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Abstract

Biometrical genetics is the science concerned with the inheritance of quantitative traits. In

this review we discuss how the analytical methods of biometrical genetics are based upon

simple Mendelian principles. We demonstrate how the phenotypic covariance between related

individuals provides information on the relative importance of genetic and environmental

factors influencing that trait, and how factors such as assortative mating, gene-environment

correlation and genotype�/environment interaction complicate such interpretations. Twin and

adoption studies are discussed as well as their assumptions and limitations. Structural

equation modeling (SEM) is introduced and we illustrate how this approach may be applied to

genetic problems. In particular, we show how SEM can be used to address complicated issues

such as analyzing the causes of correlation between traits or determining the direction of

causation (DOC) between variables. # 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The laws of genetics formulated by Gregor Mendel in the 19th century described

the inheritance of discontinuous traits which exhibited clear patterns of segregation

(e.g. green vs. yellow peas). However, most of the phenotypes relevant to biological

psychology are quantitative traits characterized by continuous distributions which

do not display clear-cut patterns of inheritance (e.g. blood pressure, skin

conductance). It is important to realize that these traits are also subject to the

same laws which govern the inheritance of ‘Mendelian’ phenotypes. Biometrical
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genetics is the field of science which deals with the inheritance of these continuous

phenotypes.

2. Polygenic theory of quantitative traits

Quantitative traits are typically due to the combined action of several genetic loci
(for a definition of these terms see the article by Slagboom in this volume).

Segregation at multiple loci results in several categories of progeny. As the number

of loci influencing the trait increases, the number of separate phenotypic categories

increases, and the overall distribution of classes approaches normality. Super-

imposed upon this genetic variation are environmental effects which blur the

demarcation between the individual classes causing the overall distribution to appear

continuous. This makes it more difficult (though not impossible) to study the

individual effects of genes influencing quantitative traits (Martin et al., 1997).
However, if a trait of interest is normally distributed (or may be transformed to

approximate a normal distribution), it is possible to make use of statistical

approaches based upon the properties of the normal curve. In particular, by

examining the covariance between different groups of relatives, it is possible to

estimate the relative proportions of phenotypic variance resulting from genetic and

environmental influences (Fisher, 1918; Mather and Jinks, 1982).

3. Partitioning the phenotypic variance

A phenotypic value is simply a measure of an individual’s phenotype on an

arbitrary scale. The phenotypic value (P ) is determined by contributions from the

genotype and the environment:

P�G�E

where G is the genotypic value and E the environmental deviation. It is assumed that
E is measured in deviation form (i.e. has a mean value of zero) so that the average

phenotypic value equals the average genotypic value.

Fisher (1918) was first to demonstrate that it is possible to partition the genotypic

value into additive and dominance components. This partitioning is illustrated for a

single autosomal biallelic locus (Fig. 1), although the results may be generalized to

multiple alleles and loci (Crow and Kimura, 1970; Kempthorne, 1957; Lynch and

Walsh, 1998). The measurable effects of the genotypes at this locus are quantified by

parameters known as genotypic effects. The genotypic effect of the homozygote
A1A1 is �/a and the genotypic effect of A2A2 is �/a. The genotypic effect of the

heterozygote A1A2 depends upon the degree of dominance at the locus and is

quantified by the parameter d . When there is no dominance (d�/0), then alleles A1

and A2 are said to act additively in that the genotypic effect of the heterozygote is

exactly half the sum of the genotypic effect of the two homozygotes. When d �/0,
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allele A1 displays dominance over allele A2. Conversely when d B/0 allele A2 displays

dominance over allele A1. When dominance is complete, d is equal to �/a or �/a.

The number of copies of a particular allele (e.g. allele A1) is referred to as the gene

content. It is possible to regress gene content against genotypic value. Unless the

alleles at the locus act additively there will exist a non-linear relationship between

gene content and the genotypic value. This regression leads to a partitioning of the

genotypic value into an expected value based on additivity at the locus, and a

deviation based on dominance. The proportion of variance in the genotypic value
explained by the regression is known as the additive genetic variance. It is the

variance associated with the average additive effects of alleles and is the proportion

of genetic variance transmitted from parent to offspring. The residual variance which

is not explained by the regression is referred to as the dominance genetic variance

and arises because of the non-linear interaction between alleles at the same locus.

