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Introduction to Simulation

A simulation is the imitation of the operation of a real-world process or system over time. Whether done by
hand or on a computer, simulation involves the generation of an artificial history of a system and the obser-
vation of that artificial history to draw inferences concerning the operating characteristics of the real system.

The behavior of a system as it evolves over time is studied by developing a simulation model. This
model usually takes the form of a set of assumptions conceming the operation of the system. These assump-
tions are expressed in mathematical, logical, and symbolic relationships between the entities, or objects of
interest, of the system. Once developed and validated, a model can be used to investigate a wide variety of
“what if” questions about the real-world system. Potential changes to the system can first be simulated, in
order to predict their impact on system performance. Simulation can also be used to study systems in the
design stage, before such systems are built. Thus, simulation modeling can be used both as an analysis tool
for predicting the effect of changes to existing systems and as a design tool to predict the performance of
new systems under varying sets of circumstances.

In some instances, a model can be developed which is simple enough to be “solved” by mathematlcal
methods. Such solutions might:be found by the use of differential calculus, probability theory, algebraic
methods, or other mathematical techniques. The solution usually consists of one or more numerical param-
eters, which are called measures of performance of the system. However, many real-world systems are so
complex that models of these systems are virtually impossible to solve mathematically. In these instances,
numerical, computer-based simulation can be used to imitate the behavior of the system over time. From the
simulatian, data are collected as if a real system were being observed. This simulation-generated data is used
to estimate the measures of performance of the system.

This book provides an introductory treatment of the concepts and methods of one form of simulation
modeling—discrete-event simulation modeling. The first chapter initially discusses when to use simulation,
its advantages and disadvantages, and actual areas of its application. Then the concepts of system and model
are explored. Finally, an outline is given of the steps in building and using a simulation model of a system.
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4 DISCRETE-EVENT SYSTEM SIMULATION

1.1 WHEN SIMULATION IS THE APPROPRIATE TOOL

The availability of special-purpose simulation languages, of massive computing capabilities at a decreasing
cost per operation, and of advances in simulation methodologies have made simulation one of the most
widely used and accepted tools in operations research and systems analysis. Circumstances under which sim-
ulation is the appropriate tool to nse have been discussed by many authors, from Naylor et al. [1966] to
Shannon [1998]. Simulation can be used for the following purposes;

[

. Simulation enables the study of, and experimentation with, the internal interactions of a complex

system or of a subsystem within a complex system.

Informational, organizational, and environmental changes can be simulated, and the effect of these

alterations on the model’s behavior can be observed.

3. The knowledge gained during the designing of a simulation model could be of great value toward
suggesting improvement in the system under investigation,

4, Changing simulation inputs and observing the resulting outputs can produce valuable insight into

which variables are the most important and into how variables interact.

Simulation can be used as a padagogical device to reinforce analytic solution methodologies.

6. Simulation can be used to experiment with new designs or pollcles before implementation, so as to
prepare for what might happen.

7. Simulation can be used to verify analytic solutions.

8. Simulating different capabilities for a machine can help determine the requirements on it.

9. Simulation models designed for training make learning possible without the cost and disruption of

on-the-job instruction.

Animation shows a system in simulated operation so that the plan can be visualized.

11. The modern system (factory, wafer fabrication plant, service organization, etc.) is so complex that

its intemal interactions can be treated only through simulation.

34
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1.2 WHEN SIMULATION IS NOT APPROPRIATE

This section is based on an article by Banks and Gibson [1997], who gave ten rules for evaluating when sim-
ulation is not appropriate. The first rule indicates that simulation should not be used when the problem can
be solved by common sense. An example is given of an automobile tag facility serving customers who arrive
randomly at an average rate of 100/hour and are served at a mean rate of 12/hour. To determine the mini-
mum number of servers needed, simulation is not necessary. Just compute 100/12 = 8.33 indicating that nine
or more servers are needed. V

The second rule says that simulation should not be used if the problem can be solved analytically. For
example, under certain conditions, the average waiting time in the example above can be found from curves
that were developed by Hillier and Lieberman [2002).

The next rule says that simulation shouild not be used if it is easier to perform direct experiments. An
example of a fast-food drive-inrestaurant is given where it was less expensive to stage a person taking orders
using a hand-held terminal and voice communication to determine the effect of adding another order station
on customer waiting time. :

The foucth rule says not to use simulation if the costs exceed the savings. There are many steps in com-
pleting a simulation, as will be discussed in Section 1.11, and these must be done thoroughly. If a simula-
tion study costs $20,000 and the savings might be $10,000, simulation would not be appropriate.

Rules five and six indicate that simulation should not be performed if the resources or time are notavailable.
If the simulation is estimated to cost $20,000 and there is only $10,000 available, the suggestion is not to
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venture into a simulation study. Similarly, if a decision in needed in two weeks and a simulation will take a
month, the simulation study is not advised.

Simulation takes data, sometimes lots of data. If no data is available, not even estimates, simulation is
not advised. The next rule concems the ability to verify and validate the model. If there is not enough time
or if the personnel are not available, simulation is not appropriate.

If managers have unreasonable expectations, if they ask for too much too soon, or if the power of sim-
ulation is overestimated, simulation might not be appropriate.

Last, if system behavior is too complex or can’t be defined, simulation is not appropriate. Human behav-
ior is sometimes extremely complex to model.

1.3 ADVANTAGES AND DISADVANTAGES OF SIMULATION

Simulation is intuitively appealing to a client because it mimics what happens in a real system or what is
perceived for a system that is in the design stage. The output data from a simulation should directly corre-
spond to the outputs that could be recorded from the real system. Additionally, it is possible to develop a
simulation model of a system without dubious assumptions (such as the same statistical diswibution for every
random variable) of mathematically solvable models. For these and other reasons, simulation is frequently
the technique of choice in problem solving.

In contrast to optimization models, simulation models are “run” rather than solved. Given a particular
set of input and model characteristics, the model is run and the simulated behavior is observed. This process
of changing inputs and model characteristics results in a set of scenarios that are evaluated. A good solution,
either in the analysis of an existing system or in the design of a new system, is then recommended for
implementation.

Simulation has many advantages, but some disadvantages. These are listed by Pegden, Shannon, and
Sadowski [1995). Some advantages are these:

1. New policies, operating procedures, decision rules, information flows, organizational procedures,

and so on can be explored without disrupting ongoing operations of the real system.

New hardware designs, physical layouts, transportation systems, and so on can be tested without

committing resources for their acquisition.

Hypotheses about how or why certain phenomena occur can be tested for feasibility.

Time can be compressed or expanded to allow for a speed-up or slow-down of the phemmena under

. investigation. :

5. Insight can be obtained about the interaction of variables.

6. Insight can be obtained about the importance of variables to the performance of the system.

7. Bottleneck analysis can be performed to discover where work in process, information, materials, and
so on are being delayed excessively.

8. A simulation study can help in understanding how the system operates rather than how individuals
think the system operates. )

9. “What if” questions can be answered. This is particularly useful in the design of new systems.

2

3
.

by

Some disadvantages are these:

1. Model building requires special training. It is an art that is learned over time and through experience.
Furthermore, if two models are constructed by different competent individuals, they might have
similarities, but it is highly unlikely that they will be the same.
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2. Simulation results can be difficult to interpret. Most simulation outputs are essentially random vari-
ables (they are usually based on random inputs), so it can be hard to distinguish whether an obser-
vation is a result of system interrelationships.or of randonmess.

Making optimal design decisions for next-generation dispensing tools
Application of cluster tool modeling in a 300-mm wafer fabrication factory
Resident-entity based simulation of batch chamber tools in 300-mm semiconductor manufacturing

3. Simulation modeling and analysis can be time consuming and expensive. Skimping on resources for
modeling and analysis could result in a simulation model or analysis that is not sufficient to the task.

4. Simulation is used in some ‘cases when an analytical solution is possible, or even preferable, as was
discussed in Section 1.2. This might be particularly true in the simulation of some wamng lines
where closed-form queueing models are available. »

In defense of simulation, these four disadvantages, respectively, can be offset as follows:

1. Vendors of simulation software have been actively developing packages that contain models that
need only input data for their operation. Such models have the generic tag “simulator” or “template.”

2. Many simulation software vendors have developed output- analysis capabnlmes within their packages
for performing very thorough analysis.

3. Simulation can be performed faster today than yesterday and will be even faster tomorrow, because
of advances in hardware that permit rapid running of scenarios and because of advances in many sim-
ulation packages. For example, some simulation software contains constructs for modeling material
handling that uses such transporters as fork-lift trucks, conveyors, and automated guided. vehicles.

4. Closed-form models are not able to analyze most of the complex systems that are encountered in
practice. In many years of consulting practice by two of the authors, not one problem was encoun-
tered that could have been solved by a closed-form solution. :

1.4 AREAS OF APPLICATION

The applications of simulation are vast. The Winter Simulation Conference (WSC) is an excellent way to learn
more about the latest in simulation applications and theory. There are also numerous tutorials at both the
beginning and the advanced levels. WSC is sponsored by six technical societies and the National Institute
of Standards and Technology (NIST). The technical societies are American Statistical Association (ASA),
Association for Computing Machinery/Special Interest Group on Simulation (ACM/SIGSIM), Institute of
Electrical and Electronics Engineers: Computer Society (IEEE/CS), Institute of Electrical and Electronics
Engineers: Systems, Man and Cybernetics Society (IEEE/SMCS), Institute of Industrial Engineers (LE),
Institute for Operations Research and the Management Sciences: College on Simulation (INFORMS/CS) and
The Society for Computer Simulation (SCS). Note that IEEE is represented by two bodies. Information about
the upcoming WSC can be obtained from www.wintersim.org. WSC programs with full papers are
available from www. informs-cs.org/wscpapers. html Some presentations, by area, from a fecent.
WSC are listed next: :

Manufacturing Applications
Dynamic modeling of continuous manufacturing systems, usmg analogies to electrical systems
Benchmarking of a stochastic production planning model in a simulation test bed
Paint line color change reduction in automobile assembly
Modeling for quality and productivity in steel cord manufacturing
Shared resource capacity analysis in biotech manufacturing
Neutral information model for simulating machine shop operations
Semiconductor Manufacturing
Constant time interval production planning with application to work-in-process control
+ Accelerating products under due-date oriented dispatching rules
Design framework for automated material handling systems in 300-mm wafer fabncauon factories

" Construction Engineering and Project Management

Impact of multitasking and merge bias on procusement of complex equipment

Application of lean concepts and simulation for drainage operations mamtenance crews
Building a virtval shop model for steel fabrication
Simulation of the residential lumber supply chain

Military Applications

Frequency-based design for terminating simulations: A peace-enforcement example

A multibased framework for supporting military-based interactive simulations in 3D environments
Specifying the behavior of computer-generated forces without programming

Fidelity and validity: Issues of human behavioral representation

- Assessing technology effects on human performance through trade-space development and evalu-

ation
Impact of an automatic logistics system on the sortie-generation process
Research plan development for modeling and simulation of military operations in urban terrain

Logjstics, Supply Chain, and Distribution Applications

Inventory analysis in a server-computer manufacturing environment
Comparison of bottleneck detection methods for AGV systems

Semiconductor supply-network simulation

Analysis of international departure passenger flows in an airport terminal
Application of discrete simulation techniques to liquid natural gas supply chains
Online simulation of pedestrian flow in public buildings

Transportation Medes and Traffic

Simulating aircraft-delay absorption

Runway schedule determination by simulation optimization

Simulation of freeway merging and diverging behavior

Modeling ambulance service of the Austrian Red Cross _
Simulation modeling in support of emergency firefighting in Norfolk
.Modeling ship arrivals in ports V

Optimization of a barge transportation system for petroleum delivery
Iterative optimization and simulation of barge waffic on an inland waterway

Busin&ss Process Simulation

Agent-based modeling and simulation of store performance for personalwed pricing

Visualization of probabilistic business models

Modeling and simulation of a telephone call center

Using simulation to approximate subgradients of convex performance measures in service systems
Simulation’s role in baggage screening at airports

Human-fatigue risk simulations in continueus operations

Optimization of a telecommunications billing system

Segmenting the customer base for maximum refurns

. Health Care

Modeling front office and patient care in ambulatory health care practices

Evaluation of hospital operations between the emergency department and a medical telemetry unit
Estimating maximum capacity in an emergency room

Reducing the length of stay in an emergency department

- Simulating six-sigma improvement ideas for a hospital emergency department

i e

A simulation-integer-linear-programming-based tool for scheduling emergency room staff

SRR LA
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Some gene in si i fanti
growing, ingc ludrizlgt?zr:lsc ;I“ai‘emmatlf)n appllcatlon_s are as follows: At present, simulation for risk analysis is
is call-center analysis, which ias a Insurance, options pricing, and portfolio analysis. Another growing area
large-scale systems such as the§ I:Ot amenable to queuing models because of its complexity. Simulation of
ware and software increncs Lheirm em;._t !)ackbone, wireless networks, and supply chains are growing as hard-

Lastly, simulation mode] <f:apa 1y to handlfa extremely large numbers of entities in a reasonable time,
for the developmont and o s'o autom'ated material handling systems (AMHS) are being used as test beds'
model is conneeted i ra] ti‘:;:‘::‘t:l ;ej:)l:tgm?fszoiltrol-sgstem software. Called an emulation,
the s -System sottware or to a software emulator;
phot:[':;erecjfgnjsfnz; ;"t'(‘)‘f‘:l Sysiem as the real AMHS does (for example, a box blocking or clearing a
AMHS in;tallation and o0 start P}Cklng an order). Spftware development can begin much earlier during
ware while attempting 1o r:aflnlss:;n;nrgl; ;c,) :ecsltlz:ne1 the time spent in t.he field on trying to debug control soft.
driven by control systems at various leve{s—-fro(l)rrl ;?gﬁﬁ::e;“::;; fisr:) :;u:;r;i n::e. Models have been

the simulation
1t1s used to provide

vehicle.

A system is often affected b i i '
y changes occurring outside th
e : y e system. Such changes are saj i
betws::;egzleenwronmem .[Gord(.)n, 1978]. In modeling systems, it is necessary to dgecide ofla:getzoccur ,
on ! cass);stt}ntlh and its environment. This decision may depend on the purpose of the stud oundary
of the factory system, for example, the factors controlling the arrival of orders):nay be con-

Sldel‘ed to be Ou[Slde the lnﬂuence of t.he f; ) y there ore palt oI the enviro; Wev
. actory a d h
gl f f h environment. HO ever, lf the effect

d bank is being studied
the system can be defined
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. The state of a system is defined to be that collection of variables necessary to describe the system at any
time, relative to the objectives of the study. In the study of a bank, possible state variables are the number of
busy tellers, the number of customers waiting in line or being served, and the arrival time of the next cus-
tomer. An event is defined as an instantaneous occurrence that might change the state of the system. The term
endogenous is used to describe activities and events occurring within a system, and the term exogenous is
used to describe activities and events in the environment that affect the system. In the bank study, the arrival
of a customer is an exogenous event, and the completion of service of a customer is an endogenous event.

Table 1.1 lists examples of entities, attributes, activities, events, and state variables for several systems.
Only a partial listing of the system components is shown. A complete list cannot be developed unless the
purpose of the study is known. Depending on the purpose, various aspects of the system will be of interest,
and then the listing of components can be completed.

1.7 DISCRETE AND CONTINUOUS SYSTEMS

Systems can be categorized as discrete or continuous. “Few systems in practice are wholly discrete or con-
tinuous, but since one type of change predominates for most systems, it will usually be possible to classify
a system as being either discrete or continuous™ {L.aw and Kelton, 2000]. A discrete system is one in which
the state variable(s) change only at a discrete set of points in time. The bank is an example of a discrete
system: The state variable, the number of customers in the bank, changes only when a customer arrives or
when the service provided a customer is completed. Figure 1.1 shows how the number of customers changes
only at discrete points in time.

A continuous system is one in which the state variable(s) change continuously over time. An example
is the head of water behind a dam. During and for some time after a rain storm, water flows into the lake
behind the dam, Water is drawn from the dam for flood control and to make electricity. Evaporation also
decreases the water level. Figure 1.2 shows how the state variable head of water behind the dam changes for

this continuous system.

1.8 MODEL OF A SYSTEM

Sometimes it is of interest to study a system to understand the relationships between its components or to
predict how the system will operate under a new policy. To study the system, it is sometimes possible to
experiment with the system itself. However, this is not always possible. A new system might not yet exist; it
could be in only hypothetical form or at the design stage. Evenif the system exists, it might be impractical
to experiment with it. For example, it might not be wise or possible to double the unemployment rate to dis-
cover the effect of employment on inflation. In the case of a bank, reducing the numbers of tellers to study
the effect on the length of waiting lines might infuriate the customers so greatly that they move their accounts
to a competitor. Consequently, studies of systems are often accomplished with a model of a system.

We had a consulting job for the simulation of a redesigned port in western Australia. At $200 millions
for a loading/unloading berth, it’s not advisable to invest that amount only to find that the berth is inadequate
for the task.

A model is defined as a representation of a system for the purpose of studying the system. For most stud-
ies, it is only necessary to consider those aspects of the system that affect the problem under investigation.
These aspects are represented in a model of the system; the model; by definition, is a simplification of the
system. On the other hand, the model should be sufficiently detailed to permit valid conclusions to be drawn
about the real system. Different models of the same system could be required as the purpose of investigation

changes.
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random, they can be considered only as estimates of the true characteristics of a model. The simulation of
a bank would usually involve random interarrival times and random service times. Thus, in a stochastic
simulation, the output measures—the average number of people waiting, the average waiting time of a
customer—must be treated as statistical estimates of the true characteristics of the system.

Discrete and continuous systems were defined in Section 1.7. Discrete and continuous models are
defined in an analogous manner. However, a discrete simulation model is not always used to model a dis-
crete system, nor is a continuous simulation model always used to model a continuous system. Tanks and
pipes are modeled discretely by some software vendors, even though we know that fluid flow is continuous.
In addition, simulation models may be mixed, both discrete and continuous. The choice of whether to use a
discrete or continuous {(or both discrete and continuous) simulation model is a function of the characteristics
of the system and the objective of the study. Thus, a communication channel could be modeled discretely
if the characteristics and movement of each message were deemed important. Conversely, if the flow of

‘messages in aggregate over the channel were of importance, modeling the system via continuous simulation
could be more appropriate. The models considered in this text are discrete, dynamic, and stochastic.

1.10 DISCRETE-EVENT SYSTEM SIMULATION

This is a textbook about discrete-event system simulation. Discrete-event systems simulation is the model-
ing of systems in which the state variable changes only at a discrete set of points in time. The simulation
models are analyzed by numerical methods rather than by analytical methods. Analytical methods employ
the deductive reasoning of mathematics to “solve” the model. For example, differential calculus can be used
to compute the minimum-cost policy for some inventory models. Nurerical methods employ computational
procedures to “solve” mathematical models. In the case of simulation models, which employ numerical
methods, models are “run” rather than solved—that is, an artificial history of the system is generated from
the model assumptions, and observations are collected to be analyzed and to estimate the true system
performance measures. Real-world simulation models are rather large, and the amount of data stored and
manipulated is vast, so such runs are usually conducted with the aid of a computer. However, much insight
can be obtained by simulating small models manually.

In summary, this textbook is about discrete-event system simulation in which the models of interest are
analyzed numerically, usually with the aid of a computer.

1.11 STEPS IN A SIMULATION STUDY

Figure 1.3 shows a set of steps to guide a model builder in a thorough and sound simulation study. Similar
figures and discussion of steps can be found in other sources [Shannon, 1975; Gordon, 1978; Law and
Kelton, 2000]. The number beside each symbol in Figure 1.3 refers to the more detailed discussion in the
text. The steps in a simulation study are as follows:

Problem formulation. Every study should begin with a statement of the problem. If the statement
is provided by the policymakers, or those that have the problem, the analyst must ensure that the problem
being described is clearly understood. If a problem statement is being developed by the analyst, it is important
that the policymakers understand and agree with the formulation. Although not shown in Figure 1.3, there
are occasions where the problem must be reformulated as the study progresses. In many instances, policy-
makers and analysts are aware that there is a problem long before the nature of the problem is known.

Sefting of objectives and overall project plan. The objectives indicate the questions to be
answered by simulation. At this point, a determination should be made concerning whether simulation is the
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appropriate methodology for the problem as formulated and objectives as stated. Assuming that it is decided
that simulation is appropriate, the overall project plan should include a statement of the alternative systems to
be considered and of a method for evaluating the effectiveness of these alternatives. It should also include

the plans for the study in terms of the number of people involved, the cost of the study, and the number of.

days required to accomplish each phase of the work, along with the results expected at the end of each stage.

Model conceptualization. The construction of a model of a system is probably as much art as sci-
ence. Pritsker [1998] provides a lengthy discussion of this step. “Although it is not possible to provide a set
of instructions that will lead to building successful and appropriate models in every instance, there are some
general guidelines that can be followed” [Morris, 1967). The art of modeling is enhanced by an ability to
abstract the essential features of a problem, to select and modify basic assumptions that characterize the sys-
tem, and then to enrich and elaborate the model until a useful approximation results. Thus, it is best to start
with a simple model and build toward greater complexity. However, the model complexity need not exceed
that required to accomplish the purposes for which the model is intended. Violation of this principle will only
add to model-building and computer expenses. It is not necessary to have a one-to-one mapping between the
model and the real system. Only the essence of the real system is needed.

It is advisable to involve the model user in model conceptualization. Involving the model user will both
enhance the quality of the resulting model and increase the confidence of the model user in the application
of the model. (Chapter 2 describes a number of simulation models. Chapter 6 describes queueing models that

can be solved analytically. However, only experience with real systems—versus textbook problems—can
“teach” the art of model building.) :

Data collection. There is a constant interplay between the construction of the model and the col-
lection of the needed input data [Shannon, 1975]. As the complexity of the modelchanges, the required data
elements can also change. Also, since data collection takes such a large portion of the total time required to
perform a simulation, it is necessary to begin it as early as possible, usually together with the early stages of
model building. '

The objectives of the study dictate, in a large way, the kind of data to be collected. In thestudy of a bank,
for example, if the desire is to learn about the length of waiting lines as the number of tellers change,

- the types of data needed would be the distributions of interarrival times (at different times of the day), the
service-time distributions for the tellers, and historic distributions on the lengths of waiting lines under varying
conditions. This last type of data will be used to validate the simulation modl. (Chapter 9 discusses data
collection and data analysis; Chapter 5 discusses statistical distributions that occur frequently in simulation
modeling. See also an excellent discussion by Henderson {2603].)

Model translation. Most real-world systems result in models that require a great deal of informa-
tion storage and computation, so the model must be entered into a computer-recognizable format. We use the
term “program” even though it is possible to accomplish the desired result in many instances with little or
no actual coding, The modeler must decide whether to program the model in a simulation language, such as
GPSS/H (discussed in Chapter 4), or to use special-purpose simulation software. For manufacturing and
material handling, Chapter 4 discusses Arena®, AutoMod™, Extend™, Flexsim, MicroSaint, ProModel®,
Quest®, SIMUL8®, and WITNESS™. Simulation languages are powerful and flexible. However, if the
problem is amenable to solution with the simulation software, the model development time is greatly
reduced. Furthermore, most of the simulation-software packages have added features that enhance their flex-
ibility, although the amount of flexibility varies greatly.

Verified? Verification pertains to the computer program prepared for the simulation model. Is the
computer program performing properly? With complex models, it is difficult, if not impossible, to translate
a model successfully in its entirety without a good deal of debugging; if the input parameters and logical
structure of the model are correctly represented in the computer, verification has been completed. For the
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most part, common sense is used in completing this step. (Chapter 10 discusses verification of simulation
models, and Balci [2003] also discusses this topic.)

-Validated? Validation usually is achieved through the calibration of the model, an iterative process
of comparing the model againstactual system behavior and using the discrepancies b?tv'vaen Fhe two, and the
insights gained, to improve the model. This process is repeated until mo@e‘l"accuracy is jud ge‘d‘ a@ptable. In
the example of a bank previously mentioned, data was collected concerning the !er}gth of waiting lmef uqder
current conditions. Does the simulation model replicate this system measure? This is one means of \fahdatmn.
(Chapter 10 discusses the validation of simulation models, and Balci [2003] also discusses this topic.)

Experimental design. The alternatives that are-to be simulated must be determined. Often, the
decision concerning which alternatives to simulate will be a. function of runs that have !Jeen completed and
analyzed. For each system design that is simulated, decisions need to be m?de.concennng the length of the
initialization period, the length of simulation runs, and the number of re.phcatmm toube made of eflch run.
(Chapters 11 and 12 discuss issues associated with the experimental design, and Kleijnen [1998] discusses
this topic extensively.)

Production runs and analysis. Production runs, and their subsequent analysis, are used to esti-
mate measures of performance for the system designs that are being simulated. (Chapters 11 and 12 discuss
the analysis of simulation experiments, and Chapter 4 discusses. software to aid in this step, mcluding
AutoStat (in AutoMod), OptQuest (in several pieces of simulation software), SimRuaaer (in ProModel), and
WITNESS Optimizer (in WITNESS).

More Runs? Given the analysis of runs that have been completed, the analyst determines whether
additional runs are needed and what design those additional experiments should follow.

Documentation and repoﬂing‘. There are two types of docum?ntati'onz program and progress.
Program documentation is necessary for numerous reasons. If the program is going to be used. again by the
same or different analysts, it could be necessary to understand.how the program operates. This will cxea‘te
confidence in the program, so that model users and policymakers can make fiec1310ns based on the an'a:lysls.
Also, if the program is to be modified by the same or a different analyst, this step can b.e greatly facilitated
by adequate documentation. One experience with an inadequately dpcumented program is u.sually enough Eo
convince an analyst of the necessity of this important step. Another reason fo.r doc:umentmg a program is
so that model users can change parametérs at will in an effort to learn the relationships betwein input para-
meters and output measures of performance or to discover the input parameters that “optimize™ some output
measure of performance. - ] ) )

Musselman [1998] discusses progress reports that provide the important, wnt‘ten history of a simulation
project. Project reports give a chronology of work done and decisions made. This can prove to be of great

i ing the project on course.
Valui/;:st:lelf:ng sugglzstjs frequent reports (monthly, at least) so that even those not involved in the day—.to-
day operation can keep abreast. The awarenéss of these others can often enhance the su?cessful gompletllon
of the project by surfacing misunderstandings early, when Lt.1e problem can be solYed easily. Mussélman also
suggests maintaining a project log providing a comprehensive record of accomplishments, change requests,
key decisions, and other items of importance. . ,

On the reporting side, Musselman suggests frequent dehverables‘. These may or may not Pe the results
of major accomplishments. His maxim is that “jt is better to work 'w1th many 1ntermed_u.ite m'xiestones than
with one absolute deadline.” Possibilities prior to the final report include a model specnﬁcau.on, prototype
demonstrations, animations, training results, intermediate analyses, program .documentation, progress

‘ reports, and presentations. He suggests that these deliverables should be timed judiciously over the life of

the project.

[ 4
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The result of all the analysis should be reported clearly and concisely in a final report. This will enable
the model users (now, the decision makers) toreview the final formulation, the alternative systems that were
addressed, the criterion by which the alternatives were compared, the results of the experiments, and the recom-
mended solution to the problem. Furthermore, if decisions have to be justified at a higher level, the final

report should provide a vehicle of certification for the model user/decision maker and add to the credibility
of the model and of the model-building process.

Implementation. The success of the implementation phase depends on how well the previous 11
steps have been performed. It is also contingent upon how thoroughly the analyst has involved the ultimate
model user during the entire simulation process. If the model user has been thoroughly involved during the
model-building process and if the model user understands the nature of the model and its outputs, the like-
lihood of a vigorous implementation is enhanced [Prisker, 1995]. Conversely, if the model and its underlying
assumptions have not been properly communicated, implementation will probably suffer, regardless of the
simulation model’s validity.

The simulation-model building process shown in Figure 1.3 can be broken down into four phases. The
first phase, consisting of steps 1 (Problem Formulation) and 2 (Setting of Objective and Overall Design), is
a period of discovery or orientation. The initial statement of the problem is usually quite “fuzzy,” the initial
objectives will usually have to be reset, and the original project plan will usually have to be fine-tuned. These
recalibrations and clarifications could occur in this phase, or perhaps will occur after or during another phase
(i.e., the analyst might have to restart the process).

The second phase is related to model building and data collection and includes steps 3 (Model
Conceptualization), 4 (Data Collection), 5 (Model Translation), 6 (Verification), and 7 (Validation). A con-

tinuing interplay is required among the steps. Exclusion of the model user during this phase can have dire -

implications at the time of implementation.

The third phase concerns the running of the model. It involves steps 8 (Experimental Design), 9
(Production Runs and Analysis), and 10 (Additional Runs). This phase must have a thoroughly conceived
plan for experimenting with the simulation model. A discrete-event stochastic simulation is in fact a statis-
tical experiment. The output variables are estimates that contain random error, and therefore a proper statis-
tical analysis is required. Such a philosophy is in contast to that of the analyst who makes a single run and

draws an inference from that single data point.

The fourth phase, implementation, involves steps 11 (Documentation and Reporting) and 12
(Implementation). Successful implementation depends on continual involvement of the model user and on
the successful completion of every step in the process. Perhaps the most crucial point in the entire process
is step 7 (Validation), because an invalid model is going to lead to ertoneous results, which, if implemented,
could be dangerous, costly, or both; )
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EXERCISES

1. Name entities, attributes, activities, events, and state variables for the following systems:

(a) University library
(b) Bank
(c) Call center
(d) Hospital blood bank
(e) Departmental store
(f) Fire service station
(g) Airport
(b) Software organization )
2. Consider the simulation proceés shovwnvin Figure 1.3.
(a) Reduce the steps by at least two by combining similar activities. Give your ration.ah?. ‘
(b) Increase the steps by at least two by separating current steps or enlarging on existing steps. Give
your rationale. . '
3. A simulation of a major traffic intersection is to be conducted, with the (?bjectlve of improving the cur-
. rent traffic flow. Provide three iterations, in increasing order of complexity, of steps 1 and 2 in the sim-
ulation process of Figure 1.3. . .
ioni i idi discoverat what time a person shou
imulation is to be conducted of cooking a spaghetti dinner to . g 1sh
* ?mir?rl:l order to have the meal on the table by 7:00 PM. Read a recipe for preparing a spaghetti dmntar
(or ask a friend orrelative for the recipe). As best you can, trace wh;{t you understand to be (Eeed;axzt in
the data-collection phase of the simulation process of Figure 1.3, m ordcr. t.o.perform a simulation
-in which the model includes each step in the recipe. What are the events, activities, and state variables
in this system?
List down the events and activities applying for master’s program in a university.

wn

Read an article on the application of simulation related to your major area of study or interestz in t}.1e
current WSC Proceedings, and prepare a report on how the author accomplishes the steps given m

S

3

Figure 1.3.
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7. Get a copy of arecent WSC Proceedi e di icati
e ings and report on the different applications discussed in an area of

8. G ‘ '
eta copy of a recent WSC Procesdings and report ont the most unusual application that you can find

A9. Go tothe W'mtgr Simulation Conference website at: www. wintersi
(a) What advanced ttorials were offered at the previous WSCora
(b) Wbere and when will the next WSC be held?

. organd address the following:
re planned at the next WSC?

10. Go to the Winter Simulation Conference website at www . wintersim.or
(a) _When was the largest (in attendance) WSC, and how many a!tende-d‘?
8) ‘Ishxz?at cal::l:ldizr year, from the beginning of WSC, was there no Conference?
at was the largest expanse of tim inni . ‘
o p ‘ e, from the beginning of WSC, between occurrences of the

d - . 3 - . - V
(d) Beg ning with the 25th WSC, can you discern a pattern for the location of the Conference?

g and address the fi ollowing:

11. "Applicati i si
Search the web for Applications of discrete simulation" and prepare a report based on the findings

. and prepare a report based on the findings.
earch the web for "Call center simulation" and prepare a report based on the findings.

12. Search the web for "Manufacturing simulation"
13.

2

Simulation Examples

This chapter presents several examples of simulations that can be performed by devising a simulation table
either manually or with a spreadsheet. The simulation table provides a systematic method for tracking system
state over time. These examples provide insight into the methodology of discrete-system simulation and the
descriptive statistics used for predicting system performance.

The simulations in this chapter are carried out by following three steps:

1. Determine the characteristics of each of the inputs to the simulation. Quite often, these are modeled
as probability diswibutions, either continuous or discrete.

2. Construct a simulation table. Each simulation table is different, for each is developed for the prob-
lem at hand. An example of a simulation table is shown in Table 2.1. In this example, there are p
inputs, x, j= 1, 2,..., p, and one response, ¥, for each of repetitions (or, trials) { = 1,2,..., n. Initialize
the table by filling in the data for repetition 1. : '

3. For each repetition i, generate a value for each of the p inputs, and evaluate the function, calculat-
ing a value of the response y,. The input values may be computed by sampling values from the
distributions chosen in step 1. A response typically depends on the inputs and one or more previous
responses.

This chapter gives a number of simulation examples in queueing, inventory, reliability, and network
analysis. The two queueing examples provide a single-server and two-server system, respectively. (Chapter 6
provides more insight into queueing models.) The first of the inventory examples involves a problem that
has a closed-form solution; thus, the simulation solution can be compared to the mathematical solution. The
second inventory example pertains to the classic order-level model.

Next, there is an example that introduces the concept of random normal numbers and a model for the

simulation of lead-time demand. The examples conclude with the analysis of a network.

19
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Table 2.1 Simulation Table

Inputs
Repetitions X, x, ox [ 4 Resl;o'we
[ ip i
1
2
3
n

2.1 SIMULA'I'!ON OF QUEUEING SYSTEMS

A - - . . . . ‘
" ;]L;;:::;g Cs:/:;::?y lsatlilzstt:}rllbed by Sts cal.lm.g ?qulatlon, the nature of the arrivals, the service mechanism,
e, » and the queueing discipline. .These attributes of a queueing system are described i ’
; nlilhe sfipttltr 6i,A simple single-channel queueing system is portrayed in Figure 2.1 "
fon sad ,::%hi i:” ;l:irl:el lcgueue, the callmg. popu]atlo.n is infinite; thatis, ifa unit leaves the calling popula-
nond soromee. A peiin g s:e 9r enters service, thi.:re 1§ no change in the arrival rate of other units that could
trey avs eversoms o for I;V“(:;j Rccur one at a time in a random fashion; once they join the waiting line
o vent hyd . In addition, Service umes are of some random length according to a pmbabilit):
ICh does not change over time. The system capacity has no limit, meaning that any number

f units can wait 1 ne. r'n y Vi t 0‘ tllell arrival (()i ten Calledl IF(). hlSt 1n “] St
0 n ll € I: l]all , UNIts are ser ed n he Order N

N y rmed €. I q g IW()lkS m Wlll(:ll units retumn
y xplOSI € or unstable (Iﬂ some re-entr:
bOu d the are terme \{ . ant ueuelng nel
a llllmbel Ot times to the same server bef ore ﬁnally exltlﬂg

. from the system, th iti i
1 e al ystem, the condition that ar;
ess than service rate might not guarantee stability. See Harrison and Nguyen [1995] for more ;;?;;:tt?o?le

Interesti i i ili i i
ngly, this type of Instability was noticed first, not in theory, but in actual manuf: acturing in semicon

000 [O-

" Server

Waiting line

Calling population

Figure 2.1 Queueing system.
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Prior to our introducing several simulations of queueing systems, it is necessary to understand the
concepts of system state, events, and simulation clock. (These concepts are studied systematically in
Chapter 3.) The state of the system is the number of units in the system and the status of the server, busy or
idle. An event is a set of circumstances that causes an instantaneous change in the state of the system. In a
single-channel queueing system, there are only two possible events that can affect the state of the system.
They are the entry of a unit into the system (the arrival event) and the completion of service on a unit (the
departure event). The queneing system includes the server, the unit being serviced (if one is being serviced),
and the units in the queue (if any are waiting). The simulation clock is used to track simulated time.

If a unit has just completed service, the simulation proceeds in the manner shown in the flow diagram
of Figure 2.2. Note that the server has only two possible states: It is either busy or idle.

The arrival event occurs when a unit enters the system. The flow diagram for the arrival event is shown
in Figure 2.3. The unit will find the server eitheridle or busy; therefore, either the unit begins service imme-

diately, or it enters the queue for the server. The unit follows the course of action shown in Figure 2.4. If the
server is busy, the unit enters the queue. If the server is idle and the queue is empty, the unit begins service.
Itis not possible for the server to be idle while the queue is nonempty.

After the completion of a service, the server either will become idle or will remain busy with the next
unit. The relationship of these two outcomes to the status of the queue is shown in Figure 2.5. If the queue
is not empty, another unit will enter the server and it will be busy. If the queue is empty, the server will be idle

Departare
event

Begin server Ne S Yes ) Remove the waiting unit
idle time umt v:r)mnng from the quese
Begin servicing
the unit

Figure 2.2 Service just completed flow diagram.

Arrival
event

No $ Yes

3

Unit enters Unit enters
service Queue for
service

Figure 2.3 Unit enfering system flow diagram.
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Queue status
Not empty Empty
Server | Busy Enter queue | Enter queue
staws | pgie Impossible | Enter service

Figure 2.4 Potential unit actions upon arrival.

Queue status
Not empty Empty
Server | BYY 7777777 Impossible
outeomes | 1dle | Impossivle V7777777

Figure 2.5 Server outcomes dfter the completion of service.

after a service is completed. These two possibilities are shown as the shaded portions of Figure 2.5. It is
impossible for the server to become busy if the queue is empty when a service is completed. Similarly, it is
impossible for the server to be idle after a service is completed when the queue is not empty.

Now, how can the events described above occur in simulated time? Simulations of queueing systems gen-
erally require the maintenance of an event list for determining what happens next. The event list tracks the
future Wmes at which the different types of events occur. Simulations using event lists are described in
Chapter 3. This chapter simplifies the simulation by tracking each unit explicitly. Simulation clock times for
arrivals and departures are computed in a simulation table customized for each problem. In simulation, events
usually occur at random times, the randomness imitating uncertainty in real life. For example, it is not known
with certainty when the next customer will arrive at a grocery checkout counter, or how long the bank teller
will take to complete a transaction. In these cases, a statistical model of the data is developed either from data
collected and analyzed or from subjective estimates and assumptions.

The randomness needed to imitate real life is made possible through the use of “random numbers.”
Random numbers are distributed uniformly and independently on the interval (0, 1). Random digits are
uniformly distributed on the set {0, 1, 2,..., 9}. Random digits can be used to.form random numbers by
selecting the proper number of digits foreachrandomnumber and placing a decimal point to the left of the
value selected. The proper number of digits is dictated by the accuracy of the data being used for input
purposes. If the input distribution has values with two decimal places, two digits are taken from a random
digits table (such as Table A.1) and the decimal point is placed to the left to form a random number.

Random numbers also can be generated in simulation packages and in spreadsheets (such as Excel). For
example, Excel has a macro function called RAND() that returns a “random” number between 0 and 1. When
numbers are generated by using a procedure, they are often referred to as pseudo-random numbers. Because
the procedure is fully known, it is always possible to predict the sequence of numbers that will be generated
prior to the simulation. The most commonly used methods for generating random numbers are discussed in
Chapter 7. ‘ ' '

Ina single-channel queueing simulation, interarival times and service simes are generated from the dis-
tributions of these random variables. The examples that follow show how such simes are generated. For
simplicity, assume that the times between arrivals were generated by rolling a die five times and recording
the up face. Table 2.2 contains a set of five interarrival times generated in this manner. These five interarrival
times are used to compute the arrival times of six customers at the queueing system.

o Ty G W ———p ey g
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" Table 2.2 Interarrival and Clock Times

Interarrival Arrival

Customer Time Time on Clock

Q

AN P W=
O\N"‘&NI
LW O

s

The first customer is assumed to arrive at clock time 0. This starts the: clock in‘operation. The seclong
customer arrives two time units later, at clock sime 2. The third customer arrives four time units later, at cloc]
i ; and so on. . o
tlme’?l;e‘:arslecond time of interest is the service time. Table 2.3 contains service times generated z?t .rand<_>tm
from a distribution of service times. The only possible service times are orlxg,htwo, bftm,g:::ri(::; ﬁ;x;lzz;nsg.
i ikely to occur, these values could have been .
Assuming that all four values areequally li . . ' 1 ated by placing
i he chips from a hat with replacement, g
the numbers one through four on chips and drawing t om a e, bemg sure 10
i jval times and service times must be mes 0 sim
record the numbers selected. Now, the interartiv: 2 meshed to simulals e
i i As is shown in Table 2.4, the first customer arrives .
single-channel queueing system. S ! e fi o T o The socond
i ins servic i tes. Service is completed at clock tim
immediately begins e, which requires two minu S : The second
i is fini that the fourth customer amved at clock.
i t clock time 2 and is finished at clock time 3. Note : e .
fiﬁ???u?sr::isci could not begin until clock time 9. This occurred becausc’ customer 3 did not finish service
il clock time 9. i ~ T
unm'l‘“:al())l(; 2.4 was designed specifically for a single-channel queue thatserve; l(]:ustomer; onla ﬁrsto ;nT;i;ls; ;u;
it lock sime at which each event occurs. The second column y
(FIFO) basis. It keeps track of the c! : e ench dopantne
i i le the last column records the cloc
records the clock time of each arrival event, whi ‘ : ook e 2.6
in chronological order is shown in Table 2.5 and Fig .
event. The occurrence of the two types of events in C ogical order Figure 26
i ‘clock time, in which case the events may or may
1t should be noted that Table 2.5 is ordgred byl ‘ y h . : °
order«tes l:)y customer number. The chronological ordering of events is the basis of the approach to discrete-
i ion described in Chapter 3. . ) o
even;is;zl;.g gepicts the number of customers in the system at the various clock tllmez I‘t is ; vguatl 1m;g;
it is in the system from clock time 0 to clock time~2. Custom
the event listing of Table 2.5. Customer 1 is in t L 2 .V :
erriv:s at clock tir%leZ and departs at clock sime 3. No customers are In the system fromclock time 340 clock

Table 2.3 Service Times

Service
Customer’ Time
1 : 2 )
2 1
3 3
4 2
5 1
6 4

R

TR
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Table 2.4 Simulation Table Emphasizing Clock Times

A

B

c D E
Arrival Time Service ~ Service Time Service
Customer Time Begins Time Ends
Number (Clock) (Clock) (Duration) (Clock)
1 0- 0 2 2
2 2 2 1 3
3 6 6 3. 9
4 7 9 2 11
5 9 11 1 12
6 15 15 4 19
Table 2.5 Chronological Ordering of Events
Customer Clock
Event Type Number Time
Arrival 1 0
Departure 1 2
Armrival 2 2
Departure 2 3
Arrival 3 6
- Ammival 4 7
Departure 3 9
Armival 5 9
Departure 4 11
Departure 5 12
Armrival 6 15
Departure 6 19
§
)
e 2} =
& I 1 t
£ Ll
7 4 5
2 R
g I i 1
) S '

L S —
A
¥ i 1 1 |
E v s bt e
3 Lo : H to i t

o N A R I L H
V 4 3 2 16 20
Clock time

Figure 2.6 Number of customers in the system.
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time 6. During some time periods, two customers are in the system, such as at clock time 8, when customers
3 and 4 are both in the system. Also, there are times when events occur sxmultaneously, such as at clock time 9,
when customer S arrives and customer 3 departs.

Example 2.1 follows thelogic described above while keepmg track of a namber of attnbutes of the system.
Example 2.2 is concerned with a two-channel queueing system. The flow dlagrams for a multichannel queueing

- system are slightly different from those for a single-channel system. The development and interpretation of

these flow diagrams is left as an exercise for the reader.

Example 2.1: Smgle-Channel Queue
A small grocery store has only one checkout counter. Customers arive at this checkout counter at random
times that are from 1 to 8 minutes apart. Each possible value of interarrival time has the same probability of
occurrence, as shown in Table 2.6. The service times vary from | to 6 minutes, with the probabilities shown
in Table 2.7. The problem is to analyze the system by simulating the arrival and service of 100 customers.

In actuality, 100 customers is too small a sample size to draw any reliable conclusions. The accuracy of
the results is enhanced by increasing the sample size, as is discussed in Chapter 11. However, the purpose
of the exercise is to demonstrate how simple simulations can be carried out in a table, either manually or with
a spreadsheet, not to recommend changes in the grocery store. A second issue, discussed thoroughly in
Chapter 11, is that of initial conditions. A simulation of a grocery store that Starts with an empty system is
not realistic unless the intention is to model the system from startup or to model until steady-state operation
is reached. Here, to keep calculations simple, starting conditions and concems are overlooked.

" Table é.& Distribution of Time Between Arrivals

Time between :

Arrivals Cumulative Random Digit
(Minutes) Probability Probability Assignment
1 0.125 0.125 001-125

2 0125 0.250 126-250
3 - 0.125 0.375 251-375
-4 0125 . 0.500 | .376-500
5 0.125 0.625 501-625
6 0.125 0.750 626-750
7 0.125 0875 .751-875
8 0.125 1.000 . 876-000
Table 2.7 Service-Time Distribution
Service Time Cuwnulative Random Digit
(Minutes) Probability Probability Assignment
1 0.10 ~ 010 01-10
2 0.20 0.30 11-30
3. 0.30 © 060 31-60
4 0.25 085 - 61-85
5 0.10 095 - 86-95
6 0.05 1.00 96-00
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A set of uniforrnly distributed random numbers is needed to generate the arrivals atthe checkout counter.
Such random numbers have the following properties:

1. - The set of random numbers is uniformly distributed between 0 and 1.
2. Successive random numbers are independent.

With tabular simulations, random digits such as those found in Table A.1 in the Appendix can be con-
verted to random numbers. Random digits are converted to random numbers by placing a decimal point
appropriately. Since the probabilities in Table 2.6 are accurate to 3 significant digits, three-place random
numbers will suffice. It is necessary to list 99 random numbers to generate the times between arrivals. Why
only 99 numbers? The first arrival is assumed to occur at time 0, so only 99 more arcivals need to be
generated to end up with 100 customers. Similarly, for Table 2.7, two-place random numbers will suffice.

The rightmost two columns of Tables 2.6 and 2.7 are used to generate random artivals and random service
times. The third column in each table contains the cumulative probability for the disiibution. The rightmost
column contains the random digit assignment. In Table 2.6, the first random digit assignment is 001-125.
There are 1000 three-digit values possible (001 through 000). The probability of a time-between-arrival of
1 minute is 0.125, so 125 of the 1000 random digit valuesare assigned to such an occurrence. Times between
arrival for 99 customers are generated by listing 99 three-digit values from Table A.1 and comparing them
to the random digit assignment of Table 2.6. . : ,

For manual simulations, it is good practice to start at a random position in the random digit table and
proceed in a systematic direction, never re-using the same stream of digits in a given problem. If the same
pattern is used repeatedly, bias could result from the same pattern’s being generated.

The time-between-arrival deterination is shown in Table 2.8. Note that the first random digits are 064.
To obtain the corresponding time between arrivals, enter the fourth column of Table 2.6 and read 1 minute
from the first column of the table. Alternatively, we see that 0.064 is between the cumulative probabilities
0.001 and 0.125, again resulting in 1 minute as the generated time.

Service times for the first 18 and the 100th customers are shown in Table 2.9. These service times were
generated via the methodology described above, together with the aid of Table 2.7. (The entire table can
be generated by using the Excel spreadsheet for Example 2.1 at www.bcnn.net.) The first customer’s service
time is 4 minutes, because the random digits 84 fall in the bracket 61-85—or, altematively, because the
derived random number 0.84 falls between the cumulative probabilities 0.61 and 0.85.

Table 2.8 TimeBetween-Arrival Determination

Time between Time between
Random Arrivals Random Arrivals
Customer Digits (Minutes) Customer Digits (Minutes)
1 — — n 413 4
2 064 1 12 462 4
3 112 1 13 843 7
4 678 6 14 738 6
5 289 3 15 359 3
6 871 7 16 888 8
7 583 5 17 902 8
8 139 2 18 212 2
9 423 4 : T :
10 039 1 100 - 538 5

H
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Table 2.9 Service Times Generated

Service Se;:wce
Random Time Rar.ta'_om 7,""2
Customer Digits (Minutes) Customer Digits (Minutes)

1 84 4 11 94 5
2 18 2 12 32 ) 3
3 87 5 13 79 4
4 81 4 14 92 5
5 06 1 15 46 3
6 91 5 16 21 2
7 79 4 17 73 4
8 09 1 18 5 5 3
4 Cd : :
190 g‘; 3 100 26 2

The essence of a manual simulation is the simulation table. The'se tabl'es arel::es;gnet;jl ef(;z ,:hf:crs:rl,f:l
at hand, with columns added to answer the questions posed. The snmulau(?n tal X le 20; e o l_gs oo

,hown in Table 2.10, is an extension of the type of table already seen in Table 2.4. irststep is
‘ilr:lifil::i’zse the table by filling in cells for the first customer. The first customer is assumed to arrive a .

i ins i i i i . The customer was in the system for 4 minute}s. After t'he
fi::llcclfs?(fngl:]rs ;Tl;:fs;?:tl);;:/: 2!1‘1181:6;;:; l:rl: gased on the random numbers for imerarrival. nm:: i;;\gcle
: .
i, ndthe complton ime o e revios st B SR L L e T second
But service could not begin until time 4; the server . The seeot
ited i i e second customer was in the system for 5 mm.ul s. Skip
Zuswnt]grt:::ag?gll:l:sl:z;l;fugé(:/rict:tr:i;su:tu ttine’rlhé but the sixth customer does not.arrive until (ll‘fle 18,let-
v\(/)}:::h time service began. The server (checkout person) was idle for two mm.u:fzs.l'l"nl:::sa S:::(S)Sf ;::f[:,r:::nce,
11 100 customers. The rightmost two columns have been addf:d to ?ollec.t statis ica f ance,
] h ach customer’s time in system and the server’s idle time (if any) since th.e previous c
Zl;;ar?:dfln order to compute summary statistics, tgtals are forrnedas sho_wp f[?lrese:lveljz times, time customers
spend in the system, idle time of the server, anfi time the customers wlalt nT queue.
Some of the findings from the simulation in Table 2.10 are as follows:

i isi i ing manner:
1. The average waiting time for a customer is 1.74 minutes. This is computed in the following

Average waiting time _ total timecustomers wait inqueue (minutes)

(minutes) total numbersof customers
= 1—7}4 =1.74 minutes
100

2. The probability that a customer has to wait in the queue is 0.46.
manner: |

numbers of customers who wait
total number of customers

probability(wait) =

=% _o46
100

This is computed in the following
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Table 2.10 Simulation Table for Single-Channel Queveing Problem

Clock

Clock

Clock

Idle Time
of Server

Waiting Time Time Time Customer
in Queue Service

Time

Service

Interarrival

Spends in System

Time Service

(Minutes)

Arrival

Time

(Minutes)

(Minutes)

(Minutes) Ends (Minutes)

Begins

Time

Customer

-~

11
15
.16

(32

i1
15
18
23

11
18
23

23
27

28

27

25

33
36
41

29
33

29
30
34
38
45

36
41

11

12
13

49
56
59

45

51

51

14

15
16

56
62

54

62
- 70

«n OO«

74
77

74
79
83

N on

72

18

80
85

7
- 83

19 .

