Lecture # 26
Geometric mean, Harmonic mean & relationship between them

- Geometric mean
- Harmonic mean
- Relation between the arithmetic, geometric and harmonic means
- Some other measures of central tendency

Geometric Mean:
The geometric mean, \(G \), of a set of \(n \) positive values \(X_1, X_2, \ldots, X_n \) is defined as the positive \(n \)th root of their product.

\[
G = \sqrt[n]{X_1 X_2 \cdots X_n}
\]

(Where \(X_i > 0 \))

When \(n \) is large, the computation of the geometric mean becomes laborious as we have to extract the \(n \)th root of the product of all the values. The arithmetic is simplified by the use of logarithms.

Taking logarithms to the base 10, we get

\[
\log G = \frac{1}{n} \left[\log X_1 + \log X_2 + \ldots + \log X_n \right]
\]

Hence

\[
G = \text{anti log} \left[\frac{\sum \log X}{n} \right]
\]

Example:
Find the geometric mean of numbers:

45, 32, 37, 46, 39,
36, 41, 48, 36.

Solution:
We need to compute the numerical value of

\[
= \sqrt[9]{45 \times 32 \times 37 \times 46 \times 39 \times 36 \times 41 \times 48 \times 36}
\]

But, obviously, it is a bit cumbersome to find the ninth root of a quantity. So we make use of logarithms, as shown below:

<table>
<thead>
<tr>
<th>(X)</th>
<th>(\log X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>1.6532</td>
</tr>
<tr>
<td>32</td>
<td>1.5052</td>
</tr>
<tr>
<td>37</td>
<td>1.5682</td>
</tr>
<tr>
<td>46</td>
<td>1.6628</td>
</tr>
<tr>
<td>39</td>
<td>1.5911</td>
</tr>
<tr>
<td>36</td>
<td>1.5563</td>
</tr>
<tr>
<td>41</td>
<td>1.6128</td>
</tr>
<tr>
<td>48</td>
<td>1.6812</td>
</tr>
<tr>
<td>36</td>
<td>1.5563</td>
</tr>
<tr>
<td>14.3870</td>
<td></td>
</tr>
</tbody>
</table>

\[
\log G = \frac{\sum \log X}{n}
\]

\[
= \frac{14.3870}{9} = 1.5986
\]

Hence

\[
G = \text{anti log} 1.5986 = 39.68
\]
The above example pertained to the computation of the geometric mean in case of raw data. Next, we consider the computation of the geometric mean in the case of grouped data.

GEOMETRIC MEAN FOR GROUPED DATA:

In case of a frequency distribution having \(k \) classes with midpoints \(X_1, X_2, \ldots, X_k \) and the corresponding frequencies \(f_1, f_2, \ldots, f_k \) (such that \(\sum f_i = n \)), the geometric mean is given by

\[
G = \sqrt[n]{X_1^{f_1}X_2^{f_2}\ldots X_k^{f_k}}
\]

Each value of \(X \) thus has to be multiplied by itself \(f \) times, and the whole procedure becomes quite a formidable task!

In terms of logarithms, the formula becomes

\[
\log G = \frac{1}{n} \left[\sum f \log X_1 + \sum f \log X_2 + \ldots + \sum f \log X_k \right]
\]

\[
= \frac{\sum f \log X}{n}
\]

Hence

\[
G = ant \log \left[\frac{\sum f \log X}{n} \right]
\]

Obviously, the above formula is much easier to handle.

Let us now apply it to an example.

Going back to the example of the EPA mileage ratings, we have:

<table>
<thead>
<tr>
<th>Mileage Rating</th>
<th>No. of Cars</th>
<th>Class-mark (midpoint) X</th>
<th>log X</th>
<th>f log X</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.0 - 32.9</td>
<td>2</td>
<td>31.45</td>
<td>1.4976</td>
<td>2.9952</td>
</tr>
<tr>
<td>33.0 - 35.9</td>
<td>4</td>
<td>34.45</td>
<td>1.5372</td>
<td>6.1488</td>
</tr>
<tr>
<td>36.0 - 38.9</td>
<td>14</td>
<td>37.45</td>
<td>1.5735</td>
<td>22.0290</td>
</tr>
<tr>
<td>39.0 - 41.9</td>
<td>8</td>
<td>40.45</td>
<td>1.6069</td>
<td>12.8552</td>
</tr>
<tr>
<td>42.0 - 44.9</td>
<td>2</td>
<td>43.45</td>
<td>1.6380</td>
<td>3.2760</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td>47.3042</td>
</tr>
</tbody>
</table>
G = antilog \[
\frac{47.3042}{30}
\]