In the case of the biallelic locus above, the additive (sA
2 ) and dominance (sD

2 )

components of variance are given by the formulae:

s2
A�2pq[(a�d(q�p)]2

s2
D�(2pqd)2

Note that the additive genetic variance contains a contribution from the
dominance parameter ‘d ’. It is only when d�/0 or in the special case where the

gene frequencies are equal does dominant gene action make no contribution to the

additive genetic variance. In contrast, the dominance genetic variance will only

contribute to the genetic variance when d �/0. Note also that both variance

components depend critically upon the population allele frequencies p and q .

Thus, a low proportion of dominance variance does not necessarily imply absence of

dominant gene action, but rather may be a consequence of the particular allele

frequencies in the population (Mather and Jinks, 1982).
In the case of a single locus, the total genetic variance is simply the sum of the

additive and dominance components. The situation becomes more complicated when

multiple loci are considered. In this case, the genetic variance may also contain an

additional component of variance due to epistasis. Epistasis is the interaction

between two or more different loci and may involve interactions between the additive

Fig. 1. A biallelic autosomal locus in a randomly mating population. The genotypic effect of the

homozygotes A1A1 and A2A2 are �/a and �/a, respectively. The genotypic effect of the heterozygote A1A2

is d , which is the degree of dominance at the locus. The gene frequencies of alleles A1 and A2 are p and q ,

respectively, and the frequencies of the genotypes are as shown.

D.M. Evans et al. / Biological Psychology 61 (2002) 33�/51 35



and/or dominance effects at those loci. Statistically speaking, epistatic variance is the

residual genetic variance unexplained by the additive and dominance components.

The interested reader is referred to any of the classic texts in quantitative genetics for

a formal mathematical definition of epistatic variance (Crow and Kimura, 1970;

Kempthorne, 1957; Lynch and Walsh, 1998; Mather and Jinks, 1982).

In the same way, it is also possible to partition the environmental variance into

components due to shared environmental (s2
C) and specific environmental (s2

E)
effects. Shared environmental influences are those which affect all members of a

pedigree. For example, if we were studying blood pressure levels in adolescent twins,

an example of a shared environmental factor might be dietary salt intake, since

young twins living together are likely to have similar diets. In contrast, specific

environmental influences are environmental effects which are unique to each

member of the pedigree (e.g. measurement error).

Partitioning the variance into genetic and environmental components not only

reveals the broad causes of individual differences in the phenotype, but also predicts
the response of the population to certain processes. For example, the response of a

population to natural selection is determined primarily by the additive genetic

variance, whereas the deleterious effects of inbreeding arise through genetic

dominance.

The amount of additive genetic variance expressed as a proportion of the total

phenotypic variance is termed the narrow heritability of the trait (denoted by the

symbol h2). The total amount of genetic variance (i.e. additive and dominance

components) expressed as a proportion of the total phenotypic variance is called the
broad heritability of the trait. Both types of heritability may range from zero (genetic

differences are not responsible for individual differences in trait values) to one (all

individual differences are due to the effect of genes). It is important to realize that

like the genetic variance, broad and narrow heritabilities are population specific

parameters, being functions of allele frequencies as well as genetic and environmental

effects.

4. Covariance between relatives

The different genetic and environmental variance components are typically

estimated by examining the covariance between relative pairs. Genetic covariance

between relations arises because relatives share some of their alleles identical by

descent (when a pair of relatives receives the same allele from a common ancestor the

alleles are said to be ‘identical by descent’). Under several assumptions (e.g. random
mating) the covariance between individuals x and y is given by:

cov(x; y)�2Uxys
2
A�Dxys

2
D�s2

C

where T is the coefficient of kinship*/the probability that an allele chosen at

random from individual x at a particular locus will be identical by descent with an

allele chosen at random from individual y at the same locus; and D is the coefficient
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of fraternity (Jacquard, 1974)*/the probability that both alleles of both individuals

at a locus are identical by descent (Cockerham, 1954; Fisher, 1918; Kempthorne,

1954). The covariance formula may be extended to include epistatic components of

variance, although in human studies it is usually assumed that these components are

small or absent because of the difficulties associated with resolving them reliably (see

e.g. Eaves, 1988).

Note that the formula also contains a component due to the shared environment
(s2

C). In other words, phenotypic similarity between relatives also arises because

relatives share similar environments. In human populations the only way to

disentangle the contribution of genes and environment is by using study designs

involving twins or adopted individuals.