2

4

20 -

418

416

N

415

100

Total

—

<t

174

o~
ot
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3.

&

The proportion of idle time of the server is 0.24. This is computed in the following manner:

probability of idle _
server

total idle time of server (minutes)
" total run time of simulation (mmutes)

=10 024
418

The probability of the server’s being busy is the complement of 0.24, namely, 0.76.
The average service time is 3.17 minutes. This is computed in the following manner:

Average service time _
(minutes)

tosal service time (minutes)
total number of customers

= 13—3%=3 17 ninutes

“This result can be compared with the expected service time by finding the mean of the service-time

distribution, using the equation
E(S)=Y,sp(s)
5=

Applying the expected~value equation to the distribution in Table 2.7 gives

Expected service time =
1(0.10) + 2(0 20) + 3(0.30) +4(0.25) + 5(0. 10) +6(0.05) = 3 2 minutes

The expected service time is slightly higher than the average service time in the simulation. The
longer the simulation, the closer the average will be to E(S).
The average timebetween arrivals is 4. 19 minutes. This is computed in the following manner:

sum of all times
Average time betwecn _: between arrival (minutes)

arrivals (minutes) number of arrivals -1
‘ 415, '

=—=419 mmutes
99

One is subtracted from the denommator because the first arrival is assumed to occur at time 0. This
result can be compared to the expected time"betwsen arrivals by finding the mean of the discrete
uniform distribution whose endpomts area= 1 and b = 8. The mean is given by

E(A)= ﬂb‘ = .l.ﬁ =4.5 minutes

22

The expected time between arrivals is sllghtly hlgher than the average However, as the simulation
becomes longer, the average value-of the time between arrivals should approach the theoretical

mean, E(A).
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6. The average waiting time of those who wait is 322 minutes. This is computed inthe following manner:

Average waiting time of ] N .
those who wiit -, total time customers wait in queue (minutes)
(minutes) total number of customers that wait

= E =322 minutes
54

7. The average time a customer spends in the system is 4.91 minutes. This can be found in two ways.
First, the computation can be achieved by the following relationship:

Average time customer  total time customers spend in the
spends in the system _ Sy§tem (minutes)
(minutes) total number of customers.

= 91 =491 minutes i
100

The second way of computing this same result is to realize that the following relationship must hold:

Average titne

average time average time

customer spends - customer spends  customer spends
in the system waiting inthe  + in service
(minutes) queue (minutes) (minutes)

From findings 1 and 4, this results in

Average time customer spends in the system = 1.74 + 3.17 =4.91 minutes

A decision maker would be interested in results of this type, but a longer simulation would increase the
accuracy of the findings. However, some tentative inferences can be drawn at this point. About half of the
customers have to wait; however, the average waiting time is not excessive. The server does not have an
undue amount of idle time. More reliable Statements about the results would depend on balancing the cost
of waiting against the cost of additional servers,

Excel spreadsheets have been constructed for each of the exam
be found at www.bcnn.net, The spreadsheets have a common fori
sheet is Experiment. The third sheet is entitled Ex

ples in this chapter. The spreadsheets can
mat. The firstsheet is One-Trial. The second

plain. Here, the logic in the spreadsheet is discussed, and
questions pertaining to that logic are asked of the reader. Use ‘the default seed ‘12345 to reproduce the

One-Trial output shown in the examples in the text, and use the appropriate number of trials (or replications)
to reproduce the Experiment shown in the text, again using the default seed *12345".

Exercises relating to the spreadsheets have been prepared also. These are the last set of exercises at the
end of this chapter. The first set of exercises is f or manual simulation.

The spreadsheets allow for many entities to flow through the system. (In Example 2.1, the entities are
i , the spreadsheet for Example 2.1 has 100 customers going through thé system, and
. ay that 200 trials are selected. Then, 200 trials of the
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ForExainple 2.1, the frequency of waiting time in quepe for the first trial of .10‘0 custon;e.rs is ‘sh:i\::t; :
Figure 2.7. (Note: In all histograms in the remainder of this chaptef, t'he upper limit of thtt? 1;1 Is mViOUSIy
on the legend on the x-axis, even if the legend is showq centered w1‘thm the bm.) As mention gﬁtés) A
46% of them did not have to wait, and 42% waited less than fourA mmutes-(.but n'10re than ;gr;‘ Irl; s 1 %

From the Eiperiment sheet of the Excel spreadshget, tl}ej average waiting tlme' ove; N va " aver;, ’
minutes. Figure 2.8 shows a histogram of the 50 averagle vs;):{ﬁmg times for the 50 trials. The over g

i is just to the right of the two most popular bins. o
(ljmlgzgsgisesj ask that yof experiment with this spreadsheet. But, you f:an also expemfl:lnt‘ or:e);zu;fos&gr;
todiscover the effect of randomness and of the input data. For example, what if you run 400 trials ins ?

Frequency of Waiting Time in Queue

Occurrences

0 2 4 6 8 10 R 14 16 18
Upper limit of kin

Figure 2.7 Frequency of waiting time in queve.

Bin FIC(]UBI\C}; (N;), of Trials with Avg. Cust. Waiting Time in each bin)
18 T . -

Occurrénces (No. of Trials)
1)
i

00 05 10 15 20 25 30 35 40 45

Bin

Figure‘;-2.8 Frequér;\;:y distribution of average waiting fimes.
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Does the shape of the distribution in Figure 2.8 change? What if you run 25 trials instead of 50? How much
does the shape change as you generate new trials?

Example 2.2: The Able-Baker Call Center Problem
This example illustrates the simulation procedure when there is more than one service channel. Consider a
computer technical support center where personnel take calls and provide service. The time between calls
ranges from 1 to 4 minutes, with distribution as shown in Table 2.11. There are two technical support
people—Able and Baker. Able is more experienced and can provide service faster than Baker. The distribu-
tions of their service times are shown in Tables 2.12 and 2.13. Times are usually a continuous measure.
But, in this and other time-based examples in'this chapter, we make them discrete for ease of explanation.

The simulation proceeds in a manner similar to Example 2.1, except that it is more complex because
of the two servers. A simplifying rule is that Able gets the call if both technical support people are idle.
Able has seniority. (The solution would be different if the decision were made at random or by any other
rule)) .

The problem is to find how well the current arrangement is working. To estimate the system measures
of performance, a simulation of the first 100 callers is made. A simulation with more callers would yield
more reliable results, but, for purposes of this illuswation, a 100-caller simulation has been selected.

Table 2.11 Interarrival Distribution of Calls for Technical Support

Time between Cumulative Random-Digit
Arrivals (Minutes) Probability Probability Assignment
1 025 025 01-25
22 0.40 0.65 26-65
3 020 0.85 66-85
4 0.15 1.00 86-00

Table 2.12 Service Distribution of Able

Service Time Cumulative Random-Digit
{Minutes) Probability Probability - Assignment
) . 030 7030 01-30
3 028 - - 058 31-58
4 .025 083’ 59-83
5 0.17 .00 84-00

Table 2.13 Service Distribution of Baker

Service Time oo Cumidative - Random-Digit
(Minutes) - - Probability . - Probability Assignment
3 035 035 01-35
4 0.25 0.60 36-60
s 0.20 0.80 61-80
6 10.20 " 100 81-00

i
i
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The simulation proceeds in accordance with the following set of steps:

Step 1. For Caller k, generate an interarrival time A,. Add it to the previous arrival time T,_, to get the arrival
time of Caller kas T, = T,_, + A, ’

Step 2. If Able is idle, Caller kbégins service with Able at the current time T .

Able’s service cor.npletﬁon tin.le, T A is given by Tea=Tg+ T, o whereT_ , is the service time generated
from Able’s Service Time Distribution.

“Caller k's time in system, T s is givep by Tw = Tﬁn_ A~ T

Because Able was idle, Caller k's delay, T, ,, is given by T, ., = 0.

If Able is busy, but Baker is idle, Caller k begins service with Baker at the current time 7 _,,, Baker’s ser}/ic:,e
completion time, Ty, ; is givenby T, ;= T, +T, zwWhereT 5 is the service time generated from BaKer’s
Service Time Distribution. -

Caller k’s time in system, Twv is given by Tw =Ton™ 7.
Because Baker was idle, Caller £’s delay, T, ., isgivenby T, =0.

Step 3. If Able and Baker areboth busy, then calculate the time at which the first one becomes available, as
follows:

T

beg = min(T,

+ Tonp)-
Caller k begins service at T, . When service for Caller k begins, set T, =T, .

Then compute T, , or T, 5 as in Step2. L ‘

Caller k’s time in system, T, is givenby T = Ten— T,orT = Ths— Tp as aPpmpnate. o

The preceding steps have been implemented in an Excel spreadsheet that is available on the websxt‘e
www.bcnn.net. The eeader is strongly encouraged to examine the Excel spreadsheet with particular emphasis
on how the cell values are calculated. Also, there are exercises at the end of this chapter that ask the reader
to run a variety of experimens using the spreadsheet. R . .

A portion of the output in the Excel spreadsheet is given in Table 2.14 to clarify the steps Prevnoutf.ly
listed. Caller 1 arrives at clock time 0 to get the simulation started. Able is idle, so Caller 1 begins service
with Able at clock time 0. The service time, 2 minutes, is generated from information given in' Table 2.12 by :
following the procedure in Example 2.1. Thus, Caller 1 completes service at clock time 2 minutes and was
not delayed. ’ ’ o

An interarrival time of 2 minutes is generated from Table 2.1 by following the procedure in Example 21
So, the arrival of Caller 2 is at clock time 2 minutes. Able is idle at the time, having. just completed service
on Caller 1, so Caller 2 is served by Able. : ) - o

Now, skip down to Caller 4, serviced by Able fromclock time 8 minutes to clocktime .12 mmu,;es. Not'e
that Caller 5 arrives at clock #ime 9 minutes. Because Able is busy with Caller 4 at that time, bu; Baker is
available, Baker services Caller 5, completing service at clock time 12 minutes. ) 3 )

For the trial under discussion (the simulation of 100 callers), the frequency diagram shown in Figure 2.9
(from the Excel spreadsheet in www.bcnn.riet) shows that 62 of 100 (62%) of the callers had no delay, 12%

ad a delay of one or two minutes, and so on. ; . ’ _ '
" The d)i’stribution in Figure 2.9 is skewed to thie'right. Push ‘Generate New Trial’ ‘repeatedly and notice -
that this is usually what happens, but not always. ‘Generate New T;ial’,mgalg:ulates the spreadspcet for one
trial (100 calles). One trial does not-provide sufficient information on whfch.tf) fc?;rnza' conc.lus1lon, but this
is one of the great advantages to having the spreadsheet—the effect of vanablhty is quite evident.
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“"g s 2 E o o= In Table 2.14, it is seen that the total customer delay was 211 minutes, or about 2.1 minutes per caller.
8] § <3 Te= R It is also seen in Table 2.14 that the total time in system was 564 minutes, or about 5.6 minutes per caller.
) < In the second sheet of the spreadsheet, we run an experiment with 400 trials (each trial consisting of the
% Y simulation of 100 callers) to generate Figure 2.10. It is seen that about 19% of the average delays (78 of 400)
8 S S NG oo D are longer than one minute. Only 2.75% (11 of 400} are longer than 2 minutes.
O b o g
< In summary, one server cannot handle all the callers, and three servers would probably be more than are
q necessary. Adding an additional server would surely reduce the waiting time to nearly zero; however, the cost
E v § : of waiting would havé to be quite high to justify an additional server.
8 é 8 N F e
§$7F
= ~—
= 2.2 SIMULATION OF INVENTORY SYSTEMS
I .
.5 ) o . . .
2 0 - . 0 - .. -
5; E|moeo . § E An important class of simulation problems involves inventory systems. A simple inventory system 1S shown
V= in Figure 2.11. This inventory system has a eriodic review of length N, at which time the inventory level
gure 2.1 y P . .
is checked. An orderis made to bring the inventory up to the level M. At the end of the first review period,
34 an order quantity, G, is placed. In this inventory system, the lead time (i.e., the length of time between
the placement and receipt of an order) is zero. Demands are not ustially known with certainty, so the order

¢ vt oo st
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Figure 2.11 Probabilistic order-level inventory system.

quantities are probabilistic. Demand is shown as being uniform over the time period in Figure 2.11. In actuality,

demands are not usually umiforin and do fluctuate over time. One possibility is that demands all occur at the
beginning of the cycle. Another is that the lead time is random of some positive length.

Notice that, in the second cycle, the amount in inventory drops below zero, indicating a shortage.
In Figure 2.11, these units are backordered; when the order arrives, the demand for the backordered items is
satisfied first. To avoid shortages, a buffer, or safety, stock would nead to be carried.

Carrying stock in inventory has an associated cost attributed to the interest paid on the funds borrowed
to buy the items (this also could be considered as the loss from not having the funds available for other
investment purposes). Other costs can be placed in the carrying or holding cost colunm: renMng of storage
space, hiring of guards, and so on. An alternative to carrying high inventory is to make more frequent reviews
and, consequently, more frequent purchases or replenishments. This has an associated cost: the ordering cost.
Also, there is a cost in being short. Customers could get angry, with a subsequent loss of good will. Larger
mventories decrease the possibilities of shortages. These costs must be traded.off in order to minimize the
total cost of an inventory system. .

The total cost (or total profit) of an inventory system is the measure of perfoninance. This can be affected
by the policy alternatives. For example, in Figure 2.11, the decision maker can control the maximum inven-
tory level, M, and the length of the cycle, N. What effect does changing N have on the various costs?

In an (M, N) inventory system, the events that may occur are the demand for items in the inventory, the
review of the inventory position, and the receipt of an order at thé end of each review period. When the lead
time is zero, as in Figure 2.11, the last two events occur simultaneously. ‘ ‘

In the following example for decidinghow many newspapers to buy, only a single time period of specified

length is relevant, and only a single procurement is made. Inventory remaining at the end of the single time

period is sold for scrap or discarded. A wide variety of real-world problems are of this form, including the
stocking of spare parts, perishable items, style goods, and special seasonal items [Hadley and Whitin, 1963].

Example 2.3: The News Dealer’s Problem - S . LA

A classical inventory problem concerns the purchase and sale of newspapers. The newsstand buys the papers
for 33 cents each and sells them for 50 cents each. Newspapers not sold at the end of the day are'sold as scrap
for 5 cents each. Newspapers can'be purchased in bundles of 10. Thus, the newsstand can buy 50, 60, and so on.
There are three types of newsdays: “good”; “fair™; and “poor”; they have the probabilities 0.35, 0.45, and 0.20,
respectively. The distribution of newspapers demanded on' each of these days is given:in Table 2.15.

The problem ‘is to compute the optimal number of papers the newsstand should -purcliase. This will be -

accomplished by simulating demands for 20 days and recording profits from sales each day.
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Table 2.15 Distribution of Newspapers
Demanded Per Day

Demand Probability Distribution
Demand Good Fair Poor
40 0.03 0.10 0.44
50 0.05 0.18 0.22
60 0.15 0.40 0.16
70 . 0.20 0.20 0.12
80 0.35 0.08 0.06

90 0.15 0.04 000 -
100 0.07 0.00 0.00

The profits are given by the following relationship:

cost of lost profit from N (salvage from sale)
newspapers) \excessdemand of scrap papers

Gt revenue
profit= from sales

From the problem statement, the revenue from sales is 50 cents for each paper sold. The cost of newspapers
is 33 cents for each paper purchased. The lost profit from excess demqnd is 17 cents for each paper demanded
thatcould not be provided. Such a shortage cost is somewhat controversial, but makes the problem much more
interesting. The salvage value of scrap papers is S cents each.

Tables 2.16 and 2.17 provide the random digit assignments for the types of newsdays and the. demands
for those newsdays. To solve this problem by simulation requires setting a policy of‘buying a certfaln number
of papers each day, then simulating the demands for papers over the 20-day time period to fietem}me the total
profit. The policy (number of newspapers purchased) is changed to other values and the simulation repeated
until the best value is found. »

The simulation table for the decision to purchase 70 newspapers is shown in Table 2.18.

Onday 1, the demand is for 80 newspapers, but only 70 newspapers are available. Thf: revenue from the
sale of 70 newspapers is $35.00. The lost profit for the excess demand of 10 newspapers is $1.70. The profit
for the first day is computed as follows:

Profit = $35.00 — $23.10- $1.70 + 0 = $10.20

On the‘fourth day, thedemand s less than the supply. The revenue from sales of 50 newspapers is $25.00.
Twenty newspapers are sold for scrap at $0.05 each yielding $1.00. The daily profit is determined as follows:

Profit = $25.00 - $23.10 - 0+ $1.00 = $2.90

Table 2.16 Random Digit Assignment for Type of Newsday

‘ Cwmulative - Random Digit
Bpe of Newsday Probability Probability Assignment
‘Good 0.35 . 035 01-35
Fair 1045 0.80 36-80
Poor - 020 1.00 81-00
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Table 2.17 Random Digit Assignments for Newspapers Demanded

Cumulative Distribution Random Digit Assignment

Demand Good Fair Poor Good Fair Poor

40 0.03 0.10 0.44 01-03 01-10 01-44

50 0.08 0.28 0.66 04-08 11-28 45-66

60 0.23 0.68 0.82 09-23 29-68 67-82

70 0.43 0.88 0.94 24-43 69-88 83-94

80 0.78 0.96 1.00 44-78 89-96 95-00

90 0.93 1.00 1.00 79-93 97-00

100 1.00 1.00 1.00 94-00

Table 2.18 Simulation Table for Purchase of 70 Newspapers

Random
Digits for Random Revenue  Lost Profit Salvage
Type of Tyeof  Digits for from from Excess  from Sale Daily
"Day  Newsday Newsday  Demand  Demand Sales Demand of Scrap Profit
1 58 Fair 93 80 $35.00 $1.70 - $10.20
2 17 Good 63 80 35.00 L.70 - 10.20
3 21 Good 31 70 35.00 - - 11.90
4 45 Fair 19 50 25.00 - 1.00 2.90
5 43 Fair 91 80 35.00 1.70 - 10.20
6 36 Fair 75 70 35.00 - - 11.90
7 27 Good 84 90 35.00 3.40 - 8.50
8 73 Fair 37 60 30.00 - 0.50 7.40
9 86 Poor 23 40 20.00 - 1.50 -1.60
10 19 Good 02 40 20.00 - 1.50 -1.60
i1 93 Poor 53 50 25.00 - 1.00 290
12 45 Fair 96 80 . 35.00 1.70 - 10.20
13 47 Fair 33 60 © 3000 - 0.50 7.40
14 30 Good 86 90 35.00 3.40 - 8.50
15 12 Good 16 60 30.00 - 0.50 7.40
16 41 Fair 07 40 20.00 - 1.50 -1.60
17 65 Fair 64 60 30.00 - 0.50 7.40
18 57 Fair 94 80 35.00 1.70 - 10.20
19 C 18 Good 55 80 35.00 1.70 - 10.20
20 98 Poor 13 40 20.00 - 1.50 -1.60
$600.00 $17.00 $10.00 $131.00 .

The profit for the 20-day period is the sum of the daily profits, $131.00. It can also be computed from the
totals for the 20 days of the simulation as follows:

Total profit = $600.00 — $462.00 + $17.00 — $10.00 = $131.00

where the cost of newspapers for 20 days is (20 x $0.33 x 70) = $462.00. In general, because the results of
one day are independent of previous days, inventory problems of this type are easier than queueing problems
when solved in a spreadsheet such as is shown in www.bcnn.net and discussed shortly.

Figure 2.12 shows the result of 400 trials, each of twenty days, with a policy of purchasing 70 newspa-
pers per day. For these trials, the average total (20-day) profit was $137.61. The minimum 20-day profit was
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. Histogram (Bin Frequencies)
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Figure 2.12 Frequency of total {20-day} profits with purchasing of 70 newspapers per day.

$64.70 and the maximum was $186.10. Figure 1.12 shows that only 45 of the 400 trials resulted in a total
20-day profit of more than $160. .

The manual solution shown in Table 2.18 had a profit of $131.00. This one 20-day is not far from the
average over the 400 trials, $137.61; but the result for one 20-day simulasion could have been the minimum
value or the maximum value. Such an occurrence demonstrates the usefulness of conducting many trials.

On the One Trial sheet, look at the Daily Profit that results when clicking the button ‘Generate New
Trial’. The results vary quite a bit both in the histogram called ‘Frequency of Daily Profit’ (showing what
happened on each of the 20 days) and in the total profits for those 20 days. The histograms are almost like
snowflakes, in that no two are alike! The first two histograms generated are shown in Figure 2.13.

Frequency of Daily Profit

Occurrences

I T T @
Upper limit of bin

Frequency of Daily Profit

Qccutrences

Upper limit of bin
Figure 2.13 First two histograms of daily profit.
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Example 2.4: Simulation of an Order-Up-To-Level Inventory System § 3 § ]l =] | | lA =1t =111
Consider a situation in which a company sells refrigerators. The system they use for maintaining inventory §‘ C<
is to review the situation after a fixed number of days (say N) and make a decision about what is to be done.
The policy is to-order up to a level (the order up to le\?gal—say, M), using the following relationship: . g
- . P . SE s e = -
Order quantity = (Order-up-to level) ~ (Ending inventory) + (Shortage quantity) '§ I
Let’s say that the order-up-to level (M) is 11 and the ending inventory is three. Further, let’s say that the .
review period (N) is five days. Thus, on the fifth day of the cycle, 8 refrigerators will be ordered from the §8% Lt leal o]
supplier. If there is a shortage of two refrigerators on the fifth day, then 13 refrigerators will be ordered, 3 ;2; g T T T O O A
(There can’t be both ending inventory and shortages at the same time.) If there were a shortage of three < aq
refrigerators, the first three received would be provided to the customers when the order arrived. That’s called i
“making up backorders” The lost sales case occurs when customer demand is lost if the inventory is not § £ 5 £ - llafl 121118
available. o . ; % ‘O\EE T = T A O = -
The number of refrigerators ordered each day is randomly distributed as shown in Table 2.19. Another i & =
source of randomness is the number of days after the order is placed with the supplierbeforearrival, or lead g‘ ® A ) ©
time. The distribution of lead time is shown in Table 2.20 Assume that the orders are placed at the énd of the f 5 %O flocccoco~cococ~mooccocccommooo o il
day. If the lead time is zero, the order from the supplier will arrive the next morning, and the refrigerators [ z ] &
will be available for distribution that next day. If the lead time is one day, the order from the supplier arrives : by @
the second morning after, and will be available for distribution that day. i = o B o &
The simulation has been started with the inventoty level at 3 refrigerators and an order for 8 refrigera- 5 § 3 O INN~ONMOCoVNHNANNNOS W™ ‘_.}\9 5
tors to arrive in 2 days’ time. The simulation table is shown in Table 2.21. ) i “'3 15 .
Following the simulation table for several selected days indicates how the process operates. The order for .'g )
8 refrigerators is available on the morning of the third day of the first cycle, raising the inventory level from = 3 - |
zero refrigerators to 8 refrigerators. Demands during the remainder of the first cycle reduced the ending inven- : 8 i Bala BBl A R R B e
tory level to 2 refrigerators on the fifth day. Thus, an order for 9 refrigerators was placed. The lead time for this H 2 a
order was 2 days. The order for 9 ref rigerators was added to inventory on the morming of day 3 of cycle 2. u§>
. : £8 Y — ey
: N 15|98 R282308T 998988385023 2F
b k)
Table 2.19 Random Digit Assignments for Daily Demand : ‘; Rl
Cumulati Random Digit 5 3 5 2,
umuiative andom Digi : - S - - ~
Demand Probability Probability Assignment 5 S lonowrna~anmoo R AR RS
. [
0 0.10 0.10 01-10 i &
1 0.25 0.35 11-35 i .
2 0.35 0.70 36-70 £ ,
3 021" 0.91 71-91 '§§ —NOatTnN—~ANNTN—~ANTFN ~AO TN =N O TN
4 009 1.00 92-00 &
i % .«—.ﬁmnwmummmmc;vmw‘vvvvv‘ﬂnnwm
Table 2.20 Random Digit Assignments for Lead Time ; G
B Q
by o
Lead Time Cumulative  Random Digit > ~vamwbwme:ﬁaxr}ﬁ:;‘SQS'RQ‘&"ﬁmg§
{Days) Probability Probability " Assignment Q <
1 0.6 0.6 i-6 !
2 03 09 S 71-9
3 .01 1.0 0

41
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Notice that the beginning inventory on the fifth day of the fourth cycle was 2. An order for 3 refrigerators
on that day led to a shortage condition. One refrigerator was backordered on that day. Twelve refrigerators were
ordered (11 + 1), and they had a leéad time of one day. On the next day, the demand was two, so additional short-
ages resulted.

At the beginning of the next day, the order had arrived. Three refrigerators were used to make up the
backorders and there was a demand for one refrigerator, so the ending inventory was 8.

- From five cycles of simulation, the average ending inventory is approximately 2.72 (68/25) units, On 5
of 25 days, a shortage condition existed.

In this example, there cannot be more than one order outstanding from the supplier at any time, but there
are situations where lead times are so long that the relationship shown so far needs to be modified to the

followmg:

Order quantity = (Order-up-to level) — (Ending inventory) — (On :wder) + (Shortage quantity)

This' relatif)ns}?ip makes sure that extra ordering doesn’t occur. To make an estimate of the mean refrigera-
tors 1}1 etfdmg mventory by usig simulation, many wials would have to be simulated. The Excel spreadsheet
solution in www.bcnn.net offers an opportunity to perform such a simulation.

The Excel spreadsheet .allow‘s for numerous changes in the input. The policy can be changed (i.e., the
values of M and N). ’?’he dlsﬁbll.uon of daily demand and lead time can be changed within the limits of
:)he demand and lead fxrge—that is, demand can be 0, 1, 2, 3, or 4 refrigerators per day and lead times can

el, 2,-(:; 3 ;i:y;. ghc}f[l‘ng on Generate New Trial will recalculate the spreadsheet. Looking at one figure
after another in the One Trial sheet, with the values as given in the problem state V
by o orher In the On gi p ment above shows that there

Howeyer, sett%ng_tpe l}umber of trials to 100 in the Experiment sheet and recalculating the spreadsheet
pr(l)duc?hs litele variability in the average inventory. It’s usually in the range from 2.69 to 3.01 leaving the
values the same as in the problem definition above. Nor is there much chan e in the distributi '

aes i . ! ¢
ending iventory, as shown in Figure 2.14. g e cldbuion ofthe average

Frequency Distribution of Average Ending Inventory

45 a4

Gecutrences (No. of Trials)

0 6.0 0 0
. i T T | i
6 1 2 3 4 5 6 7 8 9 10 >10
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2.3 OTHER EXAMPLES OF SIMULATION

This section includes examples of the simulation of a reliability problem, a bombing mission, the generation of
the lead-time demand distribution when given the distributions of demand and lead time, and an activity network.

Example 2.5: A Reliability Problem
A milling machine has three different bearings that fail in service. The diskibution of the life of each bearing
is identical, as shown in Table 2.22. When a bearing fails, the mill stops, a repairperson is called, and a new
bearing is installed. The delay time of the repairperson’s arriving at the milling machine is also a random
variable having the distribution given in Table 2.23. Downtime for the mill is estimated at $10 per minute.
The direct on-site cost of the repairpersen is $30 per hour. Ittakes 20 minutes to change one bearing, 30 minutes
to change two bearings, and 40 minutes to change three bearings. A proposal has been made to replace all
three bearings whenever a bearing fails. Management needs an evaluation of the proposal. The total cost per
10,000 bearing-hours will be used as the measure of perf ormance.

Table 2.24 represents a simulation of 15 beaning changes under the current method of operation. Note
that there are instances where more than one bearing fails at the same time. This is unlikely to occur in practice
and is due to using a rather coarse grid of 100 hours for bearing life. It will be assumed in this example that
the times are never exactly the same and thus no more than one bearing is changed at any breakdown.
The cost of the current system is estimated as follows:

Cost of bearing = 45 bearings x $32/bearing = $1,440 |

Cost of delay time = (110 + 110 + 105) minutes X $10/minute = $3,250

Cost of downtime during repair = 45 bearings x 20 minutes/bearing X $10/minute = $3,000
Cost of repairpersons =45 bearings x 20 minutes/bearing x $30/60 minutes = $450

Total cost = $1,440 + $3,250 +$9,000 + $450 = $14,140

The total life of the bearings is (22,300 + 18,700 + 18,600) = 59,600 hours. Therefore, the total cost per

10,000 bearing-hours is ($14,140/5.96) = $2,372.
Table 2.25 is a simulation of the proposed method. Note that the random digits are not shown. For the

first set of bearings, the earliest failure is at 1,000 hours. All three bearings are replaced at that time, even
though the remaining bearings had more life in them. For example, Bearing 1 would have lasted 700 addi-

tional hours.

Toble 2.22 Bearingife Distribution

Bearing .

Life Cumulative Random Digit
(Hours) Probability Probability Assignment
1000 0.10 0.10 01-10
1100 0.13 0.23 - 11-23
1200 0.25 0.48 24-48
1300 0.13 - 0.61 49-61
1400 - 0.09 - 070 62-70
1500 : -002 . 0.82 71-82
1600 0.02 0.84 . 83-84
1700 0.06 .090 - 85-90 .

1800 0.05 : 0.95 91-95
1900 0.05 1.00 96-00

RS S0 I Moy iy
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Table 2.23 Delay-Time Distribution

SIMULATION EXAMPLES a5

Table 2.25 Bearing Replacement under Proposed Method

Del('zy Time Cumulative Random Digit
(Minutes) Probability Probability Assignment
5 0.6 0.6 1-6
10 0.3 0.9 7-9
15 0.1 1.0 0

Table 2.24 Bearing Replacement under Current Mel-hod

Bearing! ~~ Bearing 2 Bearing 3 First

Life Life Life Failure Delay

(Hours) (Hours) (Hours) (Hours) (Minutes)
1 1,700 1,100 1,000 1,000 10
2 1,000 1,800 1,200 1,000 5
3. 1,500 1,700 1,300 1,300 5
4 1,300 1,100 1,800 1,100 5
5 1,200 1,100 1,300 1,100 5
6 1,000 1,200 1,200 1,000 10
7 1,500 1,700 1,200 1,200 .5
8 1,300 1,700 1,000 1,000 10
9 1,800 1,200 1,100 1,100 15
10 1,300 1,300 1,100 1,100 5
11 1,400 1,300 1,900 1,300 10
12 1,500 1,300 1,400 1,300 5
13 1,500 1,800 1,200 1,200 10
14 1,000 1,900 1,400 1,000 5
15 1,300 1,700 1,700 1,300 5
Total 10

probability is exactly 1.00). The distribution of delay time can be changed (again, making sure that the
cumulative probability is exactly 1.00). Also, the parameters of the problem can be changed (bearing cost
per unit, and so forth). As in other spreadsheet models, the number of trials can be varied from 1 to 400.
Finally, in the Experiment sheet, the endpoints of the bins can be changed for observing the frequency of

total cost for 10,000 hours of bearing life.

Bearing 1 Bearing 2 Beariné 3
Life Delay Life Delay Life
RD* (Hours) RD (Minutes) RD (Howrs) RD (Minutes) RD ( Hdirs) RD ( MDif:llZis)
1 67 1400 7 0. 71 150 8 10 18 1,100 6 5
255 1,300 3 5 21 1,100 3 5 7 1100 2 5
398 1900 1 5 79 1500 3 565 1400 2 5
4 76 150 6 5 88 1,700 1 503 100 9 10
5 53 1300 4 5 93 180 0 15 54 1300 8 10
6 69 1400 8 10 77. 1500 6 5 71100 3 5
7 8 1500 5 5 08 1000 9 10 19 1100 6 5
8 93 1800 7 10 21 1,100 8 10 0 1000 7 10
9 35 1200 O 15 13 1,100 3 5 6l 1.'300 1 5
10 02 100 5 5 03 1,000 2 5 8 1600 O 15
1199 190 9 10 14 1000 1 5 L0 s 5
12 65 1400 4 5 5 1000 0 15 25 1200 2 5
13 53 130 7 10 29 1200 2 s 8 1700 8 10
14 87 1700 1 5 07 1000 4 565 1400 3 5
5 % 1700 2 5 20 1100 3 5 44 1200 4 5
Total 110 110 ’ 105 -

9RD, random digits.

The cost of the proposed system is estimated as follows:

Cost of bearings = 45 bearings x $32/bearing = $1,440

Cost of delay time = 110 minutes x $10/minute = $1,100

Cost of downtime during repairs = 15 sets x 40 minutes/set X $10/minute = $6,000
Cost of repairpersons = 15 sets x 40 minutes/set X $30/60 minutes = $300 ,
Total cost = $1,440 + $1,100 + $6,000 + $300 = $8,840

The total life of the bearings is (17,000 x 3) = 51,000 hours. Theref
: K =31, X ore, the total ing-
hours is ($8,840/5.1) = $1,733. . et costper TOHD bearng

The new policy generates a savin, ing-li

. gs. of $634 per 10,000 hours of bearing-lif i
continuously, the savings are about $556 per year. necfe. It the machine rine

There are two Excel spreadsheet models for Exampls ‘

et mo ple 2.5 at www.bcnn.net. These are Example 2.5C

gthe current system) and Example 2.5P (the proposed system). Much flexibility is offered with respe?ct to the
inputs on these models. The user can change the distribution of bearing life (making sure that the cumulative

Example 2.6 Random Normal Numbers
Consider a bomber attempting to destroy an ammunition depot, as shown in Figure 2.15. (This bomber has
conventional rather than laser-guided weapons.) If a bomb falls anywhere on the target, a hit is scored; oth-
erwise, the bomb is a miss. The bomber flies in the horizontal direction and carries 10 bombs. The aiming
point is (0, 0). The point of impact is assumed to be normally distributed around the aiming point with a stan-
dard deviation of 400 meters in the direction of flight and 200 meters in the perpendicular direction. The
problem is to simulate the operatibn and make statements about the number of bombs on target.

Recall that the standardized normal variate, Z, having mean 0 and standard deviation 1, is distributed as

Xt

(o

where X is a normal random variable, pt is the mean of the distribution of X, and ¢ is the standard deviation

of X. Then,
X=1Zo,

Y= 20,

where (X, Y) are the simulated coordinates of thé bomb afterit has fallen. With g, = 400 and 'oy =200 we have

X =400Z,
Y=200Z
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Ammunition Depot

Meters

Figure 2.15 Ammunition depot.

The i and j subscripts have been added to indicate that the values of Z should be different. What are these
Z values and where can they be found? The values of Z are random norinal numbers. These can be generated
from unifoninly distributed random numbers, as will be discussed in Chapter 7, A small sample of random
normal nurnbers is given in Table A.2. The table of random nonnal numbers is used in the same way as the
table of random numbers: that is, start at a random place in the table and proceed in a systematic direction
avoiding overlap. ’

1}:1 example of one bomber’s run will indicate how the simulation is performed. Table 2.26 shows the results
of a simulated run. The random normal numbers in Table 2.26 are shown to four-decimal-place accuracy.

The mnemonic RNN, stands for “random normal number to compute the x coordinate” and corresponds
to Z,. The first random normal number used was 2.2296, generating the x-coordinate 400(2.2296) = 891.8. The
random nonmal number to generate the y-coordinate was —0.1932, resulting in the y-coordinate —38.6. Taken
together, (891.8, —38.6) is a miss, for it is off the target. As shown in Table 2.26, there were 5 hits and 5 misses.

" Table 2.26 Simulated Bombing Run

X Coordinate Y Coordinate
Bomb RNN, - (400 RNN) RN, (00RNN)  Result®

i 2.2296 891.8 ~0.1932 -38.6 Miss
2 ~2.0035 -801.4 1.3034 260.7 Miss
3 ~3.1432 -1257.3 0.3286 65.7 Miss
4 ~0.7968 -318.7 ~1.1417 -2283 Miss
5 1.0741 429.6 0.7612 152.2 Hit
6 0.1265 50.6 -0.3098 -62.0 Hit
7 0.0611 245 ~1.1066 -221.3 Hit
8 1.2182 4873 - 0.2487 49.7 Hit
9 -0.8026 -321.0 -1.0098 -202.0 Miss

10 - 0.7324 293.0 0.2552 =510 Hit

“Totak: 5 hits, 5 misses

" [(283/400) x 100%} there were six, seven, or eight hits.
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Bin Frequencies
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Figure 2.16 Results of 400 trials of the bombing mission.

The spreadsheet for Example 2.6 at www.bcnn.net makes it possible to conduct lots of experiments.
Note that the target shown in the One Trial sheet is flexible. It can be changed by editing the (X, Y) coordi-
nates, shown in green, so long as a convex shape is maintained. With the standard deviation in the x-direction

set at 400 meters and the standard deviation in the y-direction set at 200 meters, and with the shape of the

target unchanged, an experiment was run with 400 trials (each trial being 10 bombs). A result is shown in
Figure 2.16. )

Notice that the results range from two hits to ten hits. The average is 6.72 hits. If only one mission (trial)
is run, a very misleading result could occur, but Figure 2.16 provides useful descriptive information. For
instance, 44% [(175/400) x 100%] of the bombing runs there are six or fewer hits. In about 71% of the cases,

Example 2.7: Lead-Time Demand
Lead-time demand occurs in an inventory system when the lead time is not instantaneous. The lead time is
the time from placement of an order until the order is received. Assume that lead time is a random variable.
During the lead time, demands also occur at random. Lead-time demand is thus a random variable defined
as the sum of the demands over the lead time, or Z;D” where i is the time period of the lead time,
i=0,1,2,...;D;,is the demand during the ith time period; and T's the lead time. The distribution of lead-time
demand is found by simulating many cycles of lead time and building a histogram based on the results.

A firm sells bulk rolls of newsprint. The daily demand is given by the following probability distribution:

Daily Demand (Rolls) 3 4 5 6
Probability 0.20 0.35 030" 0.15

The lead time is the number of days from placing an order until the firm receives the order from the
supplier. In this instance, lead time is a random variable given by the following distribution: .

Lead Time (Days) 1 2 . 3
Probability 036 042 022
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Table 2.27 shows the random digit assignment for demand and Table 2.28 does the same for lead time.
The incomplete simulation table is shown in Table 2.29. The random digits for the first cycle were 57. This
generates a lead time of 2 days. Thus, two pairs of random digits must be generated for the daily demand.
The first of these pairs is 11, which leads to the demand 3. This is followed by the demand S. The lead-time
demand for the first cycle is 8. After many cycles are simulated, a histogram is generated. Click on “Generate
New Trial” repeatedly to see the effect of randomness on a 20-cycle trial.

Although the probabilities for each value of lead-time demand can be generated in this case, sxmulanon
can also be used to sample from one or more disxibutions. The resulting distribution of lead-time demand

Table 2,27 Random Digit Assignment for Demand

Cumulative Random Digit
Daily Demand Probability Probability Assignment
3 0.20 0.20 01-20
4 035 0.55 21-55
5 0.30 0.85 56-85
6 0.15 1.00 8600

Table 2.28 Random Digit Assignment for Lead Time

Lead Time Cumulative Random Digit
(Days) Probability Probability Assignment
1 0.36 0.36 01-36
2 0.42 0.78 37-78
3 022 1.00 7900

Table 2.29 Simulation Table for lead-Time Demand

Random Lead Random
Digits for Time Digits Lead-Time
Cycle Lead Time (Days) for D, d D d Demand
1 57 2 1 3
04 5 8
2 33 1 Ky 4 - 4
3 46 2 13 3
80 5 8
4 91 3 21 4
66 5
4 4 13

%
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Frequency of Lead Time Demand

Occurrences

2 4 6 8 10 12 14 16 18 20 >20
Upper limit of bin i '

Figure 2.17 Frequency of lead-time demand.

U6, 12)

Figure 2.18 Activity network.

might be like that in Figure 2.17. This result was obtained from simulating 20 cycles of lead-time demand,
using the Excel spreadsheet found at www.bcnn.net. :

Suppose you have a project that requires the completion of a number of activities. Some activities must
be carried out sequentially; others can be done in parallel. The project can be represented by a network of
activities, as shown in Figure 2.18. There are three paths through the network, each path representing a
sequence of activities that must be completed in order. The activities on two different paths can be carried
out in parallel. V

In the activity network in Figure 2.18, the arcs represent activities and the nodés represent the start or
end of an activity. The time to complete all activities on a path is the sum of the activity times along the path.
To complete the entire project, all activities must be completed; therefore, project completlon time is the
maximum over all path completion times.

The topmost path is along the path Start - A— B — Finish. The middle path is alonﬂ the path Start —
C — Finish. The bottompath is given by Start — Finish.
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Example 2.8: Project Simulation -
Here’s a concrete example using Figure 2.18. Let’s say that three friends wanted to cook bacon, eggs, and
toast for breakfast for some weekend visitors. Each friend was going to prepare one of the three items. The
activities might be as follows:

Toppath: - Stat — A Crack eggs
- A - B Scramble eggs

B — Finish Cook eggs
Middle path: Stat — C Make toast
C — Finish  Butter toast

Bottom path: Start > Finish Fry the bacon

Let's say that the times to accomplish each of the activities in preparing this breakfast are variable and
can be represented by a uniform distribution between a lower and upper limit, as shown in Figure 2.18. You
want to know something about the preparation time so that you can tell the visitors to be at the breakfast table
on time. Perhaps you want to estimate the probability of preparing breakfast within a specified amount
of time.

The activity times are shown on_the arcs of the activity network. For example, the activity time from
Start — A (i.e., crack the eggs) is assumed to be uniformly distributed between 2 and 4 minutes. That means
that all times between 2 and 4 are equally likely to occur. The expected value, or mean time, for this activ-
ity is the midpoint, three minutes. }

Applying that logic, the expected value along the topmost path is nine minutes, which is determined by
adding the three expected values (3 + 3 + 3). The shortest possible completion time, which is determined by
adding the smallest values, is six minutes (2 + 2 + 2). The largest possible time along the top path is twelve
minutes (4 + 4 +4). '

Similarly, the expected value through the middle path is nine minutes, while the smallest and largest
times are six and twelve minutes, respectively. The bottom path has the same expected value and the same
extreme values.

The time that the project will be completed is the maximum time through any of the paths. (Thinking
again about the preparation of this breakfast, the time that everything will be ready is when the eggs, the toast

" and the bacon are ready.) But, since activity times are assumed to have some random variability, the times
through the paths are not constant. o ‘ ‘ '

Pritsker [1995] showed how such a project could be analyzed with a simulation of independent replica-

_tions of the activity times. For a uniform distribution, a simulated activity time is given by

Simulated Activity Time = Lower limit + (Upper limit - Lower limit) * Random number

With a table of random numbers, the time for each simulated activity can be computed manually. For
example, for activity Start — A, if the random number is 0.7943, the simulated activity time is 2 + (4 =2) =
0.7943 = 3.5886, or 3.59 minutes. . : S -

The Experiment worksheet in the Excel workbook for Example 2.8 found at www.bcnn.net allows from
1 to 400 trials and computes the average, median, minimum and maximum values. With 400 trials and using

the default' seed, the results are as follows:

Mean 10.12 minutes.
Minimum 6.85 minutes
Maximum 12.00 minutes
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Frequency Distribution of Project Completion Time

136
128

Occurrenices (No. of Trials}

Figure 2.19 Bin frequencies for completion times.

“The so-called critical path is the path that takes the longest time; that is, its time is thc? project comple-
tion time. For each of the 400 trials, the experiment determines which path was critical, with these results:

Top path 30.00% of the trials
Middle path 31.25%
Bottom path 38.75%

We conclude that the chance of the bacon being the last itemready is 38.75%. Is this a fluke? Why aren’t
the paths each represented about 1/3 of the time? The answer to this question is left for a later exercise.

Lastly, the project completion imes were placed in a frequency' chart. These differ each time that t!w
spreadsheet is recalculated, but, in any large number of trials, the basic shape ?f the frequency chart (or f.us-
tograrn) will remain roughly the same. Starting from the default seed, the'xesulung frequenc.y chart for project
completion time is shown in Figure 2.19. Inferences that could be drawn include the following:.

13.5% of the time (54 of 400), the breakfast will be ready in 9 minutes or less.
20.5% of the time (82 of 400), it will take from 11 to 12 minutes.

2.4 SUMMARY

This chapter introduced simulation concepts by means of examples, to illustrate gener:{l areas of apphcatlon
and'to motivate the remaining chapters. In the next chapter, we give a more systematic presentation of the
baSli\‘iio-rlllcoipstismulation tables were used in completing each example. Events in the tables were generatc?d by
using uniformly distributed random numbers and, in one case, random nqrmal numbers.‘The examplle;s {l!us-
trate the need for working out the characteristics of the input data, generating raqdom variables from the input
models, and analyzing the resulting response. The queueing exmples, especially the two-channel queue,
illustrate some of the complex dependencies that can occur--—in tl.us exagnple, between subseq.uent customers
visiting the queue. Because of these. complexities, the ad-hoc simulation tablf: approach fax;s, or becomes
“unbearably complex, even with relatively simple networks of queues. For this and other réasons, a more
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systematic methodology, such as the event scheduling approachdescribed in Chapter 3, is needed. These subjects
are treated in more detail in the remaining chapters of the text.

Examples are drawn principally from queueing and inventory systems, because a large number of sim-
ulations concern problems in these areas. Additional examples are given in the areas of reliability, static sim-
ulation, the generation of a random sample from an unlenown diswibution, and project management. All of
the examples are modeled using Excel. These are available at www.bcnn.net.
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EXERCISES

Manual Exercises

Most of these exercises could also be solved in Excel. For hints on implementation in Excel, study the
spreadsheet solutions at www.bcnn.net and read the “Explain™ worksheet, as appropriate for the problem
being solved. Another suggestion for solving these exercises in Excel is to take advansage of the VB func-
tions in the spreadsheet solutions in www.bcnn.net. Start with a supplied example, delete the existing inputs
and simulation table in the One Trial worksheet, and use what remains. On the Experiment worksheet,
change the response in the cell just below the word “Link.”

1. The daily demand for a product is found to follow the distribution as

. Demand  Probability

10 0.25
11 0.35
12. 0.30
13 0.10

Determine the total demand for the next 10 days.

2. Abakeris trying to figure out how many dozens of bagels to bake each day. The probablhty dlstnbuuon

of the number of bagel customers is as follows:

Number of Customers/Day ~ 8 10 12 14
Probability 035 030 025 0.0

_Customers order 1, 2, 3, or4 dozen bagels according to the following probability distribution.

Number of Dozen Ordered/Customer 1 2 3 -4
Probability : 0.4 0.3 0.2 0.1-
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Bagels sell for $8.40 per dozen. They cost $5.80 per dozen to make. All bagels not sold at the end of
the day are sold at half-price to a local grocery store. Based on 5 days of simulation, how many dozen
(to the nearest 5 dozen) bagels should be baked each day?

Develop and interpret flow diagrams analogous to Figures 2.2 and 2.3 for a queueing system with
i channels.

@

4. There is only one telephone in a public booth of a railway station. The following tables indicate the
distributions of callers’ arrival time and duration of the calls.

Time between arrivals (Minutes) 5 6 7
Probability 020 070 - 0.10
Callduration (Minutes) 2 3 4 5
Probability 0.15 0.6 0.15 0.1

Simulate for 100 arrivals of the current system. It is proposed to add another telephone to the booth.
Justify the proposal based on the waiting time of callers.

5. The random variables A4, B, and C are distributed as
A ~N(u=110, 02 = 110)
B ~N(u= 300, 0 = 230)
C ~N(u=50, 6%= 60)
Simulate 50 valués of random variable

_24+B
c

Prepare a histogram of the resulting values, using class intervals of width equal to 3.

6. GivenA, B, and C, which are uncoﬁelated random variables. Variable A is normally distributed with 2= 100
and 62 = 400. Variable B is discrete uniformly distributed with probability distribution given by p ®)=15
with b= 0, 1, 2, 3 and 4. Variable C is distributed in accordance with the following table.

Value of C  Probability

10 .10
20 25
30 .50
40 .15

z

Use simulation to estimate the mean of a new variable D, that is defined as
D =(A-25B)I(2C)

Use a sample of size 10.
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7. Estimate, by simulation, the average number of lostsales per week for an inventory system that functions
as follows:

(a) Whenever the inventory levelfalls to or below 10 units, an order is placed. Only one order can be
outstanding at a time.

(b) The size of each order is equal to 20 — I, where [ is the inventory level when the order is placed.

(c) If a demand occurs during a period when the inventory level is zero, the sale is lost.

(d) Daily demand is normally distributed, with a mean of 5 units and a standard deviation of 1.5 umts.
(Round off demands to the closestinteger during the simulation, and, if a negative value results, give
it a demand of zero.)

(e) Lead time is distributed uniformly between zero and 5 days—integers only.

(f) The simulation will start with 18 units in inventory.

(g) For simplicity, assume that orders are placed at the close of the business day and received after the
lead time has occurred. Thus, if lead time is one day, the order is available for distribution on the
morning of the second day of business following the placement of the order.

(h) Let the simulation run for 5 weeks.

8. AGV is used to carry components between two assembly stations, namely A and B. Three types of
components (C1, C2, and C3) from station A are assembled at station B. The interarrival tiine of Cl,
C2,and C3 are

Component  Interarrival Time (Minutes)
h ‘ Ci 72
¥ : C2 31
! C3 8§x3

The AGV can take only three components at a time. It takes 90 seconds to travel (to and fro) and 30
seconds to unload at station B. The AGV waits at station A till it gets the full load of three components.
Simulate the system for 1 hour and deteriine the average waiting times of the three components.

9

.