= antilog 1.5768 = 37.74

This means that, if we use the geometric mean to measure the central tendency of this data set, then the central value of the mileage of those 30 cars comes out to be 37.74 miles per gallon.

The question is, “When should we use the geometric mean?”

The answer to this question is that when relative changes in some variable quantity are averaged, we prefer the geometric mean.

EXAMPLE:

Suppose it is discovered that a firm’s turnover has increased during 4 years by the following amounts:

<table>
<thead>
<tr>
<th>Year</th>
<th>Turnover</th>
<th>Percentage Compared With Year Earlier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1958</td>
<td>£ 2,000</td>
<td>–</td>
</tr>
<tr>
<td>1959</td>
<td>£ 2,500</td>
<td>125</td>
</tr>
<tr>
<td>1960</td>
<td>£ 5,000</td>
<td>200</td>
</tr>
<tr>
<td>1961</td>
<td>£ 7,500</td>
<td>150</td>
</tr>
<tr>
<td>1962</td>
<td>£ 10,500</td>
<td>140</td>
</tr>
</tbody>
</table>

The yearly increase is shown in a percentage form in the right-hand column i.e. the turnover of 1959 is 125 percent of the turnover of 1958, the turnover of 1960 is 200 percent of the turnover of 1959, and so on. The firm’s owner may be interested in knowing his average rate of turnover growth.

If the arithmetic mean is adopted he finds his answer to be:

\[
\text{Arithmetic Mean: } \frac{125 + 200 + 150 + 140}{4} = 153.75
\]

i.e. we are concluding that the turnover for any year is 153.75% of the turnover for the previous year. In other words, the turnover in each of the years considered appears to be 53.75 per cent higher than in the previous year.

If *this* percentage is used to calculate the turnover from 1958 to 1962 inclusive, we obtain:

- 153.75% of £ 2,000 = £ 3,075
- 153.75% of £ 3,075 = £ 4,728
- 153.75% of £ 4,728 = £ 7,269
- 153.75% of £ 7,269 = £ 11,176

Whereas the actual turnover figures were

<table>
<thead>
<tr>
<th>Year</th>
<th>Turnover</th>
</tr>
</thead>
<tbody>
<tr>
<td>1958</td>
<td>£ 2,000</td>
</tr>
<tr>
<td>1959</td>
<td>£ 2,500</td>
</tr>
<tr>
<td>1960</td>
<td>£ 5,000</td>
</tr>
<tr>
<td>1961</td>
<td>£ 7,500</td>
</tr>
<tr>
<td>1962</td>
<td>£ 10,500</td>
</tr>
</tbody>
</table>
It seems that both the individual figures and, more important, the total at the end of the period, are incorrect. Using the arithmetic mean has exaggerated the ‘average’ annual rate of increase in the turnover of this firm. Obviously, we would like to rectify this false impression. The geometric mean enables us to do so:

Geometric mean of the turnover figures:

\[
\sqrt[4]{(125 \times 200 \times 150 \times 140)} = \sqrt[4]{525000000} = 151.37\%
\]

Now, if we utilize this particular value to obtain the individual turnover figures, we find that:

- 151.37% of £2,000 = £3,027
- 151.37% of £3,027 = £4,583
- 151.37% of £4,583 = £6,937
- 151.37% of £6,937 = £10,500

So that the turnover figure of 1962 is exactly the same as what we had in the original data.

Interpretation:
If the turnover of this company were to increase annually at a constant rate, then the annual increase would have been 51.37 percent. (On the average, each year’s turnover is 51.37% higher than that in the previous year.) The above example clearly indicates the significance of the geometric mean in a situation when relative changes in a variable quantity are to be averaged.

