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Preface 

This book provides an up-to-date treatment of the concepts and techniques 
applied to the performance evaluation of computer systems. Computer sys- 
tems in this context include computer systems hardware and software com- 
ponents, computer architecture, computer networks, operating systems, 
database systems, and middleware. The motivation in writing this book 
comes from the inability to find one book that adequately covers analytical, 
simulation, and empirical testbed techniques applied to the evaluation of 
systems software and the computer systems that support them. The book 
can be used as a single- or multiple-semester book about computer systems 
performance evaluation or as a reference text for researchers and practition- 
ers in the computer systems engineering and performance evaluation fields. 

Over the last 10 to 25 years a vast body of knowledge has accumulated 
dealing with the performance evaluation of computer systems. Specialized 
measurement tools, both hardware and software, have become available to 
aid in the testing and monitoring of a computer system's performance, as 
have numerous simulation languages and tools aimed at specific compo- 
nents of a computer system or for generalized modeling studies. Analytical 
techniques and tools can be readily acquired and easily applied to the high- 
level analysis of computer systems and their applications. However, many of 
these efforts have resulted in disparate solutions whose results are difficult, 
if not impossible, for the computer engineer or analyst to easily apply to 
new problems. In addition, most realistic problems require the application 
of all of these techniques at some level to ascertain the performance of a sys- 
tem and all of its component elements to support rapid product design, 
development, and fielding. 

To consider performance in the design and development stages of a sys- 
tem's inception, modeling must be used, since the intended product system 
is not yet available for instrumentation and empirical testing. Modeling is 
relatively well understood by practitioners in the field with the appropriate 
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background; however, these techniques are not as easily transferred to the 
other members of a design team who could also benefit from such knowl- 
edge. The purpose of this book is to make analytical-, simulation-, and 
instrumentation-based modeling and performance evaluation of computer 
systems components possible and understandable to a wider audience of 
computer systems designers, developers, administrators, managers, and 
users. The book assumes the reader has a familiarity with concepts in com- 
puter systems architecture, computer systems software, computer networks, 
and elementary mathematics including calculus and linear algebra. 

The thrust of this book is to investigate the tools for performance evalu- 
ation of computer systems and their components and provide an overview 
of some tools used in practice. 

Chapter 1 discusses computer systems performance evaluation and pre- 
diction and why these techniques are necessary in today's world of ever 
decreasing computer systems cost. 

In Chapter 2 the components making up computer systems are exam- 
ined in further detail regarding their architectures, basic hardware elements 
construction, networks and topologies, operating systems control protocols 
and architecture, database management systems components and technolo- 
gies, distributed systems, client/server systems, and other computer systems 
configurations. 

Chapter 3 readdresses the modeling issue from the slant of modeling 
computer systems, how the various tools have been useful in past systems, 
and how they can be applied to future endeavors. The basic concepts of 
time, events, measurements, intervals, response, and independence as they 
pertain to computer systems are discussed. 

Chapter 4 expands on the basic definitions outlined in Chapter 3. Con- 
cepts in general measurement processes, service time distributions, schedul- 
ing, and response time related to computer systems applications are 
presented. 

Chapter 5 introduces the concepts of probability of events. The concept 
of sample space and its application to computing basic probability of event 
occurrence within a sample space are investigated. This is followed by dis- 
cussions of randomness of events and the relation of this phenomenon to 
probability. Conditional and joint probability concepts are then presented, 
as is the concept of random variables and probability distributions. 

Chapter 6 builds on the fundamentals of probability into stochastic 
processes. The basic definition of a stochastic process is provided and then 
its relationship to the Poisson process is presented. With these definitions, 
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the concept of a pure birth and death process is developed, as are analysis 
techniques. The chapter then delves into the Markov process and Markov 
chains as they relate to the analysis of computer systems and their elements. 

In Chapter 7, we introduce the concept of a queue and the analysis tech- 
niques required to evaluate single queues and networks of queues. These 
techniques are then developed into modeling techniques applied to com- 
puter systems evaluation. 

Chapter 8 introduces the concept of simulation modeling. The methods 
for constructing simulation models from a description of an intended mod- 
eled system are presented. The concepts of simulation events and timekeep- 
ing are addressed, followed by the application of techniques to computer 
systems analysis. 

Chapter 9 introduces another analysis technique: Petri nets. The basic 
elements comprising Petri nets are developed and then applied to modeling 
aspects of computer systems. Fundamental Petri nets are described, as are 
timed and general Petri nets. 

Chapter 10 shows prospective designers or architects how to model 
future systems configurations using present systems information. The chap- 
ter shows how to instrument a system in order to extract and measure sys- 
tems performance numbers. These measurements and data are then used in 
development of analysis processes for defining present performance and 
predicting future performance of computer systems and their components. 

Chapter 11 aids the reader in determining what specific analysis tool is 
best used to evaluate a computer system or component of interest. The 
modeler is presented material to aid in determining when to use analytical 
techniques, which technique to use, and when to use it. If analytical tech- 
niques are not the best to use, the reader is advised how to select a simula- 
tion modeling tool and when to apply it in analyzing a computer system. 
Finally, the reader is given information regarding when and how to select 
the appropriate operational analysis tool for measuring and modeling exist- 
ing computer systems and components. 

Chapters 12 through 15 provide analysis examples for specific computer 
systems components. Computer architecture and component evaluation are 
provided, as are operating systems, database systems, and network systems 
modeling and analysis. 

I Preface 
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I 
Introduction 

What is computer systems performance evaluation and prediction and why 
are these techniques necessary in today's world of ever decreasing computer 
systems cost? To answer these questions requires the computer engineer to 
understand how all elements of a computer system come into play in realiz- 
ing a user's application and its implementation, fielding, and maintenance. 
All aspects of a computer system's lifetime are important when trying to 
understand issues of performance. It is not sufficient to simply buy the 
"best" general-purpose computing machine one can find today and then 
implement the intended application on it. One must consider how the sys- 
tem will fit into an existing computing facility and what the requirements 
on the computer system are today and what these requirements will be dur- 
ing the computer system's lifetime. 

The most important driving factors when designing, building, and field- 
ing a computer system are that it performs the intended function correctly, 
performs the intended function efficiently, and does so in a cost-effective 
manner. Therefore, initial design for correctness may often outweigh per- 
formance and cost as the driving force. Having said this, it is often the case 
that computer systems designers think of performance, cost, and correctness 
interchangeably. They are, however, different. A correct design may not 
imply one that performs blazingly fast or is very cost effective. This may be 
due to other considerations--for example, we may need to trade off 
performance or perfect correctness to save cost per unit. This is more typical 
of engineering designs. We do not always (if ever) have the luxury of infinite 
time and budget, allowing one to design, build, and field the most elegant 
and optimal-performing computer system. Therefore, we need methods to 
aid us in developing systems where we can trade off these conflicting items 
in some logical manner. That is what computer systems performance evalu- 
ation is and what this book is all about. 
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I . I  

The objective of this book is to describe a variety of performance analy- 
sis methods that can be applied to the various stages of a computer system's 
design, construction, fielding, and life-cycle maintenance. The goal is to 
provide the reader with an understanding of what tools or techniques are 
best applied within a computer system's life cycle so that the designer can 
analyze alternatives and select near optimal solutions for each stage of this 
process. We cannot hope to be exhaustive in our coverage of all aspects of a 
computer system's design, nor can we do so for each analysis technique 
available. Our goal is to provide sufficient detail, examples, and references 
so that an interested reader can know what performance evaluation tech- 
nique is best to apply, how to apply this technique to some level of sophisti- 
cation, and where to look for further detailed information on a topic if it is 
needed. Our intention is to provide more of an in-depth survey so that the 
reader can understand how all the various concepts and techniques apply to 
computer systems tradeoff analysis. 

Evolution of computer  systems architectures 

Computers came into being with the development of the ENIAC computer 
system in the late 1940s. The early ENIAC and subsequent computers were 
constructed of vacuum tubes and filled a large room. These early computer 
systems were dedicated to a single task and had no operating system. The 
power of these early computers was less than that of the handheld calcula- 
tors in use today. These computers were used mainly for ballistic missile tra- 
jectory projections and military research. The architecture of these early 
computers was based on the von Neumann stored program, single-stream 
instruction flow architecture (Figure 1.1). This basic architecture and phi- 
losophy is still in use today in most computer systems. 

These early computer systems had no sophisticated operating systems, 
databases, networks, or high-level programming languages to simplify their 
operations. They stored program instructions and data needed for compu- 
tation in the same place. Instructions were read from memory one at a time 
and were mostly associated with the loading and storage of program data 
from memory to registers where the data were to be operated on. Data in 
these early systems were not shared by programs. If a program needed data 
produced by another program, these data items were typically copied into a 
region near the end of a program's space, and the end addresses were hard- 
coded for use by the application program in which they were embedded. 

A user application resides on a computer system. The computer system 
provides the physical medium on which the data and programs are stored 
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Figure 1.1 
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and the processing capacity to manipulate the stored data. A processing unit 
of a computer system consists of five main elements: the memory, an arith- 
metic logic unit, an input unit, an output unit, and a control element. The 
memory unit stores both the data for programs and the instructions of a 
program that manipulates stored data. 

The program's individual elements or instructions are fetched from the 
memory one at a time and are interpreted by the control unit. The control 
unit, depending on the interpretation of the instruction, determines what 
computer operation to perform next. If the instruction requires no addi- 
tional data, the control indicates to the arithmetic logic unit what operation 
to perform and with what registers. (See Figure 1.1.) 

If the instruction requires additional data, the control unit passes the 
appropriate command to the memory (MAR, memory address register) to 
fetch a data item from memory (MDR, memory data register) and to place 
it in an appropriate register in the ALU (data register bank) (Figure 1.2). 
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This continues until all required operands are in the appropriate registers of 
the ALU. Once all operands are in place, the control unit commands the 
ALU to perform the appropriate instruction--for example, multiplication, 
addition, or subtraction. If the instruction indicated that an input or output 
were required, the control element would transmit a word from the input 
unit to the memory or ALU, depending on the instruction. If an output 
instruction were decoded, the control unit would command the transmis- 
sion of the appropriate memory word or register to the output channel indi- 
cated. These five elements comprise the fundamental building blocks used 
in the original von Neumann computer system and are found in most con- 
temporary systems in some form or another. 

A computer system is comprised of the five building blocks previously 
described, as well as additional peripheral support devices, which aid in data 
movement and processing. These basic building blocks are used to form the 
general processing, control, storage, and input and output units that make 
up modern computer systems. Devices typically are organized in a manner 
that supports the application processing for which the computer system is 
intended--for example, if massive amounts of data need to be stored, then 
additional peripheral storage devices such as disks or tape units are required, 
along with their required controllers or data channels. 

To better describe the variations within architectures we will discuss 
some details briefly--for example, the arithmetic logic unit (ALU) and the 
control unit are merged together into a central processing unit, or CPU. 
The CPU controls the flow of instructions and data in the computer sys- 
tem. Memories can be broken down into hierarchies based on nearness to 
the CPU and speed of access--for example, cache memory is small, 
extremely fast memory used for instructions and data actively executing and 
being used by the CPU. The primary memory is slower, but it is also 
cheaper and contains more memory locations. It is used to store data and 
instructions that will be used during the execution of applications presently 
running on the CPU--for  example, if you boot up your word processing 
program on your personal computer, the operating system will attempt to 
place the entire word processing program in primary memory. If there is 
insufficient space, the operating system will partition the program into seg- 
ments and pull them in as needed. 

The portion of the program that cannot be stored in memory is main- 
tained on a secondary storage device, typically a disk drive. This device has 
a much greater storage capacity than the primary memory, typically costs 
much less per unit of storage, and has data access times that are much 
slower than the primary memory. An additional secondary storage device is 
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1 . 1 . 1  

the tape drive unit. A tape drive is a simple storage device that can store 
massive amounts of data~again, at less cost than the disk units but at a 
reduced access speed. Other components of a computer system are input 
and output units. These are used to extract data from the computer and 
provide these data to external devices or to input data from the external 
device. The external devices could be end-user terminals, sensors, informa- 
tion network ports, video, voice, or other computers. 

A computer system's architecture is constructed using basic building 
blocks, such as CPUs, memories, disks, I/O, and other devices as needed. 

In the following sections we will examine each of the components of a 
computer system in more detail, as we examine how these devices can be 
interconnected to support data processing applications. 

CPU a r c h i t e c t u r e s  

The central processing unit (CPU) is the core of a computer system and 
consists of the arithmetic logic unit (ALU) and the control unit. The ALU 
can come in a variety of configurations~from a single simple unit, up to 
extremely complex units that perform complex operations. The primary 
operation of the ALU is to take zero or more operands and perform the 
function called for in the instruction. In addition to the ALU, the CPU 
consists of a set of registers to store operands and intermediate results of 
computations and to maintain information used by the CPU to determine 
the state of its computations. For example, there are registers for the status 
of the ALU's operation, for keeping count of the instruction to be per- 
formed next, to keep data flowing in from memory or out to memory, to 
maintain the instruction being executed, and for the location of operands 
being operated on by the CPU. Each of these registers has a unique func- 
tion within the CPU, and each is necessary for various classes of computer 
architectures. A typical minimal architecture for a CPU and its registers is 
shown in Figure 1.3 and consists of a primary memory connected to the 
CPU via buses. There are registers in the CPU for holding instructions, 
instruction operands, and results of operations; a program location counter, 
containing either the location in memory for instructions or operands, 
depending on the decoding of instructions; and a program counter contain- 
ing the location of the next instruction to perform. 

The CPU also contains the control unit. The control unit uses the status 
registers and instructions in the instruction register to determine what func- 
tions the CPU must perform on the registers, ALU, and data paths that 
make up the CPU. The basic operation of the CPU follows a simple loop, 

I Chapter I 
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called the instruction execution cycle (Figure 1.4). There are six basic func- 
tions performed in the instruction loop: instruction fetch, instruction 
decode, operand effective address calculation, operand fetch, operation exe- 
cution, and next address calculation. This execution sequence represents the 
basic functions found in all computer systems. Variations in the number of 
steps are found based on the type and length of the instruction. 

I n s t r u c t i o n  a r c h i t e c t u r e s  

There are numerous ideas about how to organize computer systems around 
the instruction set. One form, which has come of age with the new power- 
fill workstations, is the reduced instruction set computer (RISC), where 
each instruction is simple, but highly optimized. On the far spectrum of 
architectures is the very long word instruction architecture, where each 
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instruction may represent an enormous processing function. A middle 
ground is the complex instruction set computer (CISC). 

Memory-addressing schemes 
There are also numerous ways in which to determine the address of an oper- 
and from an instruction. Each address computation method has its benefits 
in terms of instruction design flexibility. There are six major types of 
addressing computation schemes found in computers: immediate, direct, 
index, base, indirect, and two-operand. We will examine these further in 
Chapter 2. 

Memory  architectures 

Generally, a computer system's memory is organized as a regular structure, 
addressed using the contents of a memory address register and with data 
transferred through a memory data register (Figure 1.5). Memory architec- 
tures are based on the organization of the memory words. The simplest 
form is a linear two-dimensional structure. A second organization is the 
two-and-a-half-dimensional architecture. 

I10 architectures 

Input and output architectures are used by computer systems to move 
information into or out of the computer's main memory and have evolved 
into many forms. I/O architectures typically rely on the use of one element 
of the computer as the router of I/O transfers. This router can be the CPU, 
the memory, or a specialized controller. Chapter 2 discusses these architec- 
tures in greater detail. 

Memory 
Array 
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I Chapter I 



8 I. I Evolution of computer systems architectures 
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Figure 1.6 
Memory hierarchy. 
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Secondary storage and peripheral  
device architectures 

I/O devices connect to and control secondary storage devices. Primary 
memory has grown over the years to a fairly high volume, but still not to the 
point where additional data and program storage is not needed. The storage 
hierarchy (Figure 1.6) consists of a variety of data storage types. From the 
highest-speed memory element, cache, to the slowest-speed elements, such 
as tape drives, the tradeoff the systems architect must make is the cost and 
speed of the storage medium per unit of memory. Typical secondary storage 
devices include magnetic tape drives, magnetic disk drives, compact optical 
disk drives, and archival storage devices such as disk jukeboxes. 

Magnetic tape information storage provides a low-cost, high-density 
storage medium for low-access or slow-access data. An improvement over 
tape storage is the random access disk units, which can have either remov- 
able or internal fixed storage media. Archival storage devices typically are 
composed of removable media configured into some array of devices. 

N e t w o r k  architectures 

Networks evolved from the needs of applications and organizations to share 
information and processing capacity in real time. Computer networks pro- 
vide yet another input and output path for the computer to receive or send 
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information. Networks are architected in many ways: They could have a 
central switching element, share a central storage repository, or could be 
connected using intelligent interface units over a communications medium 
such as telephone wires or digital cables. The configuration used depends 
on the degree of synchronization and control required, as well as the physi- 
cal distribution between computers. Chapter 2 will examine some architec- 
tures and topology configurations for networked computer systems. 

I .  1.7 C o m p u t e r  architectures 

Computer architectures represent the means of interconnectivity for a com- 
puter's hardware components as well as the mode of data transfer and proc- 
essing exhibited. Different computer architecture configurations have been 
developed to speed up the movement of data, allowing for increased data 
processing. The basic architecture has the CPU at the core with a main 
memory and input/output system on either side of the CPU (see Figure 
1.7). A second computer configuration is the central input/output control- 
ler (see Figure 1.8). A third computer architecture uses the main memory as 
the location in the computer system from which all data and instructions 
flow in and out. A fourth computer architecture uses a common data and 
control bus to interconnect all devices making up a computer system (see 
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Figure 1.9 
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Figure 1.9). An improvement on the single shared central bus architecture is 
the dual bus architecture. This architecture either separates data and control 
over the two buses or shares them to increase overall performance (see Fig- 
ure 1.10). 

We will see how these architectures and elements of the computer sys- 
tem are used as we continue with our discussion of system architectures 
and operations. 

Evolut ion of da tabase  systems 

Database systems have been with us since the 1960s as research vehicles 
(first-generation products wrapped around the hierarchical and network 
data models) and since the mid 1980s as fully functional products using the 
relational data model. Since these early beginnings, database systems have 
evolved from simple repositories for persistent information to very powerful 
tools for information management and use. 

Database systems have been of interest to the computer systems 
performance analyst and to computer systems applications developers since 
the earliest days of commercial computers. Early computer systems lacked 
extensive on-line data storage (primary memory as well as secondary disk 
storage), forcing systems architects and developers to rely heavily on exter- 
nally archived information (typically stored in tape drives). Initial data stor- 
age repositories were constructed using simple direct addressing schemes 
that linked specific storage to a specific device and specific location on that 
device. For example, to extract a piece of information an application needed 
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to know what device a specific piece of information was stored on (e.g., disk 
01) and the exact address on that device (e.g., sector 05, track 22, offset 
255, length 1,024). Each device had its own unique way of storing, access- 
ing, and retrieving information, making it very difficult to port applications 
from one place to another. 

These initial repositories evolved to more robust file management sys- 
tems, driven by a move toward simplifying the application/system interface. 
The drive to simplification was motivated by application developers and 
operating systems evolutions to remove the complexity of the typical stor- 
age hierarchy from the user/developer side and place it in the operating sys- 
tem's side. The motivation was to do the interface at the operating system 
level to simplify the interface. The initial file systems offered a simple inter- 
face, where applications could access persistently stored information logi- 
cally by file name instead of physically by specific address paths. These 
initial file management systems offered the means for an application to log- 
ically persistently store information for future retrieval and use. Initial file 
systems offered a simple interface and implementation to store and retrieve 
information using coarse semantic means. One could open a file, read the 
record-oriented contents of a file, write a record or entire file, and close the 
file. Information within the file had no meaning to the control software of 
the operating system or to the database system. The file management soft- 
ware knew about entry points to a file, or subset of a file, but nothing con- 
cerning details of information content within the file. These early file 
systems and their crude access schemes served the needs of early mainframe 
machines, where jobs were run in a sequence and no sharing between jobs 
was explicitly required at run time. 

The advent of multiuser operating systems, and multiuser applications' 
evolving needs for concurrent access to information stored in file systems, 
spawned the need for database systems to evolve from single user persistent 
stores into multiuser concurrent database systems. Multiuser and 
multiprocessing computer systems demanded that stored information 
within the application's computer system's file system be available for shar- 
ing. In addition, this information was not only to be shared, but was to be 
done so in a dynamic manner. Information storage, access, and retrieval~ 
within such evolving systems~needed more controls in order that informa- 
tion could be shared, yet remain correct and consistent from the perspective 
of all applications using it. 

One problem with information sharing within the context of these new 
systems was security~how do you allow only the owner, or group of users, 
to access or alter a file while still providing for access by others? In concert 
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with this issue was access integrity~how to keep data intact and correct 
while multiple users access, modify, add, or delete information. Initially, file 
systems addressed most of these concerns by adding access controls, such as 
locks, and access lists to file managers to control such access, but these did 
not accomplish the intended goals. Though these were admirable enhance- 
ments, they were far too crude to allow applications true sharing of on-line 
data. Files needed to be further decomposed into finer-grained elements if 
finer concurrency of access were to be achieved. Simple file-level locking 
resulted in longer waits and reduced availability of data for use by other 
applications. 

To alleviate these problems, file systems added finer-grained definitions 
of stored information. For example, files evolved from unstructured data to 
structured, record-oriented collections of information, where each record 
had a specific head and tail, as well as semantic meaning for the file system 
and its organization. At first, semantic meanings may have simply repre- 
sented the order of occurrence in a file system. Semantics of data dealing 
with structure led to added organization of files by using records as the fun- 
damental units of organization for applications-required information and 
for environmental storage. Records provided a mechanism from which to 
construct more complex storage structures. Records became the granularity 
of storage used to construct file organization as well as access schemes. It 
became easy to find a record within a file, since files became composed of 
collections of records. Through such means, access controls such as record- 
locking techniques evolved to control how access was to be allowed to these 
files and encased records. 

It was only a matter of time before records, grouped into files, took on 
further semantic meaning and became the focal point for organizing infor- 
mation. For example, to define a group of students, a set of records could be 
defined so that each record holds the information needed to define a single 
student. To organize the students in a way that the application can use 
them, a file system could allocate one region of a file for storage of these 
records or could provide a means to link related records in a chain using 
some control strategy. 

This structural concept for information focused around records led to 
one of the first database system storage concepts and access schemes, 
referred to as the network database model. The network database model 
organizes data as linked lists or chains of related information. In the net- 
work data model, any information that has a relationship to some other 
piece of stored information must have a physical link to the related pieces of 
information. The network database structuring model was formalized into 
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the CODASYL database language standard and was widely implemented 
but never found acceptance as a true standard. Network database systems 
became the mainstay of most early information systems until the advent of 
the relational database system in the 1970s. The network database systems 
began to lose their luster in the mid to late 1970s into the early 1980s due 
to their inherent complexity and limitations. The network model requires 
information to be physically linked if a logical relationship between infor- 
mation is required. This implied that as the number of logical relationships 
between information items increased so did the required number of physi- 
cal links to capture these logical relationships. 

This added metadata requirement caused the complexity of applications 
to increase exponentially in size, making this model a poor choice for any 
system that would grow and change over time. The loss of a single link 
could result in the database becoming useless to the original application it 
was developed for. The complexity of the chains constructed within an 
application over time made the maintenance of such systems very expen- 
sive. Another detriment to this database model is encountered when one 
attempts to access stored information within this data model. To access 
information, the database must be entered at a specific entry point, fol- 
lowed by the traversal of data chains (paths) defined by the encoded rela- 
tionships between the data items. This does not mean that the needed 
information will be found; the paths could be traversed and end in the end 
of the path being encountered with no data being found. There are no ways 
to bypass paths. To find specific data items one must traverse the path lead- 
ing to this item and no other, if the information is to be located. 

These and other limitations with the network database model led to the 
gradual demise of the model. An issue to consider with the network model 
is its legacy. Even though this model has not been the prevalent model of 
new applications over the last 20 years, there are still many databases con- 
structed from this model due to its early entrance and long use in the infor- 
mation community. It is highly unlikely that all or even a majority of this 
information will be rehosted in a newer data model such as the relational 
model. Due to this large volume of legacy information, this model must be 
understood from its impact on the past, present, and future of information 
management systems. New systems, if they have a reach beyond their local 
system, will possibly be required to interact with such legacy systems, neces- 
sitating the understanding of their impact on performance. 

The network database system's demise began with the development and 
publication of Codd's relational database model and seminal paper pub- 
lished in the early 1970s. The fundamental premise of the paper was that all 
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information in the database system can be formed into tables called rela- 
tions. These relations have a regular structure, where each row of the table 
has the same format. Relationships between tables are defined using con- 
cepts of referential integrity and constraints. The fundamental way one 
operates on these tables is through relational algebra and calculus tech- 
niques. This paper's publication was followed by an experimental system 
built by IBM called system R and another developed by university research 
called Ingress. These early developments had as their goal the proof of the 
relational database's theories. The relational model on paper showed much 
promise, but constructing software to make it real was a daunting task. A 
fundamental major difference in the two models is found in their model for 
data acquisition. The network model is a procedural model, where a user 
tells the system how to find the needed information, whereas the relational 
model is nonprocedural, where one states what one wants and lets the "sys- 
tem" find the information. 

This shift in the fundamental way the database finds information was a 
very significant one--the ramifications of which the industry still improves 
upon. A fundamental need in the new model was system services to find 
information. This system service is called "query processing." The funda- 
mental function of query processing is to determine, given a user's query, 
how to go about getting the requested piece of information from the rela- 
tions stored in the database. Query processing led to further improvements 
in accessing information from the database. One primary improvement was 
in query optimization. The goal of query optimization is to find ways to 
improve on the cost of extracting information from the database and do this 
in real time. 

These early relational database systems were instrumental in the devel- 
opment of many concepts wrapped around improving concurrency of 
access in database systems. The concept of concurrent access was not 
present in early network-based databases. The theory of serializability as a 
correctness criterion evolved from the relational model and its fundamental 
theories, motivated by a need to have correct and concurrent access to 
stored information. The serializability theory and concurrency control led 
to further improvements in database technology. In particular, concepts for 
transactions followed next--along with theories and concepts for recovery. 
The fundamental tenet of transactions and transaction processing is that 
they execute under the control of the 'TkCID" properties. These properties 
dictate that transactions execute "atomically" (all or nothing), "consistently" 
(all constraints on data correctness are valid), "isolated" (transactions exe- 
cute as if done in isolation), and "durable" (effects of transaction execution 
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are not alterable except by another transactions execution). To guarantee 
these properties requires concurrency control and recovery. 

The relational model and relational databases led the way during the 
1980s in innovations and growth within the database industry. Most of the 
1980s was spent refining the theories of correctness for databases and for 
their fundamental operation: the transaction. In addition to these funda- 
mental improvements, the 1980s saw the improvement of the modeling 
capability of the model. 

This period was followed by another, which we'll call the object-oriented 
period. During this period of time, the late 1980s and early 1990s, the need 
of applications developers to more closely match the data types of their 
applications with those provided by the database drove the need for more 
semantic richness of data specification and operations on these data. The 
object-oriented databases of this period met this need. The problem with 
these early object-oriented databases was that they did not possess some of 
the fundamental concepts developed during the evolution and growth of 
the relational database systems. 

The late 1990s and the beginning of the twenty-first century saw the 
merger of the relational model with the object-oriented database model~ 
forming the object relational database model. This model was embraced by 
the U.S. and international standards bodies as one worth refining and sup- 
porting for growth. The major national and international vendors have 
embraced this model as the next great database evolution and are all pres- 
ently building products around the newly adopted standard with some of 
their own extensions. 

It appears after this revolution that the next major change in the data- 
base arena will probably come in the area of transactions and transaction 
processing. The conventional model wrapped around the concept of a flat 
or single-tiered transaction execution segment controlled strictly by the 
ACID properties may be altered. There is much research and development 
looking at a variety of alternative execution models and theories of correct- 
ness that may lead us into the next decade of database improvements. 

Evolution of operating systems 

A modern operating system is computer software, firmware, and possibly 
hardware that interact at a low level with the computer system's hardware 
components to manage the sharing of the computer's resources among vari- 
ous software applications. The goal of this piece of systems software is to 
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allow for the fair sharing of these resources among any and all active jobs 
within the system. An operating system runs as the most privileged of soft- 
ware elements on the system and requires basic hardware support for inter- 
rupts and timers to effect control over executing programs. 

Operating systems evolved over a long period of time, driven as much by 
the hardware available as the needs of the applications running on the 
machines. In the beginning, there were few tools available to enhance the 
usefulness of a computer to the general populace, and they were relegated to 
be used by a select few who could trudge through the translation of real 
problems into sequences of simple machine instructions. These machine 
instructions were at first in microcode (the lowest form of software) or 
assembly code. In either case there were no controls over what the coder did 
with the computer system. These early coders required great talent to be 
able to master the art of changing a problem such as missile guidance into 
the software required to carry it out. These early coders simply loaded the 
software into the machine at a specific memory location and indicated to 
the hardware to begin processing the job. The machine would continue 
processing this same job until the machine detected an error (such as an 
overflow) or there was a stop command issued to the machine. There were 
no automated means to switch from one job to another. 

The first operating system problem tackled by systems programmers to 
change this situation was to develop a means to transition from one job to 
another processing job without the need to stop the machine, enter the new 
program, and start it up again, as was the case in the past. The monitor or 
batch operating system concept provided the solution to this early defined 
problem. These early systems offered means for operators to load several 
jobs at one time; the computer system then performed them in a sequential 
manner. As one job completed, the operating systems software would take 
over control of the machine's hardware, set it up for the next job, and then 
release control back to the new job, which then ran to completion. 
Although this was a step in the right direction, the expensive computer sys- 
tems of the day were not being efficiently utilized. New devices were being 
developed to aid in input and output (early terminals) and storage 
(improved disk drives, tape units), but the control mechanisms to use them 
efficiently still were not there. 

These new computer peripheral devices, which were coming into place 
in the 1970s, provided the impetus for systems designers to find ways to 
make them more fully utilized within the system. One of the biggest drivers 
was the input/output terminal. These demanded that the system provide 
mechanisms for the operators to input code and data and to request compi- 
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lation, linking, loading, and running of their jobs as if they were running 
alone on the machine, when in reality there would be many users on the 
machine concurrently. The system management service developed to meet 
these demands was called the executive program. 

The executive program provided policies and mechanisms for programs 
and devices such as terminals to run concurrently under control of the exec- 
utive's watchful eye. The function was to control interaction so that devices 
did not interfere with each other in running their jobs on the machine. 
They still, however, pretty much ran one at a time on the machine. This 
crude operating system provided many of the rudimentary services expected 
from an operating system and became the vehicle upon which many inno- 
vations were developed. 

Research carried out on these early executive programs led to supervi- 
sor programs, which took on more functions from the systems operators 
and coders. The supervisor programs provided rudimentary services for 
"swapping" of programs from primary memory and control over the CPU 
based on the concept of time slices. Following the success of these devel- 
opments came the first true operating systems in the 1960s. Many of the 
services found in modern operating systems today have their roots in this 
early system. 

Generically, an operating system provides the following services: 

1. Hardware management (interrupt handling, timer management) 

Interprocess synchronization and communications 

Process management 

Resource allocation (scheduling, dispatching) 

5. Storage management and access (I/O) 

6. Memory management 

File management 

8. Protection of system and user resources 

An operating system begins with the management of a computer system's 
hardware. Hardware management requires the ability to set limits on the 
holding of resources and the ability to transfer control from an executing 
program back to the operating system. These functions are realized through 
the use of hardware timers and interrupt services. A hardware timer is a 
counter that can be set to a specific count (time period). When the time 
expires, an interrupt signal is released, which stops the processor, saves the 
processor's state (saves all active register contents, ALU registers, status regis- 
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ters, stack pointers, program counters, instruction registers, etc.), and turns 
control over to an interrupt service routine. The interrupt service routine 
examines the contents of predefined registers (e.g., the CPU status register or 
a predefined interrupt register) or sets memory locations and determines 
what operations are to be performed next. Typically, control is immediately 
turned over to the operating system's kernel for servicing of the interrupt. 

The goals of these services and developments had one common thread: 
to make more efficient use of computing facilities. They were meant to pro- 
vide convenient interfaces to users while hiding the details of the bare 
machine from them. The operating system provides for transparent use of 
computing resources, relieving users and operators from the burden of 
needing to know the particular system's configuration. The operating sys- 
tem also provided users and systems programmers protection from acciden- 
tal or malicious destruction, theft, or unauthorized disclosure. 

The most obvious accomplishment of an operating system is the hiding 
of the computing platform's details and the optimal use of resources. Users 
need not know what particular device they are using, only that they need 
one of a certain class of device (e.g., a tape or disk). This shields users from 
the problems of down components. If it were necessary to specify a particu- 
lar device that was not available, work might not be able to go on. If the 
user can specify a class of device, any one of that type can meet the need, 
increasing the ability of the user to get the job done. 

The systems programmers and the hardware and software researchers 
did not end their quest for perfection at this point. There were more areas 
to be looked at, and system problem areas needed to have solutions devel- 
oped for them. Sharing of resources introduced its own set of problems. As 
systems became more usable, more uses were envisioned and implemented. 
Systems began to meet the raw processing capacity of the machines. 
Designers needed to find ways to get additional resources to improve proc- 
essing cycles for user applications. Software developers looked to streamline 
computational complexity of the operating system, providing some relief. 
Hardware designers improved the computational capacity of the systems 
through improved architectures and instruction execution schemes. All 
such improvements, however, were only temporary. 

The research and development community began to look at ways to 
improve performance within fixed or marginally improving processor per- 
formance. The problem is that no matter how much we improve the 
performance of a processor, it will still have a limited amount of available 
cycles for applications and required systems services. The initial concept 
looked at was not to grow single processing power, which is limited, but to 
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instead add entire new processors. This concept was initially examined as 
part of architecture improvements in the 1980s. The multiple processors 
could each be set up to run their local operating systems, with added serv- 
ices to allow remote systems to request services (resources) from another 
machine that was not busy or not fully utilized. By using these systems calls, 
multiple processors running separate operating systems could be synchro- 
nized to perform a single, larger processing task in much less time. The 
effective improvement in performance, however, is not simply the multipli- 
cative factor of the number of machines but some fraction of this computa- 
tion. This is due to the added overhead to synchronize the operations of the 
loosely coupled systems. 

These systems led to further research and experimentation. If loosely 
coupled machines could be collected and grouped together to perform 
larger functions, why couldn't they be grouped in a tightly bound fashion to 
perform large computational applications that could not be done on a sin- 
gle machine? These new systems were called "distributed processors." What 
distinguishes these classes of systems from their loosely coupled multipro- 
cessor counterparts is the degree of cohesiveness the processors exhibit. The 
processor's operating system is a single global operating system, which is 
spread across the machines in a variety of ways. In one case the entire oper- 
ating system can be replicated on each site, with individual processors only 
needing additional state information to indicate what their function is and 
what their state presently is in relation to the entire distributed systems 
state. The second configuration uses the concept of partitioning the operat- 
ing systems components across the various sites of the distributed computer 
system. Each processor then has a specific function~for example, process 
scheduling or device access. 

These new operating systems concepts are still being examined in the 
realm of research and have not as yet found their way into the mainstream 
systems. On the other hand, we have client/server processing, which uses a 
form of the multiprocessing operating systems to provide for remote access 
to resources. They differ, however, in not enforcing strict synchronization 
requirements on client/server processing. Many additional protocols have 
been developed to provide this form of processing, which is prevalent in 
most products one uses today for computing remotely over the Web. 

Evolut ion of c o m p u t e r  ne tworks  

The term network can mean many different things. It can imply an inter- 
connection of railway tracks for the rail network; highways and streets for 

I Chapter I 



20 1.4 Evolution of computer networks 

transportation networks; telephone lines and switching centers for the 
phone network; coaxial lines for the cable television network; fiber lines for 
cable communications networks; or the interconnection of service centers, 
businesses, and so on to form a network. All of these configurations refer to 
the means to tie together various resources so that they may operate as a 
group, realizing the benefits of numbers, sharing, and communications in 
such a group. 

In computer systems terminology of a network is a combination of 
interconnected computing equipment and programs used for moving infor- 
mation (and computations) between points (nodes) in the network where it 
may be generated, processed, stored, or used in whatever manner is deemed 
appropriate. The interconnection may take on many forms, such as dedi- 
cated links, shared links, telephone lines, microwave links, and satellite 
links. Networks in this sense form a loose coalition of devices that share 
information. This was one of the first uses of a network, although it was not 
the last. Users found that the network could offer more than just informa- 
tion sharing; it could offer other services for remote job execution and ulti- 
mately distributed computing. 

The earliest concept of a network was of a loose binding together of 
devices or resources for sharing. An early computer communications net- 
work that exhibited these traits was the ARPANET. ARPANET was first 
brought on-line in 1969 as a research tool to investigate long-haul network 
issues and to provide a tool for research and development solutions. It has 
evolved into the Internet, connecting millions of computers over local area 
networks, metropolitan area networks, and other wide area networks. 
ARPANET provided the vehicle for early research into communications 
protocols dealing with congestion, control, routing, addressing, remote 
invocation, distributed computing, distributed operating systems and ser- 
vices, and many other areas. 

The reasons for using networks such as ARPANET were to provide 
greater availability and access to a wider range of devices. Early applications 
of computers dealt with performing engineering tasks and major data proc- 
essing functions. As the technology of computers changed, and as research- 
ers and users alike added more and more applications, information access 
and manipulation took on greater emphasis. 

Earlier networks provided the necessary information exchange services 
but were limited to basically just this service. The information availability 
stimulated more imaginative uses of this information. As this occurred and 
the technology of networks improved, new applications arose. These new 
applications not only used information exchange but also remote job execu- 
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tion. It began simply as sending a batch job down the link to a less busy 
host, having the job completed there, and then shipping the results back to 
the originator. 

This sufficed for awhile, but it still did not provide the real-time or 
interactive environments that users were beginning to become accustomed 
to, including more advanced protocols and network operating systems to 
provide further services for remote job invocation and synchronization. The 
era of the local area network was coming. The wide area networks' biggest 
shortfall was in throughput or turnaround time for jobs and interprocessor 
communications. Because of the wide distances, delays of seconds were 
commonplace and caused added overhead in performing otherwise simple 
tasks. Network designers saw the need to provide another link in the net- 
work: the local area network. 

Local area networks began showing up on the networking landscape in 
the early to mid 1970s as mostly research activities in universities and gov- 
ernment laboratories. It was not until Ethernet was released in the mid 
1970s that LANs became more widely available. Since that time, numerous 
LAN designs have been produced to fit an extremely wide spectrum of user 
requirements~for example, the fiber ring. Additionally, standards have 
evolved, providing basic LAN topologies and their services to a greater 
number of users. 

Local area networks are finding their way into all aspects of modern soci- 
ety. We find them in our homes through cable modems and phone modems, 
automobiles via wireless technologies, banking (e.g., ATMs), schools via 
Internet connections, businesses, government, and industry. There are not 
too many aspects of information exchange and data processing in which a 
LAN cannot be found. Local area networks and their associated technologies 
represent one of the great growth areas of the 1990s and early 2000s. As 
more and more LANs become available, so will new products and uses for 
them. LANs are used to connect all personal computers in offices, class- 
rooms, factory floors, retail establishments, and now even many homes. 
They are used in these environments to send memoranda, issue directives, 
schedule meetings, transmit documents, send e-mail, discover new informa- 
tion, and process large volumes of data concurrently at many sites. 

LANs are used to link factory robots together with area and factory 
controllers. They provide sensor data, control data, and feedback to the 
control centers, while at the same time providing a vehicle to issue pro- 
duction changes and notices to users and robots alike. A fine example of a 
local area network providing diverse services to the users is seen in Walt 
Disney World. Disney uses LANs and computers to monitor all aspects of 
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services, including fire protection, scheduling, ride management, on-line 
information, security, personnel services, and a plethora of other park 
management functions. Large banks, such as the World Bank, have 
adopted LANs as the means to interconnect their various local sites into 
smaller networks linked together by wide area networks. However, the 
LAN is not for everyone. 

Network evolution has not stopped there. As wireless technology has 
improved, so has the interest in networking vendors to provide their services 
to users of these domains. Wireless networks began fairly quietly in the 
1970s with the Aloha net as the foundation. Since then, wireless phone net- 
work development has opened the door for computer networks. Today one 
of the great growth areas in networking will be in further developing wire- 
less networks and integrating these into existing LAN and WAN networks 
to provide an even wider array of applications to the wireless cell phone 
community. 

Need for  per formance evaluat ion 

Selecting a specific computer architecture for an application, an operating 
system, a database system, or a wide area or local area network system that 
will provide the optimum service to users requires up-front analysis and 
knowledge. As indicated, a specific computer architecture, operating sys- 
tem, database, and/or LAN are productivity-enhancing tools, but, as with 
other tools, if they are not used properly, they can actually decrease produc- 
tivity. An operating system can provide a means to increase concurrency of 
access and to improve overall system resource utilization or it can become a 
bottleneck by blocking access. A database system can provide the means to 
more efficiently share information among many applications in a correct 
and concurrent manner or it can cause extensive blocking of information by 
dropping data availability. ALAN can provide a means to streamline infor- 
mation processing and eliminate redundancies, but it may also deter users 
from logging on because of link or protocol problems. To the common user, 
operating systems resource management, data processing, data extraction, 
data communications, and local area networks are a black hole of protocols, 
access schemes, routing algorithms, cabling and topology issues, and service 
problems. To alleviate these problems, the users should be educated about 
the basics of computer architecture, operating systems, database systems, 
and local area network technology and be provided with metrics and tools 
with which they can adequately wade through the myriad issues and select a 
computer system mapped to their needs. 
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When you look at the many options available for prospective computer 
systems purchasers to evaluate, you can see the reasons for their distress. A 
computer system can be very simple, providing just a single central process- 
ing unit, single primary memory bank, a single I/O channel for peripheral 
device access, and a single network link to interconnect to another machine. 
Conversely, the computer system can be highly elaborate, with multiple 
processors; cache memory; a high-tech associative memory system; SCSI 
controlled disk banks; specialized graphics engines; and possibly its own dis- 
tributed operating system, protocols, and services. The prospective com- 
puter system purchaser must decide what type of motherboard(s) is 
required and how many of these; what type of memory and its architecture; 
what form of operating system, database system, and network cabling is 
necessary; and the types of electrical characteristics, signaling scheme, pro- 
tocol for controlling transfers, routing schemes, topology of interconnec- 
tion, reliability requirements, system and component fault tolerance if 
necessary, services, interface characteristics and requirements, and numer- 
ous other aspects. The extent of control, understanding, and compatibility 
with other equipment a user requires will decide which of these and other 
issues need to be addressed before a computer system is purchased. 

1.6 Role of performance evaluation 
in computer  engineering 

Presently there is a great deal of interest and activity in the design and use of 
computer systems, such as centralized, vector, parallel, distributed, and cli- 
ent/server architectures. These computer systems are being researched, 
developed, produced, and marketed by individuals and organizations from 
government, industry, and academia. These research and development 
activities are motivated by the rapidly changing technologies of devices, 
software and systems, increased performance requirements, increasing com- 
plexity and sophistication of basic building blocks, peripherals, intercon- 
nections and control, the constant demand for improved reliability and 
availability, and the increasing reliance of organizations on the use of com- 
puter facilities in all aspects of business. 

Present desktop computer systems provide more features than were pre- 
viously available in a single, large time-sharing system. Specifically, some 
features include the sharing of resources on a much more global scale, as 
well as the fulfillment of system requirements such as expandability, flexibil- 
ity, availability, reliability, reconfigurability, fault tolerance, graceful degra- 
dation, responsiveness, speed, throughput capacity, logical complexity, and 
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ease of development (modularity). Another appealing feature of contempo- 
rary computer systems is their ability to bring the computing power to the 
user without sacrificing the ability to get at all the available information 
assets from the business. 

The optimal design and/or selection of a computer system is, therefore, 
of the utmost importance if the target computing facility is to provide new 
and improved services over what is presently available to the target domain 
application. But how does one go about doing this? What techniques and 
tools are available for this purpose? These are among the questions that this 
book will address for the computer systems architect, researcher, designer, 
purchaser, or student. It is set up to cover the essentials of modeling and 
analysis of computer systems hardware and software environments. Covered 
topics include the basic technologies associated with computer systems 
hardware, software, and networking; details of modeling techniques used to 
study computer hardware and software configurations; and the description 
of software tools that have been used to model such systems. 

Overv iew of per formance  evaluat ion methods 

Models provide a tool for users to define a system and its problems in a con- 
cise fashion; they provide vehicles to ascertain critical elements, compo- 
nents, and issues; they provide a means to assess designs or to synthesize and 
evaluate proposed solutions; and they can be used as predictions to forecast 
and aid in planning future enhancements or developments. In short, they 
provide a laboratory environment in which to study a system even before it 
exists or without actually effecting an actual implementation. In this light 
models are descriptions of systems. Models typically are developed based on 
theoretical laws and principles. They may be physical models (scaled repli- 
cas), mathematical equations and relations (abstractions), or graphical rep- 
resentations. Models are only as good as the information put into them. 
That is, modeling of a system is easier and typically better if: 

• Physical laws are available that can be used to describe it. 

• Pictorial (graphical) representations can be made to provide better 
understanding of the model. 

• The system's inputs, elements, and outputs are of manageable mag- 
nitude. 

These all provide a means to construct and realize models, but the prob- 
lem typically is that we do not have clear physical laws to go by; interactions 
can be very difficult to describe; randomness of the system, environment, or 
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Figure 1.11 
Modelingprocess. 

Abstraction process 

users causes problems; and policies that drive processes are hard to quantify. 
What typically transpires is that a "faithful" model of a system is con- 
structed: one that provides insight into a critical aspect of a system, not all 
of its components. That is, we typically model a slice of the real-world sys- 
tem. What this implies is that the model is an abstraction of the real-world 
system under study. With all abstractions, one must decide what elements 
of the real world to include in the abstraction~that is, which ones are 
important to realize as a "faithful" model. What we are talking about here is 
intui t ion~that  is, how well a modeler can select the significant elements; 
how well these elements can be defined; and how well the interaction of 
these significant elements is within themselves, among themselves, and with 
the outside world. 

Mode ls  

As stated previously, a model is an abstraction of a system. (See Figure 
1.11.) The realism of the model is based on the level of abstraction applied. 
That is, if we know all there is about a system and are willing to pay for the 
complexity of building a true model, the abstraction is near nil. On the 
other hand, in most cases we wish to abstract the view we take of a system 
to simplify the complexities. We wish to build a model that focuses on some 
element(s) of interest and leave the rest of the system as only an interface 
with no detail beyond proper inputs and outputs. 

1.7.1 
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Figure 1.12 
Abstraction of a 

system. 

1.7 .2  
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The "system," as we have been calling it, is the real world that we wish to 
model (e.g., a bank teller machine, a car wash, or some other tangible item 
or process). In Figure 1.12 a system is considered to be a unified group of 
objects united to perform some set function or process, whereas a model is 
an abstraction of the system that extracts the important items and their 
interactions. 

The basic concept of this discussion is that a model is a modeler's subjec- 
tive view of the system. This view defines what is important, what the pur- 
pose is, detail, boundaries, and so on. The modeler must understand the 
system in order to provide a faithful perspective of its important features 
and to make the model useful. 

M o d e l  c o n s t r u c t i o n  

In order to construct a model, we as modelers must follow predictable 
methodologies in order to derive correct representations. The methodology 
typically used consists of top-down decomposition and is pertinent to the 
goal of being able to define the purpose of the model or its component at 
each step and, based on this purpose, to derive the boundaries of the system 
or component and develop the level of modeling detail. This iterative 
method of developing purpose, boundaries, and modeling level smooths 
out the rough or undefinable edges of the actual system or component, 
thereby focusing on the critical elements of it. 

