

Distributed Database Management
Systems

Course Title: Distributed Database Management Systems
Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No. 1

1

mailto:nayyerm@yahoo.com

Introduction:

This is an advanced course of the previous that you must have previously studied and that
is the “Database Management Systems”. This course enhances the concepts learnt earlier,
moreover, the applications where you will be applying the concepts and the techniques
learnt in this course are also more advanced and complex by nature. The Distributed
Database Management Systems (DDBMS) uses the concepts of:

1) Database Management Systems
2) Networking

The key is to identify the environments in which we have to use the distributed databases.
You may realize that using distributed databases in some situations may not prove to be
fruitful. The implementation may develop drawbacks or may become in-efficient.

As a computer or database expert, you will always be having the basic assignment that
you are given a system for which you have to design/develop a solution or a database
system. You will have several options available and interesting thing is that every one of
them would work. Now the challenge lies in selecting the most feasible solution. For this,
the merits and demerits of every approach have to be analyzed. If this evaluation is not
properly done in the beginning then it is very difficult to apply adjustments in the later
stages. To be more precise, Distributed Database System (DDBS) will be one of many
options available to you for any system that you will be asked to develop. It is your job to
analyze whether the environment needs a DDBS solution or any other one. A wrong
decision in this regard may introduce inefficiency rather than any advantage.

Note:

Lack of experience or/and homework may lead to the selection of a wrong option

Outline of Course

There are going to be four major component in this course:

Introductory Stuff
Architectures and Design
Issues Technological Treatment

Related Topics

Introduction:

This part will cover the introduction to the basic concepts of databases and networks.
Then we will also realize the nature of application that need a DDBS, so that we are
convinced that this is the environment and it requires a DDBS and then we think and
plan the later issues of the implementation.
Architecture and Design:

2

There are different architectures available for designing distributed systems and we have
to identify the right one as different architectures are suitable for different environments.
Moreover, there are different approaches to implement the DDBS designs, we will study
those approaches since each suits different environment.

Note:

Selection of wrong architecture in an environment results in an in-efficient system

Technological Treatment:

Different design approaches of DDBS will be implemented using the prevailing
DDBMSs, like SQL Server and Oracle. That will give you the idea of how a real DDBS
will look like.

Theoretical Aspects:

We will discuss the theoretical aspects related to the DDBS. The study of these issues
will help you administering a DDBS on one side and on the other side it will help you in
the further studies/research in the DDBS. The database management systems available
today do most of the administration automatically but it is important for the database
designer to know the background procedures so that the overall efficiency of the
distributed database management systems may be enhanced.

Recommended Books:

1- Distributed Database Systems (2nd Edition) by T.M., Ozsu, P. Valdusiez
2- Distributed Database Systems. By D. Bell, J. Grimson, Addison-Wesley, 1992
3- Distributed Systems: Concepts and Design, 4th Edition, by G. Coulouris, J.

Dollimore, T. Kindberg, Addison-Wesley

The book mentioned at No. 1 is the main book for this course. It is a famous and one
of the rare books written on the topic. Course is mainly based on this book. So you will
holding this piece very frequent in coming days, make it a bedside item.

You are already familiar with the marks split, that consists of mid-term exam,
assignments and a final exam. Good luck with your course and now lets start reading.

History:

This part is from the first course of Databases. Computer applications are divided into
two types:

1) Data Processing Applications
2) Scientific / Engineering Applications

3

Data Processing Applications in computer terminology are referred to as “File Processing
Systems”. In those applications the data was processed with the help of different
programming languages. The program, which was used to process the data, had the data
defined in it, therefore they were dependant on each other. If we had to make any change
in the program it was difficult, as we had to take care of the dependant data as well and
vice versa. You are already familiar with the following diagram

Examination

Registration Library

Library Examination Registration
Applications Applications Applications

Library Examination Registratio
Data Data n
Files Files Data

Program and Data Interdependence

Typical File Processing Environment

For example in the above example we can see three systems i.e. Examination, Library
and the Registration system. Each of them is having its own data for processing,
however there might be some information which is common to all the three systems but
still being stored separately. This results in:

1) Data Redundancy
2) Expensive Changes/Modifications due to redundancy of the data

Database Approach:

4

To remove the defects from the file processing systems the database was approach was
used which eliminated the interdependency of the program and the data. The
changes/modifications can be brought about easily whether they were related to the
programs or the data itself.

Database is a shared collection of logically related data

Distributed Computing Systems:

Distributed Computing System can be defined as “A system consisting of a number of
autonomous processing elements that are connected through a computer network and
that cooperate in performing their assigned task”.

Three things are important here:

1) Multiple systems are involved.
2) These multiple systems are linked together through some network
3) These multiple systems perform common tasks in which they cooperate with

each other.

Distributed Computing:

We can elaborate the concept of the Distributed Computing with the following example:

A Computer has different components for example RAM, Hard disk, Processor etc
working together to perform a single task. So is this the example of Distributed
Computing? The answer is No. This is because according to the definition there are
“different computing systems” involved therefore we cannot say that the distributed
activities involved in a single computer is an example of distributed computing.

The second thing is that what is being distributed? A few examples are given below:

1) Processing Logic can be distributed
2) We can divide our goal/task into different functions and get them distributed

among various systems
3) Data
4) Control

All these things can be divided to make our system run efficiently.

Classification of Distributed Computing Systems:

5

Following factors are to be addressed:

1) Degree of Coupling:

Here we have to see that how closely the systems are connected. We can measure
this closeness in terms of messages exchanged between two systems and the
duration for which they work independently.

Note:

If two systems are connected through a network the coupling may be weak however if
they are sharing some hardware the coupling is strong.

2) Interconnection Structure:

We have to see how the two systems are connected to each other. The connection
can be point-to-point or sharing a common channel etc.

3) Interdependence:

The interdependency doesn’t base totally on the architecture, it is also based on
the task and how it is distributed.

4) Not Totally Independent:

Why Distributed Computing Systems:

Some organization structures are suitable for Distributed Computing

1) Organization is expanded on a large geographic area.
2) Organization has different functioning units located in different

areas Technological Push:
1) Hardware has become cheap.
2) Internet i.e. communication connectivity is easily available and cheap.

Distributed Computing Alerts:

1) Poor management leads to in-efficiency.
2) We create information islands and due to lack of standards the system gets in-

efficient
3) Improper Designing e.g. we have to travel by air to some destination. We go to

the an airline’s booking office and get our booking done to some destination. The
overall process takes a considerable delay. Our booking is done but with a delay
this might occur as a result of improper design.

Note:

Multiple options are available for designing distributed systems.

6

Course Title: Distributed Database Management Systems
Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No: 2

In this lecture:
- Definition of a Distributed Database System (DDBS)
- The candidate applications for a DDBS
- The definition of a Distributed Database Management System (DDBMS)

7

Distributed Database System:
A collection of logically inter related databases that are spread physically across multiple
locations connected by a data communication link.

Main characteristics:
The DDBS, in its general meaning, is a solution that has been adopted for a single
organization. That is, an organization wants to develop a database system for its
requirements, now the analyst(s) analyze the requirements and out of many possible
solutions, like, client-server, desktop based, or distributed database, this particular
architecture is proposed. Following are the major characteristics of a DDBS highlighted
in the definition above:

Data management at multiple sites: Although it belongs to the same
organization but data in a DDBS is stored at geographically multiple sites.
Data is not only stored at multiple sites but it is managed there, that is, tables
are created, data entered by different users and multiple applications running.
A complete DBMS environment at each local site.
Local requirements: Each of the sites storing data in a DDBS is called a local
site. Every site is mainly concerned with the requirements and data
management for the users directly associated with that site, called local users.
Global perspective: Apart from catering the local requirements, the DDBS
also fulfils the global requirements. These are the requirements that are
generated by the central management who want to make overall decisions
about the organization and want to have the overall picture of the organization
data. The DDBS fulfils the global requirements in a transparent way, that is,
the data for these requirements is fetched from all the local sites, merged
together and is presented to the global users. All this activity of fetching and
merging is hidden from the global user who gets the feeling as if the data is
being fetched from a single place.

In a DDBS environment, three types of accesses are involved:

Local access: the access by the users connected to a site and accessing the data
from the same site.
Remote access: a user connected to a site, lets say site 1, and accessing the data
from site 2.
Global access: no matter from where ever the access is made, data will be
displayed after being collected from all locations.

A user does not know from where he is getting the data. To the user it appears that the
data is present on the machine on which he is working.

Distributed databases; where to apply:
As mentioned before, the DDBS is one of the possible solutions for a database
application. We need to analyze the environment to decide whether it requires a DDBS or
not. The candidate applications for a DDBS have following two main characteristics:

1- Large number of users

8

2- Users are physically spread across large geographical area

Following are some of the Database applications that are strong candidates for a DDBS.

Banking Applications: Take the example of any Pakistani Bank. A bank has large
number of customers and its branches are spread across all Pakistan (obviously, many
of them have branches around the world, their candidature is even stronger). Now, in
the modern banking, the customers not only access/use their accounts from within the
branch rather they access data outside the branch. Like, from ATMs/branches spread
across the city or country. Every time, when a user operates his account from
anywhere in the country/world, his account/data is being accessed.
Air ticketing: We now have the facility to book a seat in any airline from any
location to any destination. e.g. we can book return ticket from Lahore to Karachi and
from Karachi to Lahore from the airline’s Lahore office. This system too, has a large
number of users spread across a large area. Whenever a booking is made, the data of
the flights is accessed.
Business at multiple locations: A company having offices at multiple locations, or
different units at different locations, like production, warehouses, sales operating
from different locations, each site storing data locally however, these units need to
access each other’s data and data from all the sites is required for the global access.

Distributed Database Management System:
A software system that permits the management of distributed database and makes the
distribution transparent to the users.
Like we need a DBMS for a centralized or client-server database, we do need a DDBMS
for a DDBS. A DDBMS will behave like a normal DBMS on the local site, however, the
additional facility that it provides is the creation and maintenance of the global access
where data across multiple sites is accessed against a single query. The approach that
most of the current commercial DBMS vendors (like Oracle, SQL Server, DB2, Sybase)
have adopted is that they provide different versions for different situations. If the user
needs a desktop database for the single computer usage, then a smaller version is
available that does not support the remote access or data distribution. For client-server
database there is another version, and for the DDBS environment the Enterprise Edition
of the DBMS is provided that of course supports data distribution among multiple sites,
the establishing of link between these sites and finally joining/combining data from
multiple sites against a single query.

Decentralized database:
A collection of Independent databases on non-networked computers. In this environment
the data at multiple computers is related but these computers are not linked, so whenever
data has to be accessed from multiple computers, we need to apply some means of
transferring data across these computers.

Summary: In today’s lecture we have discussed the definition of the DDBS, the common
applications where the DDBS can be applied and the reasons why the DDBS is
recommended for these sites. This is extremely important to have a clear idea about what
precisely is a DDBS if we want to implement a DDBS properly.

9

Course Title: Distributed Database Management Systems
Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No: 3

10

In previous lecture:
- Definition of a Distributed Database System (DDBS)
- The candidate applications for a DDBS
- The definition of a Distributed Database Management System (DDBMS)

In this lecture:
- Resembling Setups
- Why to have a DDBS
- Advantages/Promises of DDBS

11

Resembling setups:

Distributed files:

A collection of files stored on differed computers of a network, not a DDBS; Why?

This is not enough for DDBS, as the data should be logically related.

Note:

DDBS is logically related, has common structure among files, and accessed via the same interface.

Multiprocessor system:

Multiple processors that share some common memory.

RAM Sharing Tight coupling.
HDISK Sharing Loose coupling.
Systems simply connected

 Share Nothing.

Following diagrams explain these architectures:

Processor Processor Processor Computer Computer Computer Computer Computer Computer
System System System System System System

Unit Unit Unit

 CP CP CP CPU CPU CPU

 Memo Memo Memo

Memory
 Memory Memory Memory

 Switc
 h
 Shared
 I/O Secondar Shared Nothing y

Shared Everything Shared Everything
Tight Coupling Loose Coupling

Fig. 1: Different architectures of the Multiprocessor Systems

Centralized C/S System
Data management is carried on a single centralized system. However this data is accessed
from different machine (clients). All machines are connected with each other through a
communication link (network). This is a very common architecture. The major
characteristic of this architecture is that data storage and management is mainly done on
the server. As the diagram at the next page shows, the data is associated with a single site,
this site is basically the Server, rest of the machines are accessing data from the Server.

12

Fig. 2: Centralized Client/Server Architecture

The Distributed Database System
As has been discussed in the previous lecture, the data is managed/manipulated at
multiple sites in a DDBS. There are many different architectures of a DDBS; a very
general one is given below; this general architecture also establishes a picture of the
DDBS in the mind that further helps to understand the working of a DDBS.

 Global User Global User

Local User

Distributed DBMS
Global
Schema

Node 1 Node n

DBMS 1

DBMS n

 DBMS 1

Local User

Fig. 3: General Architecture of DDBS
As is clear from the diagram, there are a number of local DBMSs called local nodes.
Each local node works independently serving multiple users that are connected to it, these
users are called local nodes. At the same time, the local nodes are connected with each
other. A layer is superimposed on top of all these connected local DBMSs and that layer
is the DDBMS. The DDBMS contains the global schema, that is basically the merger of
all local schemas. There is no data underlying the global schema rather the data is

13

contained with the local DBMSs. The user connected to the DDBMS layer are called
global users, as their queries are replied by collecting data from all the local nodes,
and this activity of distribution is transparent from the global users.

Reasons for DDBS:

Local units want control over data.

Note:

A person who maintains the data on a local site is called local DBA.

A user on a local site is called the local user. Data is generated locally and
accessed locally but there are situations where you require certain reports for
which the data must be collected from all sites e.g. A bank wants to know how
many customers it has having a balance of more than one core. Local control may
be desirable in many situations, as it improves the efficiency in
handling/managing the database. That is, local control is helpful in maintenance,
backup activities, managing local users accounts etc.

Note:

We may require global access to the data.

There are two basic reasons for the DDBS Environment. To better understand these
reasons, we need to see the other (than DDBS) alternative, and that is the centralized
database or a client-server environment. Taking the example of our Bank database, if it is
a centralized one, it means that the database is stored at a single place, lets suppose, in
Pakistan they select a geographically central place, let it be Multan, then the database is
stored in Multan, now users from all over Pakistan, whenever they want to use their
account, the data will be accessed from the central database (in Multan). If it is a
distributed environment, then the Bank can pick two, three, four or more places and each
database will be storing the data of its surrounding areas. So the load now is distributed
over multiple places. With this scenario in mind, lets discuss the reasons for DDBS:

Reduce telecom cost:

With a centralized database, all the users from all over the country will access it remotely
and therefore there would be an increased telecommunication cost. However, if it is
distributed then for all users the data is closer and it is local access most of the time. So it
reduces the overall telecommunication cost.

Reduce the risk of telecom failures:

With a centralized database, all the working throughout the country depends on the link
with the central site. If, due to any reason, link fails then working at all the places will be
discontinued. So failure at a single site caused damage at all the places. On the other side,
if it is distributed, then failure at a single site will disturb only the users of that site,
remaining sites will be working just normal. Moreover, one form of data distribution is

14

replication where the data is duplicated at multiple places. This particular form of data
distribution, further reduces the cost of telecommunication failure.
Schema contains:

What has to be shown to the global user.
How we are going to set data for a thing on each site.
The type of the data stored on each site.

How we are going to merge the data present on different sites.

Note:

Global users are attached to the Distributed DBMS layer.
Promises of DDBS:
If we adopt a DDBS as a solution for a particular application, what features we are going
to get:

Transparency:

A transparent system hides the implementation details from the user. There are
different types of transparencies, but at this point the focus is on the distribution
transparence, that means that the global user will not have any idea that the data that
is being provided to him is actually coming from multiple sites, rather he will get the
feeling, as if the data is coming just from the machine that he is using. It is a very
useful feature, as it saves the global user from the complexity and details of the
distributed access.

Data Independence

Major advantage of the database approach is the data independence as the
program and data are not dependent on each other i.e. we can change the program
with very little or no changes made to the data and vice versa
In a 3-layer architecture the changes on lower level has little or no affect on
higher level.

Logical data independence:
If we change the conceptual schema there is little or no effect on the External
level.

Physical data independence:
If we change the physical or lower level then there is little or no effect on the
conceptual level.

Network transparency:

This is another form of transparency. The user is unaware of even the existence of
the network, that frees him from the problems and complexities of network.

Replication transparency:

15

Replication and fragmentation are the two ways to implement a DDBS. In

replication same data is stored on multiple sites example e.g. In case of a bank every
branch is holding the data of every other branch. The replication increases the availability
of data and reduces the risk of telecom failure. In case of replication, the DDBS hides the
replication from the end user, advantage is that user simply gets the benefits of the system
and does not need to know the details or to understand the technical details.