But we should bear in mind that such situations are not encountered too often, and that the occasion to calculate the geometric mean arises less frequently than the arithmetic mean. (The most frequently used measure of central tendency is the arithmetic mean.) The next measure of central tendency that we will discuss is the harmonic mean.

HARMONIC MEAN:

The harmonic mean is defined as the reciprocal of the arithmetic mean of the reciprocals of the values. **HARMONIC MEAN**

In case of raw data:

\[
H.M. = \frac{n}{\sum \left(\frac{1}{X} \right)}
\]

In case of grouped data (data grouped into a frequency distribution):

\[
H.M. = \frac{n}{\sum f \left(\frac{1}{X} \right)}
\]

(where X represents the midpoints of the various classes).
EXAMPLE:
Suppose a car travels 100 miles with 10 stops, each stop after an interval of 10 miles. Suppose that the speeds at which the car travels these 10 intervals are 30, 35, 40, 40, 45, 40, 50, 55, 55 and 30 miles per hours respectively. What is the average speed with which the car traveled the total distance of 100 miles?

If we find the arithmetic mean of the 10 speeds, we obtain:

Arithmetic mean of the 10 speeds:

\[
\frac{30 + 35 + \ldots + 30}{10} = \frac{420}{10} = 42 \text{ miles per hour.}
\]

But, if we study the problem carefully, we find that the above answer is incorrect.

By definition, the average speed is the speed with which the car would have traveled the 100 mile distance if it had maintained a constant speed throughout the 10 intervals of 10 miles each.

\[
\text{Average speed} = \frac{\text{Total distance travelled}}{\text{Total time taken}}
\]

Now, total distance traveled = 100 miles.
Total time taken will be computed as shown below:

<table>
<thead>
<tr>
<th>Interval</th>
<th>Distance</th>
<th>Speed = \frac{\text{Distance}}{\text{Time}}</th>
<th>Time = \frac{\text{Distance}}{\text{Speed}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 miles</td>
<td>30 mph</td>
<td>10/30 = 0.3333 hrs</td>
</tr>
<tr>
<td>2</td>
<td>10 miles</td>
<td>35 mph</td>
<td>10/35 = 0.2857 hrs</td>
</tr>
<tr>
<td>3</td>
<td>10 miles</td>
<td>40 mph</td>
<td>10/40 = 0.2500 hrs</td>
</tr>
<tr>
<td>4</td>
<td>10 miles</td>
<td>40 mph</td>
<td>10/40 = 0.2500 hrs</td>
</tr>
<tr>
<td>5</td>
<td>10 miles</td>
<td>45 mph</td>
<td>10/45 = 0.2222 hrs</td>
</tr>
<tr>
<td>6</td>
<td>10 miles</td>
<td>40 mph</td>
<td>10/40 = 0.2500 hrs</td>
</tr>
<tr>
<td>7</td>
<td>10 miles</td>
<td>50 mph</td>
<td>10/50 = 0.2000 hrs</td>
</tr>
<tr>
<td>8</td>
<td>10 miles</td>
<td>55 mph</td>
<td>10/55 = 0.1818 hrs</td>
</tr>
<tr>
<td>9</td>
<td>10 miles</td>
<td>55 mph</td>
<td>10/55 = 0.1818 hrs</td>
</tr>
<tr>
<td>10</td>
<td>10 miles</td>
<td>30 mph</td>
<td>10/30 = 0.3333 hrs</td>
</tr>
<tr>
<td>Total</td>
<td>100 miles</td>
<td>Total Time = 2.4881 hrs</td>
<td></td>
</tr>
</tbody>
</table>

Hence

\[
\text{Average speed} = \frac{100}{2.4881} = 40.2 \text{ mph}
\]
which is not the same as 42 miles per hour.
Let us now try the harmonic mean to find the average speed of the car.

\[H.M. = \frac{n}{\sum \frac{1}{X}} \]

where \(n \) is the no. of term.
We have:

