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The present genetics notes are produced as a substitute for 'Veterinary Genetics' by FW.Nicolas, Oxford 
University Press, 1989. This book was not available after 1995. 

The notes are produced for a course for veterinary students. Therefore, efforts have been made to adjust 
the notes for students with a biological background, and at the same time supply a minimal set of 
formulas to describe the relationship between practical observations and genetic theory. In addition to the 
description of traits with simple Mendelian inheritance, the description of the genetics for traits (diseases) 
with multifactoriel aetiology has also been emphasized, here the application of correct breeding plans 
make it possible to  significantly lower the frequency of the disease. 

The genetics notes are available on the www server, which can be reached from the address: 
www.ihh.kvl.dk/htm/kc/popgen/genetics/genetik.htm. Both an English and a Danish version is available. 
The online voice version includes a slide show with more than 350 slides. The voice in the voice version 
belongs to Anne Asp Poulsen who study English at the Copenhagen University, she also gave comments 
on the English style in the text and figures.  

The online notes include a number of links (underlined in the text) to other servers and to extended 
calculation examples and data programs (applets).  

There is no independent exercise section yet in the English version. But to each applet there is an example 
and one or more exercises for solution. 

Ass. professor Peter Sestoft has advised me while producing the applets. 

Some students which had the important background of being in the process of learning the topic have 
commented on the text. Any proposals for additional improvements are welcome. 

2. English edition, May 2003; Knud Christensen 
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Chapter 1. Introduction, quantitative versus qualitative genetics 

This chapter is meant as a brushup for terms such as genotype, phenotype and linear regression, as well as 
the introduction of new ones. This is only meant as an overview, so very detailed study should be 
avoided, as some of the terms are fairly abstract. After reading of chapters 2 to 8 read this chapter again.  

1.1 Domestic animals in Denmark, quantitative traits 
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Danish populations of domestic animals/production per year, rounded numbers. 

Figure 1.1. 
Populations: Dogs 500, Cats 500, Horses 100, Sheep 
100 and production per year Cattle 1000, Broilers 
120000, Pigs 22000, Mink 10000  
(all in 1000) 
Fish 40, Butter 100, Cheese 300, Beef meat 300  
(all in 1000 tons) 

 

The summary list of the Danish animal production shows that quantitative traits have great significance 
for the magnitude and the economy of animal production. The joint production of domestic animals in 
Denmark amounts to around 50 billion Dkr per year. The main part is exported. 
For world animal breeds, see Livestock, Oklahoma  

1.2 Quantitative versus qualitative inheritance 

There is a continuum of traits being inherited as a Mendelian trait with simple inheritance and traits 
having quantitative inheritance 
without well separated classes 
and with many genes 
involved. 

Classification of traits in 
relation to mode of inheritance 
and environmental tolerance 
are shown in Figure 1.2. First 
there are the well known traits 
with simple Mendelian mode 
of inheritance. The trait with 
quantitative genetic 
inheritance is caused by 
segregation of many gene 
pairs, each with small effect. 
At the same time the trait is 
influenced by a lot of minor 
environmental effects. 
Diseases will often be 
'either/or traits' as the simple 
Mendelian traits. Cases in 
which the severity of the 
disease has a normal 
distribution can also be found. 
In many production diseases 
the disease only occurs when a genetically prone individual is exposed to adverse environmental effects. 
See Figure 1.2, produced by prof. emeritus 
Erik Andresen. 

Figure 1.2. Classification of traits in relation to mode of inheritance and 
environmental tolerance.  

 

Figure 1.3. Illustrating how one and two gene pairs can 
influence milk yields. In reality, numerous gene pairs 
have to be involved for selection to be carried out 
generation after generation without the genetic variation 
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Figure 1.3 gives an  illustration of how one or 
two Mendelian segregating gene pairs control 
the milk yield. For each A or B allele an 
individual has a yield increase of one 
kilogram.  The alleles A and a have the same 
frequency in the distributions. For a realistic 
picture of the genetic background for milk 
yields, hundreds of gene pairs have to be  
involved. The milk yield has by selection been 
changed just as dramatically as the fat-% in 
the milk, as shown in section 1.4. To make this 
possible there has to be an effect from 
numerous gene pairs. In the present example using only two gene pairs, they could be fixed after one 
generation of selection. 

1.3 The terms phenotype, genotype and heritability 

Most quantitative traits exhibit some degree of heritability. The heritability is evident when individuals, 
deviating positively or negatively from the average, also become offspring with deviation in the same trait 
in the same direction as their parents. There is a continuum of some traits, which is inherited with a 
simple Mendelian form and other traits with quantitative genetic inheritance without separate classes. The 
quantitative genetic inheritance is caused by the effect of many different genes, each with minor effect. 
The traits are also under the influence of environmental effects. 

The similarity between related individuals is determined by the degree of heritability. The degree of 
heritability can be estimated statistically as a regression of offspring on average parents. The degree of 
heritability has values between 0 and 1. The degree of heritability at 0 corresponds to no similarity, and 1 
corresponds to the highest possible similarity 
between parent and offspring. See right side of 
Figure 1.4. 

 

The upper part of Figure 1.4 gives the relation 
formula for a trait or the entire individual the 
Genotype (all genes inherited from the parents) 
and the phenotype (appearance or what can be 
measured in the individual). The deviations of the 
phenotype from the genotype are caused by  
random environmental effects. The formulation 
was made by the geneticist Wilhelm Johannesen, 
employed by this university around year 1900. 
The formula was based on the size of bean seeds 
derived from beans with varying degrees of inbreeding. 

Figure 1.4 shows what Johannesen discovered: When the beans were 100 % inbred, which means that all 
beans were genetically similar, there was no relation between the weight of the parent bean and that of its 
offspring, i.e. the regression coefficient (b) of offspring on parents equaled 0. For outbred beans being 
genetically different, there was a linear regression of b = 0.27. Which means that if a bean was 10 mg 
larger than average then the offspring 
was 2,7 mg larger than average. 

diapers when selecting .  

 

 
Figure 1.4  
Relation between phenotype, genotype and 
environment have been formulated by W. Johannesen 
based on the shown bean experiments.  
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For most traits in outbred populations 
there will be some similarities between 
related individuals. Figure 1.5 shows 
the twodimensional relationship 
between the average height of the vet. 
students and that of their parents. The 
figure is a printout from the SAS 
system by use of the procedure proc 
plot. 

Figure 1.5 shows that there is a strong 
relationship between the height of the 
parent and that of their offspring. The 
relationship equals a degree of 
heritability of 60 % for the trait height 
in the human population, cf. the slope 
of the regression line which is b = 0.6. 

The Genotype can only be observed 
when genetic variation occurs. This 
variation  is equal to the part of the 
phenotype (the phenotypic variation) 
which can be passed down to the 
offspring (genotypic variation). The 
genotype constitutes respectively  27 
% of the phenotypic variation for bean weight and 60% of human height. The environmental effects thus 
contribute to the rest of the variation. That is (100-27)= 73 % for bean weight and (100-60) = 40 % of the 
phenotypic variation for human height.  

1.4 Effect of animal 

breeding (evolution) 

The effect of animal breeding is 
shown in Figure 1.6. This 
gives an understanding of how 
the breeding work has affected 
the fat-% in the milk from the 
Danish Jersey dairy breed. Over 
the last 20 generations animals 
with the highest fat-% in the milk 
have been selected for breeding. 
The effect of this selection has 
been an increase by 0.1 units  in the fat-% per generation. Nothing indicates that it would impossible to 
continue for the next 20 generations with the same effect of selection to gain a higher fat content in the 
milk. Or whether  it is desirable by selection to return to the starting point. The HF has not been selected 
for fat-% and has therefore  been fairly stable 
with respect to the fat-% in the milk during 
the same period. 

Figure 1.5 
Relationship between the height of  parent and offspring  (vet. 
students). If the average height of the parents is 1 cm above the 
average, their offspring is 0.6 above the average. The relationship 
is caused by the fact that height, as a trait,  is passed down with a 
heritability of 60 %. The symbol 1 is the boys and 2 is the girls.  

 

Figure 1.6.  
Distribution curves for fat-% in the milk 
for HF (Holstein Frisian) and Jersey. For 
Jersey both year 1900 and 1990. 

 
 

Figure 1.7. 
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Figure 1.7 shows a drawing from Science 
Nov. 1990. The drawing indicates that 
evolution is a simple principle in which each 
animal adapts to the challenges of the 
environment. Evolution is not the individual 
animals' ability to adapt, but the fact that the 
best adapted animals give birth to a larger 
number of well adapted offspring, therefore 
new individuals which are even better 
adapted occurs in each new generation 

Both animal breeding and natural selection are slow processes. But with strong selection a population can 
change the average value with up to 10 % per generation, if the given trait has a high degree of 
heritability. 

Results of  continued selection for litter size in mice through 30 generations can be seen here. By 
selection in this period the litter size has been increased by 5 young per litter, from 9 to 14. This 
corresponds to an increase in litter size of 0.16 young per generation. 

1.5 Qualitative traits, Mendelian genetics 

Qualitative traits are characterized by segregation in the classical Mendelian ratios. An example of this is 
the coat colour gene in the Labrador Retriever which can occur either as black or as yellow. The yellow 
colour is recessive and the black is dominant. When a gene for yellow coat colour is mentioned it points 
at both a locus and an allele.  
One can also talk about an Albumin locus, even the phenotypes cannot be seen directly. But as will be 
shown in the next chapter, polymorphism in the locus can be assigned by means of electroforeses of 
serum samples separating the two albumin alleles. The word 'gene' should not be used for DNA 
polymorphism with more alleles in non-coding sequence. Instead it should be called  a locus with more 
alleles. There is not always a sharp separation between gene and locus or between gene and allele in 
practice, therefore when gene frequency is mentioned in the next chapter, it will mean both proper genes 
as well as alleles in non-coding DNA sequences 
(loci). 

Figure 1.8 shows segregation of genetic 
polymorphism in a swine family. The 
polymorphism is in a mikrosatellite, 'S0002' locus, 
which has a (GT) repeat. It is detected by means of 
PCR followed by electroforeses of the product to 
separate the alleles. Most of the individuals have 
two bands, heterozygotes. Some individuals have 
only one band, homozygotes. The PCR analyse is 
carried out by Merete Fredholm. 

The boar Cup carries the alleles 209 and 195 and 
sow 400 carries the allele 199 and 195. Cup is both 
sire and grand sire of the litter. The dam of the litter 
number 401 has got the '195' allele from Cup and 
'199' allele from sow 400. 
The shown litter is part of a bigger family, which 
will be part of a calculation example in the next chapter. For more information on the pig family click 
here.  

 

Figure 1.8 Segregation of genetic variation 
(mikrosatellite) in a locus in a swine family detected 
by gel electroforese of a PCR product. The boar 
Cup carries the alleles 209 and 195 and sow 400 
carries the alleles 199 and 195 segregating in the 
offspring.  
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1.6 Data base on Mendelian inheritance in domestic animals 

To get an impression of Mendelian inheritance within domestic animals a visit to 
the Australian data base ANGIS is appropriate. It can be reached here. The data 
base mainly contains  information on segregation of disease genes in populations 
of domestic animals. The data base is compiled by Nicolas who is also the author 
of the book 'Introduction to Veterinary Genetics'. Below is shown a print of 
references from the data base on the albino gene in cattle. Photo of an albino SDM 
calf right, cf. Lars Gjøl Christensen. 

COAT COLOUR, ALBINISM in CATTLE  

MIA Number :  000202 

Possible human homologue (MIM number) : [ 203100 ]  

Across-Species Summary :  

     Congenital lack of pigmentation in all parts of the body. Due to a 

     non-functional form of the enzyme tyrosinase. 

 

References after 1970 

 Greene, H.J., Leipold, H.W., Gelatt, K.M., Huston, K. (1973). 

     Complete albinism in beef Shorthorn calves. Journal of Heredity 

     64: 189-192. 

 Weber, W., Lauvergne, J.J., Winzenried, H.U. (1973). Hereditary 

     albinism in Swiss Simmental cattle [French]. Schweizer Archiv fur 

     Tierheilkunde 115: 142-144. 

 Manunta, G., Lai, P., Cancedda, M. (1975). A contribution to the 

     study of albinism in the Brown Mountain breed. Zootecnica e 

     Veterinaria. Fecondazione Artificiale 30: 129-135. 

 Ojo, S.A., Leipold, H.W. (1976). Ocular albinism in a herd of 

     Nigerian Holstein Friesian cattle. Zeitschrift fur Tierzuchtung 

     und Zuchtungsbiologie 93: 252-254. 

 Jayasekera, U., Leipold, H.W. (1981). Albinism in United States 

     Charolais cattle. Annales de Genetique et de Selection Animale 

     13: 213-218. 

 Foreman, M.E., Lamoreux, M.L., Kwon, B., Womack, J.E. (1994). Mapping 

     the bovine albino locus. Journal of Heredity 85: 318-320. 

Chapter 2. Hardy-Weinberg law for gene frequency stability in 

large populations  

Genetic terms concerning genes and alleles.  
The Labrador Retriever race has the coat colour types yellow and black. Thus considering a gene for 
yellow coat colour, it points at both a locus and an allele. This corresponds to the early understanding of 
genes where there was a variant (yellow) corresponding to the wild type (black).  
The term 'gene' should not be used when talking about a DNA polymorphism with more alleles in non-
coding sequences. Instead the term 'locus' should be used. This terminology also ought to be used in 
connexion with genetic variants. There is not always a sharp separation between gene and locus, and 
between gene and allele in practice. So when gene frequencies are mentioned in this chapter, it would 
include genes in the traditional sense and alleles in non-coding DNA sequences (loci).  

2.1 Gene counting method for calculation of gene 

frequencies 
Figure 2.1. Albumin type is 
codominantly inherited, which 
means that both alleles can be 
seen directly on the gel. The 
phenotypes, seen on the gel, are 
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Gene counting method, Co-dominant inheritance, Phenotype = 

Genotype  
Data from a study of albumin types in Danish German Shepherd will 
be used to explain the principles, see Table 1 section 2.4. When serum 
is tested on an electrophoresis gel there is a 'fast' and a 'slow' albumin 
allele designated as the F and S allele, respectively. The investigations 
have been carried out by K. Christensen et al. 1985, Hereditas, 
102:219-223.  

The following numbers of the 3 albumin genotypes was found in a 
population. 

--------- 

Genotype        SS          SF         FF     Total 

Number          36          47         23      106 

Frequency      0.34       0.44       0.22    = 1.00 

---------- 

The frequency of the SS type is calculated as 36/106 = 0.34 

The calculation of  gene frequency for S is based on the gene counting method, every SS individuals 
have 2 S genes and a SF individual has 1. This is relative to all genes in the population, which are 2*106. 

The frequency of S is calculated as  p = (2*36 + 47)/(2*106) = 0.56 

    do        F                do    q = (2*23 + 47)/(2*106) = 0.44 

                                                              ------ 

                                                               1.00 

The frequency of the first allele is normally given the symbol p and the second the symbol q. If there are 
more alleles the symbols are continued alphabetically. 

An allele frequency corresponds to a probability, and therefore the sum of alleles (gene frequencies) is 1. 
For basic statistical formulations, or Samuels, Statistics for Life Science 

Examples of multiple alleles (more than two alleles)  
In section 1.5 the segregation of a mikrosatellite in a swine family was mentioned. There are 3 alleles as 
can be seen in the gel in Figure 2.2. The allele designations are 209, 199 and 195 

an SS, an SF and an FF albumin 
type.After the electrophoresis of 
the serum samples the gel is 
stained with Amidoblack. 
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Figure 2.2  
Segregation of genetic variation 
(mikrosatellite) in a locus in a 
swine family detected by gel 
electrophoresis. The boar Cup 
carries the alleles 209 and 195 
and sow 400 carries the alleles 
199 and 195. Most of the 
animals are heterozygotes each 
with two bands. The 
homozygotes have only one 
band. Gel prepared by Merete 
Fredholm 

 

 

The calculations of the gene frequencies by means of the gene counting methods are shown below. For 
the allele '209' there are 18 heterozygotes and 2 homozygotes (no bands in the lower line). Count for 

yourself! For the allele '199' there are 12 heterozygotes and 0 homozygotes (all 12 have bands in '199' line 
plus one other band in either '195' or '209'). Count again! 

Frequency of '209' calculated as p = (2*2 + 18)/(2*44) = 0.250 

 do            '199'    do       q = (2*0 + 12)/(2*44) = 0.134 

 do            '195'    do       r = 1 - p - q         = 0.616  

The last allele frequency is most easily calculated as a difference, since the sum of the allele frequencies 
is 1. 

Figure 2.3. The Labrador 
Retriever with the normal 
colour type black and 
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The square root method, Dominant inheritance  

In a population of Labrador Retrievers the following numbers of the two 
phenotypes was found: 

--------- 

Phenotype       Black         Yellow     Total 

Genotype        EE+Ee          ee  

Number           182           18         200 

Frequency       0.91         0.09       = 1.00 

---------- 

The black colour type represents both homozygotes and heterozygotes. If two 
random black dogs are mated, they will occasionally get yellow offspring. This 
happens when both dogs by random are of the colour genotype Ee. 

The gene counting method implies that the phenotype is equal to the genotype, but this is only the case 
for yellow. For an offspring to become yellow, it should have an e gene from both its sire and dam, each 
with a probability of q. Therefore, the probability multiplication rule can be applied to calculate the 
frequency of ee individuals which corresponds to q2. From the data material it is estimated to be 18/200 = 
0.09 

The square root of 0.09 is q = 0.30. 

The frequency of the black gene in the population becomes p = 1 - q = 0.7. 

2.2 Hardy-Weinberg equilibrium and statistical tests  

Definition of H-W equilibrium. In a large population with random mating H-W equilibrium will occur 
after one generation provided that the same gene frequencies occur in both sexes. Hardy-Weinberg 
equilibrium implies that gene and genotype frequencies are constant from generation to generation. If 
disequilibrium occurs, equilibrium will be reestablished after one generation of random mating. The H-W 
conditions also imply that when the gene frequencies are p and q, the genotype frequencies will be 
respectively p2, 2pq and q2 for the dominant, the heterozygotes and the recessive in a two allele system. 
This can be inferred by the arguments given for the recessive type under dominant inheritance 

Statistical test for H-W equilibrium  
Exemplified by data from the albumin types in Danish German Shepherd population, shown in section 
2.1. 
The following observed numbers of the three genotypes (obs), and the calculated expected numbers under 
Hardy Weinberg equilibrium (exp) with frequencies p(S)=0.56 and q(F)=0.44 was found in the 
population. 

--------- 

Genotype         SS               SF             FF       Total 

Number, obs      36               47             23     = 106 = N 

Frequency, exp   p2              2pq               q2    = 1.00 

Number, exp      p2N             2pqN              q2N   = N 

Number, exp      33.2             52.3           20.5    = 106 

Deviation        2.8             -5.3            2.5 

Chi-square       0.24             0.54           0.31    = 1.09 

----------  

The expected numbers for Hardy Weinberg equilibrium (exp) are calculated using the multiplication rule 
for probabilities. 

with segregation of the 
recessive yellow coat 
colour type due to alleles 
in the extension locus.  
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For the SS genotype an S gene from a father and an S gene from a mother has to be drawn, the same 
repeated 106 times. Therefore the probability for an SS genotype is  p*p*106. The corresponding 
arguments for the  other two genotypes lead to the results shown in the table above. 
Now a Chi-square test for H-W equilibrium can be calculated as the sum of squared deviations, each 
divided by the expected number. 
The test has 1 degree of freedom as there are three classes, and two free parameters given by the material, 
p and N, has to be applied to calculate the expected numbers. The last used parameter (q) is not free, as it 
can be calculated as (1 - p). 
By use of the chi-square table (chapter 13), with DF=1 the value 3,84 equals the 5% limits for 
maintaining the H0 hypothesis, that the data has H-W proportions. Therefore the found deviation between 
observed and expected numbers has a probability which is larger than 5%. Conclusion: There is no 
statistical deviation from H-W equilibrium. 

For an applet for calculation of Chi-squares for H-W equilibrium, click here.  

2.3 Sex-linked inheritance  

One of the preconditions for H-W equilibrium is random mating in the population. In such a population  
H-W equilibrium always occurs after one generation of random mating, provided that both males and 
females have the same gene frequency. 

By sex-linked inheritance there is not necessarily the same gene frequency in males and females after 
random mating, since the two sexes get their genes from two different sources. 

In mammals the males get all their sex-linked genes from their mothers, whereas the females get half their 
genes from their sires and half from their dams. The opposite is the case in birds, where the female is the 
heterogametic sex. 

Example, the orange gene in cats: In a population the following number of the three genotypes were 
found. The orange gene (O) gives yellow coat colour. The genotype Oo gives a mixed colour, which is 
caused by random inactivation of the X-chromosome in XX individuals. The oo phenotype is non-yellow. 

---------     ------     females  ---------       -----  males   ----- 

Genotype       OO        Oo      oo    Total       O       o     Total 

Number          3        53     117     173        28     149    177 

Frequency     0.02     0.31    0.67  = 1,00       0.16   0.84 = 1,00 

---------- 

In mammals the sex-linked gene is shown directly in the males. That is, the genotype frequency equals 
the gene frequency. Whereas in the females the calculation of the gene frequency is identical with the 
calculation for autosomal genes, as shown below. 

Frequency of O calculated as p = (2*3  + 53)/(2*173) = 0.17 

   do        o         do    q = (2*117+ 53)/(2*173) = 0.83 

                                                       ------ 

                                                        1.00  

There are only minor differences between the frequency in the two sexes, as shown. If there is a 
difference it will be halved in each new generation with random mating, so in practice H-W equilibrium 
is reestablished after a few generations, if the population deviated from equilibrium in the first place. 
Phenotypically the heterozygotes are very special, since only one gene is active in each cell. The 
phenotypes occur because of a random blend of cells with an alternative activated gene.  
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From the chromosome preparation it can be seen that one of the X-chromosome is inactive (circled), 
figure 2.4 left. To the right is a heterozygotic female cat with the genotype Oo. It has yellow and black 
spots caused by alleles in the sex-linked orange locus. The white colour is caused by an autosomal gene 
for spots. 

 
Figure 2.4  
Heterozygote female 
cat with the genotype 
Oo in the sex-linked 
Orange locus. Photo 
Bodil Andersen, 
Bogense. It gives a 
blended coat colour of 
yellow and black with 
variating spot sizes. 
This is caused by 
random inactivation of 
one X-chromosome in 
female mammals. The 
inactive swine X-
chromosome is circled. 

.  

The inactive X-chromosome is detected by means of Acridine orange staining on cells grown for 6.5 
hours with BrdU (Brom deoxy-Uridine) in the media. DNA-syntheses which occur after adding BrdU can 
be seen as weakly stained areas on the chromosomes. There is a circle around the inactive X 
chromosome. The active genes replicate early in the cell cycle and are therefore found in the white band. 

The majority of cases with recessive sex-linked diseases occur in males. Haemophilia in human is one of 
the best known examples of sex-linked recessive inheritance, the frequency in boys being 100 times 
larger than the one in girls. This occurs when the gene frequency is 0.01, corresponding to the frequency 
in boys. Whereas the gene in the girls has to come from both father and mother, each with a probability of 
0.01,  this corresponds to a frequency in girls of 1 in 10'000. 

2.4 Examples of application of gene frequencies 

When the gene frequencies in a population are known, the genotype frequencies for each genotype under 
H-W conditions can be calculated. Correspondingly the mating type frequencies under random mating 
can be calculated by means of the multiplication rule for probabilities, results shown in the table below. 
Note that when the two genotypes are different, there has to be multiplied with 2, as the two types can be 
combined in reverse orders.  

    
Offspring 
segregation 

 

Mating type Frequency  AA Aa aa 

AA x AA p2 x p2  = p4 1   

AA x Aa  2 x p2 x 2pq  = 4p3 x q  0.5 0.5  

Aa x Aa 2pq x 2pq  = 4p2 x q2 0.25 0.5 0.25 

AA x aa 2 x p2 x q2   = 2p2 x q2  1  

Aa x aa  2 x 2pq x q2 = 4pq3  0.5 0.5 
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aa x aa  q2 x q2   =  q4   1 

Calculation of mating type frequencies is important in relation to control of monogenetic inherited 
diseases. This topic will be discussed more detailed in chapter 5, where the classical segregation in 
offspring will be submitted to statistical analysis.  
An applet for calculation of mating type frequencies can be seen below  
Example of use of  the applet is shown below where q=0.005. The 99% of the recessive offspring come 
from normal parents. 

 

Gene frequencies also have a large area of application within bred studies. The gene frequencies for 
closely related breeds have a tendency to lie closer each other than  not so closely  related breeds. 
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The above shown table gives the results from a study of the albumin types in Danish dog breeds.  As 
mentioned in section 2.1 a fast and a slow albumin allele occur when serum is tested on an 
electrophoreses gel. These alleles have the designations F and S. The frequencies of the S allel varies 
from 0 to 1 in the dog breeds. The investigations have been carried out by K. Christensen et al. 1985; 
Hereditas, 102:219-223. 

In the table below are the results from a study of some mikrosatellites in Danish dog breeds, as well as in 
the red and the blue foxes. Here are results from three loci each with several alleles, being named as the 
length of the DNA-string being amplified by the primers. The frequencies vary significantly between the 
dog breeds. The primers which are developed in the dog work equally well in both fox species. This 
indicates a large degree of genetic homology between dogs and foxes. He gives the information content of 
the loci. This depends on the percentage of heterozygotes in the population concerned. Genetically the 
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heterozygotic animals are the most informative. In paternity tests or other genetic investigations the 
homozygotes give very little or no information about which of the parents' alleles an offspring has 
inherited. The investigations have been carried out by M. Fredholm et al. 1995; Mamalian Genome, 6:11-
18. 

 

2.5 Gamete frequencies under linkage 

The term gamete frequency is applied when the alleles from more than one locus are considered. Every 
new gamete contains an allele from each locus. Consider the two loci, A and B, the genotypes on each 
locus can occur in H-W proportions, even though this is not the case for the two loci together. This can be 
of  great significance in relation to marker genes (loci). Occasionally a specific allele on the marker loci 
occurs with the disease allele of another locus. If the two loci are closely linked it could take several 
generations before equilibrium is reached between the two loci. 

The combination of two gene pairs, A and B, each with two alleles are shown below in the classical two-
by-two table, where r, s, t, and u are the observed gamete frequencies of the gametes AB, Ab, aB and ab, 
see Figure 2.5. 

         gene A   gene B       B              b            frequency    

                 ------------------------------------------------  

    A      | r=p(A)*p(B)+D  s=p(A)*q(b)-D  |   p(A)    

    a      | t=q(a)*p(B)-D  u=q(a)*q(b)+D  |   q(a) 

          ----------------------------------------------- 

 Frequency  |   p(B)    q(b)           |    1 
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Gene frequencies can be calculated by means of the gene counting method and they correspond to the 
border distributions. The expected frequency of a gamete is the product of the border distributions which 
is equal to p(A) = r + s = p(A)*p(B) + D + p(A)*q(b) - D = p(A)[p(B) + q(b)] = p(A). The deviation 
which occurs between observed and expected numbers is assigned the symbol D (Disequilibrium). Note 
that the deviations are the same size for all cells (D), but with a negative sign for the repulsion phase 
gametes, Ab and aB. 