Summary
In today’s lecture we continued the discussion on distributed systems. We discussed the
setups that resemble a DDBS and there we studied distributed file system and
multiprocessor systems. In the later type, we have share everything and share nothing
systems. We then discussed a centralized C/S system that is also a very popular
architecture for the databases. Then we saw different reasons to have a DDBS, the
situations where it suits, we compared it with its alternative and studied why a DDBS is
useful for certain type of applications. Finally, we saw what advantages we are going to
have if we adopt a DDBS solution.

Course Title: Distributed Database Management Systems
Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No: 4

16

In previous lecture:
- Resembling Setups
- Why to have a DDBS
- Advantages/Promises of DDBS

In this lecture:

- Promises of DDBS
- Reliability through DDBS
- Complicating factors
- Problem areas

Note :

Full replication is when all the data is stored on every site and therefore every access will be local.

Fragmentation transparency:
A file or a table is broken down into smaller parts/sections called fragments and those
fragments are stored at different locations. The fragmentation will be discussed in detail
in the later lectures. However, briefly, a table can be fragmented horizontally (row-wise)
or vertically (column-wise). Hence we have two major types of fragmentations,

17

horizontal and vertical. Different fragmentations of a table are placed at different
locations. The basic objective of fragmentation and placement at different places is to
maximize the local access and to reduce the remote access since the later causes cost and
delay.

Fragmentation transparency is that a user should not know that the database is
fragmented. The concept of fragmentation should be kept hidden from the user.

Note:

DBA designs the architecture of fragments where as once implemented it is managed by DDBMS.

Responsibility of transparency:-
Transparency is very much desirable since it hides all the technical details from the users,
and makes the use/access very easy. However, providing transparency involves cost, the
cost that has to be bear by someone. More transparency the DDBS environment provides
most cost has to be paid. In this section, we are discussing that who is going to pay the
cost of transparency, that is, who is responsible of providing transparency. There are
three major players in this regard: the Language/Compiler, Operating System and the
DDBMS.
Language/compiler: The language or compiler used to develop the front end application
programs in a database system is one of the agents that can provide transparency, like
VB, VB.Net, JSP, Perl etc. This front end tool is used to perform three major tasks, one,
it is used to create the user interface (now a days it is generally a graphical user interface
(GUI)), secondly, it is used to perform calculations or any other form of processing, and
thirdly, it is used to interact with the DBMS, that is to store and retrieve the data. These
three functions are performed by the application programmer(s) by using the tool. Now,
from the end-user point of view it does not matter at all that which particular tool has
been used to establish this front end GUI. It means the language/compiler component is
providing certain form of transparency. It is making end-user free of the mechanism to
create the GUI, the mechanism to establish the link with the DBMS for data
manipulation, and accessing the data from the database. Rather, it can be said that since
the users’ interaction with the DBMS or DDBMS is through the application program that
has been developed a particular tool (language/compiler), so in a sense we can say that all
types of transparencies are provided to the end-user from this tool. Although practically it
is not the case, but still apparently it can be said.

Operating system: This layer is not so visible to the end-users most of the time, since it
resides below the DDBMS or the language used to develop the application. However,
both of them heavily depend on the features supported by the operating system (OS). For
example, some of the OSes provide network transparence, so the DBMS or the language
uses the features of the OS to provide this facility to the end-users.

DDBMS: This is the third component that provides certain forms of transparencies, for
example, the distribution transparency is supported by the DDBMS. Although DDBMS
uses the feature of the OS, still the facility is finally presented by the DDBMS. It also
provides certain level of transparency.

18

Practical Situation: Although we have studied three different components that may be
responsible for providing transparencies, however, practically the features of all three
components are used together to provide a very cohesive and easy to use environment for the
users. For example, distributed OS provides the network transparency, the DDBMS provides
the fragmentation or replication transparency, the front-end tool provides the transparency of
the linking and manipulation of data.

All these features combined, make the
DDBMS a viable and user friendly option to
use.
Fig. 1: Different layers of transparencies

Note: The more the
higher will be the cost.

Reliability of DDBS:

Reliability through distributed
transaction: The distributed nature in a

DDBS environment reduces the chances of single point of failure and that
increases the reliability of the entire system. It means that the entire system does
not go down with the failure of a single system as is the case with centralized
database systems. It definitely means, however, that in case of DDBS, the site that
goes down, the users of that site will definitely suffer but not the entire system.

Concurrency issues: the concurrent access means the access of data by multiple
users at the same time. Concurrency issues rise even in simple (client-server)
databases, however these issues become more critical in case of a DDBS.
Specially, in case of replication, when same data is duplicated at multiple site,
then the consistency of data across multiple sites is a serious issue that needs extra
care.

Performance Improvement:
The DDBS provides improved performance; the major factors causing this improved
performance are data localization and query parallelism.
Data Localization: One of the basic principles of data distribution in a DDBS is that the
data should reside at the closest site where it is most frequently accessed. This reduces
the communication cost and the delay. However, the DDBS also involves the remote
accesses as well and in that case delay is unavoidable, but through maximized data
localization we get overall improved performance.
Query Parallelism: This is the second major factor that is the basis of improved
performance in a DDBS. Since the DDBS involves multiple systems, a query in certain
situations can be executed in parallel, that improves performance. There are two types of
query parallelism, that is, the inter-query and intra-query parallelism. The former means
that multiple queries can be executed at the same time, whereas the later means that the
same query is split across multiple sites and this split components are executed in parallel
that increases the throughput. These topics will be discussed in detail in the later lectures.
Complicating factors

19

Data

Lan T

R/F T

NwT

DI

There are certain aspects that complicate a DDBS environment. Following are some of
those factors.
Selection of the Copy: In case of replication, the selection of the right copy is a
complicating factor. That is, as the same data resides at multiple places, which particular
site should be accessed against a particular query is an important factor to resolve. One
simple solution is to decide on the basis of distance or load. However, the same question
arises in a different situation when a particular site goes down. In this case the queries
that were originally routed to this particular sites now have to be re-routed. Thus
selection of the appropriate copy is an issue that needs extra attention in a DDBS
environment.
Failure recovery: Likewise, in case of replication the synchronization of copies after
failure has to be dealt with carefully.
Complexity: Since the data is stored at multiple sites and has to be managed the overall
system is more complex as compared to a centralized database system.
Cost: A DDBS involves more cost, as the hardware and the trained manpower has to be
deployed at multiple sites.
Distribution of Control: The access to the data should be allowed carefully. Rights to
access data should be well defined for local sites.

The Problem Areas:
The following areas in DDBS still need more work and are considered problem areas

Database design: All the issues of a centralized database system are applicable in a
DDBS but it introduces additional aspect related to data placement, that is, where our
sites should be located
Query processing: problem arises in queries executed at multiple sites .e g. what
should be done when data from one site is not collected.
Other critical issues include Concurrency Control, Operating System and
Heterogeneity. These issues will be discussed in the later lectures.

The diagram shows the interlink between these problem areas.

Directory
Management

Query

Distributed

Reliability

Processing

DB Design

Concurrency
Control

Deadlock

Management

Fig. 2: Relationship among various issues of DDBS

The diagram shows that the DDBS design lies at the heart of all issues. It is linked with
most of the issues like Directory Management, Reliability etc. It means that overall

20

performance of a DDBS mainly depends on the database design. If we could do it
efficiently then most of the issues will be working effieciently.

Summary: This lecture continues the discussion on different forms of transparencies
including fragmentation transparency. Then the issue of the responsibility for providing
the transparency is discussed. Three different components may be considered as the
transparency providers, however, practically all three components are used to provide
different forms of transparencies and to provide the end-user a user-friendly environment
to work with. After this, different issues that complicate the DDBS environment are
discussed and finally some problem areas are discussed.

Course Title: Distributed Database Management Systems
Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No: 5

21

In previous lecture:

- Promises of DDBS
- Reliability through DDBS
- Complicating factors
- Problem areas

In this lecture:

- Background topics
- Data Models
- Relational Data Model
- Normalization

22

So far we have discussed the introduction to distributed systems and distributed databases
in particular. We should have some idea in mind about what a DDBS is and the
environment where it suits and pros and cons of the DDBSs. Before moving to topics
related to DDBS in details, let us step a little back and discuss some background topics.
These topics include the Relational Data Model and the Networks. These are two
important underlying topics that will help to have a better understanding of the DDBSs.
We start with the Relational Data Model, we will discuss the Networking concepts later.

Data Model: a set of tools or constructs that are used to design a database. There are two
major categories of data models. Record based data models that have relatively less
constructs and the identification of records (defining key) is the responsibility of the user.
This type of data models are Network, Hierarchical and Relational Data Models. The
record based data models are also called the Legacy data models. Whereas the Semantic
data models are the ones that have more constructs, so they are semantically rich,
moreover the identification of records is managed by the system. Examples of such data
models are Entity-Relationship and Object-Oriented data models.
The legacy data models have been and are commercially successful. That is, the DBMSs
that are based on these data models have been mostly used for the commercial puposes.
There are different reasons behind this. Like, the network and hierarchical data models
based DBMSs were used because these data models are the initial ones. They were the
ones who replaced the traditional file processing systems. So success of the initial
DBMSs means the acceptance of database approach against then existing file system
approach. This is the era from late 1960s to early 1980s. The relational data model was
proposed in 1970 and by late 1980s it started gaining popularity and dominance. Today it
is the unchallenged most popular and most widely (perhaps only) used data model. We
have so many different DBMSs based on the relational data model (RDM), like, Oracle,
Sybase, DB2, SQL Server and many more. The two major strengths of RDM that gave it
so success are :

It is very simple as it has only on structure i.e a relation or a table.
It has a strong mathematical foundation.

The semantic data model, like Object-Oriented data models could not get popularity as
commercial choice as they lack the same two features. So on one side OO data model
was a bit difficult to understand due to its complexity and secondly it is not that well
defined due to lack of mathematical support. However, semantic data models are heavily
used as the design tool, that is, for the database design, specially for conceptual and
external schemas, the semantic data models are used. The reason for this choice is that
they provide more constructs and a database design in semantic data models is more
expressive and hence is easy to understand.
Since the RDM is the dominant in the market, so our background discussion focuses only
on this data model.
Relational Data Model
A data model that is based on the concept of relation or table. The concept of relation has
been taken from the mathematical relation. In the databases, the same relation represented
in a two dimensional way is called table, so relation or table represent the same thing.
The RDM has got three components:

23

1. Structure

 support for storage of data and RDM supports only a single structure and that is

a relation or a table
2. Manipulation language

 The language to access and manipulate data from the

database. The SQL (Structured Query Language) has been accepted as the
standard language for RDM. The SQL is based on relational algebra and
relational calculus

3. Support for integrity constraints: The RDM support two major integrity
constraints such that they have become a part of the data model itself. It means
that any DBMS that is base on the RDM must support these two constraints and
they are

> Entity integrity constraint
> Referential integrity constraint

These two constraints help enforce database consistency. The relational DBMSs provide
support for all these three components.

Note:

Business rules are enforced through integrity constraints.

A relation R defined over domain D1, D2………Dn is a set of n- tuples < d1,d2
……….dn> such that < d1 D1, d2 D2, ………….dn Dn>. The structure of a relation is
described through a relation scheme which is of the form
R(A1:D1, A2:D2, ……, An:Dn) or simply R(A1, A2, ….., An) where A1, A2, …., An
are the names of the attributes and D1, D2,….., Dn are their respective domains. Two
example relation schemes are given below
 EMP (ENo:Integer, EName:Text, EAdd:Text, ESal:Number) or it can be simply written as EMP

(ENo, EName, EAdd, ESal)

 Project (PNo: Char(8), PName:Text, bud:Number, stDate:Date) or simply Project (PNo,
PName, bud, stDate)

Each of the attribute in these two relations has a domain and the domains need not to be
distinct. A relation is collection of tuples based on the relation scheme. An example
relation for the above EMP relation scheme is given below

ENo EName EAdd ESal
1 Mansoor Shiraz Lahore 25000
2 Ali Munib Lahore 30000
3 Mian Javed Lahore 50000
4 Salman Shahid Karachi 34000

Keys: Key is a status that is assigned to a single or collection of attributes in a relation.
There are different types of keys for different purposes, however most important role
performed by keys is the unique identification. Different types of keys are mentioned
below:
Super Key: An attribute or set of attributes whose value can be used to uniquely identify
each record/tuple in a relation is super key. For example, in the EMP table ENo is a super
key since its value identifies each tuple uniquely. However, ENo, EName both jointly are
also the super key, likewise other combinations of attributes with ENo are all super keys.

24

Candidate Key: is the minimal super key, that is a super key whose no proper subset
itself is a super key. Like in the above example ENo is a super key and a candidate as
well. However, the ENo, EName jointly is super key not the candidate key as it has a
proper subset (ENo) that is a super key. Primary key: The successful/selected candidate
key is called the primary key, remaining candidate keys are called alternate keys. If a
table has got a single candidate key then the same will be used as the primary key,
however, if there are multiple candidate keys then we have to choose one of them as the
primary key and then the others will be called the alternate keys. In our EMP table, we
have got only one candidate key, so the same is the primary key and there is no alternate
key. Secondary key is the attribute(s) that are used to access data from the relation but
whose value is not necessarily unique, like EName. Foreign key is the attribute(s) in one
table that is/are primary key in the other table. The purpose of defining foreign key is the
enforcement of referential integrity constraint that has been mentioned above.
Table:

 Relation represented in a two dimensional form.
 After defining schema it is populated and we get the table.

 Tuples are rows and attributes are columns.

 Attributes have domain

 Attributes can contain NULL values. (NULL does not mean zero)

 If a primary key is based on more than one attributes then none of the attributes

can have null value.
Normalization: is a step by step process to produce efficient and smart database design
that makes is easier to maintain the consistency of the data base. Following are some
main points about normalization:
 Strongly recommended not a must. Performed after the logical database design. That

is, once we have finalized our design then we fine tune it through normalization
process

 Deals with anomalies, that is, helps to convert the database design into an anomaly free design

 Anomalies are conditions which may make database incorrect or inconsistent. These anomalies
are:

o Duplication

o Insertion anomaly
o Update anomaly
o Deletion anomaly

Normalization removes the anomalies and helps the maintenance of the database a lot
easier. The normalization is mainly based on the decomposition of relations, that is, a
relation is analyzed for the existence of anomalies if some are found then it is
decomposed into smaller relations that do not have those anomalies. The concept of
universal relation is also used in this regard, that is, the design is considered to be
consisting of a single large table called the universal table, then this table is decomposed
step by step following the normalization process. Finally, we get our database design
which is fully normalized.
Normal Forms: There are different normal forms

First Normal Form
Second Normal Form

25

Third Normal Form

BCNF (Boyce Code Normal Form)
Fourth Normal Form

Fifth Normal Form
The two concepts regarding normalization are:

Lossless decomposition: When a relation is decomposed into two relations there
should be no loss of information. i.e when we combine the decomposed relations
together we get the original relation. This loss of information is concerned both
with the relational schema as well as data.
Dependency Preservation: The same dependency should be maintained after the
decomposition of a relation.

Dependency structure: Normalization is based on dependencies. Up to BCNF on FDs,
further normal forms are based on multi-valued dependency and project-join dependency.

Note:

Dependencies are identified not designed.

A relation R defined on attributes R(A1, A2, …., An), if X A, Y A, if for each value of X
there is a unique value in Y, then X functionally determines Y, X

 Y and X

 is called

a functional dependence or FD. This concludes are discussion today, we will continue
later inshAllah.
Summary: From today’s lecture we are starting discussion on the background topics of
the DDBSs and that are the relational data model and the networking. We started from
the former one. The data model is important as it is the basis for every DBMS. There are
record based and semantic data models. Most popular among the data models is the
relational data model that is based on the mathematical relations. Relations are defined
through relation schemes that are later populated to form relations. Relational database
design is finalized through normalization which is based on the dependencies. Functional

dependencies are the basis up to BCNF which is written in the form of X

 Y.

Course Title: Distributed Database Management Systems
Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)

26

Lecture No: 6

In previous lecture:

- Background topics
- Data Models
- Relational Data Model
- Normalization

In this lecture:

- Normalization
- Dependency and its types
- Different Normal forms

27

Dependencies:

Functional dependency: A functional dependency exists when the value of one of more
attribute(s) can be determined from the value(s) of one or more other attribute(s). So, if
we can get a unique value of an attribute B against a value of attribute(s) A, then we say
that B is functionally dependent of A or A functionally determines B. Unique value
means that if we have a value of A then there is definitely a particular/single/unique value
of B. There is no ambiguity or no question of getting two or different values of B against
one value of A.
For example, given the relation EMP(empNo, empName, sal), attribute empName is
functionally dependant on attribute empNo. If we take any value of empNo, then we are
going to have a unique or exactly one value of empName if it exisits. Lets say we have an
empNo ‘E00142’, if this empNo exists then definitely we are going to get exactly one
name against this empNo, lets say it is ‘Murad’. According to this FD, it is not possible
that against ‘E00142’, we get ‘Murad’ and also ‘Waheed’. To make it more clear, lets
describe the same thing inversely, if we have an empName ‘Murad’ and want to know the
empNo, will we get a single empNo. No. Why? Because there could be a ‘Murad’ with
empNo as ‘E00142’ and another with ‘E00065’ and yet some others. So this is what is

meant by an FD, like empNo

 empName. Same is the case with other attribute ‘sal’, if

it is included in FD, that is, empNo

 empName, sal.