The random variables K'1, K2, and K3 are distributed as
~20£10
” K2~12£10
' K-5t4
! Simulate 100 values of random variable ’
2K1+K2
K3

M=

and compute the average value.

‘ 10. Consider the assembly of two steel plates, each plate having a hole drilled in its center. The plates are to
; be joined by a pin. The plates are aligned for assembly relative to the bottom left corner (0,0). The hole
placement is centered at (3, 2) on each plate. The standard deviation in each direction is 0.0045. The hole
diameter is normally distributed, with a mean of 0.3 and a standard deviation of 0.005. The pin diameter
is also distributed normally, with a mean of 0.29 and a standard deviation of 0.004. What fraction of pins
will go through the assembled plates? Base your answer on a simulation of 50 observations.
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Hint: Clearance = Min(k,, i) — [(x, — x,)* + (y, = y,)’I° — p, where

k.= hole diameter, i = plate 1, 2

p = pin diameter

x, = distance to center of plate hole, horizontal direction, i = 1, 2
y; = distance to center of plate hole, vertical direction, i = 1, 2

11. In the exercise above, the pin will wobble if it is too loose. Wobbling occurs if Min(k,, k) — p 2
0.006. What fraction of the assemblies wobble? (Conditional probability—i.e., given that the pins go
through)

12, Three points are chosen at random on the circumference of a circle. Estimate the probability that they
all lie on the same semicircle, by Monte Carlo sampling methods. Pesform 5 replications.

13. Two theorems from statistics are as follows:

Theorem 1 LetZ,Z,,...,Z, be normally and independently distributed random variables with mean
#= 0 and variance 62 = 1. Then the random variable

=2+ 22+ -+ 22
is said to follow the chi-squared distribution with k degrees of freedom, abbreviated 2.

Theorem 2 LetZ ~ N(0, 1) and V be a chi-square random variable with k degrees of freedom. If. Z
and V are independent, then the random variable

A
ik
is said to follow the ¢ distribution with k degrees of freedom, abbreviated z,.

Generate a ¢-distributed random variate with 3 degrees of freedom. Use the following random values in

the order'shown:
random digits  random normal numbers
6729 1.06
1837 -0.72
2572 0.28
8134 . - -0.18

5251 063

14. Students arrive at the university library counter with interarrival times distributed as

Time between arrivals (Minutes) 5 .6 7 8
Probability - 0.1 0.4 0.3 0.2

The time for a transaction at the counter is distributed as

Transaction time (Minutes) 2 3 4 5
Probability 015 05 02 0I5
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If more than two students are in the queue, an arriving student goes away without joining the queue.
Simulate the system and determine the balking rate of the students.

15. The sketch of a city golf link is given. Using simulation determine the area of the golf link.

A

2000 m

A

v

3000 m

16. InExample 2.2, assumethatthe average delay with another server, Charlie, is virtually zero. But another

17.

18.

server costs $20/hour. If the average caller delay costs $200 per hour, at what point is it advisable to add
-another server?

In Example 2.7, the only way to have a lead-time demand of 3 or 4 is to have lead time of one day and
a demand of 3 or 4. The probability of that happening is 0.36(0.20 + 0.35) = 0.198. Using this Iogic,
what is the probability of having lead-time demand equal 11 or 12? (Use computation, not simulation.)

In Example 2.3, what is the probability of having demand equal to 50 pépers, immaterial of the type of
the day? (Use computation, not simulation.)

Spreadsheet Exercises

19.

21.

22

23.

In Example 2.1, assume that the interarrival times are distributed as

Interarrival time (Minutes) 2 4 6 8 10

Probability

015 02 0.3 0.2 0.15

Run the experiment for 50 trials. Is there any difference between the bin frequencies shown and those
of Figure 2.8?

. In Example 2.1, assume that the service time is uniformly distributed between 1 and 6 minutes (consider

only integers). Run the experiment for 100 trials. Analyze the impact of this change, over the waiting
time statistics.

Run the experiment in Example 2.1 for 25, 50, 100, 200, and 400 trials. (All trials are with different sets
of random numbers.) What are the differences in the minimum and maximum values of the average
waiting times? If there are differences, how do you explain them?

Re-do Example 2.2 with 10 experiments of 150 trials each. What is the probability that a caller has an
average delay of 4 minutes or more? )

In Example 2.2, conduct an experiment of 400 trials. Explain the large spread between the minimum
average delay and the maximum average delay. :
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24,

25,

26.

27.

28.

29.

30

by

31

32.

33.

.

36.

3%.

In Example 2.2, run 10 experiments with 50 trials each and 10 experiments with 400 trials each. Explain
the differences in output that you observe, if any, between the two experiments.

In Example 2.2, modify the spreadsheet so that the number of calls taken by Able and Baker can be
displayed. What fraction did each take in an experiment of 400 trials? - '

In Example 2.3, determine the best policy for ordering newspapers assuming zero opportunity cost.
Compare the result with that obtained assuming positive opportunity cost.

InExample 2..'3, assume that due to competition the newsstand can bargain and buy papers for 30 cents
each. Verify whether there wilt be any change in the ordering policy obtained earlier. (All other costs
remain unchanged.) :

In Example 2.3, analyze the effect of change in probability of newsdays to 0.25,0.5, and 0.25 for good,
fair, and poor types, respectively.

At what bearing cost in Example 2.5 is the total cost per 10,000 hours virtually the same for the current
and proposed systems? Base your estimate on 10 experiments of the current system and of the proposed
system, each experiment consisting of 400 trials.

Change the cell widths on the experiment in the Excel spreadsheet for Example 2.5 (current or pro-
posed) to a width of $50 beginning below the minimum value (for example, if the minimum value is
$1528.46, let the first cell begin at $1500). What is the advantage of doing this?

Using the spreadsheet for Example 2.5 (proposed), run 10 experiments of 40 trials each, and record the
range (maximum value-minimum value) of the results. Next, compute the average range. Then,-do the
same as before, except use 400 trials in each experiment. If there is a difference, how do you explain it?

In Example 2.5 (proposed), assume the following delay-time distribution:

.Delay time (Minutes) 4 8 12 16
Probability 025 025 0.25 0.25

Re-run the model and check the impact of this change in the final decision.

Set o, =400 metres and 0, = 400 metres in the spreadsheet for Example 2.6. Leave the target intact.
Conduct a simulation with 200 trials. Determine the average number of hits.

. Set 0, =2 0, metres in the spreadsheet for Example 2.6. Leave the target intact. What is the value of

o if the average number of hits is to be about 6.0, based on one experiment of 400 trials.
X

In Example 2.7, suppose you wanted a better estimate of the distribution of lead-time demand: Woul.d
you (1)-increase the number of cycles on the“One Trial” worksheet? or (2) increase the number of tri-
als on the “Experiment” worksheet? Explain your answer. .

In Example 2.7, let the demand probabilities- be equal for the possible values 3, 4, 53 z‘md 6 Run an
experiment with 400 trials. Compare the average lead-time demand from using the original input data
and from using the new input data. '

In Example 2.7, Jet the lead-time probabilities be equal for the possible values 1, 2, .ar'ld 3..Run an exper-
iment with 400 trials. Compare the average lead-time demand from using the original input data and
from using the new input data. ' i
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38. In Example 2.8, recalculate the spreadsheet 20 times, each with 400 trials. Record the number of times 46. Consider the simulation of a management game. There are three players A, B, and C. Each player has
that the middle path was the longest. What is your best guess of the true mean of the fraction of time two swcategies which they play with equal probabilities. The players select strategies independently. The
that the middle path is taken? ’ -following table gives the payoff.

39. In the above exercise, what is the smallest value and the largest value encountered for the number of
#mes that the middle path was selected? What-if you had conducted one simulation, gotten the smallest : Payoff
(or largest) value, and reported that as the result? How could you argue yourself out of that jam? Strategies A B c

40. 'In Example 2.8, suppose the third pathway (the bottom one in Figuné 2.18) is changed so that it consists ALBICI 10 -5 5
of six U(l, 2) activities. Modify the spreadsheet to accommodate this. Which is the most frequently Al-Bl- & 0 8 2
occutring path now? What insight does this exercise provide? Al-BZ-Cl 9 3 )

41. Using Excel, generate 1000 values in a column, using the formula = ~10 * LN(RAND()). Al-B2-C2 -4 5 9

. - .Bl- 3

(a) Compute descriptive statistics about the data in that column, including the minimum value, the maxi- :; gll g; g (1) 10

mum value, the mean, the median, and the standard deviation. 2-B2- al 6 10 %

(b) Tabulate the values into 10 bins, each of width equal to five: the first bin beginning at 0, and the A 2-B 2' s "0 4 6
eleventh bin for overflow (if any). A2-B2-

(¢) Does the histogram resemble any distribution with which you are familiar? ¥f so, what is its name?

. . o Simulate 100 plays and determine the payofis.
Hint: Use FREQUENCY in Excel to form bins.

42, Using Excel, geherate 12 columns, each with 250 values, using the formula
=RAND().

In cell M1, place the formula
= SUM(AI:L1)-6 and copy it to the 249 cells below M1 in column M.

(a) Compute descriptive statistics about the data in that column, including minimum i'alue, maximum
value, mean, median, and standard deviation.

(b) Tabulate the values with 9 bins: the first bin will include all values less than or equal to —3.5; the
next six bins are of width one; the last bin will include all values greater than 3.5.

{c) Doesthe histogram resemble any distribution with which you are familiar? If so, whatis its name?

Hint 1: Use FREQUENCY in Excel to form bins.

Hint 2: The values in Column M can be used instead of those in Table A2.

43. Using Excel, generate 1000 random numbers in the range (0~-1000) and form a frequency table with 10
class intervals.

44. Using Excel, generate 100 random numbers equally distributed between 23 and 87.

45, Consider Example 2.5. If the proposed system is modified as follows: whenever a bearing fails, two
bearings are replaced

(a) The one that has failed and
(b) another one, out of the other two remaining bearings with longest operational time.

Using Excel, simulate the system and compare the cost with previous policy of changing all the three
bearings. ) : :
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General Principles

This chapter develops a common framework for the modeling of complex systems by using discrete-event
simulation. It covers the basic building blocks of all discrete-event simulation models: entities and attributes,
activities, and events. In discrete-event simulation, a system is modeled in terms of its state at each point in
time; of the entities that pass through the system and the entities that represent system resources; and of the
activities and events that cause the system state to change. Discrete-event models are appropriate for those
systems for which changes in system state occur only at discrete points in time.

The simulation languages and software (collectively called simulation packages) described in Chapter 4
are fundamentally packages for discrete-event simulation. A few of the packages also include the capability
to model continuous variables in a purely continuous simulation or a mixed discrete~continuous model. The
discussion in this chapter focuses on the discrete-event concepts and methodologies. The discussion in
Chapter 4 focuses more on the capabilities of the individual packages and on some of their higher-level
constructs.

This chapter introduces and explains the fundamental concepts and methodologies underlying all
discrete-event simulation packages. These concepts and methodologies are not tied to any particular pack-
age. Many of the packages use different terminology from that used here, and most have a number of higher-
level constructs designed to make modeling simpler and more straightforward for their application domain.
For example, this chapter discusses the fundamental abstract concept of an entity, but Chapter 4 discusses
more concrete realizations of entities, such as machines, conveyors, and vehicles that are built into some of
the packages to facilitate modeling in the manufacturing, material handling, or other domains.

Applications of simulation in specific contexts are discussed in Part Five of this text. Topics covered
include the simulation of manufacturing and material handling systems in Chapter 13, the simulation of
computer systems in Chapter 14, and the simulation of communications systems in Chapter 15.

Section 3.1 covers the general principles and concepts of discrete-event simulation, the event
scheduling/time advance algorithm, and the three prevalent world views: event scheduling, process interaction,
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and activity scanning. Section 3.2 introduces some of the notions of list processing, one of the more impor-
tant methodologies used in discrete-event simulation software. Chapter 4 covers the implementation of the
concepts in a number of the more widely used simulation packages.

3.1 CONCEPTS IN DISCRETE-EVENT SIMULATION

The concept of a system and a model of a system were discussed briefly in Chapter 1. This chapter deals
exclusively with dynamic, stochastic systems (i.e., involving time and containing random elements) that
change in a discrete manner. This section expands on these concepts and proposes a framework for the
development of a discrete-event model of a system. The major concepts are briefly defined and then
illustrated by examples:

System A collection of entities (e.g., people and machines) that interact together over time to accom-
" plish one or more goals.

Model An abstract representation of a system, usually containing structural, logical, or mathematical
relationships that describe a system in terms of state, entities and their attributes, sets, processes,
events, activities, and delays. '

System state A collection of variables that contain all the information necessary to describe the sys-
tem at any time.

Entity Any object or component in the system that requires explicit representation in the model
(e.g., a server, a customer, a machine).

Attributes The properties of a given entity (e.g., the priority of a waiting customer, the routing of a
job through a job shop). -

List A collection of (permanently or temporarily) associated entities, ordered in some logical fashion
(such as all customers currently in a waiting line, ordered by “first come, first served,” or by priority).

Event Aninstantaneous occurrence that changes the state of a system (such as an arrival of a new cus-
tomer).

Event notice A record of an event to occur at the current or some future time, along with any associ-
ated data necessary to execute the event; at a minimum, the record includes the event type and the
event time.

Event list A list of event notices for future events, ordered by time of occurrence; also known as the
future event list (FEL). '

Activity A duration of time of specified length-(e.g., a service time or interarrival time), which is

. known when it begins (although it may be defined in terms of a statistical distribution).

Delay A duration of time of unspecified indefinite length, which is not known until it erids (e.g., a
customer’s delay in a last-in—first-out waiting line which, when it begins, depends on future arrivals).

Clock A variable representing simulated time, called CLOCK in the examples to follow.

Different simulation,packages use different terminology for the same or similar concepts—for example, lists
are sometimes called sets, queues, or chains. Sets or lists are used to hold both entities and event notices. The
entities on a list are always ordered by some rule, such as first-in—first-out or last-in-first-out, or are ranked
by some entity attribute, such as priority or due date. The future event list is always ranked by the event time
recorded in the event notice. Section 3.2 discusses a number of methods for handling lists and introduces
some of the methodologies for efficient processing of ordered sets or lists.

An activity typically represents a service time, an interarrival time, or any other processing time whose
duration has been characterized and defined by the modeler. An activity’s duration may be specified in a
number of ways: '
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1. Deterministic—for example, always exactly 5 minutes;
2. Statistical—for example, as a random draw from among 2, 5, 7 with equal probabilities;
- 3. A function depending on system variables and/or entity amibutes—for example, loading time for an
iron ore ship as a function of the ship’s allowed cargo weight and the loading rate in tons per hour.

However it is characterized, the duration of an activity is computable from its specification at the instant it
begins. Its duration is not affected by the occurrence of other events (unless, as is allowed by some simulation
packages, the model contains logic to cancel an event). To keep track of activities and their expected comple-
tion time, at the simulated instant that an activity duration begins, an event notice is created having an event
time equal to the activity’s completion time. For example, if the current simulated time is CLOCK = 100
minutes and an inspection time of exactly 5 minutes is just beginning, then an event notice is created that spec-
ifies the type of event (an end-of-inspection event), and the event time (100 + 5 = 105 minutes).

In contrast to an activity, a delay’s duration is not specified by the modeler ahead of time, but rather is
determined by system conditions. Quite often, a delay’s duration is measured and is one of the desired out-
puts of a model run, Typically, a delay ends when some set of logical conditions becomes wue or one or more
other events occur. For example, a customer’s delay in a waiting line may be dependent on the number and
duration of service of other customers ahead in line as well as the availability of servers and equipment.

A delay is sometimes called a conditional wait, an activity an unconditional wait. The completion of
an activity is an event, often called a primary event, that is managed by placing an eventnotice on the FEL.
In contrast, delays are managed by placing the associated entity on another list, perhaps representing a waiting
line, until such time as system conditions permit the processing of the entity. The completion of a delay is
sometimes called a conditional or secondary event, but such events are not represented by event notices, nor
do they appear on the FEL.

The systems considered here are dynamic, that is, changing over time. Therefore, system state, entity
attributes and the number of active entities, the contents of sets, and the activities and delays currently
in progress are all functions of time and are constantly changing over time. Thne itself is represented by a
variable called CLOCK.

Example 3.1: Call Center, Revisited
Consider the Able-Baker call center system of Example 2.2. A discrete-event model has the following
components:

System state :
LQ(t), the number of callers waiting to be served at time r;
L,(#), 0 or 1 to indicate Able as being idle or busy at time ¢;
L(?), 0 or 1 toindicate Baker as being idle or busy. at time ¢.

Entities Neither the callers nor the servers need to be explicitly represented, except in terms of the
state variables, unless certain caller averages are desired (compare Examples 3.4 and 3.5).
Events ' :
Arrival event;
Service completion by Able;
Service completion by Baker.
Activities :
Interarrival time, defined in Table 2.11;
Service time by Able, defined i n Table 2.12;
Service time by Baker, defined in Table 2.13.
Delay A caller’s waitin queue until Able or Baker becomes free.
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Figure 3.1 Prototype system snapshot at simulation time #.

The definition of the model components provides a static description of the model. In addition, a
- description of the dynamic relationships and interactions between the components is also needed. Some
questions that need answers include:

1. How does each event affect system state, entity attributes, and set contents?

2. How are activities defined (i.e., deterministic, probabilistic, or some other mathematical equation)?
What event marks the beginning or end of each activity? Can the activity begin regardless of system
state, or is its beginning conditioned on the system being in a certain state? (For example, a machin-
ing “activity” cannot begin unless the machine is idle, not broken, and not in maintenance.)

3. Which events trigger the beginning (and end) of each type of delay? Under what conditions does a
delay begin or end? o

4. What is the system state at time 07 What events should be generated at ¥me 0 to “prime” the model—
that is, to get the simulation started?

A discrete-event simulation is the modeling over time of a system all of whose state changes occur at
discrete points in time—those points when an event occurs. A discrete-event simulation (hereafter called a
simulation) proceeds by producing a sequence of system snapshots (or system images) that represent the
evolution of the system through time. A given snapshot at a given time (CLOCK = ¢#) includes not only the
system state at time 7, but also a list (the FEL) of all activities currently in progress and when each such activity
will end, the status of all entities and current membership of all sets, plus the current values of cumulative
statistics and counters that will be used to calculate summary statistics at the end of the simulation. A prototype
system snapshot is shown in Figure 3.1. (Not all models will contain every element exhibited in Figure 3.1.
Further illustrations are provided in the examples in this chapter.)

~ 3.1.1 The Event Schedulinglﬁme Advance Algorithm

The mechanism for advancing simulation time and guaranteeing that all events occur in correct chronological
order is based on the future event list (FEL). This list contains all event notices for events that have been
scheduled to occur at a future time. Scheduling a future event means that, at the instant an activity begins,
its duration is computed or drawn as a sample from a statistical diswibution; and that the end-activity event,
together with its event time, is placed on the future event list. In the real world, most future events are not .

S AR
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scheduled but merely happen—such as random breakdowns or random arrivals. In the model, such random
events are represented by the end of some activity, which in turn is represented by a statistical distribution.

~ Atany given time ¢, the FEL contains all previously scheduled future events and their associated event
times (called ¢, t,,... in Figure 3.1). The FEL is ordered by event time, meaning that the events are arranged
chronologically—that is, the event times satisfy

1<t 6 SH<

Time ¢ is the value of CLOCK, the current value of simulated time. The event associated with time ¢, is called
the imminent event; that is, it is the next event that will occur. After the system snapshot at simulation time
CLOCK =t has been updated, the CLOCK is advanced to simulation time CLOCK =¢,, the imminent event
notice is removed from the FEL, and the event is executed. Execution of the imminent event means that a new
system snapshot for time ¢, is created, one based on the old snapshot at time ¢ and the nature of the immi-
nent event. At time #,, new future events may or might not be generated, but if any are, they are scheduled
by creating event notices and putting them into their proper position on the FEL. After the new system snap-
shot for time ¢, has been updated, the clock is advanced to the time of the new imminent event and that event
is executed. This process repeats until the simulation is over. The sequence of actions that a simulator
(or simulation language) must perform to advance the clock and build a new system snapshot is called the
event-schedulingftime-advance algorithm, whose steps are listed in Figure 32 (and explained thereafter).
The length and contents of the FEL are constantly changing as the simulation progresses, and thus its
efficient management in a computerized simulation will have a major impact on the efficiency of the com-
puter program representing the model. The management of alist is called list processing. The major list pro-
cessing operations performied on a FEL are removal of the imminent event, addition of a new event to the
list, and occasionally removal of some event (called cancellation of an event). As the imminent event is usu-
ally at the top of the list, its removal is as efficient as possible. Addition of a new event (and cancellation of
an old event) requires a search of the list. The efficiency of this search depends on the logical organization
of the list and on how the search is conducted. In addition to the FEL, all the sets in a model are maintained
in some logical order, and the operations of addition and removal of entities from the set also require effi-
- cient list-processing techniques. A brief introduction to list processing in simulation is given in Section 3.2.
The removal and addition of events from the FEL is illustrated in Figure 3.2. Event 3 with event time ¢,
represents, say, a service completion event at server 3. Since it is the imminent event at time ¢, it is removed
from the FEL in step 1 (Figure 3.2) of the event-scheduling/time-advance algorithm. When event 4 (say, an
arrival event) with event time #* is generated at step 4, one possible way to determine its correct position on
the FEL is to conduct a top-down search:

Ifre<t, B place event 4 at the top of the FEL.
e, <e* <ty place event 4 second on the list.
Ifr,<ex<t, place event 4 third on the list.

Ifz s, place event 4 last on the list.

(In Figure 3.2, it was assumed that £* was between ¢, and ¢,.) Another way is to conduct a bottom-up search.
The-least efficient way to maintain the FEL is to leave it as an unordered list (additions placed arbitrarily at
the top or bottom), which would require at step 1 of Figure 3.2 a complete search of the list for theé imminent
event before each clock advance. (The imminent event is the event on the FEL with the lowest event time.)
The system snapshot at time 0O is defined by the initial conditions and the generation of the so-called exoge-
nous events. The specified initial conditions define the system state at time 0. For example, in Figure 32, if =0,
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Old system snapshot at time t
System .
CLOCK state e Future event list
t 6. 1,6) (3, 1) -~ Type 3 event to occur at.time #;

(1, #) — Type 1 event to occur at time #,
(1, ¢3) - Type 1 event to occur at time £,

(2, t,) ~Type 2 eventto occur at time ¢,

Event-scheduling/time-advance algorithm

Step 1. Remove the event notice f or the invninent event

(event 3, time 1) from FEL
Step 2. Advance CLOCK to imminent event time

{ie. advance CLOCK fromt to t}).
Step 3. Execute imminent event: update system state,

change entity attributes, and set membership as needed.
Step 4. Generate future events (if necessary) and

place their event notices on FEL, raaked by event time.

(Example: Event 4 to occur at time t¥, where t, <t*<13,)
Step 5. Update cumulative stalistics and counters.

New system snapshot at time #;
System
CLOCK state i Future event list
4 5, 1L5) (1, ) ~ Type 1 event to occur at time #,

{4, r*) - Type 4 event to occur at time r*
(1, t3) - Type 1 event to occur at time ¢,

(2 ¢,) ~ Type 2 event to occur at time £,

Figure 3.2 Advancing simulation time and updating system image.

then the state (5, 1, 6) mightrepresent the initial number of customers at three different points in the system.
An exogenous event is a happening “outside the system” that impinges on the system. An impartant example is
anarrival to a queueing system. Attime 0, the first arrival event is generated and is scheduled on the FEL (mean-
ing that its event notice is placed on the FEL). The interarrival time is an example of an activity. When the clock
eventually is advanced to the time of this first arrival, a second amival event is generated. First, an interarrival
time is generated, a*; it is added to the current time, CLOCK =1; the resulting (future) event time, ¢ + a* = t*,
is used to position the new arrival event notice on the FEL. This method of generating an extemal arrival stream
is called bootstrapping; it provides one example of how. future events are generated in step 4 of the event-
scheduling/time-advance algorithm. Bootstrapping is illustrated in Figure 3.3. The first three interarrival times
generated are 3.7, 0.4, and 3.3 time units. The end of an interarrival interval is an example of a primary event.
A second example of how future events are generated (step 4 of Figure 3.2) is provided by a service
completion event in a queueing simulation. When one customer completes service, at current time CLOCK = ¢,
if the next customer is present, then a new service time, s* will be generated for the next customer. The next
service completion event will be scheduled to occur at future time r* = ¢ + s*, by placing onto the FEL a new
event notice, of type service completion, with event time £*. In addition, a service-completion event will be
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Atsimulated Wre ¢, assumed to be the instant
) of the nth anrival, generate intecarrival
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Between successive amival events, other
types of events may occur, causing
system state to change

Figure 3.3 Generation of an external arrival siream Ey bootstrapping.

genem@ and scheduled at the time of an arrival event provided that, upon arrival, there is at least one idle
server in the server group. A service time is an example of an activity. Beginning service is a conditional
even.t, because 1t§ occurrence is triggered only on the condition that a customer is present and a server is free
SCI'V‘ICC .com‘plenon Is an example of a primary event. Note that a conditional event, such as beginnin, :
service, is triggered by a primary event’ occurring and by certaig conditions prevailing in the system Onlg
prumary events appear on the FEL. ’ : i

A third important example is the alternate generation of runtimes and downtimes for a machine subject
to breakdowns. At time 0, the first runtime will be generated, and an end-of -runtime event will be schedu{ed
Whenever an end-of -runtime event occurs, a downtime will be generated, and an end-of -downtime event wili
be schedule(! on the FEL. When the CLOCK is eventually advanced to the time of this end-of-downtime
event, a runtime is generated, and an end-of-runtime event is scheduled on the FEL. In this way, runtimes
anc:l (!o'wntunes continually altemate throughout the simulation. A runtime and a downtime are ex,am les of
activities, arfd end of runtime and end of downtime are primary events. pee

Every simulation must have a stopping event, here called E, which defines how long the simulation will
run. There are generally two ways to stop a simulation:

1. {\t kllilme 0, }?ch;,]dule a stop simulation event at a specified future time T Thus, before simulating, it
1s known that the simulation will run over the time interval [0 : Si j ,
7m0 ho (0, T,]. Example: Simulate a job shop for

2. Run .length T, is determined by fhe simulation itself. Generally, T, is the time of occurrence of some
spo?lﬁed eYent E. Examples: T is the time of the 100th service completion at a certain service center,
T, is the time of breakdown of a complex system. T & s the time of disengagement or tosal kill

(whichever occurs first) in a combat simulation. T, i i i iswibuti
, T, is the time at which a distribution ¢ i
‘ last carton in a day’s orders. £ Fcoershis the

In case 2, T is not known ahead of time. In it could b isti i i
be prodiced g ot s deed, ld be one of the statistics of primary interest to

3.1.2 World Views

Whep using a simulation‘ package or even when doing a manual simulation, a modeler adopts a world view
:‘r onentan.on for dev:j,lopmg a.model. The most prevalent world views are the event-scheduling world view, as
1scqssed in the previous section, the process-interaction world: view, and the activity-scanning world vi:ew
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Even if a particular package does not directly support one or more of the world views, understanding the
different approaches could suggest alternative ways to model a given system.

To summarize the previous discussion, when using the event-scheduling approach, a simulation analyst
coicentrates on events and their effect on system state. This world view will be illustrated by the manual
simulations of Section 3.1.3 and the Java simulation in Chapter 4.

When using a package that supports the process-interaction approach, a simulation analyst thinks in
terms of processes. The analyst defines the simulation model in terms of entities or objects and their life
cycle as they flow through the system, demanding resources and queueing to wait for resources. More
precisely, a process is the life cycle of one entity. This life cycle consists of various events and activities.
Some activities might require the use of one or more resources whose capacities are limited. These and other
constraints cause processes to interact, the simplest example being an entity forced to wait in a queue (on a
list) because the resource it needs is busy with another entity. The process interaction approach is popular
because it has intuitive appeal and because the simulation packages that implement it allow an analyst to
describe the process flow in terms of high-level block or network constructs, while the interaction among
processes is handled automatically.

In more precise terms, a process is a time-sequenced list of events, activities and delays, including
demands for resources, that define the life cycle of one entity as it moves through a system. An example of
a “customer process” is shown in Figure 3.4. In this figure, we see the interaction between two customer
processes as customer n + 1 is delayed until the previous customer’s “end service event” occurs. Usually,
many processes are active simultansously in a model, and the interaction among processes could be quite
complex.

Underlying the implementation of the process interaction approach in a simulation package, but usually
hidden from a modeler’s view, events are being scheduled on a future event list and entities are being placed
onto lists whenever they face delays, causing one process to temporarily suspend its execution while other
processes proceed, It is important that the modeler have a basic understanding of the concepts and, for the
simulation package being used, a detailed understanding of the built-in but hidden rules of operation.
Schriber and Brunner [2003] provide understanding in this area.

Both the event-scheduling and the process-interaction approach use a-variable time advance—that is,
when all events and system state changes have occurred at one instant of simulated time, the simulation clock
is advanced to the time of the next imminent event on the FEL. The activity-scanning approach, in contrast,
uses a fixed time increment and a rule-based approach to decide whether any activities can begin at each
point in simulated time.

Customer n
End
Arrival Begin service
event Delay service Activity event
* Time Time
!mera.cﬁon
Begin End
Arrival . service service
event Delay Aciivity event
Time e “" Time

Customer 7 + 1

Figure 3.4 Two interacling customer processes in @ single-server queue.
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With the activity-scanning approach, a modeler concentrates on the activities of a model and those
conditions, simple or complex, that allow an activity to begin. At each clock advance, the conditions for each
activity are checked, and, if the conditions are true, then the corresponding activity begins. Proponents claim
that the activity-scanning approach is simple in concept and leads to modular models that are more easily
maintained, understood, and modified by other analysts at later times. They admit, however, thatthe repeated
scanning to discover whether an activity can begin results in slow runtime on computers. Thus, the pure
activity-scanning approach has been modified (and made conceptually somewhat more complex) by what is
called the three-phase approach, which combines some of the features of event scheduling with activity scan-
ning to allow for variable time advance and the avoidance of scanning when it is not necessary, but keeps the
main advantages of the activity-scanning approach.

In the three-phase approach, events are considered to be activities of duration zero time units. With this
definition, activities are divided into two categories, which are called B and C.

B activities activities bound to occur; all primary events and unconditional activities.
C activities activities or events that are conditional upon certain conditions’being true.

The B-type activities and events can be scheduled ahead of time, just as in the event-scheduling
approach. This allows variable time advance. The FEL contains only B-type events. Scanning to leam
whether any C-type activities can begin or C-type events occur happens only at the end of each time advance,
after all B-type events have completed. In summary, with the three-phase approach, the simulation proceeds
with repeated execution of the 3 phases until it is completed: :

Phase A Remove the imminent event from the FEL and advance the clock to its event time. Remove
from the FEL any other events that have the same event time.

Phase B Execute all B-type events that were removed from the FEL. (This could free a number of
resources or otherwise change system state.)

Phase C Scan the conditions that trigger each C-type activity and activate any whose conditions
are smet. Rescan until no additional C-type activities can begin and no events occur.

The three-phase approach improves the execution efficiency of the activity-scanning method. In addi-
tion, proponents claim that the activity scanning and three-phase approaches are particularly good at han-
dling complex resource problems in which various combinations of resources are needed to accomplish
different tasks. These approaches guarantee that all resources being freed at a given simulated time will all
be freed before any available resources are reallocated to new. tasks.

Example 3.2: Call Center, Back Again

The events and activities were identified in Example 3.1. Under the three-phase approach, the conditions for
beginning each activity in Phase C are as follows:

Activity Condition
Service time by Able A caller is in queue and Able is idle
Service time by Baker A caller is in queue, Baker is idle and Able is busy

Using the process-interaction approach, we view the model from the viewpoint of a caller and its “life
cycle.” Considering a life cycle as beginning upon arrival, a customer process is pictured in Figure 3.4.

I.n summary, as will be illustrated in Chapter 4, the process-interaction approach has been ﬁdoptcd by
the simulation packages most popular in the USA. On the other hand, a number of activity-scanning

.packages are popular in the UK and Europe. Some of the packages allow portions of a model to be event-

scheduling based, if that orientation is convenient, mixed with the process-interaction approach. Finally,
some of the packages are based on a flow chart, block diagram or network structure, which upon closer
examination turns out to be a specific implementation of the process-interaction concept.
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3.1.3. Manual Simulation Using Event Scheduling

In the conducting of an event-scheduling simulation, a simulation table is used to record the successive
system snapshots as time advances.

Example 3.3: Single-Channel Queue -
Reconsider the grocery store with one checkout counter that was simulated in Example 2.1 by an ad hoc

method. The system consists of those customers in the waiting line plus the one (if any) checking out. A stop-
ping time of 60 minutes is set for this example. The model has the following components:

System state (LQ(t), LS(7)), where LQ(#) is the number of customers in the waiting line, and LS(¢) is
the number being served (0 or 1) at time ¢. - _
Entities The server and customers are not explicitly modeled, except in terms of the state variables.
Events
Armival (A);
Departure (D);
Stopping event (E), scheduled to occur at time 60.
Event notices ]
(A, 1), representing an arrival event to occur at future time ¢;
(D, 1), representing a customer departure at future time #;
(E, 60), representing the simulation stop event at future time 60.
Activities
Interarrival time, defined in Table 2.6;
Service time, defined in Table 2.7
Delay Customer time spent in waiting line.

The event notices are written as (event type, event time). In this model, the FEL will always contain
either two or three event notices. The effect of the arrival and departure events was first shown in Figures 2.2
and 2.3 and is shown in more detail in Figures 3.5 and 3.6.

The simulation table for the checkout counter is given in Table 3.1. The reader should cover all system
snapshots except one, starting with the first, and attempt to construct the next snapshot from the previous one
and the event logic in Figures 3.5 and 3.6. The interarrival times and service times will be identical to those

used in Table 2.10:

Interarrival Times 1 1 6 3 75 2 4 I

Service Times 4 2 5 4 1 5 4 1

Initial conditions are that the first customer arrive at time 0-and begin service. This is reflected in Table 3.1
by the system snapshot at time zero (CLOCK = 0), with i::0)=0, LS(0) = 1, and both a degmme event
and arrival event on the FEL. Also, the simulation is schedulcd to stop at time 60. Only two statistics, server
utilization and maximum queue length, will be collected. Server utilization is defined by tot.al server busy
time (B) divided by total time (T'p). Total busy time, B, and maximum queue length, MQ, will be accumu-
lated as the simulation progresses. A column headed “comments” is included to aid the reader. (a* and s*
are the generated interarrival and service times, respectively.) S S

As soon as the system snapshot at time CLOCK = 0 is complete, the simulation begins. At time 0,
the imminent event is (4, 1). The CLOCK is advanced to time I, and (4, 1) is removed from the FEL.
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Arrival event
occurs at CLOCK = ¢

Step 3. Step 3
N
Set LS =1 ° Yes lncrcabse [LQ(')
: Y
Step 4
Generate service time s*;
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eventattime f + s*

Step 4

Generate interarrival time a*;
schedule next arrival
event at time 7 + g*

Step 5

Collect statistics

b

Return control to
time-advance routine
to continue simulation

Figure 3.5 Execution of the arrival event.

Because LS(#)=1 for0 <¢<1 (i.e., the server was busy for 1 minute), the cumulative busy time is increased
from B =0 to B = 1. By the event logic in Figure 3.6, set LS(1) = 1 (the server becomes busy). The FEL is
left with three future events, (A, 2), (D, 4), and (E, 60). The simulation CLOCK is next advanced to time 2,
and an arrival eventis executed. The interpretation of the remainder of Table 3.1 is left to the reader.

The simulation in Table 3.1 covers the time interval [0,23]. At simulated time 23, the system empties,
but the next arrival also occurs at time 23. The server was busy for 21 of the 23 time units simulated, and the
maximuin queue length was two. This simulation is, of course, too short to draw any reliable conclusions.
Exercise 1 asks the reader to continue the simulation and to compare the results with those in Example 2.1.
Note that the simulation table gives the system state at all times, not just the listed times. For example, from
time 11 to time 15, there is one customer in service and one in the waiting line.

When an event-scheduling algorithm is computerized, only one snapshot (the current one or partially
updated one) is kept in computer memory. With the idea of implementing event scheduling in Java or some
other general-purpose language, the following rule should be followsd. A new snapshot can be derived only
from the previous snapshot, newly generated random variables, and the event logic (Figures 3.5 and 3.6).
Past snapshots should be ignored for advancing of the clock. The current snapshot must contain all
information necessary to continue the simulation.
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Departure event
" occurs at CLOCK = ¢
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No Yes Reduce LO(5)
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Figure 3.6 Execution of the departure event.

Table 3.1 Simulation Table for Checkout Counter (Example 3.3)

Cumulative
System State Statistics
Clock LO®) LS(@1) Future Event List Comment B MO
0 0 1 (A, 1) (D, 4) (E, 60) First A occurs 0 0
(a* = 1) Schedulenext A
(s*=4) Schedule first D
1 1 1 (A, 2) (D, 4) (E, 60) Second A occurs: (A, 1) 1 c1
(a* =1) Schedule next A
{Customer delayed)
2 2. 1 (D, 4) (A, 8) (E, 60) Third A occuss: (A, 2) 2 2
(a* = 6) Schedule next A
{Two customers delayed) ’
4 1 1 D, 6) (A, 8) (E, 60) First D occurs: (D, 4) - 4 -2
(s* = 2) Schedule gext D
(Customer delayed) B
6 i} 1 (A, 8) (D, 11) (E, 60) Second D occurs: (D, 6) 6 2
(s* = 5).Schedul¢ nextD
(continued overleaf) .
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Table 3.1 (continued)

Cumulative
System State : Statistics
Clock LY LS(t) Future Event List Comment B MQ
8 1 1 (D, 11) (A, 11) (E, 60) Fourth A occurs: (A, 8) 8 2
(a* =3 Schedule next A
(Customer delayed)
11 1 1 (D, 15) (A, 18) (E, 60) Fifth A occurs: (A, 11) 11 2
(a* =7) Schedule next A
Third D occurs: (D, 11)
(s* =4).Schedule next D
Customet delayed
15 0 1 (D, 16) (A, 18) (E, 60) Fourth D occurs: (D, 15) 15 2
(s* = 1) Schedule next D
16 0 0 (A, 18) (E, 60) Fifth D occurs: (D, 16) 16 2
18 0 1 (D, 23) (A, 23) (E, 60) Sixth A occurs 16 2
(a* =5) Schedule next A
(s* = 5) Schedule next D
23 0 1 (A, 25) (D, 27) (E, 60) Seventh A occurs: (A, 23) 21 2
. (a* =2) Schedule next Arrival
Sixth D occurs: (D, 23)

Example3.4: The Checkout-Counter Simulation, Continued
Suppose that, in the simulation of the checkout counterin Example 3.3, the simulation analyst desires to esti-
mate mean response time and mean proportion of customers who spend 5 or more minutes in the system.
A response time is the length of time a customer spends in the system. In order to estimate these customer
averages, it is necessary to expand the model in Example 3.3 to represent the individual customers explicitly.
In addition, to be able to compute an individual customer’s response time when that customer departs, it will
be necessary to know that customer’s arrival time. Therefore, a customer entity with arrival time as an attrib-
ute will be added to the list of model components in Example 3.3. These customer entities will be stored in
a list to be called “CHECKOUT LINE"”; they will be called C1, C2; C3, ... . Finally, the event notices on the
FEL will be expanded to indicate which customer is affected. For example, (D, 4, C1) means that customer
Cl will depart at time 4. The additional model components are the following:

Entities (Ci, 1), representing customer Ci who arrived at time ¢

Event notices
(A, t, Ci), the arrival of customer Ci at future time ¢
(D, t, Cj), the departure of customer Cj at future time ¢

Set “CHECKOUT LINE,” the set of all customers currently at the checkout counter(beiné served or
waiting to be served), ordered by time of arrival

Three new cumulative statistics will be collected: S, the sum of customer response times for all customers -

who have departed by the current time; F, the total number of customers who spend 5 or more minutes at
the checkout counter; and N, the total number of departures up to tue current simulation time. These three
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Table 3.2 Simulation Table for Example 3.4

System State Curmulative Statistics
Clock LO(t) LSQ) CHECKOUT LINE Future Event List s N, F
0 0 1 (C1,0) (A,1,C2) (D4, C1) (E.60) 0 0 0
1 1 1 (C1,9)(C2.1) (A,2,C3) (D4.Cl) (E.60) 0 0 0
2 2 1 (C1,0) (C2,1) (C3,2) (D:4,C1) (A,8,C4) (E,60) 0 0 0
4 1 1 (C2,1)(C3,2) (D:6,C2) (A,8,C4) (E, 60) 4 1 0
6 0 1 (C3,2) (A.8,C4) (D,11,C3) (E,60) 9 2 1
8 1 1 (C32) (C4.8) (D,11,€3) (A,11.C5) (E,60) 9 2 1
11 1 1 (C4,8) (C5,11) (D,15,C4)(A,18,C6) (E,60) 18 3 2
15 0 1 (Cs,11) (D,16,C5) (A.18,C6) (E,60) 25 4 3
16 0 0 , (A,18,C6) (E,60) 30 5 4
18 0 1 (C6,18) (D,23,C6) (A,23,C7) (E.60) 30 5 4
23 0 1 (C7,23) (A,25,C8) (D,27,C7) (E,60) 35 6 5

cumulative statistics will be updated whenever the departure event occurs; the logic for collecting these
statistics would be incorporated into step S of the departure event in Figure 3.6.

The simulation table for Example 3.4 is shown in Table 3.2. The same data for interarrival and service
times will be used again; so Table 3.2 essentially repeats Table 3.1, except that the new components are
included (and the comment column has been deleted). These new components are needed for the computa-
tion of the cumulative statistics S, F, and N, For example, at timie 4, a departure event occurs for customer C1.
The customer entity C1 is removed from the list called “CHECKOUT LINE”; the attribute “time of arrival”
is noted to be 0, so the response time for this customer was 4 minutes. Hence, S is incremented by 4 minutes.
N, is incremented by one customer, but F is not incremented, for the time in system was less than five
mmutes Similarly, at time 23, when the departure event (D, 23, C6) is being executed, the response time for
customer C6 is computed by

Response time = CLOCK TIME - attribute “time of arrival”
= 23 - 18 ’
= 5 minutes

Then § is incremented by 5 minutes, and F and N, by one customer.

For a simulation run length of 23 minutes, the average response time was S/N,, = 35/6 = 5.83 minutes,,
and the observed proportion of customers who spent 5 or more minutes in the system was F/N, = 0.83. Again,
this simulation was far too short to regard these estimates as having any degree of accuracy. The purpose of
Example 3.4, however, was to illustrate the notion that, in many simulation models, the information desired
from the simulation (such as the statistics S/N,, and F. /N ) to some extent dictates the structure of the model.

Example 3.5: The Dump-Truck Problem
Six dump trucks are used to haul coal from the entrance of a small mine to the railroad. Figure 3.7 provides
a schematic-of the dump-truck operation. Each truck is loaded by one of two loaders. After a loading, the
truck immediately moves to the scale, to be weighed as soon as possible. Both the loaders and the scale have
a first-come—first-served waiting line (or queue) for trucks. Travel time from a loader to the scale-is consid-
ered negligible. After being weighed, a truck begins a travel time (during which time the truck unloads) and
then afterward returns to the loader queue. The distributions of loading time, weighing time, and travel time
are given in Tables 3.3, 3.4, and 3.5, respectively, together with the random digit assignment for generating
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Traveling
Loading
Scale
Loader -} Weighing
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Figure 3.7 Dump truck problem.

Table 3.3 Distribution of Loading Time for the Dump Trucks

Loading Cumulative Random Digit
Time Probability Probability Assignment
5 0.30 0.30 13
10 . 0.50 0.80 48
15 0.20 1.00 9-0

Table 3.4 Distribution of Weighing Time for the Dump Trucks

Weighing Cumulative Random Digit
_ Time Probability Probability Assignment
12 070 - 070 - 1-7
16 0.30 1.00 80

Table 3.5 Distribution of Travel Time for the Dump Trucks

Travel Cumulative Random Digit
ﬁme Probability Probability Assignment
40 0.40 0.40 14

60 0.30 .0.70 5-7

80 020 090 8-9
100 0.10 1.00 0

these variables by using random digits from Table A.1. The purpose of the simulation is to estimate the
loader and scale utilizations (percentage of time busy). The model has the following components:
Systemstate [LQ(?), L(2), WQO(2), W(1)], where
* LO(f) = number of trucks in loader queue
L(t) = number of trucks (0, 1, or 2) being loaded
- WQ(#) = number of trucks in weigh queue i
W(t) = number of trucks (0 or 1) being weighed, all at simulation time ¢
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Event notiees
(ALQ, t, DTz), dump truck i arrives at loader queue (ALQ) at time ¢
(EL, t, DTi), dump truck i ends loading (EL) at time ¢
(EW, ¢, DTi), dump truck i ends weighing (EW) at time ¢

Entities The six dump trucks (DT1, ..., DT6)

Lists
Loader queue, all trucks waiting to begin loading, ordered on a first-come-first-served basis
Weigh queue, all trucks waiting to be weighed, ordered on a first-come-first-served basis

Activities Loading time, weighing time, and travel time
Delays Delay at loader queue, and delay at scale

The simulation table is given in Table 3.6. It has been assumed that five of the trucks are at the loaders
and one is at the scale at time 0. The activity times are taken from the following list as needed:

Loading Time 10 5 5 10 15 10 10
Weighing Times 12 12 12 16 12 16
Travel Times 60 100 40 40 80

When an end-loading (EL) event occurs, say for truck j at time z, other events might be triggered. If the scale
is idle [W(¢) = 0}, truck j begins weighing and an end-weighing event (EW) is scheduled on the FEL; other-
wise, truck j joins the weigh queue. If, at this time, there is another truck waiting for a loader, it will be
removed from the loader queue and will begin loading by the scheduling of an end-loading event (EL) on
the FEL. Both this logic for the occurrence of the end-loading event and the appropriate logic for the other
two events, should be incorporated into an event diagram, as in Figures 3.5 and 3.6 of Example 3.3. The con-
struction of these event-logic diagrams is left as an exercise for the reader (Exercise 2).

As an aid to the reader, in Table 3.6, whenever a new event is scheduled, its event time is written as
*“t + (activity time).” For example, at time 0, the imminent event is an EL event with event time 5. The clock
is advanced to time ¢ = 5, dump truck 3 joins the weigh queue (because the scale is occupied), and truck 4
begins to load. Thus, an EL event is scheduled for truck 4 at future time 10, computed by (present time) +
(loading time)=5+5=10. '

In order to estimate the loader and scale utilizations, two cumulative statistics are maintained:

B, = total busy time of both loaders from time to time ¢
Bg = total busy time of the scale from 0 to time ¢ -

Both loaders are busy, from time 0 to time 20, so B, = 40 at time ¢ = 20—but, from time 20 to time 24, only
one loader is busy; thus, B, increases by only 4 miqutes over the time interval [20, 24]. Similarly, from time
25 to time 36, both loaders are idle (1(25) =0), so B, does not change. For the relatively short simulation in
Table 3.6, the utilizations are estimated as follows: )

Averageloader utilizétion = 4322

=0.32

‘ Average scale utilization = ;’}% =1.00
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Table 3.6 Simulation Toble for Dump-Truck Operation (Example 3.5)
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Table 3.6 (continued)

Lists

System State Cumulative Statistics

Loader Weigh Future Event
Queue  Queue List B, By

Clock
t LO() L&) WO@ W)

(ALQ, 76, DT2) 45 7
(EW, 80, DT6)

(EL, 72 + 10, DT1)

(ALQ, 92, DT4)

(ALQ, 124, DT3)

(ALQ, 144, DT5)

72 0 1 0 1

(EW, 80, DT6) 49 76
(EL, 82, DTI)

(EL, 76 + 10, DT2)

(ALQ, 92, DT4)

(ALQ, 124, DT3)

(ALQ, 144, DTS)

76 0 2 0 1

Lists :
Clock System State der  Weigh Future Event Curnulative Statistics
t LO@®) L® wo@) W) Queue  Queue List B, Bs
0 3 2 0 1 .DT4 (EL, 5, DT3) 0 0
DTS (EL, 10, DT2)
DT6 (EW, 12, DTI)
5 2 "2 1 1 DTS DT3 (EL, 10, DT2) 10 5
DT6 (EL,5+ 5,DT4)
(EW, 12,DT1)
10 1 2 2 1 DT6 DT3 (EL, 10,DT4) 20 10
DT2 (EW, 12,DTI)
(EL,10+10, DTS)
10 0 2 3 1 DT3 (EW, 12,DT1) 20 10
DT2 (EL, 20, DTS)
. DT4 (EL, 10 + 15, DT6)
12 0 2 2 1 DT2 (EL, 20, DT5) 24 12
DT4 " (EW, 12 + 12, DT3) ’
(EL, 25, DT6)
(ALQ, 12 + 60, DTI)
20 0 1 3 1 DT2 (EW,24,DT3) 40 20
DT4 (EL, 25, DT6)
DTS (ALQ, 72,DTI)
24 0 1 2 1 DT4 (EL, 25, DT6) 44 24
DTS (EW, 24+ 12,DT2)
(ALQ, 72, DTI)
(ALQ, 24+ 100, DT3)
25 0 1] 3 1 DT4 (EW, 36, DT2) 45 25
DTS (ALQ, 72, DTI1)
DT6 (ALQ, 14, DT3)
36 0 0 2 1 DTS5 (EW, 36 + 16, DT4) 45 36
DT6 (ALQ, 72, DTI)
(ALQ, 36+40,DT2)
(ALQ, 124, DT3)
52 0 0 1 1 DT6 (EW, 52+ 12, DTS) 45 52
(ALQ, 72, DTI)
(ALQ, 76, DT2)
(ALQ, 52+ 40,DT4)
(ALQ, 14, DT3)
64 0 0 0 1 (ALQ, 72, DT1) 45 64
(ALQ, 76,DT2)
(EW, 64 + 16, DT6)
(ALQ, 92, DT4)
(ALQ 124, DT3)
(ALQ, 64 +80, DTS)
V (continued overleaf)

These estimates cannot be regarded as accurate estimates of the long-run “steady-state™ utilizations of the
loader and scale; a considerably longer simulation would be needed to reduce the effect of the assumed
conditions at time O (five of the six trucks atthe loaders) and to realize accurate estimates. On the other hand,
if the analyst were interested in the so-called transient behavior of the system over a short period of time
(say 1 or 2 hours), given the specified initial conditions, then the results in Table 3.6 can be considered rep-
resentative (or constituting one sample) of that wansient behavior. Additional samples can be obtained by
conducting additional simulations, each one having the same initial conditions but using a dlfferent stream
of random digits to generate the activity times.

