontinuities at x = 3, x = —5. (Note that x> + 2x = 5= (x + 5)(x = 3) and X’ + x> — 17x +
15=@x+5x-3)(x-1).)
(h) Removable discontinuity at x = 2 and nonremovable discontinuity at x = 3.
(i) Removable discontinuity at x = —1 and nonremovable discontinuity at x = —3.
() Removable discontinuity at x = 2 and nonremovable discontinuity at x = —2.
(k) Removable discontinuity at x = 1 and nonremovable discontinuity at x = —1.

Show that f(x) = Ixl is continuous.

24y
If Fig. 8-5(a) is the graph of f(x)= %, show that there is a removable discontinuity at x =7 and that
¢ =10 there.

Prove: If fis continuous on the interval [a, b] and c is a number in (a, b) such that f(c) < 0, then there exists a
positive number & such that, whenever ¢ — d < x < ¢ + 6, then f(x) < 0.

(Hint: Apply Theorem 8.8 to —f.)

Sketch the graphs of the following functions and determine whether they are continuous on the closed interval
[0, 1]:
-1 ifx<0

1 .
(@ f(x)=4 0 if0<x<I (b) f(x)z{} ifx>0
1 ifx>1 1 ifx<0
© f(x)={_j§2 giig @ fo)=1if0<x<1
x ifx<0
(e) f(x)=40 if0<x<1
x ifx=>1

Ans. (a) Yes. (b) No. Not continuous on the right at 0. (c) Yes. (d) No. Not defined at 0. (¢) No. Not continuous
on the left at 1.
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The Derivative

Delta Notation

Let f be a function. As usual, we let x stand for any argument of f, and we let y be the corresponding value
of f. Thus, y = f(x). Consider any number x, in the domain of f. Let Ax (read “delta x”) represent a small
change in the value of x, from x to x, + Ax, and then let Ay (read “delta y”) denote the corresponding change
in the value of y. So, Ay = f(x, + Ax) — f(x,). Then the ratio

Ay _ changeiny _ f(x, +Ax)— f(x,)
Ax "~ changeinx ~ Ax

is called the average rate of change of the function f on the interval between x and x, + Ax.

EXAMPLE 9.1: Lety=f(x) =x>+ 2x. Starting at x, = 1, change x to 1.5. Then Ax = 0.5. The corresponding change in

yis Ay=f(1.5) - f(1) =5.25 — 3 =2.25. Hence, the average rate of change of y on the interval betweenx=1and x=1.5

¢ &y _225
S Ay =G =45

The Derivative

If y = f(x) and x, is in the domain of f, then by the instantaneous rate of change of f at x, we mean the limit
of the average rate of change between x, and x, + Ax as Ax approaches 0:

lim &Y Ay f()c0 +Ax)— f(x,)

a0 Ax T A,\—)O Ax

provided that this limit exists. This limit is also called the derivative of f at x,,.

Notation for Derivatives
Let us consider the derivative of f at an arbitrary point x in its domain:

tim &Y = i SO AX) f(x)
Ax—0 AX Ax%O

The value of the derivative is a function of x, and will be denoted by any of the following expressions:

Dy=2=y=p=dy=td = tim &

The value f”(a) of the derivative of f at a particular point a is sometimes denoted by %

a
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Differentiability

A function is said to be differentiable at a point x, if the derivative of the function exists at that point.
Problem 2 of Chapter 8 shows that differentiability implies continuity. That the converse is false is shown
in Problem 11.

SOLVED PROBLEMS

1.

3.

Given y = f(x) = x> + 5x — 8, find Ay and Ay/Ax as x changes (a) from x, =1 to x, = x,+ Ax = 1.2 and (b) from
x,=1tox =038

(@ Ar=x —x,=12-1=02andAy=f(x,+Ax) —f(x) =f(1.2) - f(1) =-0.56 — (-2) = 1.44.
Sl _144 5,

Ax~ 0.2

(b) Ax=08—1=-02and Ay=£(0.8)— f(1)=-3.36— (-2) =—1.36. So 2.==L36 _¢ ¢

AT =02

Geometrically, Ay/Ax in (a) is the slope of the secant line joining the points (1, —2) and (1.2, —0.56) of the
parabola y = x> + 5x — 8, and in (b) is the slope of the secant line joining the points (0.8, —3.36) and (1, -2) of the
same parabola.