Note:

Determinant is defined as the attribute on left hand side of the arrow in a functional

dependency (FD) e.g. A is determinant in the following dependency A

B

Full Functional dependency: An FD in which the dependent attributes are determined
by all of the determinant not by any subset of it (determinant). Obviously, if the

determinant in an FD (A

 B) consists of a single attribute, then it is definitely a full
functional dependency, or we can say that B is fully functionally dependent on A. If,
however, A is a set of attributes, then we have to see whether it is full functional
dependency or not. How are going to know whether an FD is FFD or not? By seeing the
other FDs of the same relation. If, for example, we have a relation R(a, b, c, d, e, f) and
the FDs

a, b

 c, d, e and e

 f, in this case first FD has two attributes in the
determinant, and there is no other FD in which either a or b alone determines any of the
attributes c, d, or e, so it is an FFD. As we can see that there is another FD on this relation
but this is a separate independent FD, it does not make the first one as a non-FFD.
Partial Functional dependency: An FD in which one or more non dependent attributes
are also functionally dependent on part of the determinant. For example, consider the
table Staff (StaddID, Name, BranchID) and the FDs:

StaffID, Name

 BranchID StaffID

 BranchID
First FD shows that BranchID is functionally dependent on StaffID and Name, jointly.
However, from the second FD, it is clear that BranchID is functionally dependent on a

28

StaffID alone as well, which is subset of StaffID, Name. So we will say that BranchID is
partially dependent on StaffID, Name, that is, the first FD is a partial FD.
Transitive Dependency: If for a relation R, we have FDs a

b and b

c then it means that a

 c,

where b and c both are non-key attributes.
Normal forms
Let us now discuss the normal forms. Brief definitions of the Normal forms:

First Normal Form
Table must contain atomic/single values in the cells

Second Normal Form
o Relation must be in 1NF
o Each non-key attribute should be fully functionally dependent on key, that

is, there exists no partial dependency
Third Normal Form

o Relation must be in 2NF
o There should be no transitive dependency

BCNF
For every FD X

 Y in R, X is a super key or a relation in which every

determinant is a candidate key.

Normalization Example

Table With Repeating Groups:

Project ID Project Name Employee ID Employee Name Rate Category Hourly Rate
1023 Pakistan Travel 12 Ali A 60

 Guide 13 Mansoor B 50
 14 Javed C 40

1024 Virtual University 12 Ali A 60
 Database 15 Faisal B 50

This table is not in the first normal form as the cells contain multiple values or repeating
groups. To convert it into first normal form, we need to expand it as in the following
table:
First Normal Form:

Employee-Project Table:

ProjectID ProjectName EmployeeID EmployeeName RateCategory HourlyRate
1023 Pakistan Travel 12 Ali A 60

 Guide

1023 Pakistan Travel 13 Mansoor B 50
 Guide

1023 Pakistan Travel 14 Javed C 40
 Guide

1024 Virtual University 12 Ali A 60
 Database

29

1024 Virtual University 15 Faisal B 50
 Database

The table not is in first normal form and the FDs on this table are

1. ProjectID

 ProjectName
2. EmployeeID EmpoyeeName, RateCategory, HourlyRate
3. RateCategory HourlyRate

None of the determinants can work as primary key, so out of given FDs we establish the
FD

4. ProjectID, EmployeeID

 ProjectName, EmployeeName, RateCategory, HourlyRate
Now the determinant of last FD is the key of the table.

Second Normal Form:

Cleary the above table is not in the second normal form since there exists the partial
dependency through the FDs 1, 2 and 4. To bring it into second normal form, we
decompose the table into the following tables:
Employee Table:

Employee ID Employee Name Rate Category Hourly Rate
12 Ali A 60
13 Mansoor B 50

14 Javed C 40

15 Faisal B 50

Project Table:

Project ID Project Name
1023 Pakistan Travel Guide

1024 Virtual University Database

Employee-Project Table:

Project ID Employee ID
1023 12

1023 13
1023 14
1024 12
1024 15

All of the above three tables are in second normal form.
Third Normal Form:
Continuing the normalization process, we have to examine each of the three tables for the
third normal form based on the four FDs mentioned above. According to those FDs the
Project and Employee-Project tables are in third normal form, as they are in second

30

normal form and there is no transitive dependency. However, the Employee table is not in
third normal form as there is a transitive dependence, that is,

- EmployeeID

 EmpoyeeName, RateCategory, HourlyRate
- RateCategory HourlyRate

To bring it in third normal form, we decompose it once again and get the tables:

Employee Table:

Employee ID Employee Name Rate Category
12 Ali A
13 Mansoor B

14 Javed C

15 Faisal B

Rate Table:

Rate Category Hourly Rate
A 60
B 50
C 40

Project Table:

Project ID Project Name
1023 Pakistan Travel Guide

1024 Virtual University Database

Employee-Project Table:

Project ID Employee ID
1023 12

1023 13

1023 14

1024 12

1024 15

All of the above four tables are in third normal form.

Higher Normal Forms
Multi-valued Dependency: A relation R defined on attributes A(A1, A2, ………. An) if
X A, Y A, Z A, if for each value of X, there is a unique value of (Y, Z) and Z depends only
on X then X

 Y and X

 Y, that is X multi-determines Y and X multi-determines

Z.

31

Fourth Normal Form: A relation is in 4 NF if it is in BCNF and there is no multi
valued dependency. Consider the EMP table below:

EMP (empNo, projId, skill)

E001 P1 Welder
E001 P2 Electrician
E001 P1 Electrician
E001 P2 Welder

We have the MVDs empNo

projId empNo

skill
First MVD says that employee works on multiple projects and second MVD says that an
employee has multiple skills. Moreover, projId and skill are independent of each other,
that is, if an employee works on certain projects, it is independent of the fact that which
skills he possesses and other way round. These MVDs introduce certain anomalies and to
get rid of them we will have to split this table into two:

EMP(empNo, projId)
EMPSKL(empNo, skill)

Now both these tables are in fourth normal form.

Projection Join Dependency: A relation that has a join dependency cannot be divided
into two or more relation such that the results table can be recombined to form the
original table. A relation R is in 5 NF of every join dependency implied by the keys of R.
We need to have a common attributes in the two decomposition of a relation. Fifth
normal form basically sees the possibility of decomposing a table further to have more
efficient tables, however, this decomposition should not be based on the keys since that
will not bring any efficiency. If however, there exists the possibility of decomposing a
table based on non-key attribute such that the join of the decomposed tables brings back
the original table without any loss of information, then we should go for that
decomposition. There is no formal way of normalizing a table in fifth normal form. There
can be one hit and trial method though, we can split a table keeping any non-key attribute
common and then we can check whether this split is lossless or not, if it is lossless then
we have transformed the table into fifth normal form, if it is not lossless then we can not
decompose it.

Normalization Guidelines

32

Integrity Rules:
Integrity rules are applied on data to maintain the consistency of the database, or to make
it sure that the data in the database follows the business rules. There are two types of
integrity rules
- Structural Integrity Constraints

o Depends on data storage
o Declared as part of data model
o Stored as part of schema
o Enforced by DBMS itself

- Behavioral Integrity Constraint:
o These are the rules/ semantics of the business
o Depends on business
o Enforced through application program

Summary: In this lecture we continued our discussion on the relational data model, and
discussed the normalization. Its purpose, methodology and timing in the development
process. Normalization is based on the dependencies that exist in the system. The analyst
has to identify those dependencies and then use them upon his database design to make a
better design. The normal forms upto BCNF are based on FDs and higher forms are based
on other forms of dependencies. Finally we started discussing integrity constraints part of
the relational data model that will be continues in the next lecture.

33

Course Title: Distributed Database Management Systems
Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No: 7

34

In previous lecture:

- Normalization
- Dependency and its types
- Different Normal forms

In this lecture:

- Integrity Constraints
- Relational Algebra
- Selection, Projection Operations
- Cartesian Product, Theta Join, Equi-Join, Natural Join

Structural Integrity Constraint:
As has been discussed in the previous lecture, these constraints are imposed on the
structure of data. These constraints are very basic; in the sense that they are applicable to
almost all real-world applications. That is why they have been included in the definition
of the relational data model. As a result all relational DBMSs support these constraints.
There are two types:
Entity Integrity Constraint: The primary key cannot be NULL even if the primary key
consists of more than one attributes, none of the attributes can have NULL. By its
definition, the primary key cannot have the duplicate values, the entity integrity
constraint enforces this additional constraint on it.
Referential Integrity Constraint: A rule that addresses the validity of reference by one
object in database to some other object in the database. It involves the concept of foreign
key, which is an attribute or set of attributes that appear as a non key attribute in one
relation and as a primary key attribute in another relation. The referential integrity
constraint states that the value of foreign key can either be NULL or it must match with
the value of primary key in its home relation. This constraint is of very important to
maintain the consistency and correctness of the database, as the tables are decomposed
during the normalization process and the decomposed parts most of the time need to
maintain a link in order to retain the information in the original table. For this purpose, it
is a must that the link between the split tables is a valid one. The referential integrity
constraint helps to maintain this valid link

Relational Data Languages

35

This is the third component of relational data model. We have studied structure, which is
the relation, integrity constraints both referential and entity integrity constraint. Data
manipulation languages are used to carry out different operations like insertion, deletion
or creation of database. Following are the two types of languages:
Procedural Languages: These are those languages in which what to do and how to do
on the database is required. It means whatever operation is to be done on the database
that has to be told that how to perform.

Non -Procedural Languages: These are those languages in which only what to do is
required, rest how to do is done by the manipulation language itself.

Structured query language (SQL) is the most widely language used for manipulation of
data. But we will first study Relational Algebra and Relational Calculus, which are
procedural and non – procedural respectively.

Relational Algebra: Following are few major properties of relational algebra:

Relational algebra operations work on one or more relations to define another
relation leaving the original intact. It means that the input for relational algebra
can be one or more relations and the output would be another relation, but the
original participating relations will remain unchanged and intact.Both operands
and results are relations, so output from one operation can become input to
another operation. It means that the input and output both are relations so they can
be used iteratively in different requirements.
Allows expressions to be nested, just as in arithmetic. This property is called
closure.
There are five basic operations in relational algebra: Selection, Projection,
Cartesian product, Union, and Set Difference.

These perform most of the data retrieval operations needed.
It also has Join, Intersection, and Division operations, which can be expressed in
terms of 5 basic operations.
The Select Operation: The select operation is performed to select certain rows or
tuples of a table, so it performs its action on the table horizontally. The tuples are
selected through this operation using a predicate or condition. This command
works on a single table and takes rows that meet a specified condition, copying
them into a new table. Lower Greek letter sigma () is used to denote the
selection. The predicate appears as subscript to . The argument relation is given
in parenthesis following the . As a result of this operation a new table is
formed, without changing the original table. As a result of this operation all the
attributes of the resulting table are same, which means that degree of the new and
old tables are same. Only selected rows / tuples are picked up by the given
condition. While processing a selection all the tuples of a table are looked up and
those tuples, which match a particular condition, are picked up for the new table.
The degree of the resulting relation will be the same as of the relation itself.

| σ | = | r(R) |
The select operation is commutative, which is as under: -

36

σc1 (σc2(R)) = σc2 (σc1(R))

If a condition 2 (c2) is applied on a relation R and then c1 is applied, the resulting
table would be equivalent even if this condition is reversed that is first c1 is
applied and then c2 is applied.
For example there is a table STUDENT with five attributes.

STUDENT
stId stName stAdr prName curSem

S1020 Sohail Dar H#14, F/8-4,Islamabad. MCS 4

S1038 Shoaib Ali 76 Jalilabad Multan BCS 3
S1015 Tahira Ejaz 268 Justice Hameed MCS 5

 Multan
S1018 Arif Zia H#10, E-8, Islamabad. BIT 5

Fig. 1: An example STDUDENT table

The following is an example of select operation on the table STUDENT:

σ Curr_Sem > 3 (STUDENT)

The components of the select operations are clear from the above example; σ is the symbol
being used (operato), “curr_sem > 3” written in the subscript is the predicate and
STUDENT given in parentheses is the table name. The resulting relation of this
command would contain record of those students whose semester is greater than three
as under:

σ Curr_Sem > 3 (STUDENT)
stId stName stAdr prName curSem

S1020 Sohail Dar H#14, F/8-4,Islamabad. MCS 4

S1015 Tahira Ejaz H#99, Lala Rukh Wah. MCS 5
S1018 Arif Zia H#10, E-8, Islamabad. BIT 5

Fig. 2: Output relation of a select operation
In selection operation the comparison operators like <, >, =, <=, >=, <> can be used in
the predicate. Similarly, we can also combine several simple predicates into a larger
predicate using the connectives and () and or ().

37

The Project OperatorThe Select operation works horizontally on the table on the other
hand the Project operator operates on a single table vertically, that is, it produces a
vertical subset of the table, extracting the values of specified columns, eliminating
duplicates, and placing the values in a new table. It is unary operation that returns its
argument relation, with certain attributes left out. Since relation is a set any duplicate
rows are eliminated. Projection is denoted by a Greek letter (). While using this operator
all the rows of selected attributes of a relation are part of new relation. For example
consider a relation FACULTY with five attributes and certain number of rows.

FACULTY

FacId facName Dept Salary Rank
F2345 Usman CSE 21000 lecturer
F3456 Tahir CSE 23000 Asst Prof
F4567 Ayesha ENG 27000 Asst Prof
F5678 Samad MATH 32000 Professor

Fig. 3: An example FACULY table

If we apply the projection operator on the table for the following commands all the rows
of selected attributes will be shown, for example:

FacId, Salary
(FACULTY)

FacId Salary
F2345 21000
F3456 23000
F4567 27000
F5678 32000

Fig. 4: Output relation of a project operation on table of figure 3

Some other examples of project operation on the same table can be:
Fname, Rank (Faculty)
Facid, Salary,Rank (Faculty)
Composition of Relational Operators: The relational operators like select and project
can also be used in nested forms iteratively. As the result of an operation is a relation so
this result can be used as an input for other operation. However, we have to be careful
about the nested command sequence. Although the sequence can be changed, but the
required attributes should be there either for selection or projection.

38

The Union Operation: We will now study the binary operations, which are also called as set
operations. The first requirement for union operator is that the both the relations should be
union compatible. It means that relations must meet the following two conditions:

Both the relations should be of same degree, which means that the number of
attributes in both relations should be exactly same
The domains of corresponding attributes in both the relations should be same.
Corresponding attributes means first attributes of both relations, then second and
so on.

It is denoted by U. If R and S are two relations, which are union compatible, if we take
union of these two relations then the resulting relation would be the set of tuples either in
R or S or both. Since it is a set, so there are no duplicate tuples. The union operator is
commutative which means: -

R U S = S U R
For Example there are two relations COURSE1 and COURSE2 denoting the two tables
storing the courses being offered at different campuses of an institute. Now if we want to
know exactly what courses are being offered at both the campuses then we will take the
union of two tables:
COURSE1

crId progId credHrs courseTitle
C2345 P1245 3 Operating Sytems
C3456 P1245 4 Database Systems
C4567 P9873 4 Financial Management
C5678 P9873 3 Money & Capital Market

COURSE2

crId progId credHrs courseTitle
C4567 P9873 4 Financial Management
C8944 P4567 4 Electronics

 COURSE1 U COURSE2

crId progId credHrs courseTitle
C2345 P1245 3 Operating Sytems
C3456 P1245 4 Database Systems
C4567 P9873 4 Financial Management
C5678 P9873 3 Money & Capital Market
C8944 P4567 4 Electronics

Fig. 5: Two tables and output of union operation on those table

So in the union of above two courses there are no repeated tuples and they are union
compatible as well
The Intersection Operation: The intersection operation also has the requirement that
both the relations should be union compatible, which means they are of same degree and
same domains. It is represented by . If R and S are two relations and we take intersection
of these two relations then the resulting relation would be the set of tuples, which are in
both R and S. Just like union intersection is also commutative.

39

R S = S R

For Example, if we take intersection of COURSE1 and COURSE2 of figure 5 then the
resulting relation would be set of tuples, which are common in both.