Table 3.6, the simulation table for the dump-truck operation, could have been simplified somewhat by not
explicitly modeling the dump trucks as entities-—that is, the event notices could be written as (EL, #), and so
on, and the state variables used to keep track merely of the number of trucks in each part of the system, not
which trucks were involved. With this representation, the same utilization statistics could be collected. On the

other hand, if mean “system” response time, or proponion of trucks spending more than 30 minutes in
the “system,” were being estimated, where “system” refers to the loader queue and loaders and the weigh
queue and scale, then dump truck entities (DTY), together with an attribute equal to arrival time at the loader
queue, would be indispensable. Whenever a truck left the scale, that truck’s response time could be computed
as current simulation time (f) minus the arrival-time attribute. This new response time would be used to update
the cumulative statistics: S = total response time of all trucks that have basen through the “system” and F =
number of truck response times that have been greater than 30 minutes. This example again illustrates the
notion that, to some extent, the complexity of the model depends on the performance measures being esWmated.

Example 3.6: The Dump-Truck Preblem Revisited
The events and activities were identified in Example 3.5.. Under the activity-scanning approach, the condi-
tions for beginning each activity are as follows:

Activity * Condition ]
Loading time Truck is at front of loader queue, and at least one loader is idle.
Weighing time Truck is at front of weigh queue, and weigh scale s idle.

Travel time “Truck has just completed a weighing,
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_— Dump-truck process 4
Delay Loading Delay  Weigh Travel §me
ALQ EL EW ~ ALQ

Figure 3.8 The dump-ruck process.

Using the process-interaction approach, we view the model from the viewpoint of one dump truck and
its “life cycle” Considering a life cycle as beginning at the loader queue, we can picture a dump-truck
process as in Figure 3.8.

3.2 UIST PROCESSING

List processing deals with methods for handling lists of entities and the future event list. Simulation pack-
ages provide, both explicitly for an analyst's use and covertly in the simulation mechanism behind the lan-
guage, facilities for an analyst or the model itself to use lists and to perform the basic operations on lists.
Section 3.2.1 describes the basic properties and operations performed on lists. Section 3.2.2 discusses
the use of arrays for processing lists and the use of array indices to create linked lists, arrays being a simpler
mechanism for describing the basic operations than the more general dynamically allocated linked lists dis-
cussed in Section 3.2.3. Finally, Section 3.2.4 briefly introduces some of the more advanced techniques for
managing lists.
" The puspose of this discussion of list processing is not to prepare the reader to implement lists and their
processing in a general-purpose language such as FORTRAN, C++, or Java, but rather to increase the
reader’s understanding of lists and of their underlying concepts and operations.

3.2.1 Lists: Basic Properties and Operations

As has previously been discussed, lists are a set of ordered or ranked records. In simulation, each record rep-
resents one entity or one event notice.

Lists are ranked, so they have a top or head (the ﬁrst item on the list); some way to traverse the list
(to find the second, third, etc. items on the list); and a bottom or tail (thelast item on the list). A head pointer
is a variable that points to or indicates the record at the top of the list. Some implementations of lists also
have a tail pointer that points to the bottom item on the list.

For purposes of discussion, an entity, along with its attributes or an event notice, will be referred to as a
record. An entity identifier' and its attributes are fields in the entity record; the event type, event time, and
any other event-related data are fields in the event-notice record. Each record on a list will also have a field
that holds a “next pointer” that points to the next record on the list, providing a way to traverse the list. Some
lists also requite a “previous pointer,” to allow for traversing the list from bottom to top.

For either type of list, the main activities in list processing are adding a record to a list and removing a
record from a list. More specifically, the main operations on a list are the following:

1. removing a record from the top of the list;

2. removing a record from any location on the list;

3. adding an entity record to the top or bottom of the list;

4. adding a record at an arbitrary position in the list, one specified by the ranking rule.
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The first and third operations, removing or adding a record to the top or bottom of the list, can be carried out in
minimal time by adjusting two record pointers and the head or tail pointer, the othertwo operations requite at least
a partial search through the list. Making these two operations efficient is the goal of list-processing techniques.

In the event-scheduling approach, when time is advanced and the imiminenteventis due to be executed,
the removal operation takes place first—namely, the event at the top of the FEL is removed from the FEL.
If an arbitrary event is being canceled, or an entity is removed from a list based on some of its attributes (say,
for example, its priority and due date) to begin an activity, then the.second removal operation is performed.
When an entity joins the back of a first-in-first-out queue implemented as a list, then the third operation,
adding an entity to the bottom of a list, is performed. Finally, if a queue has the ranking rule earliest due date
first, then, upon arrival at the queue, an entity must be added to the list not at the top or bottom, but at the
position determined by the due-date ranking rule.

For simulation on a computer, whether via a general-purpose language (such as FORTRAN, C++, or
Java) or via a simulation package, each entity record and event notice is stored in a physical locationin com-
puter memory. There are two basic possibilities: (a) All records are stored in arrays. Arrays hold successive -
records in contiguous locations in computer memory. They therefore can be referenced by an array index that
can be thought of as a row number in a matrix. (b) All entities and event notices are represented by struc-
tures (as in C) or classes (as in Java), allocated from RAM memory as needed and tracked by pointers to a
record or structure.

Most simulation packages use dynamically allocated records and pointers to keep track of lists of items,
as arrays are conceptually simpler, so the concept of linked lists is first explained through arrays and array
indices in Section 3.2.2 and then applied to dynamically allocated records and pointers in Section 3.2.3.

3.2.2 Using Arrays for List Processing

The array method of list storage is typical of FORTRAN, but it may be used in other procedural languages.
Most versions of FORTRAN do not have actual record-type data structures, but a record may be imple-
mented as a row in a 2-dimensional array or asa number of parallel arrays. For convenience, we use the nota-
tion R(i) to refer to the i-th record in the array, however it may be stored in the language being used. Most
modern simulation packages do not use arrays forliststorage, butratheruse dynamically allocated records-—
that is, records that are created upon first being needed and destroyed when they are no longer needed.

Arrays are advantageous in that any specified record, say the i-th, can be retrieved quickly without
searching, merely by referencing R(i). Arrays are disadvantaged when items are added to the middle of alist
or the list must be rearranged. In addition, arrays typically have a fixed size, determined at compile time or
upon initial allocation when a program first begins to execute. In simulation, the maximum number of
records for any list could be difficult (or impossible) to predict, and the current number of them in a list may
vary widely over the course of the simulation run. Worse yet, most simulations require more than one list; if
they are kept in separate arrays, each would have to be dimensioned to the largest the list would ever be,
potentially using excessive amounts of computer memory.

Tn the use of arrays for storing lists, there are two basic methods for keeping track of the ranking of
records in a list. One method is to store the first record in R(1), the second in R(2), and so on, and the last
in R(tailptr), where tailptr is used to refer to the last item in the list. Although simple in concept and easy to
understand, this method will be extremely inefficient for all except the shortest lists, those of less than five
or so records, for adding an item, for example, in position 41 in a list of 100 itemus, will require that the last
60 records be physically moved down one array position to make space for the new record. Even if the list
werea first-in-first-out list, removing the top item from the list would be inefficient, as all remaining itemns -
would have to be physically moved up one position in the array. The physncal rearrangement . method of
managing lists will not be discussed further. What is needed is a method to track and rearrange the logical -
ordering of items in a list without having to move the records physically in computer memory. V
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In the second method, a variable called a head pointer, with name headptr, points to the record at the
top of the list. For example, if the record in position R(11) were the record at the top of the list, then head ptr
would have the value 11. In addition, each record has a field that stores the index or pointer of the next record
in the list. For convenience, let R(Z, next) represent the next index field.

Example 3.7: A List for the Dump Trucks at the Weigh Queue :
In Example 3.5, the dump-truck problem, suppose that a waiting line of three dump trucks occurred at the
weigh queue, specifically, DT3, DT2, and DT4, in that order, at exactly CLOCK time 10 in Table 3.6.
Suppose further that the model is tracking one attribute of each dump truck: its arrival time at the weigh
queue, updated each time it arrives. Finally, suppose that the entities are stored in records in an array dimen-
sioned from 1 to 6, one record for each dump truck. Each entity is represented by a record with 3 fields: the
first is an entity identifier; the second is the arrival time at the weigh queue; the last is a pointer field to “point
to” the next record, if any, in the list representing the weigh queue, as follows:

[DTi, arrival time at weigh queue, next index]

Before its first arrival at the weigh queue, and before being added to the weigh queue list, a dump truck’s
second and third fields are meaningless. At time 0, the records would be initialized as follows:

R(1)=[DT1,0.0,0]
R(2)=[DT2,0.0, 0]

R(6) =[DT6, 0.0, 0]

Then, at CLOCK time 10 in the simulation in Table 3.6, the list of entities in the weigh queue would be
defined by _
headptr = 3
R() =[DT1,0.0,0]
R(2)=[DT2,10.0, 4]
R(3)=[DT3,5.0,2]
R(4) =[DT4,10.0,0]
R(5) =[ DTS5, 0.0, 0]
R(6) =[ DT6,0.0, 0]
iailptr =4

To traverse the list, start with the head pointer, go to that record, retrieve that record’s next pointer, and
proceed, to create the list in its logical order—for example,

headptr =3
R(3)=[DT3;5.0,2]
R(2)=[DT2, 10.0, 4]
R(4) =[{DT4,10.0, 0]

The zero entry for next pointer in R(4), as well as tailptr = 4, indicates that DT4 is at the end of the list.
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Using next pointers for a first-in-first-out list, such asthe weigh queue in this example, makes the operations .

of adding and removing entity records, as dump trucks join and leave the weigh queue, particularly simple.
At CLOCK time 12, dump truck DT3 begins weighing and thus leaves the weigh queue. To remove the DT3
entity record from the top of the list, update the head pointer by setting it equal to the next pointer value of
the record at the top of the list:

headptr = R(headptr, next)

In this example, we get
headptr = R(3, next) =2

meaning that dump truck DT2 in R(2) is now at the top of the list.
Similarly, at CLOCK time 20, dump truck DTS arrives at the weigh queue and joins the rear of the
queue. To add the DTS entity record to the bottom of the list, the following steps are taken:

R(tailptr, next) = 5 (update the next pointer field of the previously last item)
tailptr = 5 (update the value of the tail pointer)

This approach becomes slightly more complex when a list is a ranked list, such as the future event list, or an
entity list ranked by an entity attribute. For ranked lists, to add or remove an item anywhere except to the
head or tail of the list, searching is usually required. See Example 3.8. .

Note that, in the dump-truck problem, the loader queue could also be implemented as a list using the
same six records and the same array, because each dump-truck entity will be on at most one of the two lists
and, while loading, weighing or traveling, a dump truck will be on neither list.

3.2.3 Using Dynamic Allocation and Linked Lists

In procedural languages, such as C++ and Java, and in most simulation languages, entity records are dynam-
ically created when an entity is created and event notice records are dynamically created whenever an event
is scheduled on the future event list. The languages themselves, or the operating systems on which they are
running, maintain a linked list of free chunks of computer memory and allocate a chunk of desired size upon
request to running programs. (Another use of linked lists!) When an entity “dies,” that is, exits from the sim-
ulated system, and also after an event occurs and the event notice is no longer needed, the corresponding
records are freed, making that chunk of computer memory available for later reuse; the language or operating
system adds the chunk to the list of free memory.

In this text, we are not concerned with the details of allocating and freeing computer memory, so we will
assume that the necessary operations occur as needed. With dynamic allocation, a record is referenced by a
pointer instead of by an array index. When a record is allocated in C++ or Java, the allocationroutine returns
a pointer to the allocated record, which must be stored in a variable or a field of another record for later use.
A pointer to a record can be thought of as the physical or logical address in computer memory of the record.

In our example, we will use a notation for records identical to that in the previous section (3.2.2):

Entities: [ ID, attributes, next pointer ]
Event notices: [ event type, event time, other data, next pointer ]

but we will not reference them by the array notation R(i) as before, because it would be misleading. If for
some reason we wanted the third item on the list, we would have to traverse the list, counting items until we
reached the third record. Unlike in arrays, there is no way to retrieve the i-th record in a linked list directly,
because the actual records could be stored at any arbitrary location in computer memory and are not stored
contiguously, as arrays are.
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Figure 3.9 The dump-ruck future event list as a linked list.

Example 3.8: The Future Event List and the Dump-Truck Problem
Beg{nnlng from Table 3.6, event notices in the dump-tuck problem of Example 3.5 are expanded to include
a pointer to the next event notice on the future event list and can be represented by

[event type, event time, DTi, nextptr],
—for example,

[EL, 10, DT3, nextptr]

where EL is the end-loading event to occur at future time 10 for dump truck DT3, and the field nextptr points to
the next record on the FEL. Keep in mind that the records may be stored anywhere in computer memory, and in
particular are not necessarily stored contiguously. Figure 3.9 represents the future event list at CLOCK time 10,
taken from Table 3.6. The fourth field in each record is a pointer value to the next record in the future event list.

The C++ and Javalanguages, and other general-purpose languages, use different notation for referenc-
ing data from pointer variables. For discussion purposes, if R is a pointer to a record, then

R--eventtype, R-»eventtime, R-snext

are the event type, the event time and the next record for the event notice that R points to. For example, if R
1$ set equal to the hea(_i pointer for the FEL at CLOCK time 10, then

R-seventtype = EW
R—eventtime = 12
R--next is the pointer for the second event notice onthe FEL,

so that
R--next--eventtype = EL-

R-->next--eventtime =20
R--next--next is the pointer to the third event notice on the FEL
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If one of the pointer fields is zero (or null), then that record is the last item in the list, and the pointer
variable tailptr points to that last record, as depicted in Figure 3.9.

What we have described are called singly-linked lists, because there is a one-way linkage from the
head of the list to its tail. The tail pointer is kept mostly for convenience and efficiency, especially for
lists for which items are added at the bottom of the list. Of course, a tail pointer is not strictly necessary,
because the last item can always be found by traversing the list, but it does make some operations more
efficient. .

For some purposes, it is desirable to traverse or search a list by starting at the tail in addition to the head.
For such purposes, a doubly-linked list can be used. Records on a doubly-linked list have two pointer
fields, one for the next record and one for the previous record. Good references that discuss arrays, singly-
and doubly-linked lists, and searching and traversing of lists are Cormen, et al. [2001] and Sedgewick
[1998].

3.2.4 Advanced Techniques

Many of the modem simulation packages use techniques and representations of lists that are more efficient
than searching through a doubly-linked list. Most of these topics are too advanced for this text. The purpose
of this section is to introduce some of the more advanced ideas briefly.

One idea to speed up processing or doubly-linked lists is to use a middle pointer in addition to a head
and tail pointer. With special techniques, the mid pointer will always point to the approximate middle of the
list. Then, when a new record is being added to the list, the algorithm first examines the middle record to
decide whether to begin searching at the head of the list or the middle of the list. Theoretically, except for
some overhead due to maintenance of the mid pointer, this technique should cut search times in half. A few
advanced techniques use one or more mid pointers, depending on the length of the list.

Some advanced algorithms use list representations other than a doubly-linked list, such as heaps or trees.
These topics are beyond the scope of this text. Good references are Cormen, et al. [2001] and Sedgewick
[1998].

3.3 SUMMARY

This chapter introduced the major concepts and building blocks in simulation, the most important being
entities and attributes, events, and activities. The three major world views—event scheduling, process
interaction, activity scanning—were discussed. Finally, to gain an understanding of one of the most
important underlying methodologies, Section 3.2 introduced some of the basic notions of list processing.
The next chapter will provide a survey of some of the most widely used and popular simulation
packages, most of which either use exclusively or allow the process-interaction approach to simulation.
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EXERCISES

Inswuctions to the reader: For most exercises, the reader should first construct a model by explicitly defining
the following:

1. system state;

2. system entities and their attributes;

3. sets, and the entities that may be put into the sets;
4. events and activities; event notices;

5. vartables needed to collect cumulative statistics.

Second, the reader should either (1) develop the event logic (as in Figures 3.5 and 3.6 for Example 3.3) in
preparation for using the event-scheduling approach, or (2) develop the system processes (as in Figure 3.4)
in preparation for using the process-interaction approach.

Most problems contain activities that are uniformly distributed over an interval [a, b1. When conducting
a manual simulation, assume thata, a + 1, a + 2, ..., b are the only possible values; that is, the activity time
is a discrete random variable. The discreteness assumption will simplify the manual simulation.

1. (a) Using the event-scheduling approach, continue the (manual) checkout-counter simulation in
Example 3.3, Table 3.1. Use the same interarrival and service times that were previously geneiated
and used in Example 2.1. When the last interarrival time is used, continue the simulation until time
60 using the data in Tables 2.8 and 2.9.

(b) Do exercise 1(a) again, adding the model components necessary to estimate mean response time
and proportion of customers who spend 5 or more minutes in the system. (Hint: See Example 3.4,
Table 3.2.)

(c) Comment on the relative merits of manual versus computerized simulations.
2. Give the detailed flow chart for the simulation of a single-server queueing system.

3. In the dump-wuck problem of Example 3.5, it is desired to estimate mean response time and the pro-
portion of response times which are greaterthan 30 minutes. A response time for a truck begins when
that truck arrives at the loader queue and ends when the truck finishes weighing. Add the model com-
ponents and cumulative statistics needed to estimate these two measures of system performance.
Simulate for 8 hours.

4. Consider a single-server queueing system with arrival and service details as:
Interarrival times 32 62 45
Service times25584 5

Prepare a table similar to Table 3.2 forthe given data. Stop simulation when the clock reaches 20.

th

Continue the table that is prepared in Exercise 4 till C5 leaves the system.

6. The data for Table 3.2 are changed to the following:
Interarmival times 4 5283 7
Service times 534627
Prepare a table in the manner of Table 3.2 with a stopping event at time 25.

7. Redo Example 2.2 (the Able-Baker call center problem) by a manual simulation, using the event-
scheduling approach. '
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| 8. Redo Example 2.4 (the (M, N) inventory system) by a manual simulation, using the event-scheduling
approach.

9, Redo Example 2.5 (the bearing-replacement problem) by a manual simulation, using the event-
scheduling approach.

10. Redo Example 3.5 with the following data:
Loading times 5 1055 105 10 10
. Weighing times 1212121616 121216
Travel times 80 80 100 40 100 40 6040




4

Simvulation Software

In this chapter, we first discuss the history of simulation software. Simulation software has a history that is
just reaching middle age. We base this history on our collective experience, articles written by Professor
Richard Nance, and panel discussions at the annual Winter Simulation Conference.

Next, we discuss features and attributes of simulation software. If you were about to purchase simula-
tion software, what would concemn you? Would it be the cost, the ease of learning, the ease of use, or would
it be the power to model the kind of system with which you are concemed? Or would it be the animation
capabilities? Following the discussion of features, we discuss other issues and concerns related to the selection
of simulation software.

Software used to develop simulation models can be divided into three categories. First, there are the
general-purpose programming languages, such as C, C++, and Java. Second, there are simulation programming
languages, examples being GPSS/H™, SIMAN V®and SLAM II®. Third, there are the simulation environments.
This category includes many products that are distinguished one way or another (by, for example, cost,
application area, or type of animation), but have common characteristics, such as a graphical user interface
and an environment that supports all {or most) aspects of a simulation study. Many simulation environments
contain a simulation programming language, but some take a graphical approach similar to process-flow
diagramming.

In the first category, we discuss simulation in Java. Java s a general-purpose programming language that
was not specifically designed for use in simulation. Java was chosen since it is widely used and widely avail-
able. Today very few people writing discrete-event simulation models are using programming languages
alone; however, in certain application areas, some people are using packages based on Java or on another
general-purpose language. Understanding how to develop a model in a general-purpose language helps to
understand how the basic concepts and algorithms discussed in Chapter 3 are implemented.

In the second category, we discuss GPSS/H, a highly structured process-interaction simulation lan-
guage. GPSS was designed for relatively easy simulation of queuing systems, such as in job shops, but it

86

SIMULATION SOFTWARE : ) 87

has been used to simulate systems of great complexity. It was first introduced by IBM; today, there are various
implementations of GPSS, GPSS/H being one of the most widely used. -

In the third category, we have selected a number of simulation software packages for discussion. There
are-many simulation packages currently available; we have selected a few that have survived and thriven for
a number of years, to represent different approaches for model-building.

One of the important components of a simulation environment is the output analyzer, which is used to
conduct experimentation and assist with analyses. To illustrate the range of desirable characteristics, we look
at four tools incorporated into some of the simulation environments. Typically these statistical analysis tools
compute summary statistics, confidence intervals, and other statistical measures. Some support warmup
determination, design of experiments, and sensitivity analyses. Many packages now offer optimization tech-
niques based on genetic algorithms, evolutionary strategies, tabu search, scatter search, and other recently
developed heuristic methods. In addition to the support for statistical analysis and optimization, the simula-
tion environments offer data management, scenario definition, and run’ management. Data management
offers support for managing all the input and output data associated with the analyses.

4.1 HISTORY OF SIMULATION SOFTWARE

Our discussion of the history of simulation software is based on Nance [1995], who breaks the years from
1955 through 1986 into five periods. Additional historical information is taken from a panel discussion at the
1992 Winter Simulation Conference entitled “Perspectives of the Founding Fathers” [Wilson, 1992], during
which eight early users of simulation presented their historical perspectives. We add a sixth and most recent
period:

1955-60  The Period of Search
1961-65 = The Advent
1966-70  The Formative Period

1971-78  The Expansion Period
1979-86  The Period of Consolidation and Regeneration
1987-? The Period of Integrated Environments

The following subsections provide a brief presentation of this history. As indicated in [Nance, 1995],
there were at least 137 simulation programming languages reported as of 1981, and many more since then.
This brief history is far from all-inclusive. The languages and packages we mention have stood the test of
time by surviving to the present day or were the historical forerunner of a package in present use.

4.1.1 The Period of Search (1955-60)

In the early years, simulation was conducted in FORTRAN or other general-purpose programming language,

without the support of simulation-specific routines. In the first period (1955-1960), much effort was expended
on the search for unifying concepts and the development of reusable routines to facilitate simulation. The
General Simulation Program of K.D. Tocher and D.G. Owen [Tocher, 1960] is considered the first “language
effort.” Tocher identified and developed routines that could be reused in subsequent simulation projects.

4.1.2 The Advent (1961-65)

The forerunners of the simulation programming languages (SPLs) in use today appeared in the period 1961~ 65.
As Harold Hixson said in [Wilson, 1992], “in the beginning there were FORTRAN, ALGOL, and GPSS”— that

is, there were the FORTRAN-based packages (such as SIMSCRJ]?I‘ and GASP), the ALGOL descendent

SIMULA, and GPSS.
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The first process interaction SPL, GPSS was developed by Geoffrey Gordon at IBM and appeared in
about 1961. Gordon developed GPSS (General Purpose Simulation System) for quick simulations of com-
munications and computer systems, but its ease of use quickly spread its popilarity to other application
areas. GPSS is based on a block-diagram representation (similar to a process-flow diagram) and is suited for
queuing models of all kinds. As reported by Reitman in {Wilson, 1992), as early as 1965 GPSS was con-
nected to an interactive display terminal that could interrupt-and display intermediate results, a foreshadow
of the interactive simulations of today, but far too expensive at the time to gain widespread use.

Harry Markowitz (later to receive a Nobel Prize for his work in portfolio theory) provided the-ma jor con-
ceptual guidance for SIMSCRIPT, firstappearing in 1963. The RAND Corporation developed the language
under sponsorship of the U.S. Air Force. SIMSCRIPT originally was heavily influenced by FORTRAN, but,
in later versions, its developers broke from its FORTRAN base and created its own SPL. The initial versions
were based on event scheduling.

Phillip J. Kiviat of the Applied Research Laboratory of the United States Steel Corporanon began
the development of GASP (General Activity Simulation Program) in 1961. Originally, it was based on the
general-purpose programming language ALGOL, but later a decision was made to base it on FORTRAN.
GASP, like GPSS, used flowchart symbols familiar to engineers. It was not a language proper, but rather a
collection of FORTRAN routines to facilitate simulation in FORTRAN.

Numerous other SPLs were developed during this time period. Notably, they included SIMULA, an
extension of ALGOL, developed in Norway and widely used in Europe, and The Control and Simulation
Language (CSL), which took an activity-scanning approach.

4.1.3 The Formative Period (1966-70)

During this period, concepts were reviewed and refined to promote a more consistent representation of each
language’s worldview. The major SPLs matured and gained wider usage. )

Rapid hardware advancements and user demands forced some languages, notably GPSS, to undergo
major revisions. GPSS/360, with its extensions to earlier versions of GPSS, emerged for the IBM 360 com-
puter. Its popularity motivated at least six other hardware vendors and other groups to produce their own
implementation of GPSS or a look-alike.

SIMSCRIPT II represented a major advancement in SPLs. In its free-form English-like language and
“forgiving™ compiler, an attempt was made to give the user major consideration in the language design.

ECSL, a descendent of CSL, was developed and became popular in the UK. In Europe, SIMULA added
the concept of classes and inheritance, thus becoming a precursor of the modem object-oriented program-
ming languages.

4.1.4 The Expansion Period ('I97 1-78)

Major advances in GPSS during this period came from outside IBM. Julian Reitman of Norden Systems
headed the developmenl of GPSS/NORDEN, a pioneering effort that offered an interactive, visual online
environment. James O. Henriksen of Wolverine' Software developed GPSS/H, released in 1977 for IBM
mainframes, later f or mini-computers and the PC. It was notable for being compiled and reportedly 5 to 30
times faster than standard GPSS. With the.addition of new features, including ari interactive debugger, it has
become the principal version of GPSS in use today.

Alan Pritsker at Purdue made major changes to GASP, with GASP IV appearing in 1974.1t mcorporated
state events in addition to time events, thus adding support for the activity-scanning worldview in addition
to the event-scheduling worldview.

Efforts were made during this period to attempt to simplify the modeling process. Using SIMULA, an
attempt was made to develop a system definition from a high-level user perspective that could be translated
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automatically into an' executable model. Similar efforts included interactive program generators, the
“Programming by Questionnaire,” and natural-language interfaces, together with automatic mappings to the
language of choice. As did earlier over-optimistic beliefs in automatic programming, these efforts ran into
severe limitations in the generality of what could be modeled—-that is, they ran into the unavoidable com-
plexity of real-world systems. Nevertheless, efforts to simplify simulation modeling continue, with the most
success seen in simulation systems designed for application to narrow domains.

4.1.5 Consolidation and Regeneration (1979-86)

The fifth period saw the beginnings of SPLs written for, or adapted to, desktop computers and the micro-
computer. During this period, the predominant SPLs extended their implementation to many computers and
microprocessors while maintaining their basic structure,

Two major descendants of GASP appeared: SLAM II and SIMAN. The Slmulatlon Language for
Alternative Modeling (SLAM), produced by Pritsker and Associates, Inc., sought to provide multiple mod-
eling perspectives and combined modeling capabilities (Pritsker and Pegden, 1979]-—that is, it had an event-
scheduling perspective based on GASP, a network worldview (a variant of the process-interaction
perspective), and a continuous component. With SLAM, you could select one worldview or use a mix of
all three.

SIMAN (SIMulation ANalysis) possessed a general modeling capability found in SPLs such as GASP
IV, but also had a block-diagram component similar in some respects to thatin SLAM and GPSS. C. Dennis
Pegden developed SIMAN as a one-person faculty project over a period of about two years; he later founded
Systems Modeling Corporation to market SIMAN. SIMAN was the first major simulation language exe-
cutable on the IBM PC and designed to run under MS-DOS constraints. Similar to GASP, SIMAN allowed
an event-scheduling approach by programming in FORTRAN with a supplied collection of FORTRAN rou-
tines, a block-diagram approach (another variant of the process-interaction worldview) analogous in some
ways to that of GPSS and SLAM, and a continuous component.

4.1.6 Integrated Environments (1987-Present)

The most recent period is notable by the growth of SPLs on the personal computer and the emergence of

. simulation environments with graphical user interfaces, animation, and other visualization tools. Many of

these environments also contain input-data analyzers and output analyzers. Some packages attempt to sim-
plify the modeling process by the use of process-flow or block diagramming and of “fill-in-the-blank”
windows that avoid the need to leam programming syntax. Animation ranges from schematic-like represen-
tations fo 2-D and 3-D scale drawings.

Recent advancements have been made in web-based simulation. Much discussion has taken place con-
cerning a role for simulation in supply-chain management. The combination of simulation and emulation
shows promise.

Information about various software packages is given in Section 4.7, including the websites of the ven-
dors. A view of current developments in simulation software is available from these websites.

4.2 SELECTION OF SIMULATION SOFTWARE
This chapter includes a brief introduction to a number of simulation-software packages. Every two years,

OR/MS Today publishes a simulation-software survey [Swain, 2003]. The 2003 issue had 48 products,
including simulation support packages such as input-data analyzers.
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Table 4.2 Runtime Environment
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Table 4.4 Output Features
Feature Description
Scenario manager Create user-defined scenarios to simulate
Run manager Make all runs (scenarios and replications) and save results for
future analyses ’
Warmup capability For steady-state analysis
Independent replications Using a different set of random numbers
Optimization Genetic algorithms, tabu search, etc.
Standardized reports Summary reports including averages, counts, minimum and
maximum, etc.
Customized reports Tailored presentations for managers
Statistical analysis Confidence intervals, designed experiments, etc
Business graphics Bar charts, pie charts, time lines, etc.
Costing module Activity-based costing included
File export Input to spreadsheet or database for custom processing and analysis
Database maintenance Store output in an organized mantier
Table 4.5 Vendor Support and Product Documentation
Feature Description
Training Regularly scheduled classes of high quality
Documentation Quality, completeness, online
Help system General or context-sensitive
Tutorials For learning the package or specific features
Support Telephone, e-mail, web
Upgrades, maintenance Regularity of new versions and maintenance releases that
address customer needs
Track record Stability, history, customer relations
Implementation and capability are what is important. As a second example, most packages offer a
runtime license, but these vary considerably in price and features.

6. Simulation users ask whether the simulation model can link to and use code or routines written in
external languages such as C, C++, or Java. This is a good feature, especially when the external
routines already exist and are suitable for the purpose at hand. However, the more important question
is whether the simulation package and language are sufficiently powerful to avoid havmg to write
logic in any external language.

7. There may be a significant trade-off between the graphical model-building environments and ones

based on a simulation language. Graphical model-building removes the leamning curve due to language
syntax, but it does not remove the need for procedural logic in most real-world models and the
debugging to get it right. Beware of “no programming required” unless either the package is a
near-perfect fit to your problem domain or programming (customized procedural logic) is possible
with the supplied blocks, nodes, or process-flow diagram—in which case “no programming

required” refers to syntax only and not the development of procedural logic.
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4.3 AN EXAMPLE SIMULATION

Example 4.1: The Checkout Counter: A Typical Single-Server Queue
The system, a grocery checkout counter, is modeled as a single-server queue. The simulation will run untll
1000 customers have been served. In addition, assume that the interarrival times of customers are expo-
nentially distributed with & mean of 4.5 minutes, and that the service times are (approximately) normally
distributed with a mean of 3.2 minutes and a standard deviation of 0.6 minute. (The approximation is that
service times are always positive.) When the cashier is busy, a queue forms with no customers turned
away. This example was simulated manually in Examples 3.3 and 3.4 by using the event-scheduling point
of view. The model contains two events: the arrival and departure events. Figures 3.5 and 3.6 provide the
event logic.

The following three sections illusiate the simulation of this single-server queue in Java, GPSS/H, and
SSE Although this example is much simpler than models that arise in the study of complex systems, its
simulation contains the essential components of all discrete-event simulations.

4.4 SIMULATION IN JAVA

Java is a widely used programming language that has been used extensively in simulation. It does not, how-
ever, provide any facilities directly aimed at aiding the simulation analyst, who therefore must program all
details of the event-scheduling/time-advance algorithm, the statistics-gathering capability, the generation of
samples from specified probability distributions, and the report generator. However, the runtime library does
provide a random-number generator. Unlike with FORTRAN or C, the object-orientedness of Java does support
modular construction of large models. For the most part, the special-purpose simulation languages hide the
details of event scheduling, whereas in Java all the details must be explicitly programmed. However, to a
certain extent, simulation libraries such as SSF (Cowie 1999) alleviate the development burden by providing
access to standardized simulation functionality and by hiding low-level scheduling minutiae.

There are many online resources for learning Java; we assume a prior working knowledge of the
language. Any discrete-event simulation model written in Java contains the components discussed in Section 4.3:
system state, entities and attributes, sets, events, activities and delays, and the components listed shortly. To
facilitate development and debugging, it is best to organize the Java model in a modular fashion by using
methods. The following components are common to almost all models written in Java:

Clock A variable defining simulated time

Initialization method A method to-define the system state at time 0

Min-time event method A method that identifies the imminent event, that is, the element of the future
event list (FutureEventList) that has the smallest time-stamp

Event methods For each event type, a method to update system state (and cumulative statistics) when
that event occurs

Random-variate generators Methods to generate samples from desired probability distributions

Main program To maintain overall control of the event-scheduling algorithm

Report generator A method that computes summary statistics from cumﬁlative statistics and prints a

. report at the end of the simulation '

The overall structure of a Javasimulation program is shown in Figure 4.1. This flowchart is an expansion
of the event-scheduling/time-advance.algorithm outlined in Figure 3.2. (The steps mentioned in Flgure 4.1
refer to the five steps in Figure 3.2.)

The simulation begins by setting the simulation C1lock to zero, initializing cumulative statistics to zero,
generating any initial events (there will always beat least one) and placing them on the FutureEventList,




9 i DISCRETE-EVENT SYSTEM SIMULATION

Main program:
Start simulation;
obtain input parameters.

y
Initialize subroutine:
1. Set CLOCK =0.
2. Setcumulative statistics to 0.
3. Generate initial events, and Steps | and 2
place on FEL.
4. Define initial system state.

Time-advance subroutine:

1. Find imminent event, say i.

2. Advance CLOCK to imminent-event
time,

. Main program:
Cali the time-advance subroutine.

Steps 3-5

Event subroutine i
L Execute event i: update

Main program: system state, entity
Call appropriate event atwibutes, set membership.
subroutine. 2. Collect cumulative
statistics.
3. Gen¢rate future events and

place on FEL.
B i

Simulation
over
?

Yes

Report generator:

1. Compute summary statistics.
2. Print report.

Figure 4.1 Overall structure of an event-scheduling simulation program.

and defining the system state attime 0. The simulation program then cycles, repeatedly passing the current
leas}-ﬁme event to the appropriate event methods until the simulation is over. At each step, after finding
the imminent event but before calling the event method, the simulation C1ock is advanced to the time of the
imminent event, (Recall that, during the simulated time between the occurrence of two successive events, the
system state and entity attributes do not change in value. Indeed, this is the definition of discrete-event
simulation: The system state changes only when an event occurs.) Next, the appropriate event method is
called to execute the imminent event, update cumulative statistics, and generate future events (to be placed
on the FutureEventList). Executing the imminent event means that the system state, entity attributes,
and set membership are changed to reflect the fact that the event has occurred: Notice that all actions in an
event method take place at oneinstant of simulated time. The value of the variable C1ock does not change
in an event method. If the simulation is not over, control passes again to the time-advance method, then to
the appropriate event method, and so on. When thesimulation is over, control passes to the report generator,
which computes the desired summary stasistics from the collected cumulative statistics and prints a report.
The efficiency of a simulation model in terms of computer runtime is determined to a large extent by the
techniques used to manipulate the FutureEventList and other sets. As discussed earlier in Section 4.3,
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removal of the imminent event and addition of a new event are the two main operations performed on the
FutureEventList. Java includes general, efficient data structures for searching and priority lists; it is
usual to build a customized interface to these to suit the application. In the example to follow, we use
customized interfaces to implement the event list and the list of waiting customers. The underlying priority-
queue organization is efficient, in the sense of having access costs that grow only in the logarithm of the
number of elements in the list.

Example4.2: Single-Server Queue Simulation in Java
The grocery checkout counter, defined in detail in Example 4.1, is now simulated by vsing Java. A version
of this example was simulated manually in Examples 3.3 and 3.4, where the system state, entities and attrib-
utes, sets, events, activities, and delays were analyzed and defined.

Class Event represents an event. it stores a code for the event type (axrival or departure), and
the event time-stamp. It has associated methods (functions) for creating an event and accessing its data.
It also has an associated method compareTo, which compares the event with another (passed as an argument)
and reports whether the first event should be considered to be smaller, equal, or larger than the argument
event. The methods for this model and the flow of control are shown in Figure 4.2, which is an adaptation
of Figure 4.1 for this particular problem. Table 4.6 lists the variables used for system state, entity attributes
and sets, activity durations, and cumulative and summary statistics; the functions used to generate samples
from the exponential and normal distributions; and all the other methods needed.

main(} program
Start simulation.

3
call Initialization()
Initialize the model.

main program .
i Remove imminent event from FutureEventList.
Advance simulation time to event time.

call ProcessAmival(
Execute amival event.

main program
Call event routine based on event type.

call ProcessDx 7 0
Execute departure event.

Y

No Simulation
over -
?

Yes

call ReportGeneration()
Generate final report.

Figure 4.2 Overall structure of Java simulation of a singleserver queve. -
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Table 4.6 Definitions of Variables, Functions, and Subroutines in the Java Model of the : Table 4.6 (continued)
Single-Server Queve : : ;
Methods H Description
Variables . Description - " . .
- Initialization Initialization method
System state ’ - ProcessArrival . Event method that executes the arrival event
QueueLength Number of customers enqueued ‘ ProcessDeparture ° Event method that executes the departure event
(but not in service) at current simulated time - ReportGeneration ~ Report generator
NumberInService Number being served at current simulated time
Entity attributes and sets )
Customers FCFS Queue of customers in system The entry point of the progcam and the location of the control logic is through class Sim, shown in
Future event list ) ’ Figure 4.3. Variables of classes EventList and Queue are declared. As these classes are all useful for
FutureEventList Priority-ordered list of pending events programs other than Sim, their declarasions are given in other files, per Java rules. A variable of the Java
Actxynry durations . . . o . built-in class Random is also declared; instances of this class provided random-number streams. The main
_ MeanInterArrivalTime Theinteranival time between the previous method controls the overall flow of the event-scheduling/time-advance algorithm.
customer’s arrival and the next arrival .
MeanServiceTime The service time of the mostcecent customer to 1
begin service class Sim { "
Input parameters i ’
MeanInterarrivalTime Mean interarival time (4.5 minutes) // Class Sim variables
MeanServiceTime Mean service time (3.2 minutes) public static double Clock, MéanInterArrivalTime, MeanServiceTime,
SIGMA Standard deviation of service time (0.6 minute) SIGMA, LastEventTime, !TotalBusy, MaxQueueLength, SumResponseTime;
TotalCustomers The stopping criterion-~ number of customers to be public static long NumberOfCustomers, QueueLength, NumberInService,
_ served (1000) ) TotalCustomers, NumberOfDepartures, LongService;
Simulation variables : . L L
Clock The current value of simulated time pUblfc ffnal Stat}c %nt arrival = 1;
s public final static int departure = 2;
. Statistical Accumulators : . .
LastEventTime Time of accurrence of the last event public static EventList putux;egventl‘,ist;
TotalBusy Total busytime of server (so far) ) public static Queue Customers;
MaxQueuelength Maximum length of waiting line (so far) . public static Random stream; v
SumResponseTime Sum of customer response times for all ’
) customers whohave departed (so far) public static void main (String argv(}) {
Numberofl'.:)ep artures Number of departures (so far) MeanInterArrivalTime = 4. 5;' MeanServiceTime = 3.2; .
LongService Number of customers who spent 4 or more SIGMA = 0.6} TotalCustomers = 1000;
) minutes at the checkout counter (so far) long seed = Long.parseLong(argv(0});
Summary statistics ’ stream = new Random(seed); // initialize rng stream
RHO = BusyTime/Clock  Proportion of time server is busy (here the value FutureEventList = new EventList();
. of Clock is the final value of simulated time) - Customers = new Queue():
AVGR - Average response time (equal to .
) . SumResponseTime/TotalCustomers) Initialization();
bca ) Proportlon of customers who spent 4 or more // Loop until first “TotalCustomers® have departed
minutes at the checkout counter ) while (NumberOfDepartures < TotalCustomers ) { o
Functions : Description ; Event evt = (Event)FutureEventList.getMin(); ; ; get J:mmlnel:xt event
FutureEventList.dequeue () ; be rid of it
exponential (mu) Function to generate samples from an exponential Clock = evt.get_time(); . // advance in time
: distribution with mean mu if( evt.get_type() == arrival ) ProcessArrival(evt);
normal {xmu,SIGMA} Function to generate samples from a normal . ’ else ProcessDeparture(evt);
distribusion with mean samu and standard deviation } .
A ReportGeneration() ;
SIGMA , )

(continued overleaf) ‘ : Figure 4.3 Java main program for the singleserver queue simulation.
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The main program method first gives values to variables describing model parameters; it creates
instances of the random-number generator, event list, and customer queue; and then it calls method
Initialization to initialize other variables, such as the stausncs-gathermg variables. Control then
enters a loop which is exited only after TotalCustomers customers have received service. Inside the
loop, a copy of the imminent event is obtained by calling the get Min method of the priority queue, and then
that event is removed from the event list by a call to dequeue. The global simulation time Clock is set to the
time-stamp contained in the imminent event, and then either ProcessArrival or ProcessDeparture
is called, depending on the type of the event. When the simulation is fizally over, a call is made to' method
ReportGeneration to create and print out the final report.

A listing for the Sim class method Initialization is given in Figure 4.4. The simulation clock,
system state, and other variables are initialized. Note that the first arrival event is created by generating a
local Event variable whose constructor accepts the event’s type and:time. The event time-stamp is gener-
ated randomly by a call to Sim class method exponential and i$.passed to the random-number stream
to use with the mean of the exponential distribution from which to-sample. The event is inserted into the
future event list by calling method enqueue. This logic assumes that the system is empty at simulated time
Clock=0, so that no departuce can be scheduled. Itis straightforward to modify the code to accommodate alter-
native starting conditions by adding events to FutureEventList and Customers as needed. i

Figure 4.5 gives a listing of Sim class method ProcessArrival, which is called to process
each arrival event. The basic logic of the arrival event for a single-server queue was given in Figure 3.5
(where LQ corresponds to QueueLength and LS corresponds to NumberInService). First, the new
arrival is added to the queue Customers of customers in the 'system. Next, if the server is idle
(NumberInService ==0) then the new customer is to go immediaté}'y into service, so Sim class method
ScheduleDeparture is called to do that scheduling. An arrival to_an idle queue does not update the
cumulative statistics, except possibly the maximum queue length. An amval to a busy queue does not cause
the scheduling of a departure, but does increase the total busy time by the amount of simulation time between
the current event and the one immediately preceding it (because, if the $érver is busy now, it had to have had
at least one customer in service by the end of processing the previous event). In either case, a new arfival is
responsible for scheduling the next arrival, one random interarrival time into the future. An arrival event is
created with simulation time equal to the current Clock value plus an-exponential increment, that event
is inserted into the future event list, the variable LastEventTime recording the time of the last event
processed is set to the current time, and control is returned to the main method of class Sim.

public static void Initialization() { e
Clock = 0.0;
QueueLength = 0;
NumberInService = 0;
LastEventTime = 0.0;
TotalBusy = 0 ;
MaxQueueLength = 0; »
SumResponseTime = 0;
NumberOfDepartures = 0;
LongService = 0;

[OI: S

// create first arrival event
Event evt =

new Event (arrival, exponential( stream, MeanInterArrivalTime));
FutureEventList.enqueue( evt );

Figure 4.4 Java initialization method for the single-server queue simulation.
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public static void ProcessArrival {(Event evt) {
Customers. enqueue (evt) ;
QueueLength++;
// if the server is idle, fetch the event, do statistics
'// and put into service
if ( NumberInService == 0) ScheduleDeparture();
else TotalBusy += (Clock - LastEventTime); // server is busy
// adjust max queue length statistics
if (MaxQueueLength < QueueLength) MaxQueueLength = QueueLength;

// schedule the next arrival

Event next_arrival =

new Event(arrival, Clock+exponential{stream,MeanInterArrivalTime));
FutureEventList .enqueue( next_arrival );

LastEventTime = Clock;

Figure 4.5 Java arrival event method for the single-server queue simulation.

Sim class method ProcessDeparture, which executes the departure event, is listed in Figure 4.6, as
is method ScheduleDeparture. A flowchart for the logic of the departure event was given in Figure 3.6.
After removing the event from the queue of all customers, the number in service is examined. If there are
customers waiting, then the departure of the next one to enter service is scheduled. Then, cumulative
statistics recording the sum of all response times, sum of busy time, number of customers who used more than
4 minutes of service time, and number of departures are updated. (Note that the maximum queue length
cannot change in value when a departure occurs.) Notice that custoniers are removed from Customers in

public static void ScheduleDeparture() {
double ServiceTime;
// get the job at the head of the queue
while ({ ServiceTime = normal(stream, MeanServiceTime, SIGMA)) < 0 );
Event depart = new Event (departure,Clock+ServiceTime);
FutureEventList.enqueue( depart );
NumberInService = 1;
QueueLength--;

)

public static void ProcessDeparture(Event e) {
// get the customer description
Event finished = (Event) Customers.dequeue():
// if there are customers in the queue then schedule
// the departure of the next one :
if ( ‘QueueLength > 0 ) ScheduleDeparture();
else NumberInService = 0;:
// measure the response time and add to the sum
double response = {Clock - finished.get_time());
SumResponseTime += response;
if( response » 4.0 ) LongService++; // record long service
TotalBusy += (Clock ~ LastEventTime );
NumberOfDepartures++;
LastEventTime = Clock;

Figure 4.6 Java departure event method for the single-server queue simulation.
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FIFO order; hence, the response time response of the departing customer can be computed by subtracting
the arrival time of the job leaving service (obtained from the copy of the arrival event removed from the
Customers queue) from the current simulation time. After the incrementing of the total number of depar-
tares and the saving of the time of this event, control is returned to the main program.

Figure 4.6 also gives the logic of method ScheduleDeparture, called by both Process-
Arrival and ProcessDeparture to put the next customer into service. The Sim class method normal,
which generates normally distributed service times, is called until it produces a nonnegative sample. A new
event with type departure is created, with event time equal to the current simulation time plus' the service
time just sampled. That event is pushed onto FutureEventList, the number in service is set to one, and
the number waiting (QueueLength) is decremented to reflect the fact that the customer entering service is
waiting no longer. i

The report generator, Sim class method ReportGeneration, is listed in Figure 4.7. The summary
statisics, RHO, AVGR, and PC4, are computed by the forrulas in Table 4.6; then the input parameters are
printed, followed by the summary statistics. It is a good idea to print the input parameters at the end of the sim-
ulation, in order to verify that their values are correct and that these values have not been inadvertently changed.

Figure 4.8 provides a listing of Sim class methods exponential and normal, used to generate random
variates. Both of these functions call method nextDouble, which is defined for the built-in Java Random
class generates a random number uniformly distributed on the (0,1) interval. We use Random here for sim-
plicity of explanation; superior random-number generators can be built by hand, as described in Chapter 7.

public static void ReportGeneration() {

double RHO = TotalBusy/Clock;

double AVGR = SumResponseTime/TotalCustomers;
double PC4 = ((double)LongService)/?I‘ptalCust:omers;

" System.out.print( "SINGLE SERVER QUEUE SIMULATION “);

System.out.println( "- GROCERY STORE CHECKOUT COUNTER ");

System.out.printin( "\tMEAN INTERARRIVAL TIME "
+ MeanlInterArrivalTime );
System.out.println( "\tMEAN SERVICE TIME »

+ MeanServiceTime ) ;

System.out.println( "\tSTANDARD DEVIATION OF SERVICE TIMES #
+ SIGMA ); -

System.out.println( "\tNUMBER OF C¥STOMERS SERVED »
+ TotalCustomers );

System.out.println();

System.out.println( "\tSERVER UTILIZATION #
+ RHO ); .
System.out.println{ "\tMAXIMUM LINE LENGTH "

+ MaxQueuelength );

System.out.println( "\tAVERAGE RESPONSE TIME "
+ AVGR + " MINUTES* );

System.out.println( "\tPROPORTION WHO SPEND FOUR ");

System.out.println( "\t MINUTES OR MORE IN SYSTEM "
+ PC4 ); ‘ .

System.out.println( "\tSIMULATION RUNLENGTH "o
+ Clock + " MINUTES" ); °

System.out.println( "\tNUMBER OF DEPARTURES . "
+ TotalCustomers ) ;.

}

Figure 4.7 Java report generator for the single-server queue simulation.
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public static double exponential(Random rng, double mean} {
return -mean*Math.log( rmng.nextDouble() );

}

public static double SaveNormal;
public static int NumNormals = 0;
public static final double PI = 3.1415927 ;

public static double normal (Random rng, double mean, double sigma) {

double ReturnNormal;

// should we generate two normals?

if (NumNormals == 0 )}
double rl = rng.nextDouble();
double r2 = mmg.nextDouble()};
ReturnNormal = Math.sqrt(-2+*Math.log(rl))*Math.cos(2*PI*r2);
SsaveNormal = Math.sqrt(-2*Math.log(rl))*Math.sin(2*PI*r2);
NumNormals = 1; ’

} else {
NumNormals = 0;

- ReturnNormal = ‘SaveNormal;

l}return ReturnNormal *sigma + mean ;

} }

Figure 4.8 Random-variate generators for the single-server queue simulation.

The techniques for generating exponentially and normally distributed random variates, discussed in Chapter 8,
are based on first generating a U(0,1) random number. For further explanation, the reader is referred to
Chapters 7 and 8.

The output'from the grocery-checkout-counter simulation is shown in Figure 4.9. It should be empha-
sized that the output statistics are estimates that contain random error. The values shown are influenced by
the particular random numbers that happened to have been used, by the initial conditions at §ime 0, :?nd by
the run length (in this case,- 1000 departures). Methods for estimating the standard error of such estimates
are discussed in Chapter 11.