A calculation example: The observed number of gametes is AB=21, Ab=49, aB=19, ab=11. 

gene A/gene B    B          b              Sum (Freq) 

          ------------------------------------------------------------ 

       A    |   21  (r=0.21) 49  (s=0.49)   |  70  (p(A)=0.7) 

      a    |   19  (t=0.19) 11  (u=0.11)   |  30  (q(a)=0.30) 

          ------------------------------------------------------------- 

    Sum (Freq) |   40 (p(B)=0.4) 60  (q(b)=0.6) | 100    1 

 

                                       

Frequencies are given within brackets:   Chi-squared  = 9.7** Df=1 

           D= u-q(a)*q(b)=0.11 - 0.3*0.6= -0.07 

Statistically significant deviation occurs from random combination between the genes A and B 
corresponding to a disequilibrium equal to -0.07. 
The corresponding gametes from the first table can be organized differently as shown below: 

 
         gamete   observed frequency   expected frequency   deviation 

         ------------------------------------------------------------  

    AB  r    p(A)*p(B)  D 

    Ab  s    p(A)*q(b)        -D 

    aB  t    q(a)*p(B)        -D 

    ab  u    q(a)*q(b)  D 

In the table below all possible genotypes in a two gene systems are shown. Physical recombination only 
has significance in the double heterozygotes, in all other genotypes a recombination would not give rise to 
other types of gametes than those from which they are formed. The corresponding genotype frequencies 
under random mating are obtained by multiplication of gamete frequencies as shown. The multiplication 
is done by means of an applet designed to study linkage and linkage disequilibrium.  

 

Figure 2.5 shows the two types of double heterozygotes. By recombination gametes of the other type is 
formed and reverse. Therefore there is linkage equilibrium when equal numbers of the two types of 
double heterozygotes occur. This can also be seen in the formula for D given below. 
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The expected frequency of a specific 
gamete corresponds to the frequency 
where the two genes are inherited 
independently. In that case the 
multiplication rule for probabilities can 
be applied to calculate the expected 
numbers. The disequilibrium has the 
symbol D and is defined as shown 
above (observed - expected gamete 
frequency). It can also be calculated as half of the difference between the frequencies of double 
heterozygotes in linkage and repulsions phase: 

        D = u  -  q(a)*q(b), or   

 D = r*u - t*s    (= [p(AB/ab) - p(Ab/aB)]/2)  

         

The maximum disequilibrium exists when all double heterozygotes are in linkage phase (AB/ab) or in 
repulsion phase (Ab/aB); then it has the value DMax.  

If the recombination frequency is c, D will be inflated to D*(1-c) per generation, so in the n'th generation 
Dn = D0*(1-c)n, where D0 is the 
disequilibrium in the base population, see 
figure 2.6.  

For two independent loci having .5 in 
recombination frequency 4 to 5 generations 
will pass before equilibrium is reached. 
Concerning closely linked loci with less than 
5 % recombination, it will take more than 25 
generations before equilibrium is reached.  

The release of linkage disequilibrium can 
produce new genetic variation for 
quantitative traits. If two loci are linked, both 
carrying a positive and a negative effect and 
exist in linkage phase, new variation arises if 
the positive alleles are recombined to be in 
linkage phase 

Mendel's second law predicts that two loci 
would segregate independently in F2 in an 
analysis cross. This is caused by the fact that 
all individuals in F1 are double heterozygotes. Since only the double heterozygotes can recombine, it will 
take long time before equilibrium arises in a mixed population, where the frequency of the double 
heterozygotes is only 2(r*u + t*s). 

In relation to a new mutation complete disequilibrium exists in several future generations, as the mutation 
arises in only one chromosome. This disequilibrium can be used in relation to application of gene markers 
to identify the localization of the gene and to identify carriers in related individuals by means of the 
marker locus. 

Figure 2.5. The two homologous chromosomes in linkage and in 
repulsions phase. When recombination takes place (with a 
frequency c) the opposite gamete is formed  

 

 
Figure 2.6. Curves of number of generations towards 
equilibrium for different recombination frequencies.  
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Within a family maximum disequilibrium always occur. This makes it possible to utilize marker genes 
within families. If an individual is born with a recessive disease and has a specific marker combination, 
new offspring having the same marker gene combination, would with great probability also carry the 
disease. 

Applet for calculation of Chi-square test for linkage disequilibrium, click here, and Applet for studying 
linkage and linkage disequilibrium, click here.  

Chapter 3. Deviations from Hardy-Weinberg equilibrium 

3.1 Systematic deviations from H-W equilibrium 

In a large population with random mating H-W equilibrium occur unless the population is subjected to 
systematic effects, which can change the gene frequency. The systematic processes can be divided into 
the categories show in Figure 3.1.  

 
Figure 3.1. 
Mutation,  
 
 
 
 
Migration and 
 
 
 
 
Selection  

For the proper genes (structure genes) mutations generally occur with a frequency of .1 to 1 per million 
gametes per gene. It occurs 1000 times more often in the number of repetitions in short repeated DNA 
sequences (mikrosatellites). These sequences are not translated into protein but works as internal spacers 
between the genes. The sum of mutations in all genes will cause each new individual to carry one or more 
new mutations. Most new mutations in the structure genes are harmful. Therefore due to low fitness a 
selection of animals carrying the harmful mutations will occur in every generation. Over a large number 
of generations a balance between new mutations and selection will be established. For recessive genes the 
equilibrium gene frequency (q) can be calculated by the following equation:  

q2*s = my,  

the mutation frequency (my) is equal to the frequency of recessive individuals being removed in each 
generation (q2*s). For dominant genes the equilibrium gene frequency (p) can be calculated from the 
following equation:  

(1/2)2pq*s = ps = my, 

the mutation frequency (my) is equal to half of the frequency for heterozygotic individuals, which is 
removed in each generation (pq*s) and q is approximately 1. For definition of s see section 3.2. 
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In natural populations migration often occurs from the closest neighbourhood. Thereby a smooth 
transition in the gene frequency will occur between the sub populations. In animal breeding migration 
corresponds to introduction of new animals. They are normally bought where the best animals are bred. 

Natural selection corresponds to the term 'survival of the fittest', known from Darwin's theory of 
evolution. The natural selection will seldom lead to gene fixation, as a population often are subjected to 
sudden changes in environmental conditions. Therefore it can be an advantage for a population to carry 
genes which, in the present situation, are not the optimal. Recessive genes on the other hand can be 
carried in low frequency with only minor loss of vitality (fitness). 

The term genetic load is used to describe a population with 'lethal genes' or or genes with lower fitness.A 
population can only carry a certain load which is removed by selection in each generation. In contrast to 
new mutations, which play a minor role, it is more costly to maintain systems, where overdominance 
occurs by removal or partly removal of both 
homozygotic types in each generation.  

In the Belgian Blue breed a recessive mutant 
(double muscles) is found. This breed is shown in 
Figure 3.2. The gene can only be passed on if a high 
number of Cesarian sections are accepted as the 
calves are too big to be born the natural way. In 
nature most of these calves would die, therefore in 
nature the gene would only exist in a very low frequency. 

In the next sections formulas will be given for how the gene frequencies change when a population is 
exposed to selection pressure on a specific genotype. 

3.2 Selection against the recessive  

By selecting against the recessive the following table is obtained. Selection (s) against the recessive is 
relative compared to the dominant types. The proportion selected of a given genotype is given the symbol 
s, which do not  reproduce in every generation. Therefore, the fitness is equal to 1-s. 

 
 
Table formulating selection: 

--------- 

Genotype         EE               EE             ee       Total 

Frequency        p2               2pq           q2        = 1,00 

Fitness           1                1            1-s       

Proportion       p2               2pq           q2(1-s)   = 1-sq2 

after selection 

--------- 

After selection the gene frequency is calculated by the gene counting method. The new gene frequency q' 
is estimated as the heterozygotes plus 2 times the surviving recessive relative to 2 times the proportion of 
all surviving genes after selection, which is equal to 1-sq2. 

            q'  = (2pq  + 2*q2(1-s))/(2(1-sq2))  

 

 
Figure 3.2  
Bull of the Belgian Blue 
breed which is double 
muscled. The term 'genetic 
load' is visualized.  

Figure 3.3. Effect of selection against the recessive and 
changes in gene frequency through generations. At a 
low gene frequency the changes are very slow.  
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The frequency q' represents the genes which 
survive and therefore corresponds to the gene 
frequency in the next generation before 
selection. The formula can be applied repeatedly 
generation after generation. In the right side of 
the formula q' is calculated in the preceding 
generation and so forth. 

Figure 3.3 shows such an application. By strong 
selection (s=1) the gene frequencies change very 
rapidly at high gene frequencies. If the gene 
frequency in contrastis is low, the selection will 
hardly affect the frequency, the population 
has parked the gene in waiting position so to 
speak. This causes some problems if it concerns 
a recessive disease gene in an animal 
population. Selection can not really solve this 
problem. Therefore there is great interest in 
finding a DNA test method to diagnose the heterozygotic carrier. From Figure 3.3 it also becomes evident 
that by weak selection pressure the changes in the gene frequency are always very slow.  

For s=1 the formula for gene frequency changes can be expanded to n generations, when q0 is the gene 
frequency in the initial population: 

 qn = q0/(1+n*q0) 

From this formula n can be isolated and it can be calculated how many generations is needed to obtain a 
given change in the gene frequency q. 

  n  = 1/qn - 1/q0  

Example: When s=1 the gene frequency change from 0.01 to 0.005 would take 

      n  = 1/0.005 - 1/0.01 = 200 - 100 = 100  

It takes 100 generations to change the frequency of a lethal gene from 1 % to 5 per thousand.  

For an applet, as seen below, for calculating gene frequency changes for different fitness combinations, 
click here The Calculations show that the gene frequency change from .5 to .42 after one generation of 
selection when the fitness of the recessive is equal to .5. 

 

DNA test and culling of heterozygotic males  
It takes a very long time to eliminate a recessive disease gene from a population, when there has only 
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been selected against the recessive. In many populations relatively fewer males than females exist. 
Therefore, it is often enough to DNA test the males. As the males contribute to half of the genes in the 
new generation, the gene frequency of the disease gene would be halved in every new generation, if only 
free males are used for breeding. At the same time it is attained that  no segregation of recessively 
affected individuals will occur. 
Example: The recessive inherited disease BLAD (Bovine Leukocyte Adhesion Deficiency) occurs in HF 
dairy breeds. In 1992 the gene frequency in the Danish female population was about 15% of the BLAD 
gene. By systematically  'BLAD' DNA testing all new bulls the frequency in year 2000 is down to less 
than 7%. By this procedure the frequency of the BLAD gene is halved in every new generation.  

3.3 Selection for heterozygotes  

By selecting for heterozygotes (overdominance) the following table is obtained. Selection against the 
recessive (s2) and the dominant (s1) is relative in comparison to the heterozygote types.  

Table formulating selection for heterozygotes: 

--------- 

Genotype         EE               Ee             ee       Total 

Frequency        p2               2pq            q2       = 1,00 

Fitness          1-s1              1            1-s2       

Proportion       p2(1-s1)         2pq           q
2(1-s2)   = 1-p

2s1 - q
2s2 

after selection 

--------- 

After selection the gene frequency is calculated by the gene counting method as shown in section 3.2. 

              q' = (2q2*(1-s2) + 2pq)/(2*(1-p
2s1 - q

2s2))  

The frequency q' represents the genes that survive and therefore corresponds to the gene frequency in the 
next generation before selection. In this case, concerning overdominance, selection will not end by 
fixation of one of the alleles, instead an equilibrium with constant gene frequencies will occur. 
The equilibrium frequency is called q (hat), and equilibrium is reached when no change occurs from one 
generation to the next, i.e. delta q = 0 

          delta q = q' - q = pq(ps1-qs2)/(1-p
2s1 - q

2s2) = 0 

                                ps1-qs2                = 0   

 

which solved with respect to q gives the equilibrium frequency  

  

            q(hat) = s1 / (s1 + s2) or 

            p(hat) = s2 / (s1 + s2) 

Delta q equals the change in the gene frequency from one generation to the next. When the gene 
frequency is larger than the equilibrium gene frequency q (hat) delta q becomes negative, and when gene 
frequency is lower delta q is positive. Therefore selection for heterozygotes is a neverending selection. 
Thus the population should carry a large genetic load, it is costly to maintain that type of polymorphism. 
Overdominance is best utilized in animal breeding by producing crossbreeds, in which all individuals can 
be heterozygotes.  

Figure 3.4. 
Fitness conditions by overdominance. 
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Fitness by overdominance is visualized in Figure 3.4, here the 
two homozygote types have a fitness level which is lower than 
the heterozygotes, whose fitness level is 1. 

Example: The classical example from human genetics of 
overdominance is the occurrence of the Mendelian inherited 
recessive sickle cell anaemia with a frequency of around 5% 
corresponding to q = 0.22 in malaria areas. Individuals which 
are heterozygotic for the sickle cell anaemia are resistant to malaria, this gives them a greater chance of 
survival than normal individuals. Individuals with anaemia have low chances of survival, s2=1. 
What is the fitness level for the normal homozygotes in comparison to the heterozygotes? 

Equilibrium occurs at    p(hat) = s2 / (s1 + s2) = 1 - q =1 - 0.22  

 

which gives          s1 = (s2 /(1 - q)) - s2 = 0.285 

 

Fitness in normal individuals in a malaria area is 1 - 0.285 = 71,5 % in comparison to the heterozygotes. 
The 'genetic load' of the population is p2s1 + q2s2 = 0.22, which means that 22% of a generation succumb 
to maintain the equilibrium, either because of  the anaemia or the malaria. 

Applet for calculation of gene frequencies for different fitness combinations, click here  

3.4 Selection against heterozygotes  

The table, which was used in the selection for heterozygotes, can also be used in selection against the 
heterozygotes. Selection (s) of the recessive and the dominant type now has a negative sign and again it is 
relative to the heterozygote type, see Figure 3.5.  

 Table formulating selection for heterozygotes, s1 and s2 is now negative: 

--------- 

Genotype         EE               Ee             ee       Total 

Frequency         p2               2pq            q2       = 1,00 

Fitness          1-s1              1            1-s2       

Proportion       p2(1-s1)         2pq           q
2(1-s2)   = 1-p

2s1 - q
2s2 

after selection 

--------- 

After selection the gene frequency is calculated by means of the gene counting method as shown in 
section 3.2. 

              q' = (2q2*(1-s2) + 2pq)/(2*(1-p
2s1 - q

2s2))  

The frequency q' represents the genes which survive and therefore corresponds to the gene frequency in 
the next generation before selection. The equilibrium frequency is q (hat), and equilibrium occurs when 
there is no change from one generation to the next, i.e. delta q = 0. 

          delta q  = pq(ps1-qs2)/(1-p
2s1 - q

2s2) = 0 

 

  

            q(hat) = s1 / (s1 + s2) 

 

Figure 3.5 
Fitness condition by selection against the 
heterozygotes. 
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Figure 3.5 shows the fitness level when selection against the 
heterozygotes has been made. The two homozygote types' 
fitness level is higher than the heterozygotes, whose fitness is 
1. 

Delta q is the change in gene frequency from one generation to 
the next. When the gene frequency is larger than the 
equilibrium gene frequency q (hat), delta q is positive, and 
when the gene frequency is lower delta q is negative. Therefore selection against the heterozygotes leads 
to an unstable situation. It leads to fixation of the allele whose frequency is higher than that of the 
equilibrium. In some cases the heterozygotes can be selected against in one life period and selected for in 
another, and still equilibrium occurs. 

An example of selection against the heterozygotes: When chromosome polymorphism occurs in the Blue 
foxes, as shown in section 10.3, the heterozygotes individuals have a lower reproduction rate than the 
homozygotes individuals. But the polymorphism is still found in many natural populations? 

3.5 Random deviations from Hardy-Weinberg equilibrium 

Problems can occur with the H-W equilibrium in small populations, as a gene frequency can change by 
chance. 
In the smallest possible population (1 male and 1 female), only 4 genes can be carried on to the next 
generation. In a two allele system with p=0.5, this corresponds to the 5 possible gene frequencies in the 
next generation, as shown below, when both parents have been heterozygotes (Aa):  

AA - AA  q=0 

AA - Aa  q=0.25 

AA - aa  q=0.5 

Aa - Aa  q=0.5 

Aa - aa  q=0.75 

aa - aa  q=1 

If the gene frequency is 0 or 1, the gene is either fixed or lost. If 4 genes are drawn from a base population 
with a gene frequency of p =0.5, the chance of 
loss or fixation (all four genes are a or A) is 0.54 
= 0.0625.  

The variance of the gene frequency corresponds 
to a binominal variance. This can be used in 
evaluating whether a population is small with 
random changes in gene frequencies or large 
with stable gene frequencies.  
An applet to simulate random changes in gene 
frequency depending on population size is found 
here  

The binominal variance is equal to (p*q)/(2*N), 
2*N being equal to the number of genes 
transmitted to the next generation. 
Figure 3.6 shows the standard deviations of the 
gene frequency (p) when the base population has an average gene frequency of 0.5. The new generation 
consists of N individuals with 2N genes. The standard deviation has significance for the gene frequency 
when going from one generation to the next. The random process is important, when only a limited 

 

Figure 3.6  
Standard deviations from a gene frequency depending 
on population size. 
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number of animals can carry on the genes. In Figure 3.6 it is clear that in a large population the standard 
deviation of the gene frequency is small. Which means that the H-W law is true in the large population, 
with constant gene frequencies from generation to generation  
In cases of extreme low or high gene frequencies the number of individuals has even more significance if 
a gene is lost or fixed. In the large population even genes with very low frequencies would remain. 
Rule of thumbs: It can be derived from Figure 3.6, that large populations are counted in hundreds 

not in tens.  

The size of the population is the problem when considering endangered species. If a specie comes under 
100 breeding individuals its chance to survive is when man helps to increase the effective population size, 
see chapter 9.3.  
In the small population, if it survives, fast changes will occur away from the base population. Darwin 
described the phenomenon as 'evolution by isolation'. He based his theory on observations from the many 
isolated islands in the Pacific ocean. Here both the animals and plants differed strongly from the one on 
the continents.  

3.6 Effective population size 

Every new generation inherits half its genes from the sires and half from the dams. This is very important 
in, for  instance, cattle breeding, where the possibility of artificial insemination is used. The number of 
bulls can here be very low compared to the number of cows. 
In case of uneven numbers of the two sexes the effective population size (Ne) can be calculated according 
to this formula: 

            4/Ne  = 1/Nsires + 1/Ndams or solved for  Ne 

 

       Ne = (4Nsires * Ndams)/(Nsires + Ndams) 

 

Example 1) 10  sires and 10 dams  

 

            4/Ne  = 1/10 + 1/10   correspond to Ne = 20 

 

Example 2)  1  sire  and 10 dams  

 

            4/Ne  = 1/1 + 1/10    correspond to Ne = 3,7 

 

Example 3) 100  sires and  100000 dams  

 

            4/Ne  = 1/100 +   0   correspond to Ne = 400 

The variance of the gene frequency in next generation corresponds to what is calculated by use of Ne, see 
section 3.5. If the number of males and females are the same (example 1), Ne equals the sum. If the 
number of females is infinite compared to the number of males, Ne equals 4 x the number of males. The 
sex which has the lowest number of individuals determines the effective size of the population. 

The effective population size and increase in inbreeding.  
The effective size of the population is important in relation to accumulation of inbreeding in a population. 
In populations with few animals all the animals will be closely related to each other within a few 
generations. Inbreeding occurs when the parents of an individual are related, see chapter 4. Inbreeding 
leads to several negative effects, which are directly proportional to the coefficient of inbreeding. 
According to the formula the increase in inbreeding is inversely proportional to the effective size of the 
population: 

delta F = 1/(2*Ne) 
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In a population where Ne = 20 the increase in inbreeding is 2.5% per generation. 

Chapter 4. Relationship and inbreeding 

4.1 Relationship and inbreeding, definition 

As introduction to this chapter should be given some general remarks. Inbreeding is often a negatively 
charged word, which generally is used to describe situations where no new blood is introduced. As for 
instance a scientific institute can get the attribute inbred. The expectation is also lower to inbred animals.  
Relationship is synonymous with 'being in family with'. Relationship is normally a positively charged 
word as for instance. I'm in family with this person.  

Inbreeding occurs in offspring of individuals that are related. Related individuals have common 
ancestors in the pedigree. Common ancestors can be parents, grand parents etc. These common ancestors 
are not necessarily from the same generation in relation to the individuals in question. Two individuals 
are for instance related if the grand father of one of them is the father of the other. In Figure 1 is shown 
the consequences of identical 
homozygocity in offspring after 
full sib mating 

 

The degree of inbreeding is 
defined as the probability 

that identical homozygocity 

occurs in a locus. The identity is 
not an allele type, but it should be 
inherited from the same allele in 
the common ancestor. The degree 
of inbreeding is given the symbol 
F and can vary between 0 and 1. 
The degree of inbreeding in 
outbred individuals is 0. This is 
valid even though the parents of 
the individuals have common 
ancestors more than 10 generations back. The degree of inbreeding after full sib mating is 0.25, which can 
be derived by means of the example in Figure 4.1. The degree of additive relationship (a) between two 
individuals is defined as two times the probability that two randomly chosen alleles in a locus are 

identical because of decent from the common ancestor(s), or the proportion of identical alleles from 
the commom ansestor(s) in the two related individuals. The alleles are 'identical by decent'. Inbreeding in 
an individual and the additive relationship between the two parents is directly related. The degree of 

inbreeding in an individual constitutes half of the degree of relationship between the two parents. 
The degree of relationship and inbreeding are also called the coefficient of relationship and inbreeding.  

A graph of inbreeding on chromosome level is shown here  

4.2 Relationship and inbreeding, 

calculation examples and formulas  

Figure 4.1. Identical homozygocity in offspring after full sib mating. 

 

Figure 4.2. Example: Calculating relationship and 
inbreeding after first cousin mating. 
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Related individuals can be put into a genealogical 
diagram. When calculating the coefficient of 
relationship and inbreeding it is easier  to trace the 
individuals in the pedigree back to the common 
ancestors using a path diagram. Only individuals of 
significance for the inbreeding are referred to in the 
diagram. Which means that  individuals that do not 
lead back to the common ancestors are excluded, 
see example in Figure 4.2. 
The coefficient of relationships (a) is calculated by 
tracing all possible relations between the two 
parents through the common ancestors. Note the 
dotted lines in the figure. Also note that every single 
animal  is being noted throughout the routes. Then 
the number of generations in each route is counted. 
The additive relationship can now be calculated as 
the sum of 1/2 in the power of n (n = number of 
generations) as shown in Figure 4.2. FA in the 
formula, Figure 4.3, points to the coefficient of 
inbreeding on a given common ancestor, in this case A and B, both having F=0. Therefore the 
multiplication factor is 1 in both cases, and thus not shown in the calculations. 
The coefficient of inbreeding is 1/16, which is half 
of the parents' coefficient of relationship. 

Here n designates the number of generations 
between the parents X and Y, through a common 
ancestor, and FA symbolises the coefficient of 
inbreeding for the common ancestor belonging to a 
given route.  

4.3 Simple forms of close 

inbreeding 

 

Figure 4.3. Formula for calculation of the 
coefficient of additive relationship between two 
animals, X and Y.  

 

Figure 4.4. Relationship and inbreeding after the mating of 
closely related individuals. 
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Related individuals can be used as 
sources of information when estimating 
the breeding value of an animal, see 
chapter 7. Therefore it is important to 
have a clear understanding of which 
types of relatives occur in large numbers 
and which at the same time are closely 
related. Figure 4.4 shows the most 
common  forms of close relationship. 
Recapitulation of the calculation methods 
for the coefficient of relationship: Count 
the number (n) of generations between 
the parents A and B through the common 
ancestors. How many different routes 
occur? The coefficient of relationship is 
the sum of 0.5n(1+FA) for all possible 
routes. 
Example: The coefficient of relationship 
between full sibs is 0.52 + 0.52 = 0.50, 
from the routes back to each parent. 

The coefficient of inbreeding in the offspring equals half of the coefficient of relationship between the 
two parents. The figure also shows that parent-offspring have the same relationship as full sibs. The same 
is true for half sibs, and an individual and its grandparent. 
Full and half sibs can be bred in large numbers within domestic animals. New methods for the cloning of 
oocytes make it possible to produce several identical twins. 

When breeding laboratory animals, for instance rats and mice, it is common to reproduce the animals by 
continued full sib mating. Most of the laboratory strains are 100 % inbred, and the inbreeding is 
maintained by continued full sib mating. For an outbred population 20 generations of continued full sib 
mating is necessary, before the coefficient of inbreeding is above 99%. Most of our large domestic 
animals have difficulties in reproducing if the inbreeding coefficient is above 50%, as inbreeding lowers 
the fitness, as will be shown in the next section. In chapter 9 more details of the effects of inbreeding and 
how to control it will be given. 

4.4 Segregation of the recessive by inbreeding 

The frequency of the homozygotic recessive individuals in the population will increase by inbreeding, this 
is particularly true when the gene frequency is low. 

Example: In a population the gene frequency of a recessive gene is 0.01 corresponding to a frequency of 
homozygote recessive individuals at 0.0001 or 1 in 10,000. If full sib mating forms the new generation, 
only, the inbreeding coefficient is 25% in all individuals in the next generation.  
In this population the frequency of homozygote recessive individuals can be calculated as follows: It is 
proportional to the number of heterozygotes individuals in the parents' generation (2*0,01*0,99 = 0,0198) 
and their chance that segregation of the recessive occurs (1/16) by full sib mating (Figure 4.1), this 
segregation should equal one of the genes, the disease gene. Either the grandfather or the grandmother 
can carry the disease gene. Thus, the joint probability should be multiplied by two. 
Therefore the joint probability of breeding homozygote recessive individuals is 2*0,0198/16 = 0,0025, 
which means that it has increased 25 times compared to the outbred base population. (In these 
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calculations the case where other combinations of herozygosity and homozygosity of the grandparents are 
not taken into account, so the result deviate slightly when compared to the general formulas shown 
below). If the formulas given below are used in our example, the result is q2 + pqF = 0.0001 + 
0.99*0.01*0.25 = 0.0026. 

Correspondingly, the joint number of homozygote dominants will be increased by the same proportion as 
the recessive at the expense of the heterozygotic individuals. During inbreeding the proportions would 
change in comparison to the expected frequency under Hardy Weinberg equilibrium with the following 
expectations, exp: 

--------- 

Genotype        AA               Aa             aa       

Frequency, exp  p2              2pq             q2    

                +pqF    -2pqF    +pqF 

 

By means of the expected frequencies the degree of inbreeding can be calculated in sub populations;  

                 which gives       F = (H0 - Hn)/H0 ,  

where H0 and Hn are the genotype frequencies for heterozygotes in respectively the base population and  
generation n of the subdivided populations. 
Applied on the Albumin example of dogs, section 2.4, the average inbreeding within dog breeds is F = 
(0.490 - 0.330)/0.490 = 0.33. 

4.5 Calculation of inbreeding and relationship, the tabular method 

Calculation of inbreeding and relationship can be done by means of the tabular method. The big 
advantage of the tabular method is that a graph of the pedigree is not needed. Simultaneously there is only 
need to concentrate on two generations at one time, as the method always moves from the older to the 
younger animals. Therefore it is possible to build on the inbreeding and relationship of the preceding 
generation, as each level only points back to the parents. 

Only two simple formulas are applied in which the relationship and inbreeding have the symbols a and F, 
as shown in the following two points: 

1) Inbreeding in an animal (X) is equal to half the relationship between its parents, A and B, and the 
additive relationship with oneself is 
aXX = 1 + FX  
2)The additive relationship between two animals, X and Y, are equal to half of the relationship between 
the oldest (X) and the parents, A and B, of the youngest (Y).  
aXY = (aXA + aXB)/2  

The construction of the relationship matrix are shown in the following points.  

1) Put the number of all animals in a line (the oldest first)  
2) Put the number of each individual's parents above the number of the individual.  
3) Copy step 1) in a vertical column at the left side of the paper 
4) Write a row of 1's diagonally 
5) Calculate the relationship between animal 1 and 2, 3, 4 etc. to n 
6) Copy the first row in the first column 
7) Calculate the relationship between animal 2 and 3, 4 etc. to n 
8) Copy the second row in the second column 
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9) etc. - - half of the parents relationship is added to the diagonal element, if relevant step 9 shall be 
carried out before step 7  

Example of application of the tabular method  
Using the following set of data. 