COURSE1 COURSE2
crId progId credHrs courseTitle

C4567 P9873 4 Financial Management

Fig. 6: Output of intersection operation on COURSE1 and COURSE 2 tables of figure 5

The union and intersection operators are used less as compared to selection and
projection operators.
The Set Difference Operator
If R and S are two relations which are union compatible then difference of these two
relations will be set of tuples that appear in R but do not appear in S. It is denoted by (-)
For example if we apply difference operator on Course1 and Course2 then the resulting
relation would be as under:

COURSE1 – COURSE2
CID ProgID Cred_Hrs CourseTitle

C2345 P1245 3 Operating Sytems
C3456 P1245 4 Database Systems
C5678 P9873 3 Money & Capital Market

Fig. 7: Output of difference operation on COURSE1 and COURSE 2 tables of figure 5

Cartesian Product: The Cartesian product needs not to be union compatible. It means
they can be of different degree. It is denoted by X. suppose there is a relation R with
attributes (A1, A2,...An) and S with attributes (B1, B2……Bn). The Cartesian product
will be:

R X S
The resulting relation will be containing all the attributes of R and all of S. Moreover, all
the rows of R will be merged with all the rows of S. So if there are m attributes and C
rows in R and n attributes and D rows in S then the relations R x S will contain m+n
columns and C * D rows. It is also called as cross product. The Cartesian product is also
commutative and associative. For Example there are two relations COURSE and
STUEDNT
 COURSE STUDENT
 crId courseTitle stId stName
 C3456 Database Systems S101 Ali Tahir
 C4567 Financial Management S103 Farah Hasan
 C5678 Money & Capital Market

COURSE X STUDENT

crId courseTitle stId stName
C3456 Database Systems S101 Ali Tahir
C4567 Financial Management S101 AliTahr
C5678 Money & Capital Market S101 Ali Tahir

40

C3456 Database Systems S103 Farah Hasan
C4567 Financial Management S103 Farah Hasan
C5678 Money & Capital Market S103 Farah Hasan

Fig. 8: Input tables and output of Cartesian product

Join Operation: Join is a special form of cross product of two tables. In Cartesian
product we join a tuple of one table with the tuples of the second table. But in join there
is a special requirement of relationship between tuples. For example if there is a relation
STUDENT and a relation BOOK then it may be required to know that how many books
have been issued to any particular student. Now in this case the primary key of
STUDENT that is stId is a foreign key in BOOK table through which the join can be
made. We will discuss in detail the different types of joins in our next lecture. Following
are the different types of joins: -

Theta Join
Equi Join
Semi Join
Natural Join
Outer Joins

We will now discuss them one by one
Theta Join
In theta join we apply the condition through the select operation on relation and then only
those selected rows are used in the cross product with second relation. It means that in
normal cross product all the rows of one relation are crossed with all the rows of second
relation, but here only selected rows of a relation are made cross product with second
relation. It is denoted as under: -

R X Ө S
If R and S are two relations then Ө is the condition, which is applied for select operation
on one relation and then only selected rows are cross product with all the rows of second
relation. For Example there are two relations of faculty and course, now we will first
apply select operation on the faculty relation for selection certain specific rows then these
rows will have across product with Course relation, so this is the difference in between
cross product and theta join. We will now see first both the relation their different
attributes and then finally the cross product after carrying out select operation on relation.
From this example the difference in between cross product and theta join becomes clear.
FACULTY

facId facName Dept Salary Rank
F234 Usman CSE 21000 lecturer
F235 Tahir CSE 23000 Asso Prof
F236 Ayesha ENG 27000 Asso Prof
F237 Samad ENG 32000 Professor

COURSE
crCode crTitle fID
C3456 Database Systems F234
C3457 Financial Management
C3458 Money & Capital Market F236
C3459 Introduction to Accounting F237

41

(σ rank = ‘Asso Prof’(FACULTY)) X COURSE
facId facName Dept Salary Rank crCode crTitle fID
F235 Tahir CSE 23000 Asso Prof C3456 Database F234

 Systems
F235 Tahir CSE 23000 Asso Prof C3457 Financial

 Management
F235 Tahir CSE 23000 Asso Prof C3458 Money & F236

 Capital Market
F235 Tahir CSE 23000 Asso Prof C3459 Introduction to F237

 Accounting
F236 Ayesha ENG 27000 Asso Prof C3456 Database F234

 Systems
F236 Ayesha ENG 27000 Asso Prof C3457 Financial

 Management
F236 Ayesha ENG 27000 Asso Prof C3458 Money & F236

 Capital Market
F236 Ayesha ENG 27000 Asso Prof C3459 Introduction to F237

 Accounting
 Fig. 9: Output of Theta Join
Equi-Join: In this example after fulfilling the select condition of Associate

professor on faculty relation then it is cross product with course
relation Equi – Join
This is the most used type of join. In equi – join rows are joined on the basis of values of
a common attribute between the two relations. It means relations are joined on the basis
of common attributes between the relations which are meaningful. This means on the
basis of primary key, which is a foreign key in another relation. Rows having the same
value in the common attributes are joined. Common attributes appear twice in the output.
It means that the attributes, which are common in both relations, appear twice, but only
those rows, which are selected. Common attribute with the same name is qualified with
the relation name in the output. It means that if primary and foreign keys of two relations
are having the same names and if we take the equi – join of both then in the output
relation the relation name will precede the attribute name. For Example, if we take the
equi – join of faculty and course relations then the output would be as under: -

 FACULTY FACULTY.facID=COURSE.fID COURSE

facId facName Dept Salary Rank crCode crTitle fID
F234 Usman CSE 21000 lecturer C3456 Database Systems F234
F236 Ayesha ENG 27000 Asso Prof C3458 Money & Capital F236

 Market
F237 Samad ENG 32000 Professor C3459 Introduction to F237

 Accounting

42

Now in this example after taking equi – join only those tuples are selected in the output
whose values are common in both the relations.
Natural Join: This is the most common and general form of join. If we simply say join,
it means the natural join. It is same as equi – join but the difference is that in natural join,
the common attribute appears only once. Now, it does not matter which common attribute
should be part of the output relation as the values in both are same. For Example if we
take the natural join of faculty and course the output would be as under: -

 FACULTY FACULTY.facID=COURSE.fID COURSE

facId facName Dept Salary Rank crCode crTitle
F234 Usman CSE 21000 lecturer C3456 Database

 Systems
F236 Ayesha ENG 27000 Asso C3458 Money &

 Prof Capital Market
F237 Samad ENG 32000 Professor C3459 Introduction to

 Accounting

Summary: Focus of this lecture was relational data languages and we discussed one of
them and that is the relational algebra. It consists of five basic operations, two of them are
unary, that is, they operate on one relation and three of them are binary. Further
operations are also derived from these basic operations. We have discussed most of them,
a couple of operations are remaining and that we will discuss in next lecture inshAllah.

Course Title: Distributed Database Management Systems
Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No: 8

43

In previous lecture:

- Integrity Constraints
- Relational Algebra
- Selection, Projection Operations
- Cartesian Product, Theta Join, Equi-Join, Natural Join

In this lecture:

- Semi-join, division
- Networks and data communication
- Network topologies

Relational Algebra Operations:-

Semi join: In semi join, first we take the natural join of two relations then we project the
attributes of first table only. So after join and matching the common attribute of both

44

relations only attributes of first relation are projected. For Example considering the
relations Faculty and Course given below:
FACULTY

facId facName Dept Salary Rank
F234 Usman CSE 21000 Lecturer
F235 Tahir CSE 23000 Asso Prof
F236 Ayesha ENG 27000 Asso Prof
F237 Samad ENG 32000 Professor

COURSE
crCode crTitle fID
C3456 Database Systems F234
C3457 Financial Management
C3458 Money & Capital Market F236
C3459 Introduction to Accounting F237

Fig. 1: Example Faculty and Course tables
If we take the semi join of these two relations then the resulting relation would be as
under:-

 FACULTY COURSE
facId facName Dept Salary Rank
F234 Usman CSE 21000 lecturer
F236 Ayesha ENG 27000 Asso Prof
F237 Samad ENG 32000 Professor

Fig. 2: Semi-join of the two relations
Now the resulting relation has attributes of first relation only after taking the natural join
of both relations. Advantage of semi-join is that we get the tuples of one relation that are
involved in relation with other one. As in above example, we get the names of the
faculty members who are involved in teaching, that is, the tuples of the Faculty that are
related with the tuples in Course.
Division: The division of R with degree r with S with degree s is the set of (r-s) tuples t
such that for all s- tuples u in the tuple tu is in R.

Suited to queries that include the phrase “for all”.
Let r and s be relations on schemas R and S respectively where

 R = (A1, …, Am, B1, …, Bn)
 S = (B1, …, Bn), and

 R – S = (A1, …, Am)

Then the result of r s is a relation on schema

r s = { t | t R-S(r) u s (tu r) }

45

eNo pNo pName budget

E1 P1 Bridge 11.5m

E2 P1 Bridge 11.5m WORK
E1

P3 Tower 10.2m
E4 P2 Mosque 9.1m

pNo pName budget

P1 Bridge 11.5m PROJ
P3 Tower 10.2m

Fig. 3: Example Work and PROJ tables
Now (WORK - PROJ) = (eNo), please not that (WORK – PROJ) does not denote set
difference operator here, rather it simply shows the attributes of WORK that are not in
PROJ
WORK-PROJ(WORK)

 When we take the projection of WORK on eNo, we get the table shown
eNo here. Now we have to combine all rows of PROJ with each row of this
E1 table and see if all the rows obtained by this combination are there in
E2 WORK or not. For example, from the output of the projection operation
E1 shown here, We combine the first row, that is, E1 with all rows of PROJ,
E4
we get a table with two rows of PROJ plus the attribute eNo having the value E1 in both
rows as shown in the table below:
eNo pNo pName budget
E1 P1 Bridge 11.5M
E1 P3 Tower 10.2M
Both of these rows are there in WORK table, so E1 will be included in the output of the
division operator. Next we consider E2 row from the projection table the output will be
eNo pNo pName budget
E2 P1 Bridge 11.5M
E2 P3 Tower 10.2M
First of these two rows is included in the WORK table but not the second one, so E2 will
not be included in the final output. Same is the case with E4. So the final output will
contain just E1.

46

That was all about relational algebra, now we move to next relational manipulation language and
that is the relational calculus

Relational Calculus
Relational Calculus is a nonprocedural formal relational data manipulation language in which the
user simply specifies what data should be retrieved, but not how to retrieve it. It is an alternative
standard for relational data manipulation languages. The relational calculus is not related to the
familiar differential and integral calculus in mathematics, but takes its name from a branch of
symbolic logic called the predicate calculus.

Based on first order predicate logic.
 Expressed as { t | f (t) } well formed formula, that is, find the set of all tuples t such that

f (t) is time, while R implies the predicate conditions.
It has two following two forms: -

Tuple Oriented Relational Calculus
Domain Oriented Relational Calculus

Atomic Formula: In relational calculus,
Tuple – variable membership expression is specified as R (t) or
R.t. and Condition :

o S {A}θ t {B}
o S {A} θ C

Tuple Oriented Relational Calculus: In tuple oriented relational calculus we are interested
primarily in finding relation tuples for which a predicate is true. To do so we need tuple
variables. A tuple variable is a variable that takes on only the tuples of some relation or relations
as its range of values. It actually corresponds to a mathematical domain. We specify the range of
a tuple variable by a statement such as: -

RANGE OF S IS STUDENT
Here, S is the tuple variable and STUDENT is the range, so that S always represents a tuple
of STUDENT. It is expressed as

{S | P (S)}
We will read it as find the set of all tuples S such that P(S) is true, where P implies the
predicate condition Now suppose range of R is STUDENT

{R | R.Credits > 50}
We will say like find the stuId, stuName, majors etc of all students having more than 50 credits.
Application programs for a database application are developed using both the Database language
(the SQL in case of relational DBMSs) and any programming language. Both are required since
SQL is used for interacting with the DBMS and the programming language is used for designing
the user interface and other data manipulation activities required in the application. For example,
we can access basic salary, different allowances and deductions of employees from table using
SQL and then using the features of the programming language we can compute the gross income,
income tax etc. and if required store the same in the database back again using SQL. For that we
have a tight coupling of database and programming languages as in Vidual Basic or loose
coupling where programming languages are extended with special concepts e.g a version of
Pascal is present which is extended with the functionality of accessing the database.
We have covered the database component of the basic topics, now we move to the next
component and that is the computer networks.

47

Computer network
A computer network is a system for communication between two are more computer, where
computers are Interconnected and Autonomous.

Computers are called nodes, sites, host.
Other equipment at nodes. i.e. they may or may not be computers.
Equipment connected via links and channels .

Data Communication
Communication links connect equipment and carry data in form of digital or analog
signal.
Each channel has a certain capacity measured in amount of data that it can carry within
a unit time; this capacity is normally termed as bandwidth. Communication channels
can be analogue, digital (ISDN) or broadband.
Modulation and Demodulation: when data is to be transmitted over an analogue carrier it
needs to be modulated, that is, the digital signal is encoded into analogue carrier signal
by changing the basic characteristics of the signal. On receiving end, it has to be
demodulated.
Multiplexing, using the same link to transmit different signals simultaneously. Two types
of multiplexing: frequency division multiplexing (FDM) and time-division multiplexing
(TDM).
Mode of operation could be simplex (transferring data in one direction only), half-duplex
(both directions, but one at a time) and full-duplex (both directions simultaneously).

Factors that matters
Bandwidth

Mode of operation.
Software employed

Types of Network: we can classify networks on different bases, following are the criteria
according to which we can classify the networks:

Interconnection structure ------- topology.
Transmission mode.

Geographical distribution.
Based on the interconnection structure there are following categories of the networks

1) Star
2) Bus
3) Ring
4) Mesh

Star topology: Many home networks use the star topology. A star network features a central
connection point called a "hub" that may be an actual hub or a switch. Devices typically connect
to the hub with Unshielded Twisted Pair (UTP) Ethernet. Compared to the bus topology, a star
network generally requires more cable, but a failure in any star network cable will only take
down one computer's network access and not the entire LAN. (If the hub fails, however, the
entire network also fails.)

48

Fig. 4: Star network topology

Ring network: In a ring network, every device has exactly two neighbors for communication
purposes. All messages travel through a ring in the same direction (effectively either "clockwise"
or "counterclockwise"). A failure in any cable or device breaks the loop and can take down the
entire network.

Fig. 5: Ring network
To implement a ring network, one typically uses FDDI, SONET, or Token Ring technology.
Rings are found in some office buildings or school campuses.
Bus network: Bus networks use a common backbone to connect all devices. A single cable, the
backbone functions as a shared communication medium, that devices attach or tap into with an
interface connector. A device wanting to communicate with another device on the network sends
a broadcast message onto the wire that all other devices see, but only the intended recipient
actually accepts and processes the message.

49

Fig. 6: A bus network
Meshed network: Mesh topologies involve the concept of routes. Unlike each of the previous
topologies, messages sent on a mesh network can take any of several possible paths from source
to destination. (Recall that in a ring, although two cable paths exist, messages can only travel in
one direction.) Some WANs, like the Internet, employ mesh routing.

Fig. 7: A mesh network
The classification based on the transmission mode is

Point to point (unicast)
Broadcast (multi-point)

Point to point

One or more links between sender and receiver
Link may be direct or through switching.

Broadcast
Common channel utilized by all nodes.
Message received by all ownership checked.
Generally radio or satellite based or microwave.

Summary
In this lecture we concluded the discussion on relational manipulation languages. We studied the
semi-join, and then we saw the division operator. After that we briefly discussed the relational
calculus whose major types include tuple-oriented and domain oriented calculus. Then we

50

moved to the second component of the basic background topics. We defined networks and data
communication. Then we saw different factors that matter in communication, and finally we
discussed the types of network topologies.

Course Title: Distributed Database Management Systems
Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No: 09

In previous lecture:

- Semi-join, division
- Networks and data communication
- Network topologies

In this lecture:
- Network Types

51

Scale: Geographical distribution of Network

Three major types of Net Work geographically.

1. Local Area Network
2. Metropolitan Area Network
3. Wide Area Network

WAN (Wide Area Network):

o Used inter city country or even continental
o gives low bandwidth high latency. (delay) more delay comparative to other Networks.
o Can be Broadcast and Point to Point.

- Circuit Switching – establish of link between two nodes.
- Packet Switching

message is divided into small Packets
some other information is added in Packet other than original msg. -

There are different paths available between sender and receiver.
Multiple Routes are available.

Packets can choose different routes but they ultimately reach at same destination each
packet has a unique id.

This is not necessary that at the receiving end the sequencing is same which was at sending end

Note:

Received packets should be re-arranged to their original sequencing.

52

Circuit Switching:

o Dedicated link between the sender and the receiver
o Link is maintained during conversation.

Packet Switching:

o Message is divided into packets
o May take different routes
o Need to be sorted.

Advantages of Ps:

o Better link Utilization
o Bursty nature of communication – break involve after some time the data
send. o Parallel transmission.

LAN (Local Area Network):

o Small geographical area
o High Band width
o Low latency

53

MAN (Metropolitan Area Network):

o Between LAN and WAN
o Cover city or Portion
o Larger LAN.

Protocol Standards:

o Involves software component for the communication to be held properly

Definition:

Set of rules and formats for exchanging data, arranged into layers called protocol suite
/stack

o WAN involves more protocol
o Needs protocols

54

o ISO / OSI – give Standard to use

Open system Interface.
International Standard Organization.