In some simulations, i tis desired to stop the simulation after a fixed lengtho f time, say TE = 12 hours =
720 minutes. In this case, an additional event type, stop event, is definedand is scheduled to occur by sched-
uling a stop event as part of simulation initialization. When the stopping event does occur, the cumulative

SINGLE SERVER QUEUE SIMULATION - GROCERY STORE CHECKOUT COUNTER

MEAN INTERARRIVAL TIME 4.5
MEAN SERVICE TIME 3.2
STANDARD DEVIATION OF SERVICE TIMES 0.6
NUMBER OF CUSTOUMERS SERVED 1000
SERVER UTILIZATION . 0.671

MAXIMUM LINE LENGTH 9.0
AVERAGE RESPONSE TIME. : 6.375 MINUTES
PROPORTION WHO SPEND FOUR .

MINUTES OR MORE IN SYSTEM 0.604

SIMULATION RUNLENGTH 4728.936 MINUTES
NUMBER OF DEPARTURES 1000

Figure 4.9 Output from the Java single-server queue simulation.
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statistics will be updated and the report generator called. The main program and method Initialization
will require minor changes. Exercise 1 asksthe reader to make these changes. Exercise 2 considers balking of
customers.

4.5 SIMULATION IN GPSS

GPSS is a highly structured, special-purpose simulation programming language based on the process-interaction
approach and oriented toward queueing systems. A block diagram provides a convenient way to describe the
system being simulated. There are over 40 standard blocks in GPSS. Entities called transactions may be
viewed as flowing through the block diagram. Blocks represent events, delays, and other actions that affect
transaction flow. Thus, GPSS can be used to model any situation where transactions (entities, customers,
units of traffic) are flowing through a system (e.g., a network of queues, with the queues preceding scarce
resources). The block diagram is converted to block statements, control statements are added, and the result
is a GPSS model.

The first version of GPSS was released by IBM in 1961. It was the first process-interaction simulation
language and became popular; it has been implemented anew and improved by many parties since 1961, with
GPSS/H being the most widely used version in use today. Example 4.3 is based on. GPSS/H.

GPSS/H is a product of Wolverine Software Corporation, Annandale, VA (Banks, Carson, and Sy, 1995;
Henriksen, 1999). It is a flexible, yet powerful tool for simulation. Unlike the original IBM implementation,
GPSS/H includes built-in file and screen I/O, use of an arithmetic expression as a block operand, an inter-
active debugger, faster execution, expanded control statements, ordinary variables and arrays, a floating-
point clock, built-in math functions, and built-in random-variate generators.

The animator for GPSS/H is Proof Animation™, another product of Wolverine Software Corporation
(Heariksen, 1999). Proof Animation provides a 2-D animation, usually based on a scale drawing. It can run
in postprocessed mode (after the simulation has finished running) or concurrently. In postprocessed mode,
the animation is driven by two files: the layout file for the static background, and a trace file that contains
commands to make objects move and produce other dynamic events. It can work with any simulation pack-
age that can write the ASCII trace file. Alternately, it can run concurrently with the simulation by sending
the trace file commands as messages, or it can be controlled directly by using its DLL (dynamic link library)
version.

Example 4.3: Single-Server Queue Simulation in GPSS/H
Figure 4.10 exhibits the block diagram and Figure 4.11 the GPSS program for the grocery-store checkout-

counter model described in Example 4.2. Note that the program (Figure 4.11) is a translation of the block

diagram together with additional definition and control statements.

In Figure 4.10, the GENERATE block represents the arrival event, with the interarrival times specified
by RVEXPO(1,&IAT). RVEXPO stands for “random variable, exponentially distributed,” the 1 indicates the
random-number stream to use, and &ZAT indicates that the mean time for the exponential distribution comes
from a so-called ampervariable &/AT. Ampervariable names begin with the “&” character; Wolverine added
ampervariables to GPSS because the original IBM implementation had limited support for ordinary global
variables, with no user freedom for naming them. (In the discussion that follows, all nonreserved words are
shown in italics.) )

The next block is a QUEUE with a queue named SYSTIME. It should be noted that the QUEUE block
is not needed for queues or waiting lines to form in GPSS. The true purpose of the QUEUE block is to work
in conjunction with the DEPART block to collect data on queues or any other subsystem. In Example 4.3,
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RVEXPO(1, & IAT) GENERATE
—x QUEUE
‘ QUEUE
LINE
l - SEIZE
CKOUT
& DEPART
@
ADVANCE

RVNORM(1, & MEAN, & STDEV)

CKOUT RELEASE

I~ DEPART
S
TEST
£ s TER
M1G )
(Yes)
TERMINATE
& COUNT = | BLET mn
& COUNT + 1

Figure 4.10 GPSS block diagram for the single-server queue simulation.

we want to measure the system response time-—that is, the time a transaction spends in the system. Placing
a QUEUE block at the point that transactions enter the system and placing the counterpart of the QUEUE
block, the DEPART block, at the point that the transactions complete their processing causes the response
times to be collected automatically. The purpose of the DEPART block is to signal the end of data collection
for an individual transaction. The QUEUE and DEPART block combination is not necessary for queues to
be modeled, but rather is used for statistical data collection. '

The next QUEUE block (with name LINE ) begins data collection for the waiting line before the cashier.
The customers may or may not have to wait for the cashier. Upon arrival to an idle checkout counter, or after .
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SIMULATE
*
* Define Ampervariables ’
*
INTEGER &LIMIT
REAL &IAT, &MEAN, &STDEV, &COUNT
LET &IAT=4.5
LET &MEAN=3 .2
LET &STDEV=.6 .
LET &LIMIT=1000
*
* Write Input Data to File
*
PUTPIC FILE=OUT,LINES=5, (&IAT, &MEAN, &STDEV, &LIMIT)

** *+ minutes
*+ *+* minutes
** ++ minutes

Mean interarrival time
Mean service time .
Standard deviation of service time

Number of customers to be served ool

. .

* GPSS/H Block Section

« .
GENERATE RVEXPO(1,&IAT) Exponential arrivals
QUEUE - SYSTIME Begin response time data collection
QUEUE LINE Customer joins waiting line
SEIZE CHECKOUT Begin checkout at 'cash register .
DEPART LINE Customer starting service leaves gueue

ADVANCE RVNORM(1, &MEAN, &STDEV) Customer’s service time

RELEASE CHECKOUT Customer leaves checkout area
DEPART SYSTIME End response time data collection
TEST GE M1,4,TER Is response time GE 4 minutes?

BLET &COUNT=&COUNT+1 If so, add 1 to counter
TER TERMINATE 1

START &LIMIT Simulate for required number

* Write Customized Output Data to File

PUTPIC FILE=OUT, LINES=7, (FR (CHECKOUT) /1000,QM (LINE), _
QT (SYSTIME) , &COUNT/N(TER) ,AC1,N(TER))
Server utilization JEEE
Maximum line length . Lad
Average response time kA minutes
Proportion who spend four minutes LEk ’

or.more in the system
Simulation runlength *xe+ _++ minutes
Number of departures bt

m .
Figure 4.11 - GPSS/H program for the singleserver queue- simulation.
advancing to the head of the waiting line, a customer captures the cashier, as represented by the SEIZE block
with the resource named CHECKOUT. Once the transaction representing a customer captures the cashier

represented by the resource CHECKOUT, the data collection for the waiting-line statistics ends, as repre-
sented by the DEPART block for the queue named LINE. The transaction’s sérvice time at the cashier is
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represented by an ADVANCE block. RVNORM indicates “random variable, normally distributed.” Again,
random-number stream 1 is being used, the mean time for the normal distribution is given by ampervariable
&MEAN, and its standard deviation is given by ampervariable &STDEV. Next, the customer gives up the use
of the facility CHECKOUT with a RELEASE block. The end of the data collection for response times is indi-
cated by the DEPART block for the queue SYSTIME.

Next, there is a.TEST block that checks to see whether the time in the system, M1, is greater than or
equal to 4 minutes. (Note that Ml is a reserved word in GPSS/H; it automatically tracks transaction total
time in system.) In GPSS/H, the maxim is “if true, pass through.” Thus, if the customer has been in the sys-
tem four minutes or longer, the next BLET block (for block LET) adds one to the counter &COUNT. If not
true, the escaperoute is to the block labeled TER. That label appears before the TERMINATE block whose
purpose is the removal of the transaction from the system. The TERMINATE block has a value “1” indicat-
ing that one more transaction is added toward the limiting value (or “transactions to go”).

The control statements in this example are all of those lines in Figure 4.11 that precede or follow the
block section. (There are eleven blocks in the model from the GENERATE block to the TERMINATE
block.) The control statements that begin with an “*” are comments, some of which are used for spacing pur-
poses. The control statement SIMULATE tells GPSS/H to conduct a simulation; if it is omitted, GPSS/H
compiles the model and checks for errors only. The ampervariables are defined as integer or real by control
statements INTEGER and REAL. It seems that the ampervariable &COUNT should be defined as an inte-
ger; however, it will be divided later by a real value. If it is integer, the result of aninteger divided by a real
value is truncation, and that is not desired in this case. The four assignment statements (LET) provide data
for the simulation. These four values could have been placed directly in the program; however, the preferred
practice is to place them in ampervariables at the top of the program so that changes can be made more eas-
ily or the model can be modified to read them from a data file.

To ensure that the model data is correct, and for the purpose of managing different scenarios simulated,
it is good practice to echo the input data. This is accomplished with a PUTPIC (for “put picture™) control
statement. The five lines following PUTPIC provide formatting information, with the asterisks being mark-
ers (called picture formatting) in which the values of the four ampervariables replace the asterisks when
PUTPIC is executed. Thus, “**.**” indicates a value that may have two digits following the decimal point
and up to two before it. :

The START control statement controls simulation execution. It starts the simulation, sets up a
“termination-to-go” counter withinitial value its operand (&LIMIT'), and controls the length of the simulation.

After the simulation completes, a second PUTPIC control statement is used to write the desired output
data to the same file OUT. The printed statistics are all gathered automatically by GPSS. The first output in
the parenthesized list is the server uttlization. FR{CHECKOUT )/1000 indicates that the fractional utilization
of the facility CHECKOUT is printed. Because FR(CHECKOUT ) is in parts per thousand, the denominator
is provided to compute fractional utilization. QM(LINE) is the maximum value in the queue LINE during
the simulation. QT(SYSTIME ) is the average time in the queue SYSTIME. &COUNT/N(TER) is the number
of customers who had a resporise time of four or more minutes divided by the number of customers that went
through the block with label TER, or N(TER). AC1 is the clock time, whose last value gives the length of the
simulation.

The contents of the custom output file OUT are shown in Figure 4.12. The standard GPSS/H output file
is displayed in Figure 4.13. Although much of the same data shown in the file OUT can be found in the stan-
dard GPSS/H output, the custom file is more compact and uses the language of the problem rather than GPSS
jargon. There are many other reasons that cistomized output files are useful. For example, if 50 replications
of the model are to be made and the lowest, highest, and average value of a response are desired, this can be
accomplished by using control statements, with the results in a very compact form, rather than extracting the
desired values from 50 standard output files.




106 DISCRETE-EVENT SYSTEM SIMULATION

4.50 minutes
3.20 minutes
0.60 minutes

Mean interarrival time
Mean service time
Standard deviation of service time

Number of customers to be served 1000

Server utilization 0.676
Maximum line length 7

Average response time 6.33 minutes

Proportion who spend four minutes 0.646

or more in the system
Simulation runlength 4767.27 minutes
Number of departures 1000

Figure 4.12 Customized GPSS/H output report for the singleserver queue simulation.

RELATIVE CLOCK: 4767.2740 ABSOLUTE CLOCK: 4767.2740

BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL
1003 TER 1000
1003

3 1003

1000
1000
1000
1000
1000
1000

646

H O o NaWn s W

o

--AVG-UTIL-DURING--

FACILITY TOTAL AVAIL UNAVL ENTRIES AVERAGE CURRENT PERCENT. SEIZING PREEMPTING
TIME TIME TIME TIME/XACT STATUS AVAIL XACT XACT
CHECKOUT 0.676 1000 3.224 AVAIL

QUEUE MAXIMUM AVERAGE TOTAL ZERO PERCENT AVERAGE §AVERAGE QTABLE  CURRENT
CONTENTS CONTENTS ENTRIES ENTRIES ZEROS TIME/UNIT TIME/UNIT NUMBER CONTENTS

SYSTIME 8 1.331 1003 0 6.325 6.235 3
LINE 7 0.655 1003 334 33.3 3.111 4.665 3

RANDOM  ANTITHETIC

INITIAL CURRENT SAMPLE CHI-SQUARE
STREAM VARIATES POSITION POSITION COUNT UNIFORMITY
1 OFF 100000 103004 3004 0.83

Figure 4.13 Standard GPSS/H output report for the singleserver queue simulation.

4.6 SIMULATION IN SSF

The Scalable Simulation Framework (SSF) is an Application Program Interface (API) that describes a set of
capabilities for object-oriented, process-view simulation. The API is sparse and was designed to allow imple-
mentations to achieve high performance (e.g. on parallel computers). SSF APIs exist for both C++ and in Java,

Eon.
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and implementations exist in both languages. SSF has a wide user base-—particularly in network simulation
by using the add-on framework SSFNet (www.ssfnet .org). Our chapter on network simulation uses
SSFNet. .

The SSF API defines five base classes. process is a class that implements threads of control; the
action method of a derived class contains the execution body of the thread. The Entity class is used to
describe simulation objects. It contains ‘state variables, processes, and communication endpoints. The
inChannel and out Channel classes are communication endpoints. The Event class defines messages
sent between entities. One model entity communicates with another by “writing” an Event into an
out Channe1; at some later time, it is available at one or more inChannels. A process that expects
input or. an inChannel can suspend, waiting for an event on it. These points, and others, will be elabo-
rated upon as we work through an SSF implementation of the single-server queue.

Source code given in Figure 4.14 expresses the logic of arrival generation in SSF for the single-server
queuc example. The example is built on two SSF processes. One of these generates jobs and adds them to
the system; the other services the enqueued jobs. Class SSQueue is a class that contains the whole simula-
tion experiment. It uses the auxiliary classes Random (for random-number generation) and Queue (to
implement FIFO queueing of general objects). SSQueue defines experimental constants (“public static
final” types) -and contains SSF communication endpoints out and in, through which the two processes
communicate. SSQueue also defines an inner class arrival, which stores the identity and arrival time of
each job.

Class Arrivals is an SSF process. Its constructor stores the identity of the entity that owns it, and

" creates a random-number generator that is initialized with the seed passed to it. For all but the initial call,

method action generates and enqueues a new arrival, then blocks (via SSF method waitFor) for an
inter-arrival time; on the first call, it by-passes the job-generation step and blocks for an initial interarrival
time. The call to waitFor highlights details needing explanation. An SSQueue object calls the
Arrival constructor and is saved as the “owner.” This class contains an auxiliary method exponen-
tial, which samples an exponential randomvariable with specified mean by using a specified random-
number stream. It also contains methods d2t and t2d that translate between a discrete “tick™-based
integer clock and a double-precision floating-point representation. In the waitFor call, we use the same
code seen earlier to sample the exponential in double-precision format, but then use d2t to convert it into
the simulator’s integer clock format. The specific conversion factor is listed as a SSQueue constant,
10° ticks per unit time.

SSF interprocess communication is used sparingly in this example. Because service is nonpreemptive,
when a job’s service completes, the process providing service can £xamine the list of waiting customers (in
variable owner.Waiting) to see whether it needs to give service to another customer. Thus, the only time'
the serveér process needs to be told thatthere is a job waiting is when a job arrives to an empty system. This
is reflected in Arrivals.action by use of its owner’s out channel.

A last point of interest is that Arrivals is, in SSF terminology, a “simple” process. This means
that every statement in action that might suspend the process would be the last statement executed
under normal execution semantics. The Arrivals class tells SSF that it is simple by overriding a
default method isSimple to return the value true, rather than the default value (false). The key reason
for using simple processes is performance—they require that no state be saved, only the condition under
which the process ought to be reanimated. And, when it is reanimated, it starts executing at the first line
ofaction. ’ o

Figure 4.15 illustrates the code for the Server process. Like process Arrival, its constructor is
called by an instance of SSQueue and is given the idensity of that instance and a random-number seed.
Like Arrival, it is a simple process. It maintains state variable in_service to remember the
specifics of a job in service and state variable service_time to remember the value of the service time
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// SSF MODEL OF JOB ARRIVAL PROCESS
class SSQueue extends Entity {

private static Random rng;

public static final double MeanServiceTime = 3.2;
public static final double SIGMA = 0.6;

public static final double MeanInterarrivalTime = 4.5;
public static final long ticksPerUnitTime = 1000000000;
public long generated=0;

public Queue Waiting;

outChannel out;

inChannel in;

public static long TotalCustomers=0, MaxQueueLength=0, TotalServiceTime=0;
public static long LongResponse=0, SumResponseTime=0, jobStart;

class arrival {
long id, arrival_time;
public arrival(long num, long a) { id=num; arrival_time = a; }

}

class Arrivals extends process {
private Random rng;
private SSQueue owner;
public Arrivals (SSQueue _owner, long seed) {
super {_owner}; owner = _owner;
rng = new Random(seed);
}
public boolean isSimple() { return true: }
public void action() {
if ( generated++ > 0 } {
// put a new Customer on the queue with the present arrival time
int Size = owner.Waiting.numElements();
owner.Waiting.enqueue{ new arrival(generated, now()));
if( Size == 0) owner.out.write( new Event() ); // signal start of burst

H

}
waitFor (owner.d2t ( owner.exponential (rng, owner.MeanlInterarrivalTime)) };

}
}
}

Figure 4.14  SSF Model of Job-Arrival Process.

sampled for the job in service. When the SSF kernel calls act ion, eithera job has completed service, or
the Arrival process has just signaled Server though the inChannel. We distinguish the cases by
looking at variable in_service, which will be nonnull if a job is in service, just now completed.,
In this case, some statistics are updated. After this task is done, a test is made for customers waiting for
service. The first waiting customer is dequeued from the waiting list and is copied into the in_service
variable; the process then samples a service time and suspends through a waitFor call. If no customer
was waiting, the process suspends on a waitOn statement until an event from the Arrival process
awakens it.

SSF bridges the gap between models develbped in pure Java and models developed in languages specif-

ically designed for simulation. It provides the flexibility offered by a general-programming language, yet has
essential support for simulation.
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// SSF MODEL OF SINGLE SERVER QUEUE : ACCEPTING JOBES
class Server extends process {

private Random rng;

private SSQueue owner ;

private arrival in_service;

private long service_time;

public Server(SSQueue _owner, long seed) {
super (_owner) ;
owner = _owner;
rng = new Random({seed) ;

}

public boolean isSimple() { return true; }

public void action() {
// executes due to being idle and getting a job, or by service time explratlon
// if there is a job awaiting service, take it out of the queue
// sample a service time, do ‘statis‘tics, and wait for the service epoch

// if in service is not null, we entered because of a job completion
if{ in_service { = null ) {
owner.TotalServiceTime += service_time;
long in system = (now() -in_service.arrival_time) ;
owner.SumResponseTime += in_system;

if ( owner.t2d(in_system) > 4.0 } owner. LongResponseup
in_service = null;

if( owner.MaxQueueLength < owner.Waiting.numElements() + 1 )

owner.MaxQueueLength = owner.Waiting.numElements() +.1;
owner.TotalCustomers++; ’

}
if ( owner.Waiting.numElements() » 0 ) {
in_service = (arrival)owner.Waiting.dequeue();
service_time = -1;
while ( service_time < 0.0 )
service_time = owner.d2t (owner.normal ( rng, owner.MeanServiceTime, owner.SIGMA));

// model service time
waitFor( service_time );

} else {
waitOn( owner.in ); // we await a wake -up call
}

}
!

Figure 4.15 SSF Model of Single-Server Queue : Server.

4.7 SIMULATION SOFTWARE

All the simulation packages described in later subsections run on a PC under Microsoft Windows 2000 or
XP. Although in terms of specifics the packages all differ, generally they have many things in common.

Common characteristics include a graphical user interface, animation, and automatically collected
outputs to measure system performance. In virtually all packages, simulation results may be displayed in
tabular or graphical form in standard reports and interactively while running a simulation. Qutputs from
different scenarios can be compared graphically or in tabular form. Most provide statistical analyses that
include confidence intervals for performance measures and comparisons, plus a variety of other analysis
methods. Some of the statistical-analysis modules are described in Section 4.8.
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All the packages described here take the process-interaction worldview. A few also allow event-scheduling
models and mixed discrete—continuous models. For animation, some emphasize scale drawings in 2-D or 3-D;
others emphasize iconic-type animations based on schematic drawings or process-flow diagrams. A few
offer both scale drawing and schematic-type animations. Almost all offer dynamic business graphing in the
form of time lines, bar charts, and pie charts. .

In addition to the information contained in this chapter, the websites given below can be investigated:

Arena

www.arenasimulation.com/
AutoMod

www.automod.com . !
Delmia/QUEST

www.delmia.comand www.3ds.com
Extend
.www.imaginethatinc.com/

Flexsim

www.flexsim.com/

Micro Saint

www.maad.com

ProModel

www. promodel . com/

SIMULS

www.simul8.com/

WITNESS
www.witness-for-simulation.com/

4.7.1 Arena

Arena Basic, Standard, and Professional Editions are offered by Systems Modeling Corporation {Bapat and
Sturrock, 2003]. Arena can be used for simulating discrete and continuous systems. A recent addition to the
Arena family of products is OptQuest for Arena, an optimization software package (discussed in Section 4.8.2.)

The Arena Basic Edition is targeted at modeling business processes and other systems in support of
high-level analysis needs. It represents process dynamics in a hierarchical flowchart and stores system
information in data spreadsheets. It has built-in activity-based costing and is closely integrated with the
flowcharting software Visio.

The Arena Standard Edition is designed for more detailed models of discrete and centinuous systems.
First released in 1993, Arena employs an object-based design for entirely graphical model development.
Simulation models are built from graphical objects called modules to define system logic and such physical
components as machines, operators, and clerks. Modules are represented by icons plus associated data entered
in a dialog window. These icons are connected to represent entity flow. Modules are organized into collections
called templates. The Arena template is the core collection of modules providing general-purpose features for
modeling all types of applications. In addition to standard features, such as resources, queues, process logic,
and system data, the Arena template includes modules focused on specific aspects of manufacturing and mate-
rial-handling systems. Arena SE can also be used to model combined discrete/continuous systems, such as
pharmaceutical and chemical production, through its built-in continuous-modeling capabilities.

The Arena Professional Edition enhances Arena SE with the capability to craft custom simulation
objects that mirror components of the real system, including terminology, process logic, data, performance
metrics, and animation. The Arena family also includes products designed specifically to model call centers
and high-speed production lines, namely Arena Contact Center and Arena Packaging.
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At the heart of Arena is the SIMAN simulation language. For animating simulation models, Arena’s

" core modeling constructs are accompanied by standard graphics for showing queues, resource status, and

entity flow. Arena’s 2-D animations are created by using Arena’s built-in drawing tools and by incorporating
clip art, AutoCAD, Visio, and other graphics.

Arena’s Input Analyzer automates the process of selecting the proper distribution and its parameters for
representing existing data, such as process and interarrival times. The Output Analyzer and Process Analyzer
(discussed in Section 4.8.2) automate comparison of different design alternatives.

4.7.2 AutoMod

The AutoMod Product Suite is offered by Brooks Automation {Rohrer, 2003]. It includes the AutoMod
simulation package, AutoStat for experimentation and analysis, and AutoView for making AVI movies of the
built-in 3-D animation. The main focus of the AutoMod simulation product is manufacturing and material-
handling systems. AutoMod’s sirength is in detailed, large models used for planning, operational decision
support, and control-systems testing.

AutoMod has built-in templates for most common material-handling systems, including vehicle
systems, conveyors, automated storage and retrieval systems, bridge cranes, power and free conveyors, and
kinematics for robotics. With its Tanks and Pipes module, it also supports continuous modeling of fluid and
bulk-material flow.

The pathmover vehicle system can be used to model lift trucks, humans walking or pushing carts, auto-
mated guided vehicles, trucks, and cars. All the movement templates are based on a 3-D scale drawing
(drawn or imported from CAD as 2-D or 3-D). All the components of a template are highly parameterized.
For example, the conveyor template contains conveyor sections, stations for load induction or removal,
motors, and photo-eyes. Sections are defined by length, width, speed, acceleration, and type (accumulating
or nonaccumulating), plus other specialized parameters. Photo-eyes have blocked and cleared timeouts that
facilitate modeling of detailed conveyor logic.

In addition to the material-handling templates, AutoMod contains a full snmulanon programming
language. Its 3-D animation can be viewed from any angle or perspective in real time. The user can freely
zoom, pan, or rotate the 3-D world.

An AutoMod model consists of one or more systems. A system canbe either a process system, in which
flow and control logic are defined, or a movement system based on one of the material-handling templates.
A model may contain any number of systems, which can be saved and reused as objects in other models.
Processes can contain complex logic to control the flow of either manufacturing materials or control
messages, to contend for resources, or to wait for user-specified times. Loads can move between processes
with or without using movement systems.

In the AutoMod worldview, loads (products, par#, etc.) move from process to process and compete for
resources (equipment, operators, vehicles, and queues). The load is the active entity, executing action state-
ments in each process. To move between processes, loads may use a conveyor or vehicle in a movement

" system.

AutoStat, described in Section 4.8.2, works with AutoMod models to provide a complete environment
for the user to define scenarios, conduct experimentation, and perform analyses. It offers optimization based
on an evolutionary strategies algorithm.

4.7.3 ‘ Extend

The Extend family of products is offered by Imagine That, Inc. {Krahl, 2003]. Extend OR, Industry, and
Suite are used for simulating discrete and mixed discrete-continuous systems; Extend CP is for continuous
modeling only. Extend combines a block -diagram approach to model-building with a devclopment environment
for creating new blocks.
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Each Extend block has an icon and encapsulates code, parameters, user interface, animation, and online
help. Extend includes a large set of elemerital blocks; libraries of blocks for specific application areas, such
as manufacturing, business processes, and high-speed processes, are also available. Third-party developers
have created Extend libraries for versical market applications, including supply-chain dynamics, reliability
engineering, and pulp and paper processing.

Models are built by placing and connecting blocks and entering the parameters on the block’s dialog
window. Elemental blocks in Extend include Generator, Queue, Activity, Resource Pool, and Exi}; The active
entities, called items in Extend, are created at Generator blocks and move from block to block by way of
item connectors. Separate value connectors allow the attachment of a calculation to a block parameter or the
retrieval of statistical information for reporting purposes. Input parameters can be changed interactively during
a model run and can come from external sources. Outputs are displayed dynamically and in graphical and
tabular format. The Industry and Suite products also provide an embedded database for centralized infor-
mation management.

Extend provides iconic process-flow animation of the block diagram. Forscaled 2-D animation, Proof
Animation [Henriksen, 2002] from Wolverine Software is included in the Suite product. Collections of
blocks representing a submodel, suchas a subassembly line or functional process, can be grouped into a hier-
archical block on the model worksheet; hierarchical blocks can also be stored in a library for reuse.
Parameters from the submaodel can be grouped and displayed at the level of thehierarchical block for access

. to model I/O. Extend supports the Microsoft component object model (COM/ActiveX), open database con-

nectivity (ODBC), and Internet data exchange. Activity-based costing, statistical analysis of output data w1th
confidence intervals, and the Evolutionary Optimizer are included.

For creating new blocks, Extend comes with a oomplled C-like programming environment. The mes-
sage-based language includes simulation-specific functions and supports custom interface development.
Extend has an open architecture; in most cases, the source code for blocks is available for custom develop-
ment. The architecture also supports linking to and using code and routines written in external languages.

4.7.4 Flexsim

Flexsim simulation software is developed and owned by Flexsim Software Products, Inc. of Orem, Utah
(Nordgren, 2003). Flexsim is a discrete-event, object-oriented simulator developed in C++, using Open GL
technology. Animation can be shown in tree view, 2-D, 3-D, and virtual reality. All views can be shown con-
currently during the model development of run phase. It integrates Microsoft’s Visual C++ IDE and com-
piler within a graphical 3-D click-and-drag simulation environment. k

Flexsim software is used to build models that behave like the actual physical or conceptual systems they
represent. A simulation model of any flow system or process can be created in Flexsim by using drag-and-
drop model-building objects.

Flexsim is used to improve production efficiencies and reduce operating costs through simulation,
experimentation, and optimization of dynamic flow systems. Engineers and managers use Fléxsim to evalu-
ate plant capacity, balance packaging and manufacturing lines, manage bottlenecks, solve work-in-process
problems, justify capital expenditures, plan equipment maintenance schedules, establish proper inventory
levels, improve order-picking systems, and optimize production rates. Flexsim allows end users to introduce
and simulate new conditions for the model and to analyze their effects and results in order to find ways to
improve the system being studied. By using Flexsim, efficiencies—increased throughput and decreased
costs—can be identified, tested, and proven prior to implementing them in the actual system. The results of
each simulation can be analyzed graphically through 3-D animation and through statistical reports and
graphs, which are all also useful in communicating a model’s purpose and results to both technical and
nontechnical audiences. ’
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4.7.5 Micro Saint

- Micro Saint is offered by Micro Analysis and Design, Inc. [Bloechle and Schunk, 2003). Micro Saint is a

general-purpose, discrete-event, network simulation-software package for building models that simulate
real-life processes. With Micro Saint models, users can gain useful information about processes that might
be too expensive or time-consuming to test in the real world. 4

Micro Saint doesnot use the terminology or graphic representations of a specific industry. A Micro Saint
model can be built for any process that can be represented by a flowchart diagram. The terms that are used
are defined by the user. In addition, the icons and background for the ActionView animation and the flow-
charting symbols are customizable. Micro Saint provides two views of the simulation model. The network
diagram view shows the process flowchart in action, and ActionView provides a realistic 2-D picture of the
process.

Micro Saint supports the development of models of various complexity to match the user’s needs.
Simple, functional models can be built by drawing a network diagram and filling in the task-timing infor-

‘mation. More complex models can also be built that include dynamically changing variables, probabilistic

and tactical branching logic, sorted queues, conditional task execution, animation, optimization, and exten-
sive data collection. )

A separate module (called COM Services) is available that enables Micro Saint to exchange data with
other software applications and makes it easy to customize the model. In addition, OptQuest optimization is
included with Micro Saint and is designed to automatically search for and find optimal or near-optimal solu-

. tions to the model.

4.7.6 ProModel

ProModel is offered by PROMODEL Corporation [Harrell, 2003]. It is a simulation and animati‘on tool
designed to model manufacturing systems. The company also offers MedModel for healthcare systems and
ServiceModel for service systems. ProModel offers 2-D animation with an optional 3-D like perspectlve

" view. ProModel’s animation is generated automatically as the model is developed.

ProModel has manufacturing-oriented modeling elements and rule-based decision logic. Some systems
cdn be modeled by selecting from ProModel’s set of highly parameterized modeling elements. In addition,
its simulation programming language provides for modeling special situations not covered by the built-in
choices. '

The modeling elements in ProModel are parts (entities), locations, resources, path networks, rout{ng and
processing logic, and arrivals. Parts arrive and follow the routing and processing logic from location to loca-
tion. Resources are used to represent people, tools, or vehicles that transport parts between locations, per-
form an operation on a part at a location, or perform maintenance on a location or other resource that is
down. Resources may travel on path networks with given speeds, accelerations, and pickup and setdown

“wravel times. The rousing and processing element allows user-defined procedural logic in ProModel’s simu-

lation-programming language.
ProModel includes logic for automatically generating cost data associated with a process. Costs can be

added for location usage, resources, and entities.

ProModel comes complete’ with an output viewer, allowmg for straightforward data presentation and
useful graphics and charts, such as state diagrams.

ProModel’s runtime interface allows a user to define multiple scenarios for experimentation. SimRunner
(discussed in Section 4.8.2) adds the capability to perform an optimization. It is based on an evolutionary-
strategy algorithm, a variant of the genetic algorithm approach. The OptQuest Optimizer (OptQuest for
ProModel) is available as an add-on product.
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4.7.7 QUEST

QUEST®is offered by Delmia Corp. QUEST (Queuing Event Simulation Tool) is a manufactuzing-oriented sim-
ulation package. QUEST combines an object-based, true 3-D simulation environment with a graphical user
interface and material-flow modules for modeling labor, conveyors, automated guided vehicles, kinematic
devices, cranes, fluids, power and free conveyors, and automated storage and retrieval systems. QUEST
models incorporate 2-D and 3-D CAD geometry to create a virtual factory environment.

Delmia also offers a number of workcell simulators, including IGRIP® for robotic simulation and pro-
gramming and ERGO™! for ergonomic analyses. Robots and human-based workcells that are simulated in
IGRIP and ERGO can be imported into QUEST models both visually and numerically.

Delmia provides even further integration with QUEST and other manufacturing technologies through
PROCESS ENGINEER™, Delmia’s process-planning environment. The Manufacturing Hub infrastructure
behind this software consists of an object-oriented database for storing Product, Process, and Resource
objects that are configuration-managed and effectivity-controlled. A QUEST model is automatically created
from the information stored in the database, and the resulting model can be linked to the database for auto-
matic update purposes. QUEST can be used to introduce and update resource-specific information and model
output results into the Manufacturing Hub for use in other products.

A QUEST model consists of elements from a number of element classes. Built-in element classes
include AGVs and transporters, subresources, buffers, conveyors, power and free systems, labor, machines,
parts, container parts, and processes. Each element has associated geometric data and parameters that define
its behavior. Parts may have a route and control rules to govern part flow. Commonly needed behavior logic
is selected from comprehensive menus, many parameter-driven.

For unique problems, Delmia’s QUEST Simulation Control Language (SCL) can be used. This struc-
tured simulation-programming language provides distributed processing with access to all system variables.
SCL allows expert users to define custom behaviors and to gain control over the simulation.

Delmia QUEST"s open architecture allows the advanced user to perform batch simulation runs to auto-
matically collect and tabulate data by using the Batch Control Language (BCL). Replications and parameter
optimization are controlled with batch command files or by the OptQuest optimization software, as described
in Section 4.8.2.

Output is available both numerically (with the statistical reporting mechanisms) and visually (with a
resulting virtual factory-like animation). Statistical output results are available internally through the graph-
ical user interface or externally through HTML and can be customized by using XML or QUEST’s own
BCL. Digital movies can be created from the animation, or a read-only encrypted version of the model can
be authored for viewing and experimentation in QUEST Express™, a “lite” version of QUEST.

4.7.8 SIMULS

SIMULS is provided by SIMULS Corporation and was first introduced in 1995. In SIMULS, models are created
by drawing the flow of work with the computer mouse, using a series of icons and arrows to represent the
resousces and queues in the system. Default values are provided for all properties of the icons, so that the
animation can be viewed very early in the modeling process. Drilling down in property boxes opens up
progressively more detailed properties. The main focus of SIMULS is service industries where people are
processing transactions.

Like some other packages, SIMULS has the concepts of “Templates” and “Components.” Tcmplates or
prebuilt simulations, focus on parsicular recurring decision types that can be quickly parameterized to fit a
specific company-issue. Components are user-defined icons that can be reused and shared across a company’s

simulations. This reduces the time to build simulations, standardizes how some situation are handled across

a corporation, and often removes much of the data-collection phase of a simulation study.
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SIMULS Corporation’s approach to business is different from most of the other packages here in that
they claim to be aiming to spread simulation very widely across businesses, rather than concentrate it in the
hands of dedicated and highly trained simulation professionals. This means they have very different pricing

and support policies, but it also means the software has to contain features that watch how the product is

being used and provide assistance if some potentially invalid analysis is conducted.

SIMULS saves its simulation model and data in MML format so that it will be easy to transfer it to and
from other applications. It provides some nonsimulation features that make it possible for the model-builder
to create custom user interfaces in spreadsheet, dialog, or wizard form. SIMULS has a VBA interface and
supports ActiveX/COM so that external applications can build and control SIMULS simulations.

The product is available in two levels, Standard and Professional. The two levels provide the same sim-
ulation features, but Professional adds 3-D, “Virtual Reality” views of the simulation, and database links to
corporate databases and has certain features thatare likely to be useful only to full-time simulation modelers.
SIMULS Professional comes with a license to distribute simulations with a free SIMULS8 Viewer.

4.7.9 WITNESS

WITNESS is offered by the Lanner Group and has separate versions for manufacturing and service indus-

tries. It contains many elements for discrete-part manufacturing and also contains Plements for continiious

processing, such as the flow of fluids through processors, tanks, and pipes.
WITNESS models are based on template elements. These may be customiz"
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4.8 EXPERIMENTATION AND STATISTICAL-ANALYSIS TOOLS
4.8.1 Common Features

Virtually all simulation packages offer various degrees of support for statistical analysis of simulation out-
puts. Il recent years, many packages have added optimization as one of the analysis tools. To support analy-
sis, most packages provide scenario definition, run-management capabilities, and data export to spreadsheets
and other external applications.

Optimization is used to find a “near-optimal” solution. The user must deﬁne an objective or fitness func-
tion, usually a cost or cost-like function that incorporates the trade-off between additional throughput and.
additional resources: Until recently, the methods available for optimizing a system had difficulty coping with
the random and nonlinear nature of most simulation outputs. Advances in the field of metaheuristics have
offered new approaches to simulation optimization, ones based on artificial intelligence, neural networks,
genetic algorithms, evolutionary strategies, tabu search, and scatter search.
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4.8.2 Products

This section briefly discusses Arena’s Output and Process Analyzer, AutoStat for AutoMod, OptQuest
(which is used in a number of simulation products) and SimRunner for ProModel.

Arena’s Output and Process Analyzer

Arena comes with the Output Analyzer and Process Analyzer. In addition, Arena uses OptQuest for
- optimization.

The Output Analyzer provides confidence intervals, comparison of multiple systems, and warm-up
determination to reduce initial condition biases. It creates various plots, charts, and histograms, smoothes
responses, and does correlation analysis. To compute accurate confidence intervals, it does internal batching
(both within and across replications, with no user intervention) and data truncation to provide stationary,
independent, and normally distributed data sets.

The Process Analyzer adds sophisticated scenario-management capablhues to Arena for comprehensive
design of experiments. It allows a user to define scenarios, make the desired runs, and analyze the results. It
allows an arbitrary number of controls and responses. Responses can be added after runs have been com-
pleted. It will rank scenarios by any response and provide summaries and statistical measures of the
responses. A user can view 2-D and 3-D chants of response values across either replications or scenarios.

AutoStat

AutoStat is the rin manager and statistical-analysis product in the AutoMod product family [Rohrer, 2003].
AutoStat provides a number of analyses, including warm-up determination for steady-state analysis, absolute

-and comparison confidence intervals, design of experiments, sensitivity analysis, and optimization via an
evolutionary strategy. The evolutionary-strategies algorithm used by AutoStat is well suited to finding a near-
optimal solution without getting trapped at a local optimum.

With AutoStat, an end user can define any number of scenarios by defining factors and their range of
values. Factors include single parameters, such as resource capacity or vehicle speed; single cells in a data
file; and complete data files. By allowing a data file to be a factor, a user can experiment with, for example,
alternate production schedules, customer orders for different days, different labor schedules, or any other
numerical inputs typically specified in a data file. Any standard or custom output can be designated as a
response. For €ach defined response, AutoStat computes descriptive statistics (average, standard deviation,
minimum, and maximum) and confidence intervals. New responses can be defined after runs are made,
because AutoStat archives and compresses the standard and custom outputs from all runs. Various charts and
plotsare available to provide graphical comparisons.

AutoStat supports correlated sampling {see Chapter 12) using common random numbers. This sampling
technique minimizes variation between paired samples, giving a better indication of the true effects of model
changes.

AutoStat is capable of distributing simulation runs across a local area network and pulling back all
results to the user’s machine. Support formultiple machines and CPU’s gives users the ability to make many
more runs of the simulation than would otherwise be possible, by using idle machines during off hours. This
is especially useful in multifactor analysis and optimization, both of which could require large numbers of
runs. AutoStat also has a diagnostics capability that automatically detects “unusual” runs, where the defini-
tion of “unusual” is user-definable. :

AutoStat also works with two other products from AutoSimulations: the AutoMod Simulator, a spread-
sheet-based job-shop simulator; and AutoSched AP, a rule-based simulation package for finite-capacity
scheduling in the semiconductor industry.
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OptQuest

OptQuest® was developed by Dr. Fred Glover of the Umversnty of Colorado, cofounder of OptTek Systems,
Inc. [April et al., 2003].

OptQuest is based on a combination of methods: scatter search, tabu search, linear/integer program-
ming, and neural networks. Scatter search is a population-based approach where existing solutions are com-
bined to create new solutions. Tabu search is then superimposed to prohibit the search from reinvestigating
previous solutions, and neural networks screen out solutions likely to be poor. The combination of methods
allows the search process to escape local optimality in the questfor the best solution.

Some of the differences between OptTek’s methods and other methods include

¢ the ability to avoid being trapped in locally optimal solutions to problems that contain nonlinearities
(which commonly are present in real-world problems);

¢ the ability to handle nonlinear and discontinuous relationships that are not specxﬂable by the kinds of
equations and formulas that are used in standard mathematical programming formulations;

¢ the ability to solve problems that involve uncertainties, such as those arising from uncertain supplies,
demands, prices, costs, flow rates, and queuing rates.

SimRunner

SimRunner was developed by PROMODEL Corporation out of the simulation-optimization research of
Royce Bowden, Mississippi State University [Harrell ez al.,2003]. It is available for ProModel, MedModel,
and ServiceModel.

SimRunner uses genetic algorithms and evolution strategies, which are variants of evolutionary algonthms
Evolutionary algorithms are population-based direct-search techniques. A user first specifies input factors
(integer or real-valued decision variables) composed of ProModel macros and then specifies an objective
function composed of simulation-output responses. SimRunner manipulates the input factors within boundaries
specified by the user seeking to minimize, to maximize, or to achieve a user-specified target value for the
objective function. The optimization-output report includes a confidence interval on the mean value of the
objective function for each solution evaluated over the course of the optimization and displays 3-D plots of
the simulation’s output-response surface for the solutions evaluated. In addition to the multivariable
optimization module, SimRunner has a utility for helping users estimate the end of the warm-up phase
(initialization bias) of a steady-state simulation and the number of replications needed to obtain an estimate of
the objective function’s mean value to within a specified percentage error and confidence level.
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EXERCISES

For the exercises below, reader should code the model in a general-purpose language (such as C, C4++, or
Java), a special-purpose simulation language (such as GPSS/H), or any desired simulation package.

Most problems contain activities that are uniformly distributed over an interval [a,b]. Assume that all
values between a and & are possible; that is, the activity time is a continuous random variable.

The uniforin distribution is denoted by U(a, b), where a and b are the endpoints of the interval, or by m + h,
where m is the mean and h is the “spread” of the distribution. These four parameters are related by the equations

a=m-h b=m+h

Some of the uniform-random-variate generators available require specification of a and b; others require
m and h. .

Some problems have activities that are assumed to be normnally disiibuted, as denoted by N(g, 62),
where g is the mean and o2 the variance. (Since activity times are nonnegative, the normal distribution is
appropriate only if ;2 > ko, where k is at least 4 and preferably 5 or larger. If a negative value is generated, it
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is discarded.) Other problems use the exponential distribution with some rate A or mean 1/A. Chapter 5
reviews these distributions; Chapter 8 covers the generation of random variates having these distributions.
All of the languages have a facility to easily generate samples from these distributions. For C, C++, or Java
simulations, the student may use the functions given in Section 4.4 for generating samples from the normal
and exponential distributions.

1. Make the necessary modifications to the Java model of the checkout counter (Example 4.2) so that the

simulation will run for exactly 60 hours.

4

In addition to the changes in Exercise 1, assume that an arriving customer does not join the queue if
three or more customers are waiting for service. Make necessary changes to the Java code and run the
model.

@

Implement the changes in Exercises 1 and 2 in any of the simulation packages.

4. Ambulances are dispatched at a rate of one every 15 + 10 minutes in a large metropolitan area. Fifteen
percent of the calls are false alarns, which require 12 + 2 minutes to complete. All other calls can be
one of two kinds. The first kind are classified as serious. They constitute 15% of the non-false alarm
calls and take 25 + 5 minutes to complete. The remaining calls take 20 + 10 minutes to complete.
Assume that there are a very large number of available ambulances, and that any number can be on call
at any time. Simulate the system until 500 calls are completed.

In Exercise 4, estimate the number of ambulances required to provide 100% service.

w
:

6. (a) In Exercise 4, suppose that there is only one ambulance available. Any calls that arrive while the
ambulance is out must wait. Can one ambulance handle the work load?
(b) Simulate with xambulances, where x= 1,2,3, or 4, and compare the alternatives on the basis of length
of time a call must wait, percentage of calls that must wait, and percentage of time the ambulance
is out on call.

2
B

Passengers arrive at the security screening area at Chattahoochee Airport according to a time given by
N(20, 3) seconds. At the first point, the boarding pass and ID are checked by one of two people in a time
that is distributed N(12, 1) seconds. (Passengers always pick the shortest line when there is an option.)
Thenext step is the X-ray area which takes a time that is N(15, 2) seconds; there are two lanes open at
all times. Some 15% of the people have to be rechecked for a time that N(100, 10) seconds. The number of
recheckers needed is to be deterrnined. Simulate this system for eight hours with one and two recheckers.

el

A superhighway connects one large metropolitan area to another. A vehicle leaves the first city every
20 £ 15 seconds. Twenty percent of the vehicles have | passenger, 30% of the vehicles have 2 passengers,
10% have 3 passengers, and 10% have 4 passengers. The remaining 30% of the vehicles are buses,
which carry 40 people. It takes 60 * 10 minutes for a vehicle to travel between the two metropolitan
areas. How long does it take for 5000 people to arrive in the second city?

e

A restaurant has two sections, that is, meals section and tiffin section. Customers arrive at the restaurant
at the rate of one every 60 + 30 seconds. Of the arriving customers, S50% take only tiffin and 50% take
only meals. Immaterial of the type of the customer, it takes 75 + 40 seconds to provide service. Assuming
thatthere are sufficient-number of servers available, determine the time taken to serve 100 customers.

10. Re-do Exercise 9, assuming that of the arriving customers, 50% take only tiffin, 30% take only meals,
and the remaining 20% take a combination of meals and tiffin.

11. For Exercise 10, what is the maximum number of servers needed during the course of simulation?

Reduce the number of servers one by one and determine the total time to complete 100 services.

SRR VR AR o
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12.

13

14

15

16.

17.

18.

Customers arrive at an Intemnet center at the rate of one every 15 + 5 minutes. 80% of the customers
check simply their email inbox, while the remaining 20% download and upload files. An email customer
spends S + 2 minutes in the center and the download customer spends 15 + 5 minutes. Simulate the service
completion of 500 customers. Of these 500 customers, deterinine the number of email and download
customers and compare with the input percentage.

An airport has two concourses. Concourse 1 passengers arrive at a rate of one every 15 + 2 seconds.
Concourse 2 passengers arrive at a rate of one every 10 + 5 seconds. It takes 30 * 5 seconds to walk
down concourse 1 and 35 * 10 seconds to walk down concourse 2. Both concourses empty into the main
lobby, adjacent to the baggage claim. It takes 10 + 3 seconds to reach the baggage claim area from the
main lobby. Only 60% of the passengers go to the baggage claim area. Simulate the passage of 500 pas-
sengers through the airport system. How many of these passengers went through the baggage claim
area? In this problem, the expected number through the baggage claim area can be computed by
0.60(500)=300. How close is the simulation estimate to the expected number? Why the difference?

In a multiphasic screening clinic, patients arrive at a rate of one every 5 + 2 minutes to enter the audi-
ology section. The examination takes 3 + 1 minutes. Eighty percent of the patients were passed on to
the next test with no problems. Of the remaining 20%, one-half require simple procedures that take 2 +
1 minutes and are then sent for reexamination with the same probability of failure. The other half are
sent home with medication. Simulate the system to estimate how long it takes to screen and pass 200
patients. (Note: Persons sent home with medication are not considered “passed.”)

Consider a bank with four tellers. Tellers 3 and 4 deal only with business accounts; Tellers 1 and 2 deal
only with general accounts. Clients arrive at the bank at a rate of one every 3 + 1 minutes. Of the clients,

33% are business accounts. Clients randomly choose between the two tellers available for each type of

account. (Assume that a customer chooses a line without regard to its length and does not change lines.)
Business accounts take 15 + 10 minutes to complete, and general accounts take 6 & 5 minutes to com-
plete. Simulate the system for 500 transactions to be completed. What percentage of time is each type
of teller busy? What is the average time that each type of customer spends in the bank?

Repeat Exercise 15, but assuming that customers join the shortest line for the teller handling their type
of account.

In Exercises 15 and 16, estimate the mean delay of business customers and of general customers. (Delay
is time spent in the waiting line, and is exclusive of service time.) Also estimate the mean length of the
waiting line, and the mean proportion of customers who are delayed longer than 1 minute.

Three different machines are available for machining a special type of partfor 1 hour of each day. The
processing-time data is as follows:

Machine Time to Machine One Part
1 20 * 4 seconds
10 + 3 seconds
3 15 + 5 seconds

Assume that parts arrive by conveyor at a rate of one every 15 + 5 seconds for the first 3 hours of the
day. Machine 1 is available for the first hour, machine 2 for the second hour, and machine 3 for the third
hour of each day. How many parts are produced in a day? How large a storage area is needed for parts
waiting for a machine? Do parts “pile up” at any particular time? Why?
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19.

20.

21

22

23

25

People arrive at a self-service cafeteria at the rate of one every 30 + 20 seconds. Forty percent goto the
sandwich counter, where one worker makes a sandwich in 60 £ 30 seconds. The rest go to the main
counter, where one server spoons the prepared meal onto a plate in 45 + 30 seconds. All customers must
pay asingle cashier, which takes 25 * 10 seconds. For all customers, eating takes 20 £ 10 minutes. After
eating, 10% of the people go back for dessert, spending an additional 10 £ 2 minutes altogether in the
cafeteria. Simulate until 100 people have left the cafeteria. How many people are left in the cafeteria,
and what are they doing, at the time the simulation stops?

Customers arrive at a nationalized bank at the rate of one every 60 + 40 seconds. 60% of the customers
perform money transactions and the remaining 40% do other things such as getting the draft, updating
passbooks, etc., which require 3 + 1 and 4 + 1 minutes, respectively. Currently, there are separate coun-
ters for both the activities. Customers feel that if single window concept is introduced, average waiting
time could be reduced. Justify by simulating 200 arrivals.