Animal Sire Dam 

    1    0   0 

    2    1   0 

    3    1   0 

    4    1   0 

    5    3   2 

    6    3   4 

    7    5   6  

 

For hand calculation the steps from 1 to 4 is shown first. (-) means an unknown parent 

Parents        - -   1 -   1 -   1 -   3-2   3-4   5-6  

Animal          1     2     3     4     5     6     7 

              ----------------------------------------- 

   1            1     

   2                  1        

   3                        1              

   4                             1 

   5                                   1 

   6                                         1 

   7                                               1 

 

The next steps (5 and 6) is to fill out the first row. The first value is the value for animal number 2. Look 
at the column of the parents, which shows 1 and - (unknown). The value in column 1 is 1, and unknown is 
equal to 0, which equals (1 +0)/2 = 1/2 which is put into column 2. The same result is obtained for animal 
3 and 4. For animal 5 the parents are 2 and 3, in their corresponding columns is 1/2 and 1/2, which added 
and divided by 2 gives 1/2. The results are the same for animal 6 and 7. Now row one is copied into 
column one as seen below. 

Parents       - -   1 -   1 -   1 -   3-2   3-4   5-6  

Animal         1     2     3     4     5     6     7 

              ----------------------------------------- 

   1            1   1/2   1/2   1/2   1/2   1/2   1/2 

   2           1/2   1        

   3           1/2         1              

   4           1/2               1 

   5           1/2                     1 

   6           1/2                           1 

   7           1/2                                 1 

 

Then continue to row two (step 7 and 8). Animal 3 and 4 have 1 and unknown as parents. In column one 
second row is 1/2, which equals (1/2+0)/2 = 1/4 for animal 3 and 4. For animal 5, which have the parents 
2 and 3, we have 1 and 1/4 in the two corresponding columns, this gives (1+1/4)/2 = 5/8. Animal 3 and 4 
are parents of animal 6, their average relationship to 2 is 1/4, which is put into the diagram. Animal 7 has 
the parents 5 and 6, their average relationship to 2 is (5/8+1/4)/2 = 7/16, which is put in. The new results 
are copied to the corresponding places in column 2. 

Parents        - -   1 -   1 -   1 -   3-2   3-4   5-6  

Animal          1     2     3     4     5     6     7 
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               ----------------------------------------- 

   1            1   1/2   1/2   1/2   1/2   1/2   1/2 

   2           1/2   1    1/4   1/4   5/8   1/4   7/16 

   3           1/2  1/4    1              

   4           1/2  1/4          1 

   5           1/2  5/8               1 

   6           1/2  1/4                      1 

   7           1/2  7/16                           1 

 

Now we can continue filling in the table by repeting steps 7 and 8. Remember (step 9) that half of the 
relationship between the parents should be added to the diagonal element. This is not relevant until animal 
5, where the parents, 2 and 3, have a relationship of 1/4, which can be read in row 2 column 3. 
Remember, if relevant step 9 should be carried out before step 7. 

Parents        - -   1 -   1 -   1 -   3-2   3-4   5-6  

Animal          1     2     3     4     5     6     7 

               ----------------------------------------- 

   1            1   1/2   1/2   1/2   1/2   1/2   1/2 

   2           1/2   1    1/4    1/4   5/8   1/4   7/16 

   3           1/2  1/4    1    1/4   5/8   5/8   5/8          

   4           1/2  1/4   1/4    1    1/4   5/8   7/16 

   5           1/2  5/8   5/8   1/4  1+1/8 

   6           1/2  1/4   5/8   5/8          1 

   7           1/2  7/16  5/8   7/16               1 

 
The final table: 

Parents     - -   1 -   1 -   1 -   3-2   3-4   5-6  

Animal       1     2     3     4     5     6     7 

           ----------------------------------------- 

   1         1   1/2   1/2   1/2   1/2   1/2   1/2 

   2        1/2   1    1/4   1/4   5/8   1/4   7/16 

   3        1/2  1/4    1    1/4   5/8   5/8   5/8          

   4        1/2  1/4   1/4    1    1/4   5/8   7/16 

   5        1/2  5/8   5/8   1/4  1+1/8  7/16  25/32 

   6        1/2  1/4   5/8   5/8   7/16 1+1/8  25/32 

   7        1/2  7/16  5/8   7/16 25/32 25/32 1+7/32 

The tabular method is simple to computerize, so this method 
should be used in large animal populations.  

The path graph is best used in relation to the genealogy, where  
good overview is important. In such cases the individual animal 
can play an important role.  

It is easier to use a program when carrying out the calculation,  
click here for an applet. 
A DOS program, which can be used to analyse entire populations, can be seen here. To download the 
program, click here, and for an error list file click here. When your browser wants to save, click save and 
save the files 'inbred.exe' and fl90.eer. The file 'inbred.exe', which is a dos program, can now be executed 
in DOS. The input file should be generated as shown in the printed example. 

Chapter 5. Test of simple genetic hypotheses, experimental or 

field data 

The same results calculated by applet. 
Input in lower part of the window,  
output in the upper part.  
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5.1 Genealogy and formulating genetic hypotheses 

When new traits or diseases are recognized it is important to formulate genetic hypotheses as an 
alternative to other exogene causes. Exogene factors can be malnutrition, housing, microbiological 
infection or a combination of exogene and endogene (genetic) factors. 

When a genetically caused disease is likely to occur, some characteristics have to be present. As for 
instance a family wise occurrence, and the fact that only some members of the family are affected. The 
typical Mendelian segregation ratios are 1:1, 1:3 and 1:7. In these context traits with intermediary 
inheritance is not included, as these types of inheritance are rarely seen in newly discovered diseases.  

An alternative to Mendelian segregation are the so-called threshold diseases, where the sum of 
environmental and genetic factors triggers the disease. Threshold diseases with low frequency will exhibit 
family wise occurrence, which is very similar to Mendelian segregation, see section 8.3, where the 
inheritance of threshold traits is described. 
The schematic overview of the different types of inheritance given in section 1.2 should furthermore be 
taken into consideration. 

The simple Mendelian inheritance can occur with four different forms of inheritance. The traits can be 
inherited as dominant or recessive, compared to the normal type, and can exhibit autosomal or sex-linked 
inheritance. On the following pages the characteristics of the four simple forms of inheritance will be 
demonstrated. Note that the mentioned Mendelian inheritance indications can only be applied if the 
population frequency is low. This is always the case in newly discovered genetically caused diseases 
within one or a few families.  

Concerning diseases with high population frequency, as for 
instance breast cancer in the human population, there will often 
be a significant amount of heterogeneity. This disease has a 
genetic background, which can be caused by segregation of 
genes in more independent loci. When large heterogeneity occurs 
the segregation analysis can not be carried out between families, 
but only within one big family. Finally there is a problem with 
Phenocopies, which is an identical disease caused by non 
genetic causes. Phenocopies also occur in breast cancer in 
humans. 

The different symbols which are applied in genealogy are shown 
in Figure 5.1.  

The proband individual is the individual that caused the initiation 
of the investigation. This individual or family should normally be 
excluded in later statistical analyses. A combination of path 
diagram and genealogical diagram can also be utilized along with 
the genealogical diagram. 

5.2 Autosomal recessive inheritance 

Factors which indicate autosomal recessive inheritance.  

• 1. The individuals which are affected are often inbred  
• 2. Affected individuals do not necessarily occurring in every generation  
• 3. All offspring with both parents affected are also affected  

Figure 5.1. Symbols used in genealogy. 
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• 4. The population frequency in males and females are the same  
• 5. The segregation is 1:3 in offspring of normal parents  

Figure 5.2.  

Figure 5.2 shows an example of autosomal recessive inheritance.  
Genes, which coded for enzymes, are typical example of recessive inheritance, since one normal gene is 
often sufficient for the individual to function normally. Increased transcription rate can compensate for 
the one defect code. See also the example of autosomal recessive inheritance in section 5.7  

5.3 Autosomal dominant inheritance 

Factors indicating autosomal dominant inheritance.  

• 1. Affected individuals occur in every generation  
• 2. Affected offspring must have at least one affected parent  
• 3. Normal offspring of affected parents get normal offspring  
• 4. The population frequency is the same in males as in females  
• 5. The segregation ratio is 1:1 among offspring of one normal and one affected parent  

Figure 5.3.  

For examples of autosomal dominant inheritance, see Figure 5.3. Typical examples of autosomal 
dominant inheritance are genes coding for membrane proteins, building blocks in tissues etc. 

5.4 Sex-linked recessive inheritance 

Sex-linked inheritance works differently in mammals than in birds. In mammals the sex-chromosomes are 
called XX and XY in female and male, respectively. In the birds the female is the hetero gametic, WZ, 
and the male is homo gametic, ZZ. The sex of the offspring is determined by the hetero gametic sex, in 
birds by the female and in mammals by the male. 

Factors indicating sex-linked recessive inheritance.  
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• 1. Affected females are often inbred  
• 2. Affected individuals do not necessarily occur in every generation  
• 3. Offspring of two affected parents are also affected  
• 4. In offspring of normal parents, only males can be affected  
• 5. The population frequency in males is higher than in females  

Figure 5.4.  

See the example of sex-linked recessive inheritance in Figure 5.4. 

5.5 Sex-linked dominant inheritance 

Factors indicating sex-linked dominant inheritance.  

• 1. All female offspring of an affected father will be affected  
• 2. All male offspring of affected fathers will be normal  
• 3. Normal offspring of affected parents produce normal offspring  
• 4. The population frequency in males is lower than in females  
• 5. The segregation ratio is 1:1 in offspring of a normal father and an affected mother  

In Figur 5.5 is shown X-ray pictures of Swedish-Danish farm dog affected with spondylo-epifysal 
dysplasia. The pictures is taken at the X-ray clinic at this university by J. Arnbjerg. The condition is likely 
to have a sex linked recessive inheretance.  

Figur 5.5.  

5.6 Test mating, statistical tests 

When a smaller material is pointing at Mendelian segregation, there would often be alternative 
hypotheses, which cannot be excluded. The segregation can, as mentioned earlier, also be caused by 
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simulated genetics (phenocopies) or threshold inheritance, where the segregation can resemble simple 
Mendelian inheritance. If a given hypothesis is to be accepted, test mating is in many cases simply 
waiting for more offspring to be born, in which the results are predictable. If the results deviate, a new 
hypothesis, which can be tested, has to be formulated. 

How much data material is needed for a given test to give a final answer?  

This is one of the important questions that have to be answered before the initiation of test mating.  

Test mating of a bull, which is a suspected carrier, can be done by mating the bull with known affected 
cows, known carriers or the bull's own daughters. Taking these cases into consideration, how many 
normal offspring does the bull have to produce before he can be declared unaffected? The probability that 
one normal offspring is born in the three cases is respectively 1/2, 3/4 and 7/8. By applicating the 
multiplication rule for probabilities in mating with known carriers, the probability of getting one normal 
offspring is (3/4)n. By means of this formula and a limit of significance of 0.05, 0.01 and 0.001 n can be 
determined to meet the classic probability criteria. 

Number of normal offspring (n) which is needed to exclude a bull as carrier  

Exclusion of bull                 Probability             Formula 

as carrier by test        ------------------------------ 

mating with               0,05    0,01       0.001       (x)n less than 

 

Knowingly recessive         5        7       10         x=1/2 

Known carrier              11       16       24         x=3/4 

Own daughters              23       

35       52         x=7/8 

For normal offspring of a heterozygotic 
individual by father/daughters mating the 
probability is 7/8, as can be derived from 
Figure 5.6. The number of offspring 
needed to declare the father non-carrier on the 5% level is (7/8)n = 0,05 corresponding to n*ln(7/8) = 
ln(0,05), which rounded is n=23.  

Mating with own daughters also has the advantage that the bull is tested as carrier of all possible recessive 
genes, not only the one he is suspected of having. 

Chi-square tests  

By testing for segregation ratios for known mating a Chi-square test can be utilized. The test for mating 
with known carriers resembles the test for H-W equilibrium, but here the expected numbers are in the 
ratios 1:2:1 for co-dominant and 3:1 for dominant cases. The expected numbers are calculated by 
multiplying the expected frequencies (ratios) with N, as shown in the table below. 

Segregation by test mating of Aa x Aa, codominant inheritance.  

--------- 

Genotype          AA               Aa             aa       Total 

Numbers, obs      30               51             39      = 120 = N 

Frequency, exp   1/4              1/2            1/4     = 1,00 

Numbers, exp      30               60              30     = 120 

Deviation          0                -9             9  

Chi-squared        0              1.35            2.70    = 4.05 

---------- 

Figure 5.6 Theoretical segregation of recessive genes in test 
mating with own daughters.  
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Df = 3-1 = 2, since the material only supplies the parameter N to the calculation of expected numbers. 
The Chi-square value is less than the H0 test value of 5.99, which means that there is no statistical 
significant deviation from a 1:2:1 segregating on the 5% level. 

Segregation by test mating of Aa x Aa, dominant inheritance  

--------- 

Genotype        AA+ Aa         aa       Total 

Numbers, obs      81             39      = 120 = N 

Frequency, exp   3/4            1/4     = 1,00 

Numbers, exp      90             30      = 120 

Deviation         -9              9  

Chi-squared     1.00            2.70    = 3.70 

---------- 

Df = 2-1 = 1, since the material only supplies the parameter N to the calculation of expected numbers. 
The Chi-square value is just below the H0 test value of 3.84, which means that there is no statistical 
significant deviation from a 3:1 segregation on the 5% level. 

Applet for calculating the Chi-square for Mendelian segregation by test mating, is found here. 

5.7 Field data, statistical tests  

When the use of field data is needed, and it concerns newly occurred diseases, only families with affected 
offspring can be considered. When a segregation ratio for Mendelian inheritance is calculated on the base 
of such observations, it is necessary to correct for families that due to random chances are not 
segregating.  

If recessive inheritance occurs and both parents in a family 
are heterozygotes the chance of the family not being 
detected, by means of an affected first born, is 3/4. After 
the birth of  the second offspring the chances will be (3/4)2 
= 9/16. Figure 5.7 shows how heterozygotic parents will 
segregate in a family of two. 9 out of 16 families will have 
no affected offspring, so by excluding these families in the 
final analysis, the classical Mendelian analysis becomes 
meaningless. 

In the following are formulas for testing and calculating  
the corrected segregation in families which have chances 
of segregation. Therefore the relevant data (shaded area) 
from Figure 5.7 is: 

T = 14   -total number 

A = 8   -number of affected 

A1 = 6   -number of families with 1 affected 

A2 = 1   -number of families with 2 affected 

Figure 5.8 shows a path diagram of a mink family from a 
farm with an outbreak of tyrosinaemia. One of the clinical symptoms is, as shown in the picture, the fact 
that the eyelids stick together. The whelps die after one or two days with clinical symptoms. The cases 
occur when the whelp is about six weeks. A description of the disease can be found in Christensen et al. 
Canadian J. Comparative Medicine, 43:333-340, 1979. 

Figure 5.7  
Theoretical segregation of heterozygotic  
parents in 7 out of 16 families of two.  
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Figure 5.8. Segregation of tyrosinaemia in standard mink (filled symbols), The photo on the right shows 
an affected whelp with the typical sticky eyelids. 

 

The formulas to apply according to "Singles method" for a test of Mendelian inheritance (for the 
proportion p-hat) are shown below. The actual numbers from the tyrosinaemia case, Figure 5.8, are 
inserted. 

 

T and A are respectively the total number of offspring and the number of affected offspring. A1 and A2 
are the number of families with respectively 1 and 2 affected offspring. Z2 is Chi-squared distributed with 
1 degree of freedom. P-hat is tested against the expected segregation frequency (p) which in the 
tyrosinaemia case is 0.25, as it is expected that both parents are carriers.  

In the mink family is found that: 

T = 94   -total number 

A = 32   -number of affected 

A1 = 4   -number of families with 1 affected 

A2 = 9   -number of families with 2 affected 

The calculation is carried out by inserting the actual numbers in the formulas above. There is no 
significant statistical deviation from a 3:1 segregation ratio as the test value is less than 3,84 (H0: p(hat) = 
p =0,25). Families with more than 2 affected individuals are not directly part of the calculations, but 
contribute only to the total number of affected. 
An applet for the calculation can be found here  
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If the number from the first theoretical example (Figure 5.7) is inserted in the formula for p(hat) we get 
(8-6)/(14-6) = 0.25, which is of course the correct result, as the data originated from mating with known 
heterozygotes. 

Chapter 6. Definition of a quantitative trait, breeding value and 

heritability  

6.1 Definition of a quantitative trait  

In section 1.4 was given a definition of the terms phenotype and genotype for a quantitative trait, this 
equation is shown below. Until now the terms have only applied to qualitative traits.  
 

 

The phenotype can be seen or measured, in contrast to the genotype which can be transferred to offspring. 
In chapter 1 the distribution of fat-% in the milk in two Danish dairy breeds was given as an example of a 
quantitative trait.  

The distribution of fat-% in the milk is characterized by a mean value and a standard deviation. For HF 
dairy breed the mean value is 4.3 % and the standard deviation is 0.25 % units. Most cows have a fat-% 
of around 4.3, and only very few have a fat-% of 3.5 or 5.0. For the Jersey breeds the mean fat-% is 6.4. 
The phenotype of an animal should always be evaluated as being a deviation from the mean value of the 
population. For instance a Jersey cow should be evaluated based on the mean value of the Jersey and not 
on the mean value of HF. 

Quantitative traits are normally influenced by the effects of several gene pairs and the environment, and 
have a normal distribution of population values. This is polygenic inheritance, as opposed to single gene 
(monogenic) inheritance or Mendelian genetics, which have been described in the preceding chapters. 

6.2 The terms genotype value, breeding value and dominance deviation 

The phenotype value (P) of an animal can be measured and evaluated as a deviation from the mean value 
of the population, P-bar.  

The genotype value (G) of an animal equals the phenotype mean value of individuals with the same 
genotype.  

The definition of the breeding 
value (A) of an individual is 
based on an infinite number of 
offspring as two times the 
deviation of the offspring's 
mean value from the mean 
value of the population, when 
random mating is used. I.e. all 
offspring are half sibs, see 
Figure 6.1. 

The mean value of the population can be added if the breeding values should be on a normal scale. The 
definition is valid when it concerns both a specific trait, and the effect of genes on a single locus. The 

Figure 6.1 
The definition of breeding  
value (A) of a male is based  
on an infinite number of offspring, 
all being half sibs.  
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formulas corresponding to the definitions applied on data from a single locus are shown in Figure 6.2. It 
is a precondition that the locus has an effect on the examined trait and that the average of the animals 
(with different genotypes) differs from each other. The average of the population can be calculated as a 
mean value. I.e. the sum of the three genotypes multiplied by their respective frequencies. See the 
example of weight of mice shown in Figure 6.2.  

Figure 6.2. 
Definition of breeding value for the genotype A1A1 and it is exemplified by weight of mice depending on 
the genotypes in a locus. A male with the genotype A1A1 gets an infinite number of offspring after 
random mating in a population. 

 

When an animal A1A1 is subjected to random mating in a population, the animal can get two types of 
offspring, A1A1 and A1A2, as seen in Figure 6.2. The gene from the population determined the genotype 
in the offspring. The frequencies of the two possible genotypes are equal to the population frequencies p 
and q.  

The mean value of a population or of A1A1's offspring is calculated as:  

 

In the example of the weight of mice ( Figure 6.2), calculation of the mean value of the population (P bar) 
and breeding value for the genotype A1A1 is shown. A similar breeding value can be calculated for 
genotype A2A2, which, by random mating in the population, gets offspring of the types A1A2 and A2A2 
with the frequencies p and q. These results are derived from Figure 6.2 by mating the population with 
A2A2 instead of A1A1. Thus the breeding value of A2A2 is 2(12*0.3+6*0.7 - 9,24) = -4,88.  
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The breeding values of the heterozygotes is the average of the two pure genotypes, as half of its gametes 
is type A1 and the other half is type A2. The breeding values are often called the additive values, because 
they are proportional to the number of A1 genes in the genotype. 

If the genotype value (G) has a more or less distinct dominance, the average value of a specific genotype 
is not equal to the breeding value (A). But there will be a rest which is caused by dominance deviations 
(D).  
The degree of dominance is determined by the value of the heterozygote type compared to the two 
homozygote types: 

• No dominance - the heterozygote is equal to the average of the two homozygotes  
• Complete dominance - the heterozygote has the same genotype value as one of the homozygotes  
• Overdominance - the heterozygote is out side the homozygotes  

An example of calculation of breeding value (A) and dominance deviations (D)  
Below is the results of an example of variation in transferrin locus. In Jersey cows the genotype tt yield 
2082 kg. milk and cows with the genotypes Tt and TT yields 1882 kg. milk. Below are the actual 
numbers, the calculation of the mean value is based on the gene frequencies p and q, which are 
respectively 0.67 and 0.33. 

Genotype             TT      Tt            tt 

----------------------------------------------------------- 

Kg Milk            1882           1882          2082   

(Genotype)frequence       p2=0.45        2pq=0.44      q2=0.11 

 

And mean value   = 0.45*1882 + 0.44*1882 + 0.11*2082 = 1904 kg 

The breeding values are calculated as deviations from the mean values of the population, see scale: 

             TT and  Tt   Mean value            tt 

 

             1882   1904                         2082    Original scale  

           ---|-------|---------------------------|-->   Genotype scale, kg 

             -22      0                          178     Deviation from mean 

value                

 

 

Genotype   breeding value 

-------------------------------------------------- 

                TT  p      Tt   q 

TT         2*[(-22*0.67 + -22*0.33) - 0] = -44 

Tt                                  = 22,6 ,mean value of the homozygotes 

tt         2*[(-22*0.67 + 178*0.33) - 0] = 89.2   

-------------------------------------------------- 

By random mating in the population the genotype TT gets offspring which are of types TT and Tt with 
the frequencies p and q. This can be derived from Figure 6.2. 

The genotype values are determined as deviations from the population mean (see scale). And the breeding 
values are calculated according to the definition. Finally the dominance deviations (D) can be determined 
as a rest as shown below. 

Genotype      G  =    A    +   D  

------------------------------------- 

TT          -22  =  -44    +  22 

Tt          -22  =   22,6  + -44.6 

tt          178  =   89,2  +  88.8  
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-----------------------------

-------- 

It is possible to calculate the 
variance for a locus. The variance 
can be caused by the differences in 
breeding values or in dominance 
deviations. The variance (V) is 
calculated as a mean value of the 
squared breeding values. For 
instance, the variance of the 
breeding values: VA = (-44-0)2*0.45 
+ (22.6-0)2*0.44 + (89.2-0)2*0.11 = 
1926, which, in this case, are the 
breeding values squared and 
multiplied by the genotype 
frequency. The average of the breeding values can be calculated as a mean value -44*0.45 + 22,6*0.44 + 
89,2*0.11 = 0, which was to be expected. 

An applet for calculating G, A and D are shovn in the figure above and found here  
Experiments to determine quantitative gene effects are described in chapter 12. Loci, which has effect on 
a quantitative trait, are often called QTL's (quantitative trait loci). 

6.3 The terms additive variance and heritability  

The term additive variance refers to the variance of breeding values (VA). (In some of the next chapters  
the symbol sigma2 is used synonymous with the variance.) Section 6.2 showed how the breeding value for 
each genotype in a locus could be estimated. When the genotype values are known, the additive variance 
for the locus can also be calculated. If independence occur between the loci, which have additive effect on 
a trait, then the joint additive variance will be the sum of variances from each locus. For individuals in a 
population the joint additive variance cannot be calculated directly, since the breeding value of the 
individuals is not known. It is not possible for all individuals to have the infinite number of offspring, 
which are required when the definition of breeding value is used. But VA can be calculated indirectly, as 
shown later in this chapter.  

The phenotypic variance (VP), on the other hand, can always be calculated using the phenotypic values 
of the individuals in the population. 

The heritability (h2) or the degree of heritability for a trait is defined as VA/VP. The heritability can vary 
between 0 and 1, since the additive variance is only part of the phenotypic variance.  

Even though the additive variance cannot be directly estimated, the heritability can be estimated on the 
basis of the similarity between related individuals, which is measured either by a correlation or a 
regression. For instance, the regression of offspring on one of the parents. The heritability is estimated as 
the ratio of the calculated correlation coefficient and the coefficient of relationship. Which means that the 
maximum expected correlation between parent and offspring is 0.5. If the correlation coefficient is higher, 
it means that the similarity is caused by other factors besides the genetic.  

The best method for estimating the heritability is the use of the correlation between half sibs, since they 
normally  have only genes in common. Full sibs, on the other hand, often have a maternal environment in 
common too, which causes the litter mates to be even more alike, and have more in common than genes. 
In such cases the heritability would be overestimated. 
The parent-offspring correlation is seldom used in practise, since this method needs data from two 

Results derived from using the applet on the example of mice 
weigths shown in Figure 6.2 
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generations, often with different environment. It can also be a problem if both parent and offspring live in 
the same environment.  

Estimation of the variance component, caused by common environment for full sibs, can be carried out by 
comparing the estimated correlation based on respectively half and full sibs. The correlation between full 
sibs should be twice the one for half sibs. Often it is higher, the reason for this is that the full sibs have a 
common environment. This component is assigned the symbol c2, c for 'common environment'. The 
relative phenotypic variance has a genetic part (h2), a common environmental part (c2), and a third part. 
This remaining part of the variance is caused by random environmental effects, and gets the symbol e2. 
The random environmental part is for most traits the largest part of the phenotypic variance. Below is 
shown a table of the defined parameters.  

Additive variance              VA 

Phenotypic variance            VP  

Heritability               h2 

Common environment   c2 

Random environment        e2 

Half sib correlation      (1/4)h2 

Full sib correlation      (1/2)h2 + c2 

Historically, the heritability has another 
interpretation. By selecting animals (shades area in 
Figure 6.3), which deviate from the mean value, the 
average of the next generation will change. The 
change is proportional to the difference in selection 
and the heritability following the formula: 

R = h2*S  

The selection response (R) equals the heritability 
multiplied by the selection difference (S). The 
heritability is 0, if the trait remains constant by 
selection, and it is 1, if the changes are equal to the 
selection difference, see Figure 6.3.  

6.4 Estimating the heritability and common 

environmental effect 

Selection experiment for estimation of 

heritability.  
In Figure 6.5 is shown a selection experiment for 
September weight in mink, carried out by G. 
Lagerquist, the Swedish Agric. Univ. published in 
J.Amim.Sci., 1993,71:3261-72. Only the males 
were selected with S equal to around 225 gram in 
each generation - the upper curve in the figure. 
The lower curve in the figure shows the changes 
for each generation, R, that is equal to around 50 
gram per generation. The heritability is estimated 
by  
R = h2 S/2, as only the males were selected:  
and inserted, 50 = h2 *225/2 which correspond to 
h2 equal to 0.44.  

Figure 6.3.  
Selection response (R) equals the heritability 
multiplied by the difference in selection  (S). The 
change is seen in the offspring 

 

 
Figure 6.5. Example of selection experiment on which 
calculation of heritability can be based.  
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R = h2*S can also be interpreted as the regression of offspring on the average of the two parents, where 
the regression coefficient b correspond to h2.  

Heritability estimation based on calculated correlation. The use of a selection experiment for 
estimating the heritability takes long time, at least several generations. Now will be presented methods for 
estimation of the heritability based on data from one generation only.  

The heritability (h2) can be estimated as the calculated correlation (r or t) between related individuals 
divided by the coefficient of relationship (a). This is correct if inheritance (genes) is the only cause of 
similarity between the involved individuals. The formulas are as follows:  

h2 = r/a, or r = a*h2. 

The calculation of the correlation can be done according to the classical method (see Figure 6.4). When 
considering several individuals in a group, as for instance half sibs, calculations are done by means of 
analysis of variance and estimation of the interclass 
correlation.  

Estimation of the heritability can be based on full and 
half sib material as can be found in all multipare 
species. The heritabiliy measures what degree of  
similarity exists between related animals sharing 
identical genes. 