5. Study designs

5.1. Twin studies

The classical twin design which compares the similarity of monozygotic (MZ)

twins to that of dizygotic (DZ) twins is one of the most powerful study designs for

estimating the relative contribution of genes and environment to human traits

(Martin et al., 1978). Since MZ twins share all their genes in common, whereas DZ
twins share on average half their genes, any excess similarity of MZ twins over DZ

twins is the result of genetic factors. The design can also be used to detect the

presence of common environmental influences affecting a trait (Jinks and Fulker,

1970), ‘sibling effects (Eaves, 1976)-individual differences which arise from the

interaction between siblings, and ‘sex-limitation effects’ (Eaves et al., 1978)-

differences in gene expression between the sexes.

The chief limitation of the method is that dominant genetic and common

environmental components of variance cannot be estimated simultaneously since
these components are negatively confounded in a study of twins reared together

(Martin et al., 1978). This is because genetic dominance acts to inflate the correlation

between MZ twins relative to the correlation between DZ twins, whereas common

environmental effects inflate the correlation between DZ twins relative to the

correlation between MZ twins. In order to illustrate this point formally, note that in

the classical twin design information on the different variance components (i.e. s2
A,

s2
D, s2

C and s2
E) comes from three observed statistics, the phenotypic trait variance

(s2
P), the covariance between MZ twins (covMZ(x , y )) and the covariance between

DZ twins (covDZ(x , y)):

s2
P�s2

A�s2
D�s2

C�s2
E

covMZ(x; y)�s2
A�s2

D�s2
C

covDZ(x; y)�0:5s2
A�0:25s2

D�s2
C
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It is of course impossible to estimate four variance components using only three

observed statistics. Expressing the covariance between DZ and MZ twins as a ratio

leads to:

covDZ(x; y)

covMZ(x; y)
� :5

s2
A

covMZ(x; y)
�0:25

s2
D

covMZ(x; y)
�1

s2
C

covMZ(x; y)

Note that this ratio is a weighted average of the terms one half, one quarter and

one. If additive genetic effects are the only effects contributing to intrapair similarity,

then the ratio would equal one half exactly. If the ratio is greater than one half, then

s2
C must be involved (i.e. s2

C increases the ratio towards one). Conversely, if the ratio

is less than one half, s2
D must be involved (i.e. s2

D decreases the ratio towards one

quarter). Since at most only one of s2
C and s2

D can be estimated, the two parameters

are negatively confounded. This is not to say that s2
C and s2

D cannot both contribute
to the phenotypic variance of a trait, rather they cannot be estimated simultaneously

with data from twins alone. As a consequence, when the correlation between MZ

twins is less than twice the DZ correlation, we estimate s2
C and assume that genetic

dominance is absent, and conversely when the MZ correlation is more than twice the

DZ correlation we estimate s2
D and assume that s2

C is zero (Grayson, 1989).

Another criticism of the twin method is that twins differ from singletons in several

important aspects, and therefore results derived from twin studies do not generalize

to the rest of the population. For example, it has been well documented that twins
have lower birth weights, experience shorter gestation times, and are at greater risk

of perinatal complications and mortality than singletons (O’Brien and Hay, 1987;

Petterson et al., 1993; Phillips, 1993). Several studies also report lower childhood IQs

for twins compared with singletons (Record et al., 1970). However, most of these

studies have examined young twins, and have not matched twins with singletons in

terms of genetic or environmental backgrounds. Subsequently, a number of studies

comparing older twins with singletons have failed to find differences in physical

characteristics, cognitive abilities or in the prevalence of many adult diseases,
suggesting that any differences between twins and singletons are ‘washed out’ early

in development (Chitkara et al., 1988; Kendler et al., 1995; Nilsen et al., 1984;

Posthuma et al., 2000).

The other major assumption of the classical twin study is the ‘Equal Environments

Assumption’ that MZ twin pairs experience the same degree of environmental

similarity as DZ twin pairs. If this is not the case, and MZ twin pairs are exposed to

more similar environments than DZ pairs, then any excess similarity between MZ

pairs compared with DZ pairs may be the result of environmental rather than genetic
factors. There is strong evidence that MZ twins are treated more similarly than their

DZ counterparts (Kendler et al., 1986). However, it is questionable whether this

environmental similarity causes increased phenotypic concordance. Controlling for

zygosity, environmental similarity, physical similarity and similarity of parental

treatment during childhood does not predict twin similarity in personality, attitudes,
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nor similarity in a range of cognitive variables (Kendler et al., 1993; Morris-Yates et

al., 1990). A number of studies have examined the impact of actual versus perceived

zygosity on trait similarity. If there is a preconceived notion that MZ twins are more

alike than DZ twins (and therefore should be treated more similarly) then trait

similarity should be a function of perceived zygosity. Studies using this method have

failed to find any consistent influences of perceived zygosity on a range of

psychological traits and conditions (Kendler et al., 1993). Thus it seems that the

increased similarity in treatment of MZ twins is not due to their greater phenotypic

similarity, but rather a consequence of their genetic identity and the more similar

responses that this elicits from the environment.