<table>
<thead>
<tr>
<th>(X)</th>
<th>(1/X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1/30 = 0.0333</td>
</tr>
<tr>
<td>35</td>
<td>1/35 = 0.0286</td>
</tr>
<tr>
<td>40</td>
<td>1/40 = 0.0250</td>
</tr>
<tr>
<td>40</td>
<td>1/40 = 0.0250</td>
</tr>
<tr>
<td>45</td>
<td>1/45 = 0.0222</td>
</tr>
<tr>
<td>40</td>
<td>1/40 = 0.0250</td>
</tr>
<tr>
<td>50</td>
<td>1/50 = 0.0200</td>
</tr>
<tr>
<td>55</td>
<td>1/55 = 0.0182</td>
</tr>
<tr>
<td>55</td>
<td>1/55 = 0.0182</td>
</tr>
<tr>
<td>30</td>
<td>1/30 = 0.0333</td>
</tr>
</tbody>
</table>

\[\sum \frac{1}{X} = 0.2488 \]

\[\text{H.M.} = \frac{n}{\sum \frac{1}{X}} = \frac{10}{0.2488} = 40.2 \text{ mph} \]

Hence it is clear that the harmonic mean gives the totally correct result.

The key question is, “When should we compute the harmonic mean of a data set?”
The answer to this question will be easy to understand if we consider the following rules:

RULES
1. When values are given as \(x \) per \(y \) where \(x \) is constant and \(y \) is variable, the Harmonic Mean is the appropriate average to use.
2. When values are given as \(x \) per \(y \) where \(y \) is constant and \(x \) is variable, the Arithmetic Mean is the appropriate average to use.
3. When relative changes in some variable quantity are to be averaged, the geometric mean is the appropriate average to use.

We have already discussed the geometric and the harmonic means.

Let us now try to understand Rule No. 1 with the help of an example:

EXAMPLE:
If 10 students have obtained the following marks (in a test) out of 20:
13, 11, 9, 9, 6, 5, 19, 17, 12, 9
Then the average marks (by the formula of the arithmetic mean) are:
This is equivalent to
\[
\frac{13 + 11 + 9 + 9 + 6 + 5 + 19 + 17 + 12 + 9}{10}
\]
\[
= \frac{110}{10} = 11
\]

(i.e. the average marks of this group of students are 11 out of 20).

In the above example, the point to be noted was that all the marks were expressible as x per y where the denominator y was constant i.e. equal to 20, and hence, it was appropriate to compute the arithmetic mean.

Let us now consider a mathematical relationship exists between these three measures of central tendency.

RELATION BETWEEN ARITHMETIC, GEOMETRIC AND HARMONIC MEANS:

Arithmetic Mean > Geometric Mean > Harmonic Mean

We have considered the five most well-known measures of central tendency i.e. arithmetic mean, median, mode, geometric mean and harmonic mean.

It is interesting to note that there are some other measures of central tendency as well.

Two of these are the mid range, and the mid quartile range.

Let us consider these one by one:

MID-RANGE:

If there are n observations with x₀ and xₘ as their smallest and largest observations respectively, then their mid-range is defined as

\[
\text{mid – range} = \frac{x₀ + xₘ}{2}
\]

It is obvious that if we add the smallest value with the largest, and divide by 2, we will get a value which is more or less in the middle of the data-set.

MID-QUARTILE RANGE:

If x₁, x₂… xn are n observations with Q₁ and Q₃ as their first and third quartiles respectively, then their mid-quartile range is defined as

\[
\text{mid – quartile range} = \frac{Q₁ + Q₃}{2}
\]
Similar to the case of the mid-range, if we take the arithmetic mean of the upper and lower quartiles, we will obtain a value that is somewhere in the middle of the data-set. The mid-quartile range is also known as the mid-hinge.

Let us now revise briefly the core concept of central tendency:
Masses of data are usually expressed in the form of frequency tables so that it becomes easy to comprehend the data. Usually, a statistician would like to go a step ahead and to compute a number that will represent the data in some definite way. Any such single number that represents a whole set of data is called ‘Average’. Technically speaking, there are many kinds of averages (i.e. there are several ways to compute them). These quantities that represent the data-set are called “measures of central tendency”.