The model's inputs are derived from the system under study as well as 
from the performance measures we wish to extract. That is, the type of 
inputs are detailed not only from the physical system but through the 
model's intended use (this provides the experimental nature of the model). 
For instance, in an automated teller machine, we wish to study the useful- 
ness of fast service features, such as providing cash or set amounts of funds 
quickly after the amount has been typed in. We may decide to ignore details 
of the ATM's internal operations or user changes. 
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The model would be the bank teller machine, its interface, and a model 
(analytical, simulation) of the internal process. The experiment would be to 
have users (experimenters) use the model as they would a real system and 
measure its effectiveness. The measures would deal with the intent of the 
design. That is, we would monitor which type of cash access feature was 
used over another, which performed at a higher level, or which features were 
not highly utilized. 

The definition of the required performance measures drive the design 
and/or redesign of the model. In reality, the entire process of formulating 
and building a model of a real system occurs interactively. As insight is 
gained about the real system through studying it for modeling purposes, 
new design approaches and better models and components are derived. 
This process of iteration continues until the modeler has achieved a level of 
detail consistent with the view of the real system intended in the model- 
purpose development phase. The level of detail indicates the importance of 
each component in the modeler's eye as points that are to be evaluated. 

To reiterate, the methodology for developing and using a model of a sys- 
tem is as follows: 

1. Define the problem to be studied as well as the criteria for analysis. 

2. Define and/or refine the model of the system (includes develop- 
ment of abstractions of the system into mathematical, logical, and 
procedural relationships). 

3. Collect data for input to the model (define the outside would and 
what must be fed to or taken from the model to "simulate" that 
world). 

Select a modeling tool and prepare and augment the model for 
tool implementation. 

Verify that the tool implementation is an accurate reflection of 
the model. 

Validate that the tool implementation provides the desired accu- 
racy or correspondence with the real-world system being modeled. 

Experiment with the model to obtain performance measures. 

Analyze the tool results. 

Use these findings to derive designs and improvements for the 
real-world system. 
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Although some of these steps were defined previously, they will be read- 
dressed here in the context of the methodology. 

The first task in the methodology is to determine what the scope of the 
problem is and if this real-world system is amenable to modeling. This task 
consists of clearly defining the problem and explicitly delineating the objec- 
tives of the investigation. This task may need to be reevaluated during the 
entire model construction phase because of the nature of modeling. That is, 
as more insight comes into the process, a better model, albeit a different 
one, may be developed. This involves a redefinition of questions and the 
evolution of a new problem definition. 

Once a problem definition has been formulated, the task of defining and 
refining a model of this real-world problem space can ensue. The model 
typically is made up of multiple sections that are both static and dynamic. 
They define elements of the system (static), their characteristics, and the 
ways in which these elements interact over time to adjust or reflect the state 
of the real system over time. As indicated earlier, this process of formulating 
a model is largely dependent on the modeler's knowledge, understanding, 
and expertise (art versus science). The modeler extracts the essence of the 
real-world system without encasing superfluous detail. This concept 
involves capturing the crucial (most important) aspects of the system with- 
out undue complexity but with enough to realistically reflect the germane 
aspects of the real system. The amount of detail to include in a model is 
based mainly on its purpose. For example, if we wish to study the user 
transaction ratio and types on an automated teller machine, we only need 
model the machine as a consumer of all transaction times and their types. 
We need not model the machine and its interactions with a parent database 
in any detail but only from a gross exterior user level. 

The process of developing the model from the problem statement is iter- 
ative and time consuming. However, a fallout of this phase is the definition 
of input data requirements. Added work typically will be required to gather 
the defined data values to drive the model. Many times in model develop- 
ment data inputs must be hypothesized or be based on preliminary analysis, 
or the data may not require exact values for good modeling. The sensitivity 
of the model is turned into some executable or analytical form and the data 
can be analyzed as to their effects. 

Once the planning and development of a model and data inputs have 
been performed, the next task is to turn it into an analytical or executable 
form. The modeling tool selected drives much of the remainder of the work. 
Available tools include simulation, analytical modeling, testbeds, and opera- 
tional analysis. Each of these modeling tools has its pros and cons. Simula- 
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tion allows for a wide range of examinations based on the modeler's 
expertise; analytical analysis provides best, worst, and average analysis but 
only to the extent of the modeler's ability to define the system under study 
mathematically. Testbeds provide a means to test the model on real hardware 
components of a system, but they are very expensive and cumbersome. 
Operational analysis requires that we have the real system available and that 
we can get it to perform the desired study. This is not always an available 
alternative in complex systems. In any case, the tool selected will determine 
how the modeler develops the model, its inputs, and its experimental payoff. 

Once a model and a modeling tool to implement it have been devel- 
oped, the modeler develops the executable model. Once developed, this 
model must be verified to determine if it accurately reflects the intended 
real-world system under study. Verification typically is done by manually 
checking that the model's computational results match those of the imple- 
mentation. That is, do the abstract model and implemented model do the 
same thing and provide consistent results? 

Akin to verification is validation. Validation deals with determining if 
the model's implementation provides an accurate depiction of the real- 
world system being modeled. Testing for accuracy typically consists of a 
comparison of the model and system structures against each other and a 
comparison of model tool inputs, outputs, and processes versus the real sys- 
tem for some known boundaries. If they meet some experimental or model- 
ing variance criteria, we deem the model an accurate representation of the 
system. If not, the deficiencies must be found, corrected, and the model 
revalidated until concurrence is achieved. 

Once the tool implementation of the model has been verified and vali- 
dated, the modelers can perform the project's intended experiments. This 
phase is the one in which the model's original limitations can be stretched 
and new insights into the real system's intricacies can be gained. The limita- 
tions on experimentation are directly related to the tool chosen: Simulation 
is most flexible followed by testbeds, analytical analysis, and operational 
analysis. 

Once experimentation is complete, an ongoing analysis of results is 
actively performed. This phase deals with collecting and analyzing experi- 
mentally generated data to gain further insight into the system under study. 
Based on the results generated, the modeler feeds these results into the deci- 
sion-making process for the real-world system, potentially changing its 
structure and operations based on the model's findings. A study is deemed 
successful when the modeling effort provides some useful data to drive the 
end product. The outputs can solidify a concept about the system, define a 
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1.7.3 

deficiency, provide insight into improvements, or corroborate other infor- 
mation about the system. Modeling is a useful tool with which to analyze 
complex environments. 

Modeling tools 

As was briefly indicated in the previous section, there are major classes of 
modeling tools in use today: analytical, simulation, testbed, and operational 
analysis. Each has its niche in the modeler's repertoire of tools and is used 
for varying reasons, as will be discussed later in the book. 

Analytical modeling tools 
Analytical modeling tools have been used as an implementation technique 
for models for quite some time, the main reason being that they work. Ana- 
lytical implementations of models rely on the ability of the modeler to 
describe a model in mathematical terms. Typically, if a system can be 
viewed as a collection of queues with service, wait, and analytical times 
defined analytically, queuing analysis can be applied to solve the problem. 
Other analytical tools such as Petri nets can also be applied to the solution 
of such problems. 

Some of the reasons why analytical models are chosen as a modeling tool 
are as follows: 

1. Analytical models capture more salient features of systems~that 
is, most systems can be represented as queuing delays, service 
times, arrival times, and so on, and, therefore, we can model from 
this perspective, leaving out details. 

2. Assumptions or analysis is realistic. 

3. Algorithms to solve queuing equations are available in machine 
form to speed analysis. 

What is implied by this is that queuing models provide an easy and con- 
cise means to develop analysis of queue-based systems. Queues are waiting 
lines, and queuing theory is the study of waiting line dynamics. 

In queuing analysis at the simplest level (one queue), there is a queue 
(waiting line) that is being fed by incoming customers (arrival rate); the 
queue is operated by a server, which extracts customers out of the queue 
according to some service rate (see Figure 1.13). 

The queue operates as follows: An arrival comes into the queue, and, if 
the server is busy, the customer is put in a waiting facility (the queue) unless 
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Figure 1.13 
Single server queue. 

the queue is full, in which case the customer is rejected (no room to wait). 
On the other hand, if the queue is empty, the customer is brought into the 
service location and is delayed the service rate time. The customer then 
departs the queue. 

In order to analyze this phenomenon we need to have notational and 
analytical means (theories) with which to manipulate the notation. Addi- 
tionally, to determine the usefulness of the technique, we need to know 
what can be analyzed and what type of measure is derived from the queue. 

The notation used (see Figure 1.13) to describe the queue phenomenon 
is as follows: The arrival distribution defines the arrival patterns of custom- 
ers into the queue. These are defined by a random variable that defines the 
interarrival time. A typically used measure is the Poisson arrival process, 
defined as: 

P (arrival time) - 1 - e -~ (1.1) 

where the average arrival rate is ~. The queue is defined as a storage reser- 
voir for customers. Additionally, the policy it uses for accepting and remov- 
ing customers is also defined. Examples of queuing disciplines typically 
used are first-in first-out (FIFO) and last-in first-out (LIFO). The last main 
component of the queue description is the service policy, which is the 
method by which customers are accepted for service and the length of the 
service. This service time is described by a distribution, a random variable. 
A typical service time distribution is the random service given by: 

Ws(t) - 1 - e - ' t  (1.2) 

where t >> 0, and the symbol }.t is reserved to describe this common distri- 
bution for its average service rate. The distributions used to describe the 
arrival rate and service ratios are many and variable; for example, the expo- 
nential, general, Erlang, deterministic, or hyperexponential can be used. 
The Kendall notation was developed to describe what type of queue is being 
examined. The form of this notation is as follows: 

A/B/c/K/ m/Z (1.3) 
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where A specifies the interarrival time distribution, B the service time distri- 
bution, c the number of servers, K the system capacity, m the number in the 
source, and Z the queue discipline. 

This type of analysis can be used to generate statistics on average wait 
time, average length of the queue, average service time, traffic intensity, 
server utilization, mean time in system, and various probability of wait 
times and expected service and wait times. More details on this modeling 
and analysis technique will be presented in Chapter 7. 

Simulation modeling tools 
Simulation as a modeler's tool has been used for a long time and has been 
applied to the modeling and analysis of many systems~for example, busi- 
ness, economics, marketing, education, politics, social sciences, behavioral 
sciences, international relations, transportation, law enforcement, urban 
studies, global systems, computers, factories, and many more. Simulation 
lends itself to such a variety of problems because of its flexibility. It is a 
dynamic tool that provides the modeler with the ability to define models of 
systems and put them into action. It provides a laboratory in which to study 
myriad issues associated with a system without disturbing the actual system. 
A wide range of experiments can be performed in a very controlled environ- 
ment; time can be compressed, allowing the study of otherwise unobserv- 
able phenomena, and sensitivity analysis can be done on all components. 

However, simulation modeling can have its drawbacks. Model develop- 
ment can become expensive and require extensive time to perform, assump- 
tions made may become critical and cause a bias on the model or even make 
it leave the bounds of reality, and, finally, the model may become too cum- 
bersome to use and initialize effectively if it is allowed to grow uncon- 
strained. To prevent many of these ill effects, the modeler must follow strict 
policies of formulation, construction, and use. These will minimize the bad 
effects while maximizing the benefits of simulation. 

There are many simulation forms available based on the system being 
studied. Basically there are four classes of simulation models: continuous, 
discrete, queuing, and hybrid. These four techniques provide the necessary 
robustness of methods to model most systems of interest. A continuous 
model is one whose processing state changes in time based on time-varying 
signals or variables. Discrete simulation relies instead on event conditions 
and event transitions to change state. Queue-based simulations provide 
dynamic means to construct and analyze queue-based systems. They 
dynamically model the mathematical occurrences analyzed in analytical 
techniques. 
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Simulation models are constructed and utilized in the analysis of a sys- 
tem based on the system's fit to simulation. That is, before we simulate a 
real-world entity we must determine that the problem requires or is amena- 
ble to simulation. The important factors to consider are the cost, the feasi- 
bility of conducting useful experimentations, and the possibility of 
mathematical or other forms of analysis. Once simulation is deemed a via- 
ble candidate for model implementation, a formal model tuned to the form 
of available simulation tools must be performed. Upon completion of a 
model specification, the computer program that converts this model into 
executable form must be developed. Finally, once the computer model is 
verified and validated, the modeler can experiment with the simulation to 
aid in the study of the real-world system. 

Many languages are available to the modeler for use in developing the 
computer-executable version of a model~for example, GPSS, Q-gert, Sim- 
script, Slam, AWSIM, and Network 2.5. The choice of simulation language 
is based on the users' needs and preferences, since any of these will provide a 
usable modeling tool for implementing a simulation. Details of these and 
the advantages of other aspects of simulation are addressed in Chapter 8. 

Testbeds as modeling tools 
Testbeds, as indicated previously, are composite abstractions of systems and 
are used to study system components and interactions to gain further 
insight into the essence of the real system. They are built of prototypes and 
pieces of real system components and are used to provide insight into the 
workings of an element(s) of a system. The important feature of a testbed is 
that it only focuses on a subset of the total system. That is, the important 
aspect that we wish to study, refine, or develop is the aspect implemented in 
the testbed. All other aspects have stubs that provide their stimulus or 
extract their load but are not themselves complete components, just simu- 
lated pieces. The testbed provides a realistic hardware-software environment 
with which to test components without having the ultimate system. The 
testbed provides a means to improve the understanding of the functional 
requirements and operational behavior of the system. It supplies measure- 
ments from which quantitative results about the system can be derived. It 
provides an integrated environment in which the interrelationships of solu- 
tions to system problems can be evaluated. Finally, it provides an environ- 
ment in which design decisions can be based on both theoretical and 
empirical studies. 

What all this discussion indicates, again, is that, as with simulation and 
analytical tools, the testbed provides a laboratory environment in which the 
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modeled real-world system components can be experimented with, studied, 
and evaluated from many angles. However, testbeds have their limitations 
in that they cost more to develop and are limited in application to only 
modeling systems and components amenable to such environments. For 
example, we probably would not model a complex distributed computing 
system in a testbed. We would instead consider analytical or simulation 
models as a first pass and use a testbed between the initial concept and final 
design. This will be more evident as we continue our discussion here and in 
Chapter 8, where testbeds are discussed in much greater detail. 

A testbed is made up of three components: an experimental subsystem, a 
monitoring subsystem, and a simulation-stimulation subsystem. The exper- 
imental subsystem is the collection of real-world system components and/or 
prototypes that we wish to model and experiment with. The monitoring 
subsystem consists of interfaces to the experimental system to extract raw 
data and a support component to collate and analyze the collected informa- 
tion. The simulation-stimulation subsystem provides the hooks and handles 
necessary to provide the experimenter with real-world system inputs and 
outputs to provide a realistic experimentation environment. 

With these elements a testbed can provide a flexible and modular vehicle 
with which to experiment with a wide range of different system stimuli, 
configurations, and applications. The testbed approach provides a method 
to investigate system aspects that are complementary to simulation and ana- 
lytical methods. 

Decisions about using a testbed over the other methods are driven 
mainly by the cost associated with development and the actual benefits that 
can be realized by such implementations. Additionally, the testbed results 
are only as good as the monitor's ability to extract and analyze the occurring 
real-world phenomena and the simulation-stimulation component's ability 
to reflect a realistic interface with the environment. 

Testbeds in the context of local area networks can and have been used to 
analyze a wide range of components. The limitation to flexibility in analyz- 
ing very diverse structures and implementations has and will continue to be 
the cost associated with constructing a testbed. In the context of a computer 
system, the testbed must implement a large portion of the computer sys- 
tem's computing hardware, data storage hardware, data transfer hardware, 
and possibly network hardware and software to be useful. By doing this, 
however, the modeler is limited to studying this single configuration. It will 
be seen in later sections what these modeling limitations and benefits are 
and how they affect our approach to studying a system. 
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Operational analysis as a modeling tool 
The final tool from a modeler's perspective is operational analysis, also 
sometimes referred to as empirical analysis. In this technique, the modeler is 
not concerned as much with an abstraction of the system, but with how to 
extract from the real system information upon which to develop the same 
analysis of potential solutions that is provided with the other models. 

Operational analysis is concerned with extracting information from a 
working system that is used to develop projections about the system's future 
operations. Additionally, this modeling method can be used by the other 
three modeling techniques to derive meaningful information that can be fed 
into their analysis processes or used to verify or validate their analysis opera- 
tions. 

Operational analysis deals with the measurement and evaluation of an 
actual system in operation. Measurement is concerned with instrumenting 
the system to extract the information. The means to perform this uses hard- 
ware and/or software monitors. 

Hardware monitors consist of a set of probes or sensors, a logic-sensing 
device, a set of counters, and a display or recording unit. The probes moni- 
tor the state of the chosen system points. Typically, probes can be pro- 
grammed to trigger on a specific event, thereby providing the ability to trace 
specific occurrences within a system. 

The logic-sensing subsystem is used to interpret the raw input data 
being probed into meaningful information items. The counters are used to 
set sampling rates on other activities requiring timed intervals. The last 
component records and displays the information as it is sensed and reduced. 
Further assistance could be added to analyze the information further. The 
ability to perform effective operational analysis is directly dependent on the 
hardware and software monitors' ability to extract information. The hard- 
ware monitor is only as effective as its ability to be hooked into the system 
without causing undue disturbance. 

The problem is that the hardware-based monitor cannot, in a computer 
system, sense software-related events effectively. The interaction of software 
and system hardware together will provide much more effective data for 
operational analysis to be performed. Software monitors typically provide 
event tracing or sampling styles. Event trace monitors are composed of a set 
of system routines that is evoked on specific software occurrences, such as 
CPU interrupts, scheduling phases, dispatching, lockouts, I/O access, and 
so on. The software monitor is triggered on these events and records perti- 
nent information on system status. The information can include the event 

I Chapter I 



36 1.8 Performance metrics and evaluation criteria 

1 .8  

triggered at the time, what process had control of the CPU prior to the 
event, and the state of the CPU (registers, conditions, etc.). These data can 
reveal much insight as to which programs have the most access to the CPU, 
how much time is spent in system service overhead, device queue lengths, 
and many other significant events. 

The combination of the hardware and software monitors provides the 
analyst with a rich set of data on which to perform analysis. Typical compu- 
tations deal with computing various means and variances of uses of devices 
and software and plotting relative frequencies of access and use. 

The measurements and computations performed at this level only model 
present system performance. The operational analyst must use these measures 
to extend performance and to postulate new boundaries based on extending 
the data into unknown regions and performing computations based on the 
projected data. Using these techniques, the analyst can suggest changes and 
improvements and predict their impact based on real information. 

P e r f o r m a n c e  met r ics  and e v a l u a t i o n  c r i t e r i a  

Selecting a computer system architecture and system support software 
requires performance metrics and evaluation criteria. In order to generate 
such information, a user must follow a methodology of selection that 
defines the user needs, the motivations, and the environmental and tech- 
nological boundaries. As with the purchase of any product, the purchaser 
should identify how the product (in this case a computer system) will be 
used. This first element of the selection process is the most important, 
since if we don't define the needs and uses properly, the remaining tasks 
will have a predefined built-in error. Therefore, the prospective buyer 
should compile a wish list of all potential uses. For example, the list may 
include the following: 

• Multiple processors 

• Distributed file server 

• Redundant disk drives 

• Word processing 

• Spreadsheet analysis 

• Electronic mail 

• Remote job entry 

• Real-time control 



1.8 Performance metrics and evaluation criteria 37 

• Interactive log on and execution or results 

[] Physical installation layouts 

• Maximum node count and types 

• Reliability considerations 

• Network management 

• Factory automation 

• Computer types 

• Video, audio, or both 

• Interconnection to existing MANs or WANs 

• Resource sharing 

• Distributed computing 

• Very large database 

From this wish list the user must generate processing requirements, 
communications transfer, and management requirements. For example, 
given that we have N computers, which must be able to simultaneously 
transfer data to other sites, we have given a requirement for bandwidth (or 
an I / 0  rate maximum) and concurrency of access, both of which affect 
protocols, topology, and media requirements, to name a few. This set of 
processing requirements, communications transfer, and management 
requirements can now be used to aid us in the other phases. The second 
portion of the methodology is to develop a motivational purpose for the 
computer system: to define why we want one in the first place. For example, 
we may want to compete with our competitors, who are offering better or 
extended service to their customers by the use of an enhanced backplane, to 
have an edge in information availability to enhance the corporation's deci- 
sion-making ability, or to provide better control or use of the company's 
computing resources. The motivation for computing system selection will 
also provide our prospective buyer or designer with more performance and 
evaluation criteria upon which to base a decision. 

The next phase within the computer systems evaluation methodology 
is to assess the environmental and technological aspects in which the com- 
puter system must fit. For example, is the computer system and its inter- 
connection subsystem intended for implementation in a dirty, hot, cold, 
or varying environment? Will the computer system or some of its compo- 
nents be subjected to stress and strain from natural elements such as wind, 
rain, snow, or lightning? Will the computer system or its components be 
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put in an air-conditioned computer room or be spread out throughout a 
building? Is the building new construction or old construction? Will com- 
puter systems interconnects need to penetrate floors and go up risers? If 
so, what is the prevailing fire code? Will the computer system link many 
buildings together? If so, will interconnections be strung overhead or be 
poled from building to building? Will wiring be buried? Will it go under 
water or within water-carrying pipes? 

From a technological viewpoint, the computer system may need to 
interconnect to a diverse set of present company assets and also be able to 
link planned new resources. These resources have their own peculiarities in 
terms of electrical specifications, pin count, and makeup. These peculiari- 
ties will also map into requirements on the interface equipment and soft- 
ware. The computer system's interconnect components must be able to 
interface these devices directly or via an intermediate device, which should 
be an off-the-shelf component if possible. 

Once all these initial analyses have been completed and their data com- 
piled, the prospective purchasers or designers should have a large volume of 
data from which to drive the computer systems requirements. 

The next question is: How to use these data to assist in the selection? Do 
you compile these data into a model of a prospective computer system and 
use this information to derive analytical and qualitative analysis of the pro- 
spective computing system and then compare these results to other known 
product parameters? Or is a simulation model more in line? In any case, a 
means of evaluating these data must be provided and must be able to use 
data that have been collected. 

The collected data can be divided into quantitative and qualitative 
classes. That is, there is one set of data from which specific performance 
measures can be derived and another from which only subjective measures 
can be derived. The quantitative data sets should be used to build a model 
of the proposed system and derive composite measures to evaluate given 
prospective computer systems architectures and configurations. The meth- 
ods used for this analysis are analytical and simulation models. The testbed 
and operational analysis methods may not be viable to test alternatives early 
on in systems analysis. 



2 
Computer Data Processing 
Ha rdwa re Arch itectu re 

This chapter defines the hardware and software components used in com- 
puter-based applications. Included here is the fundamental composition of 
computers (CPU, memory, I/O), secondary storage devices, other periph- 
eral input and output devices, multiprocessing architectures, and net- 
works. Our discussions are tailored to focus on the architecture and use of 
these components as they relate to computer management of persistent 
data. 

2.1 I n t r o d u c t i o n  

A computer-based application resides on a computer system. The computer 
system provides the physical medium on which the application data are 
stored and the processing capacity to manipulate stored data. A processing 
unit of a computer system consists of five main elements: the memory, an 
arithmetic logic unit, an input unit, an output unit, and a control element. 
The memory unit stores both the data for programs and the instructions of 
a program that manipulates stored data. 

The program's individual elements or instructions are fetched from the 
memory one at a time and are interpreted by the control unit. The control 
unit, depending on the interpretation of the instruction, determines what 
computer operation to perform next. If the instruction requires no addi- 
tional data, the control indicates to the arithmetic logic unit what operation 
to perform and with what registers. (See Figure 2.1.) 

If the instruction requires additional data, the control unit passes the 
appropriate command to the memory (MAR, memory address register) to 
fetch a data item from memory (MDR, memory data register) and to 
place it in an appropriate register in the ALU (data register bank) (Figure 
2.2). This continues until all required operands are in the appropriate 
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registers of the ALU. Once all operands are in place, the control unit 
commands the ALU to perform the appropriate instruction~for exam- 
ple, multiplication, addition, or subtraction. If the instruction indicated 
that an input or output were required, the control element would trans- 
mit a word from the input unit to the memory or ALU, depending on the 
instruction. If an output instruction were decoded, the control unit 
would command the transmission of the appropriate memory word or 
register to the output channel indicated. These five elements comprise the 
fundamental building blocks used in the original von Neumann computer 
system and are found in most contemporary computer systems in some 
form or another. 

In this chapter we will examine these fundamental building blocks and 
see how they are used to form a variety of computer architectures. 
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2.2 C o m p u t e r  hardware  archi tecture  

A computer system is comprised of the five building blocks previously 
described, as well as additional peripheral support devices, which aid in data 
movement and processing. These basic building blocks are used to form the 
general processing, control, storage, and input and output units that make 
up modern computer systems. Devices typically are organized in a manner 
that supports the application processing for which the computer system is 
intended~for example, if massive amounts of data need to be stored, then 
additional peripheral storage devices such as disks or tape units are required, 
along with their required controllers or data channels. 

A computer system's architecture is constructed using basic building 
blocks, such as CPUs, memories, disks, I/O, and other devices as needed. 

To better describe the variations within architectures we will discuss 
some details briefly~for example, the arithmetic logic unit (ALU) and the 
control unit are merged together into a central processing unit or CPU. The 
CPU controls the flow of instructions and data in the computer system. 
Memories can be broken down into hierarchies based on nearness to the 
CPU and speed of access~for example, cache memory is small, extremely 
fast memory used for instructions and data actively executing and being 
used by the CPU and usually resides on the same board or chip as the CPU. 
The primary memory is slower, but it is also cheaper and contains more 
memory locations. It is used to store data and instructions that will be used 
during the execution of applications presently running on the CPU~for  
example, if you boot up your word processing program on your personal 
computer, the operating system will attempt to place the entire word proc- 
essing program in primary memory. If there is insufficient space, the operat- 
ing system will partition the program into segments and pull them in as 
needed. 

The portion of the program that cannot be stored in memory is main- 
tained on a secondary storage device, typically a disk drive. This device has 
a much greater storage capacity than the primary memory, typically costs 
much less per unit of storage, and has data access times that are much 
slower than the primary memory. A more recent external storage device is 
the CD-ROM drive. This device, in its read-only mode (ROM), allows 
users only to extract information from the drive. In the more recent read/ 
write variety the device can be used somewhat like the traditional tape 
drive. An additional secondary storage device is the tape drive unit. A tape 
drive is a simple storage device that can store massive amounts of da t a~  
again, at less cost than the disk units but at a reduced access speed. Other 
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components of a computer system are input and output units. These are 
used to extract data from the computer and provide these data to external 
devices or to input data from the external device. The external devices could 
be end-user terminals, sensors, information network ports, video, voice, or 
other computers. 

In the following sections we will examine each of the components of a 
computer system in more detail, as we examine how these devices can be 
interconnected to support data processing applications. 

CPU a r c h i t e c t u r e s  

The central processing unit (CPU) is the brains of a computer system. The 
CPU consists of the arithmetic logic unit (ALU) and the control unit, as 
indicated previously. The ALU can come in a variety of configurations~ 
from a single simple unit, shown in Figure 2.1, that performs simple adds, 
subtracts, increments, decrements, load, and store, up to extremely complex 
units that perform operations such as multiply, divide, exponentiation, sine, 
cosine, and so on. The primary operation of the ALU is to take zero or 
more operands and perform the function called for in the instruction. In 
addition to the ALU, the CPU consists of a set of registers to store operands 
and intermediate results and to maintain information used by the CPU to 
determine the state of its computations. There are registers for the status of 
the ALU's operation, for keeping count of the instruction to be performed 
next, to keep data flowing in from memory or out to memory, to maintain 
the instruction being executed, and for the location of operands being oper- 
ated on by the CPU. 

Each of these registers has a unique function within the CPU, and each 
is necessary for various classes of computer architectures. A typical minimal 
architecture for a CPU and its registers is shown in Figure 2.3. This archi- 
tecture consists of a primary memory connected to the CPU via buses that 
use a memory address register and memory data register to address a loca- 
tion in memory and transfer the contents of the location from the memory 
into the memory data register or to transfer the contents of the memory 
data register into memory. There are registers in the CPU for instructions 
(the instruction or IR register), instruction operands, and results of opera- 
tions; a location counter (which contains either the location in memory for 
instructions or operands, depending on the decoding of instructions); a 
program counter or PC (which maintains the location of the next instruc- 
tion to perform); and status registers. 



2.3 CPU architectures 43 

L 

Figure 2.3 
The CPU and its 

associated registers. 
M 
A 
R 

PC 

Memory 
Array 

CPU 

Registers 

I M 
; D 

R 

IR 

The CPU also contains the control unit. The control unit uses the status 
registers and instructions in the instruction register to determine what func- 
tions the CPU must perform on the registers, ALU, and data paths that 
make up the CPU. The basic operation of the CPU follows a simple loop 
(unless interrupts occur that alter the flow of execution). This loop is called 
the instruction execution cycle (Figure 2.4). There are six basic functions 
performed in the instruction loop: instruction fetch, instruction decode, 
operand effective address calculation, operand fetch, operation execution, 
and next address calculation. 

Instruction fetch uses the program counter register to point to the next 
instruction stored in memory. The address is placed in the memory address 
register and the instruction is then gated (electronically signaled by the 
CPU control element to transfer the data) from the data memory into the 
memory data register. The instruction then flows into the instruction regis- 
ter under the direction of the control unit. 
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Once an instruction is in the instruction register, the second cycle in 
instruction execution can be performed---decode. To decode the instruc- 
tion the control unit must recognize what type of instruction is being 
requested--for example, does the instruction require additional data from 
memory to perform its intended function, or does the instruction involve 
only ALU resident registers? 

The third cycle within instruction execution is the operand effective 
address calculation. This phase of instruction execution operates by extract- 
ing operand address information from the instruction and then performing 
some form of calculation (e.g., base plus offset) with this information to 
form a physical address in memory. We will discuss the various types of 
addressing in later sections of this chapter. Once the type and number of 
operands are determined, the ALU can acquire the operands and then set 
up to perform the decoded instruction. 

Once we have a physical address, we can fetch the operand (the fourth 
function of the instruction execution cycle). To fetch the operand the effec- 
tive address is placed in the memory address register, and the control gates 
the contents pointed to by the memory address register into the memory 
data register. The extracted operand is then gated from the memory data 
register into an ALU register. If an additional operand is needed, the two 
cycle steps for operand fetch would be repeated to get the remaining 
operand. With all required operands in ALU registers the instruction 
requested can now be performed. The instruction execution is controlled by 
the CPU control unit. The control unit signals to the ALU to perform the 
instruction~for example, if an add is requested the ALU would add the A 
and B registers and place the result in the C register. After the instruction is 
completed the last step in the instruction execution cycle can proceed. 

The next address calculation uses the program counter and/or any perti- 
nent computation result (such as a go to-type instruction) to determine 
where in the memory the next instruction is to be found. The normal mode 
of address calculation is to increment the contents of the program counter. 
With the new address the instruction cycle begins once more. 

This execution sequence represents the basic functions found in all com- 
puter systems. Variations in the number of steps are found based on the 
type and length of the instruction. 

Instruction types 

Based on the number of registers available and the configuration of these 
registers several types of instruction are possible~for example, if many reg- 
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isters are available, as would be the case in a stack computer, no address 
computations are needed and the instruction, therefore, can be much 
shorter both in format and execution time required. On the other hand, if 
there are no general registers and all computations are performed by mem- 
ory movements of data, then instructions will be longer and require more 
time due to operand fetching and storage. The following are representative 
of instruction types: 

0-address instructions--This type of instruction is found in machines 
where many general-purpose registers are available. This is the case in 
stack machines and in some reduced instruction set machines. 
Instructions of this type perform their function totally using registers. 
If we have three general registers, A, B, and C, a typical format would 
have the form: 

R[A] < - -  R[B] operator R[C] (2.1) 

which indicates that the contents of registers B and C have the opera- 
tor (such as add, subtract, multiply, etc.) performed on them, with 
the result stored in general register C. Similarly, we could describe 
instructions that use just one or two registers as follows: 

R[B] < - -  R[B] operator R[C] (2.2) 

o r  

operator R[C] (2.3) 

which represents two-register and one-register instructions, respec- 
tively. In the two-register case one of the operand registers is also used 
as the result register. In the single-register case the operand register is 
also the result register. The increment instruction is an example of 
one-register instruction. This type of instruction is found in all 
machines. 

1-address instructions~In this type of instruction a single memory 
address is found in the instruction. If another operand is used, it is 
typically an accumulator or the top of a stack in a stack computer. 
The typical format of these instructions has the form: 

operator M[address] (2.4) 

where the contents of the named memory address have the named 
operator performed on them in conjunction with an implied special 
register. An example of such an instruction could be as follows: 
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Move M[100] (2.5) 

o r  

Add M[100] (2.6) 

which moves the contents of memory location 100 into the ALU's 
accumulator or adds the contents of memory address 100 with the 
accumulator and stores the result in the accumulator. If the result 
must be stored in memory, we would need a store instruction: 

Store M[100] (2.7) 

1-and-l/2-address instruct ions~Once we have an architecture that 
has some general-purpose registers, we can provide more advanced 
operations combining memory contents and the general registers. 
The typical instruction performs an operation on a memory location's 
contents with that of a general register~for example, we could add 
the contents of a memory location with the contents of a general reg- 
ister, A, as shown: 

Add R[A], M[100] (2.8) 

This instruction typically stores the result in the first named location 
or register in the instruction. In this example it is register A. 

2-address instructions Two address instructions utilize two memory 
locations to perform an instruction~for example, a block move of N 
words from one location in memory to another, or a block add. The 
move may appear as follows: 

Move N,M[IOO],M[IO00] (2.9) 

2-and-l/2-address instructions This format uses two memory loca- 
tions and a general register in the instruction. Typical of this type of 
instruction is an operation involving two memory locations storing the 
result in a register or an operation with a general register and a memory 
location storing the result on another memory location, as shown: 

R[A]-- >> M [100 ] operator M[1000] 

M [ 1 0 0 0 ] - -  >> M [100] operator R[A] (2.10) 

3-address instructions~Another less common form of instruction 
format is the three-address instruction. These instructions involve 
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three memory locations~two used for operands and one as the 
results location. A typical format is shown: 

M [ 2 0 0 ] -  - >> M[100] operator M[300] (2.11) 

Ins t ruc t ion  archi tectures 

There are numerous ideas about how to organize computer systems around 
the instruction set. One form, which has come of age with the new power- 
ful workstations, is the reduced instruction set computer (RISC). These 
machines typically have a small number of instructions that are simple and 
that take a relatively short equal number of clock cycles per instruction. 
Each of the instructions is highly optimized and operates efficiently. 
Machine-coded programs are typically longer, but the actual code may run 
faster due to the highly optimized and regular code. 

On the other side of the spectrum are architectures built around com- 
plex instructions. These computers are referred to as complex instruction 
set computers, or CISC. These machines use instructions that each perform 
some complex functionmfor example, a matrix multiply or a complex 
number manipulation trigonometric function. Each instruction may take 
numerous machine cycles to perform and may itself be coded in lower-level 
microcode. Programs written in this type of architecture may be shorter, but 
may not take any less time and in some cases may even take more time due 
to their complexity. 

Memory-address ing  schemes 

Just as there are a variety of instruction formats, there are also numerous 
ways in which to determine the address of an operand from an instruction. 
Each form of address computation has its benefits in terms of instruction 
design flexibility. There are six major types of addressing computation 
schemes found in computers: immediate, direct, index, base, indirect, and 
two-operand. We will briefly examine these. 

Immediate~Immediate addressing is not really an addressing mode 
into memory; rather, it is an instruction format that directly includes 
the data to be acted on as part of the instruction. This form of oper- 
and access simplifies the instruction execution cycle since no addi- 
tional fetches are required. 

Direct~For direct addressing there is no operand address decoding 
required. The instruction operand address field contains the physical 
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address of the operand. The control simply places the operand 
address field into the memory address field and the operand is fetched 
from memory. 

Index~A refinement of direct addressing is indexed addressing. In 
this form of operand address decoding, the operand address field is 
added to the contents of a designated register to compute the effective 
physical address. 

Base--Base addressing expands on this concept. A base register con- 
tains an address base, which is added to the indexed address to form 
an effective physical address. This scheme is used in computer sys- 
tems for addressing and partitioning the memory into segments. 
When more than one base register is available in an architecture, we 
can more easily manage partitioned memory for multiple users and 
systems control software. 

IndirectmFor this address computation scheme we use the contents 
of a specified memory location as the effective address. The control 
fetches the contents of the named memory location and uses this as 
the memory address register pointer to extract the actual operand. 

Two-operand addressing~In two-operand addressing any combina- 
tion of the above schemes could be used together to access multiple 
operands for an instruction. 

Memory  architectures 

Memory storage can also have an architecture (configuration) that can aid 
in the storing and fetching of memory contents. Generally a memory is 
organized as a regular structure, which can be addressed using the memory 
address register and have data transferred through the memory data register 
(Figure 2.5). The memory is accessed through the combination of address- 
ing and either drivers or sensors to write or read data from or to the mem- 
ory data register. Memory structures are built based on the organization of 
the memory words. The simplest form is a linear two-dimensional struc- 
ture. Each memory location has a unique word line, which, when ener- 
gized, gates the N-bit lines' (where N is the size of a data word in the 
computer) contents into the memory data register. 

A second organization is the two-and-a-half-dimension architecture. In 
this memory structure the memory words are broken up into separate data 
planes, each consisting of one bit for all memory locations. To access a word 
the n planes must be energized with the composite X and Y coordinates, 
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which correspond to the wanted memory word. The individual plane driv- 
ers gate the proper bit into the memory data register for the addressed 
memory word. Other data organizations have been derived and we leave it 
to the interested reader to investigate these. 

2.4 I10 archi tectures 

Input and output mechanisms are used by computer systems to move infor- 
mation into or out of the computer's main memory. A typical sequence for 
performing this movement of information from or to an input and output 
device is as follows: 

1. Select an I/O device. 

2. Busy~wait  until the device is ready. 

3. Transfer a word from the device I/O buffer into the CPU accu- 
mulator. 

4. Transfer the contents of the accumulator into a memory location. 

5. Compute the next memory location for I/O data. 

6. Go back to step 2 and repeat until all data are transferred. 

The above sequence assumes that all data must pass through the CPU to 
control the flow. 

If, instead, we have the ability to place or extract data directly to or from 
memory without passing through the CPU, we can get further improve- 
ments in performance and a refined architecture. To allow for the CPU to 
be taken out of the I/O loop we need an additional control element. For I/ 
O to be controlled directly and bypass the CPU en route to memory 
requires added control; this controller is referred to as a direct memory 
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access (DMA) device. The DMA device allows us to alter what the CPU 
must do. The CPU issues a begin I/O command to the DMA control unit 
with the address of the data block to be transferred. The CPU is now free 
from added input and output overhead and can be relieved to do some 
other processing or simply wait until the DMA responds that the transfer is 
complete. To effectively provide this notification an added capability is 
required of the CPU: an interrupt capability. The interrupts can be of sev- 
eral types, as follows: 

• Interrupts can be immediate, causing the CPU to halt and service the 
interrupt. 

• Interrupts can be deferred, allowing the CPU to service them when it 
is ready. 

• Interrupts can be prioritized, allowing for prompt service to critical 
actions occurring in the system. 

Secondary storage and peripheral devices 
and architectures 

Memory storage volume is always looked at as an important feature when 
one thinks about acquiring a computer system. Whether the system is a 
desktop personal computer, a workstation, or a large special-purpose proc- 
essor, data storage has always been a major selling point and a requested fea- 
ture. As the price of memory has come down, the size of memory purchased 
for all classes of computers has gone up. One nonchanging feature is the 
general structure of the memory hierarchy. No matter how sophisticated or 
how simple the systems are, we will find that they all have something in 
common. The designers of the systems have organized data storage to max- 
imize performance and provide adequate information volume storage. 

The storage hierarchy (Figure 2.6) consists of a variety of data storage 
types that respond to the information needs of the system. From the high- 
est-speed element (a cache) to the slowest-speed elements (archival devices), 
the tradeoff is the cost and speed of the storage medium per unit of mem- 
ory. What is being attempted is to match the speed of the computer proces- 
sor with the highest-speed devices within a reasonable cost curve. In the 
following sections we will examine the information storage devices outside 
of the central processing unit realm. This leaves out the high-speed expen- 
sive cache memories and primary memory. We will begin our review by 
looking at tape devices, magnetic disks, and archival devices. 
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2.5.1 Tape storage devices 

Magnetic tape information storage provides a low-cost, high-density storage 
medium for low-access or slow-access data. A tape unit consists of the stor- 
age medium (a spool of magnetic material formed into a tape), access elec- 
tronics, and mechanical components (see Figure 2.7). A tape unit operates 
in a simple manner. Data on a tape can only be accessed in sequential form. 
Data must be located on the tape and then removed from the tape. A tape 
drive mechanically can rewind a tape, sequentially search the tape, and stop 
the tape. To access data stored on a tape an I/O program would have to 
command the tape unit to rewind the tape and then sequentially search the 
tape from the beginning until a match is found. Once found the addressed 
data can be removed. 
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To improve the performance of tape units, additional storage semantic 
access schemes have been devised. The beginning of the tape is reserved to 
maintain pointers to the start points of files stored on the tape. Instead of 
sequentially searching the entire tape, the controller searches the tape's 
directory, finds out where on the tape (e.g., how many feet from the direc- 
tory region) the data are stored, and then uses this information to fast for- 
ward to the general location where linear search can resume. This allows for 
a speedup in the access and transfer of the data stored on the device~an 
important feature when a database management system is involved. 

Magnetic and optical disk storage devices 

An improvement over tape storage is the random access disk units, which 
most users of computers are aware of. The disks can be removable or inter- 
nal fixed forms. A disk unit is typically comprised of one or more of the 
following: a controller, a movable access arm, and a magnetic storage 
medium in the form of a rotating platter (see Figure 2.8). The platter(s) is 
mounted on a spindle, which rotates at some given speed. The platter is 
organized into a set of rings called tracks and a partitioning of these tracks 
called sectors. 

The movable arm contains the sensing and driving hardware to allow for 
the reading and writing of the magnetic or optical data stored on the platter. 
The controller orchestrates the access of the stored data based on a variety of 
access algorithms, only the simplest of which we will discuss here. The sim- 
plest form of disk access is that found in the sequential search paradigm. 
The disk controller knows on what sector and track a data file is stored and 
using this information the disk controller must perform some simple func- 
tions, such as moving the access arm out to the track the data are stored on 
(this is called seeking and the time it takes is called the seek time). 

Once on the proper track, the controller must find the proper sector 
where the data are stored. This requires the controller to recognize the start 
of the sector markers on the track and to find the appropriate sector as it 
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passes under the access arm's sensors. The time required for this is called the 
rotation time. Once the arm is over the proper sector and track, the data 
can be transferred from the medium to the controller. This time is called 
the transfer time. 

So, for the average access of a data file on a disk we must take the follow- 
ing time: 

T - t { s e e k }  + t{rotate}+ t{transfer} (2.12) 

One can readily see from this that the time to access data on a disk unit 
is greater than that of the primary memory and would typically be less than 
the time to extract a similar amount of data from a tape unit. 

The density of the disk is based on the medium used to store the data. 
Disk units built on a magnetic medium are getting fairly dense, but they are 
approaching their limits. In addition, the medium is susceptible to failures 
due to airborne pollutants and magnetic fields. To improve this the industry 
has developed optical disk technology. This technology replaces the mag- 
netic medium with an optical medium where data are stored as reflective 
optical media. The medium is similar to what is seen in television optical 
disk players. 

Archival  storage devices 

Even with all of the disk and tape technology available, not all required data 
for a computer system can be kept on line. To keep data that are only occa- 
sionally needed we require archival storage devices. Archival storage devices 
typically have removable media. If you have access to the new multimedia 
systems or have a personal computer or workstation for use, you have inter- 
acted with a form of archival device: the removable disk, compact disk, or 
tape cartridge. This represents the most visible form of archival storage 
device. Data are loaded into the system as needed and removed when com- 
pleted. The most recent archival storage device developed, the CD read/ 
write drive, has begun to blur the distinction between archival and on-line 
storage. Many systems use CD drives as enhanced storage for long-term 
applications memory. Some systems have even gone to the length where 
these represent the primary on-line storage. 

Other, more elaborate, archival systems have been developed that use a 
combination of mechanical and electrical systems to port media on line and 
off line. These are similar to compact disk magazines and resemble juke- 
boxes. When a particular data item is needed, its physical storage location is 
found, and the medium is placed into the active storage hierarchy on line 

I Chapter 2 



54 2.6 Distributed and network architectures 

where the archived data can now be accessed. Again, this is a useful feature 
when we are talking about a very large database. 

2 .6  D i s t r i b u t e d  and n e t w o r k  a r c h i t e c t u r e s  

Not all systems consist of one computer. Modern systems used in academia, 
business, and government are more frequently being interconnected to 
form information-sharing systems or multiprocessing systems. These net- 
works and computer interconnects are constructed by providing yet another 
input and output path for the computer to receive or send information. 
The input and output unit and controller for the network peripheral device 
are called a network interface unit (NIU) or processor bus. The function of 
these interface units and buses is to provide a seamless (typically) way for 
one computer to interact with another as if they were located in the same 
machine. Networks come in a variety of configurations~for example, the 
NIUs can be configured as a single global bus topology, as a central star or 
hub topology, as a ring topology, or as some hybrid. When interconnected 
in such ways over a relatively small distance (a single floor, building, or 
small organization), we have what is referred to as a local area network, or 
LAN. ALAN is used to interconnect a subunit of some larger organization 
or to interconnect a small number of users who need to share information. 
Beyond a LAN we have wide area networks and the Internet. Multiproces- 
sor systems are interconnected using similar concepts. They are combined 
using shared buses or shared memory. 

2.6.1 C o m p u t e r  t o  n e t w o r k  in ter face  e lements  

The network can be formed in many ways: It could have a central switching 
element, which could be a stand-alone computer acting as a router (see Fig- 
ure 2.9a); it could share a central storage repository; or it could be con- 
nected using intelligent interface units into a communications medium. 
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The configuration used depends on the degree of synchronization and con- 
trol required, as well as the distribution between computers. 

The tightly coupled multiprocessor uses a shared central memory as the 
interconnection device (see Figure 2.9b). All processors on the network use 
the central memory to access and pass data among the interconnected proc- 
essors. This distributed architecture provides an easy means to coordinate 
actions between processors. A distinction is that each processor does not 
have any local memory; all instructions and data are acquired from the 
shared memory bank. An improvement over this architecture is the loosely 
coupled multiprocessor. In this architecture each processor has some pri- 
mary local memory and is interconnected via a shared secondary storage 
system. Each processor has its own operating system and local storage for 
programs and local data. Coordination occurs through the passing of data 
from one computer system to another through the shared storage device. 
The data exchange and signaling of transfers are handled through mecha- 
nisms such as messages or coordination of shared storage regions in the sec- 
ondary storage medium. 
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Figure 2.9d 
Multiprocessor 

computer system 
with a 

communications 
subsystem. 

NIU I 

I 
I 

I Nlu I I,,u I 

Communications Media 

2 . 6 . 2  

I,,u I I,,u I 
P' NIU=Network Interface Unit 

A further refinement removes the shared secondary storage device and 
replaces this with a communications switching element. The switch allows 
each of the disjoint computer systems to address and send information 
among themselves. Each computer system has its own local memory and 
can have additional secondary storage devices (see Figure 2.9c). Each com- 
puter communicates with interconnected systems by addressing the called 
system, forming a connection, and then initiating a conversation. This is 
analogous to how we converse over a phone system. The switching-based 
distributed system requires additional software at each site to coordinate 
a c c e s s .  