If a body (that is, a material object) starts out at rest and then falls a distance of s feet in ¢ seconds, then physical
laws imply that s = 16¢>. Find As/At as ¢ changes from ¢, to 7, + At. Use the result to find As/Ar as ¢ changes:
(a) from 3 to 3.5, (b) from 3 to 3.2, and (c) from 3 to 3.1.

As _ 16(t, + Aty =162 _ 321,Ar +16(Ar)*

o= X < =321, +16 At

(a) Here,=3, At=0.5, and As/At = 32(3) + 16(0.5) = 104 ft/sec.
(b) Heret,=3, At=0.2, and As/At =32(3) + 16(0.2) = 99.2 ft/sec.
(c) Heret,=3,Ar=0.1, and As/At = 97.6 ft/sec.

Since As is the displacement of the body from time t =1, to t = 7, + At,

As _ displacement

A ime = average velocity of the body over the time interval

Find dy/dx, given y = x* — x2 — 4. Find also the value of dy/dx when (a) x=4, (b) x=0, (¢) x =-1.

y+Ay:(x+Ax)3 —(.X+AX)2 -4
= x> +3x2(Ax) + 3x(Ax)> + (Ax)’ — x> = 2x(Ax) — (Ax)* — 4

Ay =(3x*=2x)Ax+ (Bx—1)(Ax)* + (Ax)?

LY 32 04 Br—DAx+(Ax)

Ax
% =lim [3x*-2x+Bx—DAx+(Ax)*]=3x*-2x
X Ax—0
(a) L0l 3(4)? —2(4) = 40; (b) L0l 3(0)? —2(0) = 0; (c) L0 3(-1)>-2(-1)=5
dx x=4 ’ dx x=0 ’ dx x=-1
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4. Find the derivative of y =f(x) =x*> + 3x + 5.
Ay= f(x+Ax)— f(x)=[(x+Ax)* +3(x+ Ax)+5)] - [x*> +3x + 3]
=[x2+2xAx+ (Ax)* +3x +3Ax+5]—[x*> +3x+5]=2xAx+ (Ax)* +3Ax
=2x+Ax+3)Ax

Ay _

H—2x+Ax+3

So, %: lim (2x+Ax+3)=2x+3.
X Ax—0

1 atx=1and x=3.
x—2
1 1 _(x=-2)—(x+Ax-2)

Ay =fO+ AN =[O =G A9 =2 " Y=2 " =D+ Ar—2)

5. Find the derivative of y= f(x)=

_ -Ax
T (x=-2)(x+Ax-2)
A -1
Ax (x=2)(x+Ax-2)
dy .. -1 __ -1
S0, G T T+ A=) - =2
I S B P e S
Atx=1, gr=Tgr=l. Atx=3, Gl=aThe =1,
6. Find the derivative of f(x)= 2x-3
) 3x+4°
2(x+Ax)-3
Fo+ A =30 Rn+4

_2x+2Ax-3 2x-3
JEH A=) =353 5d  3xid

_CBx+DI2x-3)+2Ax]-(2x-3)[(3x+4)+3Ax]
B Bx+4)3x+3Ax+4)

_ (6x+8-6x+9Ax 17Ax
T Bx+HBx+3Ax+4) T Bx+4)Bx+3Ax+4)

Jxr+Ax) - f(x) _ 17
Ax Gx+HBx+3Ax+4)

o 17 Y
S = i e G+ 3Ax+4) ~ Gr +4)°

7. Find the derivative of y= f(x)=+2x+1.

y+Ay=2x+2Ax+1)"
Ay=(2x+2Ax+ D)2 — 2x+1)"2

QRx+2Ax+ D2+ 2x+1)"?
QRx+2Ax+ D2+ 2x+1)"?