I SO / OSI Architecture:

o Network built in seven layers data pass through all layers
o Interfaces for passing information between layer.
o Protocols between corresponding layers at different sites.
o Lower three layers for Communication.

TCP / IP Architecture:

o Another Popular Architecture.
o Five Layers.
o IEEE committee to take decision for protocol and make standard.

55

Architecture of DDMS:

Different Architectures are available but the appropriate one should be selected

Architecture of a system defines it structure.
o What core components are present in the system.
o Relation of Components.

Three major (idealized) architecture for DDB MS

- Peer to Peer
- Client / Server
- Multi databases.

DDMS Standardization:

A conceptual framework to divide standardization work into manageable pieces.

Approaches:

- component – based – define component of system and their features.
Difficult to determine the functionality of system

- Function – based – user interaction.

56

- Data – based. –
These three approaches can apply so we can say this as orthogonal

Practically :

o Every aspect has to be considered
o These classification schemes are orthogonal.

Course Title: Distributed Database Management Systems
Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No: 10

In previous lecture:

- Network Types

In this lecture:

- DDBMS architectures
- Different Alternatives

57

In this lecture we are going to study different DDBMS architectures. The study of architecture is
helpful in understanding the working, different components and how they interact with each
other. There are different criteria to discuss the DDBMS architectures and we find different
classifications of DDBMS architectures in literature. One particular approach has been adopted
in our text book, yet we can also find some architectures in [Sheth and Larson 90] research paper
on FDBS architecture. Some of the architectures proposed in this paper are also included in this
lecture. We will begin our discussion from the architecture of normal DBMS.

The DBMS Architecture
In this section, we are going to discuss the structure of non-distributed DBMS architecture,
which can also be called a centralized DBMS and which is also commonly used in the client-
server DBMS applications. This is also called the ANSI/ SPARC Architecture, the components
of architecture are shown in the figure below:

 Enterprise
 Administrator

 Conceptual

Application

 Database

Database schema

 Administrator System
 Processor

Administrator

 Internal External
 Database schema Database schema

 Processor Processor

 Internal storage/ Internal database/ Conceptual/
 Internal database Conceptual External database

transformation

transformation

Transformation

Application/ Internal External
System Database database

Administrator Application Application

 Program program

Figure 1: The components of ANSI/SPARC DBMS architecture
Square boxes in the architecture represent processing function, I represents the interfaces
between different components. In the centre (triangular form) is the data dictionary (DD) that
contains schema mapping data statistics and access control information. The interfacing between
different components is possible only through DD. Hexagons represent different Administrators
involved in a DBMS environment. Three types of administrators are shown here, The Database
Administrator, Application Administrator and Enterprise Administrator. Their respective
responsibilities are shown below:

DB administrator

 responsible for internal schema
Application Administrator

 responsible for external schema.

Enterprise Administrator

 responsible for conceptual schema.
All these administrative roles may be assigned to a single person only.
Architectural models for DDBMS
The DDBMS architecture can be discussed from three different dimensions mentioned

below: Autonomy
Distribution

58

Heterogeneity

Autonomy
Degree to which member databases can operate independently
Note:

Member databases are those database that constitute the distributed database
system.

Autonomy is how much independently the member databases perform their functionality or
make their decision.

Design Autonomy
Freedom for designer to make decision related to design, e.g., which data model he wants

to design the database in, which DBMS he thinks is suitable for the organization. It may also
include the decisions like machine to buy or operating system to be based on.

Communication Autonomy
What part of data we want to share. It depends on the nature of bond/coupling between

member databases. If they are independent or are different organization, then obviously they own
their data and can decide independently. However, if there is some strong bond between the
member databases or they belong to the same organization then the member DBA does not have
much autonomy and it is decided centrally somewhere what to be contributed from a member
database and what not.

Execution Autonomy
Component databases the authority for when to share the data when to shut down etc.
Again in case of same organization, the rules are formulated at the head office level and
all member databases have to follow that, otherwise they are autonomous to make this
decision.

Classification
One possible classification of DDBMSs
follows: Tight integration
All users get a single common view with a feeling that there are no component databases.
Semi autonomous
Component database are present and they relate their data and at certain time they share their
data to form a common view.
Total Isolation
All the systems are stand alone.

Distribution
Second of the three dimensions is distribution, that is, if data is distributed physically on multiple
sites/machines. This is an essential component of a DDBMS, that is, a system cannot be called
truly a DDBMS if the data is not distributed physically. The distribution could of data or of
control; here it refers to Distribution of data, the physical distribution. There are two major
architectures proposed in the text book:

The client / server: Client and server, both are machines not processes
Peer to peer: Servers performing independently and cooperating with each

other. Both these architectures are discussed in detail in the next lecture.

59

Heterogeneity

Simply means variation / difference.
May be in different form

Different component method must be compatible.

Semantic Heterogeneity
Different component databases representing same real-world concept differently. It is most
difficult to handle.
Architectural Alternative
We have studied three dimensions of the DDBMS architectures. These dimensions may exist at
different levels in different architectures as given below:

Autonomy (0,1,2)
Distribution (0,1,2)
Heterogeneity (0,1)

These numbers can be interpreted as follows:
Autonomy 0 1 2

Distribution
0 No distribution
1 client/server
2 Peer to Peer

Heterogeneity
0 homogeneous
1 Heterogeneous

Different combinations of these dimensions give rise to different architectures of DBMS, some
examples are given belw:
Example
(A1,D2,H1)
A1(semi autonomous)
D2 (Peer to Peer)
H1 (Heterogeneity)
All possible combinations are shown in the diagram below:

60

Tight hydrogenation
semi autonomous
total isolation

Figure 2: Combinations of different dimensions of DDBMS architecture
Some of these architectures are hypothetical, that is, they do not practically exist, moreover some
are no truly distributed as they miss the distribution dimension which is an essential ingredient.
Summary
In this lecture we have started discussion on architecture of the DDBMS which is helpful in
understanding the working of the system. The architecture of a non-distributed DBMS has been
discussed first which is also called ANSI/SPARC architecture. After that different dimensions
for the study of DDBMS architectures are discussed whose combination forms different
architectures.

Course Title: Distributed Database Management Systems
Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No: 11

61

In previous lecture:

- DDBS Architecture

In this lecture:

- DDBS Architecture continued

Distributed DBMS Architecture:
The three distributed DBMS architecture are discussed below:

1) Client Server Architectures:
The term is used here in different meanings: generally Client and Server refer to processes may
be running at same machine in the context of DDBS both client and server are machines not
process.

Server:
Server does most f the data management work. This means that all of the query processing and
optimization, transaction management and storage management is done at the server.

Client:
Application and user interface has a DBMS client module that is responsible for managing the
data that is cached to the client and managing the transaction locks that may have been cached
as well. Consistency checking of user queries is also applied at the client side.

Working
The client passes SQL queries to the server without trying to understand or optimize them. The
server does most of the work and returns the result relation to the client.

Types
There are number of different types of client/server architecture.

62

1) Multiple client single server
There is only one server which is accessed by multiple clients.

2) Multiple client multiple server
Two alternative management strategies are possible: wither each client manages its own
connection to the appropriate server or each client knows of only its home server which then
communicates with other servers as required.

2) Peer to Peer Distributed System:
Physical data organization on each machine may be different. This means that there needs to be
an individual internal schema definition at each site which we call the local internal schema
(LIS). The enterprise view of the data is described by the global conceptual schema (GCS),
which is global because it describes the logical structure of the data at all the sites.
In distributed database data is fragmented and replicated. To handle this phenomenon of
fragmentation and replication, the logical organization of data at each site needs to be described.
There needs to be a third layer in the architecture, the local conceptual schema (LCS). The global
conceptual schema is the union of the local conceptual schemas. User applications and user
access to the database is supported by external schemas (ESs).
This architectural model is shown in figure 1. Data independence is supported. Localization and
replication transparencies are supported by the definition of local and global conceptual schemas
and the mapping in between. Network transparency is supported by the definition of global
conceptual schema.

ES1 ES2 ES1 ESn

GCS

LCS2

LCSn LCS1

LIS1 LIS LIS
 Figure 1: Distributed Database Reference Architecture

63

Components
The components of distributed DBMS are shown in figure 2. One component handles the
interaction with users and other deals with the storage. The first components is called
user processor, consists of four elements.

1. The user interface handler is responsible for interpreting user commands and formatting
the result data as it is sent to the user.

2. The semantic data controller uses the integrity constraints and authorizations that are
defined as part of the global conceptual schema to check if the user query can be
processed.

3. The global query optimizer and decomposer determines an execution strategy to
minimize a cost function and translates the global queries into local ones using global
and local conceptual schema as well as global directory. The global query optimizer is
responsible for generating the best strategy to execute distributed join operations.

4. The distributed execution monitor coordinates the distributed execution of the user
request. The execution monitor is also called the distributed transaction manager.

The second major component of a distributed DBMS is the data processor and consists of three
elements.

1. The local query optimizer, which actually acts as the access path selector, is
responsible for choosing the best path to access any data item.

2. The local recovery manager is responsible for making sure that the local
database remains consistent even when failures occur.

3. The run-time support processor physically accesses the database accordin to the
physical commands in the schedule generated by the query optimizer. The run-time
support processor is the interface to the operating system and contains the database
buffer manager which is responsible for main memoy buffers and data accesses.

64

Figure 2: Components of a Distributed DBMS

MDBS Architecture:
The differences in the level of autonomy between the distributed multi-DBMSs and distributed
DBMSs are also reflected in their architecture models. The fundamental difference relates to the
definition of global conceptual schema. In case of logically integrated distributed DBMSs, the
global conceptual schema defines the conceptual view of the entire database, while in case of
distributed multi DBMSs; it represents only the collection of some of the local databases that
each local DBMS wants to share. Thus the definition of global database is different in MDBSs
than in distributed DBMSs.

Models Using a Global Conceptual Schema

65

Designing the global conceptual schema in multi-database systems involve the integration of
either the local conceptual schemas or the local external schemas. A major difference between
the deign of the GCS in the multi-DBMSs and in logically integrated distributed DBMSs is that
in the former the mapping is from local conceptual schemas to a global schema.
Once the GCS has been designed, views over the global schema can be defined for users who
require global access. It is not necessary for the GES and GCS to be defined using the same data
model and language, whether they do or not determines whether the system is homogenous and
heterogeneous.
If heterogeneity exists in the system, then two implementation alternatives exist: unilingual and
multilingual. A unilingual multi-DBMS requires the users to utilize possibly different data
models and languages when both a local database and the global database are accessed. One
application may have a local external schema (LES) defined on local conceptual schema as
well as global external schema (GES) defined on the global conceptual schema.
A multilingual architecture, where the basic philosophy is to permit each user to access
the global database by means of an external schema.

Models without a Global Conceptual Schema
In this architecture there are two layers: the local system layer and the multi database layer on
the top of it. The local system layer consist of a number of DBMSs, which present to the
multi database layer the part of their local database they are willing to share with users of
other databases. If heterogeneity is involved, each of these schemas, LCSi may use a different
data model.
External views are constructed where each view may be defined on one local conceptual schema
or on a multiple conceptual schemas. Thus the responsibility of providing access to multiple
databases is delegated to the mapping between the external schemas and the local conceptual
schemas.
The component based architectural model of a multi-DBMS is significantly different from a
distributed DBMS.

Summary:
We have discussed the three distributed DBMS architecture. These architectures are Client
and Server architecture, peer to peer architecture and multi database system architecture.

Course Title: Distributed Database Management Systems

66

Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No: 12

In previous lecture:

- DDBMS Architectures
0. Client/Server Systems
1. Peer to peer DDBS
2. Multi-database Systems

In this lecture:
- DDBS Architectures
- DDB Design

Global Data Dictionary:
A directory is a database that contains data about data (meta-data). It is called global directory in
case of a DDBS. It includes information about the location of fragments as well as makeup of
the fragments. There are some global directory issues discussed.

Number of directories:
A directory may be global to the entire database or local to each site. There might be a single
directory containing information about all the data in the database or a number of directories,
each containing the information stored at one site. We might either build hierarchies of
directories to facilitate searches, or implement a distributed search strategy that involves
considerable communication among sites holding the directories.

Location:
The directory may be maintained centrally at one site or in a distributed fashion by distributing it
over a number of sites. Keeping the directory at one site might increase the load at that site,
thereby causing a bottleneck as well as increasing message traffic around that site. Distributing it

67

over a number of sites, on the other hand increases the complexity of managing directories. In
the case of multi-DBMSs, the choice is dependent on whether or not the system is distributed. If
it is the directory is always distributed; otherwise of course, it is maintained centrally.

Replication:
There may be a single copy of the directory or multiple copies. Multiple copies would provide
more reliability, since the probability of reaching one copy of the directory would be higher.
Furthermore the delays in accessing the directory would be lower, due to less contention and the
relative proximity of the directory copies. On the other hand, keeping the directory up to date
would be considerably more difficult, since multiple copies would need to be updated. Therefore,
the choice should depend on the environment in which the system operates and should be made
by balancing such factors as the response time requirements, the size of directory, the machine
capacities at the sites, the reliability requirements and the volatility of the directory. These
choices are valid only in the case of a distributed DBMS. A non-distributed multi-DBMS always
maintains a single copy of the directory, while a distributed one typically maintains multiple
copies, once a each site.
All three issues are orthogonal to each other

Distributed Database Design
In distributed DBMSs, the distribution of applications involves two things: the distribution
of distributed DBMS software and the distribution of the application programs that run on it.
DDBMS concerns two major steps,

• Schema Design
• Schema Distribution

Schema Distribution decides placement of data. This course focuses on distribution of data.

Design Strategies
Two major strategies that have been identified for designing distributed databases are the:

Top down approach
Bottom up approach

Top Down Design Process
A framework for this process is shown in figure 1. The activity begins with a requirements
analysis that defines the environment of the system. The requirements document is input to two
parallel activities: view design and conceptual design. The view design activity deals with
defining the interfaces for end users. The conceptual design is the process by which enterprise
is examined to determine entity types and relationships among these entities. One can divide
this process into two related activity groups entity analysis and functional analysis.

68

 Requirement Analysis

 System Requirements

 User Input
 Conceptual Design View Design

View Integration

 Global Conceptual Access In formation External Schema Def.

Distributed

User Input

Local Conceptual Schemas

Physical Design

Physical

Feedback Feedback
Observation and Monitoring

Figure 1: Top Down Design Process

There is a relationship between conceptual design and view design. The conceptual design can
be interpreted as being an integration of user views. View integration should be used to ensure
that entity and relationship requirements for all the views are covered in the conceptual
schema. The global conceptual schema (GCS) and access pattern information collection as a
result of view design are inputs to the distribution design step. Rather then distributing
relations, it is common to divide them into sub relations, called fragments, which are then
distributed. The distribution design activity consists of two steps:

Fragmentation
Allocation

The last step in the design process is physical design, which maps the local conceptual schemas
to the physical storage devices available at the corresponding sites. The inputs to this process
are the local conceptual schema and access pattern information about the fragmentation in these.

Bottom up approach
Top down approach is a suitable approach when a database system is being designed from scratch.
A number of databases already exist, and the design task involves integrating them into

69

one database. The bottom up approach is suitable for this type of environment. The starting
point of bottom up approach is the individual local conceptual schemas. The process consists of
integrating local schemas into the global conceptual schema.

Distribution Design Issues:
The following set of interrelated questions covers the entire issue.

1. Why fragments
2. How should we
3. How much should be fragmented
4. Any way to test correctness
5. Allocation Strategy
6. Required Information

1. Reasons for fragmentation:
A Fragment is a subset of a relation that is stored on a different site from another subset of
the same relation. There are some reasons why we do fragmentation:

• For large organizations, increased pressure of users
• Localization of Data and Local Autonomy
• Increased time/NW cost of centralized access
• Increased chances of failure
• Increased failure damage
• Distribution of data allows fast access of data due to localization
• Parallel execution of queries

The advantages of fragmentation are:
Increases the level of concurrency
System throughput

The disadvantages of fragmentation are:
Difficult to manage in case of non-exclusive Fragmentation (replication)
Maintenance of Integrity constraints

Summary
We have discussed the global data dictionary. There are some issues like number of
directories, location and replication. We have also discussed distributed database design which
consists of two approaches top down and bottom up approach.

Course Title: Distributed Database Management Systems

70

Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No: 13

In previous lecture:

- DDBMS Architectures
- DDB Design

In this lecture:
- DDB Design
- Horizontal Fragmentation

Fragmentation

2. Fragmentation alternatives
Entire table is not a suitable unit, so dividing a table into smaller ones. There are two
alternatives for dividing a table

1. Vertically
2. Horizontally

1. Vertical Fragmentation:
Different subsets of attributes are stored at different places,

like, Table EMP(eId, eName, eDept, eQual, eSal)
Interests of the local and head offices may result following vertical partitions of this table:

EMP1(eId, eName, eDept)
EMP2(eId, eQual, eSal)

71

2. Horizontal Fragmentation:
It is based on the localization of data rows of a table are split on multiple sites, like the data in
CLIENT(cAC#, cName, cAdr, cBal)
Table is placed in different databases based on their location, like from Lahore, Pindi, Karachi,
Peshawar, Quetta

3. Degree of Fragmentation:
The degree of fragment goes from one extreme not to fragment at all, to the other extreme, to
fragment to the level of individual tuples (in case of horizontal fragmentation) or to the level
of individual attributes (in case of vertical fragmentation).

