
Lesson no. 17 

QUALITIES OF GOOD DATA-GATHERING 

PROCEDURES 
 

When many people think of research, they imagine numbers and statistics. However, the 

numbers that are gathered are based on various data gathering techniques as outlined in Section 1 

of this chapter. The quality of these procedures is determined by the caliber of the data-gathering 

strategy. To sharpen our ability to discern between weak and strong research, we must give 

attention to this aspect of research when evaluating the worth of a study. The purpose of this 

section is to provide an overview of these qualities and give examples of how they have been 

applied in research. My goal is for you to be able to use these qualities as criteria to evaluate the 

quality of the research that you read in a discerning manner. The two most important qualities of 

any data-collection technique that have traditionally been considered essential are reliability and 

validity. The strong consensus in the measurement community is that the level of confidence we 

can put into the findings of any given research is directly proportional to the degree to which 

data-gathering procedures are reliable and valid. I begin by discussing reliability, followed by 

validity. Some research methodology books place their section on validity before reliability. 

However, because validity relies heavily on reliability, I discuss the latter first. 

Reliability 

Reliability has to do with the consistency of the data results. If we measure or observe 

something, we want the method used to give the same results no matter who or what takes the 

measurement or observations. Researchers who use two or more observers would want those 

observers to see the same things and give the same or similar judgments on what they observe or 

rate. Likewise, researchers utilizing instruments would expect them to give consistent results 

regardless of time of administration or the particular set of test items making up those 

instruments. The most common indicator used for reporting the reliability of an observational or 

instrumental procedure is the correlation coefficient. A coefficient is simply a number that 

represents the amount of attribute. A correlation coefficient is a number that quantifies the 

degree to which two variables relate to one another. Correlation coefficients used to indicate 

reliability are referred to as reliability coefficients. I do not go into the mathematics of this 

particular statistic, but I want to give enough information to help in understanding the following 

discussion. Reliability coefficients range between 0.00 and +1.00. A coefficient of 0.00 means 

there is no reliability in the observation or measurement. That is, if we were to make multiple 

observations/measurements of a particular variable, a coefficient of 0.00 would mean that the 

observations/measurements were inconsistent. Conversely, a coefficient of 1.00 indicates that 

there is perfect reliability or consistency. This means that the observation/measurement 

procedure gives the same results regardless of who or what makes the observation/measurement.  

Seldom, if ever, do reliability coefficients occur at the extreme ends of the continuum (i.e., 0.00 

or 1.00). So, you might ask, “What is an adequate reliability coefficient?” The rule of thumb is, 



the higher the better (Wow, that was a no-brainer!!!), but better depends on the nature of the 

measurement procedure being used. Researchers using observation techniques involving judges 

are happy with reliability coefficients anywhere from 0.80 on up. Yet achievement and aptitude 

tests should have reliabilities in the 0.90s. Other instruments such as interest inventories and 

attitude scales tend to be lower than achievement or aptitude tests. Generally speaking, 

reliabilities falling below 60 are considered low no matter what type of procedure is being used 

(Nitko, 2001). There are a number of different types of reliability coefficients used in research. 

The reason is that each one reveals a different kind of consistency. Different measurement 

procedures require different kinds of consistency. Table 6.2 lists the different types of reliability 

coefficients, what kind of consistency is needed, and the corresponding measurement procedure. 

The first one listed, interrater or interobserver reliability, is required any time different observers 

are used to observe or rate participants’ behavior. Researchers typically determine the reliability 

of the observers/raters by either computing a correlation coefficient or calculating a percentage 

of agreement. The study discussed in chapter 5 by Bejarano et al. (1997) used two independent 

raters for their observational procedures. They reported interrater reliabilities for the three 

variables as 0.98, 0.86, and 0.96. These figures reveal high agreement among the raters, which I 

am sure pleased the researchers. 

 

Also related to the use of observers/raters is intrarater reliability. The type of consistency 

this addresses relates to observers/raters giving the same results if they were given the 

opportunity to observe/rate participants on more than one occasion. We would expect high 

agreement within the same person doing the observing/rating over time if the attribute being 

observed is stable and the observer/rater understood the task. However, if the observer/rater is 

not clear about what s/he is supposed to observe/rate, there will be different results, and 



correlations or percentages of agreement will be low. Although this is an important issue, I have 

not seen many recent studies report this type of reliability. One example I did find was Goh’s 

(2002) study, mentioned in chapter 5, which used both inter- and intrarater reliability. Recall that 

her study looked at listening comprehension techniques and how they interacted with one 

another. She had two participants read passages with pauses. During each pause, they were to 

reflect on how they attempted to understand the segment they heard. These retrospections were 

taped and transcribed. The transcriptions were analyzed by Goh, identifying, interpreting, and 

coding the data. Commendably, she checked the reliability of her observations by enlisting a 

colleague to follow the same procedures on a portion of the data and computing an interrater 

reliability coefficient (r = 0.76). In addition, she computed an intrarater reliability coefficient (r = 