=[x +2Ax+1)" —2x+1)"2]

(2x+2Ax+1)—(2x+1) 2Ax

T Xt 2Ax+ )P+ 2x+ D7 T 2x+2Ax+ D)7 + 2x+ D)7

Ay _ 2
Ax  2x+2Ax+1)"?+Q2x+1)"?

D _ iy 2 S—
dx " aoy Qx 28X+ D4 Qx4 )7 x4 D7

sap.nedjamiat.org


sap.nedjamiat.org

CHAPTER 9 The Derivative

8. Find the derivative of f(x) = x'. Examine f(0).
FOx+Ax)=(x+Ax)'"?
fx+Ax) = f(x)=(x+Ax)"” = x"3

_ [(x+Ax)l/3 _xl/3][(x+Ax)2/3 +xl/3(x+Ax)l/3 +x2/3]
- (x+Ax)2’3 +x1/3(x+Ax)1/3 + x2/3

_ x+Ax—x
Gt A7 + x5 (x+ AP + 127

Jx+ A - f(x) 1
Ax

- (x+Ax)2’3 +x”3(x+Ax)”3 1 x2/3

, . 1 1
x) = lim =
f ( ) Ars0 (x+ Ax)2/3 + xl/3(x + Ax)l/3 + x2/3 3x2/3
The derivative does not exist at x = 0 because the denominator is zero there. Note that the function f'is
continuous at x = 0.

9. Interpret dy/dx geometrically.
From Fig. 9-1 we see that Ay/Ax is the slope of the secant line joining an arbitrary but fixed point P(x, y) and
a nearby point Q(x + Ax, y + Ay) of the curve. As Ax — 0, P remains fixed while Q moves along the curve toward
P, and the line PQ revolves about P toward its limiting position, the tangent line PT moves to the curve at P.
Thus, dy/dx gives the slope of the tangent line at P to the curve y = f(x).

Y

y = f(z)

Q(x + Az, y + Ay)

Fig. 9-1

For example, from Problem 3, the slope of the cubic y = x* — x> — 4 is m = 40 at the point x = 4; itis m =0 at
the point x = 0; and it is m = 5 at the point x = —1.

10. Find ds/dt for the function of Problem 2 and interpret the result.

As _ ds _ 1 -
AN 32t,+16At. Hence, o Bg}] (32t, +16Ar) = 32t
As Ar — 0, As/At gives the average velocity of the body for shorter and shorter time intervals Az. Then we can
consider ds/dt to be the instantaneous velocity v of the body at time 7.
For example, at t = 3, »=32(3) = 96 ft/sec. In general, if an object is moving on a straight line, and its
position on the line has coordinate s at time ¢, then its instantaneous velocity at time ¢ is ds/dt. (See Chapter 19.)

11. Find f'(x) when f(x) = lxl.
The function is continuous for all values of x. For x < 0, f(x) = —x and

= lim =2 = lim—1=—1
Ax—0 Ax—0

) = Jim A = () Ax
Feoo=lm =
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12.

13.

Similarly, for x > 0, f(x) = x and

Ax
=lim A= lim1=1

Atx=0, f(x) = 0 and limwz Jim &1

Ax—0

_ Ax] —Ax Al Ax s .
t AsoAx -0, A A =—-1—-1. But, as Ax - 0, A A 1— 1. Hence, the derivative does not exist
atx=0.

Since the function is continuous at 0, this shows that continuity does not imply differentiability.

Compute €= % - Z— for the function of (a) Problem 3 and (b) Problem 5. Verify that € > 0 as Ax — 0.

(@) e=[3x>-2x+(CBx—DAx+(Ax)*]- (3x* = 2x)=(Bx— 1+ Ax) Ax

-1 -1l (=) + (A =2) 1
(x=2)(x+Ax-2) (x—2)* (x=22(x+Ax-2) ~ (x=2)*(x+Ax— 2)
Both obviously go to zero as Ax — 0.