It is possible to extend the classical twin design by including other informative

relationships in the analysis including parents of twins (Eaves et al., 1978), the

offspring of MZ twins (Nance and Corey, 1976), the offspring of MZ and DZ twins

(Haley and Last, 1981), and the spouses of twins (Eaves, 1979; Heath and Eaves,

1985). These designs are exceedingly useful in that they are capable of resolving

certain effects such as assortative mating and vertical cultural transmission which the

classical twin study cannot (Eaves et al., 1978; Heath et al., 1985b; Jinks and Fulker,

1970). The twin study should therefore not be seen as an end in itself, but rather a

starting point for investigation into other sorts of relationships.

5.2. Adoption designs

Adoption designs compare both genetically related individuals in uncorrelated

environments and genetically unrelated individuals in correlated environments.

Heath et al. (1985b) compared the power of a number of different adoption designs

in a series of simulations. In general, the most powerful adoption designs involve

gathering data from both biological parent and adopted away offspring and

adoptive parent and adopted offspring pairs (Heath et al., 1985b). These designs

are very powerful in detecting common environmental effects and are especially

robust compared with extended twin kinship designs in resolving genetic and cultural

inheritance in the presence of genetic dominance and assortative mating (Heath et

al., 1985b).

All studies using adoptive individuals are subject to a number of limitations. It is

assumed that placement is random in adoption designs*/although it can be argued

that this is seldom the case since adoptive families tend to be selected on the basis of

their similarity to the biological parents and in many cases are related genetically to

the child (e.g. an uncle or aunt). Adoptive parents also tend to be of good health and

of higher socio-economic status than average. Adoption designs are also subject to

generalizability problems in that results from adopted individuals may not be

representative of the rest of the population since biological parents giving up

children for adoption are unlikely to be a random sample of the population with

respect to many traits of interest.
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6. Factors precluding a simple decomposition of the phenotypic variance

Several factors may preclude a simple decomposition of the phenotypic variance in

the manner described above. These include gene-environment interaction (G �/E

interaction), gene-environment correlation (GE correlation) and assortative mating.

6.1. G �/E interaction

G �/E interaction occurs when genotypes differ in their sensitivity to environ-

mental influences and is thus related to the statistical concept of heteroscedasticity,

in that a single variance is inadequate to describe the variability of different

genotypes. G �/E interaction may be directional (e.g. as the mean of a sub-group

increases so does the variance) or unsystematic. In either case the effect is to increase

the total phenotypic variance relative to the situation where such an interaction is

absent (Jinks and Fulker, 1970). Analyses in experimental organisms (e.g.

Drosophila ) have demonstrated that G �/E interaction is a widespread phenomenon
in many systems but seldom accounts for more than twenty percent of the total

phenotypic variance (Eaves et al., 1977; Mather and Jinks, 1982). If the degree of

G �/E interaction in man is similar to that in other organisms, then G �/E

interaction represents an important source of variance which must be accounted

for in any biometrical model of individual differences.

Data from MZ twins provide a unique opportunity to test for the presence of G �/

E interaction in human populations. Jinks and Fulker (1970) suggested plotting the

absolute intra-pair difference in MZ trait values against the corresponding intra-pair
sum. Since MZ twins are genetically identical, their intra-pair difference can only be

due to environmental effects unique to each twin. Conversely, the intra-pair sum

provides an estimate of genetic effects (assuming of course that the trait itself is at

least partially determined by genetic factors). A significant correlation between the

two indicates the presence of G �/E interaction. The problem with the test is that it

may also detect interaction between the common and unique environment. Ideally,

the test should be supplemented with data from MZ twins reared apart to prevent

this confounding (Jinks and Fulker, 1970). The Jinks-Fulker test will also not detect
genetic control of environmental sensitivity if the genes involved are different from

the genes contributing to the average value of the trait (Birley et al., 1997; Eaves et

al., 1977; Jinks and Fulker, 1970; Martin, et al., 1983).