A further enhancement is to remove the central switch and replace it 
with a shared communications path (see Figure 2.9d). The path could be a 
shared bus, a ring, or a star medium. The interconnected computers are 
each required to have a medium interconnect unit, which controls the 
access to the medium. This architecture requires further control software 
and policies to allow for control over the shared medium. Only one com- 
puter at a time can be accessing the medium and sending information. We 
will see in subsequent sections how this software operates. 

N e t w o r k  b r i d g e s  

We can further expand on the local area network or multiprocessing sys- 
tems by introducing another networking control unit. To interconnect mul- 
tiple networks or multiprocessing systems requires a bridge. (See Figure 
2.10.) A bridge can be viewed as a speed-matching device to synchronize 
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the traffic between networks. Bridges typically contain software and hard- 
ware to buffer incoming messages, to determine and rectify variances in 
addresses on interconnected networks, and to forward messages to the 
addressed unit. Routers and switches found in most medium to large net- 
work configurations fall into this category of device. 

2.7 N e t w o r k  topologies 

2.7.1 

As mentioned earlier, there are a variety of interconnection topologies used 
in local area networks. They are the global bus, the ring, and the star topol- 
ogies. 

Global bus topo logy  

A global bus is a single shared medium, which can only be used by one 
device at a time. The global bus is controlled by a variety of schemes. One 
of the simplest is the carrier sense multiple access scheme. This protocol 
works by using two principles: first, the delay taken to send a bit from one 
end of the bus to the other and, second, the ability to send and then listen 
to the medium. The protocol in its simplest form operates as follows: 

• Listen to the bus~ifbusy, wait; if clear, send data. 

• Once data have been sent, continue to listen and compare what is 
heard against what was sent. 
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2.7.2 

• If what was sent matches what is heard for the entire end-to-end com- 
munications time, then I control the bus and can continue sending a 
message (the assumption here is that if I wait for an end-to-end trans- 
fer time, then all other nodes must have heard my message and will 
now delay if they wish to transmit). 

• When complete, go back into listen mode. 

• If I do not hear the same message that I sent, then a collision occurred 
on the bus. I immediately stop transmission and delay before trying 
to send again. 

By using this simple protocol, devices on the network can send and 
receive messages fairly efficiently. The problem with this protocol is that it 
inherently wastes media bandwidth in the sending and sensing process. 

A different approach to control access to a global bus is based on a reser- 
vation scheme. In a reservation scheme the available bandwidth is broken up 
into chunks, which are then allocated to various devices on the network. To 
access the medium to transmit data a device must first wait until its reserva- 
tion slot becomes available. There are numerous schemes through which the 
slots can be allocated and controlled. The problem with this approach is that 
it is inherently static. The slots cannot be reallocated easily from one system 
to another. Numerous variations on this protocol have been developed and 
implemented in systems with varying degrees of success. 

Ring topology 

The ring topology links the computer systems in the network in a continu- 
ous ring. Messages flow around the network from one computer system to 
another until they return to the sender. (See Figure 2.11.) This topology 
allows for better utilization of the medium. The medium can be broken 
into slots that flow around the network. The slots are marked as either 
empty or full depending on whether or not a message is present in the slot. 
To send a message a computer senses the slot beginning and checks whether 
it is full or empty. If the slot is full, the sender waits for the next slot. If the 
slot is empty, the sender inserts its message. The problem with this scheme 
is that the slot size limits the size of messages that can be sent in a single 
slot. Variations on this protocol have alleviated this problem, but have their 
own set of problems. A different protocol, which allows for variable-size 
messages, is the insertion ring protocol. This protocol requires hardware 
support to buffer incoming messages that would interfere with a sender's 
message. A computer that wants to send a message on the network can 
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Figure 2.11 

I 

simply send the message if no other message traffic is sensed by the sender. 
If another message should then arrive at the sender's input during the trans- 
mission of its own message, the sender simply queues up the arriving mes- 
sage and appends it to the sending message when it has completed. 

2 .7 .3  Star topology 

The star topology has the physical layout of a star. It has a central network 
processor at its center, with nodes arranged around and connected to the 
central point. Wiring costs can be considerably higher with this topology. 

2.8 C o m p u t e r  archi tectures 

To continue our earlier discussion of computer configurations we will 
examine how the various components can be interconnected to form a 
computer system. The basic premise of these architectures is to speed up the 
movement of data to allow for increased processing. The basic architecture 
has the CPU at the core with a main memory and input/output system on 
either side of the CPU (see Figure 2.12). In this architecture all data flows 
into, out of, and through the CPU under the control of the CPU. This rep- 
resents the basic von Neumann architecture described earlier. Refinements 
of this architecture have been designed to remove the CPU from the burden 
of controlling all data movement. 
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Central  I10 contro l ler  architectures 

To remove the CPU from the central function of coordinating all data flow 
the central input/output controller architecture was developed (see Figure 
2.13). This architecture has the IOC at the core of the system with the 
CPU, main memory, and I/O devices connected to the IOC hub. To trans- 
fer data from the main memory to an I/O device the CPU would command 
the IOC to initiate the transfer. The data would flow under control of the 
IOC from the main memory through the IOC to the named output device. 
The problem with this architecture is that the CPU must also use the IOC 
to transfer data from the main memory to the CPU. This results in poten- 
tial reduction in CPU performance. Variations of this architecture have a 
secondary path to the main memory for better service to the CPU. 

M e m o r y - m a p p e d  architectures 

The main memory is the location in the computer system where all data 
and instructions flow in and out. As a consequence of this, an architecture 
was proposed that had the main memory as the central element (see Figure 
2.14). The main memory sits between the CPU and I/O. All data flow 
between the I/O and CPU goes through the memory. A variety of control 
schemes have been devised to control the access to the shared memory. One 
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is to partition the memory into regions: one region for the CPU to use and 
one for each of the I/O devices on the system. To send data to an I/O device 
the CPU simply addresses the memory location for the device. By doing 
this the device's input register is directly loaded with the data. To the CPU 
the I/O transfer is the same as a write to main memory. 

Common bus archi tecture  

An architecture that is similar to the global network architecture previously 
described is the unibus architecture. The unibus or global bus architecture 
uses a single communications bus to interconnect memory, CPU, and I/O 
devices (see Figure 2.15). These elements are connected to the bus and 
communicate with each other using addresses over the bus. As in the net- 
work case, this design will result in reduced utilization if conflicts between 
bus accesses are frequent. This architecture was successfully used in numer- 
ous early digital equipment computers and is still in use in many systems. 

Dual bus arch i tec ture  

A refinement on the single bus architecture is the dual bus architecture (Fig- 
ure 2.16). In this architecture the central hub of the computer is a dual bus 
configuration: one bus for memory traffic and one for I/O traffic. All 
devices, CPU, main memory, disks, tapes, terminals, and direct memory 
access devices are connected to both buses. This architecture removed some 
of the contention between the CPU memory accesses and I/O transfers. 
The CPU and memory were free to actively move data to and from mem- 
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Figure 2.16 
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ory, as were the I/O devices, without conflict. An I/O device could be writ- 
ing into one region of memory while the CPU was concurrently accessing 
another section. Architectures that have derived from this philosophy are 
more common in modern computer systems. We will see how these archi- 
tectures and elements of the computer system are used by database manage- 
ment systems as we continue with our discussion of database management 
system architectures and operations. 

Computer  systems support 
software architecture 

A computer systems-based application requires services and cooperative 
support from a collection of computer hardware and software to perform its 
designated function. The application requires a computational platform 
consisting of a CPU, memory, and secondary data storage, as well as a sup- 
porting operational infrastructure consisting of an operating system, data- 
base management system, network management, and additional process 
and resource management components. To understand how a computer- 
based application utilizes these components we must first understand the 
operation of these software infrastructure elements. 

The central processing unit (CPU) and the main memory make up the 
basic computational engine and support the execution of all software within 
this computer. The CPU is composed of a collection of registers, computa- 
tional subunits, data paths, and status registers that are used to move data 
about and to perform basic manipulations on these data (Figure 2.17). For 
example, a CPU can add, subtract, multiply, divide, and compare values or 
simply move them from one location to another. These are basic operations, 
which the remainder of the system's infrastructure is built upon and where 
it resides. The CPU also includes some additional support hardware, such 
as timers, interrupt registers and latches, input and output registers, and 
interconnections. For additional details on these elements refer to previous 
sections in this chapter. 
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In addition to the CPU, the other primary element within the basic sys- 
tem is the memory. A memory hierarchy is typically comprised of high-speed 
data registers, fast cache memory, primary memory, and secondary storage 
(Figure 2.18). The memory hierarchy at the closest point to the CPU hard- 
ware is populated with very expensive and limited high-speed registers. 
These registers are used to move a very limited number of data items into 
and out of the CPU for actual processing. The second level of the hierarchy 
is the cache memory. A cache memory is a bank of high-speed memory 
organized in a manner that allows for rapid retrieval of data; it executes at 
nearly the speed of on-chip or CPU registers. A cache memory is used to 
keep data most likely to be used next in close proximity to the CPU and in 
fast storage. The problem with cache memory and registers is that they are 
very expensive, thereby limiting the amount of either that may be found in 
an architecture. This type of storage hardware requires additional infrastruc- 
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2.9.1 

ture support from the operating system and hardware to maintain the most 
appropriate piece of data in the most appropriate level of the hierarchy. 

This control has typically been performed by a memory management 
hardware and software combination that uses locality of reference and local- 
ity of use principles to determine what information to place into the appro- 
priate storage level and what information to remove. 

The third element of the memory hierarchy is the primary memory. The 
primary memory in most machines today is sized in the hundreds of mega- 
bytes of storage range. This volume of storage allows for large portions of a 
data processing task to be memory resident during processing for small data 
processing applications. This is not to say that there is no swapping of infor- 
mation between the primary memory and the bulk secondary storage disk 
units. The volume of storage on such units is now in the order of tens of 
gigabytes range. The main emphasis in a computer system is on how and 
what performs the management of this hierarchy. The system's memory 
manager could do the best job for the typical application, but at a cost to all 
other high-performance applications of the operating system. 

For the collection of computer hardware elements described previously, 
a working computer system requires policies and mechanisms for control of 
these resources and coordination between them to exist. This has typically 
been the function of a computer's operating system. An operating system 
consists of specialized software with hardware support to manage the inter- 
action of the CPU and all other hardware elements supporting applications 
software running on the computer system. 

Operating systems architecture 

An operating system is computer software that interacts at a low level with 
the computer system's hardware to manage the sharing of the computer's 
resources among various software applications. An operating system runs as 
the most privileged of software elements on the system and requires basic 
hardware support for interrupts and timers to effect control over executing 
programs. An operating system typically provides the following services: 

1. Hardware management (interrupt handling, timer management) 

0 Interprocess synchronization and communications 

Q Process management 

0 Resource allocation (scheduling, dispatching) 

. Storage management and access (I/O) 



2.9 Computer systems support software architecture 65 

6, Memory management 
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An operating system begins with the management of a computer sys- 
tem's hardware. Hardware management requires the ability to set limits on 
the holding of resources and the ability to transfer control from an execut- 
ing program back to the operating system. These functions are realized 
through the use of hardware timers and interrupt services. A hardware timer 
is a counter that can be set to a specific count (time period). When the time 
expires, an interrupt signal is released, which stops the processor, saves the 
processor's state (saves all active register contents, ALU registers, status reg- 
isters, stack pointers, program counters, instruction registers, etc.), and 
turns control over to an interrupt service routine. The interrupt service rou- 
tine examines the contents of predefined registers (e.g., the CPU status reg- 
ister or a predefined interrupt register) or set memory locations and 
determines what operations are to be performed next. Typically, control is 
immediately turned over to the operating system's kernel for servicing of the 
interrupt. 

Interrupt management and semaphores 
The use of interrupts is one means for an operating system to effect control 
over the hardware of the system. Another means is through the use of coop- 
erative software and control actions or instructions. The concept described 
here is mutual exclusion. An operating system, to guarantee singular, nonin- 
terfering access to a resource, must have a means to limit the access to a 
resource or a resource allocation mechanism via some mutually exclusive 
operator. A mutual exclusion primitive must possess the ability to limit 
access to a region or resource by only one element at a time, even when con- 
current access is being attempted (atomic action). The all-or-nothing opera- 
tion of an atomic function is required for the gtlaranteed, nonconflicting 
access and control over system resources by the operating system. A specific 
hardware instruction called test and set is provided in many computer sys- 
tems to support this mutual exclusion primitive. The instruction in a single 
atomic instruction cycle reads a variable specified, tests its value against 
some basic value, and sets the variable to a new value if the condition tested 
for is valid. 
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The test-and-set instruction forms the basis for constructing sema- 
phores. A semaphore is a system variable that can exist in only one of two 
states, either true or false, with no other valid states holding for the vari- 
able. The semaphore variables have atomic operations that can be per- 
formed on them, with no other operations outside of these being valid 
operations. The valid operations are of two types. The first operation is a 
request to set the variable, sometimes referred to as P(S). The second oper- 
ation is a request to reset the variable and is sometimes referred to as V(S). 
These act much like a flip-flop in a logic circuit. The flip-flop can be set or 
reset, holding a zero or one value only. The set and reset operations of a 
semaphore variable are used to construct lock and unlock operations on 
resources or to hold and release operations on the resources. Semaphores 
are used to construct monitors, which encase the control of an operating 
system's controlled resource. For example, a monitor could be used as a 
means to limit the access to a tape unit to one process at a time by con- 
structing a queue of waiting processes and one service routine. The opera- 
tion would be to build an outside shell around the tape service routine to 
allow only one process access to it at a time. The P and V operators can be 
used for this function. 

P (S) If S = 0 THEN S := 1 ELSE Enqueue requester 

Tape Service Routine (2.13) 

V (S)S := 0, If Queue <> null then Dequeue 

The processes that wish to use the tape service routine request service by 
first requesting the set function P(S). If no process is presently using the 
tape, then the S variable is zero. If it is free, the variable gets set, and the 
process is allowed to enter the critical section of code reserved for the tape 
service routine and use the routine. If the tape routine is already being used 
(indicated by the S semaphore variable being set to one), the request is 
enqueued, awaiting the release of the resource. Once a process finishes with 
the tape service routine, the V(S) or reset operation is requested. The reset 
operator resets the value of the semaphore back to zero and tests the queue 
of waiting processes to see if any processes still require service. If there are 
waiting processes, the top of the queue is removed and a P(S) request is 
issued for the process, starting over the entire process. 

In this manner, using semaphores, complex monitors can be constructed 
to control access to a variety of system hardware and software resources. 
Monitors and semaphores have been used as a means to construct synchro- 
nization mechanisms to coordinate the actions of cooperating resources. For 
example, using the simple P and V semaphores described, one could con- 
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struct two cooperative resource management routines by using three sema- 
phore variables and the P and V operators, as follows: 

P (S) If S = 0 THEN S : =  1 

P(M) If M = 0 THEN M := 1 

Resource A Service Routine 

V(M)M :=0 

V(S1)S1 :=0 

P (S1) If S1 = 0 THEN S1 := 1 

P(M) If M = 0 THEN a := 1 

Resource B Service Routine 

V(M)M:=O 
v(s)s :=0 

(2.14) 

The two semaphores (S and $1) would provide for the synchronous 
operation of the two resources in such a way that they would toggle back 
and forth--either the resource A service routine first followed by the 
resource B service routine or the resource B service routine followed by the 
resource A routine. They could not, however, be executed concurrently due 
to the use of the M semaphore. One can see from this example some of the 
rudimentary needs of the database management system's functions being 
implemented using similar concepts to guarantee mutual restricted access to 
database-stored information and management routines. 

Process management 
A process is typically viewed as the lowest executable level of software recog- 
nized by the operating system. Processes can have additional internal man- 
agement layers that are outside the domain of the operating system. The 
process does not, however, equate to a user program. A user program may 
be partitioned into multiple processes, or it could be a single process. The 
process does not have to be a fixed-size image in the system. It can take a 
variety of shapes and forms. The important aspect of a process is that there 
is a measurable entity that the operating system knows about and has infor- 
mation about, at least in terms of how this process interacts with and fits 
into the resources being managed. 

Process management performs the task of managing software processes 
on a computer system. The operating system provides the services to create 
a process (build and populate a process control block for a new process), to 
kill a process (remove its process control block), to fork a process into tasks, 
to join tasks, and to dispatch processes. A process is described in the operat- 
ing system using a process control block, or PCB. The PCB is created for a 
process upon its initial instantiation in the system. A typical process control 
block contains information such as a process identifier; a process type (user, 
system, database, network, etc.); process priority; process state information; 
process resource requirements (memory, disks, peripherals, other processes, 
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Hgure 2.19 
Process states. 

etc.); and the state of required resources, process size, and present process 
memory load location. This is only a representative set of information and 
is by no means complete. 

The operating system uses the process control block information from 
all processes within the system to coordinate the execution of all of the 
processes in order to meet some operating system's goal, such as fair execu- 
tion, equal execution times, or some minimum average execution time. 
Processes run at a variety of levels within the operating system. Some pro- 
cesses are privileged and can, therefore, access protected regions of memory 
or hidden routines. Application processes may have no outside access other 
than the programmer's immediate load image. Others, such as the database 
management system, have some form of access rights in-between these two 
extremes. Processes exist within the system in many different degrees of 
completion, called states. A process within the system can be in one of these 
four states: ready to run, running, suspended or blocked, and terminated or 
dead (Figure 2.19). 

The ready state refers to the state a process is in when it is prepared to 
run on the hardware but is awaiting the go-ahead from the operating sys- 
tem. To be in this state the process must have all the resources it requires to 
run allocated or at least fully specified, and it must have a known state for 
the resources stored in the PCB. Transitions from the ready state include 
terminate, dispatch, or block. 

Terminating the process can be the result of a user action to kill the 
process or a command from another process, such as an operating system 
command, due to resource removal or an error condition (e.g., a bad con- 
trol word for a printer). Dispatching a process moves a process from the 
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ready state to the running state due to a scheduling action. The block tran- 
sition moves a process from the ready state to the waiting state and is due to 
the removal of an acquired resource by the operating system or to some 
other deficiency that will not allow the process to go forward. 

The running state refers to the point when the process has control of the 
CPU and is executing its instructions on the bare machine. The process has 
control of the hardware at this level and is only removed from execution by 
an interrupt from the operating system or an error condition. Transitions to 
this state only occur under control of the operating system and are due to 
scheduling actions. Transitions out of this state are due to a variety of condi- 
tions. A process can go from the running state to the termination state upon 
completion of execution, or a process can go back to the waiting state due 
to an input/output request (which is serviced by another process) or to the 
ready state due to an interrupt from the operating system for some other 
condition. 

The waiting or suspended state for a process is used to hold processes 
that have not acquired the needed resources to execute or that have been 
removed from active execution due to some blocking action. A waiting 
action could be due to the transfer of data from the disk into memory or the 
completion of a cooperating process. Transitions to the waiting state are 
typically caused by requests for added resources, the removal or reallocation 
of some needed resources waiting for a cooperating process to finish its serv- 
ice, or waiting for resources to be freed up for other requests. 

The termination or dead state is the state from which all processes origi- 
nate and finally return to for exiting the system. This state is where a proc- 
ess is originally given basic assets, such as a process control block, initial 
memory load space, and so forth. In addition, this is the state where proc- 
esses that have been terminated for whatever reason are returned. The func- 
tions here deallocate held resources and remove the process from the 
system. 

Processes are moved from state to state based on the actions of various 
operating system support routines, such as the scheduler, dispatcher, and 
allocation routines. These routines have the job of determining when to 
move a process from one state to another, which process to move from one 
state to another, how to move the process, and where to move it. All these 
decisions are based on the interpretation of the operating system's managed 
process control block and the state of the system resources. 

To determine which one of a set of ready processes to move from the 
ready state to the running state requires a scheduling policy and supporting 
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mechanism to implement this policy. Originally computer systems used 
simple FIFO scheduling, where the next process in a list (queue, linked list, 
or some other data structure of PCBs) is the process scheduled for transition 
from the ready state to the running state. Other scheduling techniques try 
to be more fair and break up running processes into chunks of time called 
quantums. One such scheduler is the round-robin technique, where proc- 
esses are moved from running to blocked or suspended states once they 
exceed their allotted quantum of time (a time slice or period). Suspended 
processes are placed on the circular queue, where they wait until they move 
around to the front of the queue to once again receive service. In this man- 
ner the CPU time is shared equally among all active processes (Figure 2.20). 
This type of scheduling is typical of a time-share system. 

There are other techniques where the quantum time is not equal and 
where the selection process does not simply choose the next in line. The 
time slices are broken up into varying levels with the top level being short, 
small time slices; the intermediate being longer slices, but with also a longer 
wait time between getting service; and, finally, a long-term scheduler, where 
there is a greater time slice allocated but where the time between service 
intervals is even greater (Figure 2.21). 

A variety of other schedulers have been constructed for almost every 
conceivable measurable system quantity. For example, schedulers have been 
constructed that use priority (from a few levels to thousands of levels), exe- 
cution time remaining, fixed deadline time scheduling, priority ceiling, and 
other techniques to select which process will get serviced next. 

Once a process has been scheduled for service, it still must be moved 
from the inactive process control block state to a state where it is being pre- 
pared to execute upon the hardware. The task of preparing the process for 
actual execution falls on the operating system dispatcher. The dispatcher 
accepts the given process control block from the scheduler and proceeds to 
perform tasks required to ready the CPU for execution of the provided 
process. The dispatcher loads the stored CPU register values for the process 
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into the appropriate registers and restores the CPU status registers. The 
stored program counter for the process is loaded into the CPU's program 
counter register, and the proper physical addressing information for the 
process is loaded into the appropriate memory-addressing registers and data 
structures. Once all of the parameters are in place, the dispatcher turns over 
control to the process by making the program counter for the process the 
next jump address from which to acquire the following instruction. The 
dispatcher may also have the task of resetting timers and interrupt flags 
before it turns over execution control of the CPU. The setting of interrupt 
timers is essential if the operating system is to reacquire control of the CPU 
at a later time. 

Another operating system function responsible for the movement of 
processes from one state to another state is the memory allocation service. 
This will be discussed in more detail later in this chapter. Additional fea- 
tures that the operating system must provide for process management 
include error management and deadlock detection, both of which are also 
important to a database management system but not in the form used in an 
operating system. The error management services provide functions to 
detect, correct, avoid, and prevent errors, depending on the class of service 
required and the price the operating system and serviced applications are 
willing to pay. 

Deadlock detection is performed for the processes and for the resources 
required by the processes running in the system. Deadlock occurs when one 
process is holding a resource another requires and a resource this process 
needs is held by the other (Figure 2.22). Deadlock management can take 
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Figure 2.22 
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many forms. We may wish to detect deadlock and correct it by removing 
some of the offenders. We may wish to prevent deadlock from occurring by 
guaranteeing ahead of time that the allocation of requested resources cannot 
result in a deadlock. One way to realize this is to preallocate all of the 
resources needed for an executing process before it is allowed to begin. This 
is a safe algorithm but one that has an enormous amount of built-in hold- 
ing time on resources and one that will directly result in longer waiting time 
by processes, resulting in longer overall execution times and lower system 
process throughput. Another means to deadlock management is to avoid 
deadlock altogether. Avoidance can be achieved by setting up resources in a 
specific order of access, which must be followed by all processes. In this way 
processes can only access resources in order and cannot hold a resource held 
by another that you are waiting for. The circular wait is removed in this 
approach. 

Resource management 
Resource management requires that the operating system coordinate the 
access and transmission of information from resources connected to the 
computer. Typical of functions handled by the resource management func- 
tion of the operating system are memory management, peripheral device 
initialization, device setup, control over the data transfer, and closing of the 
peripheral device. In early systems the operating system controlled these 
devices down to a low level. In more modern systems the operating system 
sets up the parameters of a transfer and leaves the details of the data transfer 
to the device controllers and to direct memory transfer control devices. This 
leaves the operating system and CPU free to do other required resource 
management tasks. 

M e m o r y  management 
An operating system's storage manager manages the memory hierarchy of 
the computer. The operating system in particular must coordinate the 
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Figure 2.23 
Memory map. 

movement of information into and out of the computer's primary memory, 
as well as the maintenance of the memory's free space. To perform these 
functions an operating system typically uses a scheme where the primary 
memory is broken up into fixed-size pieces called pages or variable-sized 
pieces called segments. The operating system then manages the movement 
of pages or segments in memory based on policies in use. The memory 
manager must allocate space for processes upon initiation, deallocate space 
when a process completes, and periodically clean up the memory space 
when the memory becomes fragmented due to allocation and deallocation 
of uneven partitions. The memory allocation problem is directly tied to the 
memory map. (See Figure 2.23.) 

The memory map indicates which areas in memory are allocated to a 
process and which areas are free to be allocated to a new process. This mem- 
ory map can be managed in a variety of ways to help the allocation man- 
ager. The list of free areas can be organized into a free list, where the blocks 
are structured as a tree of increasing block size, or as a heap, with the largest 
block always toward the top of the heap. Memory allocation then becomes a 
function of selecting a block of appropriate size based on the selection pol- 
icy in place. Some policies include first fit, where the first block encoun- 
tered that fits this process is selected. Another policy is best fit, where the 
blocks are scanned until one is found that best fits the size of the process to 
be loaded into the memory. There are numerous other schemes, but they 
are beyond the scope of this chapter. 
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Hand in hand with allocation is deallocation of memory. As pages or 
segments are released by processes leaving the running state, they must be 
removed from the allocated list and replaced into the free list of free pages 
or segments. The deallocated segments are restored to the list in a block 
equal to the size of the allocated process that held them. These free seg- 
ments are then placed into the free list in a location appropriate to the size 
of the free segments being restored. 

However, not all replacements are done in such a nice manner on proc- 
ess execution boundaries. Most are performed on a full or near-full primary 
memory. In order to still allow processes to move forward in their execu- 
tion, we must reorder the active pages by some policy that will allow us to 
remove some active pages and let them be reallocated to other more 
demanding or starved-out processes. The most common page replacement 
algorithm and deallocation policy is based on the least recently used (LRU) 
principle. This principle indicates that the least recently used page is most 
likely to stay that way for the foreseeable future and, therefore, is a prime 
candidate to be removed and replaced by a waiting process. Other schemes 
used for page replacement include most recently used, least frequently used, 
and random removal. All of these policies have been examined in detail in 
the past and have merits for certain process activities, although for database 
systems some of these are downright disastrous. The database process acts in 
a way that is not typical of most applications and, therefore, will not react 
the same to a certain policy. 

Another job for memory management is to maintain a map of free 
memory areas and to periodically clean up memory to free up larger contig- 
uous chunks to make allocation easier. This process is called garbage collec- 
tion and reallocation. The allocation and deallocation policies discussed 
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previously result in memory becoming periodically fragmented. When 
memory is fragmented into very fine fragments, it may become impossible 
to find contiguous blocks of free memory to allocate to incoming processes 
(Figure 2.24). To rectify this problem, memory management services peri- 
odically check the map of memory to determine if cleaning up the loose 
fragmented free blocks into larger segments will result in significant 
increases in free contiguous blocks of sufficient size. 

One technique scans all marked free blocks and coalesces adjacent holes 
into marked, larger free segments. These are then added to the free list with 
the coalesced disjoint holes removed from the free list (Figure 2.25). 

This in itself may not result in sufficient free space of adequate size. To 
get larger free blocks it may be necessary to periodically scan the entire 
memory and reallocate where processes are stored to clean up the memory 
allocation map into two areas--one a contiguous area consisting of all allo- 
cated memory blocks and the other all free memory blocks. The process by 
which all allocated blocks are moved and reallocated to one end of memory 
is called compaction, and the process for reallocating all of the newly freed 
space into the free list is referred to as garbage collection (Figure 2.26). As 
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with a garbage truck, compaction strives to compress the contents into one 
end of the container, freeing up the remainder of the space for more gar- 
bage. The process requires the reallocation and movement of processes and 
their addresses (all references must be changed in PCB and physical load 
segments). 

Beyond these basic memory management schemes some operating sys- 
tems, along with support hardware and software, support both paging and 
segmentation. In this scheme the memory is decomposed into segments. A 
segment has some number of pages, and a page is of a fixed size. The seg- 
ments are mapped into and out of memory as pages were in the first scheme 
(see Figure 2.27). 

File management 
File management is a function of the operating system that controls the 
structure and storage of information on nonprimary storage resources. A 
typical application of file management is the files stored on a disk drive or 
tape drive. Files are collections of data and/or programs that are moved to or 
from memory. To perform this movement requires that the file's structure, 
format, and location be known to the operating system. The file manager 
uses this information to request memory space from the memory manager 
to move a file from storage into the memory. When ready to move back 
into storage, the file system uses information from the memory manager to 
determine if any changes have been made to the file. If no changes have 
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been made, then the file can simply be discarded. If changes have been 
made, the file manager needs to determine if more space than the file origi- 
nally occupied is required. If it is, the file is possibly stored in a different 
location or requires fragmentation on the device. Similar to the memory 
manager, the file manager may periodically be required to reallocate storage 
space and move files to free up larger contiguous areas. 

The file manager provides additional services to the applications. File 
management provides functions to create, delete, and insert information 
into files; append information to the end of a file; and alter the contents of 
a file. File control mechanisms support the sharing of files among users in 
order to control the form of access allowed, to structure files for optimal 
space and time use, to name or rename files, and to copy and replicate files 
as needed for system support. 

Management of the location and contents of a file system is controlled 
by the use of a file directory service. A file directory can be used as the 
means to facilitate access to files and to limit the use of a file as specified by 
the owner or the operating system. Some file managers organize files by 
type, such as .EXE for executables, .TXT for text files, .FOR for FOR- 
TRAN files, .PAS for Pascal files, and .C for C files. To aid in the manage- 
ment of files the file manager maintains a file control block with 
information about the files under its control. This information can facilitate 
the maintenance and use of the files. 

Protection 
Protection is an operating system function that manages access to con- 
trolled resources. Protection typically consists of access authorization, access 
authentication, and access restrictions. The operating system checks the 
authorization rights of a service requester before the service is performed. If 
the proper rights exist, the access is allowed; if not, the requester is blocked 
from access. 

Access authorization is a process through which the operating system 
determines that a process has the right to execute on this system. The most 
common form of this control is the user name, which we are all familiar 
with when we log on to a computer. The second form of operating system 
protection is authentication. Authentication deals with the problem of a 
user being verified as to who he or she claims to be. The most common 
form of authentication is the password. The combination of user authoriza- 
tion through a stored user name and user authentication through a pass- 
word has proven adequate for most noncritical computer systems' access 
restriction management. If necessary, these two methods can be applied to 
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the access of any resource to limit access to it. The problem to be addressed 
is the degree of protection required and the amount of overhead we are will- 
ing to pay for it. 

Access control is a more involved issue and deals with how to control the 
use of information and programs by users who have authorization to be on 
a system. To control who uses software on the system and how it is used, an 
operating system must provide mechanisms to limit the execution rights of 
controlled software. To do this operating systems use some form of access 
control. The most common are access control lists, access control matrixes, 
and capabilities. Access control lists provide a means to list all software ele- 
ments to be controlled in the system and provide a list of users or processes 
that have the right to use these software elements. The control can also limit 
the type of execution rights the process or user may have. For example, we 
may only allow for the invocation of a process, not the fleeing of the CPU 
to the calling process. We may allow only read access to a region of a soft- 
ware process or insert fights, or we may give unrestricted rights. The main 
mechanism (the comparison of a user identifier against a list of rights) for 
an access control list is performed in a centralized site, possibly within a sep- 
arate operating system service or within the controlled software itself. Capa- 
bilities perform a similar function but do it in a distributed fashion. 
Capabilities are created for each controlled element and are requested by 
processes that wish to use the controlled element. If the capability is appro- 
priate for a process, it is given to the process. The process can then use the 
capability like a ticket to access and use the controlled element. 

Peripheral device management 
Input/output and peripheral device management services were created to 
remove the physical details of use from user processes and to provide for 
more seamless and fair management of the resources. The goal of peripheral 
device management services is to make access clear, clean, and transparent 
to users. Management should remove all physical dependencies from users' 
access requirements and replace these with logical mechanisms that are 
already common in programming environments. The control is to make 
access device independent. The user should not have to know what type of 
device or where the device is located to access data or service software. 

Management for peripheral devices is bound into two classes of operat- 
ing systems service routines: I/O and device managers. The operating sys- 
tem strives to make all accesses appear the same. The typical method is to 
make all accesses have the look and feel of a file access. The I/O manage- 
ment process has the function to set up and maintain the logical channels or 
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paths between CPU-resident processes and the outside world. The func- 
tions provided by this element include channel allocation and deallocation, 
channel setup, channel coordination, and remote data transfer and control. 
Included in this may be error detection and correction over the channel. In 
concert with this function is the device management function. Device man- 
agement services provide mechanisms to perform device-dependent setup, 
allocation, control, synchronization, deallocation, and data transfer. 

I/O and device management create the physical link and control the 
transfer. Included in this function is the request for buffer assets for the 
channel to utilize in transferring information from the secondary storage to 
the internal computer's memory. The buffers are used as the intermediary 
between the devices and the CPU. They allow for the concurrent operation 
of the I/O with applications processing within the system. The I/O channel 
control and device control are typically handled in an operating system as 
an independent process. The operating system initiates the I/O or device 
operation and departs, allowing the device and I/O managers to perform 
the task and, when completed, interrupt the operating system to indicate 
the completion of the task. The interrupt can be active, where it stops the 
operating system for immediate service, or it can be message oriented, 
where it sets some status indicator, which the operating system will check at 
its leisure. 

When integrated with the operating system's file manager, these routines 
form a seamless link between the stored programs, data, and the run-time 
system. The file manager is used for the direct access of logical storage ele- 
ments by the operating system and controlled processes. The file manager 
provides services to name files, address files, control access, select and coor- 
dinate access paths, perform background copying and backup for recovery, 
coordinate the allocation and deallocation of resources where file informa- 
tion is located, and manage the placement (logical) of stored information. 
An important function of the file management system is lock management. 
File managers create, issue, and control the locking and unlocking of files 
and records within files. This service is extremely important for concur- 
rency control. 

N e t w o r k  c o n t r o l  s o f t w a r e  

Network management software manages the sending and receiving of infor- 
mation over a communications medium. Typical functions include message 
routing, naming, addressing, protection, media access, error detection and 
correction, communications setup, and management. 
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Routing is a system network management function needed to coordi- 
nate the movement of information over a network(s). In a local area net- 
work this function is not needed in all cases. Routing may simply require 
sending the data in a certain direction over the medium, or it may require 
more elaborate policies for selecting a channel or wire to send the message, 
based on the sender's location and network traffic. Routing is a required 
function in wide area networks such as the Internet. 

Naming is required to facilitate the transparent access to all system 
resources, local or remote. A naming scheme should have the following fea- 
tures: provide for sharing of objects, provide access to replicants, and pro- 
vide fully transparent access. The naming function must support two types 
of names for each item managed: an internal (systems) name and en exter- 
nal (user) name. The naming function must manage the translation and 
management of the external names with internal (unique) names. 

Addressing is the means through which the system determines where a 
named item is located. Addressing schemes may be broken up into hierar- 
chies, where local computers have their own set of names, which may not be 
unique between systems. The combination of the system's address (a node 
on the network) and the local name is sufficient to provide a system's 
unique name. Likewise, we could have a unique name and address for each 
network in a collection of interconnected networks. 

Access control over a network deals with policies and mechanisms to 
limit the mode of access given to network users. Access limitations could be 
as simple as login privilege or more complex, such as limiting the type of 
connections one can acquire or the type of access to remote information. 
The mechanism for limiting access may be embedded in software accessing 
the network or may be explicitly provided by the user of the software access- 
ing the network. 

Protection is a function of the operating system that deals with the 
management of resources from malicious or accidental access that may 
deadlock the system. There are two major classes of protection schemes: 
The first tries to avoid the problem by preallocating resources; the second 
allows deadlock to occur but provides means to detect and correct prob- 
lems. Avoidance builds access to resources in a methodical fashion. One 
scheme requires a process to acquire all resources it will need ahead of time 
and hold them for the duration of its access. This is highly restrictive and 
may cause excessive delays for other resources that may need the held 
resources. Deadlock detection allows for more concurrent access of 
resources but at the cost of potential deadlocks. One scheme requires the 
construction of waits-for graphs, which allow for the detection of potential 
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and actual deadlocks and provides mechanisms to remove deadlock by 
aborting conflicting processes. 

One can see from this simple description the possible problems from a 
database's perspective. The operating system may limit the sharing of 
resources between processes, even if the database would allow it. Media 
access software controls the interaction of users and software processes with 
the network. Typical mechanisms deal with the recognition and login inter- 
action with a network node. Media access software deals with the connec- 
tion to the communications medium and the setup of communications 
sessions. Access allows a process to log in with the network and be recog- 
nized by others over the network. 

Communications setup and management act in conjunction with media 
access software to interact with remote nodes and set up a link. Typically, 
one node requests a linkup with a remote node. If the remote node can sup- 
port an additional session, it creates a control block to hold information 
about the setup. The requesting node is signaled that a session was success- 
fully created. Once created the interacting processes can send and receive 
information using their preallocated parameters. 

Clientlserver policies and mechanisms 
The client/server mode of remote resource access and control is common- 
place. One just has to open up a trade magazine to find advertisements for 
systems claiming client/server processing. The technique provides some of 
the benefits of distributed systems but without the added control overhead. 
Client/server participants operate by requesting and receiving services as 
needed. Servers hold resources and can provide service to clients. Clients 
require held resources and can request service from the server. The server 
grants service to the clients based on the present use and the sharing policy 
in place at the server. The methodology does not offer the tight synchroni- 
zation one would find with distributed systems, but it does offer a simple 
means to access and share remote resources in a uniform fashion. Its sim- 
plicity has added to its popularity and growth. 

Remote procedure call policies and mechanisms 
A similar remote access mechanism is the remote procedure call mecha- 
nism. As with local procedures, a requester must know the procedure's 
name and the proper parameters. The requester calls the remote procedure 
and the blocks awaiting the remote procedure's response. The called proce- 
dure performs the requested service, and, on return of control to the caller, 
the caller unblocks and continues processing. The procedure is exactly the 
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same as the conventional procedure call except that the call is over a remote 
channel to another site. Further details of network software and specifics 
related to databases will be described in later chapters. 

Faul t  d e t e c t i o n  and r e c o v e r y  

An operating system has a requirement to monitor the system for errors, 
faults, and failures and to provide mechanisms to correct these conditions 
or to reconfigure around them. To detect errors or faults in the first place an 
operating system uses a few basic functions. The first relies on hardware 
detection of errors~for example, parity check bits, cyclic redundancy 
checks, and computational checks such as overflows and divide by zero. 
These provide for detection of intermittent or hard errors within the com- 
munications and computational infrastructure of the machine. To check for 
more subtle or buried errors requires the periodic initiation of fault-moni- 
toring software. This software collects information from these basic hard- 
ware elements and from running software using predefined test points. 
These collected data are then periodically analyzed for patterns that may 
indicate software or hardware errors present in the system. This software is 
referred to as program-monitoring software. 

Once an error condition has been detected using the operating system's 
error-monitoring mechanisms, the next job is to determine where the error 
is coming from and then to isolate the error down to some predetermined 
hardware or software granularity~for example, for hardware down to a 
replaceable board or a component such as an integrated circuit; for software 
down to a module, process, function, or possibly a block or line of code; for 
data within the file, down to the record or data item level. The level of iso- 
lation provided will depend on the overhead and price the system is willing 
to pay for the detection and isolation. This mechanism is typically called 
fault localization. Fault localization operates by using known test drivers 
and known responses to walk through system hardware and software ele- 
ments testing for erroneous outputs. It is not, however, sufficient to simply 
detect an erroneous output condition and assume this is the component at 
fault. Errors can propagate through numerous layers of hardware and soft- 
ware, only showing up in later stages. The goal of fault localization is to 
detect an error, and then test back through all interacting elements to isolate 
the fault or error to the appropriate culprit. 

On isolation of a faulty hardware or software element, the operating sys- 
tem must determine an appropriate action to relieve the system of the error. 
The process of performing this function is called recovery and reconfigura- 
tion. The most common method is to perform some recovery action first. 
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The recovery may be as simple as reload and restart or just resetting the 
already loaded software. More elaborate techniques include maintaining 
partial execution history (register status, computation state) and to reset and 
restart from some intermediary point in the software. If an error is more 
elaborate, it may require the removal and replacement of the software or 
hardware element to effect recovery. 

If redundant hardware and software are available, the recovery can take 
on a more global perspective. Recovery can look to other assets available 
within the system to work around the errors or failures. This form of recov- 
ery requires the reallocation of resources (both hardware and software) to fill 
the gap left by the failed elements. This form of recovery is referred to as 
reconfiguration. Reconfiguration will be discussed in further detail in later 
chapters. 

Database management systems 

A database management system is composed of five elements: computer 
hardware, software, data, people (users), and operations procedures. The 
computer hardware consists of processing elements, volatile memory, sec- 
ondary storage components, archival storage devices, input and output 
devices, and possibly specialized computational devices and input sensors. 
The software for a database can be broken up into three categories: infra- 
structure support software, database software, and applications software. 
The infrastructure support software includes the operating system and net- 
work communications software. The database management system software 
includes components for storage management, concurrency control, trans- 
action processing, database manipulation interface, database definition 
interface, and database control interface. Applications software is dependent 
on user needs. Data are the commodity the database system is managing. 
People and applications programs, as users, manipulate the stored data and, 
as database administrators, examine and maintain the database for the users. 
Operations procedures are developed and put into practice to provide addi- 
tional support to the database system. Operations procedures include back- 
ing up the database onto nonvolatile mass storage, such as tapes, on a 
scheduled basis, and collection of operational statistics for use in tuning the 
database's structure and performance. 

A database management system performs as an applications process 
under the control of the operating system. The database manager uses the 
operating system's file management and memory management services to 
store and retrieve the data in the database. Interface to the database manage- 
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ment system is through three distinct paths: the database definition lan- 
guage, database manipulation language, and database control language. 

Database definition language 
A database is constructed to manage data that must be maintained for 
future use. The data in the database are organized into structured collec- 
tions based on applications' informational needs. Data are placed in the 
database in these predefined data structures. These data structures are 
defined using data definition primitives within the database's language. 
Data definition primitives allow the database designer to specify individual 
data item composition as well as more complex data structures composed of 
these low-level data items. 

A data item represents the smallest identifiable piece of information 
managed within the database. These data items, or attributes, are given a 
unique name, and their physical structure and type are specified using data 
types available within the given language. In the Structured Query Lan- 
guage (SQL) used to define relational databases, a data item is defined at 
the same time that a relation is defined. As an example, to define a person 
relation in SQL we could use the following code: 

CREATE TABLE person 

( name 
ssnum 

bdate 

saddr 

city 

state 

zcode 

VARCHAR ( 3 0 ) NOT NULL 
INT(9) NOT NULL, 

DATE NOT NULL, 

VARCHAR ( 2 0 ) NOT NULL, 

VARCHAR ( 2 0 ) NOT NULL, 

VARCHAR ( 2 0 ) NOT NULL, 

INT(9) NOT NULL, 

PRIMARY KEY (ssnum)) 

This example defines a person data entity to be composed of seven dis- 
tinct data items. Each data item is given an explicit data type and a maxi- 
mum size for the data item~for example, the name can be from 1 to 50 
characters long; the birthday is of type date. Date is defined in SQL as hav- 
ing the form year-month-day and is comprised of four integers for year and 
two integers for both the month and day entities. 

Database definition typically uses a compilation process to build and 
generate the database schema or data description model. The database defi- 
nition process results in descriptions of the database in both logical and 
physical terms and the generation of a mapping between the two, as shown 
in the following code segment: 
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CREATE TABLE customer 

( cname VARCHAR ( 10 ) NOT NULL, 

cnum INT (3) NOT NULL, 

credlim DECIMAL (6, 2), 

PRIMARY KEY (cnum)) 

CREATE TABLE order 

( onum 

cnu/n 

spnum 

date 

amount 

DECIMAL (5) NOT NULL, 

DECIMAL (3) NOT NULL, 

SMALL INT NOT NULL, 

DECIMAL ( 6 ), 

DECIMAL (6, 2) , 

PRIMARY KEY (onum) ) 

These data definition constructs are from the Structured Query Lan- 
guage (SQL) and specify two relations. One is a customer relation and the 
other is an order relation. The customer relation is specified as having three 
attributes: a customer name, a customer number, and a credit limit. The 
key attribute for the relation is defined as the customer number attribute. 
The second relation is a customer order relation. The customer order rela- 
tion is composed of five attributes: order number, customer number, sup- 
plier part number, date of the order, and dollar amount for the order. The 
primary key for this relation is defined as the order number. Also notice that 
since the customer number in the order relation is the same as the customer 
number in the customer relation, this attribute constitutes a foreign key 
into the customer relation. By using techniques such as this the relations are 
linked together in an informational sense. 

For all database models, there exists a language for the specification of 
the database's structure and content. The specification is called the schema 
design and represents the logical view of information that is to be managed 
by a particular database management system. The specification gives the 
designer the ability to map disjoint logical user views of information into a 
comprehensive global view of information and finally into a mapping to 
physical storage structures. This separation of the logical and physical data- 
base structures results in transparency from the physical and logical depend- 
encies of the data from the users. By doing this the database designer has the 
ability to alter the physical storage structure and organization in order to 
optimize low-level storage and retrieval efficiency without the need to alter 
the logical user view and its application's code. 

The database design language, beyond the basic ability to define data, 
must also have the ability to alter specified data structures and their physical 
representations after the database has been specified. Features to drop a 
structure from the database, to insert a new structure, or to alter an existing 
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structure need to be built into the language for completeness and for the 
maintenance of a database. Keep in mind that most databases will not be 
constructed, put in service, and removed over a short period of time. When 
enterprises construct and populate a database, they do so continually over 
the lifetime of their system. The lifetime of a database system in such an 
enterprise may span decades, implying that growth and change are inevita- 
ble and must be designed for up front. A database within such an environ- 
ment is initially specified and put into service. After using the database, 
some initial adjustments will be required. In addition, as the enterprise 
grows and possibly changes the focus of its activities, so must its informa- 
tion base change in order to stay competitive. One can see that a rigid, 
unchangeable specification and operational structure will lead to obsoles- 
cence and degradation of performance to the very applications the database 
was initially specified to support. A database specification language and 
implementation must be flexible in order to be useful and enduring. 

Database manipulation language 
The component of the database most visible and recognizable by database 
professionals, as well as applications developers and possibly applications 
users, is the data manipulation language. This component of the database 
can take on many forms, the most common being a programming lan- 
guage-like interface, which provides the ability to retrieve and store infor- 
mation within the database previously specified by the database design 
language. 

The data manipulation language need not, however, take on a textual 
and procedural view only. The data manipulation language can be visual, as 
in the spatial data management system, where information is described 
using icons and is retrieved using pictures that can be zoomed in on for 
greater detail about an i tem~for example, given that we have a map of the 
United States used as the top-level view for the querying of business infor- 
mation, we may wish to find out what universities are within the southern 
region of Massachusetts closest to Cape Cod. We would first select the type 
of icons we wish depicted~for example, only show regions with universi- 
ties by selecting the university icons. The visual display would then high- 
light cities where major universities are located. To isolate a particular 
university or to find out more about the area where a university is located, 
we begin by selecting the area, say southeastern New England around Cape 
Cod, by encircling the region. The display would then expand this area, 
again only depicting the universities. To select a particular university select a 
university icon (Figure 2.28). If we selected the University of Massachusetts 
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at Dartmouth, we may next get an aerial view of the university. To discover 
more information we could select a building, then a department, or possibly 
even a particular professor or course offering. In such a way the majority of 
information needed could be extracted and displayed in visual form. There 
are, however, limitations with this method. Not all information lends itself 
to visual-only representation. We may be forced to place only a subset of the 
totally available information in such a system and use a separate database 
interface for more textual information. 