(b) e=

Interpret Ay = Z Ax + € Ax of Problem 12 geometrically.
In Fig. 9-1, Ay=RQ and ZyAx PRtan ZTPR = RS; thus, € Ax=SQ. For a change Ax in x from P(x, y), Ay

is the corresponding change in y along the curve while Z—Ax is the corresponding change in y along the tangent

line PT. Since their difference € Ax is a multiple of (Ax)?, it goes to zero faster than Ax, and dy Ax can be used as

an approximation of Ay when |Ax| is small.

SUPPLEMENTARY PROBLEMS

14.

15.

16.

17.

Find Ay and Ay/Ax, given

(a) y=2x-3 and x changes from 3.3 to 3.5.
(b) y=x?+ 4x and x changes from 0.7 to 0.85.
(¢) y=2/x and x changes from 0.75 to 0.5.

Ans. (a) 0.4 and 2; (b) 0.8325 and 5.55; (¢) 4 and — &

Find Ay, given y = x* — 3x + 5, x =5, and Ax = —0.01. What then is the value of y when x = 4.99?

Ans.  Ay=-0.0699; y=14.9301

Find the average velocity (see Problem 2), given: (a) s = (37> + 5) feet and 7 changes from 2 to 3 seconds.
(b) s = (2¢% + 5¢ — 3) feet and 7 changes from 2 to 5 seconds.

Ans. (a) 15 ft/sec; (b) 19 ft/sec

Find the increase in the volume of a spherical balloon when its radius is increased (a) from r to r + Ar inches;
(b) from 2 to 3 inches. (Recall that volume V =4$7r3)

Ans.  (a) 47[3r% +3r Ar+(Ar)?]Ar in®; (b) Z 7 in’
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18.

19.

20.

21.

22,

23.

24.

CHAPTER 9 The Derivative

Find the derivative of each of the following:

(@ y=4x-3 (b) y=4-3x () y=x*+2x-3
(d) y=1/x* e) y=2x-D/2x+1) ) y=010+2x)/(1-2x)
@ y=vx (h) y=1/x () y=+I+2x

() y=UJ2+x

Ans. (a) 4; (b) =3; (c) 2(x + 1); (d) =2/x%; (e)
) 32+ 07"

4 . 4 . 1 . | 1.
Q2x+D* () (1—2x)2’(g) 2Jx (h) Toxdx] ® JI+2x’

Find the slope of the tangent line to the following curves at the point x = 1 (see Problem 9): (a) y = 8 — 5x%;

(b) y=—"7 (©)

x+3°

Ans. (a)-10;(b) -1; (c) —¢

(GC) Use a graphing calculator to verify your answers in Problem 19. (Graph the curve and the tangent line that
you found.)

Find the coordinates of the vertex (that is, the turning point) of the parabola y = x> — 4x + 1 by making use of
the fact that, at the vertex, the slope of the tangent line is zero. (See Problem 9.) (GC) Check your answer with a
graphing calculator.

Ans. (2,-3)

Find the slope m of the tangent lines to the parabola y = —x*> + 5x — 6 at its points of intersection with the x axis.

Ans. Atx=2,m=1.Atx=3, m=-1.

When an object is moving on a straight line and its coordinate on that line is s at time ¢ (where s is measured in
feet and ¢ in seconds), find the velocity at time ¢ = 2 in the following cases:

(@ s=£+3t (b) s=£-3p2 (©) s=r+2
(See Problem 10.)

Ans. (a) 7 ft/sec; (b) O ft/sec; (c) + ft/sec

Show that the instantaneous rate of change of the volume V of a cube with respect to its edge x (measured in
inches) is 12 in*/in when x =2 in.
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CHAPTER 10

Rules for Differentiating
Functions

Differentiation

Recall that a function f'is said to be differentiable at x,, if the derivative f’(x,) exists. A function is said to be
differentiable on a set if the function is differentiable at every point of the set. If we say that a function is
differentiable, we mean that it is differentiable at every real number. The process of finding the derivative
of a function is called differentiation.