In Exercise 20, in single window system, if an arriving customer balks if three or more customers are in
the queue, determine the number of customers balked in each category.

Loana Tool Company rents chain saws. Customers arrive to rent chain saws at the rate of one. every
30 + 30 minutes. Dave and Betty handle these customers. Dave can rent a chain saw in 14 + 4 minutes.
Betty takes 10 + 5 minutes. Customers returning chain saws arrive at the same rate as those renting chain
saws. Dave and Betty spend 2 minutes with a customer to check in the returned chain saw. Service is
first-come-first-served. When no customers are present, or Betty alone is busy, Dave gets these returned
saws ready for rerenting. For each saw, this maintenance and cleanup takes him 6 + 4 minutes and 10 + 6
minutes, respectively. Whenever Dave is idle, he begins the next maintenance or cleanup. Upon finishing
a maintenance or cleanup, Dave begins serving customers if one or more is waiting. Betty is always
available for serving customers. Simulate the operation of the system starting with an empty shop at
8:00 A.M., closing the doors at 6:00 p.M., and getting chain saws ready for re-renting until 7:00 P.M.
From 6:00 until 7:00 p.m., both Dave and Betty do maintenance and cleanup. Estimate the mean delay
of customers who are renting chain saws.

The Department of Industrial Engineering of a university has one Xerox machine. Users of this machine
arrive at the rate of one every 20 + 2 minutes and use it for 15 + 10 minutes. If the machine is busy,
90% of the users wait and finish the job, while the 10% of the users come back after 10 minutes. Assume
that they do not balk again. Simulate for 500 customers and find out the probability that a balking
customer need not wait during the second attempt.

Go Ape! buys a Banana II computer to handle all of its web-browsing needs. Web-browsing employees
arrive every 10 £ 10 minutes to use the computer. Web-browsing takes 7 + 7 minutes. The monkeys that
run the computer cause a system failure every 60 + 60 minutes. The failure lasts for 8 + 4 minutes. When
a failure occurs, the web-browsing that was being done resumes processing from where it was left off.
Simulate the operation of this system for 24 hours. Estimate the mean system response time. (A system
response time is the length of time fromarrival until web-browsing is completed.) Also estimate the mean
delay for those web-browsing employees that are in service when a computer system failure occurs.

Able, Baker, and Charlie are three carhops at the Sonic Drive-In (service at the speed of sound! ). Cars
arrive every 5 = 5 minutes. The carhops service customers at the rate of one every 10 * 6 minutes.
However, the customers prefer Able over Baker, and Baker over Charlie. If the carhop of choice is busy,
the customers choose the first available carhop. Simulate the system for 1000 service completlons
Estimate Able’s, Baker’s, and Charlie’s utilization (percentage of time busy).

Jiffy Car Wash is a five-stage operation that takes 2 + 1 minutes for each stage. There is room for 6 cars
to wait to begin the car wash. The car wash facility holds 5 cars, which move through the system in
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27

order, one car not being able to move until the car ahead of it moves. Cars arrive every 2.5 + 2 minutes

. fora wash. If the car cannot get into the system, it drives across the street to Speedy Car Wash. Estimate

the balking rate per hour. That is, how many cars drive off per hour? Simulate for one 12-hour day.

Consider the three machines A, B, and C pictured below. Armrivals of parts and processing times are as
indicated (times in ininutes).

1010 | A
9015
C )
8+6
106 B
8t5 § ’

Machine A processes type [ parts, machine B processes type II parts, and machine C processes both
types of parts. All machines are subject to random breakdown: machine A every 400 £ 350 minutes with
a down time of 15 + 14 minutes, machine B every 200 £ 150 minutes with a downtime of 10 + 8 min-
utes, and machine C almost never, so its downtime is ignored. Parts from machine A are processed at
machine C as soon as possible, ahead of any type II parts from machine B. When machine A breaks
down, any part in it is sent to machine B and processed as soon as B becomes free, but processing begins
over again, taking 100 * 20 minutes. Again, type I parts from machine A are processed ahead of any
parts waiting at B, but after any part currently being processed. When machine B breaks down, any part
being processed resumes processing as soon as B becomes available. All machines handle one part at a
time. Make two independent replications of the simulation. Each replication will consist of an 8-hour
initialization phase to load the system with parts, followed by a 40-hour steady-state run. (Independent
replications means that each run uses a different stream of random numbers.) Management is interested
in the long-run throughput {i.., the number of parts of each type ( and [} produced per 8-hour day},
long-run utilization of each machine, and the existence of bottlenecks (long “lines™ of waitirig parts, as
measured by the queue length ateachmachine). Report the outputdatain a table similar to the following:

Runl Run2 Average of 2 Runs

Utilization A
Utilization B
Etc.

Include a brief statement summarizing the important results.

. Students are arriving at the college office at the rate of one every 6 + 2 minutes to pay the fees. They

hand over the forms to one of the two clerks available and it takes 10 + 2 minutes for the clerk to verify
each form. Then the forms are sent to a single cashier who takes 6 + 1 minute per form. Simulate the
system for 100 hours and determine the

(a) utilization of each clerk
(b) utilization of the cashier
(c) average time required to process a form (clerk + cashier)

-29. Peoplearrive at a visa office at the rate of one every 15 +10 minutes. There are three officers (A, B, and

C) who scrutinize the applications for a duration of 30 + 10 minutes. From the past records, it is found
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31

32.

3.

3s.

36.

that on an average, 25% of the applications are rejected. Visa applicants form a single lineand go to the
officer whoever becomes free. If all the three are free, customers always select officer B who is believed
to be considerate. Simulate for 500 visa applicants and determine

a) How many of them selected officer B?
b) How many visa applications are rejected?

. Peoplearrive at a microscope exhibit at a rate of one every 8 + 2 minutes. Only one person can see the

exhibit at a time. It takes 5 + 2 minutes to see the exhibit. A person can buy a “privilege” ticket for $1
which gives him or her priority in line over those who are too cheap to spend the buck. Some 50% of the
viewers are willing to do this, but they make their decision to do so only if one or more people are in line
when they arrive. The exhibit is open continuously from 10:00 A.M. to 4:00 P.M. Simulate the operation
of the system for one complete day. How much money is generated from the sale of privilege tickets?

Two machines are available for drilling parts (A-type and B-type). A-type parts arrive at a rate of one
every 10 £ 3 minutes, B-type parts at a rate of one every 3 + 2 minutes. For B-type parts, workers choose
an idle machine, or if both drills, the Dewey and the Truman, are busy, they choose a machine at random
and stay with their choice. A-type parts must be drilled as soon as possible; therefore, if a machine is
available, preferably the Dewey, it is used; otherwise the pat goes to the head of the line for the Dewey
drill. All jobs take 4 + 3 minutes to complete. Simulate the completion of 100 A-type parts. Estimate the
mean number of A-type parts waiting to be drilled.

A computer center has two color printers. Students arrive at a rate of one every 8 + 2 minutes to use the
color printer. They can be interrupted by professors, who arrive at a rate of one every 12 + 2 minutes. There
is one systems analyst who can interrupt anyone, but students are interrupted before professors. The
systems analyst spends 6 + 4 minutes on the color printer and then returns in 20 + 5 minutes. Professors
and students spend 4 + 2 minutes on the.color printer. If a person is intecrupted, that person joins the
head of the queue and resumes service as soon as possible. Simnlate for 50 professor-or-analyst jobs.
Estimate the interruption rate per hour, and the mean length of the waiting line of students.

Parts are machined on a drill press. They arrive at a rate of one every 5 + 3 minutes, and it takes 3 £ 2
minutes to machine them. Every 60 + 60 minutes, a rush job arrives, which. takes 12 + 3 minutes to
complete. The rush job interrupts any nonrush job. When the regular job returns to the machine, it stays
only for its remaining process time. Simulate the machining of 10 rush jobs. Estimate the mean system
response time for each type of part. (A response #me is the total time that a part spends in the system.)

Pull system is used to assemble items in an assembly line. There are two stations. Station I receives
items at the rate of one every 12 + 3 minutes. The operator in station I takes 14 + 4 minutes, while the
station II operator takes 15 + 2 minutes. The space between the two stations can accommodate only
three parts. Hence, if the space is full, the station I operator has to wait till the station I operator removes
one part. Simulate the system for 8 hours of operation.

For Exercise 34, comment on the output of the model as to whether it will give the true utilization of the
station I server.

A patient arrives at the Emergency Room at Hello-Hospital about every 40 + 19 minutes. Each patient
will be treated by either Doctor Slipup or Doctor Gutcut. Twenty percent of the patients are classified -
as NIA (need immediate attention) and the sest as CW (can wait). NIA patients are given the highest
priority (3), see a doctor as soon as possible for 40 + 37 minutes, but then their priority is reduced to 2
and they wait until a doctor is free again, when they receive further treatment for 30 + 25 minutes and
are then discharged. CW patients initially receive the priority 1 and are treated (when their tum comes)
for 15 £ 14 minutes; their priority is then increased to 2, they wait again until a doctor is free and receive
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10 £ 8 minutes of final treatment, and are then discharged. Simulate for 20 days of continuous operation,
24 hours per day. Precede this by a 2-day initialization period to load the system with patients. Report
conditions at times O days, 2 days, and 22 days. Does a 2-day initialization appear long enough to load
the system to alevel reasonably close to steady-state conditions? (a) Measure the average and maximum
queue length of NIA patients from arrival to first seeing a doctor. What percent do not have to wait at
all? Also tabulate and plot the distribution of this initial waiting time for NIA patients. What percent
wait less than 5 minutes before seeing a doctor? (b) Tabulate and plot the distribution of total time in
system for all patients. Estimate the 90% quantile—that is, 90% of the patients spend less than x amount

- of time in the system. Estimate x. (c) Tabulate and plot the distribution of remaining time in system

from after the first treatment to discharge, for all patients. Estimate the 90% quantile. (Note: Most

- simulation packages provide the facility to automatically tabulate the distribution of any specified

37.

39.

a0.

41.

variable.)

People arrive at a newspaper stand with an interarrival time that is exponentially distributed with a mean
of 0.5 minute. Fifty-five percent of the people buy just the moming paper, 25% buy the mormning paper
and a Wall Street Journal. The remainder buy only the Wall Street Journal. One clerk handles the Wail
Street Journal sales, another clerk moring-paper sales. A person buying both goes to the Wall Street
Joumnal clerk. The time it takes to serve a customer is normally distributed with a mean of 40 seconds
and a standard deviation of 4 seconds for all transactions. Collect statistics on queues for each type of
transaction. Suggest ways formaking the system more efficient. Simulate for 4 hours.

Bernie remodels houses and makes room additions. The time it takes to finish a job is normally dis- -

tributed with a mean of 17 elapsed days and a standard deviation of 3 days. Homeowners sign contracts
for jobs at exponentially distributed intervals having a mean of 20 days. Bernie has only one crew.
Estimate the mean waiting time (from signing the contract until work begins) for those jobs where a
wait occurs. Also estimate the percentage of time the crew is idle. Simulate until 100 jobs have been
completed.

In a certain factory, the tool crib is manned by a single clerk. There are two types of tool request and the
time to process a tool request depends on the type of tool request as

Interarrival Time (Second) Service Time (Second)

Normal (300,75)
Normal (100,40)

Bype of Request

1 Exponential with mean 420
2 -Exponential with mean 300

The clerk has been'serving the mechanics on FCFS basis. Simulate the system for one day operation
(8 hours). o . B

In Exercise 39, the management feels that the average number of waiting mechanics can be reduced if
Type 2 requests are served ahead of Type 1. Jushfy. '

The interarrival time for parts needing processing is given as follows:'
Interarrival Time (Seconds) Proponion
10-20 - 0.20
20-30 : 0.30
30-40 © 050
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43.

There are three types of parts: A, B, and C. The proportion of each part, and the mean and standard
deviation of the normally distributed processing times are as follows:

Part Type Proportion Mean Standard Deviation
A 05 30 seconds 3 seconds
B 03 40 seconds 4 seconds
‘ C 0.2 50 seconds 7 seconds

Each machine processes any type of part, one part at a time. Use simulation to compare one with two
with three machines working in parallel. What criteria would be appropriate for such a comparison?

Orders are received for one of four types of parts. The interarrival time between orders is exponentially
distributed with a mean of 10 minutes. The table that follows shows the proportion of the parts by type’
and the time to fill each type of order by the single clerk.

Part Type Percentage Service Time (Minutes)
A 40 NG6.1,13)
B 30 N@O.1, 2.9)
C 20 N(11.8,4.1)
D 10 N(15.1, 4.5)

Orders of types A and B are picked up immediately after they are filled, but orders of types C and D
must wait 10 £ 5 minutes to be picked up. Tabulate the distribution of time to complete delivery for all
orders combined. What proportion take less than 15 minutes? What proportion take less than 25
minutes? Simulate for an 8-hour initialization period, followed by a 40-hour run. Do not use any data
collected in the 8-hour initialization period.

Three independent widget-producing machines all require the same type of vital part, which needs
frequent maintenance. To increase production it is decided to keep two spare parts on hand (for a total
of 2+ 3 = 5 parts). After 2 hours of use, the part is removed from the machine and taken to a single
technician, who can do the required maintenance in 30 + 20 minutes. After maintenance, the part is
placed in the pool of spare parts, to be put intothe firstmachine that requires it. The technician has other
duties, namely, repairing other items which have a higher priority and which arrive every 60 £ 20 -
minutes requiring 15 + 15 minutes to repair. Also, the technician takes a 15-minute break in each 2-hour
time period. That is, the technician works 1 hour 45 minutes; takes off 15 minutes, works 1 hour 45
minutes, takes off 15 minutes, and so on. (a) What are the model’s initial conditions—that is, where are
the parts at time 0.and what is their condition? Are these conditions typical of “steady state”? (b) Make
each replication of this experiment consist of an 8-hour initialization phase followed by a 40-hour
data-collection phase. Make four statistically independent replications of the experiment all in one
computer run (i.e., make four runs with each using a different set of random numbers). (c) Estimate the
mean number of busy machines and the proportion of time the technician is busy. (d) Parts are estimated
to cost the company $50 per part per 8-hour day (regardless of how much they are in use). The cost of
the technician is $20 per hour. A working machine produces widgets worth $100 for each hour of
production. Develop an expression to represent total cost per hour which can be attributed to widget
production (ie., not all of the technician’s time is due to widget production). Evaluate this expression,
given the results of the simulation.
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44. The Wee Willy Widget Shop overhauls and repairs all types of widgets. The shop consists of five work Every 2 hours, beginning 1 hour after opening, the degreasing station C shuts down for routine maintenance,

stations, and the flow of jobs through the shop is as depicted here:

C

o E

%%Y

10%

Regular jobs arrive at station A at the rate of one every 15 * 13 minutes. Rush jobs arrive every 4 + 3
hours and are given a higher priority except at station C, where they are put on a conveyor and sent
through a cleaning and degreasing operation along with all other jobs. For jobs the first time through a
station, processing and repair times are as follows: ’

The times listed above hold for all jobs that follow one of the two sequencesA B — C - D — E or
A — B — D — E.However, about 10% of the jobs coming out of station D are sent back to B for further
work (which takes 30 + 10 minutes) and then are sent to D and finally to E. The path of these jobs is as
follows:

45

which takes 10 * 1 minute. However, this routine maintenance does not begin until the current widget, if
any, has completed its processing.

(a) Make three independent replications of the simulation model, where one replication equals an 8-hour
simulation run, preceded by a 2-hour initialization run. The three sets of output represent three
typical days. The main performance measure of interest is mean response time per job, where a
response time is the total time a job spends in the shop. The shop is never empty in the morming,
but the model will be empty without the initialization phase. So run the model for a 2-hour initial-
ization period and collect statistics from time 2 hours to time 10 hours. This “warm-up” period will
reduce the downward bias in the estimate of mean response time. Note that the 2-hour waim-up is a
device to load a simulation model to some more realistic level than empty. From each of the three
independent replications, obtain an estimate of mean response time. Also obtain an overall estimate,
the sample average of the three estimates.

(b) Management is considering putting. one additional worker at the busiest station (A4, B, D, or E).
Would this significantly improve mean response time? ]

(¢) As an alternative to part (b), management is considering replacing machine C with a faster one that
processes a widget in only 14 minutes. Would this significantly improve mean response time?

A building-materials firm loads trucks with two payloader tractors. The distribution of truck-loading
times has been found to be exponential with a mean loading time of 6 minutes. The truck interarrival
time is exponentially distributed with an arrival rate of 16 per hour. The waiting time of a truck and
driver is estimated to cost $50 per hour. How much (if any) could the firm save (per 10 hour day) if an

Number Processing and/or overhead hopper system that would fill any truck in a constant time of 2 minutes is installed? (Assume
. b that the present tractors could and would adequately service the conveyors loading the hoppers.)
Machines Repair Times _ :
Station or Workers (Minutes) Description 46. A milling-machine department has 10 machines. The runtime until failure occurs on a machine is expo-
. nentially distributed with a mean of 20 hours. Repair times are uniformly distributed between 3 and 7 hours.
A 1 12121 Receiving clerk Select an appropriate run length and appropriate initial conditions.
B 3 40+20 Disassembly and parts
replacement (a) How many repair persons are needed to ensure that the mean number of machines running is greater
) C 1 20 Degreaser than eight?
. D 4 50+40 Reassembly and (b) If there are two repair persons, estimate the number of machines that are either running or being served.
o E 3 40+5 ;?:;;Ize:; shipping 47. Jobs arrive every-300 * 30 seconds to be processed through a process that consists of four operations:
- OPI10 requires 50 + 20 seconds, OP20 requires 70 £ 25 seconds, OP30 requires 60 + 15 seconds, OP40
1

requires 90 + 30 seconds. Simulate this process until 250 jobs are completed; then combine the four
operations of the job into one with the distribution 240 £ 100 seconds and simulate the process with this
distribution. Does the average time in the system change for the two altematives?

. Ships arrive at a harbor at the rate of one every 60 + 30 minutes. There are six berths to accommodate

them. They also needthe service of a crane for unloading and only one crane is available. After unloading,
10% of the ships stay for refuel before leaving, while the others leave immediately. Ships do not require

and require 35 * 20 seconds for processing. Type 2 jobs arrive every 100 + 40 seconds and require

: E l0t10 | A : the use of crane for refueling. It takes 7 + 3 hours for unloading and 60 + 20 minutes for refueling.
W NEIS Assume that the crane is subjected to routine maintenance once in every 100 hours, and it takes 5 + 2
! hours to complete the maintenance. The crane’s unloading operation is not interrupted for maintenance.
3 g 6 The crane is taken for maintenance as early as possible after completing the current unloading activity.
i / Simulate the system for unloading 500 ships that require refueling.
RUELEN 8 i 5 49. Two types of jobs arrive to be processed on the same machine. Type 1 jobs arriveevery 80 + 30 seconds
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20 £ IS seconds for processing. Engineering has judged that there is excess capacity on the machine.
For a simulation of 8 hours of operation of the system, find X for Type 3 jobs that arrive every X + 04X
seconds and require a time of 30 seconds on the machine so that the average number of jobs waiting to
be processed is two or less.

50. Using spreadsheet software, generate 1000 uniformly distributed random values with mean 10 and
spread 2. Plot these values with intervals of width 0.5 between 8 and 12. How close did the simulated
set of values come to the expected number in each interval?

§1. Using a spreadsheet, generate 1000 exponentially distributed random values with a mean of 10. What is ) Pa rt I I
the maximum of the simulated values? What fraction of the generated values is less than the mean of 107
Plot a histogram of the generated. values. (Hint: If you cannot find an exponential generator in the
t spreadsheet you use, use the formula ~10*LOG(I-R), where R is a uniformly distributed random number

~from 0 to 1 and LOG is the natural logarithm. The rationale for this formula is explained in Chapter 8 h e ’ d s * o , )
on random-variate generators.) . Maf em a" ca an ta hs f' ca
- Models
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5

Statistical Models in Simulation

In modeling real-world phenomena, there are few situations where the actions of the entities within the
system under skidy can be predicted completely. The world the model-builder sees is probabilistic rather
than deterministic. There are many causes of variation. The time it takes a repairperson to fix a broken
machine is a function of the complexity of the breakdown, whether the repairperson brought the proper
replacement parts and tools to the site, whether another repairperson asks for assistance during the course of
the repair, whether the machine operator receives a lesson in preventive maintenance, and so on. To the
model-builder, these variations appear to occur by chance and cannot be predicted. However, some statistical
model might well describe the time to make a repair.

An appropriate model can be developed by sampling the phenomenon of interest. Then, through educated
guesses-{or using software for the purpose), the model-builder would select a known distribution form, make
an estimate of the parameter(s) of this distribution, and then test to see how good a fit has been obtained.

~ Through continued efforts in the selection of an appropriate distribution form, a postulated model could be

accepted. This multistep process is described in Chapter 9. )

Section 5.1 contaifis a review of probability terminology and concepts. Some typical applications of
statistical models, or distribution forms, are given in Section 5.2. Then, a number of selected discrete and
continuous distributions are discussed in Sections 5.3 and 5.4. The selected distributions are those that
describe a wide variety of probabilistic events and, further, appear in different contexts in other chapters of
this text. Additional discussion about the distribution forms appearing in this chapter, and about distribution
forms mentioned but not described, is available from a number of sources [Hines and Montgomery, 1990;
Ross, 2002; Papoulis, 1990; Devore, 1999; Walpole and Myers, 2002; Law and Kelton, 2000]. Section 5.5
describes the Poisson process and its relationship to the exponential distribution. Section 5.6 discusses
empirical distributions.
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5.1 REVIEW OF TERMINOLOGY AND CONCEPTS

1. Discrete random variables. Let X be a random variable. If the number of possible values of X is finite, or
countably infinite, X is called a discrete random variable. The possible values of X may be listed as. x,, x,,....
In the finite case, the list terminates; i n the countably infinite case, the list continues indefinitely.

Example 5.1 i
The number of jobs arrivingeachweek at a job shop is observed. The random variable of interest is. X, where

X = number of jobs arriving each week

The possible values of X are given by the range space of X, which is denoted by R,. Here R, = {0, 1, 2, ...}.

Let X be a discrete random variable. With each possible outcome x; in R,, a number p(x) = P(X = x)
gives the probability that the random variable equals the value of x. The numbers p(x), i = 1, 2,..., must sat-
isfy the following two conditions:

1. p(x)20,forall i

2' Z:1p(xi)= 1
The collection of pairs (x, p(x)), i= 1, 2,... is called the probability distribution of X, and p(x)) is called the
probability mass function (pmf) of X. .

Example 5.2
Consider the experiment of tossing a single die. Define X as the number of spots on the up face of the die

after a toss. Then R, = {1, 2, 3, 4, 5, 6}. Assume the die is loaded so that the probability that a given face .

lands up is proportional to the number of spots showing. The discrete probability distribution for this random
experiment is given by :

X, 1 2 3 4 5 6

p(x) 1/21 2/21 3721 4121 5721 6/21 |.

The conditions stated earlier are satisfied—that is, p(x)) 2 0 for i = 1, 2,..., 6 and Z:] px)=1/21+---+
6/21 = 1. The distribution is shown graphically in Figure 5.1.

2. Continuous random variables. If the range space R, of the random variable X is an interval or a
collection of intervals, X is called a continuous random variable. For a continuous random variable X, the
probability that X lies in the interval [a, b] is given by

P(asxsw:ff(x)dx G.1)

The function f(x) is called the probability density function (pdf) of the random variable X. The pdf satisfies
the following conditions:

a. f(x)20forallxinR,
b [ fdr=1
¢ f(x) =0 if x is not _in Ry,

As a result of Equation (5.1), for any specified value x, P(X = x,) = 0, because

: J:f(x)dx=0
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p(x)

6/21 |-

S/21 -

4121 |-

321

221

121+

2 3 4 5 6 x

Figure 5.1 Probability mass function for loaded-die example.

f)

Figure 5.2 Graphical interpretation of P(a < X < b).

P(X= x,) = 0 also means that the following equations hold:
P(a<X<b)=P(a<X<b)=Pla<X<b)=Pa<X<b) (5:2)

The graphical interpretation of Equation (5.1) is shown in Figure 5.2. The shaded area represents the
probability that X lies in the interval {a, b].

Example 5.3 : . —
The life of a device used to inspect cracks in aircraft wings is given by X, a continuous random variable

assuming all values in the range x 2 0. The pdf of the lifetime, in years, is as follows:

1 -x/2

-, x20
fx)=42

0, otherwise
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fx)
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Figure 5.3 pdf for inspectiondevice life.

This pdf is shown graphically in Figure 5.3. The random variable X is said to have an exponential distribution

with mean 2 years.-
The probability that the life of the device is between 2 and 3 years is calculated as

- l 3 ~x/2
P(2$XS3)-EJ'2e dx
=—e? 4 ¢t =-0223+0368=0.145

3. Cumulative distribution function. The cumulative distribution function (cdf), denoted by F(x), measures
the probability that the random variable X assumes a value less than or equal to x, that is, F(x) = P(X < x).
If X is discrete, then ) :

F(x)=Y p(x) (53)
ait
" If X is continuous, then
F()=|" fode (54)

Some properties of the cdf are listed here:

a. Fis a nondecreasing function. If a < b, then F(a) < F(b).
b. lim_., F(x)=1

¢ lim__,_F(x)=0

X=———)=cn

All probability questions about X can be answered in terms of the cdf. For example,

Pla<X <b)=Fb)-F(a) foralla <b (5.5
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For continuous distributions, not only does Equation (5.5) hold, but also the probabilities in Equation (5.2)
are equal to F(b) — F(a). .

Example 5.4
The die-tossing experiment described in Example 5.2 has a cdf given as follows:

x (== 1,2 [2.3) 3.4 45 56 [6, )
F(x) 0 1721 321 6/21 10721 15/21 21/21

where [a, b) = (a £ x < b}. The cdf for this example is shown graphically in Figure 5.4.

If X is a discrete random variable with possible values x,, x,,..., where x, <x, < ..., the cdf is a step
function. The value of the cdf is constant in the interval {x, , x,) and then takes a step, or jump, of size p(x)
at x, Thus, in Example 5.4, p(3) = 3/21, which is the size of the step when x = 3.

Example 5.5
The cdf for the device described in Example 5.3 is given by

_ 1 ¢ -2 g, -x/2
F(x)—Efoe dr=1-e
The probability that the device will last for less than 2 years is given by -

PO<X<2)=F(2)-F0)=F@2)=1-¢"'=0.632

Fx)
2121

1821

15721

31

Figure 5.4 cdf for loaded-die example.
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The probability that the life of the device is between 2 and 3 years is calculated as

PR<X<3)=FQ3)-FQ)=(1-*)-(1-¢™)
=¥ 4 =—0.223+0.368 = 0.145

as found in Example 5.3.

4. Expectation. An important concept in probability theory is that of the expectation of a random variable.
If X is a random variable, the expected value of X, denoted by E(X), for discrete and continuous variables is
defined as follows:

E)= 3 ()

aili .

if X is discrete (5.6)

and

if X is continuous ) 5.7

EX)= [~ xf(x)dx

- The expected value E(X) of a random vafiable X is also referred to as the mean, g, or the first moment of X.
The quantity E(X*), n 2 1, is called the nth moment of X, and is computed as follows:

E(X")= Zx,f'p(xi) if X is discrete i (5.8)

alli
and

EX")= J_: x"f(x)dx  ifX is continuous (5.9)

The variance of a random variable, X, denoted by V(X) or var(X) or 62, is defined by
V(X) = E{(X - E[X])*]
A useful identity in computing V(X) is given by
V(X) = E(X?) - [EX)P (5.10)

The mean E(X) is a measure of the central tendency of a random variable. The variance of X measures
the expected value of the squared difference between the random variable and its mean. Thus, the variance,
V(X), is a measure of the spread or variation of the possible values of X around the mean E(X). The standard
deviation, 0, is defined to be the square root of the variance, 0% The mean, E(X), and the standard deviation,
o= JV(X ), are expressed in the same units.

Example 5.6
The mean and variance of the die-tossing experiment described in Example 5.2 are computed as follows:

E(x)=1(i)+2(i)+5--+6(£)=2=4.33
21 2)  \2) 2

To compute V(X) from Equation (5.10), first compute E(X?) from Equation (5.8) as follows:

E(X2)=12(l) 21(£)+---+62(—6—)=21
21 21 21
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Thus,
91y
V(X)=21- o =21-18.78=222
and »
o=V(X)=149
Example 5.7

The mean and variance of the life of the device described in Example 5.3 are computed as follows:

_l < xl2 gy -x/zw = _x
E(X)= 2J0 xe “dx=—xe +Jo e dx

oo

=0+Le—xll

2 =2 years

0

To compute V(X) from Equation (5.10), first compute E(X?) from Eqi.lation (5.9) as follows:

2 _1 ® 2 -2
EX )——Z-Joxe dx

Thus,
E(X*)=-x?e™? : + ZJ: xe " dx=8
giving
V(X) = 8 — 22 =4 years?
and

o= 1/V(X) =2 years

- With a mean life of 2 years and a standard deviation of 2 years, most analysts would conclude that actual

lifetimes, X, have a fairly large variability.

8. Themode. The mode is used in describing several statistical models that appear in this chapter. In the
discrete case, the mode is the value of the random variable that occurs most frequently. In the continuous
case, the mode is the value at which the pdf is maximized. The mode might not be unique; if the modal value
occurs at two values of the random variable, the distribution is said to be bimodal. :

5.2 USEFUL STATISTICAL MODELS

Numerous situations arise in the conduct of a simulation where an investigator may choose to introduce prob-
abilistic events. In Chapter 2, queueing, inventory, and reliability examples were given. In a queueing system,
interarrival and service times are often probabilistic. In an inventory model, the time between demands and
the lead times (time between placing and receiving an order) can be probabilistic. In a reliability mode], the
time to failure could be probabilistic. In each of these instances, the simulation analyst desires to generate
random events and to use a known statistical model if the underlying distribution can be found. In the following
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paragraphs, statistical models appropriate to these application areas will be discussed. Additionally, statistical
models useful in the case of limited data are mentioned.

1. Queueing systems. In Chapter 2, examples of waiting-line problems were given. In Chapters 2, 3, and
4, these problems were solved via simulation. In the queueing examples, interarrival- and service-time patterns
were given. In these examples, the times betwsen arrivals and the service times were always probabilistic, as is
usually the case. However, it is possible to have a constant interarrival time (as in the case of a line moving at
a constant speed in the assembly of an automobile), or a constant service time (as in the case of robotized spot
welding on the same assembly line). The following example ifluserates how probabilistic interarnival times
might occur.

Example 5.8 :
Mechanics arrive at a centralized tool crib as shown in Table 5.1. Attendants check in and check out the
requested tools to the mechanics. The collection of data begins at 10:00 A.M. and continues until 20 differ-
ent interarrival times are recorded. Rather than record the actual time of day, the absolute time from a given
origin could have been computed. Thus, the first mechanic could have arrived at time zero, the second
mechanic at time 7:13 (7 minutes, 13 seconds), and so on.

Example 5.9
Another way of presenting interarrival data is to find the number of arrivals per time period. Here, such
arrivals occur over approximately 1 1/2 hours; it is convenient tolook at 10-minute time intervals for the first
20 mechanics. That is, in the first 10-minute time period, one arrival occurred at 10:05::03. In the second
time period, two mechanics arrived, and so on. The results are summarized in Table 5.2. This data could then
be plotted in a histogram, as shown in Figure 5.5.

Table 5.1 Arrival Data

Arrival Arrival Interarrival Time
Number {Hour:Minutes::Seconds}) {Minutes::Seconds)
1 10:05::03 —
2 10:12::16 7::13
3 10:15::48 3:32
4 10:24::27 8::39
5 10:32::19 7:52
6 10:35::43 3:24
7 10:39::51 4:08
8 10:40::30 0::39
9 10:41::17 0::47
10 10:44::12 2::55
11 10:45::47 1::35
12 10:50::47 5::00
13 11:00::05 9::18
14 11:04::58 4::53
15 11:06::12 1::14
16 11:11::23 5:11
17 11:16::31 5::08
18 11:17::18 0:47
19 11:21::26 4::08
20 11:24::43 3:17
21 11:31::19 6::36
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Table 5.2 Arrivals in Successive Time Periods

Time Number of Time Number of
Period Arrivals Period Arrivals
1 1 6 1
2 2 7 3
3 1 8 : 3
4 3 9 2
5 4 — —
3
g,
£
g
© 3

1 2 3 4
Number of arrivals in 10-minute period

Figure 5.5 Histogram of arrivals per time period.

The distribution of time between arrivals and the distribution of the number of arrivals per time period
are important in the simulation of waiting-line systems. “Arrivals” occur in numerous ways; as machine
breakdowns, as jobs coming into a jobshop, as units being assembled on a line, as orders to a warehouse, as
data packets to a computer system, as calls to a call center, and so on. :

Service times could be constant or probablllstlc If service times are completely random, the exponen-
tial distribution is often used for simulation purposes; however, there are several other possibilities. It could
happen that the service times are constant, but some random variability causes fluctuations in either a posi-
tive or a negative way. For example, the time it takes for a lathe to traverse a 10-centimeter shaft should
always be the same. However, the material could have slight differences in hardness or the tool might wear;
either event could cause different processing times. In these cases, the normal distribution might describe the
service time. '

" A special case occurs when the phenomenon of interest seems to follow the normal probability distri-
bution, but the random variable is restricted to be greater than or kess than a certain value. In this case, the
truncated normal distribution can be utilized.

The gamma and Weibull distributions are also used to model interarrival and service times. (Actually,
the exponential distribution is a special case of both the gamma and the Weibull distributions.) The
differences between the exponential, gamma, and Weibull distributions involve the location of the modes of

*the pdf"s and the shapes of their tails for large and small times. The exponential distribution has its mode at the

origin, but the gamma and Weibull distributions have their modes at some_point (20) that-is a function of
the parameter values selected. The tail of the gamma distribution is long, like an exponential distribution; the -
tail of the Weibull distribution can decline more rapidly or less rapidly than that of an exponential distribution.
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In practice, this means that, if there are more large service times than an exponential distribution can account
for, a Weibull distribution might provide a better model of these service times.

2. Inventory and supply-chain systems. In realistic inventory and supply-chain systems, there are at least
three random variables: (1) the number of units demanded per order or per time period, (2) the time between
demands, and (3) the lead time. (The lead time is defined as the time between the placing of an order for
stocking the inventory system and the receipt of that order.) In very simple mathematical models of inven-
tory systems, demand is a constant over time, and lead time is zero, or a constant. However, in most real-
world cases, and, hence, in sirulation models, demand occurs randomly in time, and the number of units
demanded each time a demand occurs is also random, as illustrated by Figure 5.6.

Distributional assumptions for demand and lead time in inventory theory texts are usually based on
matheraatical tractability, but those assumptions could be invalid in a realistic context. In practice, the lead-
time diswibution can often be fitted fairly well by a gamma distribution [Hadley and Whitin, 1963]. Unlike
analytic models, simulation models can accommodate whatever assumptions appear most reasonable.

The geometric, Poisson, and negative binomial distributions provide a range of distribution shapes that
satisfy a variety of demand patterns. The geometric distribution, which is a special case of the negative bino-
nual, has its mode at unity, given that at least one demand has occurred. If demand data are characterized by
a long tail, the negative binonual diswibution might be appropriate. The Poisson distribution is often used to
model demand because it is simple, it is extensively tabulated, and it is well known. The tail of the Poisson
distribution is generally shorter than that of the negative binomial, which means that fewer large demands
will occur if a Poisson model is used than if a negative binomial distribution is used (assuming that both
models have the same mean demand).

3. Reliability and maintainability. Time to failure has beenmodeled withnumerous distributions, includ-
ing the exponential, gamma, and Weilbull. If only random failures occur, the time-to-failure distribution may
be modeled as exponential. The gamma distribution arises from modeling standby redundancy, where each
component has an exponential time to failure. The Weibull distribution has been extensively used to repre-
sent time to failure, and its nature is such that it can be made to approximate many observed phenomena
[Hines and Montgomery, 1990]. When there are a number of components in a system and failure is due to
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Figure 5.6 Random demands in time.
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the most serious of a large number of defects, or possible defects, the Weibull distribution seems to do
particularly well as a model. In situations where most failures are due to wear, the normal distribution might
very well be appropriate {Hines and Montgomery, 1990]. The lognormal distribution has been found to be
applicable in describing time to failure for some types of components.

4. Limited data. In many instances, simulations begin before data collection has been completed. There
are three distributions that have application to incomplete or limited data. These are the uniform, triangular,
and beta distributions. The uniform distribution can be used when an interarrival or service time is known to
be random, but no information is immediately available about the distribution {Gordon, 1975]. However,
there are those who do not favor using the uniform distribution, calling it the “distribution of maximum igno-
rance” because it is not necessary to specify more than the continuous interval in which the random variable
may occur. The triangular distribution can be used when assumptions are made about the minimum, maxi-
mum, and modal values of the random variable. Finally, the beta distribution provides a variety of distribu-
tional forms on the unit interval, ones that, with appropriate modification, can be shifted to any desired
interval. The uniform distribution is a special case of the beta distribution. Pegden, Shannon, and Sadowski
[1995] discuss the subject of limited data in some detail, and we include further discussion in Chapter 9.

S. Other distributions. Several other distributions may be useful in discrete-system simulation. The
Bernoulli and binomial distributions are two discrete distributions which might describe phenomena of interest.
The hyperexponential distribution is similar to the exponential distribution, but its greater variability might
make it useful in certain instances. .

5.3 DISCRETE DISTRIBUTIONS

Discrete random variables are used to describe random phenomena in which only integer values can occur.
Numerous examples were given in Section 5.2—for example, demands for inventory items. Four distribu-
tions are described in the following subsections. .

1. Bernoullitrials and the Bernoulli distribution. Consider an experiment consisting of n trials, each of
which can be a success or a failure. Let X; = 1 if the jth experiment resulted in a success, and let X, = 0 if
the jth experiment resulted in a failure. The n Bernoulli trials are called a Bernoulli process if the trals are
independent, each trial has only two possible outcomes (success or failure), and the probability of a success
remains constant from trial to trial. Thus,

p(xp Kogrees x,,} = P;(Xi) " pg(xg) e P,z(x,,)

and
D x,=1Lj=12,..,n
p;(x))=p(x}=N1-p=q, x;=0,j=12,..,n . (5.11)
0, otherwise

For one trial, the distribution given in Equation (5.11) is called the Bernoulli distribution. The mean and
variance of XJ are calculated as follows:

EX)=0-q+1-p=p
and

VX)=[0*- @+ (1*- p)] - p*=p(1 - p)
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2. Binomial distribution. The random variable X that denotes the number of successes in n Bernoulli
trials has a binomial distribution given by p(x), where

g, x=0,1,2,...n
p(x)= ( )

0, otherwise

(5.12)
Equation (5.12) is motivated by computing the probability of a particular outcome with allthe successes, €ach

denoted by S, occurring in the first x trials, followed by the n — x failures, each denoted by an F~—that is,

xo&hm

P(SSS.....o.. SSFF......... FF)= p'q"™*

n n!
(x)' x(n—x)!

outcomes having the required number of $’s and F's. Therefore, Equation (5.12) results. An easy approach
to calculating the mean and variance of the binomial distribution is to consider X as a sum of n independent
Bernoulli random variables, each with mean p and variance p(1 - p) = pg. Then,

n-x ofthese

where g = 1 - p. There are -

X=X +X,+ - +X
and the mean, E(X), is given by

EX)=p+p+--+p=np (5.13)

andthe variance V(X) is given by

VX)=pq+pq +:--+pq=npq (514)
Example 5.10
A production process manufactures computer chips on the average at 2% nonconforming. Every day, a random
sample of size 50 is taken from the process. If the sample contains more than two nonconforming chips, the
process will be stopped. Compute the probability that the process is stopped by the sampling scheme.

Consider the sampling process as n = 50 Bernoulli trials, each with p = 0.02; then the total number of
nonconforming chips in the sample, X, would have a binomial distribution given by

. |50 "
(0.02)*(0.98y"*, x=0,1,2,...,50
p(x)=4\ x

0, otherwise

It is much easier to compute the right-hand side of the following identity to compute the probability that

more than two nonconforming chips are found in a sample:
P(X>2)=1-P(X<2)
The probabi]ity P(X <2)is calculated from
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P(X<2)= 2 ( )(0 02)*(0.98)

=(0.98)* +50(0.02)(0.98)* +1225(0.02)*(0.98)*
=092

Thus, the probability that the production process is stopped on any day, based on the sampling process, is
approximately 0.08. The mean number of nonconforming chips in a random sample of size 50 is given by
EX)=np =50(0. 02) =
and the variance is given by v
V(X) =npq = 50(0.02)(0.98) = 0.98

" The cdf for the binomial distribution has beentabulated by Banks and Heikes [1984] and others. The tables

decrease the effort considerably for computing probabilities such as P(a < X < b). Under certain conditions
on n and p, both the Poisson distribution and the normal distribution may be used to approximate the bino-
mial distribution [Hines and Montgomery, 1990]. '

3. Geometric and Negative Binomial distributions. The geometric distribution is related to a sequence
of Bernoulli trials; the random variable of interest, X, is defined to be the number of trials to achieve the first
success. The distribution of X is given by

='p, x=12,...
p(x)={q P

. (5.15)
0, otherwise

The event {X = x} occurs when there are x — 1 failures followed by a success. Each of the failures has an
associated probability of g = 1 ~ p, and each success has probability p. Thus,

P(FFF---FS)=q""'p
The mean and variance are given by

E(X)=l (5.16)
p

and

vin=< (5.17)
P

- More generally, the negative binomial distribution is the distribution of the number of trials until the kth
success, for k= 1, 2,.... If ¥ has a negative binomial distribution with parameters p and k, then the distribu-

tion of Y is given by
Y- 1) yk _k
TP,
)= (

0, ‘ otherwise

y=kk+1,k+2,...
(5.18)

Because we can think of the negative binomial random variable ¥ as the sum of k independent geometric

_random variables, it is easy to see that E(Y) = k/p and V(X) = kg/p®.
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Example 5.11
Forty percent of the assembled ink-jet printers are rejected atthe i mspectlon station. Find the probability that
the first acceptable ink- jet printer is the third one mspected Considering each inspection as a Bernoulli trial
with g = 0.4 and p = 0.6 yields

p(3)=0.4%(0.6)=0.096

Thus, in only about 10% of the cases is the first acceptable printer the third one from any arbitrary starting
point. To determine the probability that the third printer inspected is the second acceptable printer, we use
the negative binomial distribution (5.18),

@)= (i:i) 047(06)" = m 0.4(0.6) =0.288

4. Poisson distribution. The Poisson distribution describes many random processes quite well and is
mathematically quite simple. The Poisson distribution was introduced in 1837 by S. D. Poisson in a book
concerning criminal and civil justice matters. (The title of this rather old text is “Recherches sur 1a proba-
bilite des jugements en matiere criminelle et en matiere civile.” Evidently, the rumor handed down through
generations of probability theory professors concerning the origin of the Poisson distribution is just not true.
Rumor has it that the Poisson distribution was first used to model deaths from the kicks of horses in the
Prussian Army.)

The Poisson probability mass function is given by

px)=4
o, otherwise

» %20 L. ©(5.19)

where > 0. One of the important properties of the Poisson distribusion is that the mean and variance are
both equal to ¢, that is,
EX)=a= V(X)

The cumulative distribution funcuon is given by

Fx)= 2 o’ (5.20)
i=0 '
The pmf and cdf for a Poisson distribution with & = 2 are shown in Figure 5.7. A tabulation of the cdf is
given in Table A.4. :
Example 5.12

A computer repair person is “beeped” each time there is a call for service. The number of beeps per hour is
known to occur in accordance with a Poisson distribution with a mean of =2 per hour. The probability of
three beeps in the next hour is given by Equation (5.19) with x = 3, as follows:

€2} (0135)(8)
3! 6

p3)= =0.18
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Figure 5.7 Poisson pmf and cdf.

This same result can be read from the left side -of Figure 5.7 or from Table A.4 by computing

F(3) —=F(2)=0.857 - 0.677=0.18

Example 5.13
In Example 5.12, find the probability of two or more beeps in a 1-hour period.

P(2ormore)=1-p(0)—p(1)=1-F(l)
' =1 - 0.406= 0.594

The cumulative probability, F(1), can be read from the right side of Figure 5.7 or from Table A4.

Example 5.14
The lead-time demand in an inventory system is the accumulation of demand for an 1tem from the pomt at
which an order is placed until the order is received——that is,

T

L=YD

d==d

(5.21)

where Listhe lead-tlme demand, D, is the demand during the ith time penod and T'is the number of time
periods during the lead time. Both D and T may be random variables.

An inventory manager desires that the probability of a stockout not exceed a certain fraction during the
lead time. For example, it may be stated that the probability of a shortage during the lead time not exceed 5%.
- Ifthe lead-time demand is Poisson distributed, the determination of the reorder point is greatly facilitated.
The reorder point is the level of inventory at whicha new order is placed. .
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Assume that the lead-time demand is Poisson distributed with a mean of ¢ = 10 units and that 95%
protection from a stockout is desired. Thus, it is desired to find the smallest value of x such that the proba-
bility that the lead-time demand does not exceed x is greater than or equal to 0.95. Using Equation (5.20)
requires finding the smallest x such that ‘

* -!O 01

F(xj Z

i=0

20.95

The desired result occurs at x = 15, which can be found by using Table A.4 or by computation of p(0), p(1),....

5.4 CONTINUOUS DISTRIBUTIONS

Continuous random variables can be used to describe random phenomena in which the variable of interest
can take on any value in some interval—for example, the time to failure or the length of a rod. Eight distri-
butions are described in the following subsections.

1. Uniform dlstrzbutwn A random vanableX is uniformly distributed on the interval (a, b) if its pdf is

given by

1
—, asx<bh
f(x)={b-a (5.22)
0, otherwise
The cdf is given by
0, x<a
Fi)={2"% a<x<b (5.23)
b-a
1, x2b
Note that -

P(x, < X < x,) = F(x,)- F(x,)— "l

is propomonal to the length of the interval, forall x, and x, satisfying a < x, < x, <b. The mean and varlancc
of the dlsmbuuon are gwen by

E(X) = “—*b (524)
and.
2
vi=2 ;2“) (525)

The pdf and cdf when a = 1 and b = 6 are shown in Figure 5.8. -

The uniform distribution plays a vital role in simulation. Random numbers, uniformly distributed between
zero and 1, provide the means to- generate random events. Numerous- methods for generating uniformly
distributed random numbers have beén devised; some will be discussed in Chapter 7. Uniformly distributed
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Figure 5.8 pdf and edf for uniform distribution.

random numbers are then used to generate samples of random vanates from all other distributions, as will be
discussed in Chapter 8.

Example 5.15
A simulation of a warehouse operation is being developed. About every 3 minutes, a call comes for a fork—
lift truck operator to proceed to a certain location. An initial assumption is made that the time between calls
(arrivals) is uniformly distributed with a mean of 3 minutes. By Equation (5.25), the uniform distribution
with ameanof 3 and the greatest possible variability would have parameter values of a =0 and b = 6 minutes.
With very limited data (such as a mean of approximately 3 minutes) plus the knowledge that the quantity of
interest is variable in a random fashion, the uniform distribution with greatest-variance can be assumed, at
least until more data are available.

Example 5.16
A bus arrives every 20 minutes at a specified stop beginning at 6:40 .M. and continuing untll 8:40 AM. A cer-
1ain passenger does not know the schedule, but arrives randomly (uniformly distributed) between 7:00 A.M. and
7:30 AM. every morning. What is the probability that the passenger waits more than 5 minutes for a bus?

The passenger has to wait more than 5 minutes only if the arrival time is between 7:00 A.M. and 7:15 A.M.
or between 7:20 A.M. and 7:30 A.M. If X is a random variable that denotes the number of minutes past 7:00A.M.
that the passenger arrives, the desired probability is

P0<X<15)+P(20<X<30)

Now, X is a uniform random variable on (0,30). Therefore, the desired probability is given by

15 20 5
F(15)+ F(30)—- F(20 -—+1————
(15)+ F(30) - F(20) 30 0°6
, 2. Exponential distribution. A random variable X is said to be exponenually distributed w1th parameter
A> 0 if its pdf is given by
Ae ™, x20 :
fx)= : : (5.26)
0, - elsewhere

The density function is shown in Figures 5.9 and 5.3. Figure 5.9 also.shows the cdf. _ )
The exponential distribution has been used to model interarrival times when arrivals are completely
random and to model service times that are highly variable. In these instances, A is a rate: arrivals per hour
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fx) Fx)
N e
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Figure 5.9 Exponential density function and cumulative distribution function.
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Figure 5.10 pdfs for several exponential distributions.

or services per minute. The exponential distribution has also been used to model the lifetime of a component
that fails catastrophically (instantaneously), such as a light bulb; then A is the failure rate.

Several different exponential pdf’s are shown in Figure 5.10. The value of the intercept on the vertical
axis is always equal to the value of A. Note also that all pdf’s eventually intersect. (Why?)

The exponential distribution has mean and variance given by

E(X)=— and V(X)-- ' (5.27)

Thus, the mean and standard deviation are equal. The cdf can be exhibited by integrating Equation (5.26) to obtain

I #<0 | (5.28)
= j;?»e"‘fdlél-e"”, %20 '
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Example 5.17 : :
Suppose that the life of an industrial lamp, in thousands of hours, is exponcnnally dlsmbuted with failure
rate A = 1/3 (one failure every 3000 hours, on the average). The probability that the lamp.will last longer
than its mean life, 3000 hours, is given by P(X > 3) =1~ P(X £ 3) = 1 — F(3). Equation (5. 28) is used to
compute F(3), obtammg

P(X>3)=1-(1-€)=¢" = 0368

Regardless of the value of A, this result will always be the same! That is, the probability that an exponential
random variable is greater than its mean is 0.368, for any value of A.
The probability that the industrial lamp will last between 2000 and 3000 hours is computed as

P(2£X<3)=F(3)-F(Q)
Again, from the cdf given by Equation (5.28),

F3)-FQ)=(-e")—(1-e?)
=-0368+0.513=0.145

One of the most important properties of the exponential distribution i is that it is “memoryless which
means that, forall s20 and ¢ 20, ‘

PX>s+t[X>5)=PX>1) (529)

Let X represent the life of a component (a battery, light bulb, computer chip, laser, etc.) and assume that
X is exponentially distributed. Equation (5.29) states that the probability that the component lives for at least
s+t hours, giventhat it has survived s hours, is the same as the initial probability that it lives for at least ¢ hours.
If the component is alive at time s (if X > s), then the distribution of the- remaining amount of time that it
survives, namely X — s, is the same as the original distributionof a new componerit. Thatis, the component does
not “remember” that it has already been in use for a time s. A used component is as good as new.