0.88) to make sure there was consistency even within her own observations. As expected, she 

agreed with herself (intrarater) more than she agreed with her colleague (interrater). The 

remainder of the other types of reliabilities in Table 6.2 are used with paper-and-pencil or 

computer-administered instruments, whether questionnaires or tests. Test–retest reliability is 

used to measure the stability of the same instrument over time. The instrument is given at least 

twice, and a correlation coefficient is computed on the scores. However, this procedure can only 

work if the trait (i.e., construct) being measured can be assumed to remain stable over the time 

between the two measurements. For example, if the researcher is assessing participants’ L2 

pronunciation abilities, administering the instrument 2 weeks later should produce similar results 

if it is reliable. However, if there is a month or two between testing sessions, any training on 

pronunciation may create differences between the two sets of scores that would depress the 

reliability coefficient. However, if the time between the two administrations is too little, memory 

of the test from the first session could help the participants give the same responses, which 

would inflate the reliability coefficient. A study that reported a test–retest reliability 

(Camiciottoli, 2001) was mentioned in Section 1 of this chapter. Camiciottoli used a 22-item 

questionnaire to collect data on both independent and dependent variables. To measure test–

retest reliability, she gave 20 participants from the larger group the same questionnaire 6 weeks 

later. She then correlated the results from the first administration with that of the second and 

found a reliability coefficient of 0.89. This is considered fairly high reliability. Another type of 

reliability estimate typically used when a test has several different forms is the alternate-form 

procedure. Most standardized tests have multiple forms to test the same attribute. The forms are 

different in that the items are not the same, but they are similar in form and content. To ensure 

that each form is testing the same trait, pairs of different forms are given to the same individuals 

with several days or more between administrations. The results are then correlated. If the 

different forms are testing the same attribute, the correlations should be fairly high. Not only 

does this procedure test stability of results over time, it also tests whether the items in the 

different forms represent the same general attribute being tested. For example, if researchers 

were to use the Cambridge Certificate in Advanced English (CAE) test battery5 in a research 

study, they would need assurance from the test publisher that, no matter what form was used, the 

results would reveal a similar measure of English language proficiency. Again researchers 



should report the alternate-form reliability coefficient provided by the test publisher in his or her 

research report.  

The assumption cannot be made by researchers that those who read the study will know 

that a particular standardized test is reliable even if it is well known. No matter what test is used, 

the reliability should be reported in any study where applicable. A practice that you will no doubt 

see in your perusal of research is that of borrowing parts of commercially produced standardized 

tests to construct other tests. It seems that researchers doing this are under the assumption that, 

because items come from an instrument that has good reliability estimates, any test consisting of 

a subset of borrowed items will inherit the same reliability. This cannot be taken for granted. 

Test items often behave differently when put into other configurations. For this reason, subtests 

consisting of test items coming from such larger, proven instruments should be reevaluated for 

reliability before using them in a study. Rodriguez and Sadoski (2000), mentioned earlier, in 

addition to developing their own 15-item Spanish test, took 15 items from the Green and Purple 

Levels of the Stanford Diagnostic Reading Test for use in their English test. It would have been 

helpful if they had reported the reliabilities for these smaller tests. If reliability information were 

not available from the test publishers, they could have calculated their own reliabilities. Without 

knowing the reliability of a test, there is no way to know how consistent the results are. The last 

three methods of estimating the reliability of a test are concerned with the internal consistency of 

the items within the instrument. In other words, do all the items in an instrument measure the 

same general attribute? This is important because the responses for each item are normally added 

up to make a total score. If the items are measuring different traits, then a total score would not 

make much sense. To illustrate, if a researcher tries to measure participant attitudes toward a 

second language, do all of the items in the survey 6 contribute to reflecting their attitude? If some 

items are measuring grammar ability, then combining their results with those of the attitude 

items would confound the measure of attitude.  

The first of these three methods presented is known as split-half (odd/even). It is the 

easiest of the three methods to compute. As the name suggests, the items in the test are divided in 

half. Responses on each half are added up to make a subtotal for each half. This can be done by 

simply splitting the test in half, which is appropriate if the second half of the items is not 

different in difficulty level or the test is not too long. The reason that length is a factor is 

respondents might become tired in the latter half of the test, which would make their responses 

different from the first half of the test. To get around these problems, the test can be divided by 

comparing the odd items with the even items. The responses on the items for each respondent are 

divided into two subtotals—odd and even. That is, the odd items (e.g., Items 1, 3, 5, etc.) are 

summed and compared with the sum of the even items (e.g., Items 2, 4, 6, etc.). The odd/even 

method is preferred because it is not influenced by the qualitative change in items that often 

occur in different sections of the instrument, such as difficulty of item or fatigue.  