Once G �/E interaction has been detected it must either be controlled for

statistically by altering the scale of measurement, or quantified. Any sort of

systematic G �/E interaction (and indeed any form of systematic non-additivity) can

be removed by a change of scale. The reason is that changing the scale of

measurement alters the amount of information at different points in the scale and
therefore the relative weighting of environmental factors given to each genotype

(Eaves et al., 1977; Jinks and Fulker, 1970; Mather and Jinks, 1982).

It is possible to quantify the amount of G �/E interaction contributing to the

phenotypic variance provided that the relevant environmental variable contributing

to such an interaction is measured (Eaves et al., 1977; Neale and Cardon, 1992). In
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this case it is necessary to obtain data from MZ and DZ pairs who are concordant

for exposure to the variable of interest, concordant for non-exposure and discordant

for exposure. It is then possible to determine whether the same set of genes affects the

trait in different environments, and to quantify the magnitude of genetic effects in

different environments. Measured genotypes may also be included in this design

when it is possible not only to identify loci controlling environmental sensitivity

(Birley et al., 1997), but also to estimate two way interactions between measured and
residual genetic and environmental effects (Martin et al., 1987).

6.2. GE correlation

GE correlation refers to the non-random placement of genotypes within

environments. GE correlation arises because the environment that an individual

finds themselves in is ‘caused’ by the individual themselves or by their genetic

relations. GE correlation may increase or decrease the total phenotypic variance

depending on whether the correlation is positive or negative. Eaves et al. (1977)
described three types of GE correlation which were classified according to their effect

on the pattern of variances and covariances in the population: genotype�/environ-

ment autocorrelation, sibling effects, and cultural transmission.

Genotype�/environment autocorrelation occurs when an individual creates or

evokes responses from the environment which are a function of their genotype. For

example, children who are genetically intelligent may be more inclined to select

environments conducive to learning. It is difficult to resolve this sort of GE

correlation since it is difficult to know whether the genes affect the phenotype
directly, or whether the environment produces differences originally caused by the

genotype. Longitudinal or cross-cultural data may go some way to resolving this

issue (Eaves et al., 1977; Neale and Cardon, 1992).

Sibling effects refer to GE correlation generated from the interaction between

siblings. This form of covariance arises because the phenotype of a genetically

related individual (in this case a sibling) provides part of the environment for the

other sibling. Sibling effects may be cooperative, in that the trait value of one sibling

increases the trait value of the other, or competitive, in which case the trait value of
one sibling decreases the trait value of the other. Under favorable circumstances,

sibling effects may be resolved through a comparison of MZ and DZ twins.

Cooperative interactions increase the variances of MZ relative to DZ twins and

increase the covariance between DZ twins relative to MZ twins, whereas competition

interactions produce the opposite effects (Carey, 1986; Eaves, 1976; Eaves et al.,

1978).

Cultural transmission arises because parents provide genes as well as environments

to their offspring. An example of this type of GE correlation is the ‘Double
Advantage Hypothesis’, that children who receive genes that increase their

intellectual ability relative to average are also likely to be raised in homes that

provide them with enriched environments (Jencks, 1972). The effect of cultural

transmission may be modeled by analyzing the relationships between MZ and DZ

twins and their parents. Such a design enables the common environmental variance
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to be partitioned into components due to assortative mating, cultural transmission,

gene-environment covariation and environmental effects shared by twins (Cardon et

al., 1991).

6.3. Assortative mating

Assortative mating is non-random mating on the basis of anything other than

biological relatedness. Phenotypic assortment is said to be positive when similar
phenotypes mate together, and negative when mating occurs between dissimilar

phenotypes. In human populations, assortment is almost universally positive being

most marked for education (Heath et al., 1985a), religion (Truett et al., 1994),

attitudes (Eaves et al., 1999) and socioeconomic status (Heath et al., 1987), is

moderate for physical and cognitive traits (Vandenberg, 1972), and low or random

for most personality variables (Eaves et al., 1999).

Since individuals who have similar phenotypes are also likely to share similar

genotypes (assuming the trait is genetically influenced), mating between phenotypi-
cally similar individuals increases the proportion of homozygous progeny. Assorta-

tive mating also causes a build up of ‘directional gametic phase disequilibrium’

(Crow and Kimura, 1970), which simply means that alleles with like effects tend to

assort together. These two factors produce an increase in the additive genetic

variance, the magnitude of which depends upon the phenotypic correlation between

mates, the heritability of the trait and the number of contributing loci (Crow and

Kimura, 1970; Fisher, 1918). Positive assortative mating can also affect the

dominance genetic variance component, but if the number of loci influencing the
trait is large, this effect is not of practical significance (Fisher, 1918; Vetta, 1976).