That Equation (5.29) holds is shown by examining the conditional probability

P(X>s+t|X>s)=£%—%t)~Q (5.30)
S h

Equation (5.28) can be used to determine the numerator and denominator'of Equati_oh (5.30), yielding

e-.i.(sMI
PX>s+t|X>s)=—p—=e"
e

=P(X>1)

Example 5.18
Find the probability that the industrial lamp in Example 5.17 will last for another 1000 hours, given that it
is operating after 2500 hours. This determination can be found using Equations (5.29) aqd (5.28), as follows:

P(X>35|X>25)=P(X>1)=¢"=0717

Example 5.18 illustrates the memoryless property-—namely, that a used componént that follows an
exponential distribution is as good as.a new component. The probability that a new component will have
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a life greater than 1000 hours is also equal to 0.717. Stated in genera‘xl, suppose that a cor:dpomt:)nt whlclli Llas;
lifetime that follows the exponential distribution with paramc?ter./l is ‘observed and fm-l 1 to he operaetef y
an arbitrary time. Then, the distribution of the remaining -llfetlme is also exponential wit parzz'?h or &
The exponential distribution is the only continuous distribution that has the memoryless property. g
metric distribution is the only discrete distribution that possesses the mei.nm:ylesrs prf)pelx]ty.) fanction
3. Gamuma distribution. A function used in defining the gamma distribution is the gamma tion,

which is defined for all 8> 0 as

B = J;x”"e"dx . (531)

By integrating Equation (5.31) by parts, it can be shown that

I(p)=(B- -1 L 63

If Bis an integer, then, by using I'(1) = 1 and applying Equation (5.32), it can be seen that
I(B)=(B- 1! (5.33)
The gamma function can be thought of as a generalization of the factorial notion to all positive numbers, not

just integers. ) ' . o
A random variable X is gamma distributed with parameters § and 0 if its pdf is given by

69 5-1 _-pox
—(BOx)*" e, x>0
Fx)=1{1(B) A (5.34)

0, othénvise

B is called the shape parameter, and 0 is called the scale parameter. Several gamma distributions for 0= 1
and various values of 8 are shown in Figure 5.10a.
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Figure 5.10a
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The mean and variance of the gamma distribution are given.by

1
EX)=5 (5.35)
and )
1
ViX)=—> 536
X 56" (5.36)
The cdf of X is given by )
= ﬁe B-1 _-p8t
I-| —(B8°'e™d, x>0 )
r=l L SN CX7)
0, ' ’ x<0 <

When f is an integer, the gamma distribution is related to the exponential distribution in'the following
manner: If the random variable, X, is the sum of B independent, exponentially distributed random variables,
each with parameter B0, then X has a gamma distribution with parameters $and 6. Thus, if :

X=X +X,+-+X, : (5.38)
where the pdf of X; is given by ‘ :

8x,) ={(ﬂ0)e’”‘/, x20
J
0

s otherwise

and the Jg are mutually independent, then X has the pdf given in Equation (5.34). Note that, when 8 = 1, an
exponential distribution results, This result follows from Equation (5.38)or from letting 8 = 1 in Equation (5.34).

4. Erlang distribution. The pdf given by Equation (5.34) is often referred to as the Erlang distribution
of order (or number of phases) k when B =k, an integer. Erlang was a Danish telephone engineer who was
an early developer of queueing thaory. The Erlang distribution could arise in the following context: Consider
a series of k stations that must be passed #rough in order to complete the servicing of a customer. An addi-
tional customer cannot enter the first station until the customer in process has negotiated all the stations.
Each station has an exponential distribution of service time with parameter k8. Equations (5.35) and (5.36),
whichstate the mean and variance of a gamma distribution, are valid regardless of the value of 8. However,
when B= k, an integer, Equation (5.38) may be used to derive the mean of the distribution in a f airly straight-

forward manner. The expected value of:the sum of random variables is the sum of the expected value of each
random variable. Thus, ‘ '

E(X=EX)+ E(X)+---+E(X)
The expected value of each of the exponentially distributed X; is given by 1/k6. Thus,
1,1 1 "
EX)=—t+—+ +—==
&) ke k6 k6 6

If the random variables XJ are independeht, the variance of their Suri is the siumi of the variances, or

E-3 l + i +...+‘ i-—-—l-
(ko) (k0Y  (k0} k6

1409)

T TR T
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When f§ = £, a positive integer, the cdf given by Equation (5.37) may be integrated by parts, giving

k-1 _-k6x i '
1- 2 _e__(.k_G,\‘:)_’ x>0
F(x)= iz il (5.39)
0, x50

which s the sum of Poisson terms with mean = k@ x. Tables of the cumulative Poisson distribution may be
used to evaluate the cdf when the shape parameter is an integer.

Example 5.19
A college professor of electrical engineering is leaving home for the summer, but would like to have a light
burning at all times to discourage burglars. The professor rigs up a device that will hold two light bulbs. The
device will switch the current to the second bulb if the first bulb fails. The box in which the lightbulbs are
packaged says, “Average life 1000 hours, exponentially distributed.” The professor will be gone 90 days
(2160 hours). What is the probability that a light will be burning when the summer is over and the professor
returns? ‘
The probability that the system will operate at least x hours is called the reliability function R(x):

R(x)=1-F()
In this case, the total system lifetime is given by Equation (5.38) with = k = 2 bulbs and k6= 1/1000 per
hour, so 8= 1/2000 per hour. Thus, F(2160) can be determined from Equation (5.39) as follows:

~{(2)(1/2000)(2160) ;
FI60)=1-Y ¢ [€2)(1/2000)(2160)]

i=0

o
=1-e20y Y o636
i B

il

Therefore, the chances are about 36% that a light will be burning when th e professor returns.

Example 5.20
A medical examination is given in three stages by a physician. Each stage is exponentially distributed with
a mean service ¥me of 20 minutes. Find the probability that the exam will take 50 minutes or less. Also,
compute the expected lengthof the exam. In this case, k =3 stages and k= 1/20, so that 6= 1/60 per minute,
Thus, F(50) can be calculated from Equation (5.39) as follows: )

i & RIS (3)(1160)(50)]

il

F(50)=1-
i=0

3 802 ¢

=1 2 4 (‘5{ 2)

i=0 il

The cumulative Poisson distribution, shown in Table A.4, can be used to calculate that
F(50) =1 - 0.543 =0.457

The probability is 0.457 that the exam will take 50 minutes or less. Theexpectad lengthof the examis found
from Equation (5.35):
1 1

E(X)= - = —-—= 60 minutes
6 160 :
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In addition, the variance of X is V(X) = 1/86% = 1200 minutes’>—incidentally, thé, mode of the Erlang
distribution is given by

k-1

Mode = —- . 4
k6 . (540)
Thus, the modal value in this example is
I 3-1
ode= = 40 minutes
e 31760) minu

5. Nonmal distribution. A random variable X with mean —es < g1 < oo and variance 0'2'; Ohasa n(;rmal
distribution if it has the pdf ‘

_ 1 |1 x-—uz : .
f(x)—amew[-—i( pn )] —o<x<es (5.41)

The normal distribution is used so often that the notation X~ Ny, 6*)has been adopted by many authors to

indicate that the random variable X is normally distributed with mean i and variance g2. The normal pdf is
shown in Figure 5.11. o

Some of the special propersies of the normal distribution are fisted here:

1. !.im, e f(x)=0and lim, ,, f(x)=0; the value of f(x) approaches zero as x approaches negative
infinity and, similarly, as x approaches positive infinity.

Z f(u—x)= R +x); the pdf is symmetric about y.

3. The maximum value of the pdf occurs at x = y; the mean and mode are equal.

The odf for the normal distibution is given by

" 2
F=P(Xs0)=" j;expl-%(’%‘) ]drt (542)

It is not possible to evaluate Equation (5.42)in closed form. Numerical methods could be used, butitappears
that it would be necessary to evaluate the integral for each pair (1, 6%). However, a transformation of

# p
Figure 5.11 pdfof the nomol'.d;'ftﬁbﬁﬁon;




154 DISCRETE-EVENT SYSTEM SIMULATION

variables, z = (1 — ¢)/0, allows the evaluatlon to be independent of ggand 0. If X ~ N(u, 02),let Z= (X — 1)l &
to obtain

F)=P(X<x)= P(Z< G“)

w-mie 1 _
=j’ e:’:zdz

~
= [T piaydz cb( ")

The pdf
1 e—z’/z :

b=,

is the pdf of a normal distribution with mean zero and variance 1. Thus, Z ~ N(0, 1) and it is said that Z has
. a standard normal distribution. The standard normal dlstnbutlon is shown in Figure 5.12. The cdf for the
standard normal distribution is given by

—0< 7<% (5.44)

1 ap
(=] —== dt .
2@ L Jge ca 8&33
Bquation (5.45) has been widely wbulated. The probabilities ®(z) for Z > 0 are given in Table A.3.
Several examples are now given that indicate how Equation (5.43) and Table A.3 are used.

Example 5.21 _
Suppose that it is kriown that X ~ M50, 9). Compute F(56) = P(X < 56). Using Equation (5.43) get

F(56)= 0(56 3 50) ®(2)=0.9772

from Table A.3. The intuitive interprettion is shown in Figure 5.13. Figure 5.13(a) shows thepdf of X~ N(50,9)
with the specific value, xX= 56, marked. The shaded portion is the desired probability. Figure 5.13(b) shows the
standard normal distribution or Z ~ N(0, 1) with the value 2 marked; x,= 56 is 20 (where 0 = 3) greater than
the mean. It is helpful to make both sketches such as those in Figure 5.13 to avoid confusion in figuring out
eequired probabilities.

V [ 18]

p=0 C z

- Figure 5.12 pdf of the standard normal distribution.
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,u()~ 2V- z

Figure 5.13 Transforming fo the standard normal distribution.

Example 5.22
The time in hours required to load an oceangoing vessel, X, is distributed as N(12,4). The probability that
the vessel will be loaded in less than 10 hours is given by F(10), where

F(l)y= @(10 12) ®(-1)=0.1587

The value of ® (-1) = 0.1587 is lcoked up in Table A.3 by using the symmetry property of thenommal dis-

* tribution. Notethat @ (1) = 0.8413. The complement 0of0.8413, or 0.1587, is contained in the tail, the shaded

portion of the standard normal distribution shown in Figure 5.14(a). In Figure 5.14(b), the symmetry property
is used to work out the shaded region to be ®{~1) =1 — ®(1) = 0.1587. {From this logic, it can be seen that
®(2)=0.9772 and ®(-2) = 1 — ®(2)=0.0228. In general, ®(-x) = 1 - B(x).]

The probability that 12 or more hours will be required to load the ship can also be discovered by
inspection, by using the symmetry property of the normal pdf and the mean as shown by Figure 5.15.
The shaded portion of Figure 5.15(a) shows the problem as originally stated [i.e., evaluate P(X < 12)]. Now,
P(X>12)=1 - F(12). The standardized normal in Figure 5.15(b) is used to evaluate F(12) = ®(0)=0.50.
Thus, P(X > 12) =1 - 0.50 = 0.50. [The shaded pomons in both Figure 5.15(a) and (b) contain 0.50 of the
area under the normal pdf.]

The probability that between 10 and szhours will be requu'ed to load a ship is given by

P(10<X<12) F(12) F(IO) 05000 01587 03413

using earlier results presented in tlus example The desxmd area is shown in the shaded portion of -
Figure 5.16(a). The equivalent problem shown in terms of the standardized normal distribution is shown in
Figure 5.16(b). The probability statement is F(12) — F(lO) ®0)-P(-1)= 05000 0. 1587 0.3413, from
Table A 3.




156

2

DISCRETE-EVENT SYSTEM SIMULATION

[X¢3)

Figure 5.14 Using the symmetry property of the normal distribution.
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z

®

Figure 5.15 Evaluation of proBaBilily by inspection. -
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Figure 5.16 Transformation to standard normal for vesselloading problem.

Example 5.23
The time to pass through a queue to begin self-service at a cafeteria has been found to be N (15, 9). The
probability that an arriving customer waits between 14 and 17 minutes is computed as follows:

PI4<X<1T) = F(17)_F(l4)=¢(17;15)_¢(14;15)
= 9(0.667) ~ $(-0.333) »

The, shaded area shown in Figure 5.17(a) represents the probability F(17) — F(14). The shaded area shown
in Figure 5.17(b) represents the equivalent probability, ©(0.667) — ®(—0.333), for the standardized normal
distribution. From Table A.3, ®(0.667) = 0.7476. Now, ®(=0.333) = 1 ~ ©(0.333) = 1 — 0.6304 = 0.3696.
Thus, ©(0.667) — ®(-0.333) = 0.3780. The probability is 0.3780 that the customer will pass through the
queue in a time between 14 and 17 minutes.

Example 5.24
Lead-time demand, X, for an item is approximated by a normal distribution having mean 25 and variance 9.
Ttis desired to compute the value for lead time that will be exceeded only 5% of the time. Thus, the prob-
lem is to find x, such that P(X > x,) = 0.05, as shown by the shaded area in Figure 5.18(a). The equivalent

- problem is shown as the shaded area in Figure 5.18(b). Now,

P(X > x,)= P(Z >2 ;25)=1—¢(“—°§§)=0.05
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—0333  0.667 z
“u=0
®

Figure 5.17 Transformation o standard normal for cafeteria problem.

u=0 Zgs .z
®)

Figure 5.18 Fiﬁding x, for leadtime—demand problem.
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or, equivalently,

d)(#) =095

From Table A.3, it can be seenthat (1.645) = 0.95. Thus, X, can be found by solving

X, —25

=1.645

or
0= 29.935

Therefore, in only 5% of the cases will demand durmg lead time exoeed avmlable mventory if an order to
purchase is made whenthe stock level reaches 30. :
6. Weibull distribution. The random vanablc X has a Weibull dlstnbuuon ifits pdf has the form

‘ o PR s ‘ T
E(ﬂ) exp _(X;V) , X2V
f(x)={a\ «a \a /] g (5.46)
0, otherwise

The three parameters of the Weibull distribution are v (—ee < v < e0), which is the location parameter;
a(a> 0), which is the scale parameter; and (8 > 0), which is the shape parameter. When v= 0, the Weibull

pdf becomes
(=) _(i ’
fx)= a(a) P e) [ 20 . (5.47)

0, ) otherwise

Figure 5.19 shows several Weibull densmes whenv= 0 anda =1 When B= l the Weibull distribution is
reduced to

1 ve
—e ¥, x20
f@)=1e S
0 otherwise

which is an exponential distribution with parameter 4 = 1/a..
The mean and variance of the Weibull distribution are given by the following expressions:

EXN)= v+a{‘(-;§+1) 7 ) | (5.48)

G f]] e
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Figure 5.19 Weibull pdfs for v=0;a=%; B =-;—,1, 2,4.

where T'()) is defined by Equation (5.31). Thus, the location parameter, v, has no effect on the variance;
however, the mean is increased or decreased by v. The cdf of the Weibull diskibution is given by

0, x<v

8 ,
Fx) l—exp[-(%‘i) ], x2v (550

Example 5.25
The time to failure for a component screen is nown to have a Weibull distribution with v=0, 8= 1/3,and
@ =200 hours. The mean time to failure is given by Equation (5.48) as

E(X) =200T(3 + 1) = 200(3!) = 1200 hours

The probability that a unit fails before 2000 hours is computed from Equation (5.50) as
) A2000‘ u3
F(2000) =1-exp| —| =~
om0 - 1-ex| - 20)
=1-¢* =1 ¢ = 0,884

Example 5.26
The time it takes for an aircraft to land and clear the runway at a major international airport has a Weibull
distribution with v = 1.34 minutes, § = 0.5, and @ = 0.04 minute. Find the probability that an incoming
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airplane will take more than 1.5 minutes to land aﬁd clear the runway. In this case P (X > 1.5) is computed
as follows: :

P(X <1.5)=F(L5)

[ (1.5~1.34)°"]
=1-exp| - YT

=1-¢? =1-0.135=0.865

Therefore, the probability that an aircraft will require more than 1.5 minutes to land and clear the runway
is 0.135.
7. Triangular distribution. A random variable X has a wiangular distribution if its pdfis given by -

M‘ as<x< b
b-adc-a).
f(x).—: 2_((_‘—x) , b<‘.x$€ (5.51)
(c—b)c-a)
0, elsewhere

where a < b < c. The mode occurs at x =b. A triangular pdfis shown in Figure 5.20. The parameters (g, b, c)
can be related to other measures, such as the mean and the mode, as follows:

E(X)= “—fgﬁ (5.52)

FromEquation (5.52) the mode can be determined as

Mode = b =3EX) ~ (a+c) v (5.53)
Becausea <b < c,

2a a+2

*C R <

3

fxy

Height = 2/(c — a}

a b - [ x

Figure 5.20 pdf of the friangular distribution.
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The mode is used more often than the mean to characterize the triangular distribution. As is shown in
Figure 5.20, its height is 2/(c — a) above the x axis. The variance, V(X), of the triangular distribution is left
as an exercise for the student. The cdf for the triangular distribution is given by

0, x<a
Q—_a)z a<x<bh
F(x)= (b‘“Zic_‘x‘;z (554)
—(c_—b)—(—c—_a), <x<c
1, x>c

Example 5.27
The central processing unit requirements, for programs that will execute, have a triangular distribution with
a = 0.05 millisecond, b = 1.1 milliseconds, and ¢ = 6.5 milliseconds.. Find the probability that the CPU
requirement for a random program is 2.5 milliseconds or less. The value of F(2.5) is from the portion of the

cdf in the interval (0.05, 1.1) plus that portion in the interval (1.1, 2.5). By using Equation (5. 54) both

portions can be addressed at one time, to yield

(6.5-2.5)

F5)=1-—-"———=
(6:5-0.05)(6.5-1.1)

541

. Thus, the probability is 0.541 that the CPU requirement'is 2.5 milliseconds or less.

Example 5.28
An electronic sensor evaluates the quality of memory chips, rejecting those that fail. Upon demand, the sen-
sor will give the minimum and maximum number of rejects during each hour of production over the past
24 hours. The mean is also given. Without further information, the quality control department has assumed
that the number of rejected chips can be approximated by a triangular distribution. The current dump of data
indicates that the minimum number of rejected chips during any hour was zero, the maximum was 10, and
the mean was 4. Given that a =0, ¢ = 10, and E(X) = 4, the value of b can be found from Equation (5.53):

b= 3(4) 0+10)=2

Theheight of themode is 2/(10 — 0) = 0.2. Thus, Figure 5.21 can be drawn.

The median is the point at which 0.5 of the area is to the left and 0.5 is to the right. The median in this
example is 3.7, also shown on Figure 5.21. Finding the median of the triangular distribution requires an
initial location of the value to the left or to the right of the mode. The area to the left of the mode is computed
from Equation (5.54) as

2

2
F(Q)==—=0.2
@=3=02
Thus, the median is between b and c. Setting F(x) = 0.5 in Equation (5.54) and solving for x = median yields

_(0- x)?
(10)(8)

with
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Figure 5.21 Mode, median, and mean for triangular distribution. .

This example clearly shows that the mean, mode, and median are not necessarily equal.
8. Lognormal distribution. A random variable X has a lognormal distribution if its pdf is given by

1 - 2
exp| - (lnx 2“ ) , x>0
f(x)={J2zox 20 (5.55)
0, otherwise
“where a? > 0 The mean and variance of a lognormal random variable are
E(X)=e"'"? (5.56)
V(X)= 477 (&= 1) (5.57)

Three lognormal pdf’s, all having mean 1, but variances 1/2, 1, and 2, are shown in Figure 5.22.

fx)

0.5

AR A ur R Y T . RN T Ty T s e
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Notice that the parameters ¢ and 62 are not the mean and variance of the lognormal. These parameters
come from the fact that when Y has a N(u, 0?) distribution then X = e* has a lognormal distribution with
parameters 4 and 62, If the mean and variance of the lognormal are known to be y, and 62, respectively,
then the parameters i and o2 are given by

#2
— L
p=In —— . (5.58)

' 2, 2
o= m(”—ﬂi] : (5.59)

Example 5.29

- The rate of return on a volatile investment is modeled as having a lognormal distribution with mean 20% and

standard deviation 5%. Compute the parameters for the lognormal distribution. From the information given,
we have i1, = 20and 0/ = 52. Thus, fromEquations (5.58) and (5.59),

2
Fm(_zo_)ﬂ.%ﬂ

2 2
o = ln(zo +3 ]ﬁo.ocs

02
9. Beta distribution. A random variable X is beta-distributed with parameters 8, > 0 and f, > 0if i its pdf
is given by
Hr1-xf
f={ B@B.B)

0, otherwise

, O<x<l
(5.60)

f)

Figure 5.23 The pdf's for several beta distributions:

T
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where B(B,, B,) = ['(B)I(B,)T(B, + B,). The cdf of the beta does not have a closed form in general.

The beta distribution is very flexible and has a finite range from 0 to 1, as shown in Figure 5.23. In prac-
tice, we often need a beta distribution defined on a different range, say (a, b), with a <b, rather than (0, 1).
This is easily accomplished by deﬁlih}g.a new random variable

Y=a+(b-a)X
The mean and variance of Y are given by
. ; )
+(b-a) ‘
e (ﬂ.+ﬂ2 (5.61)
and
0= ((ﬂx +ﬂ2)2 B, +B,+1 (5.62)

5.5 POISSON PROCESS

Consider random events such as the arrival of jobs at a job shop, the arrival of e-mail to a mail server, the
arrival of boats to a dock, the arrival of calls to a call center, the breakdown of machines in a large factory,

and so on. These events may be described by a counting function N(f) defined for all ¢ 2 0. This counting

function will represent the number of events that occurred in [0, ¢]. Time zero is the point at which the obser-
vation began, regardless of whether an arrival occurred at that instant. For each interval {0, ], the value N(7)
is an observation of a random variable where the only possible values that can be assumed by N(r) are the
integers 0, 1, 2,....

The counting process, {N(z), ¢ 2 0}, is said to be a Poisson process with mean rate 4 if the following
assumptions are fulfilled:

1. Agivals occur one at a time.

2. {M(), t 20} has stationary increments: The distribution of the number of arrivals between ¢ and ¢ + s
depends only on the length of the interval s, not on the starting point ¢. Thus, arrivals are completely
at random without rush or slack periods. .

3.. {N(#), 1> 0} has independent increments: The number of arrivals during nonoverlapping time inter-
vals are independent random variables. Thus, a large or small number of arrivals in one time interval
has no effect on the number of arrivals in subsequent time intervals. Future arrivals occur completely
at random, independent of the number of arrivals in past time intervals. ¢

If arrivals occur according to a Poisson process, meeting the three precedmg assumptions, it can be
shown that the probability that N(¢) is equal to # is given by

P[N(r)=n]

 -At
=_e_ﬂ fort20and n=0,1,2,... (5.63)
n!

Comparmg Equation (5.63) to Equation (5.19), it can be seen that N(f) has the Poisson dlstnbutlon with
* parameter @ = As. Thus, its mean and variance are given by

_EIN@)] = a= At= VIN@®)
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* Example 5.30

1 1 | {
]
0 t A At 4,

s

Figure 5.24 Arrival process.

| A |

For any times s and ¢ such that 5 < , the assumption of stationary increments impliés that the random
variable N(r) — N(s), representing the number of arrivals in the interval from s to ¢, is also Poisson-distributed
with mean A(z — s). Thus,

XA -s)I
!

P[N(t)—N(S)=n]= forn=0,1,2,...

and
E[N@) - Ns)1 = A - 5) = VING) = N(s)]

Now, consider the time at which arrivals occur in a Poisson process. L_et the first arrival occur at time
A,, the second occur at time A, + A,, and so on, as shown in Figure 5.24. Thus, A,, 4,,... are successive
interarrival times. The first arrival occurs after time ¢ if and only if there are no arrivals in the interval (0, 7],
so it is seen that : ) : : :

{4, >1)={N()=0)
and, therefore,
PA >0)=P[N@®)=0]=¢™

the last equality following from Equafion (5.63). Thus, the probability that the first arrival will occur in [0, £]
is given by

P(A <t)=1-€e™

which is the cdf for an exponential distribution with parameter A. Hence, A, is distributed exponentially with
mean E(A)=1/A. It can also be shown that all interarrival times, A,, A,, ..., are exponentially distributed
and independent with mean 1/A. As an alternative definition of a Poisson process, it can be shown that, if
interarrival times are distributed exponentially and independently, then the number of arrivals by time ¢, say
N(), meets the three previously mentioned assumptions and, therefore, is a Poisson process.

Recall that the exponential distribution is memoryless—that is, the probability of a future arrival in a
time interval of length s is independent of the time of the last arrival. The probability of the arrival depends
only on the length of the time interval, s. Thus, the memoryless property is related to the properties of inde-
pendent and stationary increments of the Poisson process. : ’ )

Additional readings concerning the Poisson process may be obtained from many sources, including
Parzen [1999], Feller [1968], and Ross [2002]. '

The jobs at a machine shop arrive according to a Poisson process with a mean of A = 2 jobs per hour.
Therefore, the interarrival times are distributed exponentially, with the expected time between arrivals being

E(A)=1/A=1 hour.
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5.5.1 Properties of a Poisson Process

S.everal'properlies of the Poisson process, discussed by Ross {2002] and others, are useful in discrete-system
simulation. The first of these properties concerns random splitting. Consider a Poisson process {N(z), 120}
having rate 4, as represented by the left side of Figure 5.25.

Suppose that, each time an event occurs, it is classified as either a type I or a type II event. Suppose
further thateach event is classified as a type I event with probability p and type II event with probability 1-p,
independently of all other events.

Le.t N 1_(’) and N,(f) be random variables that denote, respectively, the number of type I and type II events
occurring in [0, ¢]. Note that N(¢) = N((1) + Ny(r). It can be shown that N(t) and N(¢) are both Poisson
processes having rates Ap and A(1 - p), as shown in Figure 5.25. Furthermore, it can be shown that the two
processes are independent.

Example 5.31: (Random Splitting)
Suppose that jobs arrive at a shop in accordance with a Poisson process hax)ing rate A. Suppose further that
each arrival is marked “high priority” with probability 1/3 and “low priority” with probability 2/3. Then
a pre I event would correspond to a high-priority arrival and a type II event would correspond to a low-
priority arrival. If N(r) and N(1) are as just defined, both variables follow the Poisson process, with rates
A3 and 2A/3, respectively. '

Example 5.32

The.z ratf: in'Example 5.31 is A= 3 per hour. The probability that no high-priority jobs will arrive in a 2-hour
period is. given by the Poisson distribution with parameter = Apt =2. Thus, :

e?2°
0!

P(0)= =0.135

Now, consider the opposite situation from random splitting, namely the pooling of two arrival streams.
The process of interestis illustrated in Figure 5.26. It can be shown that, if N(f) are random variables repre-
senting independent Poisson processes with rates A, for i = 1 and 2, then N(z) = N (¢) + N,(t) is a Poisson
process withrate 4, + 4,.

Example5.33: (Pooled Process)

A.Poisson arriva.l stream with A, = 10 arrivals per hour is combined (or pooled) with a Poisson arrival stream
with 4, = 17 arrivals per hour. The combined process is a Poisson process with A = 27 arrivals per hour.

Figure 5.25 Random splitting.

3
At A,
—_—

M

Figure 5.26- Pooled process.
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5.5.2 Nonstationary Poisson Process

If we keep the Poisson Assumptions 1 and 3, but drop Assumption 2 (stationary increments) then we have
a nonstationary Poisson process (NSPP), which iz characterized by A(?), the arrival rate at time r. The NSPP
is useful for situations in which the arrival rate varies during the period of interest, including meal times for
restaurants, phone calls during business hours, and orders for pizza delivery around 6 p.M.

The key to working with a NSPP is the expected number of arrivals by time 7, denoted by

AW = [, As)ds

To be useful as an arrival-rate function, A(f) must be nonnegative and integrable. For a stationary Poisson
process with rate A we have A (1) = Az, as expected.

LetT,,T,, ... be the arrival times of stationary Poisson process N(r) withA =1, andlet 7, 7,, ... be the
arrival times for a NSPP N/(¢) with arrival rate A(r). The fundamental relationship for working with NSPPs
is the following:

In words, an NSPP can be transformed into a stationary Poisson process with arrival rate 1, and a stationary
Poisson process with arrival rate 1 can be transformed into an NSPP with rate A(f), and the transformation
in both cases is related to A(s).

Example 5.34
Suppose that arrivals to a Post Office occur at a rate of 2 per minute from 8 A.M. until 12 pM., thendropto
1 every 2 minutes until the day ends at 4 M. What is the probability distribution of the number of arrivals
between 11 AM. and 2 p.M?

Let time ¢ = 0 correspond to 8 AM. Then this situation could be modeled as a NSPP A/(;) with rate
function

»
o
N
-
A
BN

Ar)=

N | —
ES
IN
-
IN
=

The expected number of arrivals by time ¢ is therefore

2, 0<t<4

A=
@ é+6, 4<r<8

Notice that computing the expected number of arrivals for 4 <t < 8 requires that the integration be done in
- two parts: « .

AQ)= [ Ads = [[2ds+ [ 3ds=2 46

Since 2 p.m. and 11 Am. correspond to times 6 and 3, respectively, we have
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PIN(6)-N (3)=k]= PIN(AG))- N(AB))=Kk]
= P[N(9)-N(6)=k}
N 894(9_6)k
Y
_ e3(3)k
Y

where N(z) is a staiionary Poisson process with arrival rate 1.

5.6 EMPIRICAL DISTRIBUTIONS

An empirical distribution, which may be either discrete or continuous in form, is a distribution whose param-
eters are the observed values in a sample of data. This is in contrast to parametric distribution families (such
as the exponential, normal, or Poisson), which are characterized by specifying a small number of parameters
such as the mean and variance. An empirical distribution may be used when it is impossible or unnecessary
to establish that a random variable has any particular parametric distribution. One advantage of an empirical
distribution is that nothing is assumed beyond the observed values in the sample; however, this is also a dis-
advantage because the sample might not cover the entire range of possible values.

Example 5.35: (Discrete)
Customers at a local restaurant arrive at lunchtime in groups of from one to eight persons. The number of
persons per party in the last 300 groups has been observed; the results are summarized in Table 5.3. The rel-
ative frequencies appear in Table 5.3 and again in Figure 5.27, which provides a histogram of the data that
were gathered. Figure 5.28 provides a cdf of the data. The cdf in Figure 5.28 is called the empirical distri-
bution of the given data.

Example 5.36: (Continuous)
The time required to repair a conveyor system that has suffered a failure has been collected for the last 100
instances; the results are shown in Table 5.4. There were 21 instances in which the repair took between 0 and
0.5 hour, and so on. The empirical cdf is shown in Figure 5.29. A piecewise linear curve is formed by the
connection of the points of the form [x, F(x)}. The points are connected by a straight line. The first connected
pairis (0, 0) and (0.5, 0.21); then the points (0.5, 0.21) and (1.0, 0.33) are connected; and so on. More detail
on this methiod is provided in Chapter 8. #

Table 5.3 Arrivals per Parly Distribution

Arr;'val.i‘ per Relative-. Cumulative Relative
Party Frequency Frequency Frequency
i 30 0.10 0.10
2 110 - 0.37 047
3 45 0.15 0.62
4 71 0.24 0.86
5 12 - 0.04 0.90
6 13 0.04 094
7 7 0.02 0.96
8 i2 0.04 1.00
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Figure 5.27 Histogram of party size.
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Figure 5.28 Empirical cdf of parly size.
Table 5.4 Repair Times for Conveyor
Relative Cumulative :
Interval (Hours) Frequency Frequency Frequency
0<x<0S5 21 0.21 0.21
© 05<x<1.0 12 0.12 0.33
1.0<x<1.5 29 0.29 0.62
1.5<x<2.0 19 -0.19 0.81
20<x<25 8 0.08 0.89
25<x<3.0 11 0.11 1.00
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Figure 5.29 Empirical cdf for repair fimes.

5.7 SUMMARY

In many instances, the world the simulation analyst sees is probabilistic rather than deterministic. The pur-
poses of this chapter were to review several important probability distributions, to familiarize the reader with
the notation used in the remainder of the text, and to show applications of the probability distributions in a
simulation context.

A major task in simulation is the collection and analysis of input data. One of the first steps in this task
is hypothesizing a distributional form for the input data. This is accomplished by corparing the shape of the
probability density function or mass function to a histogram of the data and by an understanding that certain
physical processes give rise to specific distributions. (Computer software is available to assist in this effort,

“as will be discussed in Chapter 9.) This chapter was intended to reinforce the properties of various distribu-

tions and to give insight into how these distributions arise in practice. In addition, probabilistic models of
input data are used in generating random events in a simulation.

Several features that should have made a strong impression on the reader include the differences
between discrete, continuous, and empirical distributions; the Poisson process and its properues, and the
versatility of the gamma and the Weibull distributions.
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EXERCISES
1. Of the orders a job shop receives, 25% are welding jobs and 75% are machining jobs. What is the
probability that

(a) half of the next five jobs will be machining jobs?
(b) the next four jobs will be welding jobs?

2. Three different items are moving together in a conveyor. These items are inspected visually and defec-
tive items are removed. The previous production data are given as

Item A Item B Item C

Accepted 25 280 190
Rejected 975 720 810

What is the probability that

(a) one item is removed at a time?
(b) two items are removed at a time?
(c) threeitems are removed simultaneously?

- 3. A recent survey indicated that 82% of single women aged 25 years old will be married in their lifetime.

Using the binomial distribution, find the probability that two or three women in a sample of twenty will
never be married.

4. The Hawks are currently winning 0.55 of their games. There are 5 games in the next two weeks What
" is the probability that they will wm more games than they lose?

5. Joe Coledge is the third-string quanerback for the University of Lower Alatoona. The probability that
Joe gets into any game is 0.40.

(a) What is the probability that the first game Joe enters is the fourth game of the season?
(b) What is the probability that Joe plays in no more than two of the first five games?

6. For the random variables X, and X,, which are exponentially distributed with parameter 4 = 1, compute
P(X +X,>2).

7. Show that the geometric dlstnbunon is memoryless.
8. Hurricane hitting the eastermn coast of India follows Poisson with a mean of 0.5 per year. Determine

(a) the probability of more than three hurricanes hitting the Indian eastern coast in a year.
(b) the probability of not hitting the Indian eastern coast in a year.
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9. Students’ arrival at a university library follows Poisson with a mean of 20 per hour. Determine

(a) the probability that there are 50 arrivals in the next 1 hour.
(b) the probability that no student arrives in the next 1 hour.
(c) the probability that there are 75 arrivals in the next 2 hours.

10. Records indicate that 1.8% of the entering students at a large state university drop out of school by
midterm. What is the probability that three or fewer students will drop out of a random group of 200
entering students?

11. Lane Braintwain is quite a popular student. Lane receives, on the average, four phone calls a night
(Poisson distributed). What is the probability that, tomorrow night, the number of calls received will
exceed the average by more than one standard deviation? :

12. A car service station receives cars at the rate of 5 every hour in accordance with Poisson. What is the
probability that a car will arrive 2 hours after its predecessor?

13. A random variable X that has pmf given by p(x) = I/(n+1) over therange R, = {0, 1, 2,..., n} is said to
have a discrete uniform distribution.

(a) Find the mean and variance of this distribution. Hinz:

l}:;ﬁ n(n2+l) and g’a _ n(n+l)6(2n+ 3]

(b) IfR, ={a,a+ 1, a+2,.., b}, compute the mean and variance of X.

14. The lifetime, in years, of a satellite placed in orbit is given by the following pdf:

04¢**, x20

xX)=
f@ {0, otherwise

(a) What is the probability that this satellite is still “alive” after 5 years?

(b) Whatis the probability that the satellite dies between 3 and 6 years from the time it is placed in orbit?

15. The cars arriving at a gas station is Poisson distributed with a mean of 10 per minute. Determine the
number of pumps to be installed if the firm wants to have 50% of arriving cars as zero entries (i.e., cars
serviced without waiting). :

16. (The Poisson distribution can be used to approximate the binomial distribution when # is large and p is
small—say, p less than 0.1. In utilizing the Poisson approximation, let A= np.) In the production of ball
bearings, bubbles or depressions occur, rendering the ball bearing unfit for sale. It has been noted that, on
the average, one in every 800 of the ball bearings has one or more of these defects. What is the proba-
bility that a random sample of 4000 will yield fewer than three ball bearings with bubbles or depressions?

17. For an exponentially distributed random variable X, find the value of A that satisfies the following
" relationship:

P(X<3)=09P(X<4)

18. Thetimebetween calls to a fire service station in Chennai follows exponential with a mean of 20 hours.
What is the probability that there will be no calls during the next 24 hours?
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19. The time to failure of a chip follows exponential with a mean of 5000 hours.

(a) The chip is in operation for the past 1000 hours. What is the probability that the chip will ‘be in
operation for another 6000 hours?
(b) After 7000 hours of operation, what is the probability that the chip will not fail for another 2000 hours?

20. The headlight bulb of a car owned by a professor has an exponential time to failure with a mean of 100
weeks. The professor has fitted a new bulb 50 weeks ago. What is the probability that the bulb will not
fuse within the next 60 weeks? )

21. The service time at the college cafeteria follows exponential with a mean of 2 minutes.

(a) What is the probability that two customers in front of an arriving customer will each take less than
90 seconds to complete their transactions? .

(b) What is the probability that two customers in front will finish their transactions so that an arriving
customer can reach the service window within 4 minutes?

22. Determine the variance, V(X), of the triangular distribution.

23. The daily demand for rice at a departmental store in thousands of kilogram is found to follow gamma
distribution with shape parameter 3 and scale parameter %2. Determine the probability of demand
exceeding 5000 kg on a given day. ’

24. When Admiral Byrd went to the North Pole, he wore battery-powered thermal underwear. The batter-
ies failed instantaneously rather than gradually. The batteries had a life that was exponentially distrib-
uted, with a mean of 12 days. The trip took 30 days. Admiral Byrd packed three batteries. What is the
probability that three batteries would be a number sufficient to keep the Admiral warm?

25. Inan organization’s service-complaints mail box, interarrival time of mails are exponentially distributed
with a mean of 10 minutes. What is the probability that five mails will arrive in 20 minutes duration?

26. The rail shuttle cars at Atlanta airport have a dual electrical braking system. A rail car switches to the
standby system automatically if the first system fails. If both systems fail, there will be a crash! Assume
that the life of a single electrical braking system is exponentially distributed, with a mean of 4,000 oper-
ating hours. If the systems are inspected every 5,000 operating hours, what is the probability that a rail
car will not crash before that time?

27. Suppbée that cars arriving at a toll booth follow a Poisson process with a mean interarrival time of
15 seconds. What is the probability that up to one minute will elapse until three cars have arrived?

28. Suppose that an average of 30 customers per hour arrive at the Sticky Donut Shop in accordance with a
Poisson process. What is the probability that more than 5 minutes will elapse before both of the next
two customers walk through the door?

29. Professor Dipsy Doodle gives six problems on each exam. Each problem requires an average of
30 minutes grading time for the entire class of 15 students. The grading time for each problem is expo-
nentially distributed, and the problems are independent of each other.

(a) What is the probability that the Professor will finish the grading in 2% hours or less?
(b) What is the most likely grading time?
(c) What is the expected grading time?
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30. An aircraft has dual hydraulic systems. The aircraft switches to the standby system automatically if the
first system fails. If both systems have failed, the plane will crash. Assume that the life of a hydraulic
system is exponentially distributed, with a mean of 2000 air hours.

(a) If the hydraulic systems are inspected every 2500 hours, what is the probability that an aircraft will

crash before that time?
(b) Whatdanger would there be in moving the inspection point to 3000 hours?

31. Show that the beta distribution becomes the uniform distribution over the unit interval when B,=B=1.

32. Lead time of a product in weeks is gamma-distributed with shape parameter 2 and scale parameter 1.
What is the probability that the lead time exceeds 3 weeks?

33. Lifetime of an inexpensive video card for a PC, in months, denoted by the random variable X, is gamma-
distributed with $=4 and 6 =1/16. What is the probability that the card will last for at least 2 years?

34, In a statewide competitive examination for engineering admission, the register number allotted to the
candidates is of the form CCNNNN, where C is a character like A, B, and C, etc., and N is a number
from 0 to 9. Assume that you are scanning through the rank list (based on marks secured in the competitive
examination), what is the probability that

(a) the next five entries in the list will have numbers 7000 or higher?
(b) the next three entries will have numbers greater than 3000?

* 35. Let X be a random variable that is normally distributed, with mean 10 and variance 4. Find the values a-

and b such that P(a < X < b) = 0.90 and |u~a| = |¢-4|.
36. Given the following distributions,

Normal (10, 4)

Triangular (4, 10, 16)

Uniform (4, 16) )

find the probability that 6 < X < 8 for each of the distributions.

37. Demand for an item follows normal distribution with a mean of 50 units and a standard deviation of
7 units. Determine the probabilities of demand exceeding 45, 55, and 65 units.
38. The annual rainfall in Chennai is normally distributed with mean 129 cm and standard deviation 32cm.

(a) Whatis the probability of getting excess rain (i.e., 140 cm and above) in a given year?
(b) What is the probability of deficient rain (i.e., 80 cm and below) in a given year?

39. Three shafts are made and assembled into a linkage. The length of each shaft, in centimeters, is

distributed as follows:

Shaft 1: N(60, 0.09)
Shaft 2: N(40, 0.05)
Shaft 3: N(50, 0.11)

(a) What is the distribution of the length of the linkage?
(b) What is the probability that the linkage will be longer than 150.2 centimeters?

MRy AMOCR Y N T
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41.

42.

43.

45.

(¢) The tolerance limits for the assembly are (149.83, 150.21). What proportion of assemblies are
within the tolerance limits? (Hint: If {X;] are n independent normalrandom variables, and if X,, has
mean /1; and variance 6, then the sum

Y=X +X,++X,

is normal with mean Y, jt, and variance ¥, 07.)
homd 21 Il‘ il i

. The circumferences of battery posts ina nickel--cadmium battery are Weibull-distributed with v = 3.25

centimeters, f§ = 1/3, and @ =0.005 centimeters.

(a) Find the probability that a battery post chosen at random will have a circumference larger than 3.40
centimeters.

(b) If battesy posts are larger than 3.50 centimeters, they will not go through the hole provided; if they
are smaller than 3.30 centimeters, the clamp will not tighten sufficiently. What proportion of posts
will have to be scrapped for one of these reasons?

The time to failure of a nickel- cadmium battery is Weibull distributed with parameters v=0, f= 1/4,

and o = 172 years.

(a) Find the fraction of batteries that are expected to fail prior to 1.5 years.
(b) What fraction of batteries are expected to last longer than the mean life?
(c) What fraction of batteries are expected to fail between 1.5 and 2.5 years?

The time required to assemble a component follows triangular distribution with a = 10 seconds and ¢ =
25 seconds. The median is 15 seconds. Compute the modal value of assembly time.

The time to failure (in months) of a computer follows Weibull distribution with location parameter = 0,
scale parameter = 2, and shape parameter = 0.35.

(a) Whatis the mean time to failure?
(b) What is the probability that the computer will fail by 3 months?

The consumption of raw material for a fabrication firm follows triangular distribution with minimum of
200 units, maximum of 275 units, and mean of 220 units. What is the median value of raw material
consumption?

A postal letter carrier has a route consisting of five segments with the time in minutes to complete each
segment being normally distributed, with means and variances as shown:

Tennyson Place N(38, 16)
Windsor Parkway N(99, 29)
Knob Hill Apparaments N(85, 25)
Evergreen Drive N(73, 20)
Chastain Shopping Center N(52,12)

In addition to the times just mentioned, the letter carrier must organize the mail at the central office,
which activity requires a time that is distributed by N(90, 25). The drive to the starting point of the route
requires a time that is distributed N(10, 4). The return from the route requires a time that is distributed
N(15, 4). The letter carrier then performs administrative tasks with a time that is distributed N(30, 9).

(a) Whatis the expected length of the letter carrier’s work day?
(b) Overtime occurs after eight hours of work on a given day. What is the probablhty that the letter
carrier works overtime on any given day?
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47.

48.

49.

(c) Whatis the probability that theletter carrier works overtime on two or more days in a six-day week?
(d) What is the probability that the route will be completed within +24 minutes of eight hours on any
given day? (Hinz: See Exercise 39.)

. The light used in the operation theater of a hospital has two bulbs. One bulb is sufficient to get the

necessary lighting. The bulbs are connected in such a way that when one fails, automatically the other
gets switched on. The life of each bulb is exponentially distributed with a mean of 5000 hours and the
lives of the bulbs are independent of one. another. What is the probability that the combined life of the
light is greater than 7000 hours? ’

High temperature in Biloxi, Mississippi on July 21, denoted by the random variable X, has the follow-
ing probability density function, where X is in degrees.F.

2689 g5 <o
119
fx)=\2002=5) o) <10
170
0, - otherwise

(a) Whatis the variance of the temperature, V(X)? (If you worked Exercise 22, this is quite easy.)
(b) What is the median temperature? :
(c) What is the modal temperature?

The time to failure of Eastinghome llght bulbs is Weibull distributed with v= 1.8 x 10° hours, = 1/2,
and &= 1/3 x 10° hours.

(a) What fraction of bulbs are expected to last longer than the mean lifetime?
(b) What is the median lifetime of a light bulb?

Let time ¢ = 0 correspond to 6 A.M., and suppose that the arrival rate (in arrivals per hour) of customers
to a breakfast restaurant that is open from 6 to 9 A.M. is

30, 0<e<i
A()=445, 1<1<2
20, 2<t<4

‘Assuming a NSPP model is appropriate, do the following (a) Derive A(r). (b) Compute the oxpected
number of arrivals between 6:30 and 8:30 A.M. (c) Compute the probablhty that there are fewer than 60
arrivals between 6:30 and 8:30 AM.
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Queueing Models

Simulation is often used in the analysis of queueing models. In a simple but typical queueing model, shown
in Figure 6.1, customers arrive from time to time and join a guexe (waiting line), are eventually served, and
finally leave the system. The term “customer” refers to any type of entity that can be viewed as requesting
“service” from a system. Therefore, many service facilities, production systems, repair and maintenance
facilities, communications and computer systems, and transport and material-handling systems can be
viewed as queueing systems.

Queueing models, whether solved mathematically or analyzed through simulation, provide the analyst
with a powerful tgol for designing and evaluating the performance of queueing systems. Typical measures
of system performance, include server utilization (percentage of time a server is busy), length of waiting
lines, and delays of customers. Quite often, when designing or attempting to improve a queueing system, the
analyst (or decision maker) is involved in tradeoffs between server utilization and customer satisfaction in
terms of line lengths and delays. Queueing theory and simulation analysis are used to predict these measures
of system performance as a function of the input parameters. The input parameters include the arrival rate
of customers, the service demands of customers, the rate at which a server works, and the number and

Server
. . Waiting line of
Calling population customers

of potential customers

Figure 6.1 Simple queueing model.
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arrangement of servers. To a certain degree, some of the input parameters are under management’s direct
control. Consequently, the performance measures could be under their indirect control, provided that the
relationship between the performance measures and the input parameters is adequately understood for the
given system.

For relatively simple systems, these performance measures can be computed mathematically—at great
savings in time and expense as compared with the use of a simulation model—but, for realistic models of
complex systems, simulation is usually required. Nevertheless, analytically tractable models, although usually
requiring many simplifying assumptions, are valuable for rough-cut estimates of system performance. These
rough-cut estimates may then be refined by use of a detailed and more realistic simulation model. Simple
models are also useful for developing an understanding of the dynamic behavior of queueing systems;and
the relationships between various performance measures. This chapter will not develop the mathematical
theory of queues but instead will discuss some of the well-known models. For an elementary treatment of
queueing theory, the reader is referred to the survey chapters in Hillierand Lieberman [2005], Wagner [1975]
or Winston [1997]. More extensive treatments with a view toward applications are given by Cooper [1990],
Gross and Harris [1997], Hall [1991} and Nelson [1995]. Thelattertwotexts especially emphasize engineering
and management applications. ‘

This chapter discusses the general characteristics of queues, the meanings and relationships of the
important performance measures, estimation of the mean measures of performance from a simulation, the
effect of varying the input parameters, and the mathematical solution of a small number of important and
basic queueing models.

6.1 CHARACTERISTICS OF QUEUEING SYSTEMS

The key elements of a queueing system are the customers and servers. The term “customer” can refer to people,
machines, trucks, mechanics, patients, pallets, airplanes, e-mail, cases, orders, or dirty clothes—anything
that arrives at a facility and requires service. The term “server” might refer to receptionists, repairpersons,

- mechanics, tool-crib clerks, medical personnel, automatic storage and retrieval machines (e.g., cranes),

runways at an airport, automatic packers, order pickers, CPUs in a computer, or washing machines—any
resource (person, machine, etc.) that provides the requested service. Although the terminology employed
will be that of a customer arriving to a service facility, sometimes the server moves to the customer; for
example, a-repairperson moving to a broken machine. This in no way invalidates the models but is merely a
matter of terminology. Table 6.1 lists a number of different systems together with a subsystem consisting of
“arriving customers” and one or more “servers.” The remainder of this section describes the elements of a
queueing system in more detail. :

6.1.1 The Calling Population

The population of potential customers, referred to as the calling population, may be assumed to be finite or
infinite. For example, consider a bank of five machines that are curing tires. After an interval of time,
a machine automatically opens and must be attended by a worker who removes the tire and puts an uncured
tire into the machine. The machines are the “customers,” who “arrive” at the instant they automatically open.
The worker is the “server,” who “serves” an open machine as soon as possible. The calling population is
finite and consists of the five machines.

