
UML Use Case Diagrams

What is a UML Use Case Diagram (UCD), and when should I use it?

UML Use Case Diagrams can be used to describe the functionality of a system in a
horizontal way. That is, rather than merely representing the details of individual features
of your system, UCDs can be used to show all of its available functionality. It is
important to note, though, that UCDs are fundamentally different from sequence
diagrams or flow charts because they do not make any attempt to represent the order or
number of times that the systems actions and sub-actions should be executed. There are a
number of graphical examples in this FAQ; you might want to look over them to
familiarize yourself with the look of them.

UCDs have only 4 major elements: The actors that the system you are describing
interacts with, the system itself, the use cases, or services, that the system knows how to
perform, and the lines that represent relationships between these elements.

You should use UCDs to represent the functionality of your system from a top-down
perspective (that is, at a glance the system's functionality is obvious, but all descriptions
are at a very high level. Further detail can later be added to the diagram to elucidate
interesting points in the system's behavior.)
Example: A UCD is well suited to the task of describing all of the things that can be
done with a database system, by all of the people who might use it (administrators,
developers, data entry personnel.)

You should NOT use UCDs to represent exception behavior (when errors happen) or to
try to illustrate the sequence of steps that must be performed in order to complete a task.
Use Sequence diagrams to show these design features.
Example: A UCD would be poorly suited to describing the TCP/IP network protocol,
because there are many exception cases, branching behaviors, and conditional
functionality (what happens when a packet is lost or late, what about when the connection
dies?)

How do you know who the actors are in a UCD?

When working from an Action/Response table, itentifying the actors is easy: entities
whose behavior appears in the "Actor's Actions" column are the actors, and entities
whose behavior appears in the "System's Response" column are components in the
system.

If you are working from an informal narrative, a sequence diagram, or a scenario
description, the actors are typically those entities whose behavior cannot control or
change (i.e., agents that are not part of the system that you are building or describing.)
The most obvious candidates for actors are the humans in the system; except in rare cases
when the system you are describing is actually a human process (such as a specific
method of dealing with customers that employees should follow) the humans that you
must interact with will all be actors. If your system interacts with other systems
(databases, servers maintained by other people, legacy systems) you will be best to treat
these as actors, also, since it is not their behavior that you are interested in describing.
Example: When adding a new database system to manage a company's finances, your
system will probably have to interface with their existing inventory management
software. Since you didn't write this software, don't intend to replace it, and only use the
services that it provides, it makes sense for that system to be an actor.

How do you know what to put in the "System" box?

The system box only appears on the top-level diagram (remember that a typical UML
Use Case description will be composed of many diagrams and sub-diagrams), and should
contain use case ovals, one for each top-level service that your system provides to its
actors. Any kind of internal behavior that your system may have that is only used by
other parts of the system should not appear in the system box. One useful way to think of
these top-level services is as follows: if a use case represents a top-level service, then it
should make sense for the actors who interact with it to request only that service of your
system in a single session (in whatever sense a "session" is intelligible in your system.)

Example: In the diagram below we would like to represent the use cases for a camera.
Suppose we choose "Open Shutter", "Flash", and "Close Shutter" as the top-level use
cases. Certainly these are all behaviors that a camera has, but no photographer would ever
pick up their camera, open the shutter, and then put it down, satisfied with their
photographic session for the day. The crucial thing to realize is that these behaviors are
not done in isolation, but are rather a part of a more high-level use case, "Take Picture".
(Note that it does make sense for a photographer to "Take Picture" just once during a
session with their camera.)

The actors in my diagram have interactions. How do I represent them?

If there are interactions between the actors in your system, you cannot represent those
interactions on the same diagram as your system. What you can do instead is draw a
separate UCD, treating one of the actors itself as a system, and your original system
(along with the other actors) as actors on this new diagram.

Example: Suppose you wanted to diagram the interactions between a user, a web
browser, and the server it contacts. Since you can only have one system on the diagram,
you must choose one of the obvious "systems", such as the server. You might then be
tempted to draw interaction lines between the actors, but this is a problem because it isn't
clear what the interaction means, so it isn't helpful to show it here. A more useful solution
would be to draw two diagrams, showing all of the interactions, as below.

How is a UML Use Case Diagram different from a traditional flow chart?

As mentioned above, UCDs represent functionality in a top-down way, whereas flow
charts represent behavior in a linear, time-based way. Also, the way you develop them is
all-together different.