Positive assortment increases the additive genetic covariance between pairs of

relatives, and in some types of relationship induces a dominance component to the

covariance when there was none previously (Lynch and Walsh, 1998). Assortative

mating may also produce a genotype�/environment correlation since parents provide

genes as well as the environment for their children (Eaves et al., 1977; Jencks, 1972).

In the context of the classical twin study, positive assortment inflates the correlation

between MZ and DZ twins by the same absolute amount, thus mimicking the effect
of the shared environment.

Most models of assortative mating make a number of assumptions including that

all individuals have an equal chance to reproduce (but see e.g. Wilson, 1973), and

that assortment, genetic and cultural transmission remain constant across genera-

tions (i.e. a state of equilibrium has been reached). Under these assumptions it is

possible to resolve the effects of assortative mating by analyzing the resemblance

between MZ and DZ twins and their parents (Cardon et al., 1991). It is also possible

to resolve the origin of the marital correlation by investigating other relationships.
For example, by examining the correlation between spouse pairs longitudinally or by

examining the spouses of related individuals, one can determine whether positive

marital correlations arise from phenotypic assortment or as the result of interaction

between spouses and convergence over time (Heath, 1987; Nance et al., 1981).

Similarly a positive marital correlation between spouses may also arise because of
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mate selection being based on similar social backgrounds rather than phenotypic

similarity. This is referred to as social homogamy and may be an appropriate model

to adopt when studying internal biological measures (Eaves et al., 1989; Heath and

Eaves, 1985; Rao et al., 1974). The question can be addressed empirically by

including the spouses of MZ and DZ twins in the analysis (Heath and Eaves, 1985).

7. Structural equation modeling

Structural equation modeling (SEM) is a flexible model-fitting approach used in

the genetic analysis of twin and family data. SEM can be used to analyze the

interaction between siblings (Eaves, 1976), sex-limitation effects (Eaves et al., 1978),

the correlation between different variables (Martin and Eaves, 1977), longitudinal

data (Boomsma and Molenaar, 1987), the direction of causation (DOC) between

variables (Duffy and Martin, 1994), pedigrees of variable size (Dolan et al., 1999)

and different types of relationship (Heath et al., 1985b). More recently, SEM has
been used to perform combined linkage and association analyses while controlling

for spurious associations (Fulker et al., 1999; Neale et al., 2000). SEM is possible via

a number of user friendly software packages including LISREL (Jöreskog and

Sörbom, 1989), EQS (Bentler, 1989) and Mx (Neale, 1997), the last of which being

particularly suited to the analysis of genetically informative data. Raw data methods

(in which the likelihood of the model is calculated directly from the raw data rather

than from covariance matrices) have been incorporated into the Mx package (Lange

et al., 1976; Neale, 1997). This means that pedigrees which contain incomplete data
may be included in the analysis, avoiding the listwise deletion of cases which would

occur if covariance matrices were analyzed.

In SEM the relationship between several latent unobserved and observed variables

is summarized by a series of structural equations. In a genetic analysis, these

equations relate the observed phenotype to latent genetic and environmental

variables (i.e. the additive and dominant effects of genes etc.), and specify the

correlation between the latent genetic and environmental factors. From these

equations it is possible to derive the covariance matrix implied by the model
through the use of covariance algebra (Bollen, 1989).

Alternatively, structural equation models may be represented diagrammatically

using path diagrams (see Fig. 2). Path diagrams are mathematically complete

descriptions of structural equations in that all relations between observed and latent

variables are represented. Dependent variables are represented by square boxes,

whereas independent variables are represented by circles. Causal paths between

variables are represented by unidirectional arrows, correlations between variables

are represented by bi-directional arrows. The strength of association between each
variable is measured by a path coefficient (equivalent to a partial regression

coefficient) in the case of a causal path, or a correlation coefficient in the case of a bi-

directional path. Many researchers find path diagrams easier to understand than sets

of structural equations. The expected covariance matrix implied by the model can be

derived through the rules of path analysis (see e.g. Neale and Cardon, 1992).
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Parameter estimates for the structural equation models are obtained by using a

fitting function which quantifies the difference between the observed covariance

matrix and the covariance matrix implied by the model. These functions provide a
measure of how well the model fits the data as well as the significance of each of the

model parameters. This ensures that the models employed adequately describe the

data and each of the parameters is necessary.