4. Correctness Rules for Fragmentation:
The following three rules during fragmentation ensure that the database does not
undego semantic change during fragmentation.
If a relation R is fragmented into R1, R2, …, Rn, then

• Completeness: each of the data item (a tuple or a attribute) that can be in R can also be
in one or more Ri’s.
∀ x ∈ R, ∃ Ri such that x ∈ Ri

• Reconstruction: it should be possible to define a relational operator such that the
original relation can be reconstructed
R = g(R1, R2, …, Rn)

• Disjointness: if data item x is in Rj, it is not in any other fragment

∀ x ∈ Ri, ∃ Rj such that x ∈ Rj, i ≠ j
In case of vertical partitioning, disjoint ness is defined only on the nonprimary key
attributes of a relation.

5. Allocation Strategy:
Assuming that the database is fragmented properly, one has to decide on the allocation of the
fragments to various sites on the network. When data is allocated, it may be replicated or
maintained as a single copy. The reasons for replication are reliability and efficiency of read-
only queries. If there are multiple copies of a data item, there is a good chance that some copy
of the data will accessible somewhere even when system failures occur. The execution of update
queries cause trouble since the system has to ensure that all the copies of the data are updated
properly.
A non-replicated database (called a partitioned database) contains fragments that are allocated to
sites, and there is only one copy of any fragment on the network. In case of replication, either
the database exists in it’s entirely at each site (fully replicated database) or fragments are
distributed to the sites in such a way that copies of a fragment may reside in multiple sites
(partially replicated database)

6. Information Requirements:

72

The information needed for distribution design can be divided into four categories: database
information, application information, communication network information and computer
system information.

Fragmentation
The two fragmentation strategies are:

Horizontal
Vertical

Horizontal Fragmentation
Horizontal fragmentation partitions a table along its tuples. Each fragment has a subset of the
tuples of the relation. There are two versions of horizontal partitioning primary and derived.

Primary horizontal fragmentation of a relation is performed using predicates that are defined
on that relation.

Derived horizontal fragmentation is partitioning of a relation that result from predicates being
defined on another relation.

Information Requirements Horizontal
Fragmentation Database Information
The database information contains the global conceptual schema. In this context, it is
important to note how the database relations are connected to one another with joins. In
relational model, these relationships are depicted as relations.

Application Information
The fundamental qualitative information consists of the predicates used in user queries. If it is
not possible to analyze all of the user applications to determine these predicates, one should at
least investigate the most important ones.
Given a relation R(A1, A2, …, An), where Ai is an attribute with domain Di, then a
simple predicate pj has the form
pj: Ai θ Value,
Where θ ∈{=, <, ≠≤, >, ≥} and Value is chosen from the domain of Ai(Value ∈ Di).

Summary
We have discussed the distributed database design and the horizontal fragmentation.
Horizontal fragmentation consists of primary and derived fragmentation.

73

Course Title: Distributed Database Management Systems
Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No: 14

In previous lecture:

- DDB Design
- Horizontal Fragmentation

In this lecture:
- Horizontal Fragmentation

0. Primary Horizontal Fragmentation (PHF)

Horizontal Fragmentation
Simple predicates are quite elegant to deal with; user queries quite often include more
complicated predicates, which are Boolean combinations of simple predicates. One
combination that we are particularly interested is called a minterm predicate.

Minterm predicate is the conjunction of simple predicates. It is always possible to transform
a Boolean expression into conjunction normal form the use of minterm predicates in the design
algorithms does not cause any loss of generality.
Given a set of simple predicates

Pr = {pr1, pr2, …, pm}for a relation R, the set of minterm predicates M is defined as M =
{m1, m2, ……, mz}

74

M = {mj | mj = p*k}, 1 ≤ k ≤ m, 1 ≤ j ≤ z pk∈ Pr
where p*k = pk or p*k = (pk)

So each simple predicate can occur in a minterm predicate wither in its natural form or its
negated form. The reference to the negation of a predicate is meaningful for equality
predicates of the form

Attribute = Value

For inequality predicates, the negation should be treated as the complement. For example,
the negation of the simple predicate

Attribute <= Value

Is Attribute > Value

Example
Consider relation PAY(title, sal). The following are some of the possible simple predicates that
can be defined on PAY.

p1: title = “El Eng” p2:
title = “Sys Ana” p3:
title = “Mech Eng” p4:
title = “Prog”
p5: SAL ≤ 20,000
p6: SAL > 20000

The following are some of the minterm predicates that can be defined based on these
simple predicates.

m1: title = “El Eng” SAL ≤ 20,000
m2: title = “Sys Ana” SAL > 20000
m3: (title = “Sys Ana”) SAL > 20000 m4:
(title = “El Eng”) (SAL > 20000)

These are not all minterm predicates that can be defined, we are presenting only a
representative sample. Some of these may be meaningful given the semantics of relation PAY.
Here m3 can also be rewritten as

m3: title ≠ “Sys Ana” SAL > 20000

Quantitative Information
The quantitative information about user applications, we need to have two sets of data.

1. Minterm Selectivity:

75

sel(mi): number of tuples of the relation that would be accessed by a user query specified
according to given minterm predicate. For example, the selectivity of m1 of previous
example is 0 since there are no tuples in PAY that satisfy the minterm predicate. We
denote the selectivity of minterm mi as

sel(mi)

2. Access Frequency:
Frequency with which user applications access data. For Q(q1, q2, …, qn} is a set of user
queries, acc(qi) determines the access frequency of qi within a given period, like

acc(q2) = 24

Primary Horizontal Fragmentation
A PHF is defined by a selection operation on the owner relations of the database schema
Given a relation R, its horizontal fragments are

Ri = Fi (R), 1 ≤ i ≤ w

Where Fj is a selection formula, which is (preferably) a minterm predicate. A horizontal fragment,
Ri of relation R consists of all the tuples of R which satisfy a minterm predicate mi. Given a
minterm of predicates M, there are as many horizontal fragments of relation R as there are
minterm predicates. This set of horizontal fragments also referred to as minterm fragments.

PHF (Simple Example)
Consider a relation PAY
Title Sal
Elect. Eng 40000
Sys Analyst 34000
Mech. Eng 27000
Programmer 24000
The two fragments are:
PAY1 = σ sal ≤ 30000 (PAY)
PAY2 = σ sal > 30000 (PAY)
PAY1
Title Sal
Mech. Eng 27000
Programmer 24000

PAY2
Title Sal
Elect. Eng 40000
Sys Analyst 34000

An important aspect of simple predicates is their completeness, another is their minimality. A set of
simple predicates Pr is said to be complete if and only if there is an equal probability of access

76

by every application to any tuple belonging to any minterm fragment that is defined according to
Pr.

Example
Consider a relation PROJ

PNo pName Budget Loc
P1 Instrumentation 3.5M Lhr
P2 Database 2.3M Rwp
P3 CAD/CAM 1.9M RWP
P4 Maintenance 1.6M Pesh

Find the budgets of projects at each location. (1)
Find projects with budgets less than 2M. (2)

According to (1),

Pr = {LOC=“Lahore”, LOC=“Rawalpindi”, LOC=“Peshawar”}

Which is not complete with respect to (2).

Modify Pr so Pr becomes

Pr = {LOC=“Lahore”, LOC=“Rawalpindi”, LOC=“Peshawar”,
BUDGET<=2000000, BUDGET >2000000}

Now Pr is complete and minimal.

Summary
We have discussed the minterm predicate with some example. And after that we have
also discussed the primary horizontal fragmentation.

Course Title: Distributed Database Management Systems
Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No: 15

77

In previous lecture:

- Horizontal Fragmentation
0. Primary Horizontal Fragmentation (PHF)

In this lecture:
- Primary Horizontal Fragmentation (PHF)
0. Minimality of Pr
1. PHF Algorithm
- Derived Horizontal Fragmentation (DHF)

Primary Horizontal
Fragmentation Minimality of Pr
A relevant predicate is the one if it influences how fragmentation is performed (fragments f
into fi and fj) then there should be at least one application that accesses fi and fj differently. If
all predicates in a set Pr are relevant then the set is minimal.
A formal definition of relevance can be given as follows. Let mi and mj be two minterm
predicates that are identical in their definition, except that mi contains the simples predicate pi
in its natural form while mj contains pi. Let fi and fj be two fragments defined according to mi
and mj, resp. Then pi is relevant if and only if

acc(mi) ≠ acc(mj)
card(fi) card(fj)

Example:
The set Pr defined as

Pr = {LOC=“Lahore”, LOC=“Rawalpindi”, LOC=“Peshawar”,
BUDGET<=2000000, BUDGET >2000000}

is complete and minimal. If we were to add the predicate

78

PNAME = “Instrumentation”
To Pr, the resulting set would not be minimal since the new predicate is not relevant with
respect to Pr. There is no application that would access the resulting fragments any differently.
We can now present an iterative algorithm that would generate a complete and minimal set of
predicates Pr’ given a set of simple predicates Pr. This algorithm is called COM_MIN.

PHF-COM-MIN Algorithm
The algorithm begins by finding a predicate that is relevant and those partitions the
input relation.
Input: Given a relation R and a set of simple predicates Pr.
Output: A complete and minimal set of simple predicates Pr’ for Pr.
Rule 1: fundamental rule of completeness and minimality which states that a relation or
fragment is partitioned into at least two parts which are accessed differently by at least
one application.
1-Initialization: Find a pi ∈ Pr such that pi, partitions R according to Rule 1

Pr’ ← pi
Pr ← Pr – pi

2- Iteratively add predicates to Pr' until it is complete, find a pj ∈ Pr such that pj partitions R according to Rule 1

Set Pr' = Pr' U pj
Pr = Pr – pj

3- Elimination of some of the minterm fragments that may be meaningless. If pk in Pr' is non-
relevant then

Pr' = Pr' – pk

Primary Horizontal Partitioning Algorithm
The algorithm for primary horizontal fragmentation is partitioning algorithm. The input to
the algorithm is a relation R and a set of simple predicates Pr. The output is a set of minterm
predicates M according to which relation R is to be fragmented. The steps of algorithm are:

• Pr‘ ← COM_MIN (R,Pr)
• determine the set M of minterm predicates
• determine the set I of implications among pi Pr
• eliminate the contradictory minterms from M

PHF-Summary
• First Step is to determine the complete and minimal set of simple predicates; determined

and checked based on the nature of applications
• Secondly, to derive the set of minterm predicates that are later used to establish fragments and

to determine the allocation of fragments
• Identify the implications and remove the conflicting minterm predicates

PHF Example

79

Let us consider relation PROJ. Assume that there are two applications. The first is issued at three
sites and finds the names and budgets of projects given their location. The simple predicates that
would be used are the following:

p1 : LOC = "Lahore”
p2 : LOC = “Rawalpindi"
p3 : LOC = "Peshawar“
The second application is issued at two sites and has to do with the management of the projects.
Those projects that have a budget of less than 2000000 are managed at one site and those with
larger budgets are managed at a second site. The simple predicates that should be used to
fragment are:

p4 : BUDGET ≤ 2000000
p5 : BUDGET > 2000000

If the algorithm COM_MIN is followed the set Pr’ = {p1, p2, p3, p4, p5} is complete and
minimal.
Based on Pr’, the following six minterm predicates that form M can be defined:
m1 : (LOC = "Lahore") ^ (BUDGET ≤ 2M)

m2 : (LOC = "Lahore") ^ (BUDGET > 2M)
m3 : (LOC = " Rawalpindi ") ^ (BUDGET ≤ 2M)
m4 : (LOC = "Rawalpindi") ^ (BUDGET > 2M)
m5 : (LOC = "Peshawar") ^ (BUDGET ≤ 2M)
m6 : (LOC = "Peshawar") ^ (BUDGET > 2M)

These are not the only minterm predicates that can be generated. It is for example possible
to specify predicates of the form

p1 p2 p3 p4 p5 The
obvious implications are

• p1p2p3
• p2p1p3
• p3p1p2
• p4p5
• p5p4
• p4 p5
• p5 p4

Eliminate these minterm predicates and we are left with m1 to m6. Implications should be de
fined according to the semantics of database, not according to the current values. Some of the
fragments defined according to M = {m1, …, m6} may be empty, but they are fragments.

The result of primary horizontal fragmentation of PROJ is to form fragments Fproj = {PROJ1,
PROJ2, PROJ3, PROJ4, PROJ5, PROJ6} of relation PROJ according to minterm predicates M.
PROJ
PNo pName Budget Loc
P1 Instrumentation 3.5M Lhr
P2 Database 2.3M Rwp
P3 CAD/CAM 1.9M RWP
P4 Maintenance 1.6M Pesh

80

PNo pName Budget Loc
P1 Instrumentation 3.5M Lhr

P2 Database 2.3M Rwp

P3 CAD/CAM 1.9M RWP

P4 Maintenance 1.6M Pesh

Here we see that some fragments are empty.

Derived Horizontal Fragmentation (DHF)
It is defined on a member relation of a link according to a selection operation specified on
its owner. Two important points are:

– Each link between owner and member is defined as an equi-join.
– Equi-join can be implemented by means of semi-joins

So we are interested in defining the partitions of member based on fragmentation of its owner,
but want to see attributes only from member,. Accordingly, given a link L where owner(L) = S
and member(L) = R, the derived horizontal fragments of R are defined as

Ri = R ⋉ Si, 1≤ i ≤ w
where w is the maximum number of fragments that will be defined on R and Si = Fi (S),
where Fi is formula according to which the primary horizontal fragment Si is defined.

DHF Example
Consider a link L1 in figure 1, where owner (L1) = PAY and member (L1) = EMP.

PAY title, sal

 L1

EMP eNo, Name, titke jNo, jName, budget, locPROJ

ASIGN eNo, jNo, resp, dur

Figure 1: Expression of Relationships among Relations Using Links

Then we group engineers into two groups according to their salary: those making less than
or equal to 30,000/- and those making more than 30,000.
Consider EMP and Pay relation

81

eNo eName title
E1 T Khan Elec Eng
E2 W Shah Sys Ana
E3 R Dar Mech Eng
E4 K Butt Programme
E5 F Sahbai Sys Ana
E6 A Haq Elec Eng
E7 S Farhana Mech Eng
E8 M Daud Sys Ana

Title Sal
Elect. Eng 40000

Sys Analyst 34000

Mech. Eng 27000

Programmer 24000

The two fragments PAY1 and PAY2 of PAY and EMP1 and EMP2 of EMP are defined
as follows:

• PAY1 = SAL >30000 (PAY)
• PAY2 = SAL ≤ 30000 (PAY)
• EMP1 = EMP ⋉ PAY1
• EMP2 = EMP ⋉ PAY2

The result of this fragmentation is depicted in figure 2.
EMP1
eNo eName title
E1 T Khan Elec Eng
E2 W Shah Sys Ana
E5 F Sahbai Sys Ana
E6 A Haq Elec Eng
E8 M Daud Sys Ana
EMP2
E3 R Dar Mech Eng
E4 K Butt Programme
E7 S Farhana Mech Eng
Figure2: Derived Horizontal Fragmentation of Relation EMP

Summary
We have discussed primary horizontal fragmentation which includes the minimality of Pr and
PHF algorithms. We have also discussed the derived horizontal fragmentation with an example.

82

Course Title: Distributed Database Management Systems
Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No: 16

In previous lecture:

- Primary Horizontal Fragmentation (PHF)
0. Minimality of Pr
1. PHF Algorithm

- Derived Horizontal Fragmentation (DHF)
In this lecture:

- Conclude DHF
- Vertical Fragmentation

Input Required for DHF
To carry out a derived horizontal fragmentation, three inputs are needed:

The set of partitions for owner relation
Member relation

The set of semi-join predicates between owner and member

83

There is one potential complication that deserves some attention in a database schema; it is
common that there are more than two links into a relation R (e.g. ASG has two incoming links).
In this case there is more than one possible derived horizontal fragmentation of R. the decision
as to which candidate fragmentation to choose is based on two criteria:

1- The fragmentation used in more applications
2- The fragmentation with better join characteristics

First one is straight forward if we take into consideration the frequency with which applications
access some data. If possible, one should try to facilitate heavy users so that their total impact
on system performance is minimized.
The second criterion is not the straightforward. Consider the fragmentation that we have
discussed in previous lecture. The effect of this fragmentation is that the join of the EMP and
PAY relations to answer the query is assisted

(1) by performing it on smaller relations (i.e fragments) and
(2) by potentially performing joins in a distributed fashion.

The first point is obvious. The fragments of EMP are smaller than EMP itself it will be faster to
join any fragment of PAY with any fragment of EMP than to work with the relations themselves.
The second point is more important and is at the heart of distributed databases. If besides
executing a number of queries at different sites, we can execute one query in parallel, the
response time or throughput of the system can be expected to improve. In case of joins, this is
possible under certain circumstances. Consider the join graph between the fragments of EMP and
PAY as shown in figure 1.