Factors that affect reliability are numerous. One of the major factors is the degree to 

which the instrument or procedure is affected by subjectivity of the people doing the rating or 



scoring. The more a procedure is vulnerable to perceptual bias, lack of awareness, fatigue, or 

anything else that influences the ability to observe or rate what is happening, the lower the 

reliability. Other factors that affect reliability are especially related to discrete-point item7 tests 

for collecting data. One of these is test length, which can affect reliability in two different ways. 

The first involves not having enough items. Instruments with fewer items will automatically 

produce smaller reliability coefficients. This is not necessarily due to the items being 

inconsistent, but rather is a simple mathematical limitation inherent to correlation coefficients. 

However, there is a correction formula known as the Spearman-Brown prophecy formula (Nitko, 

2001), which is available for use. This is used to project what the reliability estimate would be if 

the test had more items. When researchers use the split-half reliability coefficient (cf. Table 6.2), 

they usually report the Spearman-Brown coefficient because the test has been cut into halves, 

creating two short tests. Garcia and Asencion (2001) followed this procedure in their study, 

which looked at the effects of group interaction on language development. They used two tasks 

for collecting data: a text reconstruction test and a test of listening comprehension. The first test 

was scored using two raters who were looking at the correct use of three grammar rules. They 

reported interrater reliability with a correlation coefficient of 0.98: very high. For the listening 

test, which only consisted of 10 items, they used the split-half method along with the Spearman-

Brown adjustment for a short test (r = 0.73). This appears to be moderate reliability, but 

remember that it was a short test. So, in fact, the correlation is not bad. 

The second way that the length of an instrument can affect reliability is when it is too 

long. Responses to items that are in the latter part of the instrument can be affected by fatigue. 

Respondents who are tired will not produce consistent responses, which will lower reliability 

coefficients. When developing an English language test battery for placing students at the 

university where I teach, my development team and I noticed that the reliability of the reading 

component was lower than expected. This component was the last test in the battery. On further 

investigation, we found that a number of items in the last part of the test were not being 

answered. Our conclusion was that the test takers were running out of time or energy and were 

not able to finish the last items. We corrected the problem, and the reliability of this component 

increased to the level we felt appropriate. This is also a problem with long surveys.  

The final factor I mention is the item quality used in an instrument. Ambiguous test items 

will produce inconsistent results and lower reliability. Participants will guess at poorly written 

items, and this will not give an accurate measure of the attribute under observation. Items that 

have more than one correct answer or are written to trick the participant will have similar 

negative effects. Scarcella and Zimmerman (1998), for example, dropped 10 items from their 

Test of Academic Lexicon because these items lowered the Cronbach alpha coefficient. For 

some reason, these items were not consistently measuring the same attribute as the rest of the 

instrument. This left them with 40 real-word items, which they considered adequate. There are 

other factors that influence reliability coefficients, but they relate to correlation coefficients in 

general. I raise these issues in the next chapter when discussing correlation coefficients in greater 



detail. However, to emphasize how important knowing what the reliability of an instrument is, I 

introduce you to the Standard Error of Measurement (SEM; Hughes, 2003; Nitko, 2001). Don’t 

let this term make you nervous; it is not as bad as it looks. I will attempt to explain this in a 

nonmathematical way. The reliability coefficient is also used to estimate how much error there is 

in the measurement procedure—error is any variation in the instrument results due to factors 

other than what is being measured. By performing some simple math procedures on the 

reliability coefficient, an estimate of the amount of error is calculated, referred to as the SEM. If 

there is perfect reliability (i.e., r = 1.00), there is no error in the measurement; that is, there is 

perfect consistency. This means that any difference in scores on the instrument can be interpreted 

as true differences between participants. However, if there is no reliability (i.e., r = 0.00), then no 

difference between participant scores can be interpreted as true difference on the trait being 

measured. To illustrate, if I used a procedure for measuring language proficiency that had no 

reliability, although I might get a set of scores differing across individuals, I could not conclude 

that one person who scored higher than another had a higher proficiency. All differences would 

be contributed to error from a variety of unknown sources. 

Validity 

 

As with reliability, the quality of validity is more complex than initially appears. On the 

surface, people use it to refer to the ability of an instrument or observational procedure to 

accurately capture data needed to answer a research question. On the other hand, many research 

methodology textbooks distinguish among a number of types of validity, such as content validity, 

predictive validity, face validity, construct validity, and so on (e.g., Brown, 1988; Gall et al., 

1996; Hatch & Lazaraton, 1991). These different types have led to some confusion. For instance, 

I have heard some people accuse certain data-gathering procedures of being invalid, whereas 

others claim that the same procedures are valid. However, when their arguments are examined 

more closely, one realizes that the two sides of the debate are using different definitions of 

validity. Since the early 1990s, the prior notions of validity have been subsumed under the 

heading of construct validity (Bachman, 1990; Messick, 1989). These types of validity are now 

represented as different facets of validity under this global title. They are summarized in Table 

6.3. 