8. Using SEM to analyze the correlation between twins

One simple application of SEM is in the analysis of MZ and DZ twins measured

on a single trait to provide estimates of the genetic and environmental components of

variance influencing that trait (e.g. Fig. 2). As was mentioned previously, it is

impossible to simultaneously estimate common environmental and dominance

variance components in a study of MZ and DZ twins reared together. Rather

when the correlation between MZ twins is greater than twice the DZ correlation, we
fit a model containing additive genetic, dominant genetic and unique environmental

variance components (i.e an ADE model) to the data, and when the MZ correlation

is less than twice the DZ correlation, we fit a model containing additive genetic,

common environmental and unique environmental variance components (i.e. an

ACE model). The significance of each variance component may be assessed by

Fig. 2. Path diagram for MZ and DZ twins measured on a single phenotype. Each phenotype (P1, P2) is

caused by a linear combination of latent additive genetic (A), dominant genetic (D), common

environmental (C) and unique environmental (E) variables. Each latent variable is standardized (i.e. has

a mean of zero and a variance of one) and the path coefficients of each latent variable on the observed

phenotypes are estimated (i.e. a, d, c, e). From biometrical genetics theory, the additive genetic correlation

between pairs (a) is 1 for MZ twins, and 0.5 for DZ twins. The correlation between dominance variance

components (b) is 1 for MZ twins, and 0.25 for DZ twins. The correlation between common environmental

effects is one for MZ and DZ twins by definition.
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dropping the component from the full model and comparing the difference in fit

between the two models. A non-significant decrease in fit indicates that the relevant

variance component does not contribute significantly to variation in the trait and

may be dropped from the model. In this way, it is possible to obtain estimates of the

different variance components affecting the trait (and thus the narrow heritability of

the trait) as well as a formal test of their significance.

9. Using SEM to analyze the correlation between variables

Just as SEM can be used to analyze the components of variance influencing a

single variable, SEM can also be used to analyze the sources and structure of

covariation underlying multiple variables (Martin and Eaves, 1977). In this case

information not only comes from the covariance between the variables, but also

from the cross-twin cross-trait covariances. In particular, a larger cross-twin cross-
trait correlation between MZ twins as compared with DZ twins suggests that

covariance between the variables is partially due to genetic factors.

A typical starting point in a multivariate analysis is to fit a full Cholesky model to

the data (Fig. 3a). In this model the relationship between n variables is parameterized

in terms of n factors, where all variables load on the first factor, n�/1 variables load

on the second factor and so on, until the final variable loads on the nth factor only.

Each source of phenotypic variation (i.e. A, C or D, and E) is parameterized in such

a way. The pattern of factor loadings on the genetic and environmental factor
structures reveals the etiology of covariation between the phenotypes (Martin and

Eaves, 1977).

The Cholesky model can also be compared with more restrictive models such as

the independent pathways and common pathway models which make strong

theoretical predictions about the causes of covariation between phenotypic measures

(Kendler et al., 1987; McArdle and Goldsmith, 1990). The independent pathways

model assumes that covariation between phenotypes is due to the influence of

common latent genetic (AC) and environmental factors (CC, EC). Residual variance
specific to each variable is parameterized as specific latent genetic and environmental

factors (Fig. 3b). The even more restrictive common pathways model assumes that

both genes and environment contribute to an intermediate latent variable, which in

turn is responsible for the observed pattern of covariation between the measures

(Fig. 3c). Again, residual variation specific to each variable is parameterized by

specific latent genetic and environmental factors. These models may be tested against

one another and the Cholesky model to see which provides the most parsimonious fit

to the observed data.

10. Using SEM to model the direction of causation

In many cases, experimental manipulation is not a possibility when investigating

the DOC between psychological variables, so alternative approaches are needed.
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Longitudinal or two-wave data designs, while potentially informative, are not

without their disadvantages including stringent methodological requirements and the

cost and time required for data collection (Heath et al., 1993; Neale et al., 1994). An

alternative approach is to model DOC based on pairs of relatives measured on a

single occasion (Duffy and Martin, 1994; Heath et al., 1993; Neale et al., 1994).