If environmental factors are causing the similarity, this 
can be estimated as shown in the formula below. The 
common environmental factors are particularly 
important in the litter's first months, when the mother 
and its maternal abilities cause the special environment. 
In half sibs, having a common father, the common 
genes are usually the only cause of similarity. 

The general formula for interpretation of correlation 
between related individuals is shown below, and as 
symbol of this correlation t is used, this is also the 
symbol of the interclass correlation.  

t = a*h2 + c2  

Now the heritability can be calculated on the basis of  half sib correlation, c2 being 0. Then c2 for full sibs 
can be calculated based on the full sib correlation. 

Example: Weight of mink aged 8 weeks, sample size: 508 animals in 107 litters with 37 sires.  
In a statistical analysis of the weight of 508 mink puppies was recorded.  
Half sib correlation t = 0.03 and  
Full sib correlation t = 0.41.  

These numbers put into the genetic model results in: 
Half sib correlation t = (1/4)*h2 + 0 = 0.03 corresponding to h2 = 0.12.  
Full sib correlation t = (½)*h2 + c2 = (1/2)*0.12 + c2 = 0.41 corresponding to c2 = 0.35. For calculation of 
c2 for full sibs the heritability calculated for half sibs is applied. 

Figure 6.4. 
An example of a two-dimensional distribution 
for calculation of correlation, typically a trait of 
a mother and one of its offspring. 
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,  

There is a very low heritability of growth in this early age, where the maternal factors play a large role. 
To see the statistical calculation of  the estimated weight of the mink click here.  

The material for calculation of heritability of height of humans was shown in chapter 1. As mentioned 
there, the heritability was calculated as the regression of offspring on basis of the average of the parents. 
For height of humans it was around 0.6. 
Mother-offspring correlation was found to be 0.4 while the correlation between father and offspring was 
only 0.2. This lower correlation between father and offspring might be caused by the fact that these do not 
share the same significant common environment as the mother and offspring. The 0.2 correlation between 
father and offspring gives a heritability of 0.4 for height of humans. This means that the mother-offspring 
correlation is highly influenced by their common environment. 

For data and the applied SAS program for height of  humans, material from 2000, click here. 

Further examples of application of the analysis of variance for calculating the repeatability coefficient for 
litter size of mink and heritability for the body length of swine. For the SAS program and the mink 
material, click here and for the swine material, click here  

Chapter 7. Estimation of breeding values  

7.1 Estimation of breeding values, general 

In a large randomly mated population, each individual should on average give birth to two offspring in 
order to maintain the size of the population. The distribution of the number of offspring in the population 
has a left skewed binominal distribution (Poisson distributed) with a average value of 2 and variance of 2. 
Which means that the number of offspring per individual can vary from 0 and upwards, the values 
0,1,2,3,4 and 5 being the most frequent. The exact breeding value, based on the definition given in 
chapter 6, cannot be calculated in such a population because of the small number of offspring. An 
estimation is all we can get. 

An estimated breeding value is often called an index (I). The index can be estimated on the basis of 
information of phenotype values from all possible relatives. A simple regression line or multiple 
regression can be used. The higher the number of relatives is the better the estimation will be. Correlation 
between the true breeding value (A) and the index is given the name Accuracy and it has the symbol rAI.  

The estimated breeding value is based on a theory of  linear regression and correlation. The basic 
definition of these terms can be seen here, or more detailed in statistical textbooks. 

7.2 Formulas for calculating estimated breeding value based on uniformly related 

phenotypes 

Figure 7.1 shows the relationship between phenotype measurements of a uniformly related group of 
individuals, P's, and the breeding value index (I), which is an estimate of the true breeding value (A). 
Additionally the figure shows the significance of the accuracy (rAI), as the accuracy squared for the index 
is equal to a reduction of the variance of the estimated breeding value. All values can be interpreted by 
use of the classical regression equation:  
P's = phenotype values of the trait 
n = number of measurements 
Pg bar = average of a uniformly related group of P's 
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a' = degree of relationship between the P's and the animal being estimated for the index  
a = degree of relationship between P's  
P bar = average of the population 
A bar = average breeding value of the population = P bar 
h2 = heritability 
c2 = common environmental factor for the P's 
t = a*h2 + c2 as defined in section 6.4  

Figure 7.1. 
Estimation of breeding value indexes based on 
regression of phenotype measurements (average of 
a uniformly related group of P's). The definition of 
the parameters, see above. An example of use of the 
formulas is given in Figure 7.2.  

 

The estimated breeding value or the index (I) can be calculated by means of the formulas given in Figure 
7.1. They can be used in all possible combinations of relationship. It only requires uniform relationships. 
The index depends on the two coefficients of relationship (a' and a), the number of measurements (n), the 
heritability (and common environment) and the phenotypical average (Pg bar) of the phenotypes. The 
accuracy (rAI) of the index does not depend 
on the last factor. 

Figure 7.2 gives an example. It is a 
genealogical diagram with the relevant 
coefficients of relationship for calculation 
of an estimated breeding value for milk 
yields for a bull based on the records of 20 
progenies being half sibs (a progeny test). 
The genealogical diagram is made so that 
the phenotype measurements, the P's, have 
an blank circle. For the bull being 
examined the square is filled in.  

Below are three additional examples of 
diagrams of relationship defining the 
coefficients of relationship of uniform 
relationship. Additional diagrams would be 
superfluous since the parameters are here 
given for additional examples.  

Figure 7.3.  

Figure 7.2 
shows a diagram of relationship and a calculation of 
estimated breeding value for milk yield for a bull based on  
20 half sib daughters with an average milk yield of 7500 kg.  
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diagram of index based on 
half sibs. 

diagram of index based on full sibs. Both parents 
have the same relationships as a full brother. 
Therefore, the index is the same for a brother or 
either of the two parents. 

diagram of index 
based on the parents. 

In the table below are given the parameter values of several examples of index calculation in cases 
concerning uniform relationship conditions. The relevant coefficients of relationships are put into the 
formula. And when an infinite number of observations are present, the limit value is placed as the 
regression coefficient and the squared accuracy. 

 
 
The table parameters are defined in relation to Figure 7.1. Any animal, having the same coefficient of 
relationship, a', as the measured group, would also have the same estimated breeding value. A full 
brother, the father or the mother, for instance, have a' = .5 to the same full sib. Or a father, evaluated 
through an offspring, has the same formula as a son evaluated through the father. 

Line 1 in the table corresponds to the formula having 0 measurements, and the index equals the 
population mean with an accuracy of 0. This presents the 'basis' for evaluation of all the other indexes. 
Line 2 in the table correspond to a very common situation. This is normally called a phenotype test. The 
animal's breeding value is based on measurements of the animal - the equation is:  
I = A(bar) + h2(P -P(bar)) with a squared accuracy of h2. 
Line 3: Two measurements of the animal, which could be litter size in first and second litter. The 
correlation between repeated measurements is called the coefficient of repeatability. This always 
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contains some common environmental effects for the two measurements. 
Line 4 shows the relationship between the average of the parents and the offspring. In section 6.4 this 
relation was used to estimate the heritability. Therefore it is no surprise to see the same formula again.  
Line 7 shows the evaluation of a father based on an infinitely large number of offspring. This corresponds 
to the definition of breeding value and the weight factor equals 2 and the accuracy squared is equal to 1, 
this line correspond to the definition of 
breeding value given in chapter 6. 

Accuracy of estimated breeding value   
Figure 7.4 shows the accuracy of progeny 
testing based on n offspring. From the curves 
it becomes evident that there is larger 
accuracy at higher heritabilities than at low 
ones. An increase in the number of offspring 
can compensate for the low heritability.  

Some general remarks should be added about 
the accuracy of estimated breeding value. By 
scrutinizing the formula for accuracy it 
becomes clear that: 
1) For traits with high heritabilities the 
phenotype of the individual is a good source 
of information. 
 
2) For traits with low heritabilities the use of 
several measurements can compensate for 
poor accuracy in a single measurement. This 
is only possible when large groups of 
offspring of full and half sibs are measured. 
Below is a table and the appropriate action to take depending on the magnitude of the heritability 

Heritability   Size    Example                   Selection 

-----------------------------------------------------------------------  

High        Greater than 45%   Fat deposition, milk fat %   Individual 

Low         Less than    10%   Reproduction traits          Progeny test 

Middle                15-40%   Growth                       Mixed 

----------------------------------------------------------------------- 

An applet for calculation of the most common cases of estimated breeding value is found here, and an 
example of the use of it is shown below. From the example it becomes clear that an offspring group of 20 
half sibs makes a useful source of information. 

 

Figure 7.4. Accuracy of progeny testing - depending on the 
number of offspring and the magnitude of the heritability 
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7.3 Direct update of breeding values 

As a basic rule for direct updating 3 types of information on an animal breeding value exist; the parents, 
own performance and the offspring. The pieces of information derived from half and full sibs as well as 
from grandparents are all included in the parent's breeding value. This is both a strength and a weakness 
in the direct updating method as the parents can only be included once. Therefore, new information on 
half and full sibs cannot be utilized. Usually this is unimportant, so it is an advantage in several cases not 
to bother about this information. 

The information, gathered from the 3 different sources for the use of estimating the breeding value, has 
the following forms. The heritability is h2 and common environmental variance c2. The estimated 
breeding value on an absolute scale has the symbol A hat. The formulas for combining the indexes 
(measured as deviations from the average) from the 3 possible sources can be seen below. 

 

An example of this condition: an index has been made of full sib offspring and is included in the 
combination index. A new index of additional full sibs cannot be included without violating the rule, as 
they are related to the sibs in the first index, through both the father and the mother. Half sib offspring 
can, on the other hand, be added when new information arrives, since they are only related through the 
animal in question. 

For an applet containing examples and use of direct update of breeding values, click here  
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7.4 Estimation of breeding values in animal breeding, and use of gene markers 

For large domestic animal breeding organisations estimation of breeding values is an enterprise which can 
give the members a large economic return. Therefore, very refined methods are applied to improve the 
index estimation, also see lections 12.1-2. In addition to what is shown here in terms of simple estimation 
of breeding value, it is of great importance to corrected for significant environmental factors, as for 
instance seasons and herd average. It is also important that all related individuals contribute with 
information to the indexes. 
Estimation of the breeding value is based on large equation systems for all animals in the population 
simultaneously. This provides the possibility of simultaneous correction of environmental effects.  

Estimation of the breeding value of an animal can be calculated based on all possible combinations of 
information. Section 7.2 only shows examples in which uniform relationship exists for the phenotype 
measurements. Her only a few exceptions from this form shall be shown. The first one is estimation of the 
breeding value based on the estimates of the parents' breeding value, which is which is also shown in 
section 7.3: 

 
Ioffspring = (Isire + Idam)/2          and 

r2AI,offspring = (r
2
AI,sire + r

2
AI,dam)/4 

Below is shown by formulas to calculate how much a gene marker can add to the information from a 
phenotype measurement. The trait's heritability is h2 and the gene marker represents a part of the joint 
heritability, which corresponds to (h1)

2. 
When M is the marker effect and P the phenotype value, the estimated breeding value (I) is as follows: 

 

In the table below are results from the use of the formula for accuracy with and without a gene marker 
(large effect, 20% of the genetic variation, column +M).  

       -M     +M     -M     +M       -M      +M    Transferrin locus 

--------------------------------------------------------------------------       

h2    .05    .05    .25    .25     .50       .50    |   .33 

(h1)
2   0    .01      0     .05       0       .10    |   .01 

rAI
2   .05   .24     .25    .35     .50       .56    |   .34  

It appears that, for traits with low heritability, a significant improvement of the accuracy can be obtained 
by using the information on the gene marker. For traits with high heritability the improvement is very 
low.  

Example: Index of a cow with a yield of 2300 kg milk and Tt in transferrin type from the population 
described in section 6.2. This cow becomes like the marker genotype (M=1882 kg milk) and its mean 
value is (Pave.=1904). 

The formula above is applied and h2 and h1
2 are taken from the table 

 
 I = Pave + X*(M - Pbar ) + Y*( P - Pbar ),where 
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 X = (1-h2)/(1-h1
2)   = (1 - 0,33)/(1 - 0,01) = 0,68 

 

 Y = (h2-h1
2)/(1-h1

2) = (0,33 - 0,01)/(1 - 0,01) = 0,32 by insertion is obtained 

 

 I = 1904 + 0,68*(1882-1904) + 0,32*(2300-1904) = 2016 kg milk 

The accuracy as is seen from the table is only slightly improved by using the transferrin type in the index. 

For estimating the effect of a gene influencing a quantitative trait (a QTL), reference can be made to 
lection 12.5. 

Standardization of a breeding value index.  
The breeding value indexes are normally expressed in absolute units. The index, for instance, of a bull 
with a daily weight gain of 1100 grams from birth to 12 months, many people have difficulties in 
deciding whether this is good or bad. The basis for the comparison is missing when the mean value is 
unknown. Therefore, by subtraction of the mean value the indexes are centred around zero. Thus the 
better half will have a positive index and the worse half will have a negative index. 
Furthermore the indexes can be standardized  both by subtracting the mean value and dividing it with its 
standard deviation. Such a population will have a mean value of zero and a standard deviation of one. 
In Denmark standardized indexes are often used, so the mean value is 100 and a standard deviation of for 
instance 5. With such an index animals with values higher than 100 are better than the average and 
animals with an index value lower than 100 are worse than the average. 

Chapter 8. Genetic changes by selection  

8.1 Difference of and intensity of selection 

Figure 8.1 shows a normal distribution of a 
quantitative trait. A limit of the selection can be 
defined according to the proportion being used for 
breeding. 
S designates the difference between the population 
average and the mean value of the selected 
animals. If a specific group has been selected, its 
actual mean value is calculated and then S can be 
calculated. When a certain proportion of animals is 
used in breeding, the standardized difference in the 
selection can be seen in a table when using 
truncation selection. This difference is called 
selection intensity, as shown in Figure 8.1, it can 
be estimated as S/sigmaP, sigmaP being the 
phenotypic standard deviation.  

Figure 8.1 also shows the connection between 
estimated breeding value and the simple formula 
for selection response R = h2 * S, given in section 
6.4, and its relation to the estimation of breeding 
value by means of its own phenotype, cf. section 
7.2. 

Below is a table of 'i' calculated on the basis of the proportion of animals selected for breeding. 

Proportion   Intensity     Proportion   Intensity     Proportion   Intensity 

Figure 8.1. Shows a graphic interpretation of the 
selection difference (S), the selection intensity (i) 
and selection response (delta G) by use of individual 
selection.  
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of animals       i         of animals       i         of animals       i 

for breeding               for breeding               for breeding 

-----------------------    -----------------------   ----------------------- 

   1.00           0 

   0.90          0,20         0.09          1,80         0.008         2,74   

   0.80          0,35         0.08          1,85         0.006         2,83  

   0.70          0,50         0.07          1,91         0.004         2,96  

   0.60          0,64         0.06          1,98         0.002         3,17  

   0.50          0,80         0.05          2,06         0.001         3,38  

   0.40          0,97         0.04          2,15         0.0008        3,43 

   0.30          1,14         0.03          2,27         0.0006        3,51  

   0.20          1,40         0.02          2,42         0.0004        3,61  

   0.10          1,76         0.01          2,67         0.0002        3,79  

An example of the use of the table: If 30% of the animal is used for breeding, i is 1.14. 

8.2 Selection response  

Below is shown a general formula for expected genetic changes by selection. The changes are 
proportional to the intensity of the selection, the accuracy of the estimated breeding value and the additive 
standard deviation, sigmaA. The change take place from one generation to the next, which means that the 
average breeding value of the parents corresponds to the mean value of the population in the next 
generation. If the changes are to be measured in time units, they are inversely proportional to the 
generation interval.  
The generation interval is defined as the average age of the animals when they become parents. In the 
human population the generation interval is said to be 30 years. I.e. the parent is on average 30 years old 
when they give birth to a child. 

The general formula for selection response is shown below. 

 

The general formula for delta G fits well with the results for accuracy of individual selection, h, given in 
Figure 8.1. The general formula for selection response can be extended slightly when taking into account 
the different roles the two sexes play in forming the new generation. The formula is divided into two 
components, one for the sires' contribution and the other for the dames' contributions, see below. 

 

An applet for calculating the selection response is found here  

The formula for delta G is important for predicting what will happen if a specific breeding program is 
decided upon. Thus the model studies can be performed with an eye on design of an optimal balance 
between the generation interval and the intensity and/or accuracy of the selection. At short generation 
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intervals fewer individuals are born to select among. This influences both the intensity and the accuracy 
negatively compared to a situation where longer generation intervals occur.  

8.3 Selection of threshold traits  

From chapter 1 shall be repeated that a threshold trait is inherited as a quantitative trait, containing the 
feature that it occurs as an either or trait. For instance are mastitis in dairy cattle or a heart anomaly in a 
new-born puppy threshold traits.  

Whereas the number of outbreaks of mastitis in a cow can be regarded as a semi quantitative trait, 
particularly seen on the back-ground of an entire life-span with many lactations. Concerning the number 
of mastitis cases, there is no doubt, that some linearity occur between the number of cases and the 
animal's resistance to the disease. 

In other cases it is more difficult to imagine a linear scale. For instance in the so called 'stick and feather 
test' for mink, designed to test their reaction patterns. The possible outcome of the test is aggressive, 
curious or fearful, all of which can be seen from the same test. Is it relevant to put the three classes on the 
same linear scale and if so how?  

To get a meaningful result from such a test three independent either-or scales has to be used. 1) 
Aggressive or not aggressive, 2) fearful or not fearful, and 3) curious or not curious, see Figure 8.2.  

Figure 8.2. The three characteristics aggressive, curious and fearful cannot be interpreted from a 
linear scale. Each of them has to have its own either-or scale. 

 

An example of the use of a semi-linear scale: Hip dysplasia (HD) in German Shepherd dogs from 
Andresen et al. HD index: Bedømmelsen bør bruges efter hensigten. Hunden dec.1994. 
Figure 8.3 shows an example, which deals with Hip dysplasia (HD) in German Shepherds. Here is data 
from a population of 1406 X-rayed dogs. All the dog's hips were evaluated on a scale from E2, E1 to A2, 
A1, 10 classes all in all as shown in the figure. E2 dogs have a very high degree of HD, and A1 dogs have 
perfect hips. Dogs from B2 and below have HD in an increasing severity. 

As can be seen in Figure 8.2, the scale is not linear when the data is fitted into a normal distribution. In 
the  calculation of the HD index, class mean has been used instead of a completely linear ten step scale. 
The class mean has been determined from the normal distribution with a mean value of 0 and a standard 
deviation of 1.  
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Figure 8.3 
A partly linear scale is used to graduate the severity of HD. The number in each class is adapted  

 to the normal distribution. 

 

The estimation of the breeding value (HD index) of a male on the basis of 15 offspring is shown below. 
The offspring had the scores 4 A2, 9 B1, 1 B2 and 1 D1 with a mean value of .2933. To rescale the 
breeding values, 100 is added and the deviation is multiplied by 100. Animals with an index higher than 
100 are better than the average. The actual calculation of the breeding value is done accordingly to the 
formulas given in section 7.2 

 

The calculated HD-index lies significantly above the average, which can also be deducted from the fact 
that the male has only two offspring with B2 or below. 

The calculated HD-index can be standardized to vary between 50 and 150. The present index is randomly 
'standardized' with the factor 100. 

Figure 8.4 shows X-rays of the best hips, A1, and the worst, E2. The pictures have been taken at Røntgen-
Klinikken at KVL.  



 54 

Figure 8.4  

H-D score, left A1 and right E2. 

 

 

From April 2000 The Danish Kennel Club has altered the scale for HD evaluation, it is now a five-step 
scale containing only the grades A, B, C, D and E, this new scale has been adapted internationally. In the 
present example the HD-index can be recalculated with the new class means 1.02, -.02, -.90, -1.47 and -
2.16. 

Comparison of occurrence of threshold and Mendelian diseases. In chapter 5 was given a detailed 
description of the segregation of Mendelian diseases within families. All these forms run within families. 
The same is true for a threshold disease.  
For diseases with low population frequency it is not possible to discern between a Mendelian and a 
threshold disease. In both cases the frequency of the disease is much higher in individuals closely related 
to a diseased one, than the frequency in the general population.  
The differentiation between the two forms of inheritance can only be done by means of test mating. In 
case of the Mendelian inherited diseases the exact segregation ratios can be predicted. This is not the case 
for threshold traits.  

Estimating heritability for threshold traits. In chapter 6 methods for estimating heritabilities for 
normal distributed quantitative traits was given. The heritability can be estimated from a threshold disease 
when the population frequency is known, as well as the frequency in offspring of affected animals or 
relatives of affected animals.  

Figure 8.5 
Calculation of heritability based on disease  
frequency in relatives of affected animals.  
In this case affected parents. 
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Figure 8.5 shows an example of heritability 
estimation in graphic form.  
The frequency in the population is 5 % and 
the frequency in offspring of affected 
animals is 20 %. The situation can be 
regarded as a selection experiment, where 
only affected animals are selected for 
breeding. Now the simple formula for delta 
G  or the selection response, R = S*h2 can be 
used. The threshold trait is measured in a 
standardized normal distribution with S = i. 
The response R is the difference between X1 
and X2. (They can be looked up in a table of 
the normal distribution.) The selection 
intensity (i) is also in the table of i. The 
heritability in this case is estimated to 0,39.  
If the frequency of affected animals is 
known, as for instance in first degree 
relatives (father, mother or full sibs), the 
calculations are carried out as shown in the 
example, but then h2/2 is estimated as the R/i. In data from second degree relatives, as for instance half 
sibs, the estimated result is h2/4. 

A statistic of the present type can also be regarded as an epidemiological investigation, the risk factor is 
relationship to an affected individual. The relative risk of getting the disease is 4 times larger in offspring 
of two affected parents than in a randomly chosen individual in the population shown in Figure 8.5. 

An applet for calculating heritability of threshold traits  

8.4 Genetic correlation, changes in secondary traits 

The effect of alleles in one locus can affect more traits. This implicates, that if changes by selection occur 
in one trait other traits will also be changed, namely those affected by the same genes. Often surprising 
results will occur. Therefore it is important that, in a selection program, the overall phenotype of the 
animals are maintained in an acceptable style to avoid unwanted secondary changes. The ideal is selection 
for one trait and proportional change in all the others, thereby maintaining a harmonic phenotype.  

If some degree of relation exist between changes in two traits, they are said to be genetically correlated. 
The genetic correlation can be negative or positive, with a magnitude from -1 to +1. The genetic 
correlation has the symbol rA1,A2, A1 and A2 being the breeding value of the two traits, 1 and 2.  

An example from beef cattle breeding. Selection for fast growth is a common goal of selection. By 
doing so it is hard to avoid a change in the final adult weight. At the same time, the selection will also 
result in larger calves being born, which can cause difficulties during calving if the ratio between the 
weight of the calf and the cow is changed unfavourably. 

Figure 8.6 shows a two-dimensional distribution with negative genetic correlation of 0.50 between the 
traits X and Y. The selection limit (the line) is laid so both traits have the same weight. It can be difficult 
to change both traits in a positive direction due to the negative genetic correlation. It is very easy, on the 
other hand, to get good results from the selection if both traits are genetically correlated positively, with 
respect to the direction of selection.  
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When selecting for more than one trait, one of the 
following selection criterions can be used: 

• Tandem selection  
• Independent selection  
• Index selection  

Tandem selection occurs by selection of one trait 
at the time. 
By independent selection the selection limits for 
each trait are placed independently. 
By index selection the traits are weighted in 
relation to their economic significance. 

It is difficult to estimate the genetic correlation, as 
it can vary a great deal from one population to the 
other, it also varies to a greater extend over time 
than the heritability. Here is, non the less, a 
formula for estimating the realized genetic 
correlation. When the trait x is being selected for 
and trait y are changing at the same time, the 
genetic correlation can be estimated as: 

rAx,Ay = (delta Gy/sigmaAy)/(delta Gx/sigmaAx)  

The genetic correlation is estimated as the ratio between the standardized selection responses, when only 
trait x is selected for, and trait y follows passively. 

After selection through many generations the selected trait and 'fitness' have a tendency to become 
genetically negative correlated. As a result of this, and the passing of time, the trait has to be put under 
selection pressure in order just to keep it on the reached level. If selection is abandoned the population 
will slowly return to the starting point with optimal fitness. 

To avoid this negative effect some environmental changes might keep the population in balance on a level 
that differs from the starting point, see Figure 8.7.  

When significant changes occur in both the 
environmental and the genetic background, the 
interaction between genetics and environment 
become an important factor. Interaction is reflected 
in the negative correlation to fitness.  

Selection experiments to illustrate genetic 

correlation. Figure 8.8 shows three parallel 
selection experiments with broilers, they have been 
carried out by the Australian, Pym. The results were 
published in 1982. The experiment was carried out 
through 10 generations and the animals were tested 
from when they were 5 weeks old, till they reached 
9 weeks. In the three experiments there were 
selected for respectively Weight gain (W), Food 

consumption (F) and Food conversion rate (E). The curves for the three characters have the symbols 

Figure 8.6 
shows a two-dimensional distribution with a negative 
correlation of -.5. The line indicates a selection limit 
when both characters have the same weight. 

 

Figure 8.7 
shows that if a trait changes dramatically, it is often 
necessary to change the environment too in order to 
maintain maximum effect of the selection by 
utilizing the interaction between genes and 
environment. 
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W, F and E. 
The direct selection response was measured at the same time and also how the other non-selected 
characters have changed due to genetic correlation. Furthermore it is clear that the selection has resulted 
in quite different phenotypes, depending on which trait the selection was for.  

Figure 8,8 
The Australian, Pym, have carried out 
three parallel selection experiments with 
broiler. The direct response is indicated 
in the title of each graph. The upper 
'weight gain', the middle 'food 
consumption' and the lower 'food 
conversion rate'. All other curves are 
correlated responses. 

 

Animals selected for growth (upper graph W) also has a larger intake of food (middle graph W) and a 
better efficiency (lower graph W) with a lower food consumption per kg weight gain.  
Animals selected for food consumption (middle graph F) also has a bigger weight gain (upper graph F) 
and poorer efficiency (lower graph F) which mean higher food consumption per kg weight gain. 
Animals selected for efficiency (lower graph E) also has a larger daily gain (upper graph E) and a stable 
food intake (middle graph E). 

Video clips of broilers selected for daily gain with correlated leg problems, (demands installation of 
Real Audio) 
The video clips are from a broadcast from DR 'Journalen' and is recorded at Denmark Jordbrugsforskning, 
Foulum, where prof Poul Sørensen has provided the basic information.  
Video clip of broilers selected for daily gain and a corresponding layer chicken. At five weeks the white 
broiler weighs around 2 kg, which is about four times the weight of the brown layer chicken 
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Video clip of broilers selected for daily gain with correlated effects that produce leg problems. The first 
shown broiler's leg problems are so severe, that it is unable to get food and water, thus it ought to be 
euthanised. The second broiler walks badly, and keeps its balance by putting its feet wide apart. 

Auto selection for the trait, litter sizes - balance with fitness.  
In every generation an auto selection for higher litter size will occur, as more offspring are born in large 
litters than in small ones. The selection differential in pigs is about 1 pig per generation, see Figure 8.9. 
The trait litter size is normal distributed when observing the trait in the sows. But the curve for the trait 
born in litter size is skew to the right, as more piglets are born 
in large litters than in small ones.  

The maternal effect is positive for the pigs born in small litters, 
while it is negative for pigs born in large litters. In the 
selection of gilts it is important to avoid individuals born in 
large litters. The negative maternal effect is especially 
pronounced in species, which become sexually mature before 
they are fully grown, which is the case for pigs. 
It must be clear that all multipara animals need a mechanism to 
maintain an optimal litter size, eventhough a strong selection 
for larger litter sizes always is present.  