 

 



 

In the upper half of Table 6.3 in the left column, validity is shown to be comprised of two 

main facets: trait accuracy and utility. Trait accuracy, which corresponds with the former 

construct validity, addresses the question as to how accurately the procedure measures the trait 

(i.e., construct) under investigation. However, accuracy depends on the definition of the 

construct being measured or observed. Language proficiency, for example, is a trait that is often 

measured in research. Nevertheless, how this trait is measured should be determined by how it is 

defined. If language proficiency is defined as the summation of grammar and vocabulary 

knowledge, plus reading and listening comprehension, then an approach needs to be used that 

measures all of these components to accurately measure the trait as defined. 

 

However, if other researchers define language proficiency as oral and writing 

proficiency, they would have to use procedures to directly assess speaking and writing ability. In 

other words, the degree to which a procedure is valid for trait accuracy is determined by the 

degree to which the procedure corresponds to the definition of the trait. When reading a research 

article, the traits need to be clearly defined to know whether the measurements used are valid in 

regards to the accuracy facet of validity. These definitions should appear in either the 

introduction or methodology section of the article. To illustrate, in their search for factors 

contributing to second language learning, Gardner et al. (1997) defined language anxiety as 

“communication apprehension, test anxiety, and fear of negative evaluation” (pp. 344–345) 

based on the Foreign Language Classroom Anxiety Scale developed by Horwitz, Horwitz, and 

Cope (1986; cited in Gardner et al., 1997). This practice of defining traits by using already 

existing instruments is common among researchers. In effect, the instrument provides the 

operational definition of the trait. Regarding the second main facet of validity, utility is 

concerned with whether measurement/observational procedures are used for the right purpose. If 

a procedure is not used for what it was originally intended for, there might be a question as to 

whether it is a valid procedure for obtaining the data needed in a particular study. If it is used for 

something other than what it was originally designed to do, the researcher must provide 

additional evidence that the procedure is valid for the purpose of his or her study.  



For example, if you wanted to use the results from the TOEFL to measure the effects of a 

treatment over a 2-week training period, this would be invalid. To reiterate, the reason is that the 

TOEFL was designed to measure language proficiency, which develops over long periods of 

time. It was not designed to measure the specific outcomes that the treatment was targeting. Note 

in Table 6.3 that there are three other facets that further qualify the main facets of trait accuracy 

and utility: criterion related, content coverage, and face appearance. These used to be referred to 

as separate validities: criterion-related validity, content validity, and face validity (e.g., Brown, 

1988). However, within the current global concept of construct validity, they help define the 

complex nature of validity. Criterion related simply means that the procedure is validated by 

being compared to some external criterion. It is divided into two general types of trait accuracy: 

capacity to succeed and current characteristics. Capacity to succeed relates to a person having 

the necessary wherewithal or aptitude to succeed  in some other endeavor. Typically, this 

involves carefully defining the aptitude being measured and then constructing or finding an 

instrument or observational procedure that would accurately obtain the needed data. The utility 

of identifying people’s capacity to succeed is usually for prediction purposes. For instance, if a 

researcher wants to predict people’s ability to master a foreign language, s/he would administer a 

procedure that would assess whether the examinees had the necessary aptitude to succeed.  

 

Predictive utility is determined by correlating the measurements from the procedures with 

measurements on the criterion being predicted. I do not go into further detail about how this is 

done; suffice it to say that you can find more about this from any book on assessment (e.g., 

Nitko, 2001). A number of measures have been used over the years to predict the success of 

students in acquiring a second language. One of the most well-known standardized instruments 

that has been around for many years is the Modern Language Aptitude Test developed by Carroll 

and Sapon (1959). They developed this test for the purpose of predicting whether people have an 

aptitude for learning languages. Steinman and Smith (2001) presented evidence in their review of 

this test that it is not only valid for making predictions, but it has become used as an external 

criterion for validating other tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Lesson no. 18 

Understanding research results 
Some people think that numerical data are more scientific—and therefore more 

important—than verbal data because of the statistical analyses that can be performed on 

numerical data. However, this is a false conclusion. We must not forget that numbers are only as 

good as the constructs they represent. In other words, when we use statistics, we have basically 

transferred verbally defined constructs into numbers so we can analyze the data more easily. We 

must not forget that these statistical results must again be transferred back into terminology that 

represents these verbal constructs to make any sense. 

 

Common Procedure 

 

In almost all studies, all of the data that have been gathered are not presented in the 

research report. Whether verbal or numerical, the data presented have gone through some form 

of selection and reduction. The reason is that both verbal and numerical data typically are 

voluminous in their rawest forms. What you see reported in a research journal are results of the 

raw data having been boiled down into manageable units for display to the public. Verbal data 

commonly appear as selections of excerpts, narrative vignettes, and quotations from interviews, 

and so on, whereas numerical data are often condensed into tables of frequencies, averages, and 

so on. There are some interesting differences, however, which I describe in the following two 

sections. 