Example: (This text refers to the diagrams below.) When constructing a UCD, the initial

step is to identify all of the top-level behavior. Once you have done this (not a very tricky
process) you have already described, at least in a high-level way, all of the things your
system knows how to do. You can then continue to add detail by decomposing your use
cases into more use cases which are used by the top-level use cases. At every stage of
development, though, your UCD is a complete description of the system's functionalty: it
may lack detail, but it will not lack feature set elements. And if functionality or behavior
is added or deleted over the life of your project, the scope of the change you need to
make is proportional to both the scope of the change in the system itself, and the maturity
of your model. This is useful because it means that when your model is very young (only
high-level diagrams drawn) making sweeping changes to the system does not involve
throwing very much work away. A flow chart, however, does not correctly describe the
system until you have finished drawing it, and even then small changes in the system will
result in significant reworking of your flow charts. In general, UCDs support the process
of analysis and design much better than flow charts.

When do I use the uses arrow?

The uses arrow (or uses edge as it would be called in traditional graph thoery) is drawn
from a use case X to another use case Y to indicate that the process of doing X always
involves doing Y at least once (although it may involve doing it many times, "at least
once" is the only relationship guaranteed by this symbol.) This symbol can be referred to
as an aggregation operator, because it indicates that a given use case is an aggregate
(made up of parts) whose components are the use cases that it uses. If a certain use case
uses several others, that means that all of the component use cases must be completed in
the process of completing the aggregate use case, although there is no specification in
UCDs of the order in which these are completed. A brief, mnemonic way to think about
the uses arrow is that it it can be read X uses Y means that "X has a Y" as part of it's
behavior.

Example: Suppose you wanted to add detail to the diagram shown below, representing
an airline reservation system. First, you would create a separate diagram for the top-level
services, and then you would add new use cases that make up the top-level ones. There is

a uses edge from "Check in Passenger" to "Weigh Luggage" and from "Check in
Passenger" to "Assign Seat"; this indicates that in order to Check in a Passenger,
Luggage must be Weighed and a Seat must be Assigned. Similarly, the diagram indicates
that in order to add a reservation to the system, the available space must be checked and
the passenger's information must be recorded. You could imagine breaking these use
cases down further to show more detail.

When do I use the extends arrow?

The extends arrow (or extends edge) is drawn from a use case X to a use case Y to indicate that
the process X is a special case behavior of the same type as the more general process Y. You
would use this in situations where your system has a number of use cases (processes) that all
have some subtasks in common, but each one has something different about it that makes it
impossible for you to just lump them all together into the same use case.

Example: Suppose you wanted to add detail to the diagram shown below, representing an airline
reservation system. Specifically, what you would like to show is that not all of the seats aboard
the airplane are exactly alike (some window and some aisle seats), and sometimes passengers
will express a preference for one of these types of seats but not the other. But of course, they
cannot just be given their preference right away, because the seat they want might not be
available. Therefore, the process of assigning a window seat involves checking for the
availability of window seats, whereas the process of assigning an aisle seat involves checking for
the availability of aisle seats. But even though these processes are different, they are quite similar
in a number of other ways, so it doesn't make sense to ignore their similarities. Fortunately, UML
lets us have both: we write that assigning these two types of seats are different processes, but
they are similar in that both processes extend a common, more general process (assigning seats.)

What is the difference between uses and extends?

Probably the best way to think about these diagram elements is as follows:

- "X uses Y" indicates that the task "X" has a subtask "Y"; that is, in the process of
completing task "X", task "Y" will be completed at least once.

- "X extends Y" indecates that "X" is a task fo the same type as "Y", but "X" is a special,
more specific case of doing "Y". That is, doing X is a lot like doing Y, but X has a few
extra processes to it that go above and beyond the things that must be done in order to
complete Y.

Example:indicates that inorder to successfully "Check-in", you must "Weigh luggage"
and "Assign a seat", some number of times, in some order. The key, though, is that all
UCs used by a use case MUST BE DONE before that use case be considered to be
complete. Once you realize that there are several types of seat assignment, you might be
tempted to draw a diagram using the uses edge like the one below, but this doesn't make
sense: This diagram says that in order to assign a seat you must assign both a window
seat AND an aisle seat to the passenger. Never fear, however; this situation is correctly
handled by the extends relationship. Using the extends relationship (as shown in the
following diagram), we can express that there are two ways to assign a seat: assigning a
window seat and assigning an aisle seat, but only one need be completed in the process
of assigning the passenger a seat.

