- 1. Operating Systems architecture and structures (pros, cons, enhancements, comparison to other architectures)
 - a. Exo-kernels (Dawson Engler)
 - b. Micro-kernels
 - c. Distributed kernels
 - d. Middleware for massively distributed systems e.g. Grid computing infrastructures
- 2. Virtual Machines and Virtual Machines Monitors (pros, cons, comparison of different VMM architectures, identification of performance bottlenecks and suggestions for their removal etc.)
 - a. VmWare
 - b. Zen
 - c. User mode Linux
 - d. Denali (Rice University)
 - e. Disco
- 3. Threads Vs event-driven programming models
 - a. Threaded model problems, pros, cons from a software engineering and design standpoint
 - b. Event-driven and hybrid models (pros, cons, complexity, scalability etc.)
 - c. case studies
- 4. File systems
 - a. Distributed file systems
 - b. Client server based networked file systems
 - c. Server-less peer to peer file systems
 - d. pros, cons, consistency, performance, scalability of different file systems
 - e. fault tolerance in distributed file systems
- 5. Memory management
 - a. Efficient algorithms and heuristics for memory management
 - b. Comparison of different algorithms
 - c. User controlled OS memory management
 - d. Multiprocessor memory management and shared memory models
 - e. Support for super-pages in OS
- 6. Scheduling
 - a. Evaluation of proportionate share scheduling ideas
 - b. Efficient scheduling on multi-processors
 - c. Application aware and application controlled scheduling in event-driven systems
- 7. Mobility management
 - a. Disconnected operation in distributed file systems
 - b. Application mobility support in operating systems

- c. Toolkits for mobile information access e.g. Rover
- 8. Communication
 - a. Inter-process and Inter-machine communication architectures
 - b. Evaluation of peer to peer systems e.g. chord, Pastry, Gnu-tella, Kaza
 - c. Remote procedure call architectures and RPC based systems case studies
- 9. Fault tolerance and recovery
 - a. Study of fault and failure models
 - b. Power of replication and state duplication
 - c. Caching and state duplication
- 10. Security
 - a. Reasons for failure of crypto systems
 - b. Federated identity based systems
 - c. Comparison of.Net and Java security models
 - d. A critical study of Kerberos system
 - e. Denial of Service and Distributed Denial of Service
 - f. Case studies of secure OS e.g. SE Linux
 - g. Case studies of security vulnerabilities in commercial operating systems