 

SECTION 1: PRESENTATION AND ANALYSIS 

OF VERBAL DATA 

 

Presentation of verbal data and their analyses appear very much intertwined together in 

Results sections of research reports. That is, separating the data from the analysis is difficult. 

Numerical data, in contrast, are presented in some type of summarized form (i.e., descriptive 

statistics) and followed with the analysis in the form of inferential statistics.  

 

Consequently, the analysis of verbal data is not quite as straightforward as the analysis of 

numerical data. The reason is that analysis of verbal data is initiated at the beginning of the data-

collection process and continues throughout the study. This process involves the researcher 

interacting with the data in a symbiotic fashion. Literally, the researcher becomes the “main 

‘measurement device’ ” (Miles & Huberman, 1994, p. 7). Creswell (1998, pp. 142–143) likened 

data analysis to a “contour” in the form of a “data analysis spiral,” where the researcher engages 

the data, reflects, makes notes, reengages the data, organizes, codes, reduces the data, looks for 

relationships and themes, makes checks on the credibility of the emerging system, and eventually 

draws conclusions. 

 

However, when we read published qualitative research, we seldom are given a clear 

description of how this data analysis spiral transpired. In Miles and Huberman’s (1994) words, 

“We rarely see data displays—only the conclusions. In most cases we don’t see a procedural 

account of the analysis, explaining just how the researcher got from 500 pages of field notes to 

the main conclusions drawn” (p. 262). If the researcher is working alone during the data analysis 

spiral, serious questions arise concerning the credibility of any conclusions made. First, there is 



the problem mentioned in chapter 6 regarding possible bias when gathering data through 

observation and other noninstrumental procedures. However, because analysis begins during the 

data-collection stage in qualitative research, analytical biases become a possible threat to the 

validity of conclusions. Miles and Huberman (1994) identified three archetypical ones: holistic 

fallacy, elite bias, and going native. The first has to do with seeing patterns and themes that are 

not really there. The second is concerned with giving too much weight to informants who are 

more articulate and better informed, making the data unrepresentative. The third, going native, 

occurs when the researcher gets so close to the respondents that s/he is “co-opted into [their] 

perceptions and explanations” (p. 264). 

 

Creswell (1998) provided eight verification procedures that he and a colleague 

extrapolated from a number of differing types of qualitative studies. Three of these overlapped 

with Miles and Huberman’s (1994) list—triangulation, negative evidence, and member checks 

(i.e., informant feedback)— leaving five that I have incorporated into the list in Table 7.1. Two 

relate to evaluating data quality (2 & 3). The third, peer review (10), is useful for checking 

whether the perceived patterns are credible, although also useful for evaluating explanations. The 

last two, rich/thick descriptions (16) and external audits (17), are powerful tactics for evaluating 

explanations. Each of these tactics is further explained next. Few studies use all 17 of these 

tactics to enhance credibility. However, the more a study has in each category, the more evidence 

is put forward for strengthening the credibility of the results. 

 

 
 

 

Evaluating the Quality of Data 

As with numerical data, verbal data cannot be taken simply at face value. The researcher 

should provide evidence that the data s/he has used in his or her study are dependable enough to 



analyze. The researcher has at least five strategies to choose from to support the quality of the 

data. They are as follows: 

1. Representativeness:  This is not referring specifically to whether the sample is 

representative of the population. This is more to do with whether the veracity of the information 

is being influenced by the choice of respondents or events (i.e., internal validity or credibility). 

Related to the elite bias mentioned earlier, information coming from one particular segment of a 

larger group of people can be misleading. The most accessible and willing informants are not 

usually the best group to provide the most appropriate data. 

In addition, the researcher needs to give evidence that the events on which 

generalizations are based are the most appropriate. A researcher might not be present at all times 

for data collection. If not, the consumer must ask about the proportion of time the researcher was 

present. If only a fraction of the events were observed, were they typical of most events? The 

ultimate question for the consumer is whether the researcher has provided evidence that data 

have come from observing an adequate number of events to ensure that subsequent inferences 

and conclusions were not based on the luck of the draw. 

2. Prolonged engagement and persistent observation: The researcher needs enough time 

to interact with the respondents and/or the event to gather accurate data. This allows the 

researcher time to gain personal access to the information being targeted. However, if too much 

time is spent on the research site, there is the possibility one of the researcher effects discussed in 

Item 4 will set in.  

3. Clarifying researcher bias: Every researcher has his or her own set of biases. Because 

the analysis of data in a qualitative study begins and continues during the collection of data, 

knowing the researcher’s particular biases can help the consumer discern why the data are being 

gathered and interpreted a certain way. Therefore, the researcher should disclose any biases that 

may have an impact on the approach used and any interpretations made on the data. This helps 

the consumer determine how the researcher arrived at his or her conclusions. 