A second type of interface is related more toward business uses of data- 
bases. This type of interface uses a company's typical paper forms for infor- 
mation about inventory, sales, employee records, and so forth as the 
interface presented to the users of the database. An application or user sim- 
ply selects the proper form, say an employee record form, and selects which 
employee or group of employee records to look at by typing in information 
on the form. 

Figure 2.29 shows a form that may be used by a business to represent 
customers or suppliers. The form shows the company's major information, 
such as the company's name, address, phone number, fax machine number, 
and e-mail address, and possibly some information about the type of prod- 
uct or service it produces or supplies. In addition, the form may include 
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some extra fields, which can be used to aid in finding information. In the 
example screen of Figure 2.29, there is a separate field called Find on the 
bottom of the screen. In this field a user could input parameters to be 
looked for or qualifiers to aid in a search~for example, if we wished to 
select all companies in Boston, Massachusetts, that are stored in our data- 
base, there are two potential ways to do this. The first is to enter the names 
Boston and Massachusetts in the appropriate city and state fields and select 
Go on the bottom right of the screen. This would indicate to the database 
to match any records that have these qualities in these particular fields. To 
find additional entries with the same fields one would select the Next field 
on the lower-right corner. An additional means to recover the same records 
is to type All, Boston, and Massachusetts in the Find field of the form. 

A third form of nontraditional data manipulation language is the query 
by example, or QBE, type of facility. In a query by example environment 
the user requests basic information about a record of interest~for example, 
a company name. The system then returns a template, which may or may 
not fit what is being requested. This template can then be used by the user 
to further refine the query and to receive additional examples to use in for- 
mulating a more precise query. The QBE interface developed for the rela- 
tional model is closely tied to the forms-based interface. The examples 
come back in the form of tables, and the user fills in known quantities. The 
database then attempts to fill in a response table using this information as 
the restriction information. 

Other data manipulation languages are based on functional evaluation. 
In these types of languages the users request information from the database 
through the use of function calls. The function calls may return text, graph- 
ics, video, sound, or a variety of data formats. The form returned is depend- 
ent on the data formats of the function called and the parameters' data types. 
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This form of query interface is most prevalent in object-oriented databases 
and in multimedia and hypermedia databases. The information that is 
passed between the database and the applications is in the native form of the 
application, not in the base form of the database. This type of interface is 
desirable in applications where data come in nontextual forms that neverthe- 
less are stored and managed by a database management system. 

The most prevalent form of data manipulation language today is still by 
far the textual and procedural languages, such as Structured Query Lan- 
guage (SQL) and Object Query Language (OQL). In these languages the 
queries are formed much like a program in any programming language. The 
query writer has some reserved words that provide some given functionality. 
The typical query includes reserved words to select multiple records, a sin- 
gle record, or a subset of a record; to specify where the record is to come 
from; and any qualifiers on the access and retrieval of the requested infor- 
mation. In languages of this form the queries take on the structure and exe- 
cution flow of the program~for example, if we are looking at a relation 
Order, of the form order number, order date, customer number, product 
ordered, quantity ordered, unit cost, total cost, and want to find all orders 
(the entire tuple) from the XYZ Company for bookbindings since May 
1995, the following query could be used, given that the XYZ Company has 
the customer number I 101: 

Range of 0 is order; 

SELECT O.onum, O.odate, O.cnum, O.pname, O.qty, O.uic, 

O.ttl 

FROM Orders 

WHERE O.cnum := 'CI01' and O.odate > '4-30-95' and 

O.pname := 'bindings' ; 

In this query we first set an internal variable to range over all values of 
the search relation. Second, we request the search look to retrieve all the 
attributes of the relation Order in the same order in which they are stored. 
Third, we specify where to look for these attributes, namely in relation 
Order. And, finally, we restrict the selection to find and copy into our result 
relation only those tuples that have the company number attribute stored 
with the value of 'C101', the value for attribute order date greater than the 
end of April (odate > '4-30-95'), and only the parts named 'bindings'. 

The procedural languages such as SQL also have operators to insert new 
tuples in the database, to create new relations, to modify existing relations, 
to delete relations, and to update the contents of a relation. An insert of a 
tuple into the previous relation could be readily performed by issuing the 
following instruction: 
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Range of 0 is order; 

INSERT INTO Orders 

VALUES ('0100', '5-21-95', 

'1.25', '125.00') ; 

'CI01', 'binding', 'i00', 

To delete the same tuple from the database requires that we first find the 
proper tuple, and then remove it from the relation. The code may appear as 
follows: 

Range of 0 is order; 

DELETE FROM Orders 

Where O.cnum := '0100' AND O.odate := '5-21-95', AND 

O.cnum, -= 'CI01' AND O.pname := 'binding' AND O.qty := 

'i00' AND O.uic := '1.25' AND 

O.ttl := '125.00' ; 

A simpler means would be to refer to the intended tuple by its primary key 
only. Since in a relational database the primary key by definition must 
uniquely define a tuple in a relation, then this alone can be used to find and 
delete the proper tuple. The reformed deletion operation would be as follows: 

Range of 0 is order; 

DELETE FROM Orders 

Where O.onum := '0100' ; 

What the reader should realize from this discussion is that there is no 
one correct means of retrieving information from a database. There are, 
however, standard means [1]. The important concept is that database 
retrieval is different from conventional programming language processes. 
There is a language of informational access, which has evolved and contin- 
ues to evolve along with database technology. These languages, however, 
will continue to be different from their programming language counterparts 
primarily due to the differences in the requirements for persistent data 
beyond the point of a program's existence and the requirements for consis- 
tency and correctness of information beyond the scope of any single process 
or program. 

Database control language 
The last component of the language interface to a database management 
system is the data control language. This is also sometimes included as 
part of the data definition language in some descriptions. We decompose 
it here to help focus on some of the differences. In particular this compo- 
nent of a database interface is typically used by the database administra- 
tor. Typical functions provided at this layer are tools to monitor database 
operations; restructure underlying physical storage; reset constraint values 
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on data items; rename relations; create additional indexes; archive data; 
and to grant, alter, or revoke privileges. The typical interface at this level 
is textual oriented with specialized analysis tools used to analyze collected 
information. 

The database administrator could, for example, examine a set of range 
constraints on an attribute value and determine, based on the user's 
requirements, to alter them to increase the possible domain of values con- 
sidered correct by this at tr ibute~for example, if the database administra- 
tor feels that there is not a sufficient range of values to represent the job 
categories in a company, he or she could elect to increase the number of 
jobs and their titles as needed. If originally there were only three titles in 
the company: 

jobtitle IN {welding, management, sales} 

but it is determined that the data structure must be expanded to more fully 
meet the need of additional job categories, the data administrator simply 
extends the list of valid items. This instruction simply adds three new cate- 
gories to the list of allowable job titles. These new titles can now be used by 
applications querying or modifying the database. 

jobtitle IN (welding, management, metal cutter, 
machinist, glass cutter, sales) 

Constraints for the range of values of a data item can be altered by 
increasing the values assigned to boundary values--for example, if an initial 
constraint indicates that the customer number ranges from 1 to 500, but we 
now find ourselves with 501 customers, the constraint must be altered to 
allow storage of the new customer record. To change the constraint, simply 
set RANGE OF Customer.cnum 1 . . .  750. Constraints on when to per- 
form testing functions can be altered also--for example, test constraints on 
reads, writes, or commit. 

Beyond the alteration of constraints, database data control languages 
provide instructions and constructs to grant additional privileges to users or 
to revoke privileges. The GRANT statement is used to allow a user to per- 
form certain manipulations--for example, to allow user Tom to read values 
from the Customer relation can be done by: 

GRANT SELECT ON Customer TO Tom; 

One could also grant the rights to multiple operations within one state- 
ment, as follows: 

GRANT SELECT, UPDATE, INSERTION ON Customer TO Tom; 
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This statement grants selection, update, and insertion rights to the user 
Tom on the relation Customer. In this manner the database administrator 
can alter, add, or remove access rights to any items within the database. Not 
all database systems and models support a wide variety of data control lan- 
guage features. In several languages, many of these features would necessi- 
tate bringing the database off line for alteration. 

2 .10  Components  of a database 
system's a rch i tec ture  

A database system is composed of much more than just the data defini- 
tion language, data manipulation language, and data control language. 
These simply represent the interface into the actual database system. The 
core of a database management system is the collection of services that 
provide the persistence of data in the database and the functionality to 
guarantee the consistency and correctness of data and the adherence to 
ACID properties by transactions (Figure 2.30). The ACID properties 
include the atomic, consistent, independent, and durable execution of a 
transaction on the database. We will discuss these in more detail later in 
this chapter. 

The architecture of a database system is comprised of a set of services 
built on top of basic operating system services, system file storage services, 

Figure 2.30 
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and primary memory buffer management services. The file manager is the 
database's interface to the persistent stored information. The information 
managed for the database by the file system includes the internal, concep- 
tual, and external schema for the stored information (metadatabase); the 
actual database; and the database log file. The log files include before 
images (buffer values), after images, redo records (actions of committed 
transactions), undo records (actions of uncommitted transactions), commit 
records, abort records, and transaction begin records. 

Through the basic features of process management, interprocess com- 
munications, synchronization, buffer management, and file management 
the database systems services can be constructed. These services include cat- 
alog management, integrity management, transaction management, con- 
currency control, lock management, deadlock management, recovery 
management, security management, query processing, communications 
management, and log management. On top of the database services the 
user's applications operate through the input/output view manager and the 
data manipulation manager. In the following paragraphs we will briefly 
review each of these. Following these brief overviews, we will review some of 
these in greater detail. 

Catalog manager 

The catalog manager maintains information about the database's informa- 
tion. These metadata form the schema for the database. The database 
administrator, using data control language and data definition language 
interfaces, can alter the schema. As an example, in SQL this portion of the 
database would keep the definition for all relations, constraints, security 
assertions, and mappings to physical storage. 

Integrity manager 

The integrity manager aids in the maintenance of the database's data items' 
accuracy, correctness, and validity~for example, the integrity manager may 
check that a data item is of the proper type through a mechanism that 
determines when to do the check; how to do the check; and how to recover, 
reject, or fix the condition when encountered. The integrity manager may 
check to see that a data item is within a predefined domain of correct val- 
ues, such as DOMAIN FIXED (5) or Weight GREATER THAN 0 AND 
Weight LESS THAN 2000. These would test the ranges of values a data 
item may span. Integrity checks can span multiple entities or relations~for 
example, a referential integrity check in SQL can be used to see that the 
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2 .10 .3  

relationship of many objects has a property that must hold for them to be 
considered valid. Such a check could be that the SUM of all account bal- 
ances at a bank must equal the bank's balance. An important aspect of this 
management is when to perform the specified checks~for example, there is 
a different cost if the checks are done at database definition time, on access 
to the data item, on update of a data item, on an event such as a timer, or 
on the commit of a transaction. The tradeoff is accuracy and validity of the 
data versus performance. Checks done during run time will slow down the 
database's processing throughput. 

Transact ion manager  

The transaction manager controls and coordinates the execution of transac- 
tions within the database. For now just assume that a transaction is a collec- 
tion of operations on the database that are bound together into a single run- 
time unit. The transaction manager must perform tasks to initiate transac- 
tions (scheduling); synchronize transaction execution with the database, 
other transactions, and the operating system; coordinate intertransaction 
communications; commit (completion) processing; and abort (failure) 
processing, transaction constraint checking, and condition handling, as well 
as transaction recovery (error) management. A transaction typically is of the 
following form: 

TRANSACTION T (Optional Input Parameters) 

Specification Part 

BEGIN 

BODY of T 

COMMIT or ABORT of T 

RECOVERY PART of T 

END 

END TRANSACTION T 

The initial statement names the transaction, allowing it to be possibly 
precompiled and stored for later execution. The initial statement also leaves 
space for transferring input parameters to the transaction, such as the loca- 
tion of data to be executed. The specification part of the transaction is the 
area where local variables for the transactions workspace are specified, as are 
preconditions and postconditions on transaction execution, recovery condi- 
tions, isolation level, access modes, and the diagnostic size to allocate. The 
body contains the executable code for the transaction. The commit and 
abort statements indicate the success or failure of the transaction. Finally, 
the recovery part specifies user- or system-supplied recovery or condition 
handlers for error processing and transaction completion processing. 
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Concurrency  contro l  manager  

The concurrency control manager coordinates the actions of interactive 
access to the database by concurrently running transactions. The goal of 
concurrency control is to coordinate execution so that the VIEW or effect 
from the database's perspective is the same as if the concurrently executing 
transactions were executed in a serial fashion. This scheme is referred to as 
the serializable execution of transactions. Concurrency control's serializabil- 
ity theory has two basic modes: The simplest concerns the serializable exe- 
cution of the read and write sets from conflicting transactions and is based 
on either locking, timestamp ordering, or optimistic read and write conflict 
resolution. The second concurrency control concept is more complex and 
uses semantic knowledge of a transaction's execution to aid in coordination. 
The major difference is that the granularity of the serialization operator is 
not the read and write but rather complex functions and procedures as well 
as complex data objects. The criterion of correct execution, however, is, 
nevertheless, serialization across concurrent transactions. 

Lock manager  

The lock manager is designed to control the access to the database lock 
table. The lock table of the database maintains the status of locks (read lock, 
write lock, share lock, semantic lock, etc.) for each item of the database that 
has been accessed. The lock manager isolates users from accessing the lock 
table directly. To acquire access to lock status, the lock manager provides 
lock and unlock primitives to database and user code. The lock can be a 
read lock, which is granted (if no one holds a conflicting write lock) when a 
transaction attempts to read a data item. A write lock can only be granted if 
no other transaction holds a read or write lock on the data item. Locks in a 
database can be viewed like semaphores in an operating system; they are 
used as a means to guarantee exclusive use to an item within the database's 
control. 

Deadlock  manager  

When a locking protocol is being used, a lock held by one transaction can 
block a lock request from another transaction. If there are no circular waits 
for a lock, then the lock will ultimately be granted. If there are circular 
waits, then deadlock occurs. Deadlock is the condition where two or more 
transactions wait for resources held by another transaction that is waiting 
for a resource you hold. Since no one can move forward, the system cannot 
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2.10.7 

2.10.8 

get any useful work done. The deadlock manager must detect when a dead- 
lock condition holds and decide how to handle the condition. Typically, 
one of the involved transactions is aborted and its locks released, thus allow- 
ing other transactions to go on. 

Recovery manager 

The recovery manager must ensure that the database is always in a state that 
is recoverable consistently and correctly. This is done by ensuring that the 
database contains all or none of the effects of committed transactions and 
none from aborted or running transactions. The recovery manager uses the 
concept of a checkpoint (snapshot of the present state of the database) and a 
log file (file of operations on the database) to aid in the recovery. For con- 
ventional databases recovery attempts to bring the database back to an old 
state of the database and initiate processing from there. To bring the data- 
base back to a past state the recovery manager uses both undo, where 
uncommitted or active transaction past views are restored, and redo, where 
committed transactions not written to the database have their new states 
restored to the persistent store. These undo and redo records are applied to 
a checkpoint state to bring the database to some intermediate acceptable 
consistent state. A second form of recovery attempts to move the database 
forward by applying compensating transactions (to change committed 
effects to acceptable forms based on semantic needs), by applying extrapola- 
tions (to compute new acceptably correct and consistent future states), and 
by applying condition handlers to user or system semantic actions at a vari- 
ety of levels within the database. 

Security manager 

The security manager has the task of limiting access, modification, and 
malicious intrusion to the database. To perform these control actions the 
security manager requires that users be identified, authenticated, and 
authorized for access and control over a data item being requested. Identifi- 
cation is similar to typical login capabilities, where the security manager asks 
the users to identify themselves. To make sure that not just anybody 
attempts access the database may also ask a user to authenticate his or her 
identity. This can be done with a password or by a variety of fairly elaborate 
mechanisms. Once the user is allowed access, he or she is further restricted 
to what can be viewed and altered. Authorization performs the function of 
limiting access to only a desirable predefined level~for example, read only, 
write only, alter capability, view restriction, and numerous other restrictions. 
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Query processing support manager 

The query processor of a database system has the function of determining 
how to answer the requests for information from a user in the most optimal 
manner. The idea is that a query can be answered by a database system in a 
variety of ways. The most straightforward is the brute-force approach. This, 
however, is typically the most expensive in terms of time and resources con- 
sumed--for example, the cost to join two tables will be the cost of scanning 
each item of the first with each item of the second, or on the order of N 
times N or N squared if we assume they are the same size. On the other 
hand, if we could reduce the size of each by a factor of 2, then the cost drops 
by one-half. This is easily accomplished if we perform a select first on each 
before a join. If the size of N is large, this reduction can become significant 
and have a meaningful result on the database's performance. To reduce the 
cost of queries we look at heuristics on the order of access of relations and 
their combinations, relation reductions via selections and projections, pre- 
processing (sorting), iteration order, relation operator precedence ordering, 
and numerous other factors. 

Communications manager 

The communications manager has the role of traffic cop in the database. 
This service must coordinate the transfer of database data as well as status 
information to aid in the processing of data. Communications may be 
between database services, different databases, different processors, different 
transactions, or within a transaction. Mechanisms such as simple message- 
passing schemes, client/server protocols, and others have been implemented. 

Log manager 

The log manager has the job of coordinating the transfer of information 
from the active database into secondary persistent storage to aid in the 
recoverability of the database and to effectively mitigate the problem of the 
operating system paging out information prematurely. The log maintains a 
history of data flow in and out of the database, as well as actions that can 
affect the database's state. This includes transactions before images, after 
images, undo records, and redo records. 

Transaction management 
The transaction manager has the job of providing a bounded framework 
around which to guarantee that the database stays consistent while concur- 
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rent operations execute on the database. The database manager, without 
concurrency, canguarantee this with no problem~but  this is neither inter- 
esting to study nor practical in the real world. The real world of database 
processing typically deals with a large database with a high degree of multi- 
processing (concurrently executing transactions). 

The execution of a transaction is similar to making a contract; both sides 
are involved in the contract, they negotiate for a while, and then they either 
come to a consensus and sign the contract, or they both walk away. A trans- 
action is thus either all or nothing. A transaction must complete totally or 
must not complete at all. Now that's a concept. 

The transaction is meant to be used as a consistent and reliable unit of 
work for the database system. A transaction interacts with the application's 
environment and the database's concurrency control protocols to perform its 
intended function (Figure 2.31 a). A transaction is required to guarantee four 
properties when executing on a consistent database. These four properties 
are called the transactions ACID properties; they include atomic, consistent, 
independent, and durable executions of transactions on the database. 

An ACID transaction guarantees that the database the transaction 
begins with and the database it finishes with are consistent, that the data are 
durable, that the transaction acted alone on the database, and that the trans- 
action completely finished its actions on the database (Figure 2.3 lb). 

The transaction ACID properties are as follows: 

Atomic The atomic property implies that a transaction is an indi- 
visible unit of execution that either completely performs its designed 
function or else its effect on the database is as if the transaction never 
began; that is, the database state an atomic transaction leaves if the 
transaction does not totally commit is the same database state that the 
transaction began with. On the other hand, if an atomic transaction 
completes, then the database state it leaves has all of the changes the 
transaction computed with no others installed. 

Consistent~Consistent  execution of a transaction requires that a 
transaction transform an initial consistent database state to another 
new consistent database state. The basic concept behind this trans- 
action property is that the database is comprised of a set of data 
items, which have constraints defined on them. The database, to be 
considered consistent at any point in time, requires that these con- 
straints on data items within the database all evaluate to true; that 
is, none of these constraints can be violated if we are to have a con- 
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sistent database state. A valid transaction, which initially sees a data- 
base that is consistent, must, upon commit, leave a database that is 
still consistent. 

Independent~Independence, sometimes referred to as the isolation 
property of transactions, requires that each transaction accessing 
shared data acts alone, without being affected by other concurrently 
running transactions. This property basically indicates that a transac- 
tion's effect on the database is as if it, and it alone, were executing on 
the database. The function of this property is to require the removal 
of any dependence of a transactions execution on any other transac- 
tion's execution. 

Durable The durability of a transaction's execution requires that once 
a transaction is committed, its effects remain permanent in the data- 
base. What this property implies is that the changes a transaction makes 
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TM 
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to the database do not disappear when the transaction terminates. Data 
produced by a transaction and written to the database become perma- 
nent. Data once written to the database can only be altered by another 
transaction that reads and/or writes over this data item. 

These transaction properties must hold for all transactions that execute 
within a database management system if consistency, correctness, and valid- 
ity of the database are to be maintained. The properties must hold even 
when other transactions execute along with each other concurrently. In 
addition, if adhered to, the properties will guarantee a correct and consis- 
tent database even in the face of failures or errors. It is when we begin to 
envision what policies and mechanisms for transaction execution and oper- 
ations can be developed to guarantee these properties that problems occur. 

Transaction basics 
A transaction is a collection of applications code and database manipulation 
code bound into an indivisible unit of execution; an example is shown in 
the following code segment: 

BEGIN-TRANSACTION Name 
Applications Code 
DB-Code 
Applications Code 
DB-Code 
DB-Code 

Applications Code 
END TRANSACTION Name 

A transaction is framed by the BEGIN TRANSACTION and END TRANSAC- 
TION markers delineating the boundaries of the transaction--for example, 
if we have the following three relations that describe an airline reservation 
system: 

FLIGHT(Fno, Date, Source, Destination, Seats-Sold, Capacity) 
CUSTOMER(Cname, Address, Balance) 
FlghtCust(FNO, Date, Cname, Special) 

The first relation depicts the flight information--flight number, the 
date of the flight, the city of origin, the destination city, the number of seats 
sold for this flight, and the capacity of this plane. The second relation 
describes the customers who will be flying on a flight; it gives their names, 
addresses, and the balances owed on the tickets. The third relation describes 
the relationship between the flights and the customers. This relation in par- 
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ticular indicates which flight, which passengers are flying on what date, and 
any special requirements for these passengers~for example, maybe some- 
one wants a McDonald's Happy Meal or a vegetarian meal. 

To generate a simple transaction on these database relations, which make 
a reservation for a customer, we could write the following pseudocoded rela- 
tional Structured Query Language request or query: 

BEGIN TRANSACTION Reservation 

BEGIN 

Input (FlightNo, date, customer, specl ) 

EXEX SQL UPDATE FLIGHT 

SET Seats-Sold = Seats-Sold + 1 

WHERE Fno = 'FlightNo' AND Date = 'date' ; 

EXEX SQL INSERT INTO FlightCust (FNO, Date, Cname, Special) 

VALUES (FlightNo, date, customer, specl) 

OUTPUT ( "Transaction Completed") 

END TRANSACTION Reservation; 

This transaction looks for input from the keyboard for the flight num- 
ber, date of the flight, the customer's name, and any special requirements 
the customer may have. These are input to transaction variables: FlightNo, 
date, customer, and specl, respectively. The contents of these variables are 
then inserted into the proper places within the relation through the VAL- 
UES function. We update the count of seats sold for this flight by incre- 
menting the value by one and then updating the value in the relation. The 
transaction then updates the FlghtCust relation with the new information. 
To be complete we should also update the customer relation; this will be left 
as an exercise for the reader. This represents a simple transaction; however, 
as it stands it will not guarantee the transaction ACID properties alone. 

To guarantee the transaction ACID properties we need some additional 
features within this simple transaction model. To meet the needs of atomic 
execution we require a means to determine the conditions for termination 
of a transaction, correct or otherwise. The first concept required for correct 
execution and termination is the commit. Commit is used to indicate the 
correct and atomic termination of a transaction. It includes the processing 
necessary to ensure proper updating and marking of the database. The sec- 
ond concept, called abort, is necessary for transactions that fail or stop exe- 
cution for some reason. Abort conditions will include erroneous operations, 
conflicts in accessing stored information, or the inability to meet the ACID 
requirements on transaction processing. An abort requires that all of the 
effects of a transaction are removed from the database before any other 
transaction has a chance to see them. These two added features are neces- 
sary to facilitate atomic execution, although not in isolation. 

I Chapter 2 
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The commit action is necessary in order to synchronize the actions of 
other elements of the database management system to make changes to the 
database permanent~for  example, this command may be used to cause the 
database buffers and activity log to be flushed (force written) to the perma- 
nent storage subsystem, thereby making the changes durable, as shown in 
the following code segment: 

BEGIN TRANSACTION Reservation 

BEGIN 

Input(FlightNo, date, customer,specl) 

SELECT Seats-Sold, Capacity FROM FLIGHT ; 

IF Seats-Sold > Capacity THEN 

BEGIN 

EXEX SQL UPDATE FLIGHT SET Seats-Sold = Seats-Sold + 1 

WHERE Fno = 'FlightNo' 

AND Date = 'date'; 

EXEX SQL INSERT INTO FlightCust(FNO, Date, Cname, Special) 

VALUES(FlightNo, date, customer, specl) 

OUTPUT("Transaction Completed") 

COMMIT Reservation; 

ELSEABORT Reservation; 

END 

END TRANSACTION Reservation; 

This altered transaction now allows us either to go on with the transac- 
tion if it has a chance to succeed, or abort the transaction if we cannot com- 
plete it. In this example we would abort the transaction if we did not have a 
seat remaining in the plane to give to this customer. If there is a seat, we sell 
this customer a seat and commit the transaction. 

Transaction formalization 
A transaction, 77, is composed of a set of operations, Oj e {Read, Write}, 
where Oj is some operation from a transaction i on data items from the 
database D. 

Let Osi = U Oij represent the union of the set of all operations j from a 
transaction i. 

Finally, let Ni e {Abort, Commit} represent the set of termination con- 
ditions on a transaction, either commit or abort. 

A transaction is modeled as a partial ordering over its operations and end 
conditions. The partial ordering is represented by P <<, which indicates that 
the partial order P is composed of a set of operations, denoted S, and an 
ordering relation that holds between the elements in S denoted <<. 
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2 .10 .12  

With these definitions we can formally describe a transaction, 7~', as a 
partial ordering of its composite operations, as follows: 

Ti - {Si, << i} (2.15) 

where 

1. Si - OSi u N i  (2.16) 

2. For any two operations from 7~" - Oij, Oik ~ Osi 

If O/j = R(X)  and Oik - W ( X ) ,  then for any X 

Either O/j << i Oik or Oik << i O/j 

(2.17) 

3. And for all O 0" ~ OSi, Oij << i N i  (2.18) 

What all this says is that a transaction is made up of reads, writes, and a 
commit or an abort operation, and that there is an explicit ordering in a 
transaction so that if a conflicting read precedes a conflicting write in the 
history, a strict sequential ordering must always hold in this transaction for 
these conflicting operations. In addition, all operations from the transac- 
tions must precede the commit or the abort statements. This is an impor- 
tant concept for developing correctness criteria for transaction executions, 
especially when concurrency comes into play. The transaction ordering 
must not be violated, to ensure that the transaction can perform the 
intended operation. 

Transaction processing in a database system strives for guaranteeing the 
ACID properties, while delivering a high degree of data availability, no loss 
of updates, avoidance of cascading aborts, and recoverability of the database 
and transactions. A high degree of data availability is realized through 
reduced blocking of read and write requests. No loss of updates is guaran- 
teed by correct commit processing. The avoidance of cascading aborts is 
provided for by robust recovery protocols. Finally, recovery is provided by 
redundancy and the rules governing commit. 

Database and system mismatch 

The operating system migrates storage from primary memory to secondary 
storage, based on the operating system's perspective on when this should be 
done. Demand paging and limited storage dictate that this be performed on a 
page fault basis. The database, however, may not wish the page to be written 
back to secondary memory due to concurrency control and atomicity issues. 
The database may wish to hold pages in memory until transaction commit 
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time and then flush to secondary storage. This would allow the database not 
to require undo of transactions on failure, simply abort, and restart. 

Related to this is I/O management and device management. The data- 
base may wish to order access based on the queries being presented to it in 
order to maintain ACID execution, whereas the operating system simply 
will order the accesses to deliver the greatest throughput of data back to the 
CPU. The order in which it returns information may be counterproductive 
to the database, to the point where the database has waited so long for 
needed data that when the data do come the operating system pages out the 
database software to make room for the data, or it removes the data that the 
new information is to be processed against. In either case this is not condu- 
cive to optimal database processing. 

The problem with the operating system for this type of problem is the I/O 
buffer management policies and mechanisms. The database wants to use 
and optimize buffers to maximize transaction throughput, while the operat- 
ing system wants to maximize average process response. 

The control of the processor itself by the operating system may block 
essential functions that the database must perform--for example, the data- 
base requires that the log of database actions be flushed to secondary storage 
at specific points and in an uninterruptable manner in order to guarantee 
recovery and correct execution. Likewise, to keep the database as consistent 
as possible requires the database to flush committed data to the persistent 
store when necessary and in an atomic operation. The operating system in 
its wish to be fair may time-out a database function doing specifically this 
operation. On another related issue, if a database is sorting and processing 
two large data files against each other, it may wish to maintain direct con- 
trol over how and when data traverse the boundaries from the storage to the 
processor and back. Without direct control over the allocation and dealloca- 
tion mechanisms, the database could be removed from one resource while 
still holding another, causing a loss of the intended operation's continuity. 

The operating system's locking mechanism works well for simple file 
management, and for the majority of applications this is sufficient. But a 
database needs better control over locking to allow locking at possibly a data 
item level only. The reason for this is to allow more concurrency and less 
blocking of data. The intent is to increase data availability by only locking 
what is being used, not an entire file. To rectify this databases are forced to 
use direct addressing and direct file management features to allow for their 
own control over the file level of locking. However, in some operating sys- 
tems the database still suffers under the control of the operating system's 
lock manager, regardless of what mode is used. 
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An operating system's interprocess communication mechanisms may be 
too expensive to use within a database system. Many operating systems use 
a form of message passing involving interrupt processing. Such mechanisms 
may have a high cost in terms of overhead. A database may wish to provide 
more simple IPC mechanisms using shared memory or semaphores, espe- 
cially since a database is only another process within the operating system. 

Scheduling in an operating system looks to maximize overall average 
response time and to share resources fairly. Scheduling only deals with the 
selection of a process to place onto the executing hardware. A database, on 
the other hand, has a multilevel scheduling problem~not only must it 
select which transaction to place into service at any point in time, but it 
must also schedule which operation to perform on the underlying database 
to meet concurrency control requirements. An operating system's scheduler 
will not and does not provide such a service. 

A database requires the use of copying, backup, and recovery services of 
the underlying infrastructure to aid in constructing database recovery pro- 
tocols. The problem is that many of the other features of an operating sys- 
tem may get in the way and hinder the easy operation of database recovery. 
The database wishes to dictate how and when it will force information out 
to persistent storage. This is done in order to minimize the work (UNDO 
and REDO) that must be done to recover the database to a known consis- 
tent state. The operating system, on the other hand, will do this based on its 
needs to reallocate storage for processes in execution. The operating system 
will not take into account that this least recently used page will actually be 
the next page to be used by the database. It will simply choose this page and 
force it out immediately, based on its needs. 

To make the operating system and database interface more compatible it 
is desirable that the operating system use semantic information, which can 
be provided by the database to make sound, informed decisions. This is not 
to say that the database should overtake or dictate the moves of the operat- 
ing system. Instead it should act in a cooperative fashion to maximize the 
system-oriented needs of a database, which are more diverse than those of a 
typical application. See [1] for further information on database systems. 

Summary 

A computer system is comprised of many elements. Primarily these are the 
central processing unit, the memory unit, the secondary storage unit, the 
input and output unit, and interconnection hardware. Each of these ele- 
ments can be architected in a variety of ways, each with their own set of 
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pros and cons. Computer systems are typically represented as either single 
processor units, multiple processing units, distributed processing units, or 
networked units. The policies for connecting these devices to meet the 
needs of an application will dictate the final form of the system's architec- 
ture. 

The operating system and related support infrastructure services are used 
by an application to organize, maintain, and manipulate information on a 
specific computer architecture. The applications and operating system's 
needs and priorities do not always match. Due to this impedance mismatch, 
applications and have, in the past, tried to work around the operating sys- 
tem instead of working with it. The most notorious was in the early days of 
the IBM PC and the DOS operating system. Application programs typi- 
cally bypassed the operating system and worked directly on the underlying 
hardware. The result was that programs ~pically ran "IBM PC or 100% 
compatible" machines. Another example is the operating system's manage- 
ment of the memory hierarchy may be fair and reasonably optimal for the 
average application running on the system but may not match the needs of 
the database management system. The operating system strives to maintain 
a reasonable set of data pages in memory for the application's use, but it 
does not attempt to go beyond its own measures of effectiveness. The con- 
cept today is to engineer systems so that they operate optimally, based on 
the semantic needs and intent of the applications, which may go against the 
operating system's average response time and fairness goals. 



3 
Fundamental Concepts and 
Performance Measures 

3.1 I n t r o d u c t i o n  

Computer systems architects and designers look for configurations of com- 
puter systems elements so that system performance meets desired measures. 
What this means is that the computer system delivers a quality of service 
that meets the demands of the user applications. But the measure of this 
quality of service and the expectation of performance vary depending on 
who you are. In the broadest context we may mean user response time, ease 
of use, reliability, fault tolerance, and other such performance quantities. 
The problem with some of these is that they are qualitative versus quantita- 
tive measures. To be scientific and precise in our computer systems 
performance studies, we must focus on measurable quantitative qualities of 
a system under study. 

There are many possible choices for measuring performance, but most 
fall into one of two categories: system-oriented or user-oriented measures. 
The system-oriented measures typically revolve around the concepts of 
throughput and utilization. Throughput is defined as the average number 
of items (e.g., transactions, processes, customers, jobs, etc.) processed per 
unit of measured time. Throughput is meaningful when we also know 
information about the capacity of the measured entity and the presented 
workload of items at the entity over the measured time period. We can use 
throughput measures to determine systems capacity by observing when the 
number of waiting items is never zero and determining at what level, based 
on the system's presented workload, the items never wait. Utilization is a 
measure of the fraction of time that a particular resource is busy. One exam- 
ple is CPU utilization. This could measure when the CPU is idle and when 
it is functioning to perform a presented program. 

107 
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The user-oriented performance measures typically include response time 
or turnaround time. Response time and turnaround time refer to a view of 
the system's elapsed time from the point a user or application initiates a job 
on the system and when the job's answer or response is returned to the user. 
From this simple definition it can readily be seen that these are not clear, 
unambiguous measures, since there are many variables involved. For exam- 
ple, I/O channel traffic may cause variations in the measure for the same 
job, as would operating systems load, or CPU loads. Therefore, it is impera- 
tive that if this measure is to be used, the performance modeler must be 
unambiguous in his or her definition of this measure's meaning. These user 
measures are all considered random, and, therefore, their measures are typi- 
cally discussed in terms of expected or average values as well as variances 
from these values. 

In all cases, however, to make such measurements we need some basic 
understanding of the environment and its parameters with which we are 
working. One fundamental concept is that of time. To measure a physical 
phenomenon we need a metric to measure it against. In computer systems 
this metric is typically time. Time alone, however, is not sufficient; we 
need to have a place from which to mark time. This place is sometimes 
driven by an event in the system to be measured or simply a specified time. 
For example, in a computer system we may wish to measure the time a 
transaction takes to execute within a database system. We need to define 
the events of interest for this transaction system~for  example, beginning 
the transaction, running the transaction, and ending or commitment of 
the transaction. Given that we have time and events, we next need to 
define when and how we measure these events and the intervals of interest 
for these events. 

Other basic concepts needed for our discussions of computer systems 
performance include the means by which one measures or samples a system. 
Measurements can take on many forms within an evaluation project, as will 
be seen. Another aspect of time, which is important in computer systems 
performance studies, is that of intervals. An interval represents a measured 
distance of time representing a measured distance in a time period. For 
example a day, week, or month represents intervals of time. Most important 
to computer systems evaluation is the concept of response. Response repre- 
sents a completion event for a measured ent i ty~for  example, the time 
between when a key is hit on a computer terminal and the user receives the 
result. 

To utilize the basic quantities of time, events, intervals, and response, we 
need some additional concept concerning the relationships between all of 
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these items. The typical concerns we have deal with the concepts of inde- 
pendence and randomness as they relate to the items within a computer sys- 
tem. Last, but not least, the concept of a workload and the relationship this 
plays with a modeling project must be defined. 

Time is the most fundamental of concepts needed for computer systems 
performance analysis. Without a clear concept of time our performance 
studies cannot take on quantitative qualities. Time as a quantity shows up 
in several ways when one investigates a computer system's performance. For 
example, we hear of concepts such as arrival time of an entity, the service 
time for an entity, time between failures, time to repair, entity lifetime, and 
numerous other quantities of time associated with computer systems 
performance. Each of these quantities requires us to have a reference point 
from which to determine their meanings. 

In computer systems performance, we will be interested in the measure- 
ment of time related to various operational events in the computer system 
under study. These events will be marked by timestamp, and by using this 
timestamp we will have the capability to determine the relative ordering of 
these events in relation to each other. The timestamp of an event, E, would 
be represented as E(t). The measurement or marking of the time, t, will 
only be as good as the clock we use in representing the time of an event and 
our ability to match the time representation with the event. 

Time in a real-world system is represented in two major ways: either as a 
continuum or as discrete intervals or steps. The best way to think of these 
two measures of time is that discrete time represents a single instance of a 
time clock's measures, whereas continuous time represents discrete time 
intervals, where the intervals approach zero or are infinitely small. 

Computer systems work using the concept of f'Lxed time intervals. These 
intervals represent the time flame or limit into which a computer system's 
clock breaks down a second. Typical computer systems clocks or cycle times 
are measured in nanoseconds (10 -9 seconds) or in slices of about one-bil- 
lionth of a second. Such fine gradations of a second help us to understand 
the speed of computer systems and related components. 

I am sure you all can relate to hearing about a processor's speed. When 
we go to purchase a new personal computer, we are quoted a number of 
measures of computer relative time. For example, a 1.5-GHz processor 
implies that the processor will have a clock cycle of about 0.67 nanosec- 
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onds, or 6.67 -l° seconds. This is not the only measure one needs to know 
when measuring or sizing up a personal computer for purchase. The CPU 
speed is important but is only one measure. We need to know how fast data 
and instructions can be transferred from the external devices into the inter- 
nal primary memory, and then how fast the primary memory can transfer 
this information and instructions to the processor for actual execution. 
Even though one is quoted the CPU speed, this does not represent the 
actual measure of the machine's performance. We will see that the way 
devices are interconnected and how they interact will dictate overall speed. 
In this simple example, the slowest device in the system will ultimately dic- 
tate the real speed. 

3.3 Events  

Time is an important measure, but it can only become useful for us if we 
have a means to use it in measuring something within our computer system 
under evaluation. An event describes an entity of interest in our system. 
Events usually represent some act ion~for  example, the beginning of a 
clock cycle (Figure 3.1) or the end of a clock cycle. The beginning of a com- 
puter's instruction execution cycle is another event, as is the end of the 
cycle, the reading of a memory location, the initiation of a block data trans- 
fer from a secondary storage device, and the initiation of a process or task. 
All of these represent events of interest to the computer engineer or com- 
puter architect. 

Events, representing actions within our computer system, must all be 
controlled, so that the sequencing or ordering (partial or total ordering) of 

Figure 3.1 
Example of a 

computer clock. 

time 
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Figure 3.2 
Eventpartial 

orderings. 

these actions contributes to the accomplishment of some larger event. For 
example, the simple computer clock cycle is used to mark the beginning of 
an instruction's execution in a computer. The rising edge of the clock is 
used by the processor to begin execution of the current instruction in the 
instruction register and to prepare the next instruction for execution. The 
multitude of parallel events being performed during each and every clock 
cycle of the computer system's clock must be synchronized so that the 
designed intentions are realized. For example, the instruction to perform 
was loaded into the instruction register during the last sequence, while at 
the same time the next instruction address was computed and possibly some 
parameters for the instruction moved into place. Each action must be 
designed and its sequencing in relation to other actions defined so that the 
computer will work as intended. 

Each simple action, from the clock ticks to more complex actions such 
as an instruction's execution all become part of larger systems actions~for 
example, the initiation of a direct memory transfer of data from a secondary 
storage disk drive; the DMA transfer being used as part of the systems 
memory management system's paging algorithms; and the paging algo- 
rithm's relationship to the movement of one process actively running on the 
CPU being replaced by another due to a process switch handled by the 
operating system. All of these represent actions of interest to the computer 
analyst. Each, however, has a different temporal relationship to the measure 
of time. The clock cycle is measured in fractions of nanoseconds, the single 
assembly-level instructions in tens of nanoseconds, main memory transfers 
in the range of 100 nanoseconds, disk transfers in the milliseconds range, 
operating systems file transfers in the tens of milliseconds range, and so on. 

In terms of performance assessment the system analyst must have an 
understanding of the events within the system under study and the rela- 
tionship of these events among each other. For example, we need to know 
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that a file access event is composed of the disk access event, memory page 
replacement algorithm event, and the main memory load and store events. 
In addition to knowing the events involved with a higher-order event, 
event orderings must also be understood. For example, it is important to 
know that the page replacement algorithm must be accessed first, to deter- 
mine which page to move, before the new page can be loaded into the pri- 
mary memory. These event orderings can be represented by simple event 
lists or by more complex partial orderings (Figure 3.2). These orderings 
dictate what events need to be considered and how the events may need to 
be measured, so that an accurate picture of the system's performance can be 
determined. 

3.4 Measurements (sampling) 

How does one measure a system or component performance? This is the 
main problem facing the computer systems performance analyst. To deter- 
mine how to measure, when to measure, or what to measure, the analyst 
must first know all of the events of interest in the system and the relation- 
ship these events have with each other. The events, as we saw earlier, repre- 
sent all of the real actions that occur in the computer system under study. 
These events form a hierarchy of relationships, where the finer, granular 
events are used to construct the coarse-grained events in the system. Even 
with these definitions, however, we do not know enough to begin measure- 
ments that will have meanings. We must know all the possible conditions 
that hold for events in our system and when they can be valid. Given a set 
of possible events and their values, we can describe a valid "state" for the 
computer system under study. 

State is an important concept when considering any computer system. 
The state, S, is defined as the set of all events in our system along with valid 
values for their condition within the defined state. This can be described as 
follows: 

S - { E  1 (value),E 2 (value), E 3 (value) . . . . .  E n (value)} (3.1) 

where each of the events must have all component events valid, and their 
own values must define valid states. For example, a state for a central proc- 
essing unit may be defined as being composed of the following events and 
values: 

• The program counter address held in the program counter 

• The instruction held in the instruction register 
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• The status and value of the index register 

• The status and values in the condition control register 

• The value in the arithmetic logic unit temporary registers 

• The value on the data bus 

• The value on the address bus 

• The value in the memory data register 

Once we have definitions for the events and the state of the system, we 
can then begin to discuss the concept of measuring quantities within the 
system. There are three primary types of measures: A, B, and C. They can 
be described as follows: 

Type A looks to count a number of items over a given time period. 
For example, we may be interested in how often the CPU receives a 
new instruction during each second. This would represent the 
instruction speed of the processor, given the mix of instructions pre- 
sented to the CPU. 

Type B measures all state variables (valid events and their values). A 
representation of this type of measurement may be to extract all of 
the values for all internal registers and devices at the beginning of an 
instruction execution cycle. 

Type C measures the fraction of time the system is within a state. An 
example of this measure may be to see what the fraction of time is 
that the system is executing load instructions versus all other kinds of 
instructions during the measured period of time. 

It is not sufficient to simply determine the kind of event one wishes to 
measure and the values representing this event. One must also be able to 
recognize that a specified state has been reached and that all events and sta- 
tus variables for the state are valid. In addition to recognizing that a valid 
state has been reached, one must also be able to determine if we are at an 
end or transitional point within a state. These are not easy to know when 
one is attempting to measure a system. 

In order to find out where we are within a state, we must have means to 
measure the systems events we are interested in. There are a number of ways 
to measure these events, each with its own issues. We can use hardware 
monitoring, software monitoring, or hybrid monitoring. The decision 
about which of these techniques to use is dependent on many factors, such 
as accessibility, event frequency, monitor artifact, overhead of monitoring, 
and the flexibility of the technique used. 
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Hardware monitoring requires that the system analyst have the ability to 
add instrumentation to the measured system. For example, we may attach a 
logic analyzer to measure the signals within the system or insert a specially 
designed hardware card to extract some signals from a system. This mode of 
measurement will allow us to measure some subset of the total system's 
hardware elements. We can only measure what is exposed and available to 
be attached to for monitoring. If the item or action we wish to monitor is 
not easily accessible, we may not be able to get to it using a hardware moni- 
tor. We may need to use some other means to extract the information from 
the system. 

Another form of hardware monitoring uses integral test hardware, which 
is designed into the system being monitored during systems design. A com- 
mon form of this monitoring scheme is found in very large scale integration 
(VLSI) devices. Many VLSI devices are designed so that all data items of 
interest can be tested in the device itself, or, at a minimum, the test data 
points are brought outside of the chip so additional devices can be used to 
gather this information and compute the health of the device. 

In all of these cases it is imperative that the hardware monitoring be 
designed as an integral component of the system, so that it will not interfere 
with the operational system. It is not desirable for the monitoring equip- 
ment to interfere with the system being monitored. If this is the case, the 
results from the monitoring are suspect and may lead to erroneous conclu- 
sions. The monitoring hardware must be selected and designed with the 
device being measured in mind. The determination of sampling sites and 
the frequency of measurements must be designed ahead of time, not after 
the monitor has been put in place. The monitoring method has to be set up 
ahead of time also. That is, we must determine if the monitor is to act syn- 
chronously or asynchronously with the measured system. We must deter- 
mine and define all aspects of the monitor's existence in the measured 
system. Nothing can be left out if we are to get trustworthy data. 

Software monitoring requires support from the system under study if it 
is to be successful. Software monitoring requires that there be a means for 
the monitor designers to get at systems hardware elements as well as low- 
level software elements~for example, systems clocks, programmable tim- 
ers, interrupt registers, and systems status registers. The typical software 
monitor is designed for trace monitoring and sampling, not for synchro- 
nous monitoring. In trace monitoring, the analyst adds additional code to a 
code sequence so that the code's run time can be monitored. Typically we 
would be interested in how often a code segment is entered, how long the 
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code segment runs, or how much of the total systems time the code seg- 
ment utilizes. 

Software monitoring, as with hardware monitoring, still requires that we 
know ahead of time where the sampling measures are to occur within the 
system and the frequency of this sampling if our measurements are to have 
meaning. 

In software monitoring, where we are using sampled monitoring tech- 
niques, we need to have access to low-level operating systems calls. This 
type of access is required so that we may cause a system's interrupt and take 
control of the system. The interrupt control would allow for entrance into 
the system and collection of systems state information such as the contents 
of registers and status flags. One positive aspect of this form of software 
monitoring is that it may not lead to the alteration of any code, given that 
all required information can be collected using available information. 

A more common form of measurement uses hybrid monitoring. This 
form of systems monitoring uses concepts and mechanisms from both hard- 
ware and software monitoring. To utilize hardware monitoring we must go 
through the same set of issues as was the case for hardware monitoring as 
well as for software monitoring. The setup may require the synchronization 
of multiple hardware and software setups. We must set up the control pro- 
grams to determine when and how to monitor the system under test. We 
must determine what to capture with hardware devices and what to capture 
with software means. Upon execution of the monitoring subsystem, we 
must determine how and how often to retrieve collected information. In 
addition we must also determine how and when to synchronize the measur- 
ing and measured systems. 