Relapse after relaxed selection for traits, which are part of 

fitness.  
If a trait has been changed by selection, the trait has a tendency 
to return to the starting point if the selection is discontinued. 
The domestic swine, for instance, has a litter size around 10, 
whereas their origins, the wild boars, only have a litter size of 
5. Therefore it is to be expected, that if the domestic swine 
returns to nature, their litter size would adapt itself to the new 
situation where less resources are available. The same can be 
expected considering dairy cows, egg layers and broilers. 
The highly specialized domestic animal species can only maintain their large production if  housing and 
high quality fodder is provided. 

Chapter 9. Inbreeding, crossing and bred structure  

9.1 Effect of inbreeding on individual and on population level  

In section 4.4 on individual inbreeding, it was shown that inbreeding increases the chance of 
homozygosity in each locus. This is also true for homozygosity in general. Inbreeding causes an increase 
in the level of homozygosity, and a decrease in the level of heterozygosity. At 100 % inbreeding no 
heterozygosity is left. 

What concerns an individual also concerns the entire population. Again we refer to the albumin example 
of dogs which, was given in section 2.4. By examining the total number of heterozygotes in all dog 
populations it becomes clear that 16 % units are missing, compared to the expected in a H-W population 
if we regard all examined dogs as one breed. The joint overall lack of heterozygotes makes it possible to 
estimate the inbreeding, within the individual population, to 33%, using the formula from section 4.4. The 
measurement of inbreeding in the various breeds can also be regarded as a measurement of differentiation 
between breeds. Inbreeding in a breed is caused by random loss of variation, whereby the breed loses 
parts of its original variation. Inbreeding drives the evolution, which is competition between populations 

Figure 8.9 
the trait litter size is normal distributed 
when observing the trait in the sows. The 
piglet's distribution it is skew to the right 
with a mean value of one additional 
piglet. 
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on a higher level. Each  population, if it is large enough, will acquire new mutations to compensate for the 
loss of original common variation. 

It is known that one of the consequence of strong inbreeding is loss of vitality. A linear negative 
relationship between production traits and the degree of inbreeding can be predicted. Therefore it is 
important to ensure that the inbreeding is kept at the lowest level possible among the production animals. 
This can be done using pedigree information before mating, or by use of more robust systems, such as 
subdividing the animals into herds, keeping the females in the herd while adding new males from other 
herds. This system can ensure a low level of inbreeding, see Figure in section 9.3 for circular full sib 
mating giving minimal inbreeding. On the population level a herd can be regarded as a pair of full sibs. 

The decrease in the level of the production traits is called inbreeding depression. It is at a magnitude of 
0.4 units for an increase in the inbreeding of one unit. For reproduction traits or fitness traits the decrease 
is much higher, at about one unit. This cause the fact that it is extremely difficult to produce 100 % inbred 
domestic animals. 

Figure 9.1 shows a linear decrease in average daily slaughter gain in swine. The slope of the line is 2.1 
grams decrease for one unit increase in the degree of inbreeding (data from Christensen et al. Anim Prod. 
58:298-300, 1994). 

Figure 9.1. 
Decrease in the average 
daily slaughter gain in 
relation to inbreeding in 
swine 

 

The linear decrease in production ability can be directly related to the linear decrease in the degree of 
heterozygosity, which is proportional to the increase in the degree of inbreeding. Correspondingly there is 
an increase in the degree of homozygosity, which is equal for both homozygote types. For every locus the 
decrease is proportional to 2Fpq, and the corresponding increase is Fpq for each type, see table in section 
4.4. The magnitude of the inbreeding depression depends on the magnitude of the dominance deviation, 
which is constant for a given trait. The inbreeding depression is generally largest in traits with low 
heritability. 

9.2 Effect of crossbreeding  

The effect of crossbreeding is the opposite of the effect of inbreeding. Crosses are more heterozygotic 
than individuals in a pure bred population. Contrary to inbreeding, where a linear negative relationship 



 60 

with fitness and production traits and the degree of inbreeding, it is impossible to predict anything about 
the effect of crossbreeding. 

How is it possible to establish a sensible system of crossbreeding? The only possible method is 'the trial 
and error method'. Today a large part of the practical production of poultry, mink and pigs is based on 
production crosses, so the 'the trial and error method' is not as bad as it might sound. If a combination, 
showing a good crossbreeding effect or heterosis, is found, this combination can be repeated infinitely. 
Apparently, a certain heterosis does not depend on the level of pure breeding. Pure breeding or out 

breeding has not been defined earlier, but the words indicate that neither inbreeding nor crossbreeding 
occur, therefore breeding in a larger population of domestic animals is referred to as pure breeding or out 
breeding. This definition corresponds closely to the definition of a H-W population with less strict 
random mating requirements. Hybrid vigour is, as it says, a special vigour, which occurs as a 
consequence of crossbreeding. Another word used for a cross is a hybrid, which has then coined the term. 
Vigour is materialized in more robust animals with larger production capacity than pure breeds. Heterosis 
means the same as hybrid vigour. The word indicates that the effects are caused by increased 
heterozygosity.  

Systems for crossbreeding. Figure 9.2 shows four breeds or 
lines, A, B, C and D. Crossbreeding can be carried out as two 
way, three way or four way crosses, backcrosses, or rotation 
crosses. 

Two way crosses - a cross between two lines A and B. 

Back crosses - the crossed animal, AB, mated with either line 
A or B. 

Three way crosses - the crossed animal, CD, is mated with a 
third line A. 

Four way crosses - the crossed animal, AB, is mated with the 
crosses CD. 

Rotation crossbreeding can be carried out with 3, 4 or 5 breeds or lines. In this case 4 is used, the next 
breed to be used is C and then D. Normally the females are crosses while the males are pure bred animals. 
The two-way crossbreeding only gives heterosis in the offspring. To retain heterosis in the maternal traits, 
three way or four-way crossing has to be applied. 
Systems for crossbreeding automatically ensures as low an inbreeding as possible in the production 
animals. Thus the advantage of crossing systems is that no special action has to be taken in order to 
maintain minimal inbreeding. 
The traits, which give largest hybrid vigour, are traits with low heritability, which implies that hybrid 
vigour is mostly found in reproduction traits. 

Figure 9.3 shows an example of hybrid vigour in mice on the number of young a female can produce in a 
lifetime. The most popular system for crossbreeding has been applied: two- and three- way crosses, and 
back crosses. (Data from Newman 
et al. J.Anim. Sci. 61 358-365, 
1985).  

Figure 9.2. Systems for crossbreeding.  

 

Figure 9.3. Effect of crossbreeding in mice.  
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As seen in Figure 9.3, the hybrid 
vigour is very high in this example 
as mice of pure lines only get half 
the number of young that the cross 
bred mice get. 

The effects can be divided into 
either an effect on the foetus or an 
effect on the mothering abilities. 
The difference between the two 
lower curves shows the effect on 
the foetus, if it is a cross or not. 
The lower curve represents pure 
bred foetuses in pure bred 
mothers. The second lower curve 
represents a cross foetus in a pure 
breed mother. The difference 
between the two lower curves and 
the two upper ones shows the 
effect of a female being a  cross or 
not. It is clear that most of the 
hybrid vigour is in the maternal 
part, and it concerns the ability to 
ovulate a large number of  oocytes 
and hold them throughout the pregnancy. 

The example in Figure 9.3 shows a large amount of hybrid vigour. This is very rare, but in animal 
breeding it is common to see effects of up to 10 %. 
Calculation of the hybrid vigour is done as follows: (average of the crosses minus average of the pure 
lines) in relation to the average of the pure lines. 
Example of swine: Landrace Yorkshire crosses give an extra piglet per litter compared to the pure bred 
sows, which get an average litter size of 10. 

Hybrid vigour (11-10)/10 = 0.10 or 10% for litter size in swine in the mentioned combination. 

To carry out a cross production program it is necessary to maintain well defined lines, and that the 
animals are bred in sufficiently large numbers both to maintain them self and to produce a sufficient 
amount of animals to get into the crossbreeding program. The necessary surplus of animals for breeding is 
not always present. This however is not the case in the Danish dairy breeds. Largely all females are used 
for breeding, as the birth rate for the Red Danish and for the Holstein Frisian is only slightly above two. A 
ratio of 1.1 to 1.2 heifer calves have to born in order to replace their mothers, so the birth rate is just high 
enough to maintain the population. Rotation crossing though can be practised outside the pure breeding 
kernel. The hybrid vigour is significantly lower in rotation- than in three way crossbreeding.  

An extra advantage using crossing is the uniformity, which is attained when at leas one of the parents is a 
pure bred animal. In a German investigation was found that the phenotypic variance in back fat thickness 
in swine was 30 per cent lower in L x Y crosses than in the corresponding pure bred animals (Lutaaya et 
al. 2001, 79:3002-07).  

 

Figure 9.4. Two gene pairs and possible 
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Negative recombination effect in F2: In the shown 
crossing systems, at least one of the parent breeds 
was a pure bred. If an F2 is produced, this is not the 
case. Production based on F2-animals or 
crossbreeding between different crosses is normally 
a bad idea compared to backcrosses or three way 
crossing. The latter has the largest heterosis effect. 
In F2s so-called negative recombination effects 

can occur. This is caused by combinations of 
genes, which did not exist in any of the original 
breeds. For instance if a F1 is made by crossing 
aabb x AABB in F2 animals of the type aaBB AAbb 
will occur, which were not found in any of the 
original breeds. These types can be lethal, see 
Figure 9.4 for the biochemical pathways. The F2 will furthermore be more heterogenous than all other 
crosstypes or pure breed animals. 

By incrossing it is possible to improve a breed by using a few superior animals from outside the breed. 
Normally animals from closely related breeds are used because they have the desired characters to save 
the best of the original breed. For this to succeed the selection must be light in the first generations of the 
incrossing. After incrossing some of the recombinant types are of higher interest and it can take several 
generations for them to occur 

Figure 9.5 shows homologous chromosomes with 
four gene pairs which affect a quantitative 
character. Genes can be mixed so that it takes 
several generations for the desired combination, one 
chromosome having all the plus signs, to occur. See 
also section 2.5 for linkage disequilibrium.  

9.3 Minimum systems of inbreeding   

In small populations it is often desirable that the general increase in inbreeding is as low as possible. One 
way to reduce inbreeding is to arrange the mating so that all animals have the same number of offspring, 
which are used as breeding animals. In principle every individual should be sire or dame of one male and 
one female offspring. If this is the case, the effective population size would be twice the actual number. 
This is due to the fact that random mating, as in a H-W population, in principle will have a left skewed 
binomial distribution of offspring per animal (a Poisson distribution) with the mean value of two. This is 
a distribution in which the most frequent number of offspring is 0, 1, 2, 3, 4 per individual. This means 
that a fair number of individuals in an H-W population does not get any offspring at all. 

To ensure minimal inbreeding it is necessary to work systematically. The best and most simple systems 
use circular mating, as shown in Figure 9.6. 
The figure shows a circular half- and a full sib system. The full sib system is easier to use in practice. The 
half sib system demands the mating of every individual with two different partners. In the full sib system 
both offspring are normally from the same litter. The figure shows that the half sib mating system is 
repeated in every generation, whereas the full sib system has a cycle of two generations. 
The practical implementation of the full sib system is very simple. Mice for instance are kept in boxes. 
Place the boxes on a circle, and keep the female offspring in the box where it is born and put the male 
offspring into the box on 
the right.  

biochemical pathways. New combinations are not 
allways beneficial.  

 

Figure 9.5. A pair of homologous chromosomes 
from an original and an incrossed individual before 
recombination.  

 

Figure 9.6. Circular mating systems with minimum inbreeding.  
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Corresponding to the 
cyclic full sib mating 
system a population can 
be divided into four 
groups, numbered from 
one to four. The female 
offspring stay in the 
group, whereas all the 
male offspring are 
transferred to the group 
on the right. The animals 
can only be mated with individuals from within the same generation. In this system there is no need to 
keep track of every single individual. The degree of inbreeding would not be higher if a pedigree had 
been used for four generations, to avoid close relationship between mated animals. 

9.4 Inbred lines in laboratory animals 

Within laboratory animals, as for instance mice, rat and guinea pig, it has been possible to obtain 
completely inbred lines. When using continued full sib mating it is possible in theory to reach 99.8 % 
inbreeding after 20 generations. If full sib or parent-offspring mating is continued the coefficient of 
inbreeding is determined by the inbreeding in two prior generations with the following formula 

Fn = (1 + 2*F(n-1) + F(n-2))/4, where Fn is the inbreeding in generation n, see solution to exercise 4.2. 

The totally inbred lines have the advantage of being completely uniform genetically. By using inbred 
animals (instead of out bred ones), in relation to a security test of a new drug, a lower number of test 
animals are needed due to a lower error variance. To maintain the uniformity the use of full sib mating is 
necessary. Furthermore, if several animals are used in the trial, it is necessary for the results that the 
multiplication ensures that the original parents are no more than five generations away. The reason for 
this rule is that every new individual carries a certain number of new mutations. These mutations are very 
significant due to the uniform inbred background. 

It has not been possible to obtain absolute inbreeding within our common domestic animals. When the 
inbreeding has reach 60 to 70 %, the fertility has been very low because of the inbreeding depression, 
that  further inbreeding has been impossible. The laboratory animals has passed that barrier and here 
many of the fully inbred lines have a high and stable fertility, even at 100 % inbreeding. 

Every inbred line, that is maintained for commercial reasons, has been specialized for specific lines of 
research. An example is the diabetes mice which easily acquire diabetes, naturally they are used in 
diabetes research. Several transgene lines have also been produced in both rats and mice, each specialized 
for a certain purpose. Link to companies selling laboratory animals.  

9.5 Population structure, breeding pyramid 

The breeding of animals for production, as hen and swine, is almost entirely based on crosses. To 
maintain a steady production of crossbreds it is necessary to keep every breed, that are part of the final 
crosses, pure. 

In such a system a breeding pyramid or kernel breeding including the following three steps are common. 

• Breeding kernel  
• Multiplication of parent animals  
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• Production  

 
An example taken from the swine Danish 

production, see Figure 9.7. In Denmark more than 
20 millions pigs are produced every year. The main 
part is 3-way crosses. The mother animals are 
mainly Landrace Yorkshire (LY) crosses. Most of 
them are mated with Duroc boars, a few with 
Hampshire breed boars. 
In a lifetime a sow gets circa four litters with an 
average of over 10 piglets and little more than two 
litters per year. Which means that around half a 
million crossbred sows have to be recruited every 
year. They mainly stem from the multiplier herds. 
The breeding pyramid is shown in figure 9.7. The 
kernel consists of 50 privately owned herds 
(breeding centres) of pure breed. These centres 
breeds with eight thousand breeding sows, four 
breeds each with circa 2000 individuals. For each 
pig an index is calculated made up of the characters 
in the breeding goal. The males are mainly found at the AI stations (artificial insemination). The figure 
indicates, by use of arrows, the direction of the gene flows in the system. In the production herds around 
half of the piglets are offspring of AI boars. The other half are sired by natural mating. The boars in the 
herds are mainly bought from the breeding centres. 

Chapter 10. Chromosomes and chromosome aberrations  

10.1 Preparation of chromosomes  

The chromosomes only become visible and suited for the classical chromosome analyses during the 
metaphase stage of the cell cycle. As the metaphase stage is very short, cells in strong growth are 
necessary in order to prepare chromosome slides for microscopic observation. 

Lymphocyte culture is the most common method for obtaining many cells in the metaphase stage 
simultaneously. A mitotic rate of 1 % is common in good cultures. Normally the lymphocytes are inactive 
cells, therefore they have to be stimulated to divide. The most commonly used mitogene (mitose 
stimulating agent) is PHA (phytohaemagglutinin) which is a bean extract.  

The following procedures are used for 'whole blood' culture and chromosome preparations: 

• Use blood stabilized with heparin, which can be stored at room temperature (20 C0) in up to five 
days before initiation of the cultivation.  

• 0.3-0.5 ml full blood in 5 ml growth medium (RPMI) added 10% foetal calf serum and PHA is 
grown for 60 hours at 38 C0  

• the last two hours with added colcemid (then centrifuge and remove the supernatant)  
• the cells are treated in half physiological salt solution (0,075M KCl) for 10 min. --- do  
• the cells are treated in fixative (methanol acetic acid 3:1) added slowly while shaking, after 15 

min. ------------------- do  
• wash in new fixative three times, getting the cells in suspension every time --------------- do  
• store in fixative at minus 20 C0. The cells can now be stored for years before use  

Figure 9.7. Breeding pyramid showing breeding 
system used in Danish swine production. 
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• drop cell suspension on slides and let it dry while blotting off the surplus fixative at the edges of 
the slides  

• stain with Giemsa or another nucleus stain  
• microscopic observation and photo  

Chromosomes can also be made from fibroblast cell cultures, which can be established from an ear clip or 
subcutaneous muscle tissue. After a post mortem examination tissue from the lung or the kidney can also 
be used to establish a primary cell culture. The culture must be established within the first few day after 
the sample has been obtained. The cell culture is established in a Falcon tube by adding media and a few 
small lumps of tissue, which have been minced by a pair of scissors. Normally it has to grow for more 
than 10 days before a  sufficient amount of cells for chromosome preparations have developed. The 
growth media are the same as mentioned under 'blood' culture, but here no PHA has to be added.  

To identify the individual pairs of chromosome specific staining is needed. This is done by adding a 
thymidine analogue Bromo-deoxy-Uracil (BrdU) to the growing cells 6-7 hours before harvest, depending 
on growth rate. After staining with Acridine orange the BrdU incorporation should give faint cromatids in 
the late replicated areas (after addition of BrdU), whereas the earlier replicated areas give a strong bright 
colour. By means of this staining the inactive X-chromosomes in the normal female can be demonstrated, 
as the inactive X-chromosome has an extremely late replication, see the picture in section 2.2  

10.2 Normal karyotypes in domestic animals  

Metaphase chromosomes spread by means of the air drying method, make all the chromosomes of a cell 
stay in the same plane on the slide. By photo the cells that do not overlap are selected, so that the 
individual chromosomes can be identified. Additionally, the chromosomes have to be as long as possible. 
See for instance the blue fox metaphase chromosomes stained with Giemsa in section 10.3, which are 
fairly short. 

The chromosomes can be set up pairwise, when individual pairs can be identified. A photo is taken and 
the chromosomes are cut out and arranged as shown in Figure 10.1. They are arranged according to 
internationally acknowledged enumeration systems. The enumaration systems are mostly ordered 
according to size and/or the position of the centromere. In each chromosome pair one of the chromosomes 
comes from the father and the other from the mother, these are called homologous chromosomes. Each 
species of domestic animals has specific chromosomes, regarding the number as well as the form. The 
number of chromosomes in mink is 30 and in dogs 78. Normally, animals with acrocentric chromosomes 
have the highest number of chromosomes. Therefore in the dog all, but the sex-chromosomes, are 
acrocentric. In the mink all the chromosomes are metacentric except for one pair. Examples of 
chromosomes from three species are shown in Figure 10.1. 

Figure 10.1. 
Cattle chromosomes, 2n=60,XY. Stain method  
BrdU incorporation - Acridine Orange  

. . Cat chromosomes, 2n=38,XX. 
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Swine chromosomes, 2n=38,XX. 

 

. .  

The Bovidae  
Cattle chromosomes and chromosomes from sheep and goat are quite similar. Like cattle goat has 60 
chromosomes, which are all nearly identical with those in the cattle, except for the sex-chromosomes X 
and Y. The X-chromosome in the goat is acrocentric (the cattle's X is sub-metacentric) and the Y-
chromosome is much smaller than the cattle's. In sheep the same differences in the sex-chromosomes are 
found, but in addition there are three centromere fusions. The chromosomes, 1/3, 2/8 and 5/11, are fused 
in comparison with those in cattle and goat. Therefore, the sheep has only 54 chromosomes. 
Regular fertile offspring can occur from the mating of a female goat and a male sheep. If the parents' sex 
is reversely combined the foetuses will die before term. The duration of the gestation period is almost the 
same for sheep and goat, around 148 days. 

The Canidae  
The two fox species found in Danish fur farms, the red and the blue fox, have respectively 34 and 50 
chromosomes. The red fox has only metacentric chromosomes and one to five additional micro 
chromosomes. The significance of the micro chromosomes is unknown. The blue fox has two pairs of  
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acrocentric chromosomes, the rest are metacentric. 
After mating the two fox species non-fertile offspring occur in regular amounts. The duration of the 
gestation period is nearly identical for the two species, 58 days. A cross of the two species has at times 
been popular in the fur production. 
Another canine species, the dog, has 78 chromosomes, which all are acrocentric, as mentioned earlier. So, 
compared to the Bovidae, the evolution of the chromosomes of the Canidae has been very fast. On the 
DNA level, in contrast, the Canidae species are very similar, see table in section 2.5, which deals with 
similarities of microsatellites in the three species.  

Mink have 30 chromosomes, only, see next section or here. The mink chromosomes are somewhat similar 
to  cat chromosomes, but are very different from those in foxes and dogs. 

The Equidae  
The horse has 64 chromosomes and the ass 62. The chromosomes in these two species are quite different. 
But non-fertile offspring can be produced from mating a horse mare and an ass stallion. This cross is 
called a mule, a very strong and enduring animal. 

The Gallus  
The chromosomes of hen are similar to those of other birds and reptiles. Six of the chromosome pairs are 
similar to those found in mammals, while the remaining are micro-chromosomes, 2n= 78. The sex-
chromosomes are some of the largest ones. They are called ZZ in the cock and ZW in the hen. So among 
birds the female is the hetero gametic sex, which determine the sex of the offspring. Bird chromosomes 
can be seen here. 

Mapping of Chromosomes  

When working with chromosome mapping, the idea is to place a specific gene in a specific place on a 
chromosome. Therefore, for each species a specific standard with enumeration of each chromosome is 
made. For this nomenclature it has been decided that the shortest arm of the chromosome should be called 
the p-arm and the longest the q-arm. When the chromosomes are presented, the q-arm is always turned 
downwards. The enumaration of the bands on the arms begins at the centromere and continues towards 
the telomeres (the end of the chromosomes). 

10.3 Chromosome aberrations in domestic animals 

If an individual does not have a balanced set of chromosomes, i.e. two homologue chromosomes in each 
pair (and for the male an X and a Y), this will normally be visible in the phenotype, which then shows 
more or less deviation from normallity. Animals with a non-balanced set of chromosomes will most often 
be sterile and have low vitality. Animals with a balanced set of chromosomes will generally be normal 
phenotypically. Chromosome deviations, in animals with a normal phenotype, are normally detected due 
to low fertility or complete sterility. The karyotype of a bull with low fertility having a 1/8 translocation is 
shown in Figure 10.2, cf. Christensen, K., Agerholm, J.S. & Larsen, B. 1992a. Dairy breed bull with 

complex chromosome translocation: Fertility and linkage studies. Hereditas 117, 199-202.  
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Figure 10.2  
Translocation between chromosomes 1 and 8 in cattle, 
2n=60,XY. Staining method: BrdU incorporation - 
Acridine Orange. . 

 

 

Other types of chromosome deviations worth mentioning are trisomies, the best known case being 
trisomy 21 in human. It occurs in about one in 500 new born babies. 
The trisomies are very rare in animals, but they occasionally occur. Below is shown a trisomy 28 in cattle. 
The animal suffered from cleft palate and heart abnormalities, see Figure 10.3.  

Figure 10.3. Trisomy 28 in a calf, live born but unable to 
survive, 2n=61,XX. Staining method: BrdU incorporation 
- Acridine Orange.  

 

Normally the foetuses carrying trisomy 28 are aborted or die straight after birth. 

In most domestic animals less severe chromosome errors occur. For instance fusion of two acrocentric 
chromosomes, called centric fusion. 
The best known is the 1/29 centromere fusion of chromosome 1 and 29 in cattle. When such a fusion 
occurs in heterozygote form, it causes a slightly lower fertility of about 10 %, when measured as return to 
the service rate. 
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A corresponding centromere fusion is found in the blue foxes. Here the effect is of the same 
magnitude concerning litter size, see table below where the chromosome number 49 corresponds to 
heterozygotes with respect to the centromere fusion. Data from Christensen et al. Hereditas 1982, 97:211-
215. 

Dam chromosome number  Number of litters    Litter size 

      48                  16                    11.9 

      49                  42                     9.8 

      50                  17                    11.2 

 

Sire chromosome number       

      48                  10                    12.2 

      49                  52                    10.1 

      50                  13                    11.2 

Metaphase chromosomes of the three types are shown in Figure 10.4. In the figure there is a circle around 
the chromosomes that participate in the centromere fusion.  

Figure 10.4. 
A centromere fusion of two 
chromosomes results in varying 
chromosome numbers between 48 
and 50 in the blue fox 

 

It is known that some mice carry up to seven sets of centromere fusions. When all fusions occur in 
heterozygote form these mice have a very low fertility, consistent with a reduction in fertility of about 10 
% per centromere fusion in the heterozygote stage. 

 

 
Figur 10.4a. Segregations of chromosomes from 
centromere fusion heterozygotes result in non 
disjunction and uniparantal disomy. 
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Imprinting: There exist centromere fusions 
involving all the 20 pairs of the acrocentric mouse 
chromosomes. If two animals heterozygotic for a 
centromere fusion are mated spontaneously there 
will occur offspring having received two 
chromosome of a pair from one parent and zero 
from the other, see Figure 10.4a. Such an 
individual has a balanced set of chromosomes, but 
is not necessarily normal. About half of the mouse 
chromosomes give rise to abnormalities when 
uniparental disomy occurs as there has to be one 
maternal and one paternal chromosome in a pair 
for normal development. This phenomenon is due 
to imprinting (which genes being on/off is 
depending if the chromosome comes from the sire 
or the dam). Imprinting is important to understand 
why cloning of adult cells give many difficulties. 
Incorrect maternal or paternal imprinting disturb 
the ratio between the development of the placenta 
and the foetus which often cause early embryonic morality and other developmental errors.  

Free martins: Chromosome investigations can be used to identify animals with placental anastomoses, 
which often occur in cattle twins. When mixing the blood in the early foetal stages, a mixture of stem 
cells are established for the white and the red blood cells. The proportions are from 0 to 100 % of the 
right 'type'. If the mixing is too extensive the heifer in a mixed twin pair gets abnormal sexual organs and 
is infertile. The bull calf has normal fertility, but in paternity testing by means of a blood sample mistakes 
can occur, as this might show the genotype of the other twin. Therefore, when delivering blood samples 
for a paternity tests information should be given, if 
one of the involved animals have a twin.  

Sex-chromosome errors in mares: Mares with XY 
sex-chromosomes are fairly common in some of the 
half-breeds. They are not fertile. There also occur a 
fair number of mares with XO or XXX sex-
chromosome constellations. Figure 10.5 shows 
chromosomes of a mare with an abnormal X 
chromosome, which is always inactive. It has two q-
arms. The picture is provided by I. Gustavsson, The 
Swedish Agricultural University. 

Auli Mäkinä, at the university of Helsinki has a 
good survey over chromosome aberrations in the 
horse.  

Sister chromatid exchange (SCE)  
Cells which are grown for two cycles, BrdU being 
added in the first cycle, can reveal SCE. SCE can 
identify individuals with unstable chromosomes or 
be utilized for a mutagenity test. The number of 
SCE is proportional to the doses of the mutagene. Below are shown mink chromosomes carrying SCE. 
The SCE chromosome is also called Harlequin chromosome. The chromosomes, without occurance of 
SCE, show no breaks in the chromosome, i.e. it has two unbroken strings, one light and one darkly 

 

Figure 10.5. Horse chromosomes 64, XX. One of 
the X-chromosomes has two q-arms. It was always 
inactive. 
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stained. Where SCE occurs the chromatids change their colour. For SCE to occur both strings of the DNA 
must have been broken to joint up with the opposite string. 

Figure 10.6. 
Mink chromosomes with 30 XY. Showing sister chromatin 
exchange (SCE). 