4. Researcher effects: These were discussed in chapter 5 under threats to internal validity. 

In that chapter, the influence was mainly looking at the unidirectional effect of the researcher on 

the behavior of the persons from which data were being collected. However, Miles and 

Huberman (1994) pointed out that there is a reciprocal relationship between the researcher and 

the persons/events being observed. In one direction, the researcher’s presence or actions 

influence the behavior being observed. In qualitative work, for example, respondents might 

change their behavior in the presence of the data gatherer to meet perceived expectations and/or 

hide sensitive information. Miles and Huberman warned that a researcher “must assume that 

people will try to be misleading and must shift into a more investigative mode” (p. 265). To 

avoid this, they suggested such strategies as: the researcher spending as much time as possible on 

site to become unnoticed, using unobtrusive methods, having an informant who monitors the 

impact the researcher is making, and using informal settings for some data gathering. 

When evaluating the data collected in qualitative research, the consumer should look for 

ways the researcher tries to control for, or be aware of the effect s/he might have had on the 

people or the situation and vice versa. This does not simply mean the effect on the product, in the 

form of the data, but also on the analysis process. If such care is taken and reported, the 

researcher deserves kudos, and the credibility of findings has been enhanced.  

5. Weighting the evidence: Miles and Huberman (1994) pointed out that some data are 

stronger (or more valid) than others. They laid down three principles for determining the strength 



of data. I have summarized them here in the form of questions that the consumer can use to 

evaluate the strength of the data: 

a. What information does the researcher provide about the access and proximity of the 

informants to the targeted data? The closer to the data, the stronger. 

b. To what extent do the data consist of actual behavior, observed firsthand, after 

adequate exposure, in informal settings, by trusted field workers? The more, the stronger. 

c. What effort did the data gatherer(s) make toward checking for various biases (as 

outlined above) during the data-gathering process? The greater, the stronger. 

 

Evaluating explanations and conclusion 

 

Spurious relationships: Not all things that appear to be related are directly related. For 

example, lung cancer and the number of ashtrays a person owns are related. However, this 

relationship is spurious (i.e., misleading). Another variable directly related to each of these—

amount of cigarettes smoked—produces an indirect relationship between ashtray and lung 

cancer. So when a researcher proposes a direct relationship between constructs, s/he should 

provide a convincing argument that there are no other variables producing this relationship. 

If–then tests: These tests “are the workhorse of qualitative data analysis” (Miles & 

Huberman, 1994, p. 271). In the fuller version an if–then test is a conditional sentence in the 

form of, If the hypothesis is true, then there should be a specific consequence. Every explanation 

based on data is a type of hypothesis, usually in the form of relationships among variables, 

underlying principles, or processes. The researcher tests his or her hypothesized explanation by 

predicting that some consequent would occur with a novel sample of people or set of events. The 

next two methods are much related to the if–then test. 

Rival explanations: Eliminating competing explanations is a powerful way to add weight 

to a theoretical conclusion. The researcher formulates at least one plausible competing 

explanation and repeats the if–then test. The explanation that best explains the data is the most 

plausible. The researcher can then report how the weaker explanations could not compete. 

However, the consumer must beware that the competing explanations offered are not 

straw men; that is, explanations that were not plausible in the first place—easy to refute. This 

might occur if the researcher is so bent on her or his own explanation that s/he does not address 

more plausible hypotheses, but still wants to give the appearance that s/he has used this 

technique to gain credibility.  

Another caveat for the consumer is to not conclude that, just because the ompeting 

explanations were not as robust as the one proposed by the researcher, the proposed one is the 

best one. There might still be a better explanation than the one proposed, but it has not been 

discovered as of yet. In other words, the last person standing may not be the strongest. On a more 

practical note, the researcher must provide evidence that not only his or her explanations are 

better than the competition; they are also good in themselves. 

Replicating findings: This strategy is recognized by both qualitative and quantitative 

researchers as an excellent way to support hypotheses and theories. The more often the same 

findings occur despite different samples and conditions, the more confidence we can have in the 

conclusions. Hypothesized relationships that can only be supported by one sample of individuals 

in only one setting have little use in the practical world. Occasionally, a researcher will report 

several replications of the study in the same report. This is a good way to provide evidence for 

the robustness of his or her explanations. 



Informant feedback: This relates to the reactions that the informants have to the 

conclusions of the study. Such feedback can be used to check the plausibility of patterns 

perceived by the researcher. The researcher needs to take care here, however, due to possible 

researcher effects. Respondents may simply agree with the researcher just to please the 

researcher, or the researcher may give the informant a final report that is too technical. This 

could result in agreement to hide the embarrassment from not understanding or produce a 

negative response based on misunderstanding. In either case, the researcher needs to inform the 

consumer of the report regarding the manner in which the feedback was obtained. The more 

effort the researcher reports to have made to facilitate the understanding of the informant, the 

more weight the consumer can give to the feedback. 