PAY1 PAY2

TITLE SAL

EMP1

ENO ENAME TITLE

TITLE SAL

EMP2

ENO ENAME TITLE

Figure1: Join Graph between Fragments

There is only one link coming in or going out of a fragment. Such a join graph is called a simple
graph. The advantage of a design where the join relationship between fragments is simple is that
the member and owner of a link can be allocated to one site and the joins between different pairs
of fragments can proceed independently and in parallel. DHF demonstrates two things:

1- DHF may follow a chain where one relation is fragmented as a result of another one’s
design and it causes the fragmentation of another relation, like

84

PAY-EMP-ASIGN

2-Typically, there will be more than one candidate fragmentation for a relation (e.g. relation
ASG). The final choice of the fragmentation schema may be a decision problem addressed
during allocation.

Checking for Correctness
Completeness
The completeness of a PHF is based on the selection predicates used. The selection predicates
are complete; the resulting fragmentation is guaranteed to be complete as well. Since the basis
of fragmentation algorithm is a set of complete and minimal predicates, Pr’, completeness is
guaranteed as long as no mistakes are made in defining Pr’. The completeness of DHF is more
difficult to define. The difficulty is due to the fact that the predicate determining the
fragmentation involves two relations. let R be the member relation o a link whose owner is
relation S, which is fragmented as Fs = {S1, S2, ….., Sn}. Let A be the join attribute between R
and S then for each tuple t of R, there should be a tuple t’ o S such that

t[A] = t’[A]

Reconstruction
Reconstruction of a global relation from its fragments is performed by union operator in both
primary and derived horizontal fragmentation. Thus for a relation R with fragmentation FR =
{R1, R2, …, Rn}

R = U Ri, Ri FR

Disjointness
It is easier to establish disjointness of fragmentation for primary than for derived horizontal
fragmentation. Disjointness is guaranteed as long as the minterm predicates determining the
fragmentation are mutually exclusive. In DHF, disjointness can be guaranteed if the join graph
is simple. If it is not simple, it is necessary to investigate actual tuple values.

Vertical Fragmentation (VF)
A VF of a relation R produces fragments R1, R2, …. Rn, each of which contains a subset of
R’s attributes as well as the primary key of R. the objective of VF is to partition a relation into a
set of smaller relations so that many of the use applications will run on only one fragment. An
optimal fragmentation is one that produces a fragmentation scheme which minimizes the
execution time of user applications that run on these fragments.
Vertical partitioning is inherently more complicated than horizontal partitioning. This is due to
the total number of alternatives that are available. For example, in horizontal partitioning, if the
total number of simple predicates in Pr is n, there are 2n possible minterm predicates that can be
defined on it. VF is mainly based on heuristics.

Two alternative of VF
Two types of heuristics approaches exist for the VF of global relations:

85

1) Grouping: Starts by assigning each attribute to one fragment and at each step, joins some of
the fragments until some criteria are satisfied.

2) Splitting: Starts with a relation and decides on beneficial partitioning based on the access
behavior of applications to the attributes. Splitting generates nonoverlapping fragments whereas
grouping typically results in overlapping fragments. Nonoverlapping refers only to nonprimary
key attributes.
Let us discuss the issue of replication of the global relation’s key in the fragments. This is a
characteristic of vertical fragmentation that allows the reconstruction of the global relation.
Splitting is considered only for those attributes that do not participate in the primary key.
There is a strong advantage to replicating the key attributes despite the obvious problems it
causes. This advantage has to do with semantic integrity enforcement. Replication of the key
attributes at each fragment reduces the chances of this occurring but does not eliminate it
completely, since such communication may be necessary due to integrity constraints that do not
involve the primary key as well as due to concurrency control.

Summary
We have discussed derived horizontal fragmentation and its checking for correctness. We have
also discussed vertical fragmentation. VF includes two approaches grouping and splitting.

Course Title: Distributed Database Management Systems
Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No: 17

86

In previous lecture:

- Concluded DHF
- Started Vertical Fragmentation (VF)

In this lecture:

- Continue with VF
0. Information Requirement
1. Attribute affinities

VF-Information Requirements
The major information required for vertical fragmentation is related to applications. Since
vertical partitioning places in one fragment those attributes usually accessed together, there is a
need for some measure that would define more precisely the notion of togetherness this measure
is the affinity of attributes which indicates how closely related the attributes are. It is not
realistic to expect the designer or the users to be able to easily specify these values.
The major data requirement related to applications is their access frequencies. Let Q = {q1 , q2
,…, qq} be the set of user queries (applications) that will run on relation R[A1, A2 ,…, An].
Then, for each query qi and each attribute Aj, we associated an attribute usage value, denoted
as use (qi, Aj) and defined as follows:

 1 if attribute Aj is
use(qi,Aj)= referenced by query qi

0 otherwise
The use(qi,•) vectors for each application are easy to define if the designer knows
the applications that will run on the database.

Example
Consider relation PROJ(jNo, jName, budget, loc). Assume that the following applications are
defined to run on this relation. In each case we also give the SQL specification.

q1: SELECT BUDGET FROM PROJ WHERE JNO=Value

q2: SELEC JNAME, BUDGET FROM PROJ

87

q3: SELECT JNAME FROM PROJ WHERE LOC=Value

q4: SELECT SUM(BUDGET) FROM PROJ WHERE LOC=Value

According to these four applications, the attribute usage values can be defined. As a notational
convenience, we let A1= jNo, A2= jName, A3= budget, and A4= loc. The usage values are
defined in matrix form as shown in figure 1, where entity (i, j) denotes use(qi, Aj).
Attribute usage values are not sufficiently general to form the basis of attribute splitting and
fragmentation. This is because these values do not represent the weight of application
frequencies. The frequency measure can be included in the definition of attribute affinity
measure aff(Ai, Aj), which measures the bond between two attributes of a relation according
to how they are accessed by applications.

 A1 A2 A3 A4

q1
1 0 1 1

q2
0 1 1 0

q3
0 1 0 1

q4 0 0 1 1

Figure1: Attribute Usage Matrix

The attribute affinity measure between two attributes Ai and Aj of a relation R(A1, A2, …., An)
with respect to the set of applications Q = {q1, q2, …, qq) is defined as

aff(Ai, Aj) = ∑ ∑ refl (qk) accl (qk)
k|use(qk, Ai) = 1 use(qk, Aj) = 1∀ PAY1

Where refl(qk) is number of accesses to attributes (Ai, Aj) for each execution of qk at site Sl,
and accl(qk) is application access frequency measure from Sl.

The result of this computation is an n * n matrix, each element of which is one of the
measures defined above. We call this matrix the attribute affinity matrix (AA).

88

Example
Let us assume that ref1(qk) = 1 for all qk and S1. If the application frequencies are

acc1(q1) = 15, acc2(q1) = 20, acc3(q1) = 10

acc1(q2) = 5, acc2(q2) = 0, acc3(q2) = 0

acc1(q3) = 25, acc2(q3) = 25, acc3(q3) = 25

acc1(q4) = 3, acc2(q4) = 0, acc3(q4) = 0

Since the only application that accesses both of the attributes is q1. the complete attribute
affinity matrix is shown in figure 2.

A1 A2 A3 A4

A1 45 0 45 0

A2 0 80 5 75

A3
45 5 53 3

A4 0 75 3 78

Figure2: Attribute affinity matrix (AA)

Clustering Algorithm
The fundamental task in designing a vertical fragmentation algorithm is to find some means of
grouping the attributes of a relation based on the attribute affinity values in AA. It has been
suggesting that the bond energy algorithm (BEA) should be used for this purpose. It is
considered appropriate for the following reasons:

• It is designed specifically to determine groups of similar items as opposed to say a linear
ordering of the items (i.e. it clusters the attributes with larger affinity values together,
and the ones with smaller values together).

• The final groupings are insensitive to the order in which items are presented to
the algorithm.

89

• The computation time of the algorithm is reasonable [O(n2), where n is the number of

attributes].
• Secondary interrelationships between clustered attribute groups and identifiable.

The bond energy algorithm takes as input the attribute affinity matrix, permutes its rows
and columns and generates a clustered affinity matrix (CA).
Generation of clustered affinity matrix (CA) is done in three steps:

1. Initialization. Place and fix one of the columns of AA arbitrarily into CA. Column 1 was
chosen in the algorithm.

2. Iteration. Pick each of the remaining n-I columns (where I is the number of columns

already placed in CA) and try to place them in the remaining i+1 positions in the CA
matrix. Continue this step until no more columns remain to be placed.

3. Row ordering. Once the column ordering is determined, the placement of the rows should
also be changed so that their relative positions match the relative positions of the
columns.

Global Affinity Measure (AM)
AM is a single value that is calculated on the basis of positions of elements in AA and
their surrounding elements.

n n

AM = ∑ ∑ aff(Ai, Aj) [aff(Ai, Aj-1) + aff(Ai, Aj+1)
i = 1 j = 1 + aff(Ai-1, Aj) + aff(Ai+1, Aj)]

aff(A0, Aj)= aff(Ai, A0) = aff(An+1, Aj)= aff(Ai, An+1)=0

Summary
We have discussed vertical fragmentation which includes information requirements and
attribute affinity. We have also discussed the clustering algorithm.

90

Course Title: Distributed Database Management Systems
Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No: 18

In previous lecture:

- Continue with VF
0. Information Requirement
1. Attribute affinities

In this lecture:

• Continue with VF
– Global Affinity Measure
– Bond Energy Algorithm

Global Affinity Measure
Global affinity measure can also be written as

n
AM = ∑ i

= 1

n

∑ aff(Ai, Aj) [aff(Ai, Aj-1) + aff(Ai, Aj+1)
j = 1 + aff(Ai-1, Aj) + aff(Ai+1, Aj)]

The calculation of the bound between two attributes requires the multiplication of the
respective elements of the two columns representing these attributes and taking the row-wise
sum. Affinity matrix AA is symmetric as shown in figure 1.

 A1 A2 A3 A4

A1 45 0 45 0

91

A2 0 80 5 75

A3 45 5 53 3

A4 0 75 3 78

 Figure 1: Symmetric matrix

Rather than taking this:
n n

AM = ∑ ∑ aff(Ai, Aj) [aff(Ai, Aj-1) + aff(Ai, Aj+1)
i = 1 j = 1 + aff(Ai-1, Aj) + aff(Ai+1, Aj)]

We take only..

n n n

AM = ∑ ∑ aff(Ai, Aj) aff(Ai, Aj-1) + ∑ aff(Ai, Aj) aff(Ai, Aj+1)
j = i = i =

Let us define the bond between two attributes Ax and Ay as

n
bond(Ax, Ay) = ∑ aff(Az, Ax)aff(Az, Ay) z

= 1

Then AM can be written as

n

AM = ∑ bond(Aj, Aj-1) +bond(Aj, Aj+1)
j = 1

Example
Let us consider the AA matrix given in figure1 and study the contribution of moving attribute
A4 between attribute A1 and A2 given by formula

Cont(A1, A4, A2) = 2bond(A1,A4)+2bond(A4,A2)-2bond(A1,A2)

Computing each term we get,

Bond(A1,A4) = 45*0+0*75+45*3+0*78 = 135
Bond(A4,A2) = 11865

92

Bond(A1,A2) = 225

Therefore,
Cont(A1, A4, A2) = 2*135+2*11865-2*225 = 23550

The calculation of the bond between two attributes requires the multiplication of the respective
elements of the two columns representing these attributes and taking the row-wise sum.

Approach for VF
Find the combination that has the max AM. It will represent best grouping among attributes. We
can find all possible AMs or We can use the BEA (Bond Energy Algorithm).

Bond Energy Algorithm (BEA)
A1, A2, …, Ai-1, Ai, Aj, Aj+1, ……, An

AM1 AM2 AM3

The global affinity measure for these attributes can be written as

AMold = AM1 + AM2+ AM3

AM2 involves Bond(Ai, Aj) twice

A1, A2, …, Ai-1, Ai, Ak, Aj, Aj+1, ……, An

AM1 AM2 AM3

AMnew = AM1 + AM2+ AM3

AM2 involves Bond(Ai, Ak) and Bond(Ak, Aj) twice

Contribution
Thus the net contribution to the global affinity measure of placing attribute Ak between Ai
and Aj is

Cont(Ai, Ak, Aj) = AMnew- AMold

= 2Bond(Ai,Ak) + 2Bond(Aj, Ak) – 2Bond(Ai, Aj)

93

Steps in BEA
Input: The AA matrix

Output: The clustered affinity matrix CA which is a permutation of AA

Initialization: Place and fix one of the columns of AA in CA.

Iteration: Place the remaining n-i columns in the remaining i+1 positions in the CA matrix.
For each column, choose the placement that makes the most contribution to the global
affinity measure.

Row order: Order the rows according to the column ordering.

Bond Energy Algorithm
Input AA
Output CA
Begin

CA (•, 1) ← AA (•, 1)
CA (•, 2) ← AA (•, 2)
Index ← 3

While index ≤ n do
Begin
For I from 1 to index –1 by 1 do

calculate cont(Ai-1, Aindex, Ai) end-for
Calculate cont(Aindex-1, Aindex, Aindex+1)
Loc ← placement given by maximum cont value
For j from index to loc by –1 do

CA (•, j) ← AA (•, j-1) end-for
CA (•, loc) ← AA (•, index)
Index ← index + 1
End-while
Order the rows according to relative order of columns
End {BEA}

Summary
We have discussed vertical fragmentation which global affinity measure and bond
energy algorithm.

94

Course Title: Distributed Database Management Systems
Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No: 19

In previous lecture:

- Continued with VF
0. Global Affinity Measure
1. Bond Energy Algorithm

In this lecture:
- Continue with VF

0. Example of VF
1. Partitioning in CA

Clustered Affinity Matrix
According to the initialization step, we copy columns 1 and 2 of AA matrix to the CA matrix as
shown in figure1 and start with column 3 (i.e. attribute A3).

95

 A1 A2

A1 45 0

A2 0 80

A3
45 5

A4 0 75

Figure 1: Calculation of Clustered Affinity Matirx

There are three alternative places where column 3 can be placed: to the left of column 1,
resulting in ordering (3-1-2), in between columns 1 and 2, giving (1-3-2) and to right of 2,
resulting (1-2-3). To compute the contribution of last ordering we have to compute cont (A2, A3,
A4) rather than cont(A1, A2, A3). In this context A4 refers to the fourth index position in the CA
matrix, which is empty as shown in figure 2, not to the attribute column A4 of the AA matrix.

 A1 A3 A2

A1 45 45 0

A2 0 5 80

A3
45 53 5

A4 0 3 75

Figure 2: Calculation of Clustered Affinity Matirx

Let us calculate the contribution to the global affinity measure of each alternative.

Ordering (0-3-1):

96

cont (A0, A3, A1) = 2 bond(A0, A3) + 2 bond(A3, A1) – 2bond(A0, A1)

we know that bond(A0, A3) = 0 and (A0, A1) = 0 because A0 refers to the left of leftmost
attribute.

4
bond(A3, A1) = ∑aff(Az, A3)aff(Az, A1)

z =

= aff(A1, A3)aff(A1, A1) + aff(A2, A3) aff(A2, A1) + aff(A3, A3)aff(A3, A1) + aff(A4,
A3)aff(A4, A1)
= 45 * 45 + 5 * 0 + 53 * 45 + 3 * 0 = 4410

Thus
cont(A0, A3, A1) = 2 bond(A0, A3) + 2 bond(A3, A1) - 2bond(A0, A1)

= 2 * 0 + 2 * 4410 – 2 * 0
= 8820

Ordering (1-3-2)
cont (A1, A3, A2) = 2 bond(A1, A3) + 2 bond(A3, A2) - 2bond(A1,
A2) bond(A1, A3) = bond(A3, A1) = 4410
bond(A3, A2) =0+400+265+225=
890 bond(A1, A2) =0+0+45*5= 225
cont(A1, A3, A2) = 2*4410+2*890–2*225

= 8820 + 1780 – 450
= 10150

Ordering (2-3-4)
cont (A2, A3, A4) = 2 bond(A2, A3) + 2 bond(A3, A4) - 2bond(A2,
A4) bond(A2, A3) = 890
bond(A3, A4) = 0
bond(A2, A4) = 0
cont (A2, A3, A4) = 2 * 890 + 0 +

0 = 1780

Ordering (0-3-1) = 8820
Ordering (1-3-2) = 10150
Ordering (2-3-4) = 1780

Compute the contribution by placing 4th attribute at different places in CA
We need to work out

– Ordering (0-4-1)
– Ordering (1-4-3)
– Ordering (3-4-2)
– Ordering (2-4-5)

97

Finally, the columns order changed but rows still in same order as shown in figure 3. in figure 3
we see the creation of two clusters: one is in the upper left corner and contains the smaller
affinity values and the other is the lower left corner and contains the larger affinity value.
When the CA matrix is big, usually more than two clusters are formed and there are more than
one candidate partitioning. Thus there is a need of approach this problem more systematically.