Hybrid monitoring comes with its own set of problems. As in hardware 
monitoring, we must have a means to extract signals of interest from our 
system. We must determine which elements we wish to test are best tested 
with hardware and which with software. We must understand and bound 
the impact the monitoring software has on the monitored systems, so that 
correct measurements are extracted. Finally, we must always keep in mind 
that the measurements are only as good as the available measurement 
points. 

I n t e r v a l s  

Measurement requires that we have a domain or environment in which we 
are measuring. In computer systems the environment is the systems clocks 
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and the instruction execution cycle. Another major environment is the 
high-order systems functions. In order to measure these items we need to 
focus on their interval of execution. An interval represents a period of time 
bounding the initiation of an event sequence of interest and the end of this 
event sequence (Figure 3.3). 

In Figure 3.3, the interval 11 is composed of Event l's time tag and Event 
2's time tag. Intervals are used as a means to measure an event's sequences 
period of execution or the period of time between such executions (in Fig- 
ure 3.3, interval 2). Two intervals are the same if they represent the same 
sequence of events (they are related) and the time interval between the 
events is equivalent. Two intervals representing two separate sequences of 
different events can also have equivalent intervals, but they are unrelated. 

Response 
Response is an important concept in computer systems performance stud- 
ies. Response time represents a measure of the period of time a user or 
application must wait from the point of issuing some action or command 
until the completion and return of control for the requested command. The 
typical measure used may pit the response time (an interval) against the sys- 
tems load (stream of jobs). The curve may appear similar to that shown in 
Figure 3.4. 

The interpretation of this curve becomes an important means to evalu- 
ate our system. In Figure 3.4 we see that the response time of our measured 
action sequence stays within tolerable ranges (between 1.0 and 3.0) for 
loads below approximately 60 percent of the capacity of the measured sys- 
tem. As the load increases above this point, the response climbs exponen- 
tially~reaching a saturation level when the system is fully loaded, yielding 
an asymptotic response time approaching infinity. One can see from this 
simple example the importance of response time as a measurement in mod- 
eling and evaluating systems. 

The problem is in trying to determine the response of what. It may not 
be sufficient to look at our systems performance from only one measure or 
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action sequence. We may be interested in a family of such action sequences, 
requiring a series of separate tests to study the effect of each of these mea- 
surable sequences against system load. In addition to this form of measure, 
we may also be interested in how these various action sequences impact 
each other as load increases. This would result in a family of response 
curves, which need to be interpreted against each other and the loads. 

3.7 Independence 

Another very important concept in performance modeling and analysis is 
that of independence. An action or event is considered independent of 
another event or action if the occurrence of one does not influence the out- 
come of the other. For example, the tossing of a coin followed by the rolling 
of a die are independent, since the coin's toss has no impact on the out- 
come. If we look at these events as two separate sample spaces, the interac- 
tion of these events becomes clearer. The sample space for the coin's toss is 
simply the set {H,T}, and the sample space for the die is simply the set 
{1,2,3,4,5,6}. The sample space in Figure 3.5 is the Cartesian product of 
these two independent spaces. 

The independence of events in a system is an important concept to con- 
sider when evaluating systems. If two events are independent, we need not 

v 

Figure 3.5 
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consider these as related items requiring us to examine their response in 
relation to each other and their environment. 

In a computer system, two programs that cannot run concurrently with 
each other can be viewed as independent items and analyzed as such. Even 
though they run on the same hardware and possibly use the same operating 
systems software, since they cannot interfere with each other and are not 
dependent in terms of sequencing, they can be evaluated as separate, unre- 
lated items. It becomes an important part of our modeling and analysis of a 
system to define all elements and their relationship to each other. These def- 
initions can then be used to aid in the determination of independence. We 
will discuss this property of events further when we look at probability and 
then map this to computer systems elements. 

R a n d o m n e s s  

Just as important to modeling as the concept of independence is the con- 
cept of randomness of events. Randomness is a property of an event and its 
reoccurrence. If an event is random, it implies that there is not a pattern 
that can be mapped onto the events to determine when they will occur 
again. Randomness is difficult, if not impossible, to prove. The converse, 
however, can be shown~that  is, that an event is not random. We can use 
the assertion that a pattern does not exist as a way of indicating that the past 
will not aid in defining the future of an event. A random sequence of trials 
is the realization of the property of independence defined in the previous 
section. 

Randomness is a mathematical concept. In mathematics we think of 
random numbers coming from a random infinite source. In practice, there 
are finite sequences of available numbers, and once they are generated they 
now have a pattern. For example, if we roll the die, before we roll it we have 
no idea which number will occur; but after it is rolled there is only one out- 

come. 

In a computer system, the events caused by external sources (e.g., user 
key strokes, remote calls to a server) can be viewed as random events. Thus, 
their occurrence cannot be predicted ahead of time nor can the future after 
the last occurrence. This concept becomes very important when we wish to 
analyze our computer systems using mathematical concepts. 

More on the concept of randomness will be discussed when we look at 
random variables and their use in modeling computing systems as Markov 
chains and Markov processes in later chapters. 
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3.9  W o r k l o a d s  

3 . 1 0  

A concept we have been discussing throughout the book up to this point is 
that of workload, or, more simply, load. These terms represent an extremely 
important element in our computer systems modeling problem. The work- 
load or load represents the events or event sequences presented to the sys- 
tem to model or drive the system under study. The load represents how 
many of some event sequence are being offered for execution during some 
given period of time. An example may be the number of instructions per 
second and the mix of instruction types presented for execution per second. 
The combination of the volume and the mix is important, as well as the 
duration of the load. 

The duration may be all at once, requiring the system to queue up the 
requests and perform them as resources become available. This type of mix 
and load would saturate the system up front and then decay to no load as 
the items get processed. The duration could be endless, with the load con- 
tinually refreshed to provide a constant saturation or equilibrium load to 
the system. Loads can be periodic, where the instructions are presented all 
at once for service and then allowed to be processed. The load is then reen- 
tered after the prescribed period of time has passed, providing another spike 
in processing requirement. 

There is a science to workload development and selection for the com- 
puter systems modeler. For example, the database community has devel- 
oped a set of transactional workloads aimed at testing a variety of database 
systems configurations. This set of transactions and the underlying database 
system have been developed over a number of years through the measure- 
ment of real database systems and the need to evaluate databases against 
each other with a known well-formed set of loads. Likewise, the personal 
computer industry has also developed a set of systems workloads aimed at 
allowing customers to assess the performance of one computer architecture 
against another. 

P r o b l e m s  e n c o u n t e r e d  in m o d e l  d e v e l o p m e n t  
and use 

Developing a performance assessment project for a specified system is not 
without its pitfalls. We must start with developing a concept for what we 
are evaluating and why. That is, does our performance study have as its goal 
to measure the existing performance of a system or future possibilities? Are 
we measuring the cost of the system now or in the future? Are we measuring 
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the correctness of the system or the adequacy? How do we define these 
terms? What dictates correctness or adequacy? Why do we need to perform 
this study? 

The typical analyst first begins with the primary concern, that the sys- 
tem performs its intended design function correctly. For example, if a com- 
puter system is to be able to perform concurrent operations, then a primary 
measure is that it can do just that. A secondary concern of the modeler is 
that the system has adequate performance and delivers this at a reasonable 
cost. This implies that we need some way to measure and predict what is 
adequate performance and what is reasonable cost. 

To understand these terms we first need to put them in the context of an 
environment where the system is to be operational. Even before this, 
though, we must start by determining what is meant by the system. For 
example, if it is a PC, we need to know what this term entails. Do we wish 
to include the motherboard, processor type, memory volume and type, I /O 
boards, graphics cards, disk drives, and maybe network interconnects? Or 
do we simply mean the black box, without concern for what is inside? Once 
the system of interest has been defined, the modeler must define what com- 
ponents make up this system and what their importance is in the context of 
the entire system. 

Given the systems definition and the components definition, we next 
must define the environment in which the system will operate. The envi- 
ronment should only include the important factors defining it, not every- 
thing. For example, if we are studying a PC architecture, we may wish to 
know if it will be exposed to the elements, extreme temperatures, humidity, 
and so on. 

Once the environment is defined, we must determine what parameters 
are of interest to us as analyst. These may include parameters upon which 
the system is used or measured by. Some parameters may include things 
such as the PC processor speed, the size of primary memory, and so forth. 

The common answer with PC users and computer systems users in gen- 
eral is that they cannot easily define the above terms. They typically look at 
computer systems performance evaluation as only answering one question: 
If my computer is not working up to snuff, can't I just add more of "what- 
ever" to make it work better? The problem lies in how to know what "what- 
ever" is needed. How much of this "whatever" is needed? The problem is 
that one does not readily know when adding "whatever" that a certain 
quantity will provide the intended result. More importantly, without per- 
formance evaluation how do we know we are done? 
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The problem the performance evaluator is faced with is how to deter- 
mine what to measure and how to do this. There are two main classes of 
techniques for computer systems performance assessment. The first is to 
take an existing system and design some experiments involving possibly 
hardware, software, or both. Then measure the result to determine what is 
needed. The second class of modeling tool utilizes more abstract means. 
These involve either analytical modeling or simulations. Analytical model- 
ing typically uses queuing theory or Petri nets theory and can provide coarse 
analysis of the systems under study. Simulations can provide more fidelity 
but at an added cost in terms of design time and analysis. Simulations can 
be designed as discrete event-based models, continuous-based models, or 
combined models. 

Performance measures used by the analyst in making a determination of 
performance include responsiveness, use levels, missionability, dependabil- 
ity, productivity, and predictability. Responsiveness indicates the system's 
ability to be provided commands and to deliver answers within a reasonable 
time period. Use level indicates the system's degree to which it is loaded-- 
for example, is the system 50 percent loaded or 100 percent saturated? Mis- 
sionability refers to the system's ability to perform as it was intended for the 
duration demanded. For example, a spaceship must be highly missionable. 
Dependability is related to the last measure but indicates the system's ability 
to resist failure or to stay operational. Productivity indicates a measure of 
the throughput of the given system. And predictability indicates a measure 
of a system's ability to operate as required under all or most conditions. 

All of these measures have a place, given specific classes of systems. For 
example, a general-purpose computing facility must possess the qualities of 
being responsive, have good use levels, and be productive. High-availability 
systems, such as transaction processing or database systems, must not only 
be responsive but must possess a higher degree of dependability than the 
general-purpose computing environment. Real-time control systems require 
high responsiveness, dependability, and predictability. Mission-oriented sys- 
tems, such as avionic control systems, require extremely high reliability over 
short durations and must be responsive. Long-life applications, such as 
spacecraft and autonomous underwater vehicles, must be highly depend- 
able, missionable, and responsive. 

There are common errors or mistakes computer systems performance 
analysts make or must avoid when performing their tasks. The first and 
most common is having no goals or ill-defined goals for the performance 
study. The goals should include a specification for a model of the system or 
component under study and definition of the techniques, metrics, and 
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workload to be used in the evaluations. The second major problem is set- 
ting biased goals. This is a very common mistake by the modeler. The goal 
becomes to prove that "my system is superior to someone else's system." 
This makes the analyst the jury, which will lead to bad judgments. 

If the analyst uses an unsystematic approach to developing the model or 
jumps into analysis before fully understanding the problem under study, the 
results will be flawed. The choice of incorrect performance metrics or mis- 
leading metrics will result in erroneous results and conclusions. Choosing 
an unrepresentative or nonstressful workload will lead to misinterpretations 
of system performance boundaries. Choosing the wrong evaluation tech- 
nique~for example, analytical modeling, when a testbed is the right 
choice~will lead to overly simplistic or complex analysis. Overlooking 
important system parameters or not examining the interaction among sys- 
tems parameters may lead to erroneous conclusions about sensitivities and 
dependencies among system elements. Inappropriate experimental design 
or bad choice of the level of detail can cause misleading conclusions. Erro- 
neous analysis, no sensitivity analysis, or even no analysis lead to failure. 
Ignoring input, internal or output errors, or the variability of these can 
cause misleading interpretations of results. Not performing sensitivity anal- 
ysis, outlier analysis, or ignoring change can also cause problems in inter- 
preting or trusting results. Performing too complex an analysis or improper 
presentation or interpretation of results, as well as the omission of assump- 
tions and limitations, will yield a failed analysis. 

To try to alleviate these problems the analyst should ask the following 
questions before, during, and after an analysis has been done: 

1. Is the system correctly defined and the goals of the analysis clearly 
stated? 

2. Are the goals stated in an unbiased manner? 

3. Have all the steps of the analysis been followed systematically? 

4. Is the problem clearly understood before analysis is begun? 

5. Are the performance metrics relevant for this problem? 

6. Is the workload correct for this problem? 

7. Is the evaluation technique appropriate? 

8. Is the list of parameters that affect performance complete? 

9. Have all parameters that affect performance been chosen as fac- 
tors to be used in experimental design? 
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10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

Is the experimental design efficient in terms of time and results 
expected? 

Is the model's level of detail sufficient? 

Are the measured data presented with analysis and interpretation? 

Is the analysis statistically correct? 

Has the sensitivity analysis been done? 

Would errors in the input cause an insignificant change in the 
results? 

Have the outliers in the input or outputs been treated properly? 

Have the future changes in the system and workload been mod- 
eled? 

Has the variance of input been taken into account? 

Has the variance in results been analyzed? 

Is the analysis easy and unambiguous to explain? 

Is the presentation style suitable for its intended audience? 

Have the results been presented graphically as much as possible? 

Are the assumptions and limitations of the analysis clearly docu- 
mented and accounted for? 

When developing a performance study the sage performance analyst 
would follow a systematic approach, which has the following point as its 
components: 

0 

0 

, 

4. 

o 

6. 

o 

8. 

, 

10. 

11. 

State goals and define the system to be studied. 

List services and outcomes clearly and completely. 

Select the performance metrics. 

List all systems parameters of interest. 

Select the factors for the study. 

Select the evaluation technique to apply. 

Select the workload. 

Design the experiments. 

Analyze and interpret results. 

Present results clearly and unambiguously. 

Repeat if needed. 
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3.11 A case s t u d y  

If we wished to study the issue of remote pipes versus remote procedure 
calls, we could go through the following modeling effort. The first step is to 
define the system we wish to study. This entails developing a model that 
contains all of the major components of interest. In Figure 3.6 we postulate 
such a definition. 

The services we wish to focus on are small and large data transfers. We 
will not be concerned with other details of the services. 

The metrics we wish to focus on as well as some assumptions include 
that there are no errors and no failures in the system. We wish to focus on 
defining rates of access, time for performance, and resource requirement per 
service. The resources we will focus on are the client, server, and network 
elements. 

These metrics and assumptions may lead us to focus on measurements 
to be collected, such as elapsed time per call, maximum call rate per unit of 
time, time required to complete a block of N successive calls, local CPU 
time per call, remote CPU time per call, number of bytes sent over the link 
per call, and so on. 

These in turn will require us to focus on definition of the system's 
parameters~for example, the speed of the local and remote CPUs, the 
speed of the network, operating system overhead for interfacing with the 
channels, operating system overhead for interfacing with the network, reli- 
ability of the network, and so forth. 

The workload parameters used to define the presented workload may 
include the time between successive calls, the number and sizes of the call 
parameters, number and size of the results, the type of channel used, and 
other background loads on the local and remote site as well as on the net- 
work. 

Factors we may wish to study could include type of channel (RPC or 
remote pipes), size of the network (long distance, local area network), size of 
the calls (small, large), and the number of successive calls (can vary from 
one, five, ten up to some saturation load). 

The assumptions made may include fixing the type of CPU and operat- 
ing system, ignoring retransmissions due to network errors, and doing 
measurements with no other loads on hosts and networks. 

The evaluation technique may be chosen as a prototype along with ana- 
lytical models to validate or bound the expected results. The workload is 
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constructed using synthetic constructs. The experimental design will vary 
all factors, resulting in a full factorial experimental design with 88 experi- 
ments used. This represents the varying of all factors described over their 
entire range of postulated values. The data analysis will involve determining 
the variance of results and comparing these against each factor. This would 
be followed by the plotting of all results in graphical form to better show 
performance variations. 

3.12 Summary 

In this chapter we briefly described some of the fundamental concepts 
required to initiate the analysis of computer systems. The first dealt with 
the basic concept of time and how this unit can be used as a fundamental 
means to measure performance. This description was then followed by a 
description of the definition of events or actions within a domain. The con- 
cepts of time and event were then melded to yield a means to identify 
points from which to initiate measurement. The methods of measuring a 
system were then described, focusing on hardware and software monitoring 
and issues associated with each. 

The next step in our investigation was to develop the concept of related 
actions making up larger actions and the duration of these activities. The 
duration was defined as the interval of a complex action or the time 
between successive repetitions of a specified sequence. 

With the concept of intervals we could then focus on measuring a 
sequence of related actions. The focus of this section was to define response 
time in relationship to a computer system's modeling and performance 
analysis. 

The concept of these complex interactions was addressed next. The 
concepts of dependent and independent actions were developed. These 
were then followed by the development of a definition for randomness of 
such events within a computer system. It was pointed out that this con- 
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cept of randomness is an important one in simplifying some of our analy- 
sis techniques. 

This discussion was then followed up with an introduction to the con- 
cept of a workload and what it represents in computer systems perform- 
ance. The final section in this chapter discussed some of the hurdles facing 
the computer systems analyst in the design, development, operation, and 
completion of a performance study. 



4 
General Measu remen t Principles 

In modeling computer systems, we typically are interested in the service 
times of entities that utilize system resources. Entities in our discussion can 
represent a variety of operations on a computer system. For example, we 
may be interested in the time it takes to service an operating interrupt or, in 
a database system, the time to lock a data item in the database. The 
resources we are interested in are computer hardware elements and software 
resources. The entities represent the operations that are performed using the 
resources of the computer system. For example, if the resource is a central 
processing unit, a program operating on the CPU would have a service time 
composed of instruction execution (possibly driven by the instruction mix), 
memory management, I/O management, and secondary device access and 
transfer delays. 

These components of the system under analysis are observable and pos- 
sibly measurable. This does not mean that we need to measure all compo- 
nents precisely and completely as deterministic points in time. It may 
actually be more desirable to use average times and random service and 
arrivals to model these resources and programs. If the focus of review is the 
overall program operation, and not the components of this operation, then 
the service times will appear to be unpredictable and, therefore, can be 
assumed to be random. Without such assumptions, modeling a computer 
system would get bogged down in the extraction and determination of 
minute details, which may cloud our overall analysis. 

Even though the service times for events may be unpredictable, we can 
still describe them in a way amenable to modeling and analysis with fairly 
good accuracy. For example, we can observe many event occurrences over a 
long period of time and deduce the composite average service time from 
this information with some degree of accuracy. Such approximations are 
sufficient for many models and for their analysis, as will be seen in later 
chapters. 

127 
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One of the most important approximations concerning events and serv- 
ice distributions in a modeled system is that of probability distribution. It is 
important in modeled systems to have a measure of the possibility of some 
event occurring in relation to other events. The probability distribution 
looks to assign discrete probability values or continuous intervals of proba- 
ble values to events. The assumption is that individual service times or 
events are independent and identically distributed (see Chapter 3). This is a 
reasonable approximation to reality under most conditions. 

The simplest form of a probability distribution is found when we have a 
finite set of possible values. For example, the rolling of a fair die can only 
take on the values of{1,2,3,4,5,6} and no others. In addition, the probabil- 
ity of these individual values being rolled, given a fair die and an exhaustive 
number of trials, is 1/6 each. The possible values and a graphical representa- 
tion are shown in Figure 4.1. 

In equation 4.1, P(x) represents the probability (or relative frequency) of 
value x occurring. In Chapter 5, we will see that P(x) must possess the prop- 
erties that 0 _< P(x) _ 1 for all possible values of x from our set of possible 
values, and ~ P(x) = 1. 

When using such measures, the most important parameter when model- 
ing is the mean or expected value. This value corresponds to the average 
value and is represented as: 

E [ X ] - ~ _ x P ( x )  (4.1) 
X 
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Given the distribution of equation 4.1, E[X] would be calculated as: 

E [ X ] -  1(1/6)+ 2 (1/6)+ 3(1/6)+ 4(1/6)+ 5(1/6)+ 6(1/6) 
-3 .5  

(4.2) 

An additional generalized measurement typically used is the nth 
moment and is computed as the sum of the x value raised to the nth power 
times the probability of this value of x occurrence, or: 

E[Xn]-Exnp(x) (4.3) 
x 

For our fair die example, the second moment would be found as: 

E[X 2 ]= 12 (1/6)+ 22 (1/6)+ 32 (1/6)+ 

42 (1/6)+ 52 (1/6)+ 62 (1/6) = 15.167 
(4.4) 

A variation and more useful measure is the nth central moment, which 
is found by examining the difference between measured values and the 
expected value. The central moment is found by the formula: 

E[(X-E[X])n]-E(x-E[X])np(x) 
x 

(4.5) 

For our fair die example, the second central moment would be found as: 

E l ( X - E [ X ] ) 2  ] - (4.6) 

1/6[(-2.5) 2 + (-1.5) 2 + (-0.5) 2 + (0.5) 2 + (1.5) 2 + (2.5) 2 ] -  2.92 

This measure of the second central moment has another name: the vari- 
ance. The variance can be refined to give us an important measure, called 
the standard deviation, by taking the square root of the variance. Typically 
the variance is written ~2. In our example, for the fair die, the standard 
deviation is found to be 1.7. The standard deviation tells us the average dis- 
tance our measured values vary from the mean and can help in telling us 
how variable our data are. An additional measure concerning the relation- 
ship of actual values versus expected values is the coefficient of variation C x. 
The coefficient of variation is defined as: 

C x - cs x / E [ X ]  (4.7) 
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Figure 4.2 
Probability density 

function. 
f(x) 

l/a 

In computer systems modeling it is possible to see coefficient of varia- 
tion measures from below 1 to 10 and above. Most measures, however, will 
tend to fall somewhere between these values. 

In modeling computer systems we often must characterize arrival rates 
and service rates using a variety of distribution functions. Typical distribu- 
tions utilized include the exponential distribution, the normal distribution, 
the uniform distribution, and geometric distributions. We will mention 
them in overview in this chapter, discussing additional details in Chapter 5. 

When looking at the values for an entity of interest, we have been exam- 
ining how often the value occurs in comparison to all possible values. We 
have used the discrete probability distribution up to this point, since our 
examples assumed discrete values. Often in computer systems values for an 
entity of interest will not be discrete; they will be continuous. For example, 
the amount of time the CPU takes for every job it processes will typically 
consist of real values, not discrete values. Such measures require that the 
probability of a particular value we are interested in will vary over the full 
range of possible values. Such probability functions are continuous and are 
described by functions. The function describing the possible probability 
values for our entity of interest is called the probability density function 
(Figure 4.2), while the measure showing the systems probability is described 
by the probability distribution function (Figure 4.3). The probability den- 
sity function gives us the actual value for the probability of some entity at a 
specific point in the state space for the item. The distribution function pro- 
vides us with a probability measure indicating what the probability is that a 
value is less than or equal to a specific value. 

For the measures we introduced for expected values, variance, and the 
central moment, the following changes in formula hold. 
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Figure 4.3 
Probability 
distribution 

function. 

F(x) 

For the mean: 

o o  

E[X]- I x f (x0)dx 0 (4.8) 

for the variance: 

o o  

E [ X 2 ] -  I X2 f(x°)dx° (4.9) 
~ o o  

and for the central moment: 

o o  

{~2 -- I (X -- E[X]) 2 f (x 0 )&0 (4.10) 
~ o o  

For the distribution shown in Figure 4.2 the probability density func- 
tion would be described as: 

O xo a 
otherwise (4.11) 

and for the probability distribution function as: 

0 x o <0 

r (x ) -  xo/a O<-xo <-a 
1 xo>a 

(4.12) 
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The expected value for our example would be found as: 

E[x]-a/2 (4.13) 

The second moment for our example would be found as: 

E [ X 2 ] = a 2 / 3  (4.14) 

and the variance called the central moment would be found as: 

O 2 - -  12/12 (4.15) 
One of the most important distributions for modeling computer sys- 

tems is the exponential distribution (in particular the negative exponential). 
For the exponential distribution the probability density function is 
described as: 

0 x o <0 
f (x°) - ~,e-X*o x o _> 0 (4.16) 

and for the probability distribution function as: 

{7 xo o 
F ( x ° ) -  -e-X~o x o > 0 (4.17) 

The expected value for the exponential distribution is described as: 

E[X]  = I/~ (4.18) 

The second moment is found as: 

E[X2 ] - l/£2 (4.19) 

The central moment is found as: 

0 2 --1/~ 2 (4.20) 

and the coefficient of variation is found as: 

C x =1 (4.21) 

In later chapters we will see the importance of this distribution when 
examining computer systems. This distribution can be used in ways such 
that we can get very close approximations of general systems operations. 
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4.1 Scheduling algorithms 

When analyzing computer systems one ultimately must look at the schedul- 
ing algorithms applied to resource allocation. The means by which 
resources are allocated and then consumed are of utmost importance in 
assessing the performance of a computer system. For example, scheduling 
algorithms are applied when selecting which program runs on a CPU, what 
I/O device is serviced, and when or how a specific device handles multiple 
requests. When examining scheduling algorithms, two concepts must be 
addressed. The first is the major job of the scheduling algorithm, which is 
what job to select to run next. The second is to determine if the job pres- 
ently running is the most appropriate to run and if not, should it be pre- 
empted (removed from service). 

The most basic form of scheduling algorithm is first-come first-served 
(FCFS). In this scheduling algorithm jobs enter the system and get operated 
on based on their arrival time. The job with the earliest arrival time gets 
served next. This algorithm does not apply preemption to a running job, 
since the running job would still hold the criterion of having the earliest 
arrival time. A scheduling algorithm that operates opposite from the FCFS 
is the last-come first-served (LCFS) algorithm. In this algorithm the job 
with the most recent time tag is selected for operation. Given this algo- 
rithm's selection criteria, it is possible that this algorithm could be preemp- 
tive. The job being serviced is no longer the last to come in for service. The 
preemption decision must be made based on the resource's ability to be 
halted in midstream and then restarted at some future time. Processors typ- 
ically can be preempted, since there are facilities to save registers and other 
information needed to restart a job at some later time. Other devices, such 
as a disk drive or I/O channel, may not have the ability to halt a job and 
pick it up at some later point. 

A number and variety of scheduling algorithms are associated with proc- 
essor scheduling. One of the most common processor scheduling algo- 
rithms is round robin. Round-robin scheduling is a combination algorithm. 
It uses FCFS scheduling, along with preemption. The processor's service is 
broken into chunks of time called quantum. These quanta or time slices are 
then used as the measure for service. Jobs get scheduled in an FCFS fashion 
as long as their required service time does not exceed the time of a quan- 
tum. If their required service time exceeds this, the job is preempted and 
placed in the back of the set of pending jobs. This motion of placing a job 
back into the FCFS scheduling pipe continues until the job ultimately com- 
pletes. Thus, the job's service time is broken up into some number of equal, 
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4.1.1 

fixed-size time slices. The major issue with round-robin scheduling is the 
selection of quantum size. The reason quantum size selection is so impor- 
tant is due to the nature of preemption. Preempting a job requires overhead 
from the operating system to stop the job, save its state, and install a new 
job. If the time for these tasks is large in comparison to the quantum size, 
then performance will suffer. Many different rules of thumb have been 
developed in designing such systems. Most look to make the overhead a 
very small fraction of the size of the quantum~typically, orders of magni- 
tude smaller. A method used for approximating round-robin scheduling 
when the quantum is very large compared with the overhead is processor 
sharing (PS). This model of round-robin scheduling is used in theoretical 
analysis, as we will see in later chapters. 

Another algorithm is shortest remaining time first (SRTF). In this algo- 
rithm the job that requires the least amount of resource time is selected as 
the next job to service. The CPU scheduling algorithm SRTF does support 
preemption. When an arriving job is found to have a smaller estimated exe- 
cution time than the presently running job, the running job is preempted 
and replaced by the new job. The problem with this scheduling algorithm is 
that one must know the processing requirements of each job ahead of time, 
which is typically not the case. Due to this limitation it is not often used. 
The algorithm is, however, optimal and used as a comparison with other 
more practical algorithms. 

A useful algorithm related to SRTF is the value-driven algorithm, where 
both the time of execution and the value of getting the job completed 
within some time frame are known ahead of time. This class of algorithm is 
found in real-time, deadline-driven systems. The algorithm selects the next 
job to do based on nearness to its deadline and the computation of the value 
it returns if done now. The algorithm also is preemptive in that it will 
remove an executing job from the processor if the contending job is nearer 
its deadline and has a higher relative value. The interest in these classes of 
scheduling algorithms is that they deliver support for the most critical oper- 
ations at a cost to overall throughput. 

Relationship between scheduling 
and distributions 

In determining the performance of a computer system, the usual measure is 
throughput. In the discussions that follow we consider this to be the mean 
number of jobs passing through some point of interest in our architecture 
during an interval of time--for example, the number of jobs leaving the 
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y 

H ~ e  4.4 
Resource in 

equilibrium. 

CPU per minute. In most cases we will realize the maximum value for 
throughput when our resources are fully utilized (busy). 

In the previous section we introduced measures that we can use now. 
The coefficient of variation defined previously is a good way to examine the 
variability of our data. If the service times are highly variable, C > 1, then 
most measures will be smaller than the mean and some will be larger. For 
example, in the exponential distribution, C -  1, one would find from the 
probability density function that about 63 percent of the values are below 
the mean. Such variability would cause problems with certain scheduling 
algorithms~for example, the FCFS scheduling algorithm, since jobs with 
large resource requirements will cause added delays to the majority of jobs 
that will be smaller than the mean. The effect can be further compounded 
by other resources dependent on the FCFS scheduled resource. For exam- 
ple, if jobs pile up waiting for CPU service, other resources such as disk 
drives and I/O devices would go idle. 

One scheduling algorithm that is not as susceptible to this phenomenon 
is the round-robin scheduling protocol. Since no job, whether large or 
small, can acquire and hold the resource longer than a single quantum at a 
time, larger jobs will not starve out smaller jobs. This fact makes the round- 
robin scheduling protocol a nice algorithm for measuring resource utiliza- 
tion with variable loads. If we were to compare the FCFS and round-robin 
scheduling protocols with each other for highly variable and highly corre- 
lated loads, we would see that as the loads became more correlated the algo- 
rithms performed in a more similar manner. On the other hand, as the data 
become more variable the round-robin scheduling protocol performs better 
than the FCFS. 

Relationship to computer systems performance 

For modeling computer systems and their components we typically will be 
interested in determining the throughput, utilization, and mean service 
times for each of the elements of interest over a wide range of loads. The 
analysis from a theoretical perspective will always assume equilibrium has 
been reached, implying that the number of arrivals at some resource is equal 
to the number of departures from the resource (Figure 4.4). 

Arrivals 
Resource 

Departures 

Arrivals = Departures 
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The flow out of the resource is called its throughput. The mean service 
time is E[X], as defined previously, and the mean service rate is 1/E[X]. The 
utilization for this resource is defined as the fraction of time the resource is 
busy (U). The throughput of the resource must be equivalent to the service 
rate of the resource, when it is busy, times the fraction of the time it is busy. 

This can be represented as: 

Throughput- U/E[X] (4.22) 

If we have n identical devices in our system~for example, multiple 
CPUs with the same properties~then the throughput for these would be 
described as: 

Throughput- nU/E[X] (4.23) 

These simple relationships between utilization and expected time of 
service will be important measures in analyzing the performance of systems, 
as will be seen in later chapters. 

Also of interest to the modeler is the size of the collection of jobs await- 
ing service at a resource and the time these jobs spend waiting for their serv- 
ice. First, we need to define the resource queue length. This is defined as the 
average number of jobs found waiting for service over the lifetime of this 
resource. Theoretically this can be found using the probability of having n 
waiting jobs times the number of jobs for all values of n: 

Lq-E[Lq]-~np(n) (4.24) 
n=l 

where P(n) represents the probability that the resource's queue length is n. 
The mean queuing time (resource waiting time) can be found from: 

o o  

- e [ d  = f qog (qo) o 
0 

(4.25) 

where fq (qo) represents the probability density function for the resource's 
queuing times. From these observations it can be shown that: 

Lq -gvTq (4.26) 

This formula indicates that we can find the average queue length given 
that we know the average queuing time and the rate of arrivals ~ (or serv- 
iced items) for the resource of interest. This simple observation was discov- 
ered by J. D. Little and is referred to as Little's Law. More will be said on 
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this formula and its application to computer systems performance analysis 
in later chapters. 

W o r k l o a d s  

In order that we can model and analyze systems, we need to develop means 
to test and/or stress systems of interest. These means to test or stress systems 
are called workloads. A workload should be developed so it faithfully mod- 
els the nature of the true load on the system of interest. Workloads are con- 
structed based on the focus of the analysis. For example, if we are interested 
in examining the hardware of a computer system in comparison to another, 
our focus may be on the low-level instructions. We would need to measure 
the instruction mix seen on a running system and then develop a synthetic 
mix of instructions based on these measures. Another example is to measure 
transaction throughput through some database system. This workload 
would have transactional units of work that read and write data items from 
the database system and do some additional computational work mimick- 
ing the real system. The database community has developed such workloads 
for conventional databases, object relational databases, data warehouses, 
and data mining. These workloads are called TP benchmarks. 

When designing a workload, it is important that we understand how the 
workload will load down the system of interest. It is not sufficient to simply 
provide a token load; the load must provide the means to stress the system 
being analyzed. We want workloads that will cause the measured system to 
go into saturation. We want to see where the system gets to 1 O0 percent uti- 
lization of resources and to sustain such loads for some duration of time. 

Once a workload is developed, we will want to use some form of distri- 
bution function to select items from our workload and to present them to 
the system for service. For example, if we have developed n transaction 
types for our database system analysis, we may wish to use a uniform distri- 
bution to select database data items for the transactions to operate on and 
use the exponential distribution to present transactions to the system for 
processing. Using these means our workload will be presented to our system 
in a way that mimics the real-world situation, but which we have total con- 
trol over. 

Workloads also need to be developed so they test the components we 
want them to test. For example, if we are testing the database system, a sim- 
ple instruction mix workload will not provide the kind of information we 
are interested in. The instructions alone are not representative of the desired 
load: transactions. Transactions are composed of transactional boundaries, 
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database access and alteration commands, and data manipulation com- 
mands. More on workloads will follow in later chapters. 

Summary 
In this chapter we introduced some basic concepts needed for computer sys- 
tems performance evaluation. The concept of service time-related resources 
is introduced, as are some basic concepts for use of these measures. The fun- 
damental concepts involved in probability density and probability distribu- 
tion functions are developed. These are then used to develop basic 
definitions for expected or mean values, the nth moment of a distribution. 
The special second moment, called the central moment, is developed, as is 
the definition and formulation for variance and coefficient of variation. The 
discussion then changed to scheduling algorithms used in computer sys- 
tems. We introduce priority scheduling, round-robin, first-come first- 
served, last-come first-served, and the deadline-driven value function sched- 
uling algorithms. 

This is followed by a discussion of how these items relate to computer 
systems modeling. The relationship scheduling algorithms have with distri- 
bution functions is presented, as is their relationship to performance stud- 
ies. The last topic presented is that of workloads. The concept of what a 
workload is and how it is used in computer systems modeling is presented 
from an introductory perspective. 



S 
Probability 

Queuing theory and queuing analysis are based on the use of probability 
theory and the concept of random variables. We utilize the concepts 
embodied in probability in a number of different ways. For example, we 
may ask what the probability is of the Boston Bruins winning the Stanley 
Cup this year. How likely is George W. Bush to be reelected after the events 
of this year? How likely is it to snow on the top of Mt. Washington in New 
Hampshire in January of this year? Most of the time a general answer would 
suffice. For example, it is highly probable that snow will fall sometime in 
January on Mt. Washington. Conversely, based on the last 30 years of frus- 
tration, it is also highly unlikely that the Boston Bruins will win the Stanley 
Cup this year. Probability theory allows us to make more precise definitions 
for the probability of an event occurring based on past history or on specific 
available measurements, as we will see. In this chapter, we will introduce the 
concepts of probability, joint probability, conditioned probability, and inde- 
pendence. We will then move on to probability distributions, stochastic 
processes, and, finally, the basics of queuing theory. 

Before discussing queuing analysis, it is necessary to introduce some 
concepts from probability theory and statistics. In basic probability theory, 
we start with the ideas of random events and sample spaces. Take, for 
instance, the experiment that involves tossing a fair die (an experiment typ- 
ically defines a procedure that yields a simple outcome, which may be 
assigned a probability of occurrence). The sample space of an experiment is 
simply the set of all possible outcomes~in this case the set {1,2,3,4,5,6} for 
the die. An event is defined as a subset of a sample space and may consist of 
none, one, or more of the sample space elements. In the die experiment, an 
event may be the occurrence of a 2 or that the number that appears is odd. 
The sample space, then, contains all of the individual outcomes of an exper- 
iment. For the previous statement to hold, it is necessary that all possible 
outcomes of an experiment are known. 
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The fundamental tenet of probability states that the chance of a particu- 
lar outcome occurring is determined by the ratio of the number of favorable 
outcomes (successes) to the total number of outcomes (the sample space). 
Expressed as a formula for some event, A: 

Number of successful outcomes 

P (A) - Total number of possible outcomes 
(5.1) 

From the previous example, the probability of rolling a 2, stated as P(2), 
using a fair die, is equal to the ratio 1/6 or 0.167. In this experiment, 1 rep- 
resents the favorable outcome or success of our experiment, and 6 repre- 
sents the total number of possible outcomes from rolling the die. Likewise, 
we could determine the probability of rolling an odd number (1, 3, or 5) 
stated as P(odd), as 3/6 or 0.5. In this experiment, 3 represents the number 
of possible outcomes that represent favorable outcomes for this experiment, 
and 6 represents the total number of possible outcomes from rolling the die. 
Another example using playing cards may further refine this definition. If 
we have a well-shuffled deck of cards with 52 possible cards that could be 
drawn, and we wish to know the probability of drawing a king, this could 
be stated as: 

P(drawing a king) 

Total number of successful outcomes (e.g., a king = 4) 

Total number of outcomes (e.g., 52 cards in the deck) 

= 4/52 or 0.077 

One could ask the probability of drawing the king of hearts as: 

P (drawing a king) 

Total number of successful outcomes (e.g., # of king of hearts - 1) 

(5.2) 

Total number of outcomes (e.g., 52 cards in the deck) 

= 1/52 or 0.019 (5.3) 

In all cases, the value for the probability of an event occurring within a 
range of all possible events must span from 0, where the event does not 
occur (e.g., rolling a zero with a die; since there are no zeros on the die, this 
is not possible) to a maximum of 1 (e.g., the probability of rolling an odd or 
even number with the die) indicating the event always occurs. 

In the examples cited, each number on the die must have an equal 
chance of being rolled. Likewise, in the cards example, each card must have 
an equal chance of being drawn. No number on the die face or card in the 



Probability 141 

deck can be differentiated so that it would be more likely to be chosen or 
rolled (e.g., a weighted die is not a fair die). 

The theory of probability was constructed based on the concept of 
mutual exclusion (disjointedness) of events. That is, events cannot occur at 
the same time in an experiment if they are mutually exclusive. For example, 
the rolling of the fair die can result in one of six possible outcomes, but not 
two or more of them at the same time. A second example is a fair c o i n ~  
flipping the coin will result in a head or tail being displayed but not both a 
head and tail. Therefore, the outcome of the event rolling a die and getting 
a 1 versus all other numbers is said to be mutually exclusive, as is the flip- 
ping of the coin resulting in either the head or tail but not both. 

Another important property within the field of probability is that of 
independence. For example, if we have a coin and a die, we intuitively 
understand that the event of flipping the coin and rolling the die have 
independent outcomes. That is, the result of one will not affect the out- 
come of the other. The sample space for the two events is composed of the 
Cartesian product of the two independent spaces; since all events of both 
are independently possible, the resulting sample space must include all pos- 
sible combinations of the two independent spaces. 

If we believe that this property of equal likelihood exists, then the 
probability of any of these outcomes must be equal and composed of the 
multiplicative probability of each independently. In the previous exam- 
ple, the fair coin flip has a sample space consisting of the elements of the 
set {H,T}, each with a probability of 1/2, and the fair die has a sample 
space consisting of the elements of the set {1,2,3,4,5,6}, each with a 
probability of 116. The probability of the combination of either of these 
events occurring would be derived from the Cartesian product set 
{H1,H2,H3,H4,HS,H6,T1,T2,T3,T4,TS,T6}, with any of these com- 
bined events, yielding an equal probability equal to 1/2 × 1/6,  or 1/12. 

In general, when events are independent, sample spaces where each event 
occurs are equally likely. If there are n 1 items in the first event space, n 2 in 
the second, and n m in the last sample space, then the sample space of the 
combined events space is equal to the sum of the size of each of these spaces: 

Combined sample space = (n I + n 2 + . . .  + n m) (5.4) 

The probability of any individual event occurring is then equal to 1/(n 1 + 
n 2 + . . .  + nm), which, in the previous example, was found to be 1/12. 

We will not always be interested in the likelihood of just one event from 
a total sample space occurring but rather some subset of events from the 

I Chapter 5 



142 Probability 

total space. For example, we may be interested in the likelihood of only one 
head occurring during the flipping of four coins. The complete sample 
space for this experiment has exactly 16 possible outcomes: 

{ HHHH, HHHT, HHTH, HTHH, THHH, TTHH, THHT, HHTT, THTH, HTHT, HTTH, 
HTTT, THTT, TTHT, TTTH, TTTT ) 

From this space, we can see that the events meeting the desired outcome 
of only one head results in the subset: 

(HTTT, THTT, TTHT, TTTH } 

where each item in this subset is equally likely to occur from the original 
set, so each has the equal probability of 1/16. Their combined probability 
would represent the desired probability of only one head occurring and 
would be equal to the sum of their probability: 4/16 or 1/4. In this exam- 
ple, we are using the additive probabilities of these events to see the likeli- 
hood of one of these occurring from the original set. To compute the subset 
probability we need only know the size of the original set and the size of the 
subset. 

More often, we are faced with the problem of determining the possibil- 
ity of some event occurring given that some prior event has already 
occurred. For example, we may be asked the probability of our computer 
system failing given that one memory chip has failed. This concept of 
related or dependent events is called conditional probability. The effect of 
applying this property to two independent event spaces is to remove some 
of the possible combinations from the final combined space of possible val- 
ues. For example, we may be asked what the probability is of getting exactly 
one head after the first element was found to be a tail in the four-coin toss. 
The initial sample space was 16, but given that we removed the events 
where the initial toss resulted in a tail, the resultant space now has only 
eight possible outcomes and from these there are only three within the sub- 
space meeting our final desired outcome. 

To compute what the probability is in this case, we can do a few things. 
First, we can compute the probability of realizing the tail on the first toss as 
8/16 and the probability that there is one head from the last three tosses as 
3/8. Many times it iseasier to compute the opposite occurrence. That is, 
let's compute the probability that the final event does not happen. First, we 
may reason that the sample space now excludes all events where the first 
item was a head, or eight events. There are now only 16 - 8 or 8 equally 
likely events remaining in our space. Of  these remaining 8, there are five 
ways in which, given a tail first, we do not get exactly one head. The proba- 
bility of at least one head is then the ratio of the number of successes (3) to 



Probability 143 

the total number of possible events ( 1 6 -  8) or 8, resulting in a probability 
of 3/8. 

Several operations on the events in the sample space yield important 
properties of events. By definition, the intersection of two events is the set 
that contains all elements common to both events. The intersection of sets 
A and B is written AB.  By extension, the intersection of several events con- 
tains those elements common to each event. Two events are said to be 
mutually exclusive if their intersection yields the null set. The union of two 
events yields the set of all of the elements that are in either event or in both 
events. The union of sets A and B is written A vo B. 

The complement of an event, denoted A, represents all elements except 
those defined in the event A. The following definition, known as DeMor- 
gaffs Law, is useful for relating the complements of two events: 

(5.5) 

Permutations and combinations of elements in a sample space may take 
many different forms. Often, we can form probability measures about com- 
binations of sample points, and the basic combinations and permutations 
discussed in the following text are of use in this task. By definition, a com- 
bination is an unordered selection of items, whereas a permutation is an 
ordered selection of items. The most basic combination involves the occur- 
rence of one of n 1 events, followed by one of n 2 events, and so on to one of 
n k events. Thus, for each path taken to get to the last event, k, there are n k 
possible choices. Backing up one level, there were nk_ 1 choices at that level, 
thereby yielding nk_ Ink  choices for the last two events. Following similar 
logic backing up to the first level yields: 

k 
"1"2"" "k-l"k -- H ni (5.6) 

i-1 

possible paths. For example, in a string of five digits, each of which may 
take on the values 0 through 9, there are 10 x 10 x 10 x 10 x 10 = 100,000 
possible combinations, or n k possible outcomes, where n = 10 and k = 5 in 
the sample space. The assumption is that once an item has been sampled, it 
is returned to the space for possible resampling. This is sometimes referred 
to as sampling with replacement. The probability distribution for a random 
selection of items is uniform; therefore, each item in the sample space will 
have the probability of 1/n k. 

When dealing with unique elements that may be arranged in different 
ways, we speak of permutations. When we have n things and sample n 

I Chapter 5 



144 Probability 

times, but do not replace the sample items before the next selection, we now 
have a selection without replacement, also referred to as a permutation. For 
n distinct objects, if we choose one and place it aside, we then have n -  1 
left to choose from. Repeating the exercise leaves n -  2 to choose from, and 
so on down to 1. The number of different permutations of these n elements 
is the number of choices you can make at each step in the select and put 
aside process and is equal to: 

p(n,n) = (n)(n- 1 ) ( n -  2) . . .  ( 2 ) ( 1 ) -  n! (5.7) 

The common notation P(n,k) denotes the number of permutations of n 
items taken k at a time. To find the numerical value for a random selection 
we can use similar logic. The first item may be selected in n ways, the sec- 
ond in n -  1 ways, the third in n -  2 ways, and the kth or last item we 
choose in n -  k -  1 ways. Choosing from n distinct items taken in groups of 
k at a time yields the following number of permutations or product space 
for this experiment: 

P(n,k)- (n)(n- 1 ) ( n -  2) . . .  ( n -  k + 1 ) -  {n!}/(n- k)! (5.8) 

The permutation yields the number of possible distinct groups of k 
items when picked from a pool of n. We can see that this is the more general 
case of the previous expression and reduces to equation (5.7) when k = n 
(also, by definition, 0! = 1). For example, if we wished to see how many 
ways we could arrange three computer servers on a workbench of five dis- 
tinct servers, we would assume that the order of the servers has some mean- 
ing; therefore, we have: 

P (5, 3 )=  ( 5 ) ( 5 - 1 ) ( 5 -  2 ) -  60 ways (5.9) 

A combination is a permutation when the order is ignored. One special 
case occurs when there are only two kinds of items to be selected. These are 
called binomial coefficients or C(n,k). The number of combinations of n 
items taken k at a time (denoted C[n,k]) is equivalent to P(n,k) reduced by 
the total number of k element groups that have the same elements but in 
different orders (e.g., P[k,k]). This is intuitively correct, because order is 
unimportant for a combination, and, hence, there will be fewer unique 
combinations than permutations for any given set of k items. P(k,k) is given 
in equation (5.7), hence: 

C (n,k)- {n!}/k!(n- k!)! (5.10) 
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Alternatively, one can state that each set of k elements can form P(k,k) = 
k! permutations, which, when multiplied by C(n,k), yields P(n,k). Dividing 
by P(k,k) yields: 

P(k.k)C(..k)-P(..k) (5.11) 

C(n,k)- P(n,k)/P(k,k) - n!/(n- k)!k! (5.12) 

Now that we have characterized some of the ways that we can construct 
sample spaces, we can determine how to apply probabilities to the events in 
the sample space. The first step to achieving this is to assign a set of weights to 
the events in the sample space. The choice of which weighting factor to apply 
to which event in the sample space is not an easy task. One method is to 
employ observations over a sufficiently long period so that a large sample of 
all possible outcomes is obtained. This is the so-called "observation, deduc- 
tion, and prediction cycle," and it is useful for developing weights for proc- 
esses where an underlying model of the process either does not exist or is too 
complex to yield event weights. This method, sometimes called the "classical 
probability definition," defines the probability of any event as the following: 

P(A)=NA/N (5.13) 

where P(A) denotes the probability of event A, N A is the total number of 
observations where the event A occurred, and N is the total number of 
observations made. An extension to the classical definition, called the "rela- 
tive frequency definition," is given as: 

P ( A ) =  lim (NA/N)= NA/N (5.14) 
n - - ) o o  

The preceding two approaches, combinations/permutations and relative 
frequency, are often used in practice as a means of establishing a hypothesis 
about how a process behaves. These methods do indeed define hypotheses 
because they are both based on the observation of a finite number of obser- 
vations. This fact drives the desire to develop axiomatic definitions for the 
basic laws of probability. 