 

10.4 Identification of chromosomes by means of chromosome paint  

Figure 10.7 shows paint on swine chromosomes with a DNA probe, derived from a hamster cell line 
which contains the p-arm of swine chromosome 12. Two chromosome arms, which are identical to the 
two homologue chromosomes are painted.   

Figure 10 7. 
Paint on swine chromosomes with a probe containing the p-
arm of chromosome 12 

 

The paint method is summarized in the following. It is also called 'Fluorescence in situ hybridisation', 
FISH: 

• Labelling of the probe with biotinylated nucleotides  
• Melting of the probe and target-DNA (chromosome slides)  
• Hybridisation of the probe and target-DNA under glass cover for several days  
• Washing to get rid of non-bound probe  
• A layer of avidin (binds strongly to biotin)  
• Staining by means of fluorescence labelled antibodies against avidin  
• Photographing by means of a fluorescence microscope  

When paints with smaller pieces of DNA, for instance a 40-kb large, (inserted into a cosmid) very distinct 
results occur in the form of two dots, one on each of the two chromatids on the two homologous 
chromosomes, see here.  

All human chromosomes are sorted so it is possible to buy pure DNA from every single chromosome. 
When each of them are labelled with different colours, the chromosome pairs also get a distinct colour of 
paint. This technique makes it simple to identify the chromosomes which are involved in complex 
translocation. Link to see paints of all human chromosomes. 
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By means of chromosome paint the homology between species can also be identified, see Figure 10.8 
with mink chromosomes (left). The same chromosomes (right) are in situ hybridised (painted) with a 
human chromosome 14 probe. A table showing the homology between the chromosomes in four domestic 
species of animals can be seen here.  

Figure 10 8. 
Paint on mink 
chromosomes with a 
human chromosome 
14 probe. Left are 
shown DAPI stained 
mink chromosomes. 
Right the 
identification by 
means of the paint 
which is on the p-
arm of mink 
chromosome 13.  

 

10.5 Chromosome aberrations identified by means of DNA-content in sperm cells  

A normal male carrying a balanced translocation will produce both normal sperm cells and sperm cells in 
which the translocation gives rise to non-disjunction of the homolouge chromosomes which causes a 
production of sperm cells with deviating chromosome numbers. 

Figure 10.9 shows histograms of flow-cytometry of sperm cells from two boars. A histogram represents 
an intensity of  fluorescence, which is proportional to the DNA-content in each sperm cell. Each 
histogram contains an intensity of around 3000 sperm cells. The boar to the right (Number 1130) is 
normal. It produces sperm cells with a Y- and an X-chromosome with a ratio of 1:1. A sperm cell 
containing a Y-chromosome has ca. 4 % less DNA than a sperm cell containing an X-chromosome. This 
is reflected in the fact that the mean value of two distributions differs with 4 % units. 

The boar to the left (Number 1523) carries a translocation between chromosomes 1 and 17. When the 
sperm cells are formed in this boar, some errors occur with respect to those two chromosomes, which are 
involved in the translocation. Chromosome 1 is very large, representing around 9 % of the DNA-content 
of the sperm cell. Therefore, the histogram of this boar has two additional symmetrical tops, one on each 
side. The small top to the right corresponds to sperm cells with two chromosome 1's, while the top to the 
left corresponds to cells with no chromosome 1's. The two extra tops only appear when they are 
companied by an X- or a Y-chromosome, respectively. An additional chromosome 17 or the lack of one is 
not directly visible. This chromosome is a small one containing about 2 % of the DNA-content of a sperm 
cell. Therefore non-disjunction of this chromosome only adds to the general variation of the two main 
distributions. It is also clear that the translocation boar contains more variation than the normal one. 

The investigations are published by Jensen, P.O. et al. 1993. Proceedings of 10th European Colloquium 

on Cytogenetics of Domestic Animals pp 104-108. 

Figure 10.9. Flow cytometry of boar sperm cells prestained with DAPI. The normal boar to the right has 
two tops, one for X- and another for Y-carrying cells. The boar with a translocation shows extra tops due 
to errors during the meiosis (non-disjunction).  
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Naturally the interest in utilizing flow-cytometry in a preparative mode is big. Which means production 
of sperm cells carrying either Y- or X-chromosomes. All species of mammals have some difference in 
the  DNA-content in respectively Y- and X-carrying sperm cells (both equally large) from 4 to 5 %. 
Technically it is feasible to work with a coefficient of variations (CV) at around 1 %, which is the case in 
the example shown above of the normal boar. 

Until year 2000 the results, with respect to getting live offspring after insemination with sorted sperm 
cells, have only been done on an experimental basis. The flow-cytometry cannot be done without the 
sperm cells have been treated with papain and stained with DAPI or other flourocromes. The papain 
treatment is needed for the staining of the DNA to be uniform.  

Chromosome specific DNA-probes to identify non-disjunction in sperm cells  

Another method of identifying non-disjunction chromosome errors is the utilization of strong 
chromosome specific probes. After in situ hybridisation of the probe onto slides with fixed sperm cells, 
the number of signals per cell can be counted. The possible outcome is sperm cells containing 0, 1 
(normal) or 2 of the chromosomes in question, depending on the number of positive hybridising signals. 
Investigations of this type on humans give an average non-disjunction rate per chromosome in sperm cells 
of .2 to .3 %, which equals a total of 5 to 8 % non-disjunction per sperm cell. If the rate of error in the 
female is of the same magnitude, the absolute maximum fertility rate will be at around 85 %, since almost 
all non-balanced gametes would die in the first trimester of foetal life. 

Development of similar chromosome specific probes for domestic animals are under way. The few results 
already obtained confirm the results derived from humans. Examples of utilization of mink chromosome 
specific probes on mink sperm cells can be seen here.  

Chapter 11. Genetics on hair and coat colour in mammals  

11.1 Hair coat types in mammals  

The hair of mammals can be characterized partly by the length and partly by the physical structure, for 
instance straight or curly. The ratio between the protective guard hair and the underfur also plays a role 
for its physical appearance. Finally the colour of the hair can give camouflage or in cases where 
individuals with strong colour dominates the flock or individuals outside the flock competing for 
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dominance. 
Especially for water dwelling animals or animals hunting for fish the fur is of great significance for the 
regulation of heat. The fur of for example seal, otter and mink also has to be very resistant to last through 
the winter. The hare and foxes also have a warm fur, but the coat of these animals do not need to be 
nearly as strong as the before mentioned. Most mammals grow their winter fur in October-November and 
shed it again for the summer in April-May. 

Some of the physical characteristics of the hair are under simple Mendelian inheritance, for instance the 
characteristics below: 

Hair types and genotypes  

Dominant                   Recessive                  

---------------------------------------------- 

Wire haired    W-          Straight haired ww                

Short haired   L-          Long haired    ll                

Guard  haired  M-          Mole           mm 

Haired         Hr-         Hairless       hr/hr 

---------------------------------------------- 

Figure 11.1 shows examples of the differently haired types.  

Figure 11.1. 
 
The wire-haired Airedale Terrier 

 

Long haired type in Dachshund. 

 

The fur from a mole mink and a normal Standard mink 
from year 1965. 

 

Hairless mouse. 
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11.2 Coat colour types in mammals, colour genes 

The colour of the hair is determined by the content of melanin grains. The black, brownish colours are 
produced by eumelanin and the reddish, yellow colours by pheomelanin. The latter can be dissolved in 
HCl. If the hair does not contain any melanin grains it becomes white, this is caused by air bubbles in the 
hair. This produces the white colour, just like air in or under the ice. 

Melanin is formed by the amino acid tyrosine through a long row of biochemical reactions which all 
affect the coat colour. The melamine is produced in a cell type, which are called melanocytes. The 
number of and the hormonal influence on these cells can also give rise to variations in the colour. 

Figure 11.2 shows a list of the best known colour genes. 

Figure 11.2 
 
Agouti locus (A locus) 

  

Dominant Yellow Ay-  
Dominant Black A- 
Recessive Black and tan at- 
Recessive Yellow aa 

 
The Airedale terrier shown on the last page has the 
genotype Black and tan atat, black on the back and 
tan on the belly and extremities. 

Brown locus (B locus)   

Dominant Black B- 
Recessive Brown bb 

 

 
Brown genotype bb occurs in many dog breeds 

Albino locus (C locus)   

Dominant Colour C- 
Recessive White cc 

 

 
Albino genotype cc in the red-eyed Angora rabbit 

Dilution locus (D locus)   

Dominant Black D- 
Recessive Silver dd 

 

 
Silver genotype in swine 



 76 

Extension locus (E locus)   

Dominant Black E- 
Recessive Yellow ee 

 

 
Pink eyed dilution locus (P locus)   

Dominant Black P-  
Recessive Yellow pp 

  

X-linked Orange locus (O locus)    

Females: 
Dominant Black oo 
Heterozygote Black/Yellow Oo 
Recessive Yellow OO  

Males: 
Dominant Black o 
Recessive Yellow O 

 

 
The heterozygote Oo has a mixed colour type due to 
random X-chromosome inactivation. The mixed 
colour can vary from a nearly perfect mixture to 
large spots of yellow or black depending on when 
the random inactivation takes place. 

 

Somatic mutations in colour genes: In some domestic species, such as fox and cat, a dominant gene 
occurs, which reduces the pigmentation to a light 
cream colour, see Figure 11.3.  

 

The shadow mutation is very unstable as it easily 
mutates back to normal colour type. The somatic 
back mutation takes place under the foetal 
development while the melanocyte population is 
formed. In the foxes of the Shadow colour type a 
visible somatic back mutation occurs in about 2 % 
of a population. Figure 11.3 shows a back mutation 
in a Shadow fox. Animals containing the Shadow mutation often have eyes with different colours, one 
brown and one blue. 

11.3 The biochemical function of the colour genes  

Figure 11.4 shows an illustration of a melanocyte. In the figure some of the functions of a melanocyte are 
pointed out. These functions are influenced by the colour genes mentioned in the last section. 

Figure 11.3. 
Somatic back mutation 
in the Shadow gene for 
colour. The entire ear 
has normal colour on a 
Shadow blue fox, which 
is normally cream 
coloured all over the 
body.  
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MSH or the melanocyte-stimulating hormone is produced in the hypophysis. This hormone is important 
in the production of melanin. The MSH-receptor corresponds to the e-locus, whereas a blocker of this 
hormone corresponds to the a-locus. 

The b and c locus code for 'enzymes' which 
regulate the restructuring of the amino acid 
tyrosine, tyrosinase. The restructuring of 
tyrosine is necessary for melanin to be 
formed. 
Locus d has to do with the dendrite-size. 

A comparison with the known alleles of the 
colour genes provides the possibility of an 
interpretation of their function. For instance 
can both a dominant and a recessive yellow 
exist in the agouti locus. The effect of the a 
and the e locus has to be strongly related, as 
they affect the same system, the MSH 
function. 

The distribution of the melanocytes in the 
skin is also an important factor for the colour 
of the hair. An example of this is two gene 
pairs known from mice, the steel (sl or Mast 
cell growth factor=Mgf) and white spotting 
(the Kit gene), which is the Mgf receptor. 
These genes determine the number and the 
distribution of the melanocytes in the skin. 
They can also, as the latter gene name 
indicates,  cause white spots. When fewer 
melanocytes occur in the skin the result will 
be a mixture of coloured and white hairs. This effect comes from the steel locus. 

In mice up to 100 coat colour genes are known. They can all be categorized into one of the four classes 
given below: 

Classifying genes which affect the coat colour: 

• Genes affecting the biochemical path ways of melanine production  
• Genes regulating the amount of melanin production  
• Genes regulating the number and the distribution of the melanocytes  
• Genes regulating the morphology of the melanocyte  

More details and references concerning melanin production.  

Modification of the colour can be done by means of classical selection, where the intensity of the colour 
is treated as a quantitative character. For instance, the colour of wild mink is dark brown. By selection for 
darker colour through 40 generations a completely black mink colour type has been created.  

11.4 Colour genes in domestic animals 

Figure 11.4. 
Shows the functions of the five best known colour genes 
in mammals. The coat colours are caused by the melanin 
grains produced by the melanocytes.  
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The inheritance of coat colour in the Danish swine breeds are regulated by the following three loci, 
see also Figure 11.5. 

Dominant                   Recessive                  

------------------------------------------------- 

White           I-          Coloured    ii               

Black           E-          Red         ee               

Uniformly       ii          White belt  i(be)i(be) 

------------------------------------------------- 

The Landrace (L) and the Yorkshire (Y) breeds are homozygotic for dominant white, II. 
The Duroc (D) race is red, eeII. 
The Hampshire (H) race is black with a white belt, EEi(be)i(be).  

Figure 11.5 
The Landrace and 
Yorkshire are 
homozygote for 
dominant white, the 
Duroc is red and the 
Hampshire is black 
with a white belt 

 

Most of the pigs produced in Denmark have an LY mother and a coloured (D or HD) father. They are all 
white as they are heterozygote with respect to the genotype Ii. Marklund et al. 1998, Genome Res. 8:826-
33, has shown that the dominant white in swine is caused by an allele in the kit gene, which corresponds 
to the mast cell's growth factor receptor. The extension locus code for the colour difference between the 
black and red pigs. 

Details of the belt gene is given in Mamm Genome 1999 Dec;10:1132-6 af Giuffra E et al. it is an allele 
in the kit gene.  

The inheritance of coat colour in the Danish cattle breeds are regulated by the following three loci: ` 

Dominant                   Recessive                  

---------------------------------------        

Black          E-          Red       ee               

Uniformly      S-          Spotted   ss 

White head     SH-          Uniformly SS 

---------------------------------------- 
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The Danish Holstein Frisian dairy breed (SDM) has the genotype EEss and The Danish Red dairy breed 
(RDM) has the genotype eeSS. Crosses between SDM and RDM become uniformly black. Some RDM 
have a different colour pattern, tiger stripes, which are cased by an allele in the e locus which dominates 
over red colour. 
In some Danish beef cattle breeds, for instance Hereford, white head colour pattern occur, having 
dominant inheritance. It is inherited from a dominant allele in the same locus as spotted. It is known, that 
the gene for spotted is situated on chromosome 6, and is tightly linked with the kit gene and it has 
interaction with the kit gene.  

Figure 11.6. 
Danish Holstein Frisian with the genotype EEss and Danish Red with the genotype eeSS. The Hereford 
has the dominantly inherited white head. 

 

Klungland et al. 1995, Mammalian Genome 6:636-39, have shown that red colour in cattle is caused by 
the ee genotype in the extension locus.  

Inheritance of coat colour in dogs, by Helle Friis Proschowsky  
The inheritance of coat colour in dogs is very complex, therefore only the main types will be described 
here. 
In some breeds the coat colour is very constant, thus all individuals have the same coat colour. But each 
breed has its own special set of colour genes and some breeds have great variation. People with special 
interested in a particular breed can consult 'The inheritance of coat colours in dogs' by Clarence C. Little, 
Howell Book House, 1984.  

A short description of the best known colour loci and their significance for the coat colour in dogs: 

Locus A: Determines the amount and the localization of dark and light pigment, both for the individual 
strands of hair and for the fur as a whole. The allele at , for instance, causes the black and tan colour of 
Rottweilers, Airedales and Gordon setters.  
Locus B: Determines the amount of dark pigment and whether the colour should be dark (B-) or liver 
brown (bb).  
Locus C: Determines the depth of the pigmentation. The allele ca , gives albinos, and the chinchilla allele 
cch which makes the reddish and yellow colours become cream colour in for instance Cocker Spaniel. The 
chinchilla allele also gives rise to large variations in the depth of the pigmentation, in for instance 
Chesapeake bay retriever and Tibetan Terrier.  
Locus D: Determines the intensity of the colour. The allele D gives an intense colour (black in Grand 
Danois), while the allele d gives a bluish dilution. Weimarans always carry the Recessive dd along with 
bb, thereby yielding the liver brown coat colour.  
Locus E: Determines the pattern of the pigmentation in the coat. Alleles Em, for instance gives the 
Leonberger a black mask and the allele eb gives the Boxer and the Grand Danoi tiger strips (brindle), 
while the genotype ee produces the Labrador Retriever's yellow colour.  
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Figure 11.7 The black and tan colour in the Airedale, atat. Dilution colour in the Tibetan, dd, and yellow 
colour from the extension locus in the Labrador retriever, ee.  

 

Locus G: alleles in this locus determine whether or not the colour fades with age.  
Locus M: the dominant allele M gives merle colour (Collie, Shetland Sheepdog), while the Recessive 
allele m gives a uniform pigmentation. It is well known that two dogs carrying the merle colour should 
not be mated, as a double dose of the allele often causes damage to the eyes and the sense of hearing.  
Locus S: determines whether or not the coat have spots. The dominant allele S gives a uniform 
pigmentation, though occasionally with white spots on the feet and/or the chest (Retriever, Boxer and 
New Foundlander). The three more Recessive s-alleles give varying amounts of white spots, the Clumber 
Spaniel and the Dalmatian being mostly white. 

Inheritance of coat colour in the cat, by Nan Hampton, University of Texas at Austin, who also has an 
elaborated power point show with about 50 slides.  

Below is shown a table of some of the more common genotypes and phenotypes of the domestic cat.  

Common Genotypes and Phenotypes  

Homozygous  Homozygous Heterozygous 

Genotype Phenotype Genotype Phenotype Genotype Phenotype 

AA agouti aa non-agouti (black) Aa agouti 

BB 
black 

pigment 
bb brown pigment Bb black pigment 

CC full color cbcbcscs burmesesiamese CcbCcscbcs full colorfull colortonkanese 

DD 
dense 

pigment 
dd diluted pigment Dd dense pigment 

ii full pigment II 
pigment limited to tips of hairstrand, base of hair light gray or 

white, agouti especially affected by agouti=silver tabby with non-

agouti=smoke with orange=cameo 

LL short hair ll long hair Ll short hair 

mm long tail MM 
lethal on prenetal 

stage 
Mm short tail 

oo or oY 
non-orange 

(usually 

black) 

OO or 

OY 
orange Oo 

tortoiseshell=orange and 

black in females 
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ss 
no white 

spots 
SS 

white spots > 1/2 

body 
Ss white spots < 1/2 body 

TT 
mackerel 

stripe 
TaTatbtb Abyssinianblotched TTaTtbTatb 

Abyssinian, faint leg and tail 

stripes Mackerel stripes 

Abyssinian, faint leg and tail 

stripes 

ww 
not all 

white 
WW all white Ww all white 

Inheritance of coat colour in mink  
Mink's colour types have evolved through selection or mutations of colour genes. The wild genotype for 
colour, which has no mutations, is called Standard and ranges from dark brown (wild mink found in 
nature and the colour type Wild mink) to the strongly selected farm mink Black standard, which is totally 
black. This is due to selection for darker colour in the last 40 generations. 

The mutated colour types in mink are classified according to numbers and types of genes responsible for 
the appearance of the colour. Until now it has not been possible to correlate the mink colour genes with 
the colour genes described in other mammals. The only exception is the albino locus. Hopefully this 
problem will be solved in the near future by means of DNA technology. 

The Recessive and dominant colour genes: Single Recessive colours stem from homozygosity in 
mutated Recessive genes. Colour genes from two or more mutated colours, having originated from the 
same wild (standard) genes, are called allelic genes and will occupy the same chromosomal location 
(locus). The homozygous state of dominating genes is often lethal, resulting in a reduced litter size when 
heterozygotes are mated. Only the most commonly used combinations of the mutations are shown. A 
cross between non-allelic mutations results in the dark brown colour. This was the common type when the 
mutations originally were established.  

Colour types, single Mutation name Mutation genotype Wild type, Standard 

White  Albino, red eyeds cc CC 

 Hedlund White, deaf hh HH 

Grey Aleutian, bluish aa AA 

 Silver Blue, grey pp PP 

 Steel Blue p
s
p

s PP 

Brown Royal Pastel bb BB 

 Moyl mm MM 

 American Palomino kk KK 

Bicoloured Black Cross Ss ss 

 95 % White SS ss 

 Finn Jaguar Zz zz 

Combinations    

Bicoloured Pastel Cross bb Ss BBss 

Bluish grey Sapphire aa pp AAPP 

 Blue Iris aa p
s
p

s AAPP 

Sand Pearl mmpp MMPP 
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Light sand Violet aakkpp AAKKPP 

Combination types used as production crosses. The crossing of non-allelic Recessive genotypes is 
practiced to produce various dark brown shades (called Demi buff, Glow or Wild mink). 

The following three crosses (F1) are commonly used to produce the Glow type 

    Sapphire x Pastel  

    Pearl    x   " 

    Violet   x   " 

             

            F1     x   Wild mink 

The Pastel is the female due to its high fertility. The F1 female can be crossed with Wild mink. The F1 
female is very fertile and the offspring will maintain the Glow colour type as the Wild mink breed true for 
the Standard genes. The Mahogany colour type is produced by crossing Standard black and Wild mink. 
This gives a very dark brown mahogany colour type. The Mahogany F1 can be used in further breeding 
with the same result, therefore a pure bred Mahogany line can be established.  

References: Experience from farm practise. 
Nes, N., et al. 1988. Beautiful Fur Animals and their Colour Genetics. Scientifur, 60 Langagervej, DK-
2600 Glostrup. 

 
Below is shown mink colour types from the book Beautiful Fur Animals, with permission from Outi Lohi.  

 

Colour genes in the horse  
For a detailed description of the horse colour genes reference can be made to 'The horse coat colour 
genetics' from the Model Horse Reference website. Horse Colours Genetics or from the Veterinary 
faculty in Davis, California Horse Colours  

The most important horse colour genes with indication of back ground colour genes :  

Agouti locus (A locus) back ground CCEE  

Dominant bay, A-  
 

Recessive black aa  
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Cremello locus (Cr 

locus)  
back ground aaee   

'Codominant' chestnut, 
CC  

Heterozygot, CCr 
 

'Recessive' light, 
CrCr  

Extension locus (E 

locus)  
back ground aaCC     

Dominant black, E-  
 

Recessive chestnut, 
ee   

  

Grey locus (G locus)  
back ground 

AACCEE  
    

Dominant grey, G-  
 

Recessive bay, gg  
 
  

Roan locus (R locus)  
back ground 

AACCEE 
    

Heterozygot roan Rr  
 

Recessive bay, rr  
 
Dominant RR, die   

Dominant white (W 

locus)  
back ground 

AACCEE 
    

Heterozygot white Ww  
 

Recessiv bay, ww  
 
Dominant WW, die   

The colour genes work in concert, the types shown above are representative for a group, in the real world 
there is a continuum of colours due to modifying genes.  
The genes in the agouti and extension locus works as earlier mentioned together, so if a horse should be 
black it shall have the genotype aaE-; an aaee horse has chestnut colour. There is also interaction between 
all other colour genes.  
Roan and ekstension locus are linked.  
Locke et al. (2001) Animal Genetics 32:340-343, have shown that the cream dilution, Cr, allele is not 
coded from the C locus, as earlier symbols have indicated. The gene is not homologous with the 
tyrosinase gene in other species.  

Other species  
The rabbit's coat colour genetics reference is to Jackie Carey's Rabbit Colour Genetics  

Chapter 12. Estimating- and biotechnology and disease resistance  

The present chapter gives a review of the technological conditions, which are relevant in animal breeding 
around year 2000. Fast technological changes might create entirely new ways of breeding animals.  

12.1 Technology for breeding value estimation 

In chapter 7 simple methods for calculation of the estimated breeding values were given. Only data with 
uniform relation were included. This is a very simple form of estimation of the breeding value and it 
demands very little computer power, as it is based on the calculation of a single weight factor. This 
weight factor is dependent on the heritability, the number of individuals in the group, their internal 
relations and how they are related to the candidate. With the introduction of modern computers, the basis 
for a better utilization of existing data for estimation of the breeding value has materialized. The more 
advanced methods are based on systems of linear equation, in which every observation is provided with 
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its own equation. Thereby the creation of a system of equations  for calculation of the weight factors for 
every observation is completed. The model includes all observations from related animal as well as 
observations from related to related. 
An example of related to related animals: The mother of an offspring, whose father is being evaluated. If 
the mother of the offspring is present in the model of the father's estimated breeding value, the 
preconditions for random mating does not have to be too strict, since the father's breeding value has been 
adjusted for deviations of the dam's from the population mean value. 
The implied condition, that all observations must occur in the same environment, can also be taken more 
lightly, since for instance herd average can be taken into account in the models. To do this the model 
implies that more than one family per herd must be represented and that some of the sires in the herd 
should be used in other herds as well. 

The most important methods for estimation of breeding value:  
1. Selection index (SI) 
2. Best linear prediction (BLP) 
3. Best linear unbiased prediction (BLUP) 
4. Animal model (AM) 
5. Genomic selection  

The selection index was developed in the 1950's and was utilized before the computer age. The SI is at 
present mainly used for model calculation, as it is useful for the evaluation of the effect of multi trait 
selection. If a certain set of economic weight factors are used, each trait will get an expected delta G's. 
Before the computer age it was common to pre-correct data, as for instance for calving age or slaughter 
weight, since these traits had some biological variation. Pre-correction is still applied to some extent. 
With the production of faster computers, it has been possible to develop models, which calculate 
estimated breeding value for all animals in a population. When this is the case, it is easier to use all 
information from all the individuals, as these will give information on relations to all the others. BLP does 
not include environmental factors, which makes is less useful. The solutions obtained from a few animals 
are identical to the solutions obtained by SI. The BLUP and AM can simultaneous estimate 
environmental effects and the correction for them. 
In the last three methods the relationship matrix is utilized at varying degrees. The relationship matrix is 
arranged according to the tabular method given in section 4.4. The solution of that many equations cannot 
be done explicitly, which have been taught when to solve two equations with two unknowns. The 
solutions are first based on guesses and then on recalculation until the solutions remain constant. This 
method is called iterative. It is possible, by means of this method, to estimate breeding values of millions 
of animals simultaneously. At present the AM method is used in the both Danish dairy and swine 
breeding work. 

Genomic selection by Thomas Mark  
Genomic selection is a new technology in which breeding values are predicted from genome-wide 
markers in the form of single nucleotide polymorphisms SNP. The genetic maps are based on SNP and 
they enable us to divide the entire genome into thousands of relatively small chromosome segments. Then 
the effects of each chromosome segment are estimated simultaneously. Finally, the genomic breeding 
value equals the sum of all estimated chromosome segment effects. The chromosome segment effects can 
be estimated for a group of animals (ie a reference population); and for any remaining animal, only a 
blood or tissue sample is needed to determine its genomic breeding value. The chromosome segment 
effects apply to all animals in the population in which they were estimated, because markers are in 
linkage disequilibrium with the causal gene that they bracket.  
Genome-wide information allows accurate selection of young animals provided that phenotypes from 
sufficiently many reference animals are available. This means that genomic breeding values are especially 
beneficial when traditional selection is difficult such as when phenotypic recording is restricted by sex 
and age (e.g. very beneficial for dairy cattle). However, conservative use of young animals without 
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phenotypic information (relating to self or progeny) is advised to avoid potential negative side effects 
related to unfavourable mutations, unfavourable selection pressure on non-recorded breeding goal traits 
and high rates of inbreeding.  

12.2 The significance of artificial insemination for estimation of breeding values 

Naturally artificial insemination (AI) has had great practical significance in the breeding of farm animals. 
By means of AI it is possible to utilize elite animals to a much greater extent than by natural mating. But 
AI really comes into its own and shows its significance as estimation of breeding values becomes 
independent of the ownership. Who owns the daughters of an elite bull? When using AI no single person 
can own all daughters of an AI bull, see also section 12.1 for rules of estimation of the breeding value. 
The most important factors when estimation breeding values are accuracy and impartiality. 