Theorem 10.1 (Differentiation Formulas): In the following formulas, it is assumed that u, », and w are functions
that are differentiable at x; ¢ and m are assumed to be constants.

€8 %(c) =0 (The derivative of a constant function is zero.)

) %(x) =1 (The derivative of the identity function is 1.)

d _ du
@) gelew=cygy
d _du  dv
@) E(M-HH—'“)__Z +_dx +... (Sum Rule)

d —du_dv i
3) a(,,, —-v)= I dx (Difference Rule)

(6) %(W,) =u dv + yﬂ (Product Rule)

dx dx
pdu_ dv
@) %(ﬁ) = M provided that » # 0 (Quotient Rule)
v v
(8) %(%) = _% provided that x # 0
9) %( x'ﬂ) = mx™! (Power Rule)

Note that formula (8) is a special case of formula (9) when m = —1. For proofs, see Problems 1-4.

EXAMPLE 10.1: D (x*+7x+5)=D (x*)+D (7x)+D_(5)  (Sum Rule)
=3x*+7D (x)+0 (Power Rule, formulas (3) and (1))

=3x2+7 (formula (2))

Every polynomial is differentiable, and its derivative can be computed by using the Sum Rule, Power Rule, and
formulas (1) and (3).

Copyright © 2009, 1999, 1990, 1962 by The McGraw-H@gﬁpﬂ@ﬁmmifﬁﬁrefpgerms of use.
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CHAPTER 10 Rules for Differentiating Functions

Composite Functions. The Chain Rule

The composite function fog of functions g and fis defined as follows: (fog)(x) = f(g(x)). The function g
is applied first and then f - g is called the inner function, and fis called the outer function. fog is called the
composition of g and f.

EXAMPLE 10.2: Letf(x) =x?and g(x) =x + 1. Then:
(fe)(x)=f(g(x)=fx+D)=(x+1)> =x>+2x+1
(go )= g(f(x)=g(x*)=x>+1

Thus, in this case, fog#gof.

When fand g are differentiable, then so is their composition fog. There are two procedures for finding
the derivative of fog. The first method is to compute an explicit formula for f(g(x)) and differentiate.

EXAMPLE 10.3: Iff(x) =x*>+ 3 and g(x) = 2x + 1, then
d
y=[f(gx)=fQRx+D)=Q2x+1)*+3=4x"+4x+4 and d—§=8x+4

Thus, D (fog)=8x+4.

The second method of computing the derivative of a composite function is based on the following rule.

Chain Rule
D, (f(gx) =f"(gx))-g'(x)

Thus, the derivative of fo g is the product of the derivative of the outer function f (evaluated at g(x)) and the derivative
of the inner function (evaluated at x). It is assumed that g is differentiable at x and that fis differentiable at g(x).

EXAMPLE 10.4: In Example 10.3, f’(x) = 2x and g’(x) = 2. Hence, by the Chain Rule,

D, (f(g(x)=f"(g(x) g'(x) =2g(x)-2=4g(x)=4(2x+1)=8x+4

Alternative Formulation of the Chain Rule
Let u = g(x) and y = f(u). Then the composite function of g and fis y = f(u) = f(g(x)), and we have the formula:

dy _dy du

dx = du dx (Chain Rule)

EXAMPLE 10.5: Lety=1u’and u = 4x> — 2x + 5. Then the composite function y = (4x? — 2x + 5)° has the derivative

Ay _dydu _ 5 g o304k 2yt SRk
dx ~ du dx_3” Bx—2)=3(4x>-2x+5)*(8x—2)

Warning. In the Alternative Formulation of the Chain Rule, d—i = ﬂd—”, the y on the left denotes the com-
posite function of x, whereas the y on the right denotes the original function of u. Likewise, the two oc-
currences of u have different meanings. This notational confusion is made up for by the simplicity of the
alternative formulation.
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CHAPTER 10 Rules for Differentiating Functions

Inverse Functions

Two functions fand g such 