Probability theory, therefore, is based upon a set of three axioms. By def- 
inition, the probability of an event is given by a positive number. That is: 

P(A)>-O (5.15) 

The following relationship is also defined: 

P ( S ) = I  (5.16) 
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That is, the sum of all of the probabilities of all of the events in the total 
sample space S is equal to 1. This is sometimes called the "certain event." 
The previous two definitions represent the first two axioms and necessarily 
restrict the probability of any event to between 0 and 1 inclusively. The 
third is based on the property of mutual exclusion, which states that two 
events are mutually exclusive if, and only if, the occurrence of one of the 
events positively excludes the occurrence of the other. In set terminology, 
this states that the intersection of the two events contains no elements; that 
is, it is the null set. For example, the two events in the coin-toss experiment 
(heads and tails) are mutually exclusive. The third axiom, then, states that 
the combined probability of events A or B occurring is equal to the sum of 
their individual probabilities. That is: 

P(A or B ) -  P(A)+ P(B) (5.17) 

So, for example, the probability of a head being tossed or a 6 being 
rolled is equal to the probability of a head being tossed or 1/2, plus the 
probability of rolling a 6, or 1/6, which is 4/6. 

The reader is cautioned that the expression to the left of the equal sign 
reads the probability of event A or event B, whereas the right-hand expres- 
sion reads the probability of event A plus the probability of event B. This is 
an important relationship between set theory and the numerical representa- 
tion of probabilities. 

The three axioms of probability are as follows: 

I. P(E)>_O (5.18) 

II. P ( S ) = I  (5.19) 

III. If AB=O, t h e n P ( A + B ) = P ( A ) + P ( B )  (5.20) 

In equation (5.20), the terminology AB is taken as the set A intersected 
with the set B. The sample space is defined on the total set {A 1 ... A k} as: 

S = A I + A 2 +... + A k (5.21) 

A very important topic in probability theory is that of conditional prob- 
ability. Consider the following experiment in which we have the events A, 
B, and AB. For example, a disk crash and a memory failure could be event A 
and B, respectively, and a disk and memory failure at the same time is event 
AB. The event AB contains the events that are in A and B. Let us say that 
this event (AB) occurs NAB times. Let N B denote the number of times event 



B occurs on its own. If we want to know the relative frequency of event A 
given that event B occurred, we could do the following experiment and 
computation: 

Relative frequency ( A ) = NAB / N B (5.22) 

P(A[B)- (NAB/N)/(NB/N)- NAB/N B 

That is, if both events A and B occur (event AB), the number of times event 
A occurs when event B also occurs is found as a fraction of the space of 
event B where event A intersects (see Figure 5.1). The notation for this rela- 
tive frequency is denoted P(A[ B) and reads as the conditional probability of 
event A given event B also occurred. If we form the following expression 
from equation (4.16): 

(5.23) 

(5.24) 

and apply equation (5.14), we obtain the traditional conditional probability 
definition: 

P(AIB)- P(AB)/P(B) 

(5.25) 

One interesting simplification of equation (5.23) occurs when event A is 
contained in, or is a subset of, event B, so that AB = A. In this case, equa- 
tion (5.23) becomes: 

I f A B -  A, then P(AIB )- P(A)/P(B) 

P(AB)= P(A)xP(B) 

Two events, A and B, are independent if their Venn diagrams do not 
intersect. The independence of two events is defined by the following for- 
mula: 

o r  

(5.26) 

Figure 5.1 
Conditional 

probability space 
Venn diagram. 

P(A)-  P(AB)/P(B)- P(AIB ) (5.27) 

Probability 147 

I Chapter 5 



148 Probability 

This definition states that the relative number of occurrences of event A 
is equal to the relative number of occurrences of event A given event B 
occurred. In simpler terms, the independence of two or more events indi- 
cates that the occurrence of one event does not allow one to infer anything 
about the occurrence of the other. 

Bayes's theorem is stated as follows: If we have a number of mutually 
exclusive events, B 1, B 2 ... B N, whose union defines the event space (or, 
more formally, a subset of the sample space), for some experiment, and an 
arbitrary event A from the sample space, the conditional probability of any 
event B k in the set B 1, B 2 ... B N, given that event A occurs, is given by: 

P(BklA)=(P(Bk)XP(AIBk))~Ni~=lP(Bi)xP(AIBi) (5.28) 

This result is an important statement, because it relates the conditional 
probability of any event of a subspace of events relative to an arbitrary event 
of the sample space to the conditional probability of the arbitrary event rel- 
ative to all of the other events in the subspace. The theorem is a result of the 
total probability theorem, which states that: 

P(A)- P(AI8 ) P(8 ) +... + P (AI ) P(B, ) (5.29) 

The theorem holds because the events B 1 ... B k are mutually exclusive, 
and, therefore, event A = A S =  A ( B  1, B 2, ... B k) = A B  1 + A B  2 + ... ABle ... so 
that: 

P(A)- P(AB 1)+ P(AB 2)+... + P(AB k) (5.30) 

Since events B1, B2 ... B k are mutually exclusive, so are events A B  1, A B  2, 
... A B  k. Applying the conditional probability definition of equation (5.24) to 
equation (5.30) yields equation (5.28). 

One other relationship that is often useful when examining conditional 
probability of two events is the following: 

P ( A  + B ) -  P ( A ) +  P ( B ) -  P ( A B )  (5.31) 

This formula states that for any two events, A and B, if we wish to deter- 
mine if event A or B occurred or that both occurred, we need to examine 
them in isolation and in unison. This follows from the discussions of sets of 
events earlier in this chapter. Since the union of the events A and B yields all 
sample points in A and B considered together, the sum of the events sepa- 
rately will yield the same quantity plus an extra element for each element in 
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the intersection of the two events. Thus, we must subtract the intersection 
to form the equality, hence equation (5.30). Note that equation (5.31) is 
essentially an extended version of equation (5.20), where AB does not equal 
the null set. 

5.1 R a n d o m  var iab les  

Thus far, we have been discussing experiments, along with their associated 
event space, in the context of the probabilities of occurrence of the events. 
We will now move on to a topic of great importance, which relates the basic 
probability measures to real-world quantities. The concept of a random 
variable relates the probabilities of the outcomes of an experiment to a range 
or set of numbers. A random variable, then, is defined as a function whose 
input values are the events of the sample space and whose outcome is a real 
number. For example, we could have an experiment in which the outcome 
is the length of each message that arrives over a communication line. A ran- 
dom variable defined on this experiment could be the number of messages 
that equaled a certain character count. Often, we want to consider a range 
of values of the random variables~for instance, the range of messages 
greater than x 1. This is denoted here as {X_< Xl}, where X denotes the ran- 
dom variable and x 1 is a value for the random variable at a specific point. 
We may call this set the event where the random variable X yields a value 
greater than x 1. 

Continuing with the previous example, suppose we had the following 
outcomes from the message-length experiment: The random variable 
defined by the number of times a particular message length seen. Referring 
to Figure 5.2; the event {X> 2000} contains the outcomes of messages 1, 4, 
5, and 6. 

Random variables may be either discrete or continuous. A discrete ran- 
dom variable is one that is defined on an experiment in which the number 
of events in the set of outcomes is finite or infinite (i.e., it is possible to 

y 

Figure 5.2 
Outcomes of the 

message length 
experiment. 

Outcome 
Message 
Length 

2,097 
500 

1,259 
5,794 
4,258 
5,205 
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5 . 2  

assign a positive integer to each event, even if there are an infinite number 
of outcomes). A continuous random variable is one that is defined on an 
experiment in which the number of possible outcomes is infinite (i.e., 
defined on the real line). The concept of random variables forms the foun- 
dation for the discussion of probability distributions and density functions. 

Jointly distr ibuted random variables 

Suppose we have an experiment that has two or more random variables 
defined on its event space and we wish to form a random variable that takes 
into account each of the individual random variables. These are called 
jointly distributed random variables, and they represent the intersections of 
the individual random variable event spaces. Jointly distributed random 
variables are represented with the following notation: 

{X < xl,Y < yl} (5.32) 

Stated simply, joint random variables derive their output from a func- 
tion whose domain is the set of outcomes for all of the individual random 
variable domains. 

It should be noted here that more complicated combinations and condi- 
tions for the random variable function may be constructed. For example, 
consider the following random variables: 

{X 1 _< X _< x 2 } where X 1 < X 2 (5.33) 

{X 1 > X , x  2 < X }  where X 1 > X 2 (5.34) 

{X 1 _< X _< x 2, Yl < Y -< Y2 } where X 1 < X 2 and Yl < Y2 (5.35) 

5.3 Probabi l i ty  distr ibutions 

The concept of a random variable in and of itself does not lend itself to 
extensive practical use. To remedy this we define a distribution function for 
each random variable X. The distribution function is typically represented 
as: 

F(x) = P(X_< x) (5.36  
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Figure 5.3 
Example 

distribution 
functions. 

By its definition, the distribution function assumes values from 0 to 1. 
Also, the distribution function is nondecreasing as x increases in value. 
These properties are summarized as follows: 

Property I: lim F (x) -  0 (5.37) 
X--+--oo 

PropertylI: lim F ( x ) - I  (5.38) 
X--)oo 

Property III: F (X 1 ) ~ F (X 2 ) i f  X 1 _< X 2 (5.39) 

Distribution functions are also called cumulative distribution functions, 
because at any x along the distribution, the area under the curve to the left 
of x represents the cumulative total of the probabilities of the random vari- 
ables {x _< X}. Figure 5.3 shows some example distribution functions. 

From Figure 5.3, it is obvious on these functions are called distribution 
functions because they show exactly how the probability of the random 
variable is distributed over the range of the random variable values. 

The distribution function shown in Figure 5.3a is a continuous function, 
because it is based upon a continuous random variable. Figure 5.3b shows a 
discrete distribution function that is based upon a discrete random variable. 

F(X) 

X1 

b) 

F(X) 

I 

m i  [ 

Xl 
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A joint distribution is one that defines how the probability is associated 
with each of several random variables. Thus, we can state a function that 
defines a joint distribution as" 

F(x, y)= P(X <_x, r <_ y) 
This function can be interpreted as- 

(5.40) 

F(x,y)= P(X <_x intersected with Y _< y) (5.41) 

We are also interested in the individual distribution functions of X and Y 
given the joint distribution of equation (5.40). For instance, the distribu- 
tion of X given F(x,y), also called the marginal distribution function of X 
corresponding to F(x,y), is given as: 

F x (x) = lim Ix, Y (x, y) (5.42) 
y-+oo 

o r  

(x)- 6c¢ (x,°°) 
The same is true for the marginal distribution of E 

(5.43) 

rv (y)- (oo, y) (5.44) 
The marginal distributions of the random variables given previously 

result from the definitions of random variables and of distribution func- 
tions. Remember that a random variable is defined with a range of values 
along the real axis and that the distribution function is defined as the cumu- 
lative probability that the random variable will attain at least a certain value. 
The probability that the random variable will obtain a value less than infin- 
ity is equal to one. Thus, the marginal distribution for a random variable 
given a joint distribution is clear given that: 

(X <_ x)= (X <_ x,Y <_ oo) (5.45) 

5.4  Densi t ies  

A density function defines the derivative of the distribution function, indi- 
cating the rate of change of the probability distribution: 

f (x) - dF (x)/dx (5.46) 
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This definition holds for continuous random variables. For discrete ran- 
dom variables, the density function is defined as the discrete probabilities 
that the random variable equals a specific value for its range of possible val- 
ues. That is: 

fx (x)- P[X = x]- EP(X)8(x- X) (5.47) 

where 8(x - X) is a delta function that is 1 when x = X and 0 elsewhere. 

From the previous relationships, we can see how the distribution func- 
tion is formed. For each value of the random variable, we can integrate (for 
a continuous function) up to that point to find the cumulative probability 
to that point. The probabilities are summed for discrete functions: 

X 

F(x)- I f (t)dt (5.48) 
~ o o  

X 

F(x)Zf(n) 
n - - o o  

We know from the previous discussions that F(~) - 1, so that: 

(5.49) 

and 

i f(t)dt- 1 (5.50) 
m o o  

o o  

y_~ f ( t ) =  1 (5.51) 

In a manner similar to that shown previously for finding the distribution 
function from the density function for a single random variable, we can find 
the joint distribution from the joint density. The relationship is given by: 

x y 

F(x, y)- I I f (t,u) dt du 
- - o o . - o o  

(5.52) 

Similarly, a discrete distribution can be found from the discrete density: 

x y 

F(x, y)- ~ ~ f (i,j) (5.53) 
i--ooj--oo 
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As with singularly distributed densities, the total area under the proba- 
bility density function is given by: 

o o  o o  

I f (x, y) dx dy - 1 (5.54) 
~ o o  m o o  

Obtaining the density function from the distribution function for a con- 
tinuous case is given by: 

as: 

f (x, y) - a2F (x, y)/axOy (5.5 5) 

We define the marginal density of a jointly distributed random variable 

o o  

fY(Y)- I f (x, y)dx (5.56) 
m o o  

The independence property is defined on joint distributions as: 

r(x, y)- (x)&(y)  5.57  

and for joint densities as: 

f (x, y)-  fx (x)fy (y) (5.58) 

In some cases, it is necessary to define combined joint distributions in 
which one of the variables is discrete and the other continuous. The joint 
density, where y represents the continuous variable and i represents the dis- 
crete one, is written as: 

f (i, y) - fxly (yli)P x (i) (5.59) 

This expression introduces another important point: conditional distri- 
butions. For discrete random variables, the conditional function can be 
defined as the following: 

fxly ( x [ y ) -  f (x, y)/fy (y) (5.60) 

Similarly, we can define the conditional density ofy given x from equa- 
tion (5.60). The following results: 

f (x,y)- fxlY (x]y)fy (y)- fxly (x]y)f x (x) (5.61) 
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5 . 5  

This is a convenient way to relate the conditional densities for the two 
random variables. If the random variables X and Y are independent, equa- 
tion (5.60) becomes: 

f (x,Y)- fx(x)fy(Y) 
and the following results: 

f~qx (y]x)- fY (Y) 
From equations (5.56) and (5.60), we can substitute to get: 

(5.62) 

(5.63) 

o o  

fY (y)- ~ fx (x)f~x (ylx) d~ (5.64) 
- - o o  

and also (for the marginal density of X): 

o o  

fx (x)= ~ f¢ (y)f~l~ (x, y)dy ~5.65) 

Combining equations (5.60), (5.61), and (5.64), we obtain Bayes's rule 
for continuous random variables: 

s l (xly)- fx(x)f~x(yl x) 
i fx (x)f~x (ylx)~ (5.66) 

- - - o o  

This concludes our discussion about the properties of probability distri- 
butions and densities. In the next section, we will explore some methods for 
obtaining often used statistics about random variables by using their distri- 
butions and densities. 

Expectation 
Although both the distribution and density functions of a random variable 
provide all of the information necessary to describe its behavior, we often 
wish to have a single quantity (or a small number of them) that provides 
summary information of the random variable. One such measure is the 
expected value, or expectation, of a random variable. The expected value is 
also called the mean. Expectation for a discrete random variable X is 
defined as: 

I Chapter 5 
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E[X] - ~_ xP (x) (5.67) 
X 

and for a continuous random variable Xwith density function fix) as: 

o o  

E[X]- I x f (x)dx (5.68) 

Suppose now that we have a function of a random variable X, say g(X). 
The expectation is given as: 

o o  

E[g(X)]- I g(x) f  (x)dx (5.69) 
---oo 

for continuous random variables, and as: 

E[g(X)] - Eg(xlP(x) (5.70) 
X 

for discrete random variables. 

If we have jointly distributed random variables, the expectation is 
defined for discrete random variables as: 

E[g(X,Y)] = ~_~ ~_~g(x, y) f (x, y) 
x y 

and for continuous random variables as" 

(5.71) 

o o  o o  

- - o o  - - o o  

(5.72) 

for the function g(X, Y). These formulations for expected values are valid if 
the right-hand sides of the respective equations are less than infinity. 

There are a few useful laws relating to expectation that we will now dis- 
cuss. Suppose that we wish to find the following: 

o o  

;[aX+b]- j" (ax+b)f(x)dx (5.73) 
~ o o  

The expression on the right becomes: 
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i oo 
a x f (x)& + b I f (x)& 

--oo ..-oo 

(5.74) 

From equations (5.51) and (5.69), equation (5.74) becomes: 

E[aX + b]- a E[Xl+ b (5.75) 

Setting either a or b to zero results in the following: 

e[~x]-  a~[X] (5.76) 

,:[b]-b (5.77) 

Now suppose that we have the following: 

oo 

E[g(X)+ h ( X ) ] -  I (g(x)+ h(x))f (x)dx (5.78) 

The integral becomes" 

i oo g(x) f (x)dx + I h(x)f (x)dx (5.79) 

From equation (5.68), we obtain: 

u[g(x) + h(x)] = ~[g (x)] + ~[h (x)] 
Similarly, for functions of two random variables, we get: 

(5.8o) 

oo oo 

E[g(X,Y)+ h(X,Y)]- I I (g(x, y)+ h(x, y))f (x, y)dydx 
~ o o  - - - o o  

(5.81) 

which becomes: 

oo oo oo oo 

~ o o  . - - o o  . - - o o - - - o o  

(5.82) 

From equation (5.72), we obtain: 

e [g (x , r )  + h (x, r ) ] -  z: [g (x, r)] + ~ [h (x,r)] (5.83) 
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Similarly, 

E[X+Y]-E[X]+E[Y] (5.84) 

Consider the case of two independent random variables, X and Y, by 
equation (5.72): 

o o  o o  

E [ X Y ] -  I ~ xyf (x, y)dydx (5.85) 
- - o o  - - - o o  

which, because of equation (5.58), becomes" 

o o  o o  

f ] ,~f~ (x)f~ (y)dy~ (5.86) 
~ o o  - - o o  

Separating the integrals by integrands yields: 

o o  o o  

f x f~ (x)~ f y f~ (y)dy (5.873 

From equations (5.69) and (5.85), we get: 

; [xv ]  = r [x ]~ [r ]  (5.88) 
for the independent random variables X and Y. 

For one special function of a random variable, g (X) - x n, the expecta- 
tion ofg (X) is known as the "nth moment" of the random variable X. The 
first moment ofg (X) is defined as the mean of the random variable X for 
g(X) = X. Moments, as defined previously, are centered at the origin and are 
thus called "moments about the origin." A more common and useful defini- 
tion of moments involves the shifting of the density function so that the 
mean is centered at the origin. Moments defined as such are called "central 
moments," because they are defined on density functions that have been 
centered at the origin. Thus, the function of the random variable becomes: 

(5.89) g ( X ) - ( x - ~ )  n 

where the mean is given by: 

~ = E [ X ]  (5.90) 

The central moment, or moment about the mean, is therefore defined 
as: 
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" n  - -  El(X-’) n ] - -  E(X--’) n f (x) (5.91) 
n 

for the discrete random variable X, and as: 

~n - ] (X--~) n f (x)dx (5.92) 

for the continuous random variable X. 

An important measure of the variability of the distribution of a function 
about the mean is called the "variance." This measure tells us, loosely speak- 
ing, how concentrated the values of the functions are relative to the mean. A 
small variance, therefore, indicates that the probability is that the range of 
function values is concentrated near the mean, while a large variance sug- 
gests that the values are more spread out. The variance of a random variable 
is defined by its second central moment and represented as: 

o o  

(~2 -- Var[X] -,2 - E[(X_~) 2 ] = I (x-')2 f(x)dx 
~oo 

(5.93) 

Note the use of several different notations; all are common. For some 
functions, fl[x), the integral of equation (5.93) may be difficult to evaluate. 
Fortunately, we can derive an alternative expression for the variance, as fol- 
lows: 

(~2-- E [ ( X _ ~ )  2] 

= E [ X 2  - 2 X  I,.t + ~t 2 ] 

= E [ X 2 ] - 2 ~ E [ X ] + ~  2 

by equation (5.90) (5.94) 

= E [ X 2 ] - 2 ~ 2 + ~  2 

0 2 - E[X2]-~i  2 

The standard deviation of a random variable is defined as the square root 
of the variance and is denoted as: 

(5.95) 
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The covariance of two random variables is a measure of the degree of lin- 
ear dependence, also called "correlation," of the two variables. The covari- 
ance is defined as: 

Cov [X,Y]- E[(X-btx )(Y-., )] (5.96) 

If X and Yare independent, the covariance is equal to zero. This results 
from the following: 

by equation (5.90): 

- E [ X Y  - X p y - Ygx + gtx gtx ] 

= e[xyl-  e[x]- x e[z]+ x 
(5.97) 

= E [ X Y ] -  2pygt x + gt x gt x (Cont. 5.97) 

by using equation (5.88) we get: 

Cov[XY]-  E [ X ] E [ Y ] - p y p x  (Cont. 5.97) 

Equation (5.97) gives a more convenient means for calculating covari- 
ance. Two random variables are said to be uncorrelated if Cov IX, Y] = 0. 

There are several useful properties of the variance, which we will now 
discuss; this will be followed by the method for developing a lower bound 
on the probability for any random variable, given a distance from the mean 
measured in standard deviations. 

From equations (5.75, 5.76, 5.77, and 5.94), we can easily show that: 

2] 

by using (5.93): 

2 _ = ;[(X-,x ]wIxl 

(5.98) 

(Cont. 5.98) 

From equations (5.76) and (5.93): 
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Var [ aX] -  E [ ( a X - E  [aX]) 2 ] 

=E[a2(X-E[X]) 2 ] (5.99) 

)2 =a2E[(X-gx ] - a2Var[X] 

For two jointly distributed random variables, X and Y, the variance is 
defined as: 

Var [X + Y]-E[(X+ Y-E[X+Y]) 2 ] 
12 

t2 )2 

= Var [X] + Var [Y] + 2 Cov[X,Y] 
Given any random variable, it is possible to derive an expression that 

defines the minimum probability of a random variable lying within k stan- 
dard deviations of its mean. The theorem is known as Chebyshev's Theo- 
rem and is stated as follows: 

P((bt - ko) < X < (It + ko)) >_ 1-(1/k 2 ) (5.101) 

Equation (5.101) can be derived as follows. From equation (5.93): 

o o  

~2 -  I (x-la)2 f(x)dx (5.102) 

~t-k~ 
~2 - I (x-~t)2 f (x)dx 

~t+k~ 
+ I (x-la)2 f(xldx 

la-ka 
o o  

+ I (x-la)2 f(x)dx 
~t+k~ 

(5.103) 
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Because the middle integral is positive or zero, we can remove it from 
the expression to get: 

l.t-k~ o o  

02 >_ f (x-B)2 f (x) dx + I (x-bt)2 f (x) dx 
-oo ~t+ko 

Within the range: 

x>_~+ko 
and 

x <_gt-ko 
we have: 

Ix- l>-ko 
so that: 

( X - - ~ )  2 _> (k(y)  2 

Thus, we can substitute into equation (5.104): 

~-ko 

02 --> I (k(y)2 f (x) dx + S (ko) 2 f (x) dx 
-oo ~t+ko 

and divide to get: 

(~2 g-k~ oo 

- I I S(x)  
kk(YJ  2 -oo l.t+le~ 

rewriting equation (5.107): 

ll-ko oo oo g+ko 

I f(x)dx+ I f ( x ) d x - I f ( x ) d x -  I f(x)dx<-l/k 2 
- o o  g + k o  - o o  ~t-ko 

and from equation (5.50): 

g+ko 

1- I f(x)dx<-l/k2 
l.t-leo 

(5.104) 

(5.105) 

(5.106) 

(5.107) 

(5.108) 

(5.109) 

(5.110) 

(5.111) 
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5 . 6  

From equation (5.48) we have: 

g+/~ 

P(~t-kcs)<X<(g+k~)-  f f ( x )dx  
~-i~ 

Thus, equation (5.101) results: 

~+/~ 

P(~t- k6) < X < (~i + k6) -  ~ f (xl dx >_ l-1]k 2 
~t-l~ 

(5.112) 

(5.113) 

Some example probability distributions 

In this section, we will examine some discrete and some continuous proba- 
bility distributions that will help to solidify the basic probability theory of 
the previous sections. Many of these distributions are commonly used to 
model real-world processes and to help arrive at estimates for quantities of 
interest in real-world systems. We will discuss the properties of each distri- 
bution and we will also discuss the process of deriving random deviates, 
given a certain distribution that models a real-world process. 

5 . 6 .  I U n i f o r m  d i s t r i b u t i o n  

The simplest of all probability distributions is the discrete uniform distribu- 
tion. Such a distribution states that all values of the random variable are 
equally probable and depend only upon the number of possible outcomes 
of the experiment. The density function for the uniform distribution is 
given as: 

f (x)= 1/k x = X l , X  2 . . . .  ,x k (5.114) 

where k is the number of possible outcomes. The experiment where the ran- 
dom variable X = P(n), n = 1 to 6, and the event is the toss of a die that 
results in a discrete uniform probability distribution. A plot of the density 
function for the uniform distribution is shown in Figure 5.4. 

The mean of the uniform distribution is found by equation (5.66) and is 
given by: 

k 
E[X]-Exi(Vk ) (5.115) 

i=1 
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L ,  
v 

Hgure 5.4 
Uniform density 

function. 

f(x) 

1/k 

5 . 6 . 2  

1 2 3 . . . . . . . . .  K 

The standard deviation is found by: 

k 
(y2 - E [ ( X _ ~ ) 2 ]  -- E ( x i  _~t) 2 f (xi ) 

i=1 

k (xi  _ ~ )  2 

i=1 

(5.116) 

B i n o m i n a l  d i s t r i b u t i o n  

The concept of a Bernoulli trial is important in many discrete distributions. 
A Bernoulli trial is an experiment in which the outcome can be only success 
or failure. Random variables defined on successive Bernoulli trials make up 
several of the discrete density functions we will discuss. 

An important discrete probability distribution is the binomial distribu- 
tion. This distribution results from experiments in which there are only two 
possible outcomes of an experiment, such as a coin toss. For the distribu- 
tion, one outcome is chosen to represent success and the other failure. A 
binomial experiment also requires that the probability of success remains 
constant for successive trials, that the trials are independent, and that each 
experimental outcome results in success or failure. Since the trials are inde- 
pendent, the total probability for an experiment with x successes and n trials 
can be found by simply multiplying the probability of each event (see equa- 
tion [5.26]). If the probability of success is given as p and if q = 1 - p ,  we 
have: 

P (x successes in n tr ials)-  pxq(n-x) (5.117) 
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For the binomial distribution, we want to find the number of successes 
in n independent trials, given that we know the probability of success for 
any individual trial. The number of successes in n trials is a combination, as 
given in equation (5.10). The probability of x successes in n trials, then, is 
the expression for the binomial distribution: 

f ( x ) = C ( n , x ) p x q  n-x x =  1,2,3, .... n (5.118) 

Suppose we have a binomial experiment in which the outcomes of n 
experiments can be used to represent the random variable X, which denotes 
the number of successes in n trials. Thus, by equation (5.84) and by the def- 
inition of binomial random variables: 

E[X] - E[x 1]+ E[x 2]+,,,+ E[x n] 
(5.119) 

Since the variance of any of the individual experiments is pq, by equa- 
tion (5.100) the variance of a binomial density can be found to be: 

Var [X] - Var [x1 ] + Var [x2] + ... + Var [Xn ] 

Var [X] - npq 
(5.120) 

Suppose that we wish to know how many Bernoulli trials occur before 
the first success in a sequence of trials occurs. If the first trial yields a success 
and the probability of success for any trial is p, the probability of the ran- 
dom variable X is p. If the probability of failure is given as q = 1 - p and we 
have success on the second trial, we obtain a probability ofpq. Extending to 
k -  1 failures before an eventual success, we obtain what is known as the 
"geometric distribution," where: 

f(k)= pqk-1 k-" 1,2 .... (5.121) 

Finding the expected value of the geometric density function is a bit 
tricky but can be accomplished as follows. By equation (5.67), 

cx~ 

E[X]-Eipq(i-1) 
i-1 

o o  

E [ g ] - p E i q ( i - 1 )  
i=1 

(5.122) 
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5 .6 .3  

d E[X]-Pi~=o~q i 
_ pd £ qi 

E[X] -~  i=0 
E[x]-P---~[ 1 (Cont. 5.122) 

P 
( l - q )  2 

E[X]- I/p 
The fifth line of the derivation above results because the value of q is less 

than or equal to 1; thus, the summation converges to 1 / (1 - q). The vari- 
ance of the geometric density is not derived here but is given as: 

Va t  [ X ]  - q/p2 (5.123) 

Poisson d i s t r i b u t i o n  

A widely used discrete density function that is useful for deriving statistics 
about the number of successes during a given time period is the Poisson dis- 
tribution. The Poisson density function is popular mainly because it 
describes many real-word processes very well. In computer systems, requests 
for jobs at a CPU are often represented by a Poisson process. The Poisson 
density function is defined as: 

f (x)- (e-¢~ x )Ix! x - O, 1,2 .... (5.124) 

where the parameter ~ is defined as the average number of successes during 
the interval. Several conditions must prevail for a Poisson density function 
to exist. These are that the successes for one interval are independent of the 
successes in any other interval, that the probability of a success during an 
interval of extremely short length is near zero, and that the probability of 
only one success during a short interval depends only upon the length of 
the interval. Interestingly, the mean of the Poisson distribution is part of its 
definition. The expected value can be found as: 
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oo e_~tgtx 
~[x]- Z x ~  

x=O x! 
o o  

E[X]- E xe-'~tx (5.125) 
x=l X! 

oo e_~t~x_ 1 
E[X]- ]t~ (x- l)V 

X = I  

Now, if we let y = x -  1, we arrive at a summation of the density function 
from 1 to infinity, which, by equation (5.51), is equal to 1: 

E[X]-~t£ e-~tl'tY 
y=o Y? 

e[x]-~ 
(5.126) 

The variance of the Poisson distribution can be found by first finding 
E[X(X- 1)] and then using the result in equation (5.94): 

oo E[X(X-1)]- E x(x-1)e ~tbt x 
x=O x? (5.127) 

The first two terms of this summation are zero, so we have: 

o o  E[X(X-1)]-  Z x(x-1)e-~tl'tx 
x=2 X! 

o o  e-l.t~x-2~2 
EEX(X-1)]- E ( x -  2)' 

X ' - 2  

(5.128) 

By equation (5.51), and, ifwe let x=y + 2, we get: 

oo 

EEX(X_I)]_It2 E e ggY=g2 
y=O Y! 

By equation (5.94), we get: 

(5.129) 

~= ~[x=] ~t2 
~2 ~ [ x = ]  ~[x]+~[x] ~2 (5.130) 
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5 . 6 . 4  

By equation (5.84), we get: 

0 2 - E [ X 2 - X ] - F E [ X ] - .  2 

0 2 -- E l K ( X - 1 ) ]  + E [ X ] -  bt 2 

By equation (5.127), we get: 

(5.131) 

(~2 = 11£2 + ~ _ ~ 2  = ~ (5.132) 

The previous density functions provide some examples of the more com- 
mon discrete random variables. Distributions such as these are useful for 
modeling real-world processes in which the quantities of interest are count- 
able items. 

In addition to the basic discrete density functions described earlier, there 
are several continuous densities. Continuous density functions are charac- 
terized by the fact that the value off{x) at any point x is zero. However, the 
probability that any value x lies between x and some small delta is approxi- 
matelyf(x) times the delta value. 

Gaussian d i s t r i b u t i o n  

One of the most important continuous probability distributions, and prob- 
ably the most widely used, is the "normal," or Gaussian distribution. 

The density function of a normal random variable X is given as: 

1 e-1/217] 2 (5.133) 
f ( x ) - ¢sx /~  

Figure 5.5 shows a few normal curves (also known as bell curves because 
of their bell-like shapes). The flatter curve has a larger standard deviation 
than the thinner curves. The expected value of the normal curve is found as 
follows. By equation (5.67): 

oo X -1/2(~~-cg )2 do ¢ 
e [ x ] -  I e (5.134) 

If we substitute the following: 

x - l a  y - - ~  
(y 

or x - ~ y + ~  
(5.135) 
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Hgt~e 5.5 
A few normal 

c u r v e s .  

f(x) 

g x 

we get: 

1 oo y 2  

x /~  I (Y6+g)e 2 dy 
~ o o  

oo _y2 oo y2 
0 2 g 2 E [ X ] - x /~  I y e dy + . , ~  I e dy 

--.oo .-.oo 

(5.136) 

If, in the second integral, we replace y by the following: 

(5.137) 

we clearly see the integral of a density function, which is equal to 1" 

E [ X I -  x / ~  I Ye dy + ~ I e 2~ . ; dx 
~ o o  ....oo 

oo y2 

E[X]-  ~-~ I y e  ~ dy + t.t 
.moo 

(5.138) 

The expression in the remaining integral is an odd function because of 
the presence of y. Since an odd function integrated over symmetric limits is 
zero, the mean becomes: 

E [ X ] - g  (5.139) 
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We can find the variance of the normal distribution as follows: 

E l ( X -  }'t)2 ] - 1 oo )2-l(x-~ / 2 ~ x ~  f (x-~t e 2 ' ' ;  dx 
- - o o  

Making the same substitution as before, we get: 

0'2 L"[(X- ~)2 ] - %/~ i y2g(--~)a/y 
--oo 

(5.140) 

(5.141) 

N o w ,  we can integrate by parts: 

Let: 

y2 

u -  y,  v - - e  2 

and 

y2 

du=dy, dv= ye 2 

then: 

(5.142) 

E ,- ] E (X-u) 2 N/~ ye 2 I + e-Tdy 
y ~ - . . o o  - - o o  

As before, the first interval equals zero, and the second integral can be 
shown to be: 

oo y2 
fe  2 

--oo 

(5.143) 

so we have: 

0.2 EI(X- ~)2] - %/~ I0 + ~ ] 

E[(X-~) 2] -0 .2 
(5.144) 

For the normal curve, the mean occurs at the mode, which is defined as 
the value that appears most in the distribution. 

Finding the probability that a normally distributed random variable falls 
between two values requires the solution of the integral: 
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l(x-,] 
1 e-~ ,  - - ~  dx (5 145) P (Xl < X < x2 ) -  o x / ~  

Xl 

This integral is not easily solvable and is best approached using numeri- 
cal means. In order to be useful, however, we would need to generate a table 
for each value of mean and standard deviation. We would like to avoid this 
by having only one standard normal curve. If we make the substitution: 

z -  (x-g) / (s ,  dx -(sdz (5.146) 

in the previous equation, we obtain: 

1 ~ z2 
~_~ e 2 ~  

zl 

where: 

(5.147) 

z- (x- , ) /o ,  ~-odz (5.148) 

The expression is equivalent to a normal distribution of mean equal to 
zero and standard deviation of one. Thus, we can transform any normal dis- 
tribution into the standard normal curve with zero mean and a standard 
deviation of one. For example, let's compute the probability that any nor- 
mally distributed random variable falls within one standard deviation of the 
mean. To do so, we need to generate some sort of table for the standard nor- 
mal distribution. Table 5.1 gives values for the standard normal distribution 
integrated from minus infinity to x. 

1 x x 2 

~ c x ~  

Let: 

X 1 - - ~ - - ( ~  a n d  x 2 - ~  + ( ~  

then: 

z~ = ( ~  - o - . ) / o  and  z ,  - ( ~  + o - . ) / o  

(5.149) 

SO: 

Z 1 --  - -1 and Z 2 --  1 
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The left-hand side of equation (5.143) can be rewritten as: 

P ( x  1 < X < x 2 ) - p ( X  < x 2 ) -  p ( X  < x 1) (5.150) 

y 

Table 5.1 Standard Normal Curve Values 

x+O.O0 x+O.Ol x+O.02 
0.50000 0.50401 0.50800 
0.53993 0.54391 0.54790 
0.57955 0.58348 0.58740 
0.61839 0.62221 0.62603 
0.65607 0.65976 0.66343 
0.69225 0.69578 0.69929 
0.72666 0.72999 0.73331 
0.75905 0.76217 0.76527 
0.78923 0.79212 0.79498 
0.81707 0.81972 0.82234 
0.84248 0.84487 0.84724 

0.86535 0.86751 0.86964 
0.88584 0.88775 0.88965 
0.90400 0.90569 0.90736 
0.91994 0.92142 0.92287 
0.93379 0.93507 0.93633 
0.94571 0.94681 0.94788 
0.95587 0.95679 0.95770 
0.96443 0.96521 0.96597 
0.97158 0.97223 0.97286 
0.97749 0.97803 0.97855 
0.98235 0.98279 0.98321 
0.98629 0.98664 0.98698 
0.98944 0.98972 0.98999 
0.99194 0.99216 0.99237 
0.99391 0.99408 0.99424 
0.99543 0.99556 0.99569 
0.99661 0.99671 0.99681 
0.99750 0.99758 0.99765 
0.99818 0.99824 0.99829 
0.99868 0.99873 0.99877 
0.99906 0.99909 0.99912 
0.99933 0.99935 0.99937 
0.99953 0.99954 0.99956 
0.99967 0.99968 0.99969 
0.99977 0.99978 0.99978 

0.99984 0.99984 0.99985 
0.99989 0.99989 0.99990 
0.99992 0.99992 0.99993 
0.99994 0.99995 0.99995 
0.99996 0.99996 0.99996 

x+O.03 x+O.04 x+O.05 
0.51199 0.51597 0.51996 
0.55187 0.55585 0.55981 
0.59130 0.59520 0.59909 
0.62983 0.63362 0.63739 
0.66709 0.67074 0.67436 
0.70277 0.70624 0.70970 
0.73660 0.73987 0.74312 
0.76834 0.77139 0.77442 
0.79783 0.80065 0.80344 
0.82495 0.82753 0.83008 
0.84959 0.85192 0.85421 

0.87174 0.87383 0.87589 
0.89152 0.89337 0.89520 
0.90901 0.91063 0.91224 
0.92431 0.92572 0.92712 
0.93756 0.93878 0.93998 
0.94894 0.94998 0.95100 
0.95860 0.95947 0.96034 
0.96672 0.96745 0.96817 
0.97348 0.97409 0.97468 
0.97906 0.97956 0.98005 
0.98363 0.98403 0.98443 
0.98731 0.98764 0.98795 
0.99025 0.99051 0.99077 
0.99258 0.99279 0.99298 
0.99441 0.99456 0.99472 
0.99582 0.99594 0.99606 
0.99690 0.99700 0.99709 
0.99773 0.99780 0.99787 
0.99835 0.99840 0.99845 
0.99881 0.99885 0.99888 
0.99915 0.99918 0.99920 
0.99939 0.99942 0.99944 
0.99957 0.99959 0.99960 
0.99970 0.99971 0.99972 
0.99979 0.99980 0.99981 

0.99986 0.99986 0.99987 
0.99990 0.99990 0.99991 
0.99993 0.99993 0.99993 
0.99995 0.99995 0.99995 
0.99996 0.99997 0.99997 

x+O.06 x+O.07 x+O.08 
0.52394 0.52794 0.53194 
0.56378 0.56773 0.57168 
0.60297 0.60684 0.61070 
0.64116 0.64490 0.64864 
0.67798 0.68157 0.68515 
0.71313 0.71654 0.71993 
0.74635 0.74956 0.75274 
0.77743 0.78041 0.78337 
0.80622 0.80897 0.81169 
0.83261 0.83512 0.83760 
0.85649 0.85874 0.86097 
0.87793 0.87994 0.88193 
0.89701 0.89879 0.90055 
0.91382 0.91538 0.91692 
0.92849 0.92985 0.93118 
0.94117 0.94233 0.94348 
0.95201 0.95300 0.95397 
0.96119 0.96202 0.96284 
0.96888 0.96957 0.97026 
0.97527 0.97584 0.97640 
0.98053 0.98100 0.98146 
0.98482 0.98520 0.98557 
0.98827 0.98857 0.98887 
0.99101 0.99125 0.99149 
0.99318 0.99337 0.99355 
0.99487 0.99502 0.99516 
0.99618 0.99629 0.99640 
0.99717 0.99726 0.99734 
0.99793 0.99800 0.99806 
0.99850 0.99855 0.99859 
0.99892 0.99896 0.99899 
0.99923 0.99926 0.99928 
0.99945 0.99947 0.99949 
0.99962 0.99963 0.99964 
0.99973 0.99974 0.99975 
0.99981 0.99982 0.99983 
0.99987 0.99988 0.99988 
0.99991 0.99991 0.99992 
0.99994 0.99994 0.99994 
0.99995 0.99996 0.99996 
0.99997 0.99997 0.99997 

x+O. 09 
0.53594 
0.57562 
0.61455 
0.65236 
0.68871 
0.72331 
0.75591 
0.78631 
0.81439 
0.84006 
0.86317 
0.88389 
0.90228 
0.91844 
0.93250 
0.94460 
0.95493 
0.96364 
0.97093 
0.97695 
0.98191 
0.98593 
0.98916 
0.99172 
0.99373 
0.99530 
0.99650 
0.99742 
0.99812 
0.99864 
0.99902 
0.99930 
0.99951 
0.99966 
0.99976 
0.99983 
0.99988 
0.99992 
0.99994 
0.99996 
0.99997 
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f(x) 
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k 

Figure 5.6 
Selected area 

under a normal 
distribution curve. 

P ~+(~ 

The values from the table for z = -  1 and 1, respectively, are: 

P ( z  < - 1 ) =  0.1587 

P ( z  < 1 ) -  0.8413 

Therefore, we have: 

(5.151) 

P(x  1 < X < x 2 ) -  P ( X  < x 2 ) -  P ( X  < x 1) 

Figure 5.6 shows the selected area under the normal curve. 

(5.152) 

Exponent ia l  d is t r ibut ion  

A simpler continuous distribution, the exponential, is important in queuing 
theory and therefore is discussed here. Its main attraction is that it has the 
Markovian property, which states that the probability of occurrence of an 
event is completely independent of the history of the experiment. This 
characteristic is also called the "memoryless" property. The expression for an 
exponential distribution is given as: 

otherwise (5.153) 

The graph of an exponential curve is shown in Figure 5.7. 

We will see later that the exponential distribution, because of its Mark- 
ovian property, will be useful for representing service time distributions in 
queuing systems. 
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Figure 5.7 
Exponential 

probability density 
function. 

f(x) 

Suppose that the time a computer user spends at a system terminal is 
exponentially distributed over time. The probability that the user will be at 
a terminal for n minutes is given as: 

o o  

P ( X > _ n ) - f f ( x ) d x  
n 

(5.154) o o  

f. 
n 

P ( g > n ) - e  -n~ 

The probability distribution function for the exponential function is 
shown in Figure 5.8 and given as: 

{1 - e  -x~ x > 0  
F(x) = P(X < x ) -  0 otherwise (5.155) 

As with any distribution function, we can find the same result by pick- 
ing the point n, representing the probability that the user will be at a termi- 
nal for less than n minutes, and using equation (5.19) to find the 
probability of the complementary event (see also Figure 5.8)" 

P(X>_n)- l -F(n)  
P(X >_ n)= 1 - ( 1 -  e - '~) (5.156) 

P(X>_n)-e -n~ 
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Figure 5.8 
Exponential 
probability 
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The mean of an exponential random variable is found as: 

oo 

E[X]-Ix~,e-~xdx 
o 

If we let: 

u = x and v - - e  - ~  

du- dx and dv- £e-~xdx 
and integrate by parts where: 

b b b 

we obtain: 

b 
E[X]--xe-XXT-I-e-~dx 

o o 

because: 

lim xe -xx = 0 
X - - . ) o o  

o o  

E[Xl=O-f-e-~dx 
o 

(5.157) 

(5.158) 

(5.159) 

(5.160) 

(5.161) 
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5.6.6 

o o  E[X]--1]~, e -~ [ 
0 

E[X]- lim 1/k e -xx + 1/k 

e[Xl- 

(Cont. 5.161) 

We may find the variance of the exponential random variable as follows: 

v a r [ X ] - E [ ( X - ~ ) 2 ]  - f (x - ~1,)2 ~ e - k x ~  

o o  o o  o o  

var [ X ] -  5~x2e-kxdx-2btS~xe-~dx + ILt2~J'e-~dx 
0 0 0 

(5.162) 

We can see that by equations 5.157 through 5.161, the second interval 
evaluates to 1/~. The third interval evaluates to 1/)~ (as shown in 5.161). To 
solve this first interval, we introduce the gamma function, denoted as: 

o o  

F[t]-~x'-le-xdx 
0 

(5.163) 

The gamma function can be solved for a positive value of the parameter 
to yield: 

F [ n ] -  ( n -  1) ! (5.164) 

We can now use equation (5.164) to help find the solution to equation 
(5.162) and arrive at the variance for an exponential distribution: 

var [ X ] -  1/~ 2 (5.165) 

Erlang distr ibut ion 

The exponential density function is often used to represent the service time of 
a server at the end of a waiting line. In some cases, it is desirable to represent 
several identical servers with a single density function whose statistics are the 
same as for a single equivalent exponential server. The distribution that satis- 
fies these conditions is called the "Erlang distribution" and is given as: 

f(x)-I)~k()~kx)k-Xe-)~kx ( k -  1)! x > 0  (5.166) 
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Figure 5.9 
Erla n g density 

functions for 
selected values of k. 

f(x) 
4 ~ . - ~  K = oo 

K= I  

1 2 3 4 

with parameters k and k. Figure 5.9 shows a graph of the Erlang density 
function for various values of k for a given value of k. The mean and stan- 
dard deviations of the Erlang density function are given as: 

E[X]  - I/~, (5.167) 

var [X]-  1/kX2 (5.168) 

The probability distribution function is given as: 

F ( x ) = l - e  - ~  1+ (5.169) 
i=0 i! 

It is important to note that the expected value for the Erlang density is 
the same as for an exponential with the same parameter, E, and is indepen- 
dent of the number of Erlangian servers (e.g., parallel servers). 

5.7 Summary 

This chapter introduced some of the basic probability concepts that are use- 
ful for understanding and analyzing queuing network models. Many addi- 
tional, more complex probability densities are known to be useful for 
representing certain types of real-world processes. These are beyond the 
scope of this book but may be found in many probability and statistics texts 
(see [2-6]). The densities presented in this book, however, are commonly 
used in queuing analysis due to their applicability to many arrival and ser- 
vice processes and because of their relative computational simplicity. 

