
4
Bit Manipulations 

4.1. MULTIPLICATION ALGORITHM 

With the important capability of decision making in our repertoire we move 
on to the discussion of an algorithm, which will help us uncover an 
important set of instructions in our processor used for bit manipulations. 

Multiplication is a common process that we use, and we were trained to do 
in early schooling. Remember multiplying by a digit and then putting a cross 
and then multiplying with the next digit and putting two crosses and so on 
and summing the intermediate results in the end. Very familiar process but 
we never saw the process as an algorithm, and we need to see it as an 
algorithm to convey it to the processor.  

To highlight the important thing in the algorithm we revise it on two 4bit 
binary numbers. The numbers are 1101 i.e. 13 and 0101 i.e. 5. The answer 
should be 65 or in binary 01000001. Observe that the answer is twice as 
long as the multiplier and the multiplicand. The multiplication is shown in 
the following figure. 

    1101 = 13 

    0101 = 5 

    -----

    1101

   0000x

  1101xx

 0000xxx

--------

01000001 = 65 

We take the first digit of the multiplier and multiply it with the 
multiplicand. As the digit is one the answer is the multiplicand itself. So we 
place the multiplicand below the bar. Before multiplying with the next digit a 
cross is placed at the right most place on the next line and the result is 
placed shifted one digit left. However since the digit is zero, the result is zero. 
Next digit is one, multiplying with which, the answer is 1101. We put two 
crosses on the next line at the right most positions and place the result there 
shifted two places to the left. The fourth digit is zero, so the answer 0000 is 
placed with three crosses to its right. 

Observe the beauty of binary base, as no real multiplication is needed at 
the digit level. If the digit is 0 the answer is 0 and if the digit is 1 the answer 
is the multiplicand itself. Also observe that for every next digit in the 
multiplier the answer is written shifted one more place to the left. No shifting 
for the first digit, once for the second, twice for the third and thrice for the 
fourth one. Adding all the intermediate answers the result is 01000001=65 
as desired. Crosses are treated as zero in this addition.  

Before formulating the algorithm for this problem, we need some more 
instructions that can shift a number so that we use this instruction for our 
multiplicand shifting and also some way to check the bits of the multiplier 
one by one. 

4.2. SHIFTING AND ROTATIONS 

The set of shifting and rotation instructions is one of the most useful set in 
any processor’s instruction set. They simplify really complex tasks to a very 



Computer Architecture & Assembly Language Programming Course Code: CS401 

CS401@vu.edu.pk 

Virtual University of Pakistan 44

neat and concise algorithm. The following shifting and rotation operations 
are available in our processor. 

Shift Logical Right (SHR) 

The shift logical right operation inserts a zero from the left and moves 
every bit one position to the right and copies the rightmost bit in the carry 
flag. Imagine that there is a pipe filled to capacity with eight balls. The pipe is 
open from both ends and there is a basket at the right end to hold anything 
dropping from there. The operation of shift logical right is to force a white 
ball from the left end. The operation is depicted in the following illustration.  

White balls represent zero bits while black balls represent one bits. Sixteen 
bit shifting is done the same way with a pipe of double capacity. 

Shift Logical Left (SHL) / Shift Arithmetic Left (SAL) 

The shift logical left operation is the exact opposite of shift logical right. In 
this operation the zero bit is inserted from the right and every bit moves one 
position to its left with the most significant bit dropping into the carry flag. 
Shift arithmetic left is just another name for shift logical left. The operation is 
again exemplified with the following illustration of ball and pipes. 

Shift Arithmetic Right (SAR) 

A signed number holds the sign in its most significant bit. If this bit was 
one a logical right shifting will change the sign of this number because of 
insertion of a zero from the left. The sign of a signed number should not 
change because of shifting. 

The operation of shift arithmetic right is therefore to shift every bit one 
place to the right with a copy of the most significant bit left at the most 
significant place. The bit dropped from the right is caught in the carry 
basket. The sign bit is retained in this operation. The operation is further 
illustrated below. 

The left shifting operation is basically multiplication by 2 while the right 
shifting operation is division by two. However for signed numbers division by 
two can be accomplished by using shift arithmetic right and not shift logical 
right. The left shift operation is equivalent to multiplication except when an 
important bit is dropped from the left. The overflow flag will signal this 
condition if it occurs and can be checked with JO. For division by 2 of a 
signed number logical right shifting will give a wrong answer for a negative 
number as the zero inserted from the left will change its sign. To retain the 
sign flag and still effectively divide by two the shift arithmetic right 
instruction must be used on signed numbers. 

1 1 1 0 1 0 00 0C

1 1 1 0 1 0 00 C0

1 1 1 0 1 0 00 C



Computer Architecture & Assembly Language Programming Course Code: CS401 

CS401@vu.edu.pk 

Virtual University of Pakistan 45

Rotate Right (ROR) 

In the rotate right operation every bit moves one position to the right and 
the bit dropped from the right is inserted at the left. This bit is also copied 
into the carry flag. The operation can be understood by imagining that the 
pipe used for shifting has been molded such that both ends coincide. Now 
when the first ball is forced to move forward, every ball moves one step 
forward with the last ball entering the pipe from its other end occupying the 
first ball’s old position. The carry basket takes a snapshot of this ball leaving 
one end of the pipe and entering from the other.  

Rotate Left (ROL) 

In the operation of rotate left instruction, the most significant bit is copied 
to the carry flag and is inserted from the right, causing every bit to move one 
position to the left. It is the reverse of the rotate right instruction. Rotation 
can be of eight or sixteen bits. The following illustration will make the 
concept clear using the same pipe and balls example. 

Rotate Through Carry Right (RCR) 

In the rotate through carry right instruction, the carry flag is inserted from 
the left, every bit moves one position to the right, and the right most bit is 
dropped in the carry flag. Effectively this is a nine bit or a seventeen bit 
rotation instead of the eight or sixteen bit rotation as in the case of simple 
rotations.  

Imagine the circular molded pipe as used in the simple rotations but this 
time the carry position is part of the circle between the two ends of the pipe. 
Pushing the carry ball from the left causes every ball to move one step to its 
right and the right most bit occupying the carry place. The idea is further 
illustrated below. 

Rotate Through Carry Left (RCL) 

The exact opposite of rotate through carry right instruction is the rotate 
through carry left instruction. In its operation the carry flag is inserted from 
the right causing every bit to move one location to its left and the most 
significant bit occupying the carry flag. The concept is illustrated below in 
the same manner as in the last example. 

1 1 1 0 1 0 00C

1 1 1 0 1 0 00 C

1 1 1 0 1 0 00C

1 1 1 0 1 0 00 C