Rich, thick description: This involves a detailed description of the participants, context, 

and all that goes on during the data-gathering and analysis stages. The purpose is to provide the 

reader of the study with enough information to decide whether the explanations and conclusions 

of the study are transferable to other similar situations. If the description is vague with a lot of 

detail missing, it is impossible to know where to apply these findings. Therefore, the consumer 

should ask him or herself whether enough detail has been given to be able to identify similar 

contexts to which the conclusions can be applied. 

External audits: A seldom used but powerful method (Creswell, 1998) to increase the 

credibility of the interpretations of a study is to hire an outsider to evaluate the study. Typically, 

this is not done due to the added cost. However, a well-funded research project may want to 

employ such a person to add credibility to the findings and conclusions. Any study that reports 

using such a person has gained many points on the credibility scale. 

 

 
 



Lesson 19 

Understanding research results-II 

 
Presentation and Analysis of Numerical Data 

 

 Many researchers try to answer their research questions by first converting their ideas and 

constructs into some form of numerical data before analysis. The main reason is that numerical 

data are generally easier to work with than verbal data. Not only are there a number of statistical 

procedures available to quickly identify patterns and relationships in large sets of data, they are 

also able to estimate whether the findings are greater than random chance. The purpose of this 

section is to introduce you to some of the most common procedures used to analyze numerical 

data and some of the basic concepts that underpin them. 

 I believe there are two things that turn a lot of people off about statistics: math formulas 

and a lot of technical jargon. Fortunately, understanding statistical formulas is not necessary for 

the consumer of research. Instead the important things to know are whether an appropriate 

statistical procedure was used for answering the research questions and whether the results of the 

study were interpreted correctly. After reading this section, I trust that you will be able to make 

these decisions. 

 The second hurdle that people must cross when dealing with statistics is the jargon 

statisticians use. This is not as easy as it should be because different terms are used for the same 

thing depending on the discipline in which the statistician is working—as you see later, alpha () 

does not always mean a Cronbach . Population is the entire number of people to which the 

researcher wants to generalize his or her conclusions. The sample is a subgroup of that total 

number. Statistics are quantities (or numbers) gathered on a sample. They are estimates of what 

would be found if the whole population were used. Quantities that are gathered directly from the 

entire population are referred to as parameters. Parameters are the true values. They exactly 

describe the population. Because we are almost always dealing with samples, we use statistics 

rather than parameters. However, when statistics (i.e., estimates) are used, we have to make 

inferences about what exists in the population. As with any inference, mistakes can be made.  

Using statistics helps us understand what chance we are taking of making a mistake when 

inferring from the sample to the population. (Now if you understand what you have just read, 

you are well on your way to grasping a useful understanding of statistics.) Statistics can be 

divided into two main categories: descriptive and inferential. As the name implies, descriptive 

statistics are those that describe a set of data. They are the fuel used by inferential statistics to 

generate answers to research questions. Inferential statistics not only produce answers in the 

forms of numbers, they also provide information that determines whether researchers can 

generalize their findings (i.e., the descriptive statistics) to a target population. 

 

Understanding statistics of data 

 

 There are three basic concerns that should be addressed when using descriptive statistics 

to describe numerical data: the shape of the distribution, measures of average, and measures of 

variation. The first is regarding the shape of the data. The concern is whether the data are 

symmetrically distributed and approximate a normal curve. The importance of knowing this 

directly relates to the researcher’s choice of the statistics used in his or her study, both 

descriptive and inferential. This is seldom mentioned in most research articles, but it is 



important. Suffice it to say here that if a distribution of data is severely skewed (i.e., lopsided), 

rectangular (i.e., no curve at all), or multimodal (i.e., more than one cluster of data; cf. Table 

7.3), certain statistics should not be used. 

 Based on the shape of the data, the second concern is which statistic to use to describe 

average. There are three: mean, median, and mode. Briefly defined, the mean is computed by 

adding up all the scores and dividing by the total number of scores. The median is the middle 

point in the distribution of data that divides the number of people in half. The mode is the most 

frequent score. For research purposes, the mean is the most common estimate of average used by 

researchers for numerical data. However, on the occasion that the data distribution does not 

approximate a normal distribution, other indicators of average more accurately represent the 

data distribution. 

 The third concern, also affected by the shape of the data, is what statistic to use to 

indicate how much the data vary (i.e., the variance). There are also three different measures of 

variation: standard deviation, semi-interquartile range, and range. The first, related to the mean, 

is the average deviation of scores from the mean. The second, related to the median, estimates 

where the middle 50% of the scores are located in the data distribution. The third is the distance 

from the lowest to the highest scores in the distribution. However, because the standard deviation 

(SD) is the one most commonly used in research, it gets more treatment in the following 

discussions. Similar to the use of the mean, the SD is only appropriate for describing data if the 

distribution does not vary too much from normalcy. 