In systems with a large population of potential customers, the calling population is usually assumed to
be infimite. For such systems, this assumption is usually innocuous and, furthermore, it might simplify the
model. Examples of infinite populations include the potential customers of a restaurant, bank, or other similar
service facility and also very large groups of machines serviced by a technician. Even though the actual
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Table 6.1 Examples of Queueing Systems

System Customers Server(s)
Reception desk People Receptionist
Repair facility Machines Repairperson
Garage Trucks Mechanic

Tool crib Mechanics Tool-crib clerk
Hospital Patients Nurses
Warehouse Pallets Fork-lift Truck
Airport Airplanes Runway
Production line Cases Case-packer
Warehouse Orders Order-picker
Road network . Cars Traffic light
Grocery : Shoppers Checkout station
Laundry Dirty linen Washing machines/dryers
Job shop Jobs Machines/workers
Lumberyard Trucks Overhead crane
Sawmill Logs Saws

Computer Jobs CPU, disk, CDs
Telephone Calls Exchange

Ticket office Football fans Clerk

Mass transit Riders Buses, trains

population could be finite but large, it is generally safe to use infinite population models—provided that the
number of customers being served or waiting for service at any given time is a small proportion of the
population of potential customers.

The main difference between finite and infinite population models is how the arrival rate is defined.
In an infinite population model, the arrival rate (i.e., the average number of arrivals per unit of time) is not
affected by the number of customers who have left the calling population and joined the queueing system.
When the arrival process is homogeneous over time (e.g., there are no “rush hours”), the arrival rate is
usually assumed to be constant. On the other hand, for finite calling-population models, the arrival rate to
the queueing system does depend on the number of customers being served and waiting. To take an extreme
case, suppose that the calling population has one member, for example, a corporate jet. When the corporate jet
is being serviced by the team of mechanics who are on duty 24 hours perday, the arrival rate is zero, because
there are no other potential customers (jets) who can arrive at the service facility (team of mechanics). A more
typical example is that of the five tire-curing machines serviced by a single worker. When all five are closed
and curing a tire, the worker is idle and the arrival rate is at a maximum, but the instant a machine opens and
requires service, the arrival rate decreases. At those times when all five are open (so four machines are
waiting for service while the worker is attending the other one), the arrival rate is zero; that is, no arrival is pos-
sible until the worker finishes with a machine, in which case it returns to the calling population and becomes a
potential arrival. It may seem odd thatthe arrival rate is at its maximum when all five machines are closed. But
the arrival rate is defined as the expected number of arrivals in the next umit of time, so it becomes clear that
this expectation is largest when all machines could potentially open in the next unit of time.

6.1.2 System Capacity

In many queueing systems, there is'a limit to the number of customers that may be in the waiting line or
system. For example, an automatic car wash might have room for only 10 cars to wait in line to enter the
mechanism. It might be too dangerous (or illegal) for cars to wait in the street. An arriving customer who
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finds the system full does not enter but returns immediately to the calling population. Some systems, such
as concertticket sales for students, may be considered as having unlimited capacity, since there are no limits
on the number of students allowed to wait to purchase tickets. As will be seen later, when a system has
limited capacity, a distinction is made between the arrival rate (i.e., the number of arrivals per time unit) and
the effective arrival rate (i.e., the number who arrive and enter the system per time unit).

~ 6.1.3 The Armrival Process

The arrival process for infinite-population models is usually characterized in terms of interarrival times of
§uccessive customers. Arrivals may occur at scheduled times or at random times. When at random times, the
interarrival times are usually characterized by a probability distribution. In addition, customers may arrive
one at a time or in batches. The batch may be of constant size or of random size.

. The most important model for random arrivals is the Poisson arrival process. If A, représents the inter-
arrival time between customer n — | and customer n (4  is the actual arrival time of the first customer), then,
for a Poisson arrival process, A, is exponentially diswibuted with mean 1/A time units. The arrival rate is
/l.customers per time unit. The number of arrivals in a time interval of length 1, say N(t), has the Poisson dis-
wibution with mean Ar customers. For further discussion of the relationship between the Poisson distribution
and the exponiential distribution, the reader is referred to Section S.5. )

The Poisson arrival process has been employed successfully as a model of the arrival of people to restau-
rants, drive-in banks, and other service facilities; the arrival of telephone calls to a call center; the arrival of
demands, or orders for a service or product; andthe arrival of failed components or machines to a repair facility.

A second important class of arrivals is scheduled arrivals, such as patients to a physician’s office or
scheduled airline flight arrivals to an airport. In this case, the interarrival times {A,n=1,2,...} could be
either constant or constant plus or minus a smal random amount to represent early or late arrivals.

A third situation occurs when at least one customer is assumed to always be presentin the queue, so that
the server is never idle because of a lack of customers. For example, the “customers” may represent raw
material for a product, and sufficient raw material is assumed to be always available. ‘

For finite-population models, the arrival process is characterized in a completely different fashion.
Define a customer as pending when that customeris outside the queueing system and a member of the poten-
tial calling populasion. For example, a tire-curing machine is “pending” when it is closed and curing a tire, and
it‘ becomes “not pending” the instant it opens and demands service from the worker. Define a runtime of a
given customer as the length of time from departure from the queueing system until that customer’s next
arrival to the queue. Let 4,%, 4,19, __.. be the successive runtimes of customer i, and let S[@, S, ... be the
corresponding successive system times; that is, §'"is the total time spent in system by customer i during the
nth visit. Figure 6.2 illustrates these concepts for machine 3 in the tire-curing example. The total arrival
process is the superposition of the arrival times of all customers. Figure 6.2 shows the first and second arrival
of machine 3, but these two times are not necessarily two successive arrivals to the system. For instance,

f‘; . A](B) . % . s'{S) li A_zﬂ,i } S?iJ) j )
Machine3: - - Pending - Open Pending Open !
. {system &ime) {system time}

First ammival
ofmachine 3

Second araval
of machine 3

Figure 6.2 Arrival process for a finife-populbtion model.
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if it is assumed that all machines are pending at time 0, the first arrival to the system occurs at time

A=min{A", AP, AP, A®, A1), If A =A,?, then machine 2 is the first arrival (i.e., the first to open) after

time 0. As discussed earlier, the arrival rate is not constant but is a function of the number of pending
customers.

One important application of finite-population models is the machine-repair problem. The machines are
the customers, and a runtime is also called time to failure. When a machine fails, it “arrives” at the queueing
system (the repair facility) and remains there until it is “served” (repaired). Times to failure for a given class
of machine have been characterized by the exponential, the Weibull, and the gamma distributions. Models
with an exponential runtime are sometimes analytically tractable; an example is given in Section 6.5.
Successive times to failure are usually assumed to be statistically independent, but they could depend on
other factors, such as the age of a machine since its last major overhaul.

6.1.4 Queue Behavior and Queve Discipline

Queue behavior refers to the actions of customers while in a queue waiting for service to begin. In some
situations, there is a possibility that incoming customers will balk (leave when they see that the line is too
long), renege (leave after being in the line when they see that the line is moving tooslowly), or jockey (move
from one line to another if they think they have chosen a slow line).

Queue discipline refers to the logical ordering of customers in a queue and determines which customer
will be chosen for service when a server becomes free. Common queue disciplines include first-in—first-out
(FIFO); last-in—first-out (LIFO); service in random order (SIRC)); shortest processing time first (SPT); and
service according to priority (PR). In a job shop, queue disciplines are sometimes based on due dates and on
expected processing time for a given type of job. Notice that a FIFO queue discipline implies that services
begin in the same order as arrivals, but that customers could leave the system in a different order because of
different-length service times.

6.1.5 Service Times and the ServiceAMechcvmism

The service times of successive arrivals are denoted by S;, S,, S3,... They may be constant or of random
duration. In the latter case, (S;, S, S3,...) is usually characterized as a sequence of independent and
identically disscibuted random variables. The exponential, Weibull, gamma, lognormal and truncated normal
distributions have all been used successfully as models of service times in different situations. Sometimes
services are identically distributed for all customers of a given type or class or priority, whereas customers of
different- types might have completely different service-time distributions. In addition, in some systems,
service times depend upon the time of day or upon the length of the waiting line. For example, servers might
work faster than usual when the waiting line is long, thus effectively reducing the service times.

A queueing system consists of a number of service centers and interconnecting queues. Each service
center consists of some number of servers, ¢, working in parallel; that is, upon getting to the head of the line,
a customer takes the first available server. Parallel service mechanisms are either single server (¢ = 1),
multiple server (1 < ¢ < =), or unlimited servers (¢ = =). A self-service facility is usually characterized as
having an unlimited number of servers. -

Example 6.1
Consider a discount warehouse where customers may either serve themselves or wait for one of three clerks,
then finally leave after paying a single cashier. The system is represented by the flow diagram in Figure 6.3.
The subsystem, consisting of queue 2 and service center 2, is shown in more detail in Figure 6.4. Other
variations of service mechanisms incfude batch service (a server serving several customers simultaneously),

and a customer’s requiring several servers simultaneously. In the discount warehouse, a clerk might pick

several small orders at the same time, but it may take two of the clerks to handle one heavy item.

Example 6.2
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Service center 1
Queue 1 c=w
(self-service)
Service center 3
Armivals Queue 3 c¢=1 | Departures
pr——
(cashier}
-Service center 2

Queue 2 c=3
(3 clerks)

Figure 6.3 Discount warehouse with three service centers.

Service center 2
Server |
Artivals Departures
— Server 2 E——
Server 3

Figure 6.4 Service center 2, with'¢ = 3 parallel servers.

Machine 1 Machine 2 Machine'3
Queue | Queue 2 Queue 3
— ] > ‘ —
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wrapper : : wrapper

Figure 6.5 Candy-production line.

A candy manufacturer has a production line that consists of three machines separated by inventory-in-proces
buffers. The first machine makes and wraps the individual pieces of candy, the second packs 50 pieces in .

" box, a»nd the third machine seals and wraps the box. The two inventory buffers have capacities of 1000 boxe
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each. As illustrated by Figure 6.5, the system is modeled as having three service centers, each center having
¢ = | server (a machine), with queue capacity constraints between machines. It is assumed that a sufficient
supply of raw material is always available at the first queue. Because of the queue capacity constraints,
machine 1 shuts down whenever its inventory buffer (queue 2) fills to capacity, and machine 2 shuts down
whenever its buffer empties. In brief, the system consists of three single-server queues in series with queue
capacity constraints and a contisnuous arrival strearn at the first queue. i

6.2 QUEUEING NOTATION

Recognizing the diversity of queueing systems, Kendall [1953] proposed a notational system for parallel
server systems which has been widelyadopted. An abridged version-of this convention is based on the format
A/B/cINIK. These letters represent the following system characteristics:

A represents the interarrival-time distribution.
Brepresents the service-time distribution.

¢ represents the number of parallel servers.

N represents the system capacity.

K represents the Vsize of the calling population.

Common symbols for A and B include M (exponential or Markov), D (constant or deterministic), E; (Erlang
of order k), PH (phase-type), H (hyperexponential), G (arbitrary or general), and GI (general independent).

For example, M/M/1/eo/ indicates a single-server system that has unlimited queue capacity and an infi-
nite population of potential arrivals. The interarrival times and service times are exponentially distributed.
When N and K are infinite, they may be dropped from the notation. For example, M/M/1 /=/ is often short-
ened to M/M/1. The tire-curing system can be initially represented by G/G/1/5/5.

Additional notation used throughout the remainder of this chapter for parallel server systems is listed in
Table 6.2. The meanings may vary slightly from system to system. All systems will be assumed to have a
FIFO queue discipline.

Table 6.2 Queueing Notation for Parallel Server Systems

P, Steady-state probability of having n customers in system
P, () Probability of n customers in system at time #

Arrival rate
A,  Effective arrival rate
u Service rate of one server
p  Server utilization
A, Interarrival time between customers n —~ 1 and n
S,  Service time of the nth arriving customer
W, Total time spent in system by the nth arriving customer
W2  Total time spentin the waiting line by customer n
L{t) The number of customers in system at time ¢
Ly#) The number of customers in queue at time
L Long-run time-average number of customers in system
L, Long-run time-average number of customers in queue
w  Long-run averagetime spent in system per customer
wg . Long-run average tinie spent in queue per customer
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6.3 LONG-RUN MEASURES OF PERFORMANCE OF QUEUEING SYSTEMS

The primary long-run measures of performance of queueing systems are the long-run time-average number
of customers in the system (L) and in the queue (L), the long-run average time spent in system (w) and in
the queue (wp) per customer, and the server utilization, or proportion of time that a server is busy {p). The
term “system” usually refers to the waiting line plus the service mechanism, but, in genéral, can refer to any
subsystem of the queueing system; whereas the term “queue” refers to the waiting line alone. Other meas-
ures of performance of interest include the long-run proportion of customers who are delayed in queue
longer than ¢, time units, the long-run proportion of customers turned away because of capacity constraints,
and the long-run proportion of time the waiting line contains more than Ky customers. a

This section defines the major measures of performance for a general G/G/cIN/K queueing system,
discusses their relationships, and shows how they can be estimated from a simulation-run. There are two
types of estimators: an ordinary sample average, and a time-integrated (or time-weighted) sample average.

6.3.1 Time-Average Number in System L

Consider a queueing system over a period of time T, and let L(f) denote the number of customers in the system
at time ¢. A simulation of such a system is shown in Figure 6.6. '

Let T;denote the total time during {0, T] in which the systemcontained exactly i customers. In Figure 6.6,
it is seen that Ty = 3, Ty = 12, T, = 4, and T3 = 1. (The line segments whose lengths total T; = 12 are
labelled “T,” in Figure 6.6, etc.) In general, 2: o5: =T. The time-weighted-average number in a system is

defined by :
. le - (T
L=inr,. =2i(%] B (6.1)

For Figure 6.6, L= [0(3)+1(12) +2(4)+3(1)]/20 =23/20 = 1.15 customers. Notice that T;/Tis the proportion
of time the system contains exactly { customers. The estimator L isan example of a time-weighted average.

By considering Figure 6.6, it can be seen that the total area under the function L({f) can be decomposed
into rectangles of height i and length T, For example, the rectangle of area 3 x T has base running from

L |
T
3 —
11
[ |
[}
[
o
T ITQ
2" ]
]
| 1
] ]
] )
i ]
{ - .
T no r T, T,
1 [ — :
H 1 i 1
iy ) ! i
¢ 1 ] l
T i i 1
[ 1 1 1
T, . i
R I AN NN TR VU NI N T BV
0 2 4 6 8 10 12 14 16 18 T=20 r

" Figure 6.6 Number in system, L(¢), at time ¢.
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t =7 tor=8 (thus T = 1); however, most of the rectangles are broken into pasts, such as the rectangle of
area 2 x T, which has part of its base between t=5 and ¢ = 7 and the remainder from =8to =10 (thus T, =

2+2 = 4), It follows that the total area is given by 2 il = j L(t)dt, and, therefore, that

%i 1 j:L(:)dz ' 62)
Fr .

"]

The expressions in Equations (6.1) and (6.2) are always equal for any queueing system, regardless of the
tumber of servers, the queue discipline, or any other special circumstances. Equation (6.2) justifies the
terminology time-integrated average.

Many queueing systems exhibit a certain kind of long-run stability in terms of their average performance.
For such systems, as time T gets large, the observed time-average number in the system L approaches a limiting
value, say L; which is called the long-run time-average number in system—that is, with probability 1,

=—j L()dt—LasT—oeo - - (63)

The estimator £ is said to be strongly consistent for L. If simulation run length T is sufficiently long, the esti-
mator L. becomes arbirarily close to L. Unfortunately, for T < oo, L depends on the initial conditions at time 0.

Equations (6.2) and (6.3) can be applied to any subsystem of a queueing system as well as they can to
the whole system. If L,(r) denotes the number of customers waiting in line, and 7;‘2 denotes the total time
during [0, T] in which exactly i customers are waiting in line, then

f,=i3uT ¢ Lo LysT > ' (64)
T4 Th " 0 -

where L is the observed time-average number of customers waiting in line from time 0 to time T and L, is
the long-run time-average number waiting in line.

Example 6.3
Suppose that Figure 6.6 represents a single-server queue—that is, a G/G/1/N/K queueing system (N 23,K2>3).
Then the number of customers waiting in line is given by Ly(t) defined by

L= if L(t)=0
e L(t) 1 if L@n)=1

and shown in Figure 6.7. Thus, T2 =5+10=15,72 =2+2=4,and T? = 1, Therefore,

i =__0(15)+1(4)+2(1)

0 = 0.3 customers
20

6.3.2 Average Time Spent in System Per Customer w

If we simulate a queueing system forsome period of time, say T, then we can record the time each customer spends
in the system during [0, T], say W, W5, ..., Wy, where N is the number of arrivals during [0, T1. The average
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Figure 6.7 Number waiting in line, L,(t), at time t.

“time spent in system per customer, called the average system time, is given by the ordinary sample average

.1 ¢
w=—YYW 6.
kK (65)
For stable systems, as N — oo,
Wow (6.6)

with probability 1, where w is called the long-run average system time.
If the systemunder consideration is the queue alone, Equations (6.5) and (6.6) are written as

l N
- 0
wQ——ZW. —w, asN = o 6.7)
=t
where W€ is the tofal time customer i spends waiting in queue, W, is the observed average time spent in

. queue (called delay), and w, is the long-run average delay per customer. The estimators w and W, are infu-
enced by initial conditions at time 0 and the run length T, analogously to L.

Example 6.4
For the system history shown in Figure 6.6, N=5 customers arrive, W; =2, and Ws=20—- 16 =4, but W,, W3, ’
and W, cannot be computed unless more is lnown about the system. Assume that the system has a single
server and a FIFO queue discipline. This implies that customers will depart from the system in the same
order in which they arrived. Each jump upward of L(z) in-Figure 6.6 represents an arrival. Arrivals occur at
times 0, 3, 5, 7, and 16. Similarly, departures occur at times 2, 8, 10, and 14. (A departure may or may not
have occurred at time 20.) Under these assumptions, it is apparent that W, =8 -3 =5, W;=10-5=35,
W, =14 — 7 =7, and therefore

. 2+5+5+7+4 23
w~-——-—-——46t1meumls

R T T
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Thus, on the average, an arbitrary customer spends 4.6 time units in the system. As for time spent in the waiting
line, it can be computed that W2 =0, W,2=0, W2 =8-5=3, W2 =10-7=3, and W2 = 0; thus,

. 0+0+3+3+0
W=

0= =1.2 time units
5

6.3.3 The Conservation Equation: L= Aw

For the system exhibited in Figure 6.6, there were N =5 arrivals in 7'= 20 time units, and thus the observed
arrival rate was A = NIT = /4 customer per time unit. Recall that f=1.15 and w = 46; hence, it follows that

A

=1 (6.8)

This relationship between L, A, and w is not coincidental; it holds for almost all queueing systems or sub-
systems regardless of the number of servers, the queue discipline, or any other special. circumstances.
Allowing T — oo and. N — o, Equation (6.8) becomes

L=Aw 69)

where 4 — 4, and A is the long-run average arrival rate. Equation (6.9) is called a conservationequation and
is usually attributed to Little [1961]. It says that the average number of customers in the system at an arbi-
trary point in time is equal to the average number of arrivals per time unit, times the average time spent in
the system. For Figure 6.6, there is one arrival every 4 time units (on the average) and each arrival spends
4.6 time units in the system (on the average), so at an arbitrary pomt in time there will be (1/4) (4.6) = 1.15
customers present (on the average).

Equation (6.8) can also be derived by reconsidering Figure 6.6 in the following manner: Figure 6.8
shows system history, L(f), exactly as inFigure 6.6, with each customer’s time in the system, W;, represented
by a rectangle. This representation again assumes a single-server system w1th a FIFO queue dlsc1p1me The
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Figure 6.8 Sysfém Iimeﬁ, W, for single-server FIFO system.
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rectangles for the third and fourth customers are in two and three separate pieces, respectively. The ith
rectangle has height 1 and length W; for each i =1, 2, ..., N. It follows that the total system time of all
customers is given by the total area under the number-in-system function, L(¢); that is,

i=1

N T v
Sw = L , (6.10)

Therefore, by combining Equations (6.2) and (6.5) with A=NrT , it follows that

N

N1 5
=_j L@t)di= —T—NZ;W,._AW

t

* which is Little’s equation (6.8). The intuitive and informal derivation presented here depended on the single-

server FIFO assumptions, but these assumptions are not necessary. In fact, Equation (6.10), which was the
key to the derivation, holds (at least approximately) in great generality, and thus so do Equations (6.8) and
(6.9). Exercises 14 and 15 ask the reader to derive Equations (6.10) and (6.8) under different assumptions.

Technical note: If, as defined in Section 6.3.2, W; is the system timé for customer i during {0, 7], then
Equation (6.10) and hence Equation (6.8) hold exactly. Some authors choose to define W; as total system
time for customer i; this change will affect the value of W; only for those customers i who arrive before time
T but do not depart until after time T (possibly customer 5 in Figure 6.8). With this change in definition,
Equations (6.10) and (6.8) hold only approximately. Nevertheless, as T — e and'N — oo, the error in
Equation (6.8) decreases to zero, and, therefore, the conservation equation (6.9) for long-run measures of
performance—namely, L = Aw—holds exactly.

6.3.4 Server Utilization

Server utilization is defined as the proportion of time that a server is busy. Observed server utilization,
denoted by p, is defined over a specified time interval [0, Tl Long-run server utilization is denoted by p. For
systems that exhibit long-run stability,

popasT oo

Example 6.5
Per Figure 6.6 or 6.8, and assuming that the system has a smgle Server, it can be seen that the server utlhzatlon

is p=(total busy time)/T = (" T,)/T =(T -T,)/T =17/20.

Server utilization in G/G/1/~/= queues

Consider any single-server queueing system with average arrival rate A customers per time unit, average service
time E(S) = I/ time units, and infinite queue capacity and calling population Notice that E(S) = I/ implies that,

- when busy, the server is working at the rate £ customers per time unit, on the average; 4 is called the service rate.

The server alone is a subsystem that-can be considered as a queueing-system in itself; hence, the conservation
Equation (6.9), L = Aw, can be applied to the sérver. For stable systems, the averagearrival rate to the server, say
A, must be identical to the average arrival rate to the system, A (certainly A, < A—customers cannot be served
faster than they arrive-—but, if A, < 4, then the waiting line would tend to grow. in length at an average rate of
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Figure 6.9 Number being served, L{z) — Ly2), at time 1.

A - A, customers per time unit, and so we would have an unstable system). For the server subsystem, the average
system time is w = E(S) = ¢t ~%. The actual number of customers in the server subsystem is either O or 1, as shown
in Figure 6.9 for the system represented by Figure 6.6. Hence, the average number, L, is given by

T-1,

P
f=c [, wo-Lynd =

Inthis case, [:, =17/20 = p. In general, for a single-server queue, the average numberof customers being

served at an arbitrary point in time is equal to server utilization. As 7 — s, I:, =p— L = p. Combining
these results into L = Aw for the server subsystem yields

A
=AE(S)=— 6.11
P ” ©.11)

—that is, the long-run server utilization in a single-server queue is equal to the average arrival rate divided
by the average service rate. For a single-server queue to be stable, the arrival rate A must be less than the
service rate j: v

A<y

or

A
P=‘;<1 (6.12)

If the arrival rate is greater than the service rate (A > y), the server will eventually get fusther and further
behind. After a time, the server will aliays be busy, and the waiting line will tend to grow in length at an
average rate of (1~ 1) customers per time unit, because departures will be occurring at rate 4 per time unit.
For stable single-server systems (A < g or p < 1), long-run measures of performance such as average queue
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length Ly (and also L, w,and w) are well defined and have meaning. For unstable systems (A> ), long-run
server utilization is 1, and long-run average queue length is infinite; that is,

-l-j'L (t)dt = +o0as T — oo
The *

Similarly, L = w =w, = . Therefore these long-run measures of performance are meaningless for unstable
queues. The quantity A/uis also called the offered load and is a measure of the workload imposed on the system.

Server utilization in G/G/c/~/~ queues

Consider a queueing system with c identical servers in parallel. If an arriving customer finds more than one
server idle, the customer chooses a server without favoring any particular server. (For example, the choice of
server might be made at random.) Arrivals occur at rate A from an infinite calling population, and each server
works at rate  customers per time unit. From Equation (6.9), L = Aw, applied to the server subsystem alone,
an argument similar to the one given for a single server leads to the result that, for systems in statistical
equilibrium, the average number of busy servers, say L, is given by

L, =AE(S) =% 2 : 6.13)

Clearly, 0 < Ly< c. The long-run average server utilization is defined by
p=lit ) (6.14)
c cu :

and so 0 < p £ 1. Theutilization p can be interpreted as the proportion of time an arbitrary server is busy in
the long run. ’

The maximum service rate of the G/G/cfeofeo system is ct, which occurs when all servers are busy. For
the system to be stable, the average arrival rate A must be less than the maximum service rate cy; that is, the
system is stable if and only if

A<cu (6.15)

or, equivalently, if the offered load A/ is less than the number of servers ¢. If A > cp, then arrivals are
occurring, on the average, faster than the system can handle them, all servers will be continuously busy, and
the waiting line will grow in length at an average rate of (A — cpt) customers per time unit. Such a system
is unstable, and the long-run performance measures (L, L, w, and w) are again meaningless for such systems.

Notice that Condition (6.15) generalizes Condition (6.12), and the equation for utilization for stable
systems, Equation (6.14), generalizes Equation (6.11).

Equations (6.13) and (6.14) can also be applied when some servers work more than others, for example,
when customers favor one server over others, or when certain servers serve customers only if all other servers
are busy. In this case, the L, given by Equation (6.13) is still the average number of busy servers, but p, as
given by Equation (6.14), cannot be applied to an individual server. Instead, p must be interpreted as the average
utilization of all servers. ' ‘ '

Example 6.6 :
Customers arrive at random to a license bureau at a rate of A = 50 customers per hour. Currently, there are
20-clerks, each serving u = S customers per hour on the average. Therefore the long-run; or steady-state,
average utilization of a server, given by Equation (6.14), is '

FRL YAV UL S A Na
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A 50
p=—=—==
cp 2005
and the average number of busy servers is
L= A 20 10
5

Thus, in the long run, a typical clerk is busy serving customers only 50% of the time. The office manager
asks whether the number of servers can be decreased. By Equation (6.15), it follows that, for the system to
be stable, it is necessary for the number of servers to satisfy

A
c>=
©

or ¢ > 50/5 = 10. Thus, possibilities for the manager to consider include ¢ = 11,0rc= 12, orc = 13, ...
Notice that ¢ 2 11 guarantees long-run stability only in the sense thatall servers, when busy, can handle the
incoming work load (i.e., cit > A) on average. The office manager could well desire to have more than
the minimum number of servers (c = 11) because of other factors, such as customer delays and length of the
waiting line. A stable queue can still have very long lines on average.

Server utilization and system performance

As wil! be illustrated here and in later sections, system performance can vary widely for a given value of
utilization, p. Consider a G/G/1/ec/o< queue: that is, a single-server queue with arrival rate A, service rate p,
and utilization p=A/p < 1.

At one extreme, consider the D/D/1 queue, which has deterministic arrival and service times. Then all
interarrival times {A,, A,, ...} are equal to E(A) = 1/A, and all service times {S,, S,, ...} are equal to
E(S) = 1/p. Assuming that a customer arrives to an empty system at time 0, the system evolves in a completely
deterministic and predictable fashion, as shown in Figure 6.10. Observe that L=p = A/, w=ES)=p °,
and L,y = wy = 0. By varying A and p, server utilization can assume any value between 0 and 1, yet there is
never any line whatsoever. What, then, causes lines to build, if not ahigh server utilization? In general, it is
the variability of interarrival and service times that causes lines to fluctuate in length.

o j
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Figure 6.10 Deterministic queve {D/D/1).
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Example 6.7
Consider a physician who schedules patients every 10 minutes and who spends S; minutes with the ith
patient, where

9 minutes with probability 0.9
"™ |12 minutes with probability 0.1

Thus, arrivals are deterministic (A, = A, = --- = A ™' = 10) but services are stochastic (or probabilistic), with
mean and variance given by

E(5,)=9(0.9)+12(0.1) = 9.3 minutes
and
V(S,) = E(S})-[E(S,)T
=92(0.9)+12%(0.1)—(9.3)?
=0.81 minutes®

Here, p= A/ = E(S)/E(A) = 9.3/10 = 0.93 < 1, the system is stable, and the physician will be busy 93% of
the time in the long run. In the short run, lines will not build up as long as patients require only 9 minutes of
service, but, because of the variability in the service times, 10% of the patients will require 12 minutes,
which in turn will cause a temporary line to form. ’

Suppose the system is simulated with service times, §; =9, S,= 12, §,=9,5,=9, Ss=9, .... Assuming
that at time O a patient arrived to find the doctor idle and subsequent patients arrived precisely at times
10, 20, 30, .., the system evolves as in Figure 6.11. The delays in queue are W2 = W2 =0, W2 =22-20=2,
W2 =31-30=1,W2 =0. The occumence of a relatively long service time (here S, = 12) caused a waiting
line to form temporarily. In general, because of the variability of the interarrival and service distributions,
relatively small interarrival times and relatively large service times occasionally do occur, and these in turn
cause lines to lengthen. Conversely, the occurrence of a large interarrival time or a small service time will
tend to shorten an existing waiting line. The relationship between utilization, service.and interarrival
variability, and system performance will be explored in more detail in Section 6.4.
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Figure 6.11 Number of patients in the doctor’s office at time 1.
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6.3.5 Costs in Queueing Problems

In many queueing situations, costs can be associated with various aspects of the waiting line or servers.
Suppose that the system incurs a cost for each customer in the queue, say at a rate of $10 per hour per
customer. If customer j spends WjQ hours in the queue, then Z;’=l($10 : V%Q) is the total cost of the N customers
who arrive during the simulation. Thus, the average cost per customer is

S0
N Q

=

by Equation (6.7). If 1 customers per hourarrive (on the average), the average cost per hour is

A 10-w 3 7
(lcustomers)[ $10-w, )=$10 - A, =$10 - L,/hour
hour customer

the last equality following by Little’s equation (6.8). An altemative way to derive the average cost per hour
is to consider Equation (6.2). If 72 is the total time over the interval [0, T] that the system contains exactly i
customers, then $10 iT;2 is the cost incurred by the system during the time exactly i customers are present.
Thus, the total cost is 2;($10- iT;%), and the average cost per hour is

& $10-iT8
Y Tll =$10-Ly/hour

i=1

by Equation (6.2). In these cost expressions, [A,Q may be replaced by Ly (if the long-run number in queue is

known), or by L or L (if costs are incurred while the customer is being served in addition to being delayed).
The server may also impose costs on the system. If a group of ¢ parallel servers (1 € ¢ < o) have
utilization p, and each server imposes a cost of $5 per hour while busy, the total server cost per hour is

$5-cp

because cp is the average number of busy servers. If server cost is imposed only when the servers are idle,
then the server cost per hour would be

$5-c(1-p)

because c(1 — p) = ¢ — cp is the average number of idle servers. In many problems, two or more of these
various costs are combined into a total cost. Such problems are illustrated by Exercises S, 12, 17, and 20.
In most cases, the objective is to minimize total costs (given certain constraints) by varying those parame-
ters that are under management’s control, such as the number of servers, the arrival rate, the service rate, and
the system capacity. :

6.4 STEADY-STATE BEHAVIOR OF INFINITE-POPULATION MARKOVIAN MODELS

This section presents the steady-state solution of a number of queueing models that can be solved mathemat-
ically. For the infinite-population models, the arrivals are assumed to follow a Poisson process with rate 4 arrivals
per time unit—that is, the interarrival times are assumed to be exponentially distributed with mean 1/A. Service
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times may be exponentially distributed (M) or arbitrarily (G). The queue discipline will be FIFO. Because of
the exponential-distributional assumptions on the arrival process, these models are called Markovian models.

A queueing system is said to be in statistical equilibrium, or steady state, if the probability that the
system is in a given state is not time dependent—that is,

P(L(t)=n)=P(1) =P,

is independent of time 7. Two properties—approaching statistical equilibrium from any starting state, and
remaining in statistical equilibrium once it is reached—are characteristic of many stochastic models, and, in
particular, of all the systems studied in the following subsections. On the other hand, if an analyst were inter-
ested in the transient behavior of a queue over a relatively short period of time and were given some specific
initial conditions (such as idle and empty), the results to be presented here would be inappropriate. A tran-
sient mathematical analysis or, more likely, a simulation model would be the chosen tool of analysis.

The mathematical models whose solutions are shown in the following subsections can be used to obtain
approximate results even when the assumptions of the model do not strictly hold. These results may be
considered as a rough guide to the behavior of the system. A simulation may then be used for a more refined
analysis. However, it should be remembered that a mathematical analysis (when it is applicable) provides the
true value of the model parameter (e.g., L), whereas a simulation analysis delivers a statistical estimate (e.g., )
of the parameter. On the other hand, for complex systems, a simulation model is often a more faithful
representation than a mathematical model.

For the simple models studied here, the steady-state parameter L, the time-average number of customers
in the system, can be computed as

L=Ynp, (6.16)

where {P,) arethe steady-state probabilities of finding n customers in the system (as defined in Table 6.2).
As was discussed in Section 6.3 and was expressed in Equation 6.3), L can also be interpreted as a long-run
measure of performance of the system. Once L is given, the other steady-state parameters can be computed
readily from Little’s equation (6.9) applied to the whole system and to the queue alone:

L
w=—
A
1
wo =W 6.17)
L, =Aw,

where 4 is the arrival rate and p is the service rate per server.

For the G/G/c/eo/oc queues considered in this section to have a statistical equilibrium, a necessary and
sufficient condition is that 4 /(ctt) < 1, where 4 is the arrival rate, g is the service rate of one server, and c is
the number of parallel servers. For these unlimited capacity, infinite-calling-population models, it shall be
assumed that the theoretical server utilization, p = 4 /(cy), satisfies p < 1. For models with finite system
capacity or finite calling population, the quantity 4 /(ct) may assume any positive value.’

6.4.1 Single-Server Queues with Poisson Arrivals and Unlimited Capacity: M/G/1

' Suppose that service times have mean 1/42 and variance o2 and that there is one server. If p= A/u < 1, then

the M/G/1 queue has a steady-state probability distribution with steady-state characteristics, as given in
Table 6.3. In general, there is no simple expression for the steady-state probabilities Py, P;, Py, .... When
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Table 6.3 Steady-State Parameters of the M/G /1

Queue
o A
U
L p (1P +a?) b P+o’u?)
2(1-p) 21-p)
w l+ A/ u? +0%)
g 2-p
" AL/ 1+ o)
21-p)
L, AWplra?) _pHiray’)
2(1~p) 2 -p)
Py l-p

A < g, the quantity p = A/u is the server utilization, or long-fun proportion of time the serveris busy. As s
seen in Table 6.3, 1 ~ Py = p can also be interpreted as the steady-state probability that the system contains
one or more customers. Notice also that L — Ly = p is the time-average number of customers being served.

Example 6.8
Widget-making machines malfunction apparently at random and then require a mechanic’s attention. It is
assumed that malfunctions occur according to a Poisson process, at the rate A = 1.5 per hour. Observation
over several months has found that repair times by the single mechanic take an average time of 30 minutes,
with a standard deviation of 20 minutes. Thus the mean service time 1/ = 1/2 hour, the service rate is 1 =2
per hour and ¢ = (20)? minutes? = 1/9 hour? The “customers™ are the widget makers, and the appropriate
model is the M/G/1 queue, because only the mean and variance of service times are known, not their distri-
bution. The proportion of time the mechanic is busy is p= A/u=1.5/2 = 0.75, and, by Table 6.3, the steady-
state time average number of broken machines is

(1.5)[(0.5)* +1/9]

2(1-0.75)
=0.75+1.625=2.375 machines

L=0.75+

Thus, an observer who notes the state of the répair system at arbitrary times would find anaverage of 2 375
broken machines (over the long run).

A closer look at the formulas in Table 6.3 reveals the source of the waiting lines and delays in an M/G/1
queue. For example, Ly may be rewritten as

z 11'2 2
2(1 ) 2(1 P
The first term involves only the ratio of the mean arrival rate, 4, to the mean service rate, 4. As shown by

the second term, if A and 1 are held constant, the average length of the waiting line (L) depends on the vari-
ability, 62, of the service times. If two systems have identical mean service times and mean interarrival times,

LQ_
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the one with the more variable service times (larger ¢2) will tend to have longer lines on the average.
Intuitively, if service times are highly variable, there is a high probability that a large service time will occur
(say, much larger than the mean service time), and, when large service times do occur, there is a higher-than-usual
tendency for lines to form and delays of customers to increase. (The reader should not confuse “steady state”
with low variability or short lines; a system in steady-state or statistical equilibrium can be highly variable
and can have long waiting lines.)

Example 6.9
There are two workers competing fora Job Able claims an averageservice time that is faster than Baker’s, but
Baker claims to be more consistent, even if not as fast. The arrivals occur according to a Poisson process at
the rate A =2 per hour (1/30 per minute). Able’s service statistics are an average service time of 24 minutes
with a standard deviation of 20 minutes. Baker’s service statistics are an average service time of 25 minutes,
but a standard deviation of only 2 minutes. If the average length of the queue is the criterion for hiring, which
worker should be hired? For Able, A = 1/30 per minute, 1/u2 = 24 minutes, 6% = 20? = 400 minutes?, p = A/ =
24/30=4/5, and the average queue length is computed as

/ 2 42
0= (I—W-le =2.711 customers
2(1-4/5)
For Baker, A= 1/30 per minute, 1/¢t =25 minutes, 62 =22 =4 minutes?, p = 25/30 = 5/6, and the average
queue length is

2 2
o= (7307125 +4] =2.097 customers
2(1-5/6)
Although working faster on the average, Able’s greater service variability results in an average queue length
about 30% greater than Baker’s. On the basis of average queue length, L, Baker wins. On the other hand,
the proportion of arrivals who would find Able idle and thus experience no delay is Po=1 — p = 1/5 = 20%,
but the proportion who would find Baker idle and thus experience no delay is Py= 1~ p = 1/6 = 16.7%.

One case of the M/G/1 queue that is of special note occurs when service times are exponential, which
we describe next.

_ The M/M/1 queue. Suppose that service times in an M/G/1 queue are exponentially distributed, with
mean 1/4; then the variance as given by Equation (5.27) is 6% = I/ 1. The mean and standard:deviation of
the exponential diswibution are equal, so the M/M/1 queue will often be a useful approximate model when
service times have standard deviations approximately equal to their means. The steady-state parameters,
given in Table 6.4, may be computed by substituting 2= 1/ ? into the formulas in Table 6.3. Alteruatively,
L may be computed by Equation (6.16) from the steady-state probabilities P, given in Table 6.4, and then
w, wg, and L, may be computed from Equations (6.17). The student can show that the two expressions for
each parameter are equivalent by substituting p= A/ into the right-hand side of each equation in Table 6.4.

Example 6.10
Suppose that the interarrival times and service times at a single-chair unisex hair- -styling shop have been

shown to be exponentially distributed. The values of A and 4 are 2 per hour and 3 per hour, respactively—

that is, the time between arrivals averages 1/2 hour, exponentially distributed, and the service time averages

20 minutes, also exponentially distributed. The server utilization and the probabilities for zero, one, two,-
three, and fouror more customers in the shop are computed as follows:
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A2
p L3
A1
P=1-Z=-
[ L3
r-(3)(3)-2
3)\3) ¢
2
w3 -4
3/\3 27
3
p=(3)(F -2
3)\3) 81

From the calculations, the probability that the hair stylist is busy is 1 — Py = p = 0.67; thus, the proba-
bility that the hair stylist is idle is 0.33. The time-average number of customers in the system is given by
Table 6.4 as

The average time the customer spends in the queue can be obtained from Equation (6.17) as

wQ-—*w——l—:l—l:g—hour
33

Table 6.4 Steady-State Parameters of the
" M/M/1 Queue

L AP
u-A 1-p
w L T S
H-A  p-p)
WQ A = p
wu—-2) up-p)
. 12 pl
L =
e H=-2) 1-p
FAYEAY
P, === =a-pyp°
( uJ(u) ne
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From Table 6.4, the time-average number in the queue is given by

4 4
L, = = = —— = — customers
up-1) 3 3

Finally, notice that multiplying w= wg + /1 through by A and using Little’s equation (6.9) yields

+— =2 customers

w| s
Wl

A
L: Cte—=
b #

Example 6.11
For the M/M/1 queue with service rate g = 10 customers per hour, consider how L and w increase as the
arrival rate, A, increases from 5 to 8.64 by increments of 20%, and then to A = 10.

F) 5.0 6.0 72 864 100
p 0.500 0.600 0.720 0.864 10
L 1.00 150 257 - 635 o
w 020 025 0.36 0.73 o

For any M/G/1 queue, if A/t 2°1, waiting linestend to continually grow in length; the long-run measures of
performance, L, w, wy, and L, are all infinite (L = w =wg = L, = =), and a steady-state probability distri-
bution does not exist. As is shown here for A < g, if p is close to 1, waiting lines and delays will tend to be
long. Notice thattheincrease in average systemtime, w, and average number in system, L, is highly nonlinear
as a function of p. For example, as A increases by 20%, L increases first by 50% (from 1.00 to 1.50), then
by 71% (to 2.57), and then by 147% (to 6.35).

Example 6.12
If amrivals are occurring at rate A = 10 per hour, and mauagement has a choice of two servers, one who works
atrate g4 =11 customers per hour and the second at rate (£, = 12 customers per hour, the respective utiliza-
tions are p, = A/p, = 10/11=0.909 and p,=A/p,=10/12=0.833. IftheM/M/1 queue is used as an approximate
model, then, with the first server, the average number in the system would be, by Table 6.4,

b
L=-—=10
1-p,
and, with-the second server, the average number in the system would be
P,
 e—t— 5
L 1-p,.

Thus, a decrease in service rate from 12 to 11 customers per hour, a mere 8.3% decrease, would result
in an increase in average number in system from 5 to 10, which is a 100% increase.

The effect of utilization and service variability

For any M/G/1 queue, if lines are too long, they can be reduced by decreasing the server utilization p or by
decreasing the service time variability, o2. These remarks hold for almost all queues, not just the M/G/1
queue. The utilization factor p can be reduced by decreasing the arrival rate A, by increasing the service rate g,
or by increasing the number of servers, because, in general, p = A/(cp), where c is the number of parallel

servers. The effect of additional servers will be studied in the following subsections. Figure 6.12 illustrates . -

the effect of service variability. The mean steady-state number in the queue, Ly, is plotied versus utilization

ORI T e T
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Figure 6.12 Mean number of customers waiting, Ly, in M/G/1 queue having service distributions with
given cv. (Adapted from Geoffrey Gordon, System Simulation, 2nd ed., PrenticeHall, Englewood Cliffs, NJ, 1978.)

p for a number of different coefficients of variation. The coefficient of variation (cv) of a positive random
variable X is defined as
, _ V(X)

O = EoF

~

Itis a measure of the varability of a distribution. The largerits value, the more variable is the distribution rel-
ative to its expected value. For deterministic service times, V(X)= 0, so cv = 0. For Erlang service times of order
k, V(X) = 1/(kpt?) and E(X)= 1/, so cv= 1/Jk . For exponential service times at service rate 4, the mean serv-
ice time is E(X) = /st and the variance is V(X) = 1/42, so cv = 1. If service times have standard deviation greater
than their mean (i.e., if cv > 1), then the hyperexponential distribution, which can achieve any desired coeffi-
cient of variation greater than 1, provides a good model. One occasion where it arises is given in Exercise 16.

The formula for L, for any M/G/1 queue can be rewritten in terms of the coefficient of variation by
noticing that (cv)? = 62/(1/j1)? = 212, Therefore,

_p+ i)
°T 2-p)

_PU+ew?)
2-p)

=(Ifi] (%"_)i] ' 1 (6.18)
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The first term, p*/(1- p), is Ly for an M/M/1 queve. The second term, (1 + (cv)?)/2, corrects the M/IM/1
formula to account for a nonexponential service-time distribution. The formula for wy can be obtained from
the corresponding M/M/1 formula by applying the same correction factor.

6.4.2 Multiserver Queue: M/M/c//

Suppose that there are ¢ channels operating in parallel. Each of these channels has an independent and iden-
tical exponential service-time distribution, with mean 1/u. The arrival process is Poisson with rate A. Arrivals
will join a single queue and enter the first available service channel. The queueing system is shown in
Figure 6.13. If the number in system is n < c, an arrival will enter an available channel. However, when
n 2 c, a queue will build if arrivals occur.

The offered load is defined by A/p. If 1 2 cp, the arrival rate is greater than or equal-to the maximum
service rate of the system (the servicerate when all servers are busy); thus, the system cannothandle the load
put upon it, and therefore it has no statistical equilibrium. If A > cp, the waiting line grows in length at the
rate (A — cjt) customers per time unit, on the average. Customers are entering the system at rate A per time
unit but are leaving the system at a maximum rate of cjt per time unit.

For the M/M/c queue to have statistical equilibrium, the offered load must satisfy A/jL< c, in which case
Al(cpt) = p, the server utilization. The steady-state parameters are listed in Table 6.5. Most of the measures
of performance can be expressed fairly simply in terms of Py, the probability that the system is empty, or
Z:;CR,. the probability that all servers are busy, denoted by P(L(ec) 2 c), where L(eo) is a random variable
representing the number in system in statistical equilibrium (after a very long time). Thus, P(L(e<) = n) = P,,,
n=0, 1, 2,.... The value of Py is necessary for computing all the measures of performance, and the equation
for P, is somewhat more complex than in the previous cases. However, Pydepends only on ¢ and p. A good
approximation to P can be obtained by using Figure 6.14, where P, is plotted versus p on semilog paper for
various values c. Figure 6.15 is a plot of L versus p for different values of c.

The results in Table 6.5 simplify to those in Table 6.4 when ¢ = 1, the case of a single server. Notice that
the average number of busy servers, or the average number of customers being served, is given by the sim-
ple expression L — Lo = A/ 1= cp.

Example 6.13
Many early examples of queueing theory applied to practical problems concemning tool cribs. Attendants
manage the tool cribs as mechanics, assumed to be from an infinite calling population, arrive for service.
Assume Poisson arrivals at rate 2 mechanics per minute and exponentially distributed service times with
mean 40 seconds.

Calling population Waiting line
of potential customers

(1]
000

¢ parallel
servers

Figure 6.13 Multiserver queueing system.
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Table 6.5 SteudyLStufe parameters for the M/M/c Queve

RI>

GO
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A
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Ly w o PR pPUL(=)20)
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L-1L, A_ w»
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so more than one server is needed if the system is to have a statistical equilibrium.  The requirement for
steady state is #hat ¢ > A/;1=4/3. Thus at least ¢ = 2 attendants are needed. The quantity 4/3 is the expected
number of busy servers, and for ¢ 2 2, p=4/(3c) is the long-run proportion of time each server is busy. (What
would happen if there were only ¢ =1 server?)

Let there be ¢ = 2 attendants. First, Py is calculated as

NN
L5 B 5] <52

Next, the probability that all servers are busy is computed as

ez (47 (1)_(8)(1)_8 _
Pt )22)'21(1—2/3)(5)’(3)(5)' =0.533
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Figure 6.14 Valves of P, for M/M/c/= model. (From F. S. Hillier and G. | Lieberman, introduction to
Operdtions Research, 5th ed., 1990, p. 616. Adapted with permission of McGraw-Hill, inc., New York

Thus, the time-average length of the waiting line of mechasics is

_(2138115)

0= =1.07 mechanics
1-2/3
and the time-average number in system is given by
L= LQ —-12 i—Lz—Z 4 mechanics
15 3 5§ '

. From Little’s relationships, the average time a mechanic spends at the tool crib is

4
w=£=32-— 1.2 niinutes

A

o
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Figure 6.15 Values of L for M/M/c/> model. (From F. S. Hillier and G. J. Lieberman, Introduction to
Operations Research, 5th ed., 1990, p. 617. Adapted with permission of McGraw-Hill, inc., New York.)

and the average time spent waiting for an attendant is

W, = w—l = 1.2—2= 0.533 minute
n 3

Example 6.14
Using the data of Example 6.13, compute P, and L from Figures 6.14 and 6.15. First, compute
A2 2 o667
ce 23/2) 3

Entering the utilization factor 0.667 on the horizontal axis of Figure 6.14 gives the value 0.2 for P, on the
vertical axis. Similarly, the value L = 2.4 is read from the vertical axis of Figure 6.15.

_ Example 6.16
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An Approximation for the M/G/c/~ Queue

Recall that formulas for Ly and wy, for the M/G/1 queue can be obtained from the corresponding M/M/1 formulas
by multiplying them by the correction factor (1 + (cv)?)/2, as in Equation (6.18). Approximate formulas for
the M/Glc queue can be obtained by applying the same correction factor to the M/M/c formulas for L, and
wg (no exact formula exists for 1 < ¢ < o). The nearer the cv is to 1, the better the approximation.

Example 6.15
Recall Example 6.13. Suppose that the service times for the mechanics at the tool crib are not exponentially
distributed, but are known to have a standard deviation of 30 seconds. Then we have an M/G/c model, rather
than an M/M/c. The mean service time is 40 seconds, so the coefficient of variation of the service time is

Therefore, the accuracy of L, and w,, can be improved by the correction factor

2 2
I+(cv) _ 1+(3/4) =25—=0.78
2 2 32

Forexample, when there are ¢ =2 attendants,
Ly= (0.78)(1.07) = 0.83 mechanics

Notice that, because the coefficient of variation of the service time is less than I, the congestion in the
system, as measured by Ly, is less than in the corresponding M/M/2 model.

The correction factor applies only to the formulas for L, and wy,. Little’s formula can then be used to
calculate L and w. Unfortunately, there is no general method for correcting the steady-state probabilities, P,.

When the Number of Servers is Infinite (M/G/c/)
There are at least three situations in which it is appropriate to treat the number of servers as infinite:

1. when each-customer is its own server—in other words, in a self-service system;
2. when service capacity far exceeds service demand, as in a so-called ample-server system; and
3. when we want to know how many servers are required so that customers will rarely be delayed.

The steady-state parameters for the M/G/eo queue are listed in Table 6.6. In the table, A is the arrival rate of
the Poisson arrival process, and 1/u is the expected service time of the general service-time distribution

‘(including exponential, constant, or any other).

Prior to introducing their new, subscriber-only, on-line computer information service, The Connection must plan
their system capacity in terms of the number of users that can be logged in simultaneously. If the service is
successful, customers are expected to log on at a rate of A =500 per hour, according to a Poisson process, and
stay connected for an average of 1/p¢ = 180 minutes (or 3 hours). In the ceal system, there will be an upp