I Chapter 5 
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6 
Stochas tic Processes 

6.1 I n t r o d u c t i o n  

Markov processes are powerful analytical tools applicable to the analysis of 
computer systems. They provide accurate, yet relatively simple means to 
construct representations of systems and to mathematically analyze a com- 
puter system. Markov processes require that we have an understanding of 
stochastic processes and their analysis. This chapter provides the back- 
ground necessary to perform the modeling and analysis of such systems. 

6 .2  Basic d e f i n i t i o n s  

A stochastic process involves the representation of a family of random vari- 
ables. A random variable is represented as a function on a variable, f(x), 
which approximates a number with the result of some experiment. The 
variable X is one possible value from a family of variables, from a sample 
space represented as ~. For example, for a toss of a coin the entire sample 
space is ~ = {heads, tails}, and the random variable X may equal the map- 
ping x = {1,0}, representing the functional mapping of the event set {heads, 
tails} to the event random variable mapping set {1,0}. (SeeTable 6.1.) 

A stochastic process is represented or described as a family of random 
variables, denoted X(t), where one value of the random variable X exists for 
each value of t. The random variable, X, has a set of possible values defined 

IV  

Table 6.1 Functional Mapping 

Events = Heads Tails 

X = 0 1 

179 
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by the state space, X(t), for the random variable X, with values selected by 
the parameter set, T (sometimes called the index set), whose values are 
drawn from a subset of the total index set 77. 

As with random variables, stochastic processes are classified as being 
continuous or discrete. Stochastic processes can have either discrete or con- 
tinuous state spaces as well as discrete or continuous index sets. For exam- 
ple, the number of commands, X(t), received by a timesharing computer 
system during some time interval (0,t) can be represented as having a con- 
tinuous index parameter and a discrete state space. A second example could 
be the number of students attending the tenth lecture of a course. This can 
be represented as having a discrete index set and a discrete state space. In 
general, if the number of states in the state space is finite, then the stochas- 
tic process has a discrete state space. Likewise, if the index set for the state 
space is finite and counting, then the index set is also discrete. For continu- 
ous systems, the number of possible values for the variables are not discrete 
(i.e., real valued). For the index set to be continuous, the set of possible val- 
ues must be real and can approach infinite. 

One important form of stochastic process is the counting process. A 
counting stochastic process is one where we wish to count the number of 
events that occur in some time interval, represented as N(t), where N is 
drawn from the discrete set of counting positive integers from the set 
{ 0,1,2,3 .... }. In addition, the index set for such a counting stochastic proc- 
ess is drawn from the continuous space of time, where time is from some 
reference point {t _> 0}. The requirement for this stochastic process is that 
for the value of the index set 0, the random variable N(0) = 0. For values of 
t < 0, the value of N(t) is undefined. This implies that the values of N(t) 
only exist for values of the index set above 0, and the values of N(t) for all 
ranges of t above 0 are positive nonnegative values. A second property for a 
counting stochastic process deals with the relationship discrete values drawn 
from the state space have with each other. For any two values of the index 
set--for example, indexes s and t, where s < t ~ t h e  values of the random 
variables must have the relationship X(s) <_ X(t). Finally, if we look over 
some interval of values for the index set--for example, values s and t ~  
N(t) -  N(s) represents the number of events from our represented events 
that have occurred by time t after time s and bounded by t. 

When discussing stochastic processes, it is often important to be able to 
determine the order of a function, such that we can focus on the dominant 
component. One way of doing this is to use notation from computer sci- 
ence and analysis of algorithms. The definition of the "order" of computa- 
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tion for an algorithm is often referred to as the order of a function. Two 
common ones are little-oh, written o(h), and big-oh, written O(h), where h 
indicates the variable of the function. Little ah describes the order or size of 
a function as the value of the function, when divided by the value of h, 
approaches the limiting value of o, as it approaches O. This is depicted as: 

lim f ( h )  =0  (6.1) 
h-~0 h 

If a function of h, when divided by h, does not result in O, then the func- 
tion is not o(h). If it does approach 0 as the limit is approached, then the 
function is o(h). For example: 

f ( x ) - x  2 is o(h) because 

x 2 
lim ~ - lim x - 0 
x-o0 x x-o0 (6.2) 
f (x) - x is not o (h) because 

lim x _  1 ¢ 0 
x--)0 X 

This concept of the order of a function can be used in understanding 
stochastic processes and in simplifying their analysis, as will be shown. For 
example, suppose x is an exponential random variable with parameter )~ and 
is described by the following probability function: 

P[x < h] = 1 - e  -kh (6.3) 

We may wish to determine what the probability is that x is less than t + h 
given that it is greater than t. (See Figure 6.1.) 

P[x  + hlx > - P[x h] (6.4) 

Jumping ahead and applying a concept not yet described~that of the 
Markov property of exponential distributions~we can show that: 

l _ e-)~h 

= l - [1- )~h ] + E (-)~h )n 
n=2 n! 

This indicates that the function order is o(h). 

(6.5) 
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w.- 

Figure 6.1 
Stochastic process 

for P[x<t+h[x>t]. 

v 

Figure 6.2 
Independent 

stochastic processes. 

='1 
t + h  

* time 

Another important property is that of independent and stationary incre- 
ments. A stochastic process has independent increments if events in the 
sample space {x(t), t _ o}, occurring in nonoverlapping intervals, do not 
have the same value. For example, with regard to Figure 6.2, x(bl) -x (a l )  ;~ 
x(b2) - x(a2). 

A stochastic process has a stationary increment if the values of a random 
variable over similar ranges are equivalent. For example, if over two intervals 
x(t), x(s) and x ( t  + h), x(s + h), the value for x ( t  + h) - x (s + h) has the same 
distribution as x(t)  - x(s) for all values of h > 0, then the stochastic process 
has stationary increments. (See Figure 6.3.) 

Another way of looking at this definition is that ifx(t) - x(s) - x ( t  + h) - 
x(s + h), then this stochastic process has stationary increments. 

As an example, we assume N(t)  is the number of phone calls handled by 
a certain central office between midnight and some time, t, on a workday 
(Figure 6.4). 

This process can be looked at as possessing independent increments, not 
stationary increments. If we look at two values for time, 8:00 A.M. and 
12:00 noon, the values from 8:00 A.M. to  10:00 A.M. and from 12:00 noon 
to 2:00 P.M. do not show the same value for the variable N(t) .  Therefore, 
this stochastic process does not have stationary intervals but does have inde- 
pendent increments. 

These concepts of discrete and continuous state space and index set, 
along with the concepts of independent and stationary increments, can be 
used to further understand the properties of various systems~for example, 
if we look at another stochastic process: tossing of a fair coin. We can 
describe one such stochastic process as counting the number of heads 
flipped during n flips of a fair coin. Such a stochastic process is referred to as 

I I I i -= time 
al bl a2 b2 
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Hgure 6.3 
Stationary 

stochastic processes. 
I I I l 

s t s + h  t + h  
-= t ime  

a Bernoulli process. If we let X 1, X 2, X 3, ... be independent identically dis- 
tributed Bernoulli random variables, the property for each value of x is: 

10 with probability P 

Xi - with probability 1 -  P 

The value of 1 represents a successful outcome (e.g., flipping a head), 
and 0 represents the failure of flipping a head. 

S,, - XI + Xz + X3 +... + Xn (6.6) 

Therefore, S n is a Bernoulli process (discrete parameter, discrete state). 

For each n, S n has a binomial distribution: 

P[Sn _ k] _ [n ]p (1-  P)n-k 

k -0 ,1 ,2  .... ,n 

(6.7) 

Starting at any point within the sample space, the number of trials, y, 
before the next success has the geometric distribution with the probability: 

P[y - k]-  (1-  p)k p k -O,1  .... (6.8) 

i w  

Figure 6.4 
Example phone call 

volume. 

N(O # 

f 

I I 
8:00 A.M. 12:00 noon 4:00 P.M. 
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6.3 Poisson process 

An important stochastic process used in computer systems performance 
evaluation is the Poisson process. A Poisson stochastic process has the prop- 
erty that events are independent, and the interarrival times of events can be 
described using the exponential distribution F(t) -- 1 - e xt. For example, 
the events described could be the arrival of a transaction for service, the 
completion of transaction processing, or the service time for the transac- 
tion. Given that the mean time between some event is l /k,  the rate of 
occurrence of the events will be ;it,. The Poisson process possesses the follow- 
ing properties: 

1. Occurrences of events during nonoverlapping intervals of time are 
independent. 

2. For small increments of time the probability of zero events is 1 - 
kAt, and the probability of an event occurring during the same 
time is kAt. 

Poisson stochastic processes have many desirable properties. If two Pois- 
son arrival streams are merged, the resultant stream is also a Poisson stream 
with the rate equal to the sum of the input rates. Consider, for example, 
Figure 6.5 with {Nl(t),t _~ 0} and Rate ~1, {N2(t), t  ~- 0} and Rate )~2, the 
resultant stream, {Nsum(t),t _~ 0}, has Rate ~1 + ~2- 

If a Poisson stream is divided into two streams, with each event going to 
stream A with probability PA and stream B with probability PB, the result- 
ing streams are Poisson with rates PA)~ and PB)~. (See Figure 6.6.) 

Let's look at an example using some of the basic properties of the Pois- 
son process and some of the fundamental concepts from probability. In this 
example, a computer center has a large number of separate system compo- 
nents that may fail--for example, terminals, tape drives, disks, printers, 
sensors, CPUs, and so on. When these items fail, they do not bring the 
entire computer system down. We know that for this system there are on 
the average 0.6 failures per day. Failures are independent. These failures can 
be represented by a Poisson process with rate )~-  0.6 (per day). In addi- 

y 

Figure 6.5 
Two Poisson arrival 

streams merging. 
© 
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L 
v 

Hgure 6.6 
Poisson stream 

dividing. 

tion, the time between failures is observed to be exponentially distributed. 
What is the mean time between failures? 

P['Cn < s]= l - e  -ks ~ -  0.6/day 

E [a:n] = 1/2~- 1.666 days = 39.99 hours between failures 
(6.9) 

Using the initial conditions, we can see that the number of failures in an 
interval of t days has the Poisson distribution with a mean of 0.6t. We can 
use this to determine the number of failures we could expect during any 
specific period of time. For example, we could ask what the probability is of 
exactly one failure in a 24-hour period. 

P[Yt - k ] -  e -;~t (~'t)/e 
k~ 

P[Yt - 1 d a y ] -  e -°.6 (0 .6)  = ( 0 . 5 4 8 8 ) ( 0 . 6 ) =  0.32928 
1! 

(6.10) 

Or we could ask what the probability is of less than five failures in a week. 

4 
/ [y7 < 5]- E P[y = k] 

k=O 
4 k 

= E e-)~, (2~t) 
k=o k! 

4 (0.6×7)k 
= E e(-°'6x7) 

k=o k! 

= e_4.2 I1 + (4"2/1) + ((4"2)2/2 !) 1 

=0.5898 

(6.11) 

This implies that we have a 0.5898 probability of getting less than five 
failures within this period of time. 

y ~Z 
P A / /  

~ ( ~  
PB ~ ' ~  PB~ 
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Conversely, we could start from a random point in time and determine 
what the probability is that no failure will occur during the next 24 hours. 

P[T, n > 1 day] = P[Yl - 0 ] -  e -~t - e -°.6 - 0.5488 (6.12) 

Using the fundamental properties of the Poisson process we could postu- 
late other questions as we discover or measure our system. For example, 
suppose exactly 24 hours has elapsed with no failures. What is the expected 
time until the next failure? The Poisson process supports the memoryless 
property~that  is, past history does not aid in predicting future history 
(independent increments). The result of this question is the same as the ini- 
tial question, which asked what the probability is of the next failure. 

P['C n < s ] - l - e  -ks k - . 6 / d a y  
(6.13) 

E['c n ] -  1/~,- 1.666 days-  39.99 hours between failures 

As another example, we know that four out of every five failures is a 
terminal problem, where each of these failures occurs with equal probabil- 
ity on each failure (see Figure 6.7). We may wish to determine what the 
process describing the terminal failure is. One must first recognize that 
this can be modeled as a Poisson process, where the total stream (repre- 
senting failures) can be broken into a split stream, both of which also are 
Poisson processes. Given this assumption, we can state that this is a Pois- 
son process with rate PA ~, = (4/5) 0.6 - 0.48/day for the terminal failures. 

The average time between terminal failures is 2.083 days. 

We can also determine the number of terminal failures in t days given by: 

P l y -  k ] -  e -xt (~'t)k 
k1 

_ e_0.48 t (0.48t) k 
k~ 

(6.14) 

I V  

Figure 6.7 
Possibility of a 

terminal failure. 
k = 0 . 6  

~'~~Other failure 
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6.4  B i r t h - d e a t h  process 

The Poisson stochastic processes are related to a more general family of sto- 
chastic processes called birth-death processes. In birth-death stochastic 
processes we are concerned with a state space of random variables where the 
values range from 0, representing no members in the population, up to 
potentially an infinite number, representing a constantly growing popula- 
tion. More realistically we are interested in fixed-size populations that go 
through incremental additions to the population (births) and incremental 
deletions from the population (deaths). 

For any specific level (possible range of values or specific number) in the 
population there is an associated birth rate and a death rate. This rate may 
be constant for each level but need not be. The birth-death stochastic proc- 
ess is described as a continuous parameter (index set) discrete state space 
stochastic process (Figure 6.8). 

{x( t ) , t>_O} (6.15) 

E(n), n = O, 1, 2 . . . .  describes the state and x(t)  = n means x(t)  is in state 
E(n) at time t. 

For any stochastic process, x(t)  t >_ O, to be a birth-death stochastic proc- 
ess, the process must be a discrete state space continuous parameter stochas- 
tic process, and it must have the following additional properties: 

1. State changes are only in increments of +1 and the value of E n is 
never negative. 

Figure 6.8 
Example birth- 

death process. 

f(x) 

5 

1 u 

1 
r-- 

0 -~t 
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2. If the system is in state E n at time t, the probability of a transition 
to En+ 1 during the interval (t, t + h) is: 

~nh + o(h) 

and to En_ 1 is: 

~nh + o(h). 
3. The probability of more than one transition during an interval of 

length h is o(h). 
If we examine a birth-death process from any particular state, E n, we can 

see that we enter the state from only two other locations: either from state 
En+ 1 or En_ 1 (Figure 6.9). 

Using this knowledge we can compute a variety of important perform- 
ance measures. All of these measures will be derived from the basis of com- 
puting the differential difference equations. These equations examine the 
birth-death stochastic process from the relationship with the initial state 
and the flow rates between states. We compute these focused on one node 
or state, as in Figure 6.9. 

Let Pn ( t ) -  P[X ( t ) -  n] (6.16) 

be the probability that the system is in state E n at time t. 

What is Pn (t + h) for small h? 

Pn (t Jr h ) -  Pn ( t ) ( l -  ()~nh + o ( h ) ) ) ( 1 -  (~n h + o(h))) 
+ Pn-i (t)(~n-ih + o(h)) 
+ Pn+i (t)(J-tn+lh + o(h)) (6.17) 

+ o(h) 

- [ 1 -  ~n h -~nh]Pn (t)+ ~n-I h Pn-I (t) 
+[~n+lhPn+l (t)+o(h) 

Transposing the term Pn(t) and dividing by h: 

Pn (t + h)- /o n (t) = -(~n + ~n )/)n (t) 

h (6.18) 

+~n-i Pn-i (t)+ ~n+l Pn+l (t)+ o(h) 
h 
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v 
Figure 6.9 Zn_ I Zn 
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~n  ~n  + I 

Taking the limit as h --5 0: 

d Pn (t) -- --(~n + [~n)Pn (t) + ~n-1 Pn-1 (t) + ~n+l Pn+l (t) for n >_ 1 

dt (6.19) 

d P0 (t) - _~0P0 (t) + ~1 P1 (t) for n - 0 
dt 

Equation 6.19 gives the relationship of the initial state to the first state 
and the initial birth and death rate. We will see the importance of this sim- 
ple property of the birth-death stochastic process as we continue our devel- 
opment of this stochastic process and apply this to analyzing computer 
systems as simple queues and networks of queues. 

One specialized example of the birth-death process looks at the condi- 
tion when there are only births and no deaths, and, further, the birth rate is 
independent of the state and constant. More specifically, we make the fol- 
lowing assumptions" 

1. There is a birth rate with mean rate ~n = ~ > 0. 

2. There are no deaths; therefore, the death rate is ~t n = 0. 

Using this information and the basic birth-death analysis previously 
described, we can show that: 

dP n (t) _-~Pn (t)+ ~Pn-1 (t) for n > 1 
dt 

d P  0 ( t )  _ _ k p  ° ( t )  for n - 0  

dt 

The probability of being in any state is: 

(6.20) 

= , n>O and t > O  
n! 

(6.21) 
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which indicates that this is a Poisson process. The Poisson process can be 
modeled as a pure birth process with constant birth rate. 

The general case birth-death process is a bit more complicated when 
finding time-dependent solutions. If, however, we look at the point where 
the system is nearing some limiting value, then the system can be assumed 
to be stationary and, therefore, equilibrium solutions exist for the system. In 
these equilibrium or steady-state solutions, we assume: 

d 
lim --+ ~ = 0 for each n (6.22) 
t--)oo i t  

and 

lim -+ Pn (t)- Pn for each n (6.23) 
t--+oo 

We can focus on the various states and compute the differential difference 
equations from a general node (any n _> 1) and for the initial state n - 0, as: 

1. 0 - ~n-1Pn-1 + ~n+lPn+l - (~n + ~n ) Pn, rl ~ 1 (6.24) 

2. O - ~ I P  1 -k ,  oP o (6.25) 

The solution for these differential difference equations, using a bit of 
algebra, is shown as: 

Pn+l = ~n Pn, n > l  
~n+l 

... 0 

P2 = )~lPl - )~0)~1 P0 
~12 ~-11~2 

= Po ,  
glg21a3 ...lan 

n_>l 

(6.26) 

and 

o o  

XPn --1 
n=O 

The solutions described here focus on the use of balance equations to 
solve for the various state probabilities. Balance equations can be used, since 
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Figure 6 . 1 0  
Graphical 

representation for 
the birth-death 

process. 

Figure 6 .11  
Transition rate 

diagram. 
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we assume the system has reached equilibrium and, therefore, will migrate 
between stable states; no matter which state we happen to look at, this will 
hold. The balance equations examine each state, E n, once equilibrium is 
reached; the rate of transition into state E n and the rate of transition out of 
E n are computed such that: 

Rate of entering E - rate of leaving E 
n n 

From the birth-death process we find that: 

1. ~n_l Pn_l .-b ~n+lPn+l - (~n + ~n )Pn , n > l (6.27) 

2. ~1 P1 = ~0 P0 (6.28) 

Also: 

o o  

~_~Pn - 1  (6.29) 
n=O 

A graphical representation for the birth-death process is shown in Fig- 
ure 6.10. 

The rate transition diagram of an equilibrium analysis for a single server 
with no waiting line is shown in Figure 6.11. The example has Poisson 
arrivals with a rate of £ and exponential service with a rate of ~t. The bal- 
ance equations for this example are: 

and (6.30) 

Pl +P0 = 1 
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6 . 5  

Solving the balance equations yields: 

P l -  (;~/P)P0 and P0 + ( )~ /P)P0-1  

Therefore: 

(6.31) 

P 
P0 = ~ (6.32) k + p  

The importance of this initial overview of the birth and death stochastic 
process, the representation of this process using transition rate diagrams, 
and the assumption of equilibrium and solution techniques using equilib- 
rium will make more sense as we begin to look at general representations 
and mappings to computer systems. 

M a r k o v  process 

A Markov process is a stochastic process with some additional properties. If 
stochastic processes' future state probabilities only depend on the present 
state probabilities and not how they reached this state, then it is a Markov 
process. 

More formally, a stochastic process {X(t), t ~ T} is a Markov process if 
for any set of n + 1 values t I < t 2 < ... < t n < tn+ 1 in the index set and any set 
of states {x 1, x2, ... , x n, Xn+l}: 

P[X(tn+ 1)- Xn+l]X(t 1)- Xl,X(t 2)-  x 2 .... X(t  n ) -  Xn] 
= p[X( tn+l  ) _  Xn+l]X(t n )_ Xn ] (6.33) 

Figure 6.12 
Mapping of 

Markov process to 
other stochastic 

processes. 
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Figure 6.13 
Example 

probability state 
transition matrix. 

All birth-death processes are Markov processes; hence, the Poisson proc- 
ess is also a Markov process (Figure 6.12). 

A discrete-state Markov process is called a Markov chain. Markov chains 
consist of discrete states {Eo,E1,E 2 .... }. These states typically are described 
using nonnegative integers {0,1,2,3,4 .... } instead of the more formal 
description given previously. A discrete time Markov chain makes state 
transitions at times t n, n = 1,2,3, ... (possibly into the same state). The nota- 
tion for this transition and the resultant state is: 

{ X  (t n ),t  n - 0,1,2 .... }--+ { X  n} (6.34) 

We will normally be interested only in Markov chains that have station- 
ary state transition probabilities: 

P[Xn+ 1 - jlxn - i ] -  P[Xm+ 1 - jlx  = i]  
= PijV m, n,i, j 

(6.35) 

The state transition probability, Pij, represents the probability of transi- 
tioning from state i to state j. For an entire Markov chain, we represent the 
collection of all such transition probabilities as a state transition matrix P, as 
shown in Figure 6.13. 

p - . . ,  

Poo Po~ Po2 " "  Poj 

P~o Pl~ P12 ... Plj 

P20 P21 P22 "'" P2j 

P30 P31 P32 "'" P3j 

Pio P~ Pi2 "'" Pij 

I Chapter 6 



194 6.5 Markov process 

Figure 6.14 
State transition 

diagram. 

q 

The requirements for entries in the state transition probability matrix 
are as follows: 

Pij >- 0 i , j -  0,1,2,... (6.36) 

o o  

Y_~Pij - 1  i -  1,2,3 .... (6.37) 
j=O 

An example using such a matrix will involve a sequence of Bernoulli tri- 
als. In a Bernoulli experiment there can only be success or failure. An experi- 
ment succeeds with a probability ofp and fails with a probability of q -- 1 - p .  
In this example, we assume that the state at trial n, with the value X n, is the 
number of uninterrupted successes (i.e., length of consecutive successes). In 
the example suppose the following experiments occur. The values for the 
sample space, index n and X n, are shown as: 

Sample: trial: F S S F F S S S F 

n = 0 1  2 3 4  5 6 7 8  

Xn= 01 2 0 0  1 2 3 0  

The state transition diagram is shown in Figure 6.14. 

The resulting probability state transition matrix is composed of the fol- 
lowing elements, as seen in Figure 6.15. 

l w  

Figure 6.15 
Transition 

probability matrix. 

P = (Pi j )  = 

qoo PO~ 0 0 

q~o 0 P12 0 

q20 0 0 P23 

q30 0 0 0 
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Figure 6 .16  
Communications 

systems stages. 

Using these probabilities we now wish to compute the state probabilities 
for the entire graph, assuming equilibrium as before. 

If we let Hj (~) represent the probability of being in state j after the nth 
step (transition): 

n5 n) -P[x. -j] (6.38) 
then: 

o o  

(n+l) H j - Z H i(n ) ~" (n ) , 
i=0 

(6.39) 

Finite states: j--  0,1,2 ..... n -  1" 

(n+l) _ ~ H(n) .(n) 
Hj  i P/j , V j  

i=0 
(6.40) 

let _,'(n' matrix: 

1j(,,) -(H~on),II{ n) .... I-I~n{) (6.41) 

Then in vector notation: 

H(n+l) - H ( n ) . p ( n )  (6.42) 

Stationary (homogeneous) transition probabilities- 

p(n) = p(m) , V n ,m 

= P  

H(n+l) - H(n)op 
(6.43) 

An example, assume we have a communications system that transmits 
the digits 0 and 1 through several stages (Figure 6.16). We assume that at 
each stage there is a probability of 0.75 that the output will be the same 
digit as the input. 

Source Destination 

I Chapter 6 
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v 

Figure 6.17 
Transition 

probabilities for the 
communications 

systems of 
Figure 6.16. 

X 1 X 2 X 3 X .  

.75 .75 .75 .75 
~0 -~0 ~-0 ~-0 

1 ; 1  ~1 ~-1 
.75 .75 .75 

One question we may ask is what the probability that a 0 entering the 
first stage is output as a 0 from the fourth stage. The solution requires repre- 
senting the problem as a Markov chain and probability a matrix solution: 
Let the state at steps n, X n, denote the value output by the nth stage. 

Assume a 0 is input to stage 1 as shown in Figure 6.17. 

What is the probability that X 4 = O? 

U (n+l) = H ( n ) P  (6.44) 

Let: 

0 ( ° ) - ( 1 , 0 )  

1-I (1) -- l'-[(o)p 

H(2) = I I (1 )p  = I I (o )p2  

I I(3)-  I-[(2)p - H(O)p3 

H(4) = H(3)p - 1-I(O)p4 

Given the probability state transition matrix: 

(6.45) 

p~  

0.75 0.25 

0.25 0.75 

p2 = 0.~81 5 0.375 

5 0.625 

p4 = 
87s o.5312s] 
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• (H(04),HI4)) - (1, 0 ) P  4 

= (0.53125, 0.46875) 

The general solution using stationary Markov chains yields: 

H(n) - [I(°)P n, n step transition probability matrix. 

6 .5 .1  

L 
V 

Figure 6.18 
Transition state 

diagram (Bernoulli 
trials, coin toss). 

M a r k o v  cha in  d e f i n i t i o n s  

State j is said to be reachable from state i if it is possible for the chain to pro- 
ceed from state i to state j in a finite number of transitions: 

> 0, for some n > 0 (6.46) 

If every state is reachable from every other state, the chain is said to be 
irreducible. Using the Bernoulli coin toss trials as before, we get the transi- 
tion state diagram shown in Figure 6.18. 

In Figure 6.18, we can see that if we are in any of the states, we can reach 
every other state in some number of steps. For example, if we are in state 3 
we can reach state 0 by transitioning through arch 3,0. We can then get to 
state 1 by arch 0,1 and then to state 2 by transitioning by arch 1,2. One 
other point to note is that if we are in state 0, we can transition back to state 
0 by the arch 0,0. After checking all paths from all pairs we can see that this 
Markov chain is irreducible. 

In the second example (Figure 6.19), this graph is reducible, since there 
is at least one path (arch 0,11) that will not allow the elements of one sub- 
chain (consisting of nodes 11, 12, 13, and 14) from connecting to sub- 
chains 21, 22, 23, and 24. 

We will generally be interested in the behavior of processes that can be 
represented by irreducible chains, since they are more easily solved and 
equilibrium can be achieved or assumed in such systems. 

q 
P P P 

I Chapter 6 
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Figure 6.19 
Reducible 

transition diagram. 

Another property of interest in Markov chains is the concept of ergotic 
chains. A discrete time Markov chain is said to be ergotic if (1) you can get 
from any state to any other state (i.e., irreducible), (2) for each of these 
states there are paths of various lengths back to that state (i.e., not all multi- 
ples of the same integer [aperiodic]), (3) upon leaving the state you will 
return with probability 1 within a finite mean time (positive recurrent). 
This last property implies the first, in that a path must exist and it must visit 
at most all of the arches. 

A Markov chain is said to have a stationary distribution ifi 

H - (H0,H1,H 2 ..... Hn_l) (6.47) 
n states 

and if there is a vector H such that: 

rI_ =I3P (6.48) 

with 

H i _ 0 V i (6.49) 

and 

E H i  - 1  (6.50) 

Equivalently: 

(n~ -- I I j  for j - 0, 1,... (6.51) lim I I j  , 
n----~oo 
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For an ergotic Markov chain, the limit: 

[I lim I J ( n )  - -  lim l -J(°)P n (6.52) 
n- - )oo  n - - )oo  

always exists and forms a stationary probability distribution that is indepen- 
dent of the initial state: 

H(°) (6.53) 

The limiting distribution is the unique solution to the equations: 

[I - r i p  1) balance equation 

~[~ H j - 1 2) sum of probabilities 

Furthermore, for each state: 

(6.54) 

H j  - 1/m i (6.55) 

where m i is the mean recurrence time for state i, the mean number of steps 
taken to return to the state after leaving. 

Example: Communication system 
What is the limiting probability that a 0 entered into the first stage is out- 
put as a 0 from the nth stage as lim n --) oo (Figure 6.20)? 

1. Balance equation: 

H = H P  

0.75 

= H  0.25 0.75 

rate entering = rate leaving 

, 

H o x 0.75 + H o x 0.25 - H 1 x 0.25 + H o x 0.75 

H o - H  1 

Sum of probabilities: 

(6.56) 

I-[ o +1-[1-1 

I Chapter 6 
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Figure 6.20 
State diagram. 

.25 

.75 

.25 

.75 

Hence: 

H o - 0.5 and H 1 - 0.5 

rI -(0.5,0.5) 

which is a stationary distribution. 

6.6 Summary 

In this chapter, we introduced some of the basic concepts related to random 
variables and stochastic processes. It was shown that stochastic processes 
have some fundamental properties that allow them to be readily applied to 
the study of computer systems. One of these is the concept of the Poisson 
process and its application to the concept of expected arrival rates or service 
rates for events within stochastic processes. One special stochastic process is 
the birth-death process. This process was used to develop the concepts of 
equilibrium states and balance equations. These were used to determine 
state probabilities. A further refinement on the birth-death process is the 
Markov chain. The Markov chain has additional properties that lend it to 
the application of computer systems modeling. The reader is encouraged to 
consult [2-5] for further details. 



7 
Queuing Theory 

7 .1  

In this chapter, we will build upon the basic probability theory covered in 
Chapter 5 and stochastic processes covered in Chapter 6. The discussions 
will lead to the definition and analysis of several useful queuing models for 
the behavior of many types of service systems. The methods discussed 
herein complement those provided by simulation analysis. Frequently, the 
development of a general queuing model for a particular system will aid in 
the development of a refined Petri net model or a detailed simulation of 
specific parts of the system. Also, the results and behavior observed from 
simulation help to tune the analytical models. 

This chapter is organized into three general topics: queuing models, esti- 
mation, and computational methods for theoretical systems analysis. Sto- 
chastic processes form the basis for many of the analytical techniques that 
apply to the queuing systems that we will discuss. The section on estimation 
provides some methods for defining the values that parameterize the queu- 
ing models with real-world data. 

Queuing systems 
In this section, we will cover the basic analysis techniques associated with 
queuing systems. The prime motivation for performing queuing analysis is 
to assess local system behavior under a variety of assumptions, initial condi- 
tions, and operational scenarios. The modeling aspect seeks to represent the 
behavior of system components as processes that have calculable statistics 
and that adequately reflect reality. Thus, the use of queuing analysis pro- 
vides us with a set of techniques for calculating quantities, such as wait time 
for service, throughput of a server, the effect of different servers or queuing 
strategies, and the effects of coupled and closed networks of queues. 

201 
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The assumption that we must make in order to take advantage of these 
techniques is that the system under observation can be adequately repre- 
sented by a queuing system. In the remainder of this section, we will first 
look at analytical modeling in general, at the characteristics of the systems 
that we are interested in modeling, and then at the suitability of queuing 
models in general and their use in particular. 

What are we seeking to quantify when we set out to model a system? 
The answer can be summed up in just one word: performance. This one 
word, however, may have very different meaning for different people. Take 
automobile performance, for instance. For the speed enthusiast, perform- 
ance is how fast the car can go and how quickly it can get to that speed. For 
the back-road driver, it is the ability to corner without difficulty under 
severe conditions. For the economist, high performance means fuel effi- 
ciency and low maintenance costs. The list goes on. So it is for the perform- 
ance of a computer system as well. At issue here are performance measures, 
such as the utilization of the system components, effective throughput, 
average waiting time for a potential user, average number of users in the sys- 
tem at any given time, and the availability of service resources. 

In addition, trade-off analyses and "what if' studies can be performed to 
establish performance measures such as speedup and improved availability. 
In general, such studies provide the ability to analyze the sensitivity of the 
previously mentioned measures to changes in the system under study. 

The general process of analytical modeling involves mapping the behav- 
ior of a complex system onto a relatively simpler system, solving the simpler 
system for the measures of interest, and then extrapolating the results back 
to the complex system. Sometimes this process has several levels, where 
models are broken into submodels. Here, the lowest-level models are solved 
(or partially solved) first, their results propagated up to the next higher layer 
for inclusion in that layer's solution, and so on to the top level. 

In some cases, portions of a model can be replaced by a technique called 
decomposition, or isolation. Here, a queuing subsystem is replaced with a 
flow-equivalent server, where the server output is precalculated for each 
number of units (or customers) in the system. Thus, the job flow through 
the flow-equivalent server can be implemented using a simple lookup table 
indexed by the number of customers currently in the system. This tech- 
nique is appropriate if the impact of the removed subsystem is minimal 
when compared with the effect of other model subsystems. 

The basic premise behind the use of queuing models for computer systems 
analysis is that the components of a computer system can be represented by a 
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Figure 7.1 
Single $#r12#r 

model. 

Arrivals ,111 Oeoa ures 
Queue Server 

network of servers (or resources) and waiting lines (queues). A server is 
defined as an entity that can affect, or even stop, the flow of jobs through 
the system. In a computer system, a server may be the CPU, I/O channel, 
memory, or a communication port. A waiting line is just that: a place where 
jobs queue for service. To make a queuing model work, jobs (or customers 
or message packets or anything else that requires the sort of processing pro- 
vided by the server) are inserted into the network. A simple example, the 
single server model, is shown in Figure 7.1. In that system, jobs arrive at 
some rate, queue for service on a first-come first-served basis, receive ser- 
vice, and exit the system. This kind of model, with jobs entering and leav- 
ing the system, is called an open queuing system model. 

By cascading simple queuing models and allowing the existence of paral- 
lel servers, networks of queues and servers may be formed. These combina- 
tions are formally called queuing networks, although we will also call them 
network models and queuing systems. Figure 7.2 shows one such model of 
a computer system with a fixed number of jobs competing for a CPU and 
two I/O processors. 

In Figure 7.2, jobs that have finished I/O service loop back into the 
CPU queue for another cycle of computation and I/O. A system like this, 
where the number of customers remains constant, is called a closed queuing 
network system model. 

A combination of open and closed concepts is certainly possible if one 
considers each job to have an associated class. For example, a computer sys- 
tem may contain two job classes, interactive and system, where interactive 
jobs come and go as users log on and off and where system jobs execute 
continually. A system that contains both open and closed class customers is 
called mixed. 

The concept of customer classes also allows different classes to receive 
different treatment at the same server, as well as the definition of a group of 

Figure 7.2 
Queuing network 3 Jobs 

model. ---~ I[ ; f l l  

1 CPU 2 I/0 Devices 

I Chapter 7 
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customers as open or closed. A system with more than one customer class is 
called multiclass, and it may be either open, closed, or mixed. 

Once we have a network model established, the collection of n 1 custom- 
ers at server 1, n 2 at server 2, and so on for the entire collection of queues in 
the network system defines the state of the network model. An analytical 
model for a queuing network would provide a method for calculating the 
probability that the network is in a particular state (i.e., that the number of 
customers is at certain levels for each queue and service center). In addition, 
network throughput, mean queue length for any server, and mean response 
time (wait time and service time) for any server can be found by a variety of 
methods. 

In a network model, a server typically has associated with it a service 
time distribution, from which customer service times are drawn. Upon 
arrival at a server, a customer receives service, the duration of which is deter- 
mined by the service time distribution. 

We will now turn our attention to some of the more well-known queu- 
ing systems, the notation used to represent them, the performance quanti- 
ties of interest, and the methods for calculating them. We have already 
introduced many notations for the quantities of interest for random vari- 
ables and stochastic processes. Figure 7.3 reviews these and adds a host of 
others that will be useful for the analysis of queuing systems. The following 
text briefly discusses the more important parameters. 

The arrival rate for a queuing system defines the stream of arrivals into a 
queue from some outside source. This rate is defined as an average rate, 
which is derived from an arrival process. The average interarrival time for a 
given arrival process is denoted as: 

E['~] = 1/X (7.1) 

The service rate parameter is defined in a way that is similar to the 
arrival rate. This rate is also an average rate, which defines how many cus- 
tomers are processed per unit time when the server is busy. The service rate 
can be cast in terms of the service time random variable as: 

g= l/E[s] (7.2) 

Often, we wish to know the probability that the system will contain 
exactly n customers at steady state. Accounting for all of the probabilities 
for n ranging from zero to infinity defines the probability distribution for 
the number of customers in the system. 
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l w  

Figure 7.3 
Stochastic processes 

and random 
variable notation. 

Figure 7.4 
Kendall notation. 

g 

Pn 
C 

N 

L 

Wq 

S 

Nq 
kq 

Ns 
W 

Arrival rate at entrance to a queue 

Service rate (average) of a server 

Probability that there are n customers in the system at steady state 

Number of identical servers in the queuing system 

Random variable for the number of customers at steady state 

E[N], expected number of customers in the system at steady state 

Random variable for customer waiting time in a queue 

Random variable for customer service time 

Random variable for the number of customers in a queue at steady state 

E[Nq], expected number of customers in a queue at steady state 

Random variable for the number of customers at a server at steady state 

Wq+S, random variable for the total time in a system 

The number of identical servers in a system indicates that a customer 
leaving a queue may proceed to one of C servers as soon as one becomes 

nonbusy (free). 

Of  interest for any queuing system is the average number of customers 
(N) in the system at steady state. This value can be thought of as the sum of 
all customers in queues (Nq) and at servers (Ns)" 

N -  Nq + Ns (7.3) 
L-e[NI-e[N ]+e[Ns] 

The total time a customer spends in the system can also be thought of as 
the sum of wait time in the queues (qt) and time at the servers (st). The total 
time, and expected total time at steady state, therefore, are given as: 

W=Wq +S 
E[W] - E['I~q ] + E[S] (7.4) 

NBIclK/m/Z 
where 

A arrival process definition 

B service time distribution 

c number of identical servers 

K maximum number of customers allowed in the system (default = oo) 

m number of customers allowed to arrive before the arrival process stops (default = oo) 

Z discipline used to order customers in the queue (default = FIFO) 

I Chapter 7 
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Figure 7.5 
Kendall notation 

symbol definitions. 

7.1.1 

v 

Figure 7.6 
M/M/1 queuing 

system modeL 

D deterministic service time or arrival rate 

G general service time or arrival rate 

M Markovian (exponential) service time or arrival rate 

In addition to the notation described previously for the quantities asso- 
ciated with queuing systems, it is also useful to introduce a notation for the 
parameters of a queuing system. The notation we will use here is known as 
the Kendall notation, illustrated in Figure 7.4. 

The symbols used in a Kendall notation description also have some stan- 
dard definitions. Figure 7.5 shows the more common designators for the A 
and B fields of the notation. 

The service discipline used to order customers in the queue can be any 
of a variety of types, such as first-in first-out (FIFO), last in first out 
(LIFO), priority ordered, random ordered, and others. Next, we will exam- 
ine several queuing systems and give expressions for the more important 
performance quantities. 

The MIMI I queuing system 

The M/M/1 queuing system is characterized by a Poisson arrival process and 
exponential service time distributions, with one server, and a FIFO queue 
ordering discipline. The system, shown in Figure 7.6, may represent an input 
buffer holding incoming data bytes, with an I/O processor as the server. A few 
of the quantities that we will be interested in for this type of queuing system 
are the average queue length, the wait time for a customer in the queue, the 
total time a customer spends in the system, and the server utilization. 

Let's look at the exponential service distribution first. It is given as: 

S = bt e-lat (7.5) 

and is shown in Figure 7.7. In the figure, E[S] is the average service time of 
a customer at the server. Next, let's derive the steady-state equations for the 
M I M I  1 system. 

Queue Server rate = 
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IL. 
r 

Figure 7.7 
Exponential service 

distribution. 

E[S]  = 1 / #  t ~- 

The M/M/1 system is a birth-death process, as discussed in Chapter 6. 
Let us assume that: 

P, ( t ) -  probablility that n customers are in the system at time t (7.6) 

From earlier discussions about birth-death processes, we know that: 

Pn (t + h)-  Pn ( t ) [ l -  ~n h --Bn h] 
+Pn-1 (t)~n-lh + Pn+l (t)Bn+lh + o(h) (7.7) 

and 

P0 (t + h) = Po (t)-Po (t)~oh+ Pl (t)~lh+ o(h) (7.8) 

Following the same reasoning for deriving the steady-state probabilities 
as we did for the general birth-death process, we obtain the steady-state 
equations for the M/M/1 system: 

kP0 =BP1 (7.9) 

(~, + ~)Pn = ~Pn-1 + ~Pn+l for n > 0 (7.10) 

Now, if we let u denote the average server utilization, we define this 
quantity as the mean service time of a single customer divided by the mean 
interarrival time (see equations [7.1] and [7.2]), then: 

u=(1/B)/(1/X)=X/B (7.11) 

I Chapter 7 
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Solving the steady-state equations (7.9) and (7.10), we obtain: 

P1 - "" Po for n - 0 (7.12) 
bt 

Similarly, for n = 1 

(~, +U)pl = ZPo + up2 
uP2 = ( z + ~ ) P o - Z &  

P2 - ( 1  + 5g/bt)P 1 - (),,/bt) P o (7.13) 

/'2 = (1 + z/~,) (z/u) po - (z/~) po 

e2 - (z /~)2 po f o r , , - 1  

Similarly: 

& =(z/~)~po 

Pn - (~/B)n Po for n > 0 (7.14) 

Pn =BnP0 for n > 0  

We assume here that u is less than 1 so that we have a finite queue 
length. Now, we know that: 

oo 

XPn=l  
n=0 

and 

SO: 

£ Pn = Po Z un =1 (7.15) 
n=O n=O 

n = 0  

The right-hand side of equation (7.15) is recognized as a geometric pro- 

P0 - 1 -  u -  1 -  (SL/B) 

1 

P° = 1 / ( l - B )  (7.16) 

gression that has the following solution: 
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Hgwre 7.8 M/M/1 system state transition diagram. 

Combining equations (7.14) and (7.16), we arrive at the steady-state 
probability that there are n customers in an M/M/1 system: 

Pn - (1-  (~/B))(~/B) n (7.17) 

Figure 7.8 shows the state transition diagram for the M/M/1 queuing 
system. 

Now let's look at the average number of customers in the system at steady 
state. This is given as the expected value of N, which can be found by: 

o o  

E [ N ] -  ~_nP. 
n=O 

- ~ n (1 -  (~/B))(~/ILt) n 
n=O 

- (1 -~ , l~ )~n(~ l l . t )  n 
n=O 

= (1 -  (£/g))((;~/bt) + 2()~/B)2 + 3 ()v/l.t) 3 +. . . )  

= (1-()v/B))()v/B)(1 + 2(£/B)1 + 3(~/,) 2 +...) 
o o  

= (I- (V~)) (Vu) Z,  (Vu)"-' 
n=l 

(1- (~/~1)(~/~1 

(~-(~/~t) ~ 

E[N]-  Z/B 
1-  ()~/B) 

(7.18) 

I Chapter 7 
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The average amount of time that a customer must wait in the queue, 
assuming that other customers are already in the queue, is given as the num- 
ber of customers ahead divided by the average service time of the server: 

EIWqln=il-i/g (7.19) 

The expected wait time in the queue, then, is a function of the average 
wait time and the steady-state probability of having i customers in the system: 

o o  

i=1 

=(1/g)E[N] (7.20) 

(x/.:) 
E[WqJ- i-(~,/t.t ) 
Combining the queue waiting time (equation [7.20]) and the expected 

service time E[s] (equation [7.2]) yields the total customer time in the sys- 
tem, called the expected wait time: 

()~/t.t a ) 1 
- -  q _ _ _  

1-(~/B) B 

_ 1 ( ( ) ~ / B )  +1) 

1( 1 / 

=B 1 - ~ / .  

If we rewrite equation (7.18) as: 

E[N]= ~,/(g- ~,) 
using equation (7.21), we obtain Little's result: 

E[N]-£E[W] 

(7.21) 

(7.22) 

(7.23) 
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Little's result holds in general for any queuing system in steady state that 
conforms to the flow balance assumption discussed earlier. As such, it gives 
us an important relationship for the effect of arrival rate and queue length 
on total customer wait time. A related result, also attributed to Little, states 
the equivalent for queue length and queue waiting time and also holds for 
queuing systems in steady state: 

(7.24) 

This second version of Little's result says that the expected queue length 
can be found directly from the arrival rate times the expected queue wait 
time. 

The total waiting time in the system, then, can be found by using Little's 
result or by summing the queue wait time and the expected service time. 

Server utilization is a useful quantity for determining how many equiva- 
lent servers must be provided to service a given arrival process. The method 
is straightforward and involves solving an MIMI 1 queuing system using the 
methods indicated previously. Suppose, for instance, that we have an MIMI 1 
system with an arrival rate of six customers per minute and a service time of 
ten seconds. Then the server utilization, as given by equation (7.11), is 1. 
This means that the server can be expected to be busy 100 percent of the 
time, but that it can, in fact, process enough customers so that infinite 
queue buildup is prevented. Suppose now that the arrival rate increases to 
60 customers per minute so that the server utilization becomes 10, an over- 
load situation. If we speed up the server by 10, however, or provide ten serv- 
ers of the original speed, the utilization would again be 1. In general, then, 
if the utilization is less than 1, the server can keep up with the flow of cus- 
tomers and an infinite queue will not result. If, however, the utilization is 
greater than 1, the utilization, rounded up to the next largest integer, gives 
an indication of the number of identical servers that is necessary to keep up 
with the customer flow. 

A final interesting property of the M/M/1 queuing system is the fact 
that the queue waiting time and total waiting time both have exponential 
distributions. For instance, the queue wait time can be found as follows: 

t 

n=l  0 

(7.25) 
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From equation (7.14) and the distribution (Poisson), we get: 

o o  t ~nxn_l 
P[O < Wq < t ] -  E ( ~ b / g )  n (1-(~,/gt)).[ (n_  1)! e-~a6c 

n=l 0 

t oo (~x)n -1  

= !~e-~x (1- (~/lx))E ~7-~ ~ 
0 n=l 
t 

= .[ ~e-i~ (1 - (X,/ILt)) e~dx 
0 

= ~/lX f (lX- ~)e-(~-~)xdx 

-~,/~[1-e-t(~t-~.)] 

(7.26) 

From equation (7.21), we substitute to get: 

P[O < Wq < t ] -  ~,/~[l-e-t/E[W]] (7.27) 

Including P[ Wq- 0]" 

P[Wq <_ t] = Po + ~L/~t[ l-e-t/E[W] ] (7.28) 
L 

By substituting Wq[0] - 1 - - -  • 
~t 

'1 - 1 -  ] 
From these distributions, we can find the percentiles for the expected 

wait time for r percent of the total number of customers. The percentile of 
any random variable is defined as: 

P[x <_ Tc(r)] - r/lO0 (7.30) 

In the case of queue wait time, for example, if we wish to find the wait 
time that 90 percent of the customers in the system will not exceed, we have: 

1- e-=(9°)/E[ W] -- 0.9 

O. 1 - e-=(90)/E[ W] 

In(0.1)= -I1;/(90) 
E[w] 

x(90)=2.3E[W] 
(7.31) 
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7. 1.2 The MIMI I IK system 

An interesting and realistic variation on the basic M/M/1 system is a system 
with a finite queue size. In this system, once the queue is full, new arrivals 
are lost and are never provided service. This is quite realistic, for example, in 
an input system with finite input buffer space and no flow-control protocol. 
The birth-death state transition diagram for the M/M/1 /K system is shown 
in Figure 7.9. 