The most important factors for estimation of breeding value  
1. The estimated breeding values must be as accurate as possible  
2. The estimated breeding values must be independent of ownership  
3. The estimated breeding values of all candidates must be comparable  

From point 1 it becomes clear that AI increases the size of the family and thereby also the accuracy of the 
estimated breeding value. In order to comply with the conditions in point 2 and 3 it was formerly common 
practice to ship the animal to a test station. This ensured that the results were independent of the 
ownership. At the same time the results were comparable, since they were obtained in the same 
environment. Admittedly, test stations do have great problems with point 1. It is both difficult and 
expensive to place a large number of animals on a test station. The biggest problem concerning the test 
stations is the definition of  their environmental condition. Which environment is most appropriate to 
ensure that the selected animals are adapted to the future production system? This question has no proper 
answer. 
AI can solve the problems concerning point 2 and 3. Point 1 is at the same time dealt with in the best 
possible way. Extensive AI and adequate recording can ensure that the results obtained from the 
production herds can be used in estimation of the breeding values. This means that the selection takes 
place in a place which closely resembles the present production environment. Thus the collection of field 
data is much more advantageous than the former test stations for swine and dairy. The use of open 
recording system is only possible when extensive AI is practised. Since the offspring of several different 
bulls are present in a herd, it is possible to utilize information from each animal as deviations from the 
average of the herd, instead of using the absolute data. This is quite important, as a bull will not 
necessarily get a fair evaluation, since it is not used evenly in low or high production herds. 
Test stations are still necessary in cases where AI has not been fully developed and in cases where the 
owner can influence the results in one way or another. Test stations can also be of some value in the 
measuring of characteristics, which is impossible to record in the practical production. 

For cattle and swine the AI is so well developed that almost all former test stations have been closed. 
For hen, mink and rainbow trout test stations is still needed for comparable results. 
The reproduction in dog and horse breeding is almost similar to the way AI is practised, eventhough most 
of these matings are natural. Here a special problem occurs though, a tendency to mate high rank animals 
or low rank animals. This problem can be overcome by working with a full Animal Model. Random 
mating is required if a simple model is used.  
Other conditions can ruin the estimated breeding value, for instance partiality, therefore a good or bad 
result should not influence the recordings. When hip dysplasia in a dog is scored at a local X-ray clinic, 
the owner might not want to pass a bad score on to the Kennel Club, whereas he would very much like to 
record a good score. It is difficult to compensate for such a bias in relation to the recordings, even when 
very sophisticated statistical methods are utilized. 
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12.3 Transgene and transgenic animals 

This section only gives a very short introduction of the topic. Only the main themes are summarized. 

Methods for gene transfere: Micro injection of DNA into the paternal pro nucleus right after 
fertilization of the oocyte. The success rate is low, a few per thousand. There is always the risk of 
insertional mutageneses, i.e. the introduced gene inserts itself into a functional part of another gene and 
thus ruins its functions. 
Micro injection or other forms of gene transfere into embryonal stem cells or other types of pluripotent 
cells by use of homologous recombination. After selecting for the transgene cells, which is possible in a 
cell culture. Selection for the recombinated cells can be done by means of a linked which, is part of the 
construction. Cultivation methods for foetal stem cells are only fully developed for mice. It is still on a 
trial basis for all of our domestic animal species. 

After transgenesis in ES, or other foetal cell, the transgenic cells are injected into a blastocyst. Then a 
chimeric animal is formed, some of these transgenic would form gametes containing the inserted gene 
construction. 

Homologous recombination. The targeting of genes becomes possible by means of homologous 
recombination. This is of great significance to study the function of an unknown gene (with known DNA-
sequence). By means of homologous recombination so called 'knock out' mice can be created with a 
destructed gene function. By investigating the offspring of the 'knock out' mice it is possible to identify 
the function of a gene, which is completely unknown. So the 'knock out' mice have become the modern 
test tubes for identification of the functions of a gene. 

Gene constructions.  
A transgene is normally composed of a promotor and a structural gene. The promotor decides when and 
where the expression of the gene occurs. If the gene is to be expressed in the mammary gland the casein 
promoter is often utilized, as the casein is one of the important milk proteins. The structural gene is either 
with or without introns. If the gene originates from a bacteria, it is always without introns. Genes 
originating from eukaryotee can be cDNA or genomic. The genomic genes are normally very large, which 
is a problem. The larger the construction the more difficult it is to make a functional transgenic animal. 

Motives for transgenesis.  

•  The gene needs to have a large effect on the trait in question, for instance at least four times sigmaA  

•  The gene should add completely new metabolic abilities, for instance the forming of an essential amino 
acid.  

•  The gene should add resistance against a serious disease, which have no cure.  

Other motives for transgenesis  

Gene farming - production of drugs 

Organ donation -xeno transplantation 
Many medical companies have started the experimentation and production of drugs by means of 
transgenic animals. Normally, a single animal can produce sufficient drugs for the world market, so the 
topic is of little importance for this section. The same applies for organ donation, an example is the use of 
a swine heart for a human. In order for this technique to work it is necessary to knock out most of the 
strong ordinary antigenic systems in swine. This is difficult, but what is worse is that the xeno 
transplantation is dangerous. It is well  known that modern pests in humans, AIDS etc., stem from the 
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animal world. It is a well known fact that swine carry a lot of endogenous retro viruses. They could be a 
large potential hazard to mankind if extensive xeno transplantation is used. 

To get an overview of the topic see the following chapter The Science of Transgenic Animals for Food 
Production  

12.4 Utilization of DNA markers  

Use of DNA markers within families  
If segregation of a recessive disease occurs within a family and if information of the localization on the 
chromosome exists and if flanking markers is known, it is possible to identify carriers of the gene, even if 
the genetic code of the gene is not known. 

Method: Figure 12.1 shows segregation of markers A and B, as well as a disease gene (*). The two 
diseased animals in the figure are full sibs. All the sibs and the parents have been examined for alleles in 
locus A and B. Among the offspring the two diseased ones have the genotypes AABB. Based on the 
offspring the haplotype of the parents can now be interfered. The gametes AB must be carriers of the 
disease gene due to linkage.  

Figure 12.1. 
Genealogical graph of 
gamete types of three 
linked loci. The gamete 
types are deduced from lab 
tests of locus A and B and 
the segregation of the 
offspring. The disease gene 
based on the two diseased 
offspring. 

 

The fifth offspring has a recombination of the gene marker B and the disease gene, since is genotype 
AaBB and not affected. 
In many cases only a single DNA marker exists, as not all domestic animal species can have that many 
markers. For the DNA marker to have any value it is necessary that the parents are heterozygotic. 
Summary of the investigation: Animals with the genotype aabb do not carry the disease gene. Whereas all 
genotypes with at least one allele carrying a capital letter are expected to be carriers of the disease gene. 
By moving backwards in the pedigree, it is evident that all individuals with at least one allele with a 
capital letter are possible carriers of the disease gene. 

DNA markers applied on population level  
For a DNA marker to be applied on population level it has to be based on linkage disequilibrium and very 
close linkage with the disease gene. Strong linkage disequilibrium always exits if the mutation has 
occurred within a few generations back. A substantial amount of linkage disequilibrium occur even after 
10-15 generations, if the distance to the marker is less than 1 cM, see section 2.5. Use of a marker on 
population level would only indicate a possible carrier, which has a higher chance of being carrier than a 
randomly chosen animal. The final proof can only be established by segregation of diseased individuals. 

To conclude this section on anonymous DNA markers it needs to be said, that use of a DNA marker for a 
disease gene is only second best. The goal should always be to find the mutation and to examine the DNA 
type to find the real culprit. Though the DNA markers are still to be used. 
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12.5 Detection of DNA markers for disease genes or QTL's 

Detection of DNA markers in general  
The size of the entire genome in mammals and birds is about 3000 centi Morgan (cM) or recombination 
units. This corresponds to that the largest chromosome is two to three hundred cM's long. The smallest 
ones are less than 100 cM's in length. There is a great deal of variation between the domestic animal 
species, the mink has only 15 chromosome pairs and the dog has 39. There are also some differences in 
the recombination rate between males and females, the females have on average 10 to 20 % higher 
frequency than the males. This is  particularly true for the areas around the centromere.  
Close linkage is easier to detect than loose linkage , and distances of more than 30 cM is in practise 
impossible to detect, since it requires the typing of a very large number of informative individuals (500-
1000). On the other hand, if the distance is less than 10 cM linkage can be detected with less than 50 
informative gametes. 
For a full coverage of the entire genome, there has to be an informative marker for each 20 cM. All in all 
this gives around 150 DNA markers to be typed for complete coverage.  
For the marker to be of any use it has to be informative, this will on average be the case for about 50-70 
% of them. So to obtain a full set of markers in order to study a given family material, up to 300 evenly 
scattered markers have to be available. Only the parent animal has to be pre-screened for heterozygosity 
for all the 300 markers to get a useful set consisting of 150 informative markers to complete a full 
analysis of the entire family. 

Useful family material for detection of linkage to a disease gene  
The segregation of a new recessive disease normally occurs by inbreeding at the ratio of 1 to 3. The 
statistically most optimal cituation is for a dominantly inherited disease with a segregation of 1 to 1. For 
recessive diseases a 1 to 1 ratio can only be obtained by classifying a sample of the normal offspring only. 
To localize a recessive disease gene is needed about 50 offspring, 25 of which have the disease and the 
carriers parent animals. The analysis can start by marker 1 on chromosome 1 and performing a statistical 
test by continuing like that with a new marker until linkage is found. Linkage can be found in the first 
marker, but it can also be found in the last marker, number 150. On average only half of the markers (75) 
have to be applied before linkage is found. A statistically significant association would appear as follows: 

                      diseased       not diseased 

           Genotype ------------------------------------   

           aa        |   20             3         |   23 

           Not  aa   |   4              23        |   27 

                 ------------------------------------  

                     |  24              26        |  50 

 

Here there are only of few recombinants, 3, with the genotype aa which not diseased, and 4 being 
diseased and not having the genotype aa. 
To summarize: To identify a DNA marker for a disease gene animal material from a few related families 
should exist, comprising around 50 offspring of which at least 15 should have the disease. 
When linkage has been found, it is natural to continue using markers between the two markers providing 
the linkage. The final goal will always be to identify the real disease gene. When linkage has been found, 
comparative studies can also be initiated. Candidate genes for the disease might be found by looking at 
the corresponding chromosome areas in other species, which are already known. An alternative to the 
classic marker analysis might be a careful study of the disease and thereby finding a candidate gene from 
another species. A candidate gene is a gene with a fair chance of causing the disease when comparing the 
aetiology of the disease. If one or more candidate genes exist, the analysis starts by typing these. If it is 
the right gene, complete association is found. 
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DNA markers applied for studies of quantitative trait loci (QTL) demand far more data material than it 
takes for finding a marker for a disease gene, if the gene are to be detected in a normal outbred 
population. QTL's correspond to the loci, which are discussed in the definition of breeding value in 
chapter 6. The most distinct problems in the detections of a QTL are that it is unknown whether or not a 
QTL segregates in a given family. If it segregates how big is the effect on a given trait? Another problem 
arises if a QTL is detected. How is it possible to discern the hypothesis that one or two genes cause the 
QTL effect? Planning of a QTL study has to be very carefully done in order to obtain any sensible results. 
A large amount of animals have to be typed in order to estimate a given QTL with sufficient precision. It 
is important that a number of characteristics are measured for the animals to be typed. Here all possible 
production traits can be mentioned, for example diseases and other easily observable traits. The optimal 
number of informative gene markers is around 150 with a distance of about 20 cM, as mentioned. An 
alternative to the study of QTL's in normal populations can be the study of F2 individuals from special 
exotic crosses, as for instance between domestic swine and wild boar. The detected QTL's in such studies 
cannot be applied in connection with the normal breeding, but they can be used for pointing out candidate 
genes. The variation between F2 animals from exotic crosses can be very large. Therefore, to find a 
certain number of QTL's the number of animals to be typed is smaller than in a normal outbred 
population. 

Use of grand sire or sire design for detecting QTL's. The two classic designs, the grand sire and the 

sire designs are shown in Figure 12.2. 

Figure 12.2. Showing the sire and the grand sire designs for detecting QTL's. With test of offspring for 
marker allele and phenotype measurements. The contrasts can be evaluated by classic statistical tests.  

 
 
The grand sire is heterozygote with respect to the genotype A1A2. Half of his sons will receive the A1 
allele and the other half the A2 allele. Now a contrast can be made between the average breeding value of 
those sons having received the A1 and those having received the A2 allele. In the grand sire design the 
classification of genotypes is only done in the sons, whereas the phenotype data derives from the grand 
daughters. This design has especially been used in the estimation of QTL's in dairy cattle.  
In the sire design the genotype and the phenotype data come from the same animals. As can be seen from 
Figure 12.2, more contrast can be estimated than in the grand sire design. In the sire design the major 
problem is that a large number of animals has to be typed. For instance, to detect a specific least 
statistically significant difference in disease frequency, when the average disease frequency is 10 %, the 
number given in the table below has to be typed. The binomial variance and a t-test contrast have been 
used for an approximation. 
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No with A3  No with A4    SD  least statistically significant difference 

 

 5000       5000        .006            1.8 % units 

 500        500         .019            5.7 % units 

 100        100         .042            12.6 % units 

  

For 10 % units difference to be detected at least 200 animals have to be classified. As might be known, 
there are many causes for variation in the occurrence of disease and an average disease frequency of 10 % 
is fairly high. If the disease frequency is lower more animals is needed to detect a given QTL. 

12.6 Results of experimental selection for disease resistance. 

The literature displays many reports of selection against inherited diseases, but in most cases it concerns 
simple recessive traits, which, according to routine, are kept at an acceptable low level. Naturally, some 
problems arise in the cases where the selection is counteracted, which is the case when overdominance 
occurs. This is when the heterozygotes have a higher fitness than the homozygotes. 

For diseases with polygenic disposition, only a few reports show successful experimental selection of the 
large domestic animals. The results, proving better resistance to diseases, have mainly been obtained by 
crossbreeding. But not only in theory, but also in practice, it has been possible to obtain significant results 
of selection against specific diseases. In the breeding of egg layers, the results have been just as clear as it 
has for experimental selections of laboratory animals. 
Here is described an experiment carried out by Cole and Hutt (1973, Anim. Breed. Abstra. 41:103-118), 
see Figure 12.3.  

Figure 12.3. 
Experimental selections of layers 
for resistance to neoplasma 
fatalities. 

 

 

In 1935 two lines were established, C and K. The two lines respectively had 14.2 % and 11.3 % 
neoplasma fatalities due to leucosis including Marek's disease. In the period 1935-69, 34 generations were 
produced in each of the two lines. 
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The initial generation was not selected, but in the following generations the resistant breeding animals 
from the two lines were selected. In 1935 also a third line, S, was established, this one was based on 
individuals which were susceptible to leucosis (susceptible line). This line was maintained in the 
following generations by continued selection of the susceptible animals. The three lines were placed in 
the same production system. The environment was supposed to be infected by virus during the entire 
experimental period, except for the period 1958-61 (cf. the figure). The figure clearly shows that selection 
has been fairly effective concerning both points. At the end of the experiment (1967-69) the susceptible 
line had neoplasma fatalities of around 60%, while the two resistant lines, C and K, had neoplasma 
fatalities of respectively 3.7 % and 0.9 %. During the same period the total amounts of fatalities were 
reduced from respectively 51.5 % (C) and 44.4 % (K) to 12.7 % and 8.0 %. The fatalities in the period 
were counted in the period of 43 to 500 days after hatching. The mentioned results of the selection 
obtained even a fairly low estimated heritability, and were at the same time selected for several other 
traits. The good results could be explained by the fact that progeny test was used as a criterion of the 
selection. Furthermore Cole and Hutt argue that the same results could have been obtained in a 
significantly shorter time, if the strong progeny test had been used during the entire period. 

As leukocytes are of great importance to the development of resistance, it is important to find out whether 
or not it is possible to select for a high or low content of leucocyte in the blood (WBC= white blood cell). 
Such an experiment has been carried out on mice by Chai 1975, J.Heredity 66:301-309. In the initial 
population (generation 0) the leukocyte counts were 6-8 x 103 per mm3. After 22 generations of selection 
for HLC (high leucocyte count) and LLC (low leucocyte count) lines the counts were respectively 36-38 
x 103 and 4-5 x 103. The examined control population had reached a level of around 103, which is close to 
the level in the initial population. The small difference is supposed to be caused by 'random genetic 
drifting'.  
In relation to this experimental selection it ought to be mentioned, that the obtained response from the 
selection corresponds to h2 at 0.20 for lymphocyte counts, which also has been estimated in cattle. If it is 
desirable, the lymphocyte count can easily be 
changed by selection. 

Biozzi et al. (1972, J.Exp.Med. 135:1071-1094) 
made a selection experiment of mice for 
respectively high and low anti body response in 
relation to experimental immunization by means 
of sheep erythrocytes (SE), see figure 12.4. It 
appears from the figure, that the initial population 
had a titter with a mean value of around 1000 (ln 
1000 = 6,9). After 20 generations of selection in 
each direction, the two populations had obtained 
titters of respectively 40 and 10.000. Furthermore, 
it was shown that the "high line" responded 
strongly to several other antigens, even though the 
selection was only done for responses to SE's. In 
the light of this it was easy to imagine that 
selection for general resistance to disease was 
possible, simply by selecting for high 
immunoglobulin concentrations in the serum. 
That this is in fact possible has been shown by 
Jensen & Christensen (1975, J.Anim.Sci. 40:392-
396), who found that IgG 2 in dairy cattle had a 
heritability of 0.2.  

Figure 12.4. 
Experimental selections for high or low anti sheep 
erythrocytes titter in mice. 
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To test the generalization of Biozzi et al. (1972, J.Exp.Med. 135:1071-1094), concerning the results of 
selection for high and low anti body response in mice in relation to experimental immunization, a long 
series of experimental infections on the two lines of mice have been carried out. It is worth realizing that 
the fact that the line with a high general anti body response also tended to have a lower cellular defence 
based on macrophagical activity. This means that individuals with a strong cellular defence remove the 
anti-genes by means of their macrophages. Therefore, the anti-genes are removed before anti bodies can 
be produced against them. Nature has apparently found a compromise between the cellular and the 
humoral immune defence, see Figure 
12.5.  

But back to Biozzi's challenge 
experiments (Biozzi et al. Proc. World 
Cong. on Genet. Appl. Livestock 
Improvement, Madrid 4-8 oct 1982 Vol 
5:150-163). They used challenge on more 
than 10 different pathogens among these 
were Salmonella thypimurium and 
Rabies virus. Their main conclusion can 
be seen in Figure 12.5. This figure shows 
that individuals, which have macrophage 
activity and immune response around 
average, are only slightly affected by 
most infections. Individuals with high 
immune response would be strongly 
affected by diseases, depending on 
macrophage activity as their main 
defence. The reverse is true for diseases 
depending on a high humoral response. 

Conclusion:  
The conclusions drawn from the old experiments are: It is possible to select for special resistance, but this 
type of selection will normally be overtaken by the possibilities of developing a vaccine. Today it is 
possible to vaccinate against leucosis among layers. Furthermore it must be concluded, that it is not 
possible to select for general resistance by selecting for high or low immunity components, as they act 
reversely. The natural level, with respect to infective agents,  has to be balanced in the population history. 
Which means that pure breeding cannot be utilized to improve the general resistance. But what about 
crossbreeding?  

By looking at Biozzi's graph from his challenge experiments it can be concluded, that the closer to the 
mean value an animal is the less severe disease it will have. The more extreme animals, on the other hand, 
would be exposed to the strongest attacks from disease. So a mean to obtain a low disease level in a 
population is to work with a uniform population of animals with an optimal mean immune response. 
Uniformity can be obtained in crossbred animals. Because of dominance conditions 2-ways, 3-ways and 
backcrosses are more uniform than pure bred animals. Therefore it should be possible to find 
combinations of crosses, which are optimal with respect to the exposure of a disease in a given 
production. F2 animals or 4-way crosses are more heterogene and therefore prone to acquire diseases. At 
present there are no practical experiments that can verify the presented postulates concerning different 
disease frequencies in different crossbred types. Therefore, experiments to elucidate these conditions are 
strongly recommended.  

14. Genetic calculation applets and other programs 

Figure 12.5. Challenge experiments with different micro 
organisms on mice selected for high or low anti body titter 
against sheep erythrocytes.. 
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By Knud Christensen - Lecture notes, front page (in Danish), Lecture notes, front page (in English)  
Voice slide show demonstrating the applets (real player should be installed) or Slide show or manual 
access to the demonstration of the applets  

A java interpreter should be enabled in your browser to run the applets ! !  
By using the applets a general feature is that you can place your input in the green fields. The yellow 
fields can also be used for input, often in the next round of calculations.  
Be careful not to leave any blanks (not visible) in these fields, so if the applet will not run, test if the 
cursor stands right next to the number in all green or yellow fields you have touched.   

Applets  

2.2 Chi-square test for Hardy-Weinberg equilibrium  

2.4 Calculation of mating type frequencies in a H-W population  

2.5 Chi-square test for 2 by 2 or 3 by 3 table (eg linkage disequilibrium)  

2.5 Linkage, 3-point analyses from test cross  

2.5 Many programs for statistical tests, collected by Lowry, USA  

2.51 Linkage: Calculation of gamete and genotype frequencies  

3.4 Selection: Change in gene- and genotype frequencies  

3.5 Change in gene- and genotype frequencies: Effect of population size  

4.5 Calculation of relationship and inbreeding coefficients by the tabular method  

  

Critical Values of the Chi-Square Distribution 

        df      .20     .10     .05     .02     .01     .001    .0001 

        ------------------------------------------------------------- 

        1        1.64    2.71    3.84    5.41    6.63   10.83   15.14 

        2        3.22    4.61    5.99    7.82    9.21   13.82   18.42 

        3        4.64    6.25    7.81    9.84   11.34   16.27   21.11 

        4        5.99    7.78    9.49   11.67   13.28   18.47   23.51 

        5        7.29    9.24   11.07   13.39   15.09   20.51   25.74 

 

        6        8.56   10.64   12.59   15.03   16.81   22.46   27.86 

        7        9.80   12.02   14.07   16.62   18.48   24.32   29.88 

        8       11.03   13.36   15.51   18.17   20.09   26.12   31.83 

        9       12.24   14.68   16.92   19.68   21.67   27.88   33.72 

        10      13.44   15.99   18.31   21.16   23.21   29.59   35.56 

2.2 Calculation of Chi-square test for deviation from Hardy-Weinberg equilibrium 

- Put your observed numbers and click the Calculate button.  

In all coloured cells with initial values you can put data (green fields, two alleles only, yellow fields 

for a third allele, and blue fields for a fourth allele)  
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The number of degrees of freedom for the chi-square is equal to one for two allele systems; and three for 
three allele systems; and six for four allele systems. The results are rounded (four decimals).  

Example:  
In a population was fund the following number of the three genotypes (obs), and there is calculated the 
gene frequencies for the alleles A and B and the corresponding expected (exp) under Hardy-Weinberg 
equilibrium.  

--------- 

Genotype         AA               AB             BB       Total 

Number, obs      36               47             23     = 106 = N 

Frequency, exp   p2               2pq             q2    = 1,00 

Number, exp      33,4             52,2           20,4    = 106 

Deviation        2,6             -5.2            2,6 

Chi-square       0.20             0,52           0,33    = 1,05 

---------- 

 

 

Frequency  of A is calculated as  p = (2*36 + 47)/(2*106)  = 0,561 

    do        B         do        q = (2*23 + 47)/(2*106)  = 0,439 

                                                             ----- 

                                                              1.00   

Try to put the observed numbers in the green fields of the applet and press the Calculation button.  

Questions:  
Calculate the gene frequency in the genetic system shown below and a Chi-square test for H-W 
equilibrium.  

Genotype  Observed number 

AA           31 

AB       51 

BB      23 

CA           55 

CB       71 

CC      83 

Is there statistically significant deviation from H-W equilibrium ?  

In the Danish Landrace are found four hæmopexin alleles with codominat inheritance. In 1969 were typed 
716 animals and the results of hæmopexin type are shown below:  

              Hæmopexin type Number 

   0/0  2 

   0/1  16 

   1/1  75 

   0/2  10 

   l/2  67 

   2/2  20 

   0/3  21 

   1/3  229 

   2/3  116 

   3/3  160 

 
a) Calculate the gene frequencies for the four alleles.  
b) Is the population in Hardy-Weinberg equilibrium ?  

2.51 Calculation of Chi-square test for a 2 by 2, 3 by 3 or 2 by 3 table 
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In all cells with initial values you can put data (green fields), leave the zeros in the empty fields  

The number of degrees of freedom for the Chi-square is equal to 1, 4 and 2 for the three possible 
combinations 2 by 2, 3 by 3 or 2 by 3 table.  

 
- Put your observed numbers, click the Calculate button.  

Examples:  
Use the applet to the test for genetic disequilibrium between two loci A and B. The number of observed 
gametes is as follows:  

AB gametes 10  

Ab gametes 20  

aB gametes 20  

ab gametes 10  

The numbers are given in the initial values of the applet. Factor 1 is corresponding to locus A and Factor 
2 is corresponding to locus B. Press the Calculate button to see the result.  
The Chi-square are equal to 6.66 (df=1) which is larger then 3.84, this means that there is less than 5% 
chance that the genes at the two loci segregate independently.  

Questions:  
Calculate a Chi-square test for the association shown below.  

     Genotype   Observed numbers   

                Diseased  Healthy 

        AA        15        27 

        Aa        16        28 

        aa        51        49 

Is there statistically significant association between genotype and disease frequency ?  
The two dominant genotypes can be merged into one with the following results:  

     Genotype   Observed numbers   

                Diseased  Healthy 

        A-        31        55 

        aa        51        49 

 

What can justify to merge the to classes into one? Is there now statistically significant association 
between genotype and disease frequency ?  

In a two gene system you have the following set of observed numbers:  

     Genotype     BB        Bb       bb  

              ---------------------------- 

        AA    |    57       140       101 

        Aa    |    39       224       226 

        aa    |    3        54        156 

Are there statistically significant association between the segregating genes at the to loci ?  
In case there is found association, what does this mean ?  
Can you propose a chi-square test which give 6 degrees of freedom to test a hypothesis of linkage 
between the genes A and B ?  
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2.4 Calculation of mating type frequencies in H-W population 

In the green field put the gene frequency for the dominant gene  

- and click the Calculate button.  

Examples:  
If a recessive disease gene occur with a frequency of .005, 99 percent of the diseases would be in families 
where both parents are normal healthy individuals.  

Questions:  
Which mating type produce the highest number of heterozygotic offspring when the gene frequency p = 
.8 or .4 in a random mating population.  

2.5 Linkage, Calculation of gamete and genotype frequencies generation after 

generation 

- Put your observed gamete frequencies or click the initiate Mendel button. If the mothers gamete 
frequencies sum to zero, the frequencies for the fathers is also applied for the mothers.  
- Click on Next generation button calculate the gamete and genotype frequencies in next generation. run 
the applet.  

In all cells with initial values you can put data (green fields) and to get the results press the Next 

generation button. Table values are rounded to six decimals.  

Example:  
When you look at segregation of genes at two loci the gametes that can be formed are shown below and 
symbols are given for the observed and expected frequencies, the deviation between the two has the 
symbol D for disequlibrium.  

 Gamete  Observed frequency   Expected frequency    Deviation 

 -------------------------------------------------------------- 

  AB       r                 p(A)*p(B)             D 

  Ab       s                 p(A)*q(b)             -D 

  aB       t                 q(a)*p(B)             -D 

  ab       u                 q(a)*q(b)             D 

The disequilibrium gets the symbol D can be calculated from the table above, and can also be calculated 
as the half of the difference in the frequency of double heterozygotes in linkage- and repulsion phase:  

      D = r*u - t*s    (= [f(AB/ab) - f(Ab/aB)]/2) from the table above 

     

The maximum disequilibrium occurs, when all double heterozygotes are in linkage phase f(AB/ab) or in 
repulsion phase f(Ab/aB). See the Figure below.  