 Understanding Inferential Statistical Procedures I began the section on statistics with a 

discussion of how researchers attempt to infer their findings to a population based on a sample of 

participants/objects. This inferential process is where inferential statistics play a crucial role. The 

main goal for the remainder of this chapter is to describe the various inferential statistical 

procedures that are commonly used, explain why they are used, and provide examples from 

research published in applied linguistics that have used these procedures. However, before going 

on to these various procedures, I must first discuss the meanings of null hypothesis and statistical 

significance. In my opinion, the need for the consumer to understand these two concepts is more 

important than remembering the names of the statistical procedures that are described afterward. 

 

The Null Hypothesis 

 

The notion of statistical significance directly relates to the testing of the null hypothesis. 

Therefore, I first discuss this famous hypothesis that all studies test when using inferential 

statistics, regardless of whether they say so, followed by the meaning of statistical significance. 

In essence, inferential statistics procedures can be boiled down to answering two types of 

questions: are there relationships between variables or are there differences between groups of 

data? The null hypothesis, as the word null suggests, states that there is either no relationship or 

that there is no difference between groups. Regardless of whether there is a research hypothesis, 

the null hypothesis is always there to be tested. In exploratory studies, for instance, where there 

are no stated hypotheses, behind every relationship being studied there is a null hypothesis that 

states there is no relationship to be found. For every study that explores whether there is a 

difference between groups of data, there is a null hypothesis that voices there is no real 

difference between the groups. 

Few published studies in applied linguistics journals explicitly state their null hypotheses 

these days. Yet whether stated or not, they are always lurking in the background. A good 



example of a study where a number of null hypotheses are clearly stated without any stated 

research hypotheses is one by Tsang (1996). She stated five null hypotheses, one being “There is 

no significant main effect for nature of program . . . as a factor in writing performance of 

secondary students” (p. 215). The phrase “no significant main effect” means that there are no 

differences between different programs when it comes to effect on writing performance. 

Now why would someone want to state his or her hypothesis in the null form? Why not 

state the hypothesis in the positive, such as, “There will be a significant difference between 

programs . . .”? In practice, many researchers state their hypotheses in the positive. However, it 

is more accurate to state the hypothesis in the negative because it is this hypothesis that 

inferential statistics test, not the positively stated hypotheses. Be that as it may, the answer to my 

question lies in making valid logical arguments.   

 

Statistical Procedures 

 

There seems to be no end to all the statistical procedures available for analyzing 

numerical data. To describe them all would take several large volumes. For this reason, I have 

selected the most common statistical procedures that are presented in the applied linguistic 

literature in this section. The procedures presented look at several more layers of the statistical 

onion, but there are others that lie deeper.  

Inferential statistics can be divided into two general categories: nonparametric and 

parametric (cf. Fig. 7.3). Nonparametric statistics are used for analyzing data in the form of 

frequencies, ranked data,8 and data that do not approximate a normal distribution. Parametric 

statistics are used for any data that do not stray too far from a normal distribution and typically 

involve the use of means and standard deviations. Scores on tests and surveys usually fit these 

criteria. As previously mentioned, the objectives of most researchers are to find relationships 

between variables or differences between groups. Under each of these objectives, there are both 

nonparametric and parametric procedures for analyzing data. 

 

Relationships between Variables  
 

Nonparametric procedures. Under There are two procedures that are frequently seen in 

published research: chi-square and Spearman rank correlation. There are several others, but they 

are less commonly used. All of them have to do with assessing whether a relationship exists 

between at least two variables. The Pearson chi-square (pronounced Ky-square and portrayed 

with the Greek symbol, is the procedure of preference when dealing with data in the form of 

frequencies (or relative frequencies in the form of percentages). In its simplest form, the chi-

square procedure compares the observed frequency (or percentages) of the different levels of a 

variable with what would be expected if no relationship existed (i.e., the null hypothesis). 

For example, if a researcher asks the question, “Is there a relationship between gender 

and success in learning English as a foreign language?”, s/he would compare a random sample of 

males and females on their success rate. Note that the null hypothesis would be: There is no 

relationship between gender and success rate, therefore there will be no difference between the 

number of males and females who pass or fail. If this were true, then the expected frequency 

should be 20/20 for each sex, which is indicated by the numbers in parentheses. However, in our 

fictional data, the researcher found that 27 females versus 17 males passed as opposed to 13 

females versus 23 males failed. Can the researcher conclude that there is a relationship? 



Although the frequencies appear to differ, do they differ from what would be expected if the null 

hypothesis were true? Rather than rely on an “eyeball” analysis, the researcher would do a chi-

square analysis. 

 

 