When modeled using genetically informative data such as twins, the pattern of cross-

twin cross-trait correlations can under certain conditions falsify strong hypotheses

about the DOC between two variables provided several assumptions are satisfied: (i)

that members of a twin pair are not having any mutual effect on one another i.e.

sibling cooperation/rivalry, either within or across variables; (ii) the relationship

between the two target variables is equivalent for twin 1 and twin 2; (iii) twin-pair

correlations are different between target variables; and (iv) there are no unmeasured

variables which influence both measures and thereby inflate the correlations arising

through the causal influence of one variable on the other (Duffy and Martin, 1994;

Neale et al., 1994). Assumption (iii) is critical since the power to detect DOC will be

Fig. 3. Cholesky (A), independent pathways (B) and common pathway (C) models. In the case of the

Cholesky model only structures for additive genetic and specific environmental factors are shown. All

figures are drawn for one twin only.
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greatest when the genetic and environmental etiologies of the target variables are

qualitatively and quantitatively different (Heath et al., 1993).

Fig. 4 illustrates the logic behind DOC modeling. Let us assume that variable A is

best explained by shared (C) and non-shared (E) environmental effects while variable

B is best explained by additive genetic (A), dominant genetic (D) and non-shared (E)

environment effects. Under the ‘A causes B’ hypothesis (i), the cross-twin cross-trait

correlation (i.e. rAt1Bt2, rAt2Bt1) is cA
2 iB for MZ and DZ twin pairs alike. However,

under the ‘B causes A’ hypothesis (ii), the cross-twin cross-trait correlation would be

(aB
2�/dB

2 )iA for MZ and (1/2aB
2�/1/4dB

2 )iA for DZ twin pairs. It is apparent that if

variables A and B have identical modes of inheritance then the cross-twin cross-trait

correlations will be equivalent for MZ and DZ twin pairs alike, regardless of the

DOC, and the power to detect DOC will vanish.

DOC models have received little attention in the psychophysiological literature to

date. This is a shame since such models could prove exceedingly useful in

illuminating the relationship between psychological constructs and psychophysiolo-

gical variables (e.g. the size and latency of ERP components and various aspects of

cognition).

Fig. 4. Uni-directional causation hypotheses between two variables A and B, measured on a pair of twins:

(i) trait A causes trait B and (ii) trait B causes trait A. Example based on simplified model of causes of twin

pair resemblance in Neale and Cardon (1992). In the boxes are given the expected cross-twin cross-trait

correlations for MZ and DZ twins under each uni-directional hypothesis. All latent variables are

standardized to unit variance.
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11. Using SEM to analyze developmental change

Changes in the magnitude of genetic and environmental effects over time may be

quantified by cross-sectional studies that measure subjects of different ages.

However, in order to assess whether the same genes and environmental influences

affect a trait over time, longitudinal data from genetically informative subjects is

required. One attractive possibility is to model data collected from MZ and DZ twins
in terms of a genetic simplex model (Boomsma et al., 1989; Boomsma and Molenaar,

1987; Evans et al., 2001).

Simplex models (Fig. 5) are autoregressive models where the latent genetic or

environmental variable at time i (hi) is causally related to the immediately preceding

latent variable through a linear relation i.e.:

hi�bihi�1�ji

where bi is the linear regression of the latent factor on the previous latent variable,

and zi represents new input (innovation) at time (i) which is uncorrelated with hi�1.

The innovations are that part of the latent factor at time (i) that is not caused by the

latent factor at time (i�/1), but are part of every subsequent time point. Structural

Fig. 5. Path diagram for a longitudinal genetic simplex model. Phenotypic variation is due to additive

genetic (A), unique environmental (E) sources of variation as well as measurement error (o ). Variation in

each latent variable is due to innovation (z ) and also variance transmitted from previous occasions. The

phenotypic covariation between the different time points is due solely to the transmission parameters (b ).

Only structures for additive genetic (A) and specific environmental influences (E) are shown. The figure is

drawn for one twin only.
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equations of this type may be expressed for each latent genetic and environmental

source of variation. Also part of the model is a structural equation relating the

observed phenotypes to the latent factors:

yi�lihi�oi

where ?i is the factor loading of the observed phenotype on the latent variable at time

(i), and ei is a measurement error term which affects the phenotype, but is

uncorrelated with hi . The question of whether different genes or environmental
influences affect the trait at different ages can be investigated by dropping the

relevant innovation from the full model and assessing whether the deterioration in

the fit of the model is significant.

12. Conclusion

In conclusion, we have illustrated how the laws governing the inheritance of

continuous traits are derived from basic Mendelian principles, and how twin and

adoption studies can be used to decompose phenotypic variation into genetic and

environmental components. We hope that we have given the reader an appreciation

of the power and flexibility of the SEM approach and how it may be used to address
more complicated questions than simply whether a trait is heritable. The interested

reader is urged to consult one of the classic texts (Neale and Cardon, 1992) for a

more detailed treatment of the subject.
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