A1 A3 A2 A4

A1 45 45 0 0

A2 0 5 80 75

A3
45 53 5 3

A4 0 3 75 78

Figure 3: Calculation of Clustered Affinity Matirx

Clustering Summary

• We need AUM that reflects the Query-Attribute relationship
• AUM and FM are used to make AA
• Global Affinity Measure is used to establish the clusters of attributes
• Stronger affinities attributes and weaker ones are grouped in CA

Partitioning
The objective is of splitting activity is to find sets of attributes that are accessed solely, or for
the most part by distinct sets of applications. For example, if it is possible to identify two
attributes A1 and A2, which are accessed only by application q1 and attributes A3 and A4
which are accessed by two applications q2 and q3, it would be quite straight forward to decide
on the fragments.
Consider the clustered attribute matrix of figure 4. if a point along the diagonal is fixed , two sets
of attributes are identified. One set {A1, A2,….., Ai} is at the upper left hand corner and the
second set {Ai+1,….,An} is to the right and to the bottom of this point. We call set top and set
bottom and denote the attribute sets as TA and BA resp.

98

A1, A2, ….Ai, Ai+1, ….An

A1
A2 TA
..

Ai
Ai+1

. TB
An

Figure 4: Locating a splitting point

OQ is the set of applications that access both TA and BA. CTQ is the number of accesses to
attributes by applications that access only TA. CBQ is the number of accesses to attributes by
applications that access only BA. COQ is the number of accesses to attributes by applications
that access both TA and BA. Then find the point z along the diagonal that maximizes

z = CTQ * CBQ - COQ2

TQ = {q1) CTQ = 15 * 1 + 20 *1 + 10 * 1 = 45
BQ = {q3} CBQ = 25 * 1 + 25 * 1 + 25 * 1 = 75
OQ = {q2, q4} COQ = 5 * 1 + 0 + 0 + 3 * 1 + 0 + 0 = 8

z = CTQ * CBQ – COQ2
= 45 * 75 – 82 = 3375 – 64
= 3311

z2 = 3311
z1 = 0 – (45)2
z3= 0 – (78)2

Summary:
We have discussed the vertical fragmentation (VF) and the example of VF. We have
also discussed the clustered affinity matrix and partitioning algorithm.

99

Course Title: Distributed Database Management Systems
Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No: 20

In previous lecture:

- Continue with VF
0. Example of VF
1. Computed CA
2. Partitioning Algorithm

In this lecture:
- Continue with VF
- Hybrid Fragmentation
- Allocation Problem

VF- Two Problems
1- Clusters not in the sides, rather in the middle of CA
2- m-way partitioning

VF Correctness

100

A relation R, defined over attribute set A and key K, generates the vertical partitioning
FR = {R1, R2 , …, Rr }

Completeness
The set of attributes A over which the relation R is defined consists of:

A =U Ri
Completeness of vertical fragmentation is ensured.

Reconstruction
The reconstruction of the original global relation is made possible by the join operation. For a
relation R with vertical fragmentation FR and key attribute(s) K,

R = ⋈K Ri, ∀Ri ∈ FR
As long as each Ri is complete, the join operation will properly reconstruct R. each Ri should
contain the key attribute(s) of R, or it should contain the system assigned tuple IDs (TIDs).

Disjointness
The disjointness of fragments is not as important in vertical fragmentation as it is horizontal
fragmentation. There are two cases here:

1. TIDs are used in which case the fragments are disjoint since the TIDs that are replicated
in each fragment are system assigned and managed entities, totally invisible to the users.

2. The key attributes are replicated in each fragment, in which case one can not claim
that they are disjoint in the strict sense of the term. This duplication of the key
attributes is known and managed by the system and does not have the same
implications as tuple duplication in horizontally partitioned fragments.

Hybrid Fragmentation
Practically, applications require the fragmentation of both the types to be combined. So the
nesting of fragmentations, i.e., one following the other, this alternative is called hybrid
fragmentation. Disjointness and completeness have to be assured at each step, and reconstruction
can be obtained by applying Join and Union in reverse order

Allocation
Assume that there are set of fragments F = {F1, F2 , …, Fn} and a network consisting of sites
S ={S1 , S2 , …, Sm} on which a set of applications Q = {q1, q2 ,…, qq } is running. The
allocation problem involves finding the optimal distribution of F to S.

Optimality
One of the important issues is the definition of optimality. The optimality can be defined with
respect to two measures.

1. Minimal cost:
The cost function consists of the cost of storing each Fi at a site Sj, the cost of querying
Fi at site Sj, the cost of updating Fi at all sites where it is stored, and the cost of data

101

communication. The allocation problem finds an allocation schema that minimizes a
combined cost function.

2. Performance:

The allocation strategy is designed to maintain a performance metric. Two well known
ones are to minimize the response time and to maximize this system throughput at
each site.

It is a complex problem to be solved mathematically, to make the things very simple,
consider the allocation of a single fragment Fk, we make a number of assumptions and
definitions that will enable us to model the allocation problem.

1) Assume that Q can be modified so that it is possible to identify the update and
the retrieval only queries and to define the following for a single fragment Fk:

T = {t1, t2, …, tm}

Where ti is the read only traffic generated at site Si for Fk and

U= {u1, u2, .., um}
Where ui is the update traffic generated at site Si for Fk.

2) Assume that the communication cost between any two pair of sites Si and Sj is fixed for a

unit of transmission. Assume that it is different for updates and retrievals in order that the
following can be defined:

C(T) = {c1,2, c1,3, …., c1,m, ….cm-1, m}
C’(T) = {c’1,2, c’1,3, …., c’1,m, ….c’m-1, m}

Where cij is the unit of communication cost for retrieval requests between sites Si and
Sj and c’ij is the unit communication cost for update requests between sites Si and Sj.

3) Let the cost of storing the fragment at site Si be di. We can define D = {d1, d2, …….,

dm} for the storage cost of fragment Fk at all the sites.
4) Assume there are no capacity constraints for either the sites or the communication links.

Allocation problem is to find the sites out of set of sites S, where the copy of Fk will be
stored. In the following xj denotes the decision variable for the placement such that

xj = 1 if the fragment Fk is assigned to site Sj

 0 otherwise
The specification of the allocation problem will be

102

min m

xjujc' ij tj min cij

xjdj

 j|sj I
 i1 j|Sj I j|Sj I

Subject to

Xj = 0 or 1
That concludes our discussion on Fragmentation. Lets summarize it

Fragmentation Summary

• Fragmentation is splitting a table into smaller tables
• Alternatives

– Horizontal
– Vertical
– Hybrid

Horizontal Fragmentation
• Splits a table into horizontal subsets (row wise)
• Primary and Derived Horizontal Fragmentation
• We need major simple predicates (Pr); should be complete & minimal
• Pr is transformed into Pr’
• Minterm (M) predicates from Pr’
• Correctness of PHF depends on the Pr’
• Derived Horizontal Fragmentation is based on Owner-member link

Vertical Fragmentation is more complicated due to more options
• Based on attributes’ affinities
• Calculated using usage data and access frequencies from different sites
• AA is transformed into CA using BEA
• CA establishes clusters of attributes that are split for efficient access

Hybrid Fragmentation combines HF and VF
• That concludes Fragmentation

Summary:
We have discussed the vertical fragmentation (VF) and hybrid fragmentation. We have
also discussed the allocation problem.

103

Course Title: Distributed Database Management Systems
Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No: 21

In previous lecture:

- Continue with VF
- Hybrid Fragmentation
- Allocation Problem

In this lecture:
- Replication

Replication
Storing a separate copy of database at each of two or three sites

Advantages
– Reliability.
– Fast response.
– May avoid complicated distributed transaction integrity routines (if replicated

data is refreshed at scheduled intervals.)
– De-couples nodes (transactions proceed even if some nodes are down.)
– Reduced network traffic at prime time (if updates can be delayed.)

Disadvantages

– Additional requirements for storage space.
– Additional time for update operations.
– Complexity and cost of updating.

104

– Integrity exposure of getting incorrect data if replicated data is not updated

simultaneously.

Therefore, better when used for non-volatile data.

Replication Architecture in SQL Server
Replication uses a publish-subscribe model for distributing data. A Publication is group of
related data and objects that we want to replicate together. A Publisher is a server that is the
source of data to be replicated. A Subscriber is a server that receives the data replicated by the
publisher. The Subscriber defines a subscription to a particular publication. A Distributor is a
server that performs various tasks when moving articles from Publishers to Subscribers. The
actual tasks performed depend on the type of replication performed.

SS Agents: software components used in replication; 4 types, Snapshot, Merge, Distribution, Log
Reader.

1) Snapshot:
Runs at least once in all reps

2) Distribution:

Performs different activities, mainly distributes publication to subscribers

3) Log reader:
Used in transactional rep, reads log files of all servers involved

4) Merge:

Meld changes from different servers made since last snapshot

Push/Pull subscriptions; depends where the distributor is running.

Replication Models

105

Publ/Dist

Central Publisher / Distributor

106

Remote
Distr

Publisher

Central Publisher / Remote Distributor

Replication Methods

• Snapshot Replication
• Transaction Rep.
• Merge Replication.

Snapshot Replication

• Preferred when subscribers need read-only access
• Higher latency (working without updated data) low Bandwidth
• Used in all types, initially
• Can be push or pull
• How to do it.

Summary:
We have discussed the replication, its advantages and disadvantages. We have also discussed
Replication Architecture in SQL Server, replication models and replication methods.

107

Course Title: Distributed Database Management Systems
Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No: 22

In previous lecture:

- Replication
- Snapshot replication

In this lecture:
- Replication

Setting up Replication

• Step by step process, follow the sequence, it’s a must
• The Environment.
• To begin with, you can perform the experiment on a single machine, though it won’t be

a distributed environment, but it will be very simple
• Install multiple instances of SQL Server on your computer
• This simple setup will work with Windows XP and Personal Edition of SQL Server, but

later experiments won’t.
• Installation of two instances of SQL Server
• Lets go through one installation
• Instance names being PESH and QTA.

108

109

110

111

112

Next step is to register these two instances using Enterprise Manager as shown below

113

114

115

After a couple of default selections

116

SQL Server Agent Startup Account

117

118

119

Nothing in the folders yet QTA is also set as Publisher
Next step is to create a publication

A couple of Defaults and then

120

Publication Created

121

Now to create Subscriber

A welcome screen and then

122

123

A couple of Defaults and then

From where we set off, changed now

• This activity has created the agents (Snapshot agent and Distributor agent)
• Also the subscription database at the subscriber server (PESH in our case)
• Agents are created, not worked yet, so no snapshot created at the subscriber
• Execute the Snapshot Agent, that will create a snapshot of your publication
• See How?

Snapshot is created, you can verify
Verification from the message in the description of the agent, or you can see it from
agent history, here

124

Which is just not enough, Publication has to be there

It is there, not only the tables But the data as well

125

Now the behavior of SSt Replication is that at the predefined intervals, snapshot agent
generates the snapshot and distributor agent copies it to the subscriber, let’s see the timing
issue. Mind it, the SSt replication suits the environment, where higher latency is acceptable

126

Now add a record in any of the tables in your publication (lets say author) at your publisher
(QTA). We selected this table because after adding the record of Muhammad Suhail of
Rawalpindi in the table at QTA, wait for one minute.
After one minute, both agents will execute as set in their schedules. They will perform their
respective job and as a result the snapshot will be copied at subscriber and the record entered just
now will be copied there Proof? From agents’ histories and from the subscriber’s table it, like

Here we described connecting Oracle Server with SS, and using Oracle ODBS System DSN,
we implemented snapshot replication on Oracle,

2- Transactional Replication

• Preferred in higher bandwidth and lower latency
• Transaction is replicated as it is executed
• Preferred in low latency and higher bandwidth
• Begins with a snapshot, changes sent at subscribers as they occur or at timed intervals
• A special Type allows changes at subscribers

3- Merge replication
It lets multiple sites work autonomously with a set of Subscribers, and then later merge the
combined work back to the Publisher. During the merge, some conflicts may be found where
multiple Subscribers modified the same data. Merge replication supports the definition of
conflict resolves, which are sets of rules that define how to resolve such conflicts. Merge

127

replication is used when it is important for the Subscriber computers to operate autonomously
(such as a mobile disconnected user), or when multiple Subscribers must update the same data.

Summary:
We have discussed the types of replication and the Setting up the Replication.

Course Title: Distributed Database Management Systems
Course Code: CS712
Instructor: Dr. Nayyer Masood (nayyerm@yahoo.com)
Lecture No: 23& 24

In previous lecture:

- Fragmentation
In this lecture:

- Reasons for Fragmentation
0. Maximizes local access

128

1. Reduces table size, etc.
- PHF using the SQL Server on same machine
- Implemented PHF in a Banking Environment

Fragmentation

• We know there are different types, we start with the simplest one and that is the PHF
• Supposedly, you have already gone through the design phase and have got the

predicates to be used as basis for PHF, just as a reminder
• From the user queries, we first collect the simple predicates and then we form a complete

and minimal set of minterm predicates, a minterm predicate is ….., you know that
otherwise refer back to lecture 16, 17

• Lets say we go back to our Bank example, and lets say we have decided to place our
servers at QTA and PESH so we have two servers where we are going to place our PHFs

• As before we register our servers and now at our Enterprise Manager we can see
two instances of SS

• At each of the three sites we define one database named BANK and also one
relation, normal base table, however, for the fragmentations to be disjoint (a
correctness requirement) we place a check on each table at three sites, how….

• We name our fragments/local tables as custQTA, custPESH
• Each table is defined as

create table custPESH(custId char(6), custName varchar(25), custBal
number(10,2), custArea char(5))

• In the same way we create 2 tables one at each of our two sites, meant for containing the

local users
• Users that fall in that area and the value of the attribute custArea is going to be the area

where a customer’s branch is, so its domain is {pesh, qta)
• To ensure the disjointness and also to ensure the proper functioning of the system,

we apply a check on the tables
• The check is
• Peshawar customers are allocated from the range C00001 to C50000, likewise
• QTA is C50001 to C99999
• So we apply the check on both tables/fragments accordingly, although they can be

applied while creating the table, we can also apply them later, like
• Alter table custPesh add constraint chkPsh check ((custId between ‘C00001’ and

‘C50000’) and (custArea = ‘Pesh’))
• Alter table custQTA add constraint chkQta check ((custId between ‘C50001’ and

‘C99999’) and (custArea = ‘Qta’))
• Tables have been created on local sites and are ready to be populated, start running

applications on them, and data enters the table, and the checks ensure the entry of
proper data in each table. Now, the tables are being populated

Example Data in PESH

129

C0001 Gul Khan 4593.33 Pesh

C0002 Ali Khan 45322.1 Pesh

C0003 Gul Bibi 6544.54 Pesh

C0005 Jan Khan 9849.44 Pesh

Example Data at QTA

C50001 Suhail Gujjar 3593.33 Qta

C50002 Kauser Perveen 3322.1 Qta

C50003 Arif Jat 16544.5 Qta

C50004 Amjad Gul 8889.44 Qta

• Next thing is to create a global view for the global access/queries, for this we have to link
the servers with each other, this is required

• You have already registered both the servers, now to link them
• You can link them using Enterprise Manager or alternatively through SQL, we do

here using SQL

Connect Pesh using Query Analyzer

• Then execute the stored procedure sp_addlinkedserver
• The syntax is

•
sp_addlinkedserver
@server = ‘QTA',
@srvproduct = '',
@provider = 'sqloledb', @datasrc = ‘mysystem\QTA‘

• You will get two messages, if successful, like ‘1 row added’ and ‘1 row added’
• You have introduced QTA as a linked server with PESH.
• We have to perform this operation on the other server, that is, we have to add linked

server PESH at QTA
• Setup is there, next thing is to create a partitioned view
• In SQL Server, a partitioned view joins horizontally partitioned data across multiple

servers
• The statement to create the partitioned view is

130

Create view custG as select * from custPesh
Union All
select * from QTA.bank.dbo.custQTA
• Likewise, we have to apply same command at QTA
• Create view custG as
select * from
custQta Union All
select * from PESH.bank.dbo.custPesh

• Once it is defined, now when you access data from custG, it gives you data from all four

sites.
• It is also transparent

• Now lets say if you are connected with Pesh, and you give the command

Select * from custPesh

You get the output

• Same is the case with the users of the QTA server, they pose the query
• Select * from custQTA
• Like a local user

131

• The previous two examples represent access of a local user, now if the global users, like
from Management, want to access data across all sites, they will pose the query against
the global view, like

• Select * from custG

• All this is transparent from the user, that is, the distribution of data
• Global user gets the feeling, as if all the users’ data is placed on a single place
• For the administrative purposes they can perform analytical types of queries on

this global view, like

Summary:
We have discussed the fragmentation, maximize local access and reduce table size etc. and
also discussed the PHF using the SQL Server on same machine.

132