 

Are the recombination frequency c would D be reduced to D*(1-c) per generation, and for the n'th 
generation Dn = D0*(1-c)n.  
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If you apply the initial values r=0.1, s=0.2, t=0.3, u=0.4 and press the Next generation button, you will 
see calculated all the genotype frequencies and D=0.0199 rounded 0.02. If you continue using the Next 

generation button more times with c=0.5 you will see that D= approach 0 which means observed and 
expected gamete frequencies are equal i.e. r=0,12.  

Questions:  
Calculate the gamete frequency in the first 5 generations and the equilibrium gamete frequencies in the 
genetic system shown below where the recombination frequencies between the two loci A and B is c=0.2.  

Gamete  Observed frequency 

AB        0.21 

Ab    0.49 

aB   0.19 

ab   0.11 

What would be the frequencies of the two types of double heterozygotes in next generation?  
How many generations will it take to reach equilibrium within 0.02 units ? Repeat the calculations for 
c=0.05.  

In a F3 after a cross between two pure lines aabb X AABB. What would be the gamete frequencies if c=.5 
, .4 and .1 ?  
Hints: Use the initiate mendel button and use the next generation button more times.  

3.4 Selection: Change in gene- and genotype frequencies by selection  

In all cells with initial values you can put data (green and/or yellow fields)  
You can put either real observations (numbers) or relative genotype frequencies in the green fields. you 
see this text you can't run this applets  chose Options | Network  

Click the Calculate button. Put the fitness of the genotypes (relative or numbers) and you can run one 
generation at the time by pressing the button +1 generation!, or you can get a graph over gene frequency 
changes over 60 generations by pressing the Run button. The corresponding data you can extract over the 
clip board in the lower left window.  
You can also start the process by putting your gene frequencies and there after take some selections 
rounds.  
For practical reasons delta q is put to 0 for values less than .000001. Sometimes when delta q is less than 
.0001 there are problems with rounding and some browsers can not see the results proper.  

Example:  

If you have a genetic system for instance yellow coat colour in the Labrador Retriever, where the 
recessive (yellow) have the fitness 1-s by selection you get:  

Genotype         EE               Ee             ee       Total 

---------------------------------------------------------------- 

Observed number  141              80             11       = 232 

Frequency         p2               2pq            q2        = 1.00 

Fitness           1                1            1-s       

Proportion        p2               2pq           q2(1-s)    = 1-sq2 

after selection 

--------- 

After selection the gene frequency q' can be calculated by the gene counting method, q' is the gene 
frequency in the next generation, is calculated as half of the heteroygotes plus the surviving recessive 
relative to half of the proportion of all surviving genes, that is equal 1-sq2.  
      q'  = (2pq/2 + q2(1-s))/(1-sq2) 
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To test the applet put the observed number and press the Calculate button. You then get q=0.2198, if you 
have s(aa)=0 and press the +1 generation button you get q'=0.1802.  

Questions:  
Calculate the gene frequency in the first 5 generations of selection and the equilibrium gene frequency in 
the genetic system shown below with selection favouring the heterozygotes with s1 = 0.3 and s2 = 0.5  

Genotype         AA               Aa             aa       Total 

Observed numbers 225    157            43 

Frequency        p2               2pq            q2       = 1,00 

Fitness          1-s1              1            1-s2       

Proportion       p2(1-s1)         2pq           q
2(1-s2)   = 1-p

2s1 - q
2s2 

after selection 

How many generations will it take to reach equilibrium within 0.02 units ?  

What would happen after 5 generations selection if s1 = -0.3 and s2 = -0.5  
Would there be any equilibrium ?  

3.5 Selection: Change in gene- and genotype frequencies, and effect of population size 

In all cells with initial values you can put data (green and/or yellow fields)  
You can put either real observations (numbers) or relative genotype frequencies in the green fields. you 
see this text you can't run this applets  chose Options | Network  

Click the Calculate button. Put the fitness of the genotypes (relative or numbers) and you can run one 
generation at the time by pressing the button +1 generation!, or you can get a graph over gene frequency 
changes over 60 generations by pressing the Run button. The corresponding data you can extract over the 
clip board in the lower left window.  
If you define population size (pop. size) you can simulate random changes in gene frequencies over time.  
If you define more populations (number of pop.) you get an average estimate of the gene frequenices over 
generations and its standard error.  
If you use large and many populations the simulation might take several minutes, start with few 

and small populations so you can have an impression of the time consumption on your computer.  

For utilization of the deterministic model the upper part of this applet go to applet 3.4 and its explanation.  

Example:  

If you have a genetic system (Aa) with gene frequency q=.5. and you have random mating. How many 
populations out of ten would either have lost or fixed the gene a after 20 generations ? after 40 ? and after 
60 generations ?  

Put 10 in the pop size box, and pres Run 10 times recording loss or fixation of gene 'a' in each run.  

Questions:  
Calculate the gene frequency in the first 60 generations of selection in the genetic system shown below 
with selection favouring the heterozygotes with s1 = 0.3 and s2 = 0.5 having a population size of 20.  

Genotype         AA               Aa             aa       Total 

Observed numbers 225    157            43 

Frequency        p2               2pq            q2       = 1,00 

Fitness          1-s1              1            1-s2       

Proportion       p2(1-s1)         2pq           q
2(1-s2)   = 1-p

2s1 - q
2s2 
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after selection 

Will equilibrium within 0.02 units be reached ?  

4.4 An Applet for general matrix handling and calculating relationship and inbreeding 

The relationship and inbreeding, and the inversion part of the matrix method has been programmed by 
Nils Toft and Thomas Nejsum Madsen, respectively, whereas the general matrix part has been borrowed 
from Bryan Lewis's General Matrix Applet where also the general instructions to the applet can be found. 
code=TabularApp.class name=TabularApp width=700 height=600 >If you see this you can't run the 
applet.  

Matrices are just defined by line length and number of lines. To edit data in the data field is very 
troublesome as the return key can not be used for giving a new line as it works as pressing the eval. 
button. For larger sets of data use notepad or any other editor. Move the data to the input area by means of 
the clip board using ctrl-ins (copy) and shift-ins (insert).  

Example:  
Example of calculating inbreeding where the columns in the matrix shown below are animal, sire and 
dam, where the oldest animals should appear first. The pedigree are converted in the 'a' matrix as done 
below (0 means unknown parent):  

animal sire dam 

--------------- 

 a = 

 1     0   0 

 2     1   0 

 3     1   0 

 4     1   0 

 5     2   3 

 6     4   3 

 7     5   6 

 

Take these data including (a=) in the clip board and transfer them to input window and there after press 
the 'evaluate' button and the matrix should appear in the result window.  
There after use in the input window:  

      rel = :tabular(a) 

and press the 'evaluate' button  

The rel relationship matrix will appear in the result window and will look as shown below. Number of 
digits can be set, replacing the 6 with 3 will change the number of digits to 3.  

        Relationship matrix  1+F (inbreeding) in the diagonal  

         rel = 

             1.000    0.500   0.500   0.500   0.500   0.500   0.500 

             0.500    1.000   0.250   0.250   0.625   0.250   0.437 

             0.500    0.250   1.000   0.250   0.625   0.625   0.625 

             0.500    0.250   0.250   1.000   0.250   0.625   0.437 

             0.500    0.625   0.625   0.250   1.125   0.437   0.781 

             0.500    0.250   0.625   0.625   0.437   1.125   0.781 

             0.500    0.437   0.625   0.437   0.781   0.781   1.218 

The inbreeding for each animal is given by its diagonal element minus one, i.e. the last three animals are 
inbred with an inbreeding coefficient of 0.125, 0.125 and 0.218 respectively.  
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The identifying numbers of each animal can be any number, as long as the oldest animals appear first in 
the list. When defining the base (oldest) generation both parents are set as zeros (0 = unknown).  

If you are interested in the inbreeding coefficient, only, you run the inbred procedure as follow:  

      inb = :inbred(a) 

you will have the following, in the results window, with animal number and inbreeding 

coefficient: 

 Animal   F (inbreeding)  

      inb = 

  1.000  0.000  

  2.000  0.000  

  3.000  0.000  

  4.000  0.000  

  5.000  0.125  

  6.000  0.125  

  7.000  0.218  

For inverting the relationship matrix use the command:  

        inv = :invert(rel) 

Or setting up the inverse relationship matrix direct from the a matrix only to use with non inbreeding:  

        d_inv = :dinvers(a) 

Which put the inverse relationship matrix in the output window  

Below is shown a hand calculated example with the two general formula in use.  
The relationship between two animals is the average relationship between the oldest and the others two 
parents.  
and the inbreeding of an individual is half the relationship between the two parents.  
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For your own data put them in the matrix 'a' and repeat the process:  

Questions:  
In the pedigree shown below the individuals have been assigned the numbers from 1 to 11.  

 

Animal Sire Dam  , where 0 means 

unknown 

    1     0   0 

    2     0   0 

    3     0   0 

    4     0   0 

    5     0   0 

    6     2   1 

    7     5   4 

    8     7   3 

    9     7   6 

   10     7   8 

   11     10  9 
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Calculate the inbreeding coefficient for the individuals No 10 and 11, and calculate the additive 
relationship coefficient between individual 11 and all others in the pedigree. The data set to be used for 
the calculations is given above.  

What would be the inbreeding coefficient after 5 generation of full sib mating?  

5.6 Calculation of Chi-square test for deviation from Mendelian ratios 

- Put your observed numbers and expected ratios (shall sum up to one) and click the calculation button. 
In all cells with initial values you can put data (green fields). run the applet.  
The number of degrees of freedom for the Chi-square is equal to the number of cells with expected values 
minus one.  

Example:  
Test of segregation ratios from known mating can be done by Chi-square test. If you have a test mating 
between two heterozygotes Aa x Aa the offspring would have an expected segregation ratio of 1:2:1 as 
shown in the table below, where the ratios are converted to a 0.25 : 0.5 : 0.25.  

Genotype      AA               Aa             aa       Total 

----------------------------------------------------------------- 

Number, obs    30               51             39      = 120 = N 

Frequency,     .25              .5            .25      = 1,00 

Number,         30               60             30      = 120 

Deviations      0                -9              9  

Chi-Square      0               1,35            2,70    = 4,05 

---------- 

To test the applet put the bold face values from the table in the applet and press the Calculate button.  

The number of degrees of freedom is df = 3-1 = 2, as the material is only providing the parameter N being 
used to calculate the expected numbers. The Chi-square value is less than the test value 5,99, which 
means that there is not statistically significant deviations from a 1:2:1 segregation ratio on the 5% level.  

Questions:  
Calculate a Chi-square for the following observation set from test mating of known carriers.  

Total numbers of observations   30 

Number of affected              16 

Is the segregation ratio statistically significant different from a 1:3 segregation ratio ?  

5.7 Calculation of corrected segregation ratio according to Singles method 

The method is to be used when your data are collected in the field, and you only find useful families 
where at least one affected offspring occur. text you can't run this applets chose Options | Network 
Preferences | Languages  

In the cells with green colour put your data and press the Calculate button.  

Example:  
The disease tyrosinemia in mink is investigated by the following set of field data for recessive Mendelian 
inheritance. A description of the disease tyrosinemia in mink are published by Christensen et al. Canadian 
J. Comparative Medicine, 43:333-340, 1979.  
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In the data set 16 litters are included with at least one affected offspring. The observed numbers are given 
below.  

T = 94   - total numbers of pups 

A = 32   - total number of affected 

A1 = 4   - number of families with one affected pup 

A2 = 9   - number of families with two affected pups 

The applied formulas for test of Mendelian inheritance by "Singles method" (with the proportion p-hat ) 
are shown in the figure below. The tyrosinemia data are applied to show the use of the formulas.  

 

The Z2 are Chi-squared distributed with 1 degree of freedom. The test of p-hat is against 0,25, this is the 
expected ratio when both parents are carrier and there is recessive inheritance. The test value is less than 
3.84. Therefore the deviations can be accepted as not statistically significant.  

Questions:  
Calculate the corrected segregation ratio for the following observation set of field data, where there has 
been at least one affected per family.  

T =  30  - total numbers of observations 

A =  16  - total number of affected 

A1 = 12  - number of families with one affected  

A2 =  2  - number of families with two affected  

Is the segregation ratio statistically significant different from 1:3 segregation.  

6.2 Applet for calculation of mean, Genotypic and Breeding values and Dominance 

deviations 

In all cells with initial values you can put data (green and/or yellow fields)  

 

Run problems  

 
When you have entered your data or you want to calculate the loaded test example press the Calculate 
button, you can proceed by setting deltaq, or getting the graph by pressing the run button and you get the 
new values by pressing the q+deltaq button or getting the graph by pressing the run button.  

Example:  
The test example is the transfferin example given in Veterinary Genetics. Jersey cows with the genotype 
tt yield 2082 kg milk and cows with the genotypes Tt and TT yield 1882 kg milk. The gene frequencies 
p(T) and q(t) are given as 0,67 and 0,33, respectively.  

All the values are calculated by the classical formula for a mean value and the breeding value is defined 
as shown below. To see the results press the Calculate button.  
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Questions:  
Calculate the breeding value and dominance deviation for the gene frequencies p equal .1, .2, .3, .4, .5, .6, 
.7, .8 and .9 for the following genotypic values  

A2A2    100 

A1A2    115 

A1A1    110 

Compare the results, for which gene frequency are there the smallest difference in breeding value 
between the three genotypes and the smallest additive variance? why ?  

The halothane locus (Hal) has influence on the quality of swine meat on the basis of a meat quality index 
where meat colour is the main component. The average index for the (Hal) genotypes are given below:  

   Genotype Meat-quality-index 

    N/N          8.00 

    N/n           7.10 

    n/n           6.00 

 
Suppose that the frequency of q(n) = 0.20 calculate the following:  
a) the average Meat-quality-index for the population,  
b) the average Meat-quality-index for offspring from individuals with the genotype N/N respectively n/n 
supposing random mating in the population,  
c) the breeding value of the three genotypes  
d) the additive variance, due to the halothane locus,  
e) the proportion of the additive varianceHal of the total additive variance for the Meat-quality-index as its 
h2 = 0,44 and varianceP =1,69.  

7.2 Estimating simple forms of breeding values 

The breeding value can be based on own, fathers + mothers record as well as average of offspring or sibs 
to the animals. Heritability, repeatability, common environmental effect (milieu) for full sibs and 
population mean value have to be specified. In the last case relationship (a and a') shall be defined. The 
relationship (a) between the related individuals giving the phenotypic measurements; with the relationship 
(a') to the animal being evaluated. The 'common milieu' is used when full sibs are measured. can't run the 
applet.  

In all cells with initial values you can put data (green fields) and press the Calculate button. Results are 
rounded to four decimals.  

Example:  
If you want to see how the applet work before you enter your own data just press the Calculate button 
using the initial values.  
In the figure below you see a regression line for the index (I) for the true breeding value (A) of an 
individual based on measurements (average of the records for offspring, sibs etc. = P's).. The coefficients 
of relationship can be defined in the bottom line.  
P'er = phenotype measurments  
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n = number of phenotypes  
Pg bar = average of the P's  
a' = relationship between the index animal and the P's  
a = relationship between the P's  
P bar = Populationen mean  
A bar = Populations mean A's = P bar  
h2 = heritability  
c2 = common environmental factor for the P's  
rAI = the accuracy of the index  
t = a h2 + c2 = phenotypic correlation between P's  

 

Questions:  
Calculate the breeding value for the following animals when Mean=100 and the heritability have the 
following values 5, 10, 25, 40 and 60 %.  

own performance   110 

average of the parents  115 

10 half sib offspring   106 

100 half sibs           105 

Compare the results, which animal have the highest breeding value for each heritability? And which one 
have the most accurate estimate for each heritability ?  

7.2 Estimating animal model breeding values 

The calculations are based on the general matrix part which has been borrowed from Bryan Lewis's 
General Matrix Applet. The general part include for instance multplication as A=b*c or A=b*c' which can 
be used together with the the animal model calculations.  

The applet can handle inbreeding, relationship, calculating the inverse and estimating animal model 

breeding values. It will perform well up to 2000 observations and might be even more. It has been made 
for solving smaller scientific problems and for educational purposes. It is worth to note that the 
numeration of the animals is free as long as the oldest appear first. code=TabularApp.class 
name=TabularApp width=800 height=500 >If you see this you can't run the applet.  

The estimating the animal model breeding values, command an=:animalm(a), can correct for any 
number of class variables or continued variables in any combinations.  
For class variables the fist class is excluded for not having a degree of freedom as the mean value always 
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is calculated. Zero is treated as missing value so if zero is a part of the observation set a constant should 
be added. The first 3 columns in the dataset shall contain animal, sire and dam - all other columns can be 
used freely  

The first data line specify the parameters as follows - referring to first example below as well as in 
general  

1.  1 specify (sigmaE/sigmaA)2  which in this case equals h2 = .50 

 

2.  0 printing the solutions 

    1 printing the solutions and the accuracy squared, for smaller number of data 

(pc-time problems) 

    2 printing the triangualrization inclusive dependent var - last line the 

solutions 

    3 printing the rearranged input with classes from zero to n-1 and dependent 

variable as the final. 

    4 printing the equations inclusive the dependent var. 

 

3.  0 normal model 

    1 model with inbreeding - for smaller number of data (more roundings and pc-time 

problems) 

     

4.- 0 exclude the trait from the analyse    

    1 specify a continued variable where the last one is the dependent trait  

   -1 specify the dependent trait if not the last trait -  which is then interchanged 

with the last variable  

    2 specify a class variable 

    3 specify a class variable but with all classes included (this can not be solved) 

Example of estimating animal model breeding values for 8 animals, where the input file contains:  
Animal Sire Dam, where 0 means unknown, one fixed factor, two continued vars. and the trait litter size - 
except first line which specify the parameters explained above.  

Put the data 

below in the 

input window  

followed by a 

return stroke  

a= 

1 0 0 2 1 1  1  

1 0 0 3 2 0  10 

2 0 0 2 3 1   9 

3 0 0 1 4 0   8  

4 0 0 2 1 1   7 

5 1 2 1 5 1   9  

6 1 2 1 6 0  10  

7 3 4 2 4 1   8 

8 5 6 3 6 1  11 

  

 

Genealogical 

diagram      

 

 

Resulting in 

the following 

in the output 

window 

a = 

 1  0  0  2  

1  1  1  

 1  0  0  3  

2  0  10  

 2  0  0  2  

3  1  9  

 3  0  0  1  

4  0  8  

 4  0  0  2  

1  1  7  

 5  1  2  1  

5  1  9  

 6  1  2  1  

6  0  10  

 7  3  4  2  

4  1  8  

 8  5  6  3  

6  1  11 

Followev by   
an=:animalm(a)   

and a return stroke 

resulting in 

 

Animal model solutions 

an = 

 1.0000  0.1955  

 2.0000  0.4287  

 3.0000 -0.3799  

 4.0000 -0.2443  

 5.0000  0.3420  

 6.0000  0.3582  

 7.0000 -0.4206  

 8.0000  0.2903  

 0.0000  6.9749 mean value 

 2.0000  0.5183 class  there 

is no degree of freedom for 

class 1 

 3.0000  1.8716 class 

 0.0000  0.4191 regression 1 

 0.0000 -0.5322 regression 2 

 
In the referred theory by Poul Jensen the first example on growth rate in young pigs can not be solved as 
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the class year is given for all animals as follows. But the system will nullify the first year and it is then 
converted to a regression giving 4.3883 gram extra the second year. The heritability is set to 0.33.  

a= 

2 0 0 2 1  

1 0 0 0 0 

2 0 0 1 225 

3 0 0 1 220 

4 0 0 1 255 

5 1 3 2 250 

6 1 3 2 198 

7 2 4 2 245 

8 2 4 2 260 

9 2 4 2 235 

Genealogical diagram 

 

Animal model solutions 

 

animal   estimate 

an = 

 1.0000 -3.1844  

 2.0000 -0.3009  

 3.0000 -6.2135  

 4.0000  9.6990  

 5.0000 -1.0912  

 6.0000 -11.4912  

 7.0000  5.4271  

 8.0000  8.4271  

 9.0000  3.4271  

 0.0000  232.2718  

 0.0000  4.3883  

 
In case some of the parents are inbred the estimates will not be the same. In the following small example 
solutions are made with (parameter 3 set to 1) and without inbreeding. Example 2.1 from RA Mrode 
'linear models for estimating breeding values, CABI Publishing'. The heritability is set to 0.33.  

a= 

2 0 1 1  

1 0 0 

15 

2 0 0 

19 

3 1 2 7 

4 1 0 

13 

5 4 3 

22 

6 5 2 

10 

Genealogical 

diagram 

 

Animal model solutions 

 

not accounting for 

inbreeding 

an = 

 1.0000 -0.3699  

 2.0000  0.1725  

 3.0000 -1.0988  

 4.0000  0.1110  

 5.0000  0.7084  

 6.0000 -0.5484  

 0.0000  14.5041  

Animal model solutions 

 

accounting for 

inbreeding 

an = 

 1.0000 -0.3665  

 2.0000  0.1689  

 3.0000 -1.0983  

 4.0000  0.1131  

 5.0000  0.7070  

 6.0000 -0.4987  

 0.0000  14.4957  

  

 
Estimating of the accuracy squared for the estimate; example 3.1 RA Mrode. The heritability is set to 
0.33.  

a= 

2 1 0 2 1   

1 0 0 0 0 

2 0 0 0 0 

3 0 0 0 0 

4 1 0 1 4.5 

5 3 2 2 2.9 

6 1 2 2 3.9 

7 4 5 1 3.5 

8 3 6 1 5.0 

Genealogical diagram 

 

 Animal model solutions 

with its squared accuracy 

an = 

 1.0000  0.0984  0.0578  

 2.0000 -0.0187  0.0158  

 3.0000 -0.0410  0.0870  

 4.0000 -0.0086  0.1446  

 5.0000 -0.1857  0.1437  

 6.0000  0.1768  0.1154  

 7.0000 -0.2494  0.1162  

 8.0000  0.1826  0.1552  

 0.0000  4.3585  0.0000 

 0.0000 -0.9540  0.0000  
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Larger example solutions for y, note that there is free numbering of the animals as long as the oldest 
occur first, sex 2 has a 5.6002 uits lower performance.  

 

 

 

animal sire  dam  y  sex trait2 

a= 

2 0 0 -1 1 2 

1 0 0 0 0 0 

2 0 0 0 0 0 

3 0 0 0 0 0 

4 0 0 0 0 0 

5 0 0 0 0 0 

6 0 0 0 0 0 

7  0  0  93   2 2 

8  1  2  78   1 2 

9  1  2  63   1 3 

10 1  3  91   1 3 

11 1  3  70   2 3 

12 1  3  100   2 2 

13 1  4  102   1 4 

14 1  5  119   1 5 

15 1  5  121   2 4 

16 1  6  93   2 6 

17 1  6  81   2 4 

18 1  6  82   2 3 

19 14 17 78   2 2 

20 14 17 88   1 5 

21 14 17 85   2 6 

22 14 7  91   2 5 

23 14 7  113   1 7 

24 14 7  118   2 5 

25 14 15 91   2 4 

26 14 15 83   2 2 

27 14 15 102   1 4 

128 14 12 87   2 5 

29 14 12 83   1 3 

30 14 12 86   1 3 

31 14 16 106   2 4 

32 14 16 90   1 5 

33 14 16 57   2 3 

34 23 25 82   1 2 

35 23 25 84   1 1 

36 23 25 77   2 3 

37 23 22 83   2 2 

38 23 128 95   1 5 

39 23 128 68   2 4 

40 23 31 116   1 6 

41 23 31 112   1 7 

42 23 31 88   2 5 

43 23 24 121   1 4 

44 23 24 98   1 4 

45 23 24 86   1 4 

Animal model solutions 

 

The first variable contains numbers  

of animal (mean) classes and regressions 

and the second the estimate 

an = 

 1.0000 -1.4325  

 2.0000 -4.4927  

 3.0000  3.1002  

 4.0000  0.4142  

 5.0000  2.9162  

 6.0000 -3.3706  

 7.0000  2.8651  

 8.0000 -4.7612  

 9.0000 -5.6569  

 10.0000  2.9802  

 11.0000 -0.0996  

 12.0000  2.7212  

 13.0000 -0.0949  

 14.0000 -0.4850  

 15.0000  4.8850  

 16.0000 -3.7721  

 17.0000 -6.5152  

 18.0000 -0.2880  

 19.0000 -4.0711  

 20.0000 -5.4854  

 21.0000 -5.5097  

 22.0000 -0.0535  

 23.0000 -1.6506  

 24.0000  5.2497  

 25.0000  0.6864  

 26.0000  1.4889  

 27.0000  2.0724  

 128.0000 -3.1481  

 29.0000  1.6076  

 30.0000  2.2076  

 31.0000  0.8187  

 32.0000 -3.9882  

 33.0000 -5.0696  

 34.0000 -1.9767  

 35.0000 -0.4821  

 36.0000  0.2475  

 37.0000 -0.9527  

 38.0000 -3.2048  

 39.0000 -7.2870  

 40.0000  2.0375  

 41.0000 -0.6642  

 42.0000 -1.8980  

 43.0000  5.5520  

 44.0000  0.9520  

 45.0000 -1.4479  

 0.0000  90.0823  

 2.0000  5.4732  

 3.0000 -5.0481  

 4.0000  15.9558  

 5.0000  16.9446  

 6.0000  19.6661  

 7.0000  29.1753  
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 0.0000 -5.6002  

8.2 Estimating breeding values and selection response 

The breeding value can be based on any uniformly related individuals to the animals or own record, see 
applet 7.2, remember the actual relationships a and a' should be properly defined. By pressing the 
Calculate button the accuracy is transferred to the delta G input window. can't run the applet.  

 
In all green fields you should define values then press the Calculate button. The delta G can be run 
independently of the breeding value estimations, all values in the yellow fields shall be defined.  

The selection response is calculated in the lower 3 rows of the applet according to the formula shown 
below. The delta G is calculated per year (år). If the generation interval is set to one year the results is 
also per generation. The parameters are  
Selection intensity, i  
Accuracy of selection, rAI  
Generation interval, L  
The additive standard deviation, sigmaA  

 

Example:  
The accuracy is automatically transferred from the breeding value estimation, but you can also convert an 
externally derived accuracy squared by means of r2 to r button. If you have the proportion selected (p) put 
your data in the (i) field and press the convert p to i button.  
The calculation is based on the average of the contribution from the sires and dams. With the given initial 
parameters delta G is 0.04 units if you press the Calculate delta G button.  

Questions:  
In a population are selected 10 % males based on progeny test of 20 offspring and 50 % females based on 
own performance. SigmaA is set to 1.  
Calculate delta G per generation when the heritability is 0.40.  

If the males as well as the females were selected on own performance calculate delta G.  
Compare the two results  

Repeat the calculations with a heritability of 0.10  

8.3 Applet for calculating heritability for threshold traits (diseases) 

The calculations are based on disease frequencies in the general population (Population) and among 
relatives (Indiv. related ) to diseased animals. The relatives can be (both parents diseased) first degree 
(father, mother or full sibs) or second degree (half sibs, grand parents).  
Observe: The chi-square test calculation is based on: that the related ones is subtracted from the 

population numbers!  

Example:  

Enter your observed numbers and degree of relationship (green fields) and then press the Calculate 
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button. The values in the (Degree of relationship) field should 1, .5 and .25 for the three above 

mentioned cases.  

You can also enter the frequencies (yellow fields) but then the numbers shall be zeros in the 

observed number fields. Results are rounded to four decimals.  

Illustration of the case where both parents are affected are given below. The applet is initiated with 

the actual data; to see the calculations press the Calculate button.  

 

Questions:  

In the table below is given observed numbers for disease frequencies in the population and in first-

degree relatives to diseased animals.  

              Normal  Diseased  Frequency 

------------------------------------------ 

Population      980       20        0.020 

First-degree 

relative        140       10        0.066 

------------------------------------------ 

Estimate the heritability.  

What is the relative risk to be related to a diseased animal?  

Is the heritability statistically significant different from 0 with (p< 0.05) ?  

 