As for the M/M/1 system, we have: 

Pn "- (~ /~ )n  Po for n > n > 0  

Using the law of total probability, we also have: 

(7.32) 

~P1-1 
i=0 
K 

E ( ) ~ / ~ ) i  P0 - 1 
i=0 

K 
PO E (~/~) i -1 

i=0 

The summation is a geometric series, which yields: 

1 -  (~,/~) K+I 
Po =1  i f ~ , .  ].t 

1 -  (~,/bt) 

(7.33) 

SO: 

1-  (~/bt) 
Po = (7.34) 

1-- (~/[Lt) K+I 

k ~ )~ k k k 

~t bt bt ~t bt bt 

Figure 7.9 State diagram for the M/M/1/Ksystem. 
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Substituting into equation (7.32) yields: 

"en --" 1-(k/~)+l(~lnforK>n>O 

If the arrival rate is equal to the service rate, we have: 

(7.35) 

K 
Po ~z_~ (~/la)i = 1 for k - ~  

i=1 
Po = 1 / ( K + I )  for k - ~  

and 

(7.36) 

P~ = 1/(K + 1) for K _> n > 0 and £ = ~ (7.37) 

The expected number of customers in the system, for a system with 
nonequal arrival and service rates, is found as: 

K 
E[N] : ~ iPi 

i=O 

" - ~ i  1 i = 0  _(~/~)K+I 

E[N] = i 

After some algebra and simplification of the summation, we get: 

(7.38) 

E[N]- (kilt) _ (K + 1)(~,/gt) K+I for k ¢ 
1 -  (k/la) 1 -  (~/gt) K+I 

(7.39) 

We can see that, for very large values of K, the second term approximates 
zero and we get the same expression as for the M/M/1 system. 
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7.1.3 

r 

Figure 7.10 
An MIM/C system, 

~ r  C=3. 

For the case where the arrival and service rates are equal: 

K 

E [N] - ~ iPi 
i=O 

K (7.40) 
1 Z i  

E[N]-  K +----~ i=o 

E[N]-  K/2 ( f o r k = g )  

qTb compute the wait time distribution for the MIMIIlK system, we 
must compute the probability for the number of customers in the queue 
when a customer arrives, given that the customer is admitted to the system. 
This is given as: 

P(n customers in sys tem[N<K)- /9 , / (1-  Pk ) (7.41) 

From this, we can arrive at the wait time distribution: 

K-1 N ( ~ t )  K 
P(w <_ t) = X- Z Pn/(I-- PK ) Z e-~t' 

N=O K=O K! 
(7.42) 

This quantity can be found in the same way as the statistic for the M/M/1 
system. 

The MIMIC system 

The M/M/C system, shown in Figure 7.10, consists of a single waiting line 
that feeds C identical servers. The arrival process is considered to be Pois- 
son, and the servers have exponential service times. The state transition dia- 
gram for an M/M/C system is shown in Figure 7.11. Now let's write some 
of the flow balance equations for the state transition diagram. 

v 
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~2 
P2 - 2bt--TPo 

£3 

PC ~ ~  

Pc+I - 

~c 
c ! ~t c P° 

kC+l 

CC!~L C+l Po 

PN 
X,N 

CN-CC!~ N Po 

so that: 

Pg 

~Npo 
N ! ~  N for N <  C 

~,Npo for N > C 
CN-CC!~ N 

(7.43) 

7.1~ _ ~ ~ ~ Figure 
State transition 
diagram for an 
M/M/C system, 

for C = 3. ~t 2g 311 3g 3g 
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To find the probability of no customers in the system, we sum all proba- 
bilities: 

1 -  P011+ ~/bt + (x'/bt) 2/2 +"" + (~/bt)C/c!+ 
(~/~)C+l/CC!+.. .+ ()~/~t) N /CN-CC!+ . . .1 

1=100 ()~/t.tli /i! + Ci-CC!) 
i=1 "= 

(7.44) 

1-P°(~()~/bt)i/i'+()~/bt)C/C'(1-(~'/Cbt)) 

The expected queue length can be found by subtracting the number of 
customers in service from the expected number of customers in the system: 

o o  X 
N=C 

E[Nq]_ Po (~'/I't)c (x'/Cb t) 
C!(1-(X,/Cbt)) 2 

Using LiMe's result, we can compute the queue wait time: 

The total wait time is: 

(7.45) 

(7.46) 

The total number of customers in the system is: 

E [ N ] - X w  

E[N] = E[Nq ] + (~/bt) (7.48) 

For some multiple server systems, no queue is provided for customers to 
wait for service. In this case, a customer who arrives when all servers are 
busy is turned away, perhaps to try again later. The state transition diagram 
is shown in Figure 7.12. This system is often referred to as the M/M/C loss 
system, because customers who arrive when all servers are busy are lost. 
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v 

Figure 7.12 
M/M/C loss system. 

7 . 1 . 4  

k k k k 

2g (C- 1) # C# 

Writing the flow balance equations, we obtain the steady-state probabilities 
as we did for the MIMIC system: 

PAr - ( ~ , / , ) N / i V ! -  1 + ( k / , ) +  (k/~t) 2 /2!+. . .  (k/la) c /C!  (7.49) 

The probability that a customer will be turned away, then, can be found 
from the previous expression with N-- G. Since there is no queue, the queue 
length and queue waiting time are zero, and the total wait time is the 
expected service time. 

The  MIGI I sys tem 

The queuing systems that we have discussed so far have all had the Markov 
property for arrival and service processes, making it possible to model the 
system as a birth-death process and to write the flow balance equations by 
inspection. Next, we will look at a system in which the service time does not 
have the Markov property. In the M/G/1 system, each customer has differ- 
ent and independent service times. Because service times are not guaranteed 
to be Markovian, the system is not representative of a Markov chain and we 
must resort to other methods to derive meaningful statistics. One approach 
commonly taken is to look at the process that describes jobs leaving the sys- 
tem, which is a stochastic process that also happens to be a Markov chain. It 
has been shown [3] that, in the limit, the distribution for the number of 
jobs in the system at any point in time and the number of jobs in the system 
observed when a customer departs from the system, are identical. 

Summarizing the procedure, then, we can analyze certain aspects of the 
system that are described by a non-Markovian process by observing a Mark- 
ovian subportion of the system (in this case the departure process) and 
extrapolating the results back to the original system. This type of analysis 
relies on what is known as an embedded Markov chain. The derivation of 
the statistics for the M/G/1 system is beyond the scope of this book. 

The general M/G/1 system is useful in many situations, because we can 
characterize a known service process in terms of its moments and then eval- 
uate its performance in the presence of a random arrival process. 
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7.2  

7 .1 .5  The GIMI I  system 

In the previous section, we discussed the situation in which a system had a 
non-Markovian service process. Next, we will consider the case in which the 
service time is random and the arrival process is non-Markovian. We will 
assume that the interarrival times are independent and identically distrib- 
uted. Again, we can find an embedded Markov chain in this system whose 
behavior is essentially equivalent to the system's behavior at steady state. In 
this case, the random variable defining the number of customers in the sys- 
tem, at precisely the time when another arrival occurs, forms a process that 
is a Markov chain. As with the other systems that we have discussed, the sta- 
tistics of interest use the probability of having an empty system in calculat- 
ing their values. 

N e t w o r k s  of queues 

Until now, we have been considering queuing systems that contain only one 
station. That is, the systems that we have looked at have a single queue and 
a single server or set of servers, and customers arrive only at that queue and 
depart only following service. This situation is fine for relatively simple sys- 
tems that are either not connected to other systems or that can be consid- 
ered isolated from other, connected systems. Now, we will consider the case 
in which several queuing systems are interconnected and attempt to find 
meaningful statistics on such a system's behavior. 

Referring to section 7.1, we recall that a network of queues results from 
connecting the departure stream of one queuing system to the queue input 
of another, for an arbitrary number of queuing systems connected in an 
arbitrary way. Also, we discussed the concept of open and closed networks 
in which an open network was defined as one in which arrivals from, and 
departures to, the outside world are permitted, and a closed network is one 
in which they are not permitted. We will discuss general classes of both 
types here. 

7.2.  I Closed n e t w o r k s  

Consider the closed three-stage network of queues shown in Figure 7.13. 
Assume that the service time for each server is exponentially distributed and 
unique to that server and that the system contains two customers. We can 
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l w  

Figure 7.13 
A three-stage closed 

queuing network. 

stage 1 

) 
stage 2 stage 3 

describe this system as a Markov process with each state in the process 
defined as the triplet: 

State ={NI,N2,N3} (7.50) 

where N i is the number of customers in the i queue. Also, since we have two 
customers" 

E N i  - 2  (7.51) 
i=1 

The state transition diagram for the system, with the states labeled as 
defined in equation (7.50), is shown in Figure 7.14. The labels on the edges 
denote customer movements from stage to stage and are dependent upon 
the service rate for the stage from which a customer is departing. 

To find the steady-state probabilities for each state in the system, we can 
write flow balance equations. As discussed earlier, the flow balance assump- 
tion states that we can represent the steady-state probabilities of a Markov 
process by writing the equations that balance the flow of customers into and 
out of the states in the network. For each individual state, then, we can 
write a balance equation that equates flow into a state with flow out of a 
state. For the states of Figure 7.14, we can write the following balance equa- 
tions: 

rt(2,0,O)B1 - rt(1,O,1)B3 (7.52) 

71;(1,1,0)(B 1 + B2)= g(2,0,O)l-tl + g(O,l,1)l-t 3 (7.53) 

g ( O , 2 , 0 ) B  2 - g(1 ,1 ,O)lLt  1 (7.54) 

Ir (1, O,1) (B3 +B1)= ~(1,1,0)B2 + rt(O,O,2)gt 3 (7.55) 

rt (O, l,1) (B2 + B3) = rt(O,2,0)ltt2 + 71;(1,0,1)~ 1 (7.56) 

rt(O, 0,2)bt 3 = rt(O,l,1)B2 (7.57) 
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State transition ~ -- ~i,--- ~ .... /I -- ",--- ~ _  
rate diagram for a 

simplecZosed ~x~ 8, 8 a ~ ~ 8 1  8~ a I 
s s,em 

ga 

when: 

( N  1 , N 2 , N 3 ) - Probability of state {N  1, N 2 , N 3 } 

Keeping in mind that the sum of all of the state probabilities must equal 
1, this network has the solution: 

g(N1,N2,N3 )_ K (1/~1)N1 (1/~ 2 )N2 (1/~ 3 )N3 (7.58) 

where K is a normalization constant to ensure that the probabilities sum 
to 1" 

1 
K - (7.59) 2 2 2 

Z Z Z r t ( i , j ,  k) 
i=0 j=0 k=0 

Now, using equations 7.52 through 7.59, and the fact that all probabili- 
ties sum to 1, we can solve the flow balance equations for the individual 
state probabilities. Once we have the state probabilities, we can find the 
expected length at any of the servers, as follows: 

# states 
E[Nq] - ~ iP[N = i at queue k] (7.60) 

i=1 

Because the state probabilities at the queues are not the same as for the 
queuing systems in isolation, we cannot find the expected wait time in a 
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w"  

Figure 7.15 
Arbitrary closed 

system. 

queue by simply multiplying the number of customers by the service time 
at that queue. Instead, we will first calculate the throughput for each queu- 
ing system and then apply Little's result using the throughput as a measure 
of the arrival rate at a particular queue. Therefore, the throughput at a par- 
ticular queue can be found by multiplying the probability of having a cus- 
tomer in that queue (e.g., the server is busy) times the expected service 
rate: 

~ i  -" P(server is busy)g (7.61) 

Now, using Little's result, we can calculate the time spent in each queue 
by a customer at the respective queues: 

Wq - E[Nk ]/~ i (7.62) 

The total round-trip waiting time for a customer in the system can be 
found by summing up all of the queue waiting times. It can also be found 
directly by using Little's result and the average throughput for the system. 
Thus, for two customers, we have: 

Wq ---- 2/~avg (7.63) 

Next, let's consider an arbitrary closed network with M queues and N 
customers. Assume that all servers have exponential service time distribu- 
tions. For the sake of discussion, the network in Figure 7.15 will represent 
our arbitrary network. Let's define a branching probability as the probabil- 
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ity of having any customer follow a particular branch when arriving at a 
branch point. Therefore, let: 

P/j = Probability that a customer leaving server i goes to queue j 

For any server i: 

(7.64) 

~Y, Po -1 (7.65) 
~ j  

The conservation of flow in the system requires that: 

M 

~,j -- E ~ i P / j  (7.66) 
i=1 

Define the relative throughput of a server, i, as: 

M 

B(j)= ~B(i)Pij (7.67) 
i=1 

Since the B terms are relative, we can arbitrarily set one of them equal to 
1 and solve for the others. Once we have all of the terms, the steady-state 
probabilities are given by: 

P(N1,N2,N3,N 4 ..... NM)= K]-[|B(i) "~Ni (7.68) 
7T~ ) = ~ti 

Equation (7.67) can be derived by assuming the conservation of flow for 
a particular state and then by solving the system of equations as we did for 
the previous example. Let's pick a state, S, so that: 

S-(kl,k2,k 3 ..... kM) (7.69) 

and examine the effects of arrivals and departures of customers from queue 
j. Define another state, A, that is identical to S except that it has one more 
customer at queue i and one less customer at queue j than S. Thus, A is a 
neighbor state of S. We are postulating that the rate of entering state S due 
to an arrival at queue j is balanced by the rate of leaving state S due to a 
departure from queue j. Since there may be more than one state A, where 
there is one more customer at queue i and one less at j, we must balance all 
such states against state S. Equating the flows results in: 

M 
E P[~" ]~iPij - P[S]~j (7.70) 
i-1 
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7.2.2 

From equation (7.68): 

P[4]-xl-I B(j) 
j=l ~tj ~i 

(7.71) / p[sl_x H e(j) e(j) 
j=l ~j ~j 

The last term in each of the previous two expressions arises from having 
a customer in service at the respective servers. Substituting these expressions 
into equation (7.70) and simplifying, we get: 

M 
Z B ( i ) P i j  - B ( j )  (7.72) 
i=1 

which is what we postulated in equation (7.67). 

Now that we have equation (7.72), we can generate a set of equations 
that we can solve simultaneously by setting one of the B terms equal to 1. In 
a manner similar to the previous example, we can also find the normaliza- 
tion constant K and therefore solve equation (7.68) for the system's steady- 
state probabilities and also for the expected queue lengths using equation 
(7.60). 

If we consider the closed network over a long period of time, the relative 
throughput terms can be thought of as indicators of the relative number of 
times a customer visits the associated server, also called the visit ratio. This 
interpretation is useful for determining which server is the most utilized, 
also known as bottleneck analysis. Define the relative amount of work done 
by a server, i, as: 

Relative work by the server i -  B (i)/~t i (7.73) 

Since this value is also the relative utilization of that server, the server 
with the highest such ratio is the system bottleneck. 

Open networks 

Next, we will discuss another class of queuing networks: those that contain 
sources and sinks. We will assume that customers may arrive at any queue 
from an outside source according to a Poisson process that is specific for 
that queue. We can think of these arrival processes as all originating from a 
single arrival process with branches, each with an associated branching 



7.2 Networks of queues 225 

Figure 7.16 
Open system mode/. 

probability. Figure 7.16 shows such an arrival process and a hypothetical 
open network with M queues and associated servers. 

We also assume exponential service rates for all servers in the system. In 
this case, the aggregate arrival rate is equivalent to the sum of all of the indi- 
vidual arrival rates discussed earlier. If each individual arrival rate is defined 
as: 

Arrival rate of queue i -  ]¢i 

the aggregate rate is given as: 

(7.74) 

M 
~,-- E]¢i 

i=1 

and the branching probabilities as: 

(7.75) 

as: 

Poi - ~[i / ~  (7.76) 

Customers leaving the system also do so with the probabilities defined 

M 
P/o-  1 - E ~  (7.77) 

j=l 

This definition states that the probability of a job leaving the system is 
equal to the complement of the probability that a job will remain in the 
system. 

Pm 

Arrival process 
with rate ~, P02 

P0m ~ ' ~  
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As with the closed network discussed earlier, we can propose a set of 
throughput terms, denoted B(i) for each queue and server i. Thus: 

M 

B(i)- Z B(j)P O 
j=0 
M (7.78) 

B(i)- ~_~ B(j)Pij + '~i 
j=l 

Since we know the throughput arriving from the outside source, we can 
set: 

B(O) =)~ (7.79) 

and solve for the remaining B terms. In the case of an open network, the B 
terms will represent actual, not relative, throughput at a server, i, because 
they are derived from the aggregate arrival rate. Because of this, we can 
define each server's utilization as: 

vi (7.80) 
After solving for all of the B(i) terms, the steady-state probabilities are 

given as: 

P ( NI, ..... ) -  :l-I 
i=1 g i  (7.81) 
M 

= x H u i N i  
i-1 

where, again, K is a normalization constant. We can sum all of the state 
probabilities and solve for Kto  obtain: 

M 

K-H(I-U ) 
i=1 

Thus, the expression for the steady-state probabilities becomes: 

(7.82) 

M 

P ( NI ' N2 ' N3' N4 ..... NM ) -  n (1- Ui ) Ui Ni 
i=1 

(7.83) 

If we look at equation (7.17), we see that the expression just derived is 
actually the product of terms that can be obtained by treating each queue 
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7 . 3  

and server as an M/M/1 queue system in isolation. This result is known as 
Jackson's theorem, and it states that, although the arrival rate at each server 
in an open system may not be Poisson, we can find the probability distribu- 
tion function for the number of customers in any queue, as if the arrival 
process were Poisson (and, thereby, use equation [7.17] for the M/M/1 sys- 
tem). Jackson's theorem further states that each queue system in the net- 
work behaves as an M/M/1 system, with arrival rate defined by: 

M 

j=l 
(7.84) 

which is simply equation (7.78) recast in more familiar terms. 

It is worthwhile to note that Jackson's theorem applies to open systems 
in which the individual queue systems are M / M / C  i. That is, each server may 
actually be comprised of a different number (i) of identical servers. Thus, 
the steady-state probabilities for each queue system in the network are also 
given by the equation for such a system in isolation with the arrival rate, as 
described in equation (7.84). The full proof of Jackson's theorem is given in 
[8]. 

Estimating parameters and distributions 

Now that we have discussed various aspects of queuing theory, we should 
review some of the ways that we can parameterize the models that we 
choose. In this section, we will discuss various methods that can be used to 
determine whether a certain statistic or distribution appropriately describes 
an observed process. Specifically, we will cover hypothesis testing, estima- 
tors for some statistics, and goodness of fit tests. We will start with hypoth- 
esis testing in general. 

A hypothesis test is a technique used to determine whether or not to 
believe a certain statement about a real-world phenomenon and to give 
some measure as to what degree to believe the statement. A hypothesis is 
usually stated in two parts: the first concerning the statistic or characteristic 
that we are hypothesizing about and the second concerning the value that is 
postulated for the statistic. For example, we may hypothesize that the mean 
value of an observed process is less than 10 or that the observed process is 
Gaussian. The positive statement of a hypothesis is usually called the null 
hypothesis and is denoted as H0. Associated with the null hypothesis is an 
alternative, denoted H1. The idea here is to have the two hypotheses com- 
plement each other so that only one will be selected as probable. The two 
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hypotheses, H0 and H1, form the basis for the hypothesis test methodology 
outlined in the following paragraph. 

A hypothesis test is usually performed in four general steps, which lead 
to the acceptance or rejection of the initial hypothesis. The first step is to 
formulate the null hypothesis H0 and the alternative hypothesis H1. Next, 
decide upon a statistic to test against. The statistic is typically the sample 
mean or variance. Third, a set of outcomes for the test statistic is chosen so 
that the outcome of the test statistic will fall within the set with a specific 
probability, given that H0 is true. That is, if H0 is true, we say that the 
value of the test statistic will fail within the set selected (sometimes called 
the critical region) with probability P (also called the test's level of signifi- 
cance). The idea is to select a critical region so that the probability of the 
test statistic value falling within the region is small, typically between 0.01 
and 0.05. An occurrence of this event, then, indicates that the hypothesis 
H0 is not a good choice and should be rejected. Conversely, we could select 
a large probability, say 0.9, in which case the occurrence of the event indi- 
cates that the null hypothesis should be accepted. The final step in the proc- 
ess is to collect some sample data and to calculate the test statistic. 

The next immediate problem for performing a hypothesis test is to 
define the expressions that describe the sample statistics we are interested in. 
These are commonly referred to as estimators, because they estimate the sta- 
tistic that could be derived from a distribution that exactly models the real 
process. The most commonly used estimators are the sample mean and the 
sample variance. 

In order to calculate the sample statistics, we must first obtain a random 
sample from the experimental population. A random sample is defined here 
as a sequence of observations of the real-world process, where each value 
observed has an equal probability of being selected and where each observa- 
tion is independent of the others in the sample. Thus, a random sample is a 
sequence of random variables that are independent and identically distrib- 
uted. 

For a random sample of size n, where n is the number of samples 
obtained, the sample mean is defined as: 

n 

.~ = _1 ~_ Xi (7.85) 
n i=1 

The sample variance is defined as: 
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$2 _ I _ _ ~ ~ ( X  i _ ~ ) 2  (7.86) 
n - 1  i=1 

The sample standard deviation is defined as it was for the standard devi- 
ation of a distribution and is repeated here as: 

S -  x / ~  (7.87) 

In the above three expressions, the random variable X i represents the ith 
observation in the random sample. 

Now that we can calculate the statistics for a random sample of some 
phenomenon, how can we relate these estimates to the actual statistics of 
the underlying process? For this, we use a theorem known as the sampling 
theorem. It states that, for a random sample, as previously described, with a 
finite mean, the sample mean and expected value are equivalent and the 
sample variance and the variance are also equivalent. That is, the sample sta- 
tistics are said to be consistent, unbiased estimators. The sampling theorem 
also states several other important relations, including the following expres- 
sion relating the variance of the sample mean and the variance of the ran- 
dom variable describing the process. This expression: 

Var[X]-Var[X]/n (7.88) 

states that as the sample size gets larger, the variance of the sample mean 
gets smaller, indicating that it is closer to the true mean of X. 

These estimates lead to still another question: Given that we know (or 
think that we know) the type of distribution that our random sample 
comes from, how do we estimate the parameters of such a distribution 
from the random sample data? There are two widely used methods for 
doing just this: the method of moments and the method of maximum like- 
lihood estimation. 

The method of moments is useful when we think we know the distribu- 
tion of the sample but do not know what the distribution parameters are. 
Suppose the distribution whose parameters we wish to estimate has n 
parameters. In this method, we first find the first n distribution moments, 
as described in Chapter 5. Next, we calculate the first n sample moments 
and equate the results to the moments found earlier. From this we get n 
equations in n unknowns, which can then be solved simultaneously for the 
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desired parameters. We derive the kth sample moment for a sample size of 
m samples as: 

M k - l ~ x / k  (7.89) 
n i=1 

where X i is the i sample point in the random sample. 

In maximum likelihood estimation, we try to pick the distribution 
parameters that maximize the probability of yielding the observed values in 
the random sample. To do this, we first form what is called the likelihood 
function. This consists of the values of the assumed probability distribution 
function at the points observed in the random sample. This function, for a 
continuous random variable whose distribution has only one parameter, is: 

L(O) - f (Xx ) f (x2 ) f (x3 )... f (Xm ) (7.90) 

For a random variable whose distribution has n parameters, we will have 
n equations, similar to equation (7.90). We then find the maximum of each 
equation with respect to each parameter. Finally, the set of n equations in n 
unknowns can be solved for the necessary parameters. 

Now that we have outlined several methods for estimating the statistics 
of a distribution that describes the real-world process, we turn our attention 
to the reliability of our estimates. One measure of this reliability is called 
the confidence interval. A confidence interval is defined as a range of values, 
centered at the estimate of the statistic of interest, where the actual value of 
the statistic will fall within a fixed probability. For example, a 90-percent 
confidence interval for the mean of a particular random variable based upon 
a given sample may be defined as the range of values within a distance, r, of 
the estimated mean. In this case, r is chosen so that the fraction of times 
that an actual mean lands within the interval is 90 percent. The general pro- 
cedure for defining a confidence interval requires the construction of a 
known distribution, say C, from the estimates of the statistic being esti- 
mated. Next, we pick an interval so that: 

P(a<C<b)=z (7.91) 

where z is the desired confidence level. Finally, we evaluate C using the 
value X i so that the relationship: 

a < C(Xi)<b (7.92) 
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is maintained. We can alternatively solve C for the points X a and X b, where 
C ( X  a) = a and C ( X  b) = b. These are the end points of the 100-percent con- 
fidence interval. 

This procedure assumes that we know the distribution of C before we 
find the confidence interval. If this is not the case, and the sample size is 
large, we can assume that the sample distribution is normal and can obtain 
a reliable confidence interval for the value of the mean. In this case, we first 
form the statistic: 

T -  (X ' -  ltt)/(c~x/-n) (7.93) 

Since X is assumed normal, T in this case is also normal with a mean of 
0 and a standard deviation of 1. Again, we define a percent confidence 
interval and determine a and b so that: 

P ( a < T < b ) = z  

The desired confidence interval for the mean is then given by: 

(7.94) 

( X - b ) ¢s/ q~n < bt < ( X + a ) cs/ x~n (7.95) 

Confidence intervals for the variance when the population distribution is 
unknown can be found using the previously described method, although the 
results will be poor if the actual population distribution is far from normal. 

Now that we have explored several techniques for estimating the parame- 
ters of distributions, we will look at some methods for finding a distribution 
that fits the sampled data. Typically, we will have found the sample mean 
and standard deviation and now want to find a random variable that ade- 
quately represents the sample population. The tests employed here are usu- 
ally called goodness of fit tests. We will discuss two tests, the chi-square test 
and the Kolmogorov-Smirnov test. These tests fall under the general head- 
ing of hypothesis testing, and, therefore, we use the same hypothesis-form- 
ing techniques described earlier. In both tests, we start with a null hypothesis 
that the population has a certain distribution, and then we obtain a statistic 
that indicates whether we should accept the null hypothesis. 

In the chi-square test, we determine whether the distribution of the null 
hypothesis appropriately fits the population by comparing the categories of 
the collected sample value to what can be generated by the assumed distri- 
bution. The premise is that we can find k bins, B 1 . . . . .  B k, so that each 
value in the random sample falls into one, and only one, bin. After finding 
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an appropriate set of bins, we partition the samples into them and record 
the number of samples that land in each. Next, we take a corresponding 
number of samples from the hypothesized population distribution and allo- 
cate them to the same bins. If any of the second set of samples (those taken 
from the distribution) fail to fall in only one bin, we have not selected an 
appropriate set of bins and must choose another set. For whatever type of 
distribution that we are testing against, the appropriate distribution param- 
eters can be found using one of the estimation techniques described earlier. 
Continuing with the test, we now calculate the following statistic: 

K (NSi _gDi )  2 
C -  ~[~ (7.96) 

i=1 NDi 
where NS i denotes the number of elements in bin i due to the random sam- 
ple, and ND i is the number in bin i due to the hypothesized distribution. 
The basis of this test is that the statistic of equation (7.96) has a chi-square 
distribution. The degree of freedom of the chi-square distribution is defined 
as one less than the number of sample bins minus the number of parameters 
in the hypothesized distribution: 

M = k -  1-  number of parameters (7.97) 

Next, we decide on the level of significance that we wish to test for. 
Using the following expression, we can calculate the probability density 
function for a chi-square distribution with n degrees of freedom: 

fx (x)-fl 1/((n/2)-  1)')(2-n/2 )(x(n/2)-I )(e_(x/2)) othel~sef°r x > 0 (7.98) 

The final step is to find the value ofXfor which the integral with respect 
to x of equation (7.98), evaluated from x to infinity, is equal to the desired 
level of significance. The final test states that if the value of x just found is 
greater or equal to the chi-square statistic calculated in equation (7.96), the 
assumed distribution is not a good fit at the desired level of significance. 
That is, we reject the null hypothesis if: 

X>_C (7.99) 

An alternative approach for the chi-square test is to form the value C - ~ ,  
where ¢ is some small value. We then use the result to find the probability 
that x is greater than C -  ~. The resultant probability gives us an indication 
as to the approximate level or significance that we may accept the null 
hypothesis. Several references give tables for the critical values of the chi- 
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7 . 4  

square distribution. These tables may be used in place of calculating the dis- 
tribution values. 

Another so-called goodness of fit test is the Kolmogorov-Smirnov test. 
The test is based upon the magnitude ordering of the sample, the calcula- 
tion of the maximum difference between the sample points and the 
assumed distribution, and a determination of the level of fit of the assumed 
distribution. A formal description of this test appears in a number of statis- 
tics texts. Here we will describe a more intuitive approach, which is some- 
what easier to experiment with. 

As mentioned earlier, the first step of this test is to arrange the sample 
values in ascending order according to magnitude. For each point x i in the 
arranged sample, we find the fraction, ~, of the number of total samples 
that is less in magnitude than the given value. Next, for the assumed distri- 
bution, we find the value, K i, that will yield the same fraction, ]~, for a given 
number of samples. Finally, we plot K i versus x i for all i. The resulting plot 
will indicate a good fit if the data form approximately a straight line with a 
slope of unity. If the fit is a straight line with a slope other than unity, the 
assumed distribution parameters may be tuned to achieve the desired 
results. Otherwise, we should try another assumed distribution. 

Computat ional  methods for queuing 
ne twork  solutions 

In Chapters 5 and 6 and the previous sections of this chapter, we intro- 
duced probability theory and analysis techniques for performing classical 
queuing system analysis. Those analyses, however, tend to be complex even 
for simple systems. In an effort to rectify this situation, three alternative 
analysis methods have emerged. 

The first method, from Buzen [9], gives a technique for finding the nor- 
malization constant that is required for the solution of certain product form 
networks. The method does not require the solution of the normalization 
summation described in Chapter 5. Instead, it uses an iterative solution, 
which is simpler to implement. 

The next method, from Buzen and Denning [10], introduced a method- 
ology for assessing the match of a given assumption for the system under 
analysis. In addition, they defined the performance quantities of interest in 
terms of their operational relationships in the system under study. For that 
reason, this kind of analysis is known as operational analysis. 
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7 . 4 . 1  

Figure 7.17 
Central server 

model. 

The third analysis method, from Reiser and Lavenberg [11], attempts to 
simplify the analysis of queuing networks. By using the mean waiting time 
and mean queue size, in conjunction with Little's result, the solution of a 
system of queues can asymptotically approach the exact solution, with sim- 
pler computational requirements. This type of analysis is called mean value 
analysis. 

In this section, we will discuss these methods and models. Some of the 
results are specific to the type of model used, while others are more general. 
The specific model cases, however, can be used to approximate a given sys- 
tem or portion of a system and to obtain an initial feeling for the system's 
actual behavior. 

C e n t r a l  s e r v e r  m o d e l  

The central server model, shown in Figure 7.17, was originally proposed as 
a model for jobs in a multiprogramming computer. It is a closed network 
and we assume that a constant (K) number of jobs are always in process. In 
the original model, programs are serviced by the CPU (server 1) and then 
are routed to one of M -  1 I/O devices (servers 2 through M). After receiv- 
ing I/O service, the program again queues for CPU time. If a program com- 
pletes execution, it is rerouted into the CPU queue to start another job, 
thereby keeping the number of jobs in the system equal to K. This can be 

9 2 

P1 = ~  

Server 1 P4 ~F~  

Server 2 

Server 3 

Server 4 

Server m 
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thought of as a system in which there is always a job waiting to enter the 
system at the CPU queue, but it will not do so until a job completes. The 
actual jobs in the system, therefore, may vary over time, but the number in 
circulation at any given time remains constant. 

The central server model can be adapted to represent other systems 
besides a CPU and its associated I/O devices. For instance, we could choose 
server 1 to represent a multichannel DMA controller and servers 2 through 
M to represent the output channels. Or, we could adjust the branching 
probabilities to represent a system in which the jobs remain constant and 
never complete (i.e., P1 = 0). This could be useful for a dedicated I/O 
server. Alternatively, we could choose one of the servers 2 through M to rep- 
resent an idle period for a job or I/O channel. 

Although we may be able to formulate a central server model that some- 
what reflects the actual situation, the match may not be precise. The benefit 
of this model, however, is the computational simplicity of many of its 
important performance parameters. Next, we will develop the computa- 
tional model for this queuing network. 

In the central server model, the servers are assumed to have exponential 
service time distributions. As shown in Figure 7.17, the exit from the cen- 
tral server has several branches, each with an associated branching probabil- 
ity, Pi. There are a total of K customers (jobs) in the system at any time. Let 
us define the state of the system: 

s -  (kl,k  . . . . .  

where k i denotes the number of customers in queue i. Thus: 

(7.100) 

M 
~_ k i - K (7.101) 
i=1 

If we define B(i) as the probability of going to server i after service at 
server 1, and we let B(1) = 1, then: 

B i = P/, for i = 2, 3, . . . .  M (7.102) 

Using the same techniques described previously for closed queuing net- 
works, we can obtain the state probabilities as: 

P ( k l , k 2 , . . . , k M ) -  norm H P/~l 
i=1 ~i 

(7.103) 
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This equation for the state probabilities is called product form, and it 
can be solved by finding the normalization constant, norm, as outlined in 
the earlier sections of this chapter. The described methods, however, require 
the solution of M simultaneous equations. An alternative method with 
fewer computations is as follows: 

Let: 

x'~ P(kl,k2...kM) 1 G(k) = L = ~  (7.104) 
all states norm norm 

Pi~l 
G ( k ) =  E n ~i 

all states i=1 
(7.105) 

Let the states for the summation include all states where equation 
(7.101) holds. Also, we stipulate that k i >_ O. Define another function 
g(k, m) where there are m queues in the system instead of M. The following, 
then, is true: 

g(k,m)=G(k)  (7.106) 

where k is the total number of customers in the system with M queues. 
Thus, we can further define g(k, m) as: 

Pigl (7.107) g(k,m)- E n ~i 
all states i-1 

We can break up the right-hand summation as: 

all states i=l }.tl all states i=l gti (7.108) 
with km>0 with km=0 

For the first summation in equation (7.108), if we always have at least 
one customer in queue m, we can think of the system as having k -  1 cus- 
tomers circulating through m queues. We must also remove the product 
term that relates to customers in queue m. Similarly, in the second summa- 
tion, if queue m is always empty, then we can think of the system as having 
m -  1 queues and k customers. Thus, equation (7.108) becomes: 
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g(k,m) mPm'l E ~=11~1 ki'b 
~m aU states 

with km>0 

ta~t~ fi IPi'll ki 
all s with i=1 ~ i  
m-1 queues 

(7.109) 

The two summations can be rewritten, using equations (7.105) and 
(7.106), as: 

g(k,m)- Pm~l g(k-l,m)+ g(k,m-1) (7.110) 
gtm 

For k = 0, and for m = 1, equation (7.110) becomes: 

g(O,m) = 1 for m -  1,2 . . . . .  M (7.111) 

g (k, 1 ) -  1 for k - 0,1 . . . .  , K  (7.112) 

We now have a set of initial conditions equations ([7.111] and [7.112]) 
and a recursive relationship, equation (7.110), for calculating the values up 
to g(K,M) = G(K). Then, we can use equations (7.103) and (7.104) to cal- 
culate the state probabilities. The computat ion is as follows: 

Suppose we have a network similar to that shown in Figure 7.17, where 

M = 3, let 1 = 0.9, g2 = 0.5, g3 = 0.9,  Pl  = 0.7, P2 = 0.2, and P3 = 0.1. Fur- 
thermore, suppose that there are k = 2 customers in the system. From equa- 
tion (7.111), we know that: 

g(0,1) = 1 

g(0,2) = 1 

g(0,3) = 1 

and from equation (7.112) we know that: 

g(0,1) = 1 

g(1,1) = 1 

g(2,1) = 1 

We can arrange these values in a grid, as shown in Figure 7.18. The 
computat ion proceeds one row at a time and ends up with a value for g(2,3) 
= G(2). 
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k 

Figure 7.18 
G(k) grid 

calculation. Number of 
customers (k) 

Number of queues (m) 

1 2 3 

1.36 

1.5 

1.46 

1.65 

,,,,, 

g(2,3) = G(2) 

For example, to calculate g(1,2), we would proceed as follows: 

g ( 1 , 2 ) -  P2~l g ( 0 , 2 ) +  g(1,1) 
~2 

g ( 1 , 2 ) _  (0"2)( 0"9 ) 
(0.5) (1) + (1) 

g(1,2) = 1.36 

Thus, for Figure 7.18, the normalization constant is equal to 0.6. With 
two customers, we can now calculate the state probabilities using equation 
(7.103). 

Buzen [9] gives several expressions for performance measures that are 
based upon this general computational structure. One of these measures is 
the device utilization, U i, for server i. Normally, we define the utilization of 
a device as the sum of the state probabilities where there is at least one cus- 
tomer at server i. 

< -  X 
All states 
with ki>o 

(7.113) 

Ui-llG(k) E ~ (Pj"l)kj 
All states j=l ~ j  (7.114) 
with ki >0 
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Using similar reasoning, as we did for equation (7.109), we can treat 
equation (7.114) as a system with one less customer, multiplied by the fac- 
tor that accounts for always having a customer at queue i. Thus, we get: 

g i  m 

m 
1 Pi tl E i-i(Pj tl) kj 

G(k) ~i Allstates j= l  ~ j  
with k-1 
customers 

(7.115) 

SO" 

Ui = P i l l  G ( K - 1 )  
~i G ( K )  (7.116) 

We have already calculated the values for G(K) and G(K- 1), as in Fig- 
ure 7.18, so calculating the utilization of a device is straightforward. From 
this, we can find the throughput of device i as: 

G ( K - 1 )  
~i -- Wi~i - P / ~ l  (7.117) a(x) 
Looking back to equation (7.114), we can extend equation (7.116) to 

find the probability that the queue length at server i will be greater or equal 
to some value n: 

P(N i > n)= l/G(k) Z 

so that: 

All states 
with k i >n 
customers 

/ (7.118) 

P(Ni>n)=[Pi~lln~i G(K-n)G(K) (7.119) 

Applying equation (7.118) to the case where the queue length is n + 1, 
we can obtain the probability of n customers in queue i. 

P(Ni _n)_l(pil.tl ~t i G(K_n) l_iipil.tl ~t i G(K-n-1) (7.120) 
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n, l ( I ~i G(K) G(K- n)- ~i G(K- n- 1) (7.121) 

Now that we have derived an expression for the probability of having n 
customers in the queue, we can use equation (5.66) to obtain an expression 
for expected queue length: 

K 
E[Ni]-~_~jP forNi - j  

j=l 

_ ~ j  ~.~1 1 O(K-j)-  ~~ a(K-n-1)  j=l ~ gi G(K) ~t i 
.-1....~IPi~I'IIG(K_I)_I~i~'IIG(K_2))I 

G(K) iv gi gi 
/(Pill )2 ( ~i Pill )/ +2 ~, O(K-2)- ~i O(K-3) 

+...+ gl(Pi~tl ]k[G(o) pt.~l G(_l)) }-ti 

(7.122) 

We can now expand and collect terms, keeping in mind that we have 
defined G(K< 0) - 0, to get: 

1 ~[~ / Pa.[Ltl i E[Ni]- G(K~-j~=I[~ i G(K-j)  (7.123) 

The expected delay through a queue, then, can be found from Little's 
result, using the throughput and expected queue length values just found: 

E [W/] - E[N i ]/ki (7.124) 

These techniques allow the efficient computation of the important sta- 
tistics for the model shown in Figure 7.17. Next, we will discuss another, 
slightly more general computational method: mean value analysis. 
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7.4 .2  Mean value analysis 

The analyses described so far have all calculated, at one point or another, 
expressions for queue length distributions or state probabilities. This is per- 
fectly acceptable for rather simple systems involving few customers and 
queuing systems. In the following discussion, we will explore an iterative 
method for finding some of the performance measures of interest without 
calculating the aforementioned distributions. The drawback to this is that 
the analysis refers only to the mean values of certain performance measures. 

The techniques we are interested in here apply to closed queuing net- 
works that have a product form solution for the state probabilities. The 
solutions are based on the assumption that a customer, arriving at any 
queue in a closed system that is at steady state, experiences a wait in the 
queue that is equivalent to the steady-state wait time for that queue with the 
arriving customer removed. Thus, the behavior of a network with one more 
customer is based upon the behavior before its arrival. This assumption 
leads to an iterative algorithm where the steady-state performance charac- 
teristics for the system with n + 1 customers are derived from the character- 
istics with n customers, which are derived from a system with n -  1 
customers, and so on down to one customer. 

The general algorithm, then, allows us to compute average values for 
queue length, throughput, server utilization, and wait time by starting with 
an expression for one customer in the system and working up to any num- 
ber of customers. 

The main theorem behind mean value analysis states that the mean wait 
time for customers at any server in the network is related to the solution of 
the same network with one fewer customers. In conjunction with the wait 
time, we apply Little's result to obtain the total network throughput and 
then apply it again to each individual server to get the average queue length 
at each server. 

The expression for wait time related to a network with one fewer cus- 
tomers is given as: 

W(k) =l/g [1 + Nq ( k - 1 ) ]  (7.125) 

where gt is the mean service time required by a customer at the server. The 
quantities W(k) and Nq(k- 1) denote the mean wait time for a system with 
k customers at the queue and the mean number of customers in the queue 
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with k -  1 customers in the system, respectively. This expression holds for 
systems with first-come first-serve queuing disciplines with single, constant 
rate servers at each queue. 

Next, we can apply Little's result to find the mean throughput for the 
network: 

k ( k ) -  k/avg, wait t ime-  k/EQ~iW i (k) (7.126) 
/ alli 

where O is the visit ratio for the server considering all other servers. The 
visit ratio values will be discussed later in this chapter. 

Finally, we can use Little's result on the servers to compare the average 
queue lengths: 

Nq (k)- arrival rate × average wait tim 
(7.127) 

Nq (k ) - (~ i)~ (k ) Wi (k ) 

Now we have a new expression for mean queue length that we can use in 
equation (7.125) to start another iteration. 

The general procedure, then, is to start with an empty system (K= 0) 
and iterate equations (7.125) through (7.127) until we reach the desired 
value of K. For one iteration, we calculate the values for each queue system 
in the network before passing on to the next equation. Figure 7.19 shows a 
simple network to illustrate the technique. In the example, if we start with 0 
customers, we obtain the following quantities from equations (7.125) 
through (7.127). In the following expressions, the subscripts denote the 
queue/server pair that the measure is associated with. The general iteration 
algorithm is as follows: 

The first iteration is: 

W 1 (1) -  1/~ 1 (1 + 0 ) -  1/~ 1 
W 2 (1 ) -  1/B2 (1 + 0 ) -  1/B 2 

W 3 (1 ) -  1/B3 (1 + 0 ) -  1/B3 

// o2 o,) )~(1)- Q~I+ + 
gl g2 g3 

N1(1) - e1)~(1)W1(1 ) 

N2 (1) - O2~ (1)R72 (1) 

N3 (1) - O3)~ (1)W3 (1) 

(7.128) 
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Figure 7.19 
Network for mean 

variable analysis. 

The second iteration is: 

W 1 ( 2 ) -  1/~ 1 (1 + N 1 (1)) 

W 2 ( 2 ) -  1/~ 2 (1 + N 2 (1)) 

W 3 ( 2 ) -  1/bt 3 (1 + N 3 (1)) 

~, (2) - 1/(O1W1 (2) + O2W2 (2) + O3W3 (2)) (7.129) 

N1 (2) - O1~ (2)W1(2) 

N2 (2) = O2~(2)W2 (2) 

N3 (2) - O3~,(2)W3 (2) 

The visit ratios, O i, are obtained as follows. Pick a server and set its visit 
ratio value O i to 1. Next, formulate the equations that contribute to the 
visit ratio for that queue by looking at all queues that feed it. Equate the 
feeder visit ratios, multiplied by the respective branching probabilities, to 
the next in line (QSi). Continue this process for each queue system until we 
have m relationships in m unknowns, where m is the number of queuing 
systems. We can then solve this system of equations to obtain the desired 
visit ratios. Note that the visit ratios are relative quantities. For Figure 7.19, 
the visit ratios would be calculated as follows: 

0 1 = 1  

Q~I =P2Q~2 
Q~2 =Q~I +Q~3 (7.130) 

Q~3 -- P2Q~2 

The algorithm is iterated until we reach the desired network population, 
where we can calculate the mean performance measures for the network. 

Server 1 
infinite server  

Pa 

1 

Server 2 Server 3 
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7.4.3 Operational analysis 

The methods for performing queuing analysis given in the beginning of the 
chapter provide close approximations to the actual systems they represent. It 
is contended, however, that the assumption that the various distributions 
and relationships that we use to represent their real-world counterparts can- 
not be proven to be absolutely accurate. Furthermore, the stochastic models 
studied earlier yield relationships that cannot be absolutely proven to be 
valid during any observation period. 

Operational analysis, on the other hand, is based upon the observation of 
basic, measurable quantities that can be combined into operational relation- 
ships. Furthermore, the observation period for which the system is analyzed 
is finite. The assumption is that the basic quantities, called operational vari- 
ables, are measurable (at least in theory). The basic operational variables that 
are commonly found in operational analysis are as follows: 

T= the observation period length 

A = the number of arrivals during the observation period 

B = the server busy time during the observation period 

C = the number of job completions during the observation period 

In addition to the measurable quantities, there are several fundamental 
relationships that define other useful quantities. These are as follows: 

k = arrival rate = AI T 
X= completion rate = C/T 
U= server utilization = B~ T 
S -  mean service time per job = B/C 
Several operational identities are also defined that hold under certain 

operational assumptions. The first, which relates server utilization to the 
completion rate and mean service time, is derived as follows: 

X.S - ( C / T ) ( B / C ) -  B/T (7.131) 

X.S =U 
This relationship holds in all cases and is thus referred to as an opera- 

tional law. 

If we assume that the system is in steady-state equilibrium, we can state 
that the number of arrivals and the number of completions during a given 
observation period will be equal (i.e., the flow balance assumption). This 
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statement may not always be true, but it can be measured and verified for 
any observation period of interest. Thus, it is called an operational theorem. 
From this, we can derive another relationship, which holds when the system 
is in flow balance: 

A = C  

A / T = C / T  

~ , = X  (7.132) 

~S = XS 

~,S = U 

One advantageous property of operational analysis is that the technique 
can be used for open and closed networks. The one condition, however, 
that must be met is that the network under consideration must be what is 
called operationally connected. That is, no server may be idle during the 
entire observation period. 

For a closed system, we know the number of jobs in circulation in the 
network and we find the system throughput at a particular point in the net- 
work. Other quantities can then be derived using that throughput as a start- 
ing point. In an open system, the throughput at the exit from the network is 
assumed to be known, and we use this to find the number of customers at 
the queues. 

Let's look now at some basic operational quantities. Suppose that we 
have an arbitrary network that is observed over a period of T. For each 
queue system in the network, we observe and collect the following data: 

A i = number of arrivals at queuing system i 

B i = busy time of server i 

C O. = number of times a job goes directly from server i to server j's 
queue 

Jobs that arrive from an external source or that leave to an external sink 
are denoted by Aoi and Cio. The number of arrivals to and departures from 
the system are given by: 

m 

Number of arrivals A0 - ~[~A ~ 
j=l 

(7.133) 

m 

Number of departures C o - ~ Ci, , 
i=1  

(7.134) 
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and the total number of completions at server i is given as" 

m 

C i - E C i j  (7.135) 
j=l 

From the basic measured quantities defined previously, several other per- 
formance quantities can be derived, as follows: 

Utilization of server i: 

Mean service time of server i: 

Output rate of server i: 

Routing frequency from server i to j: 

wi= &/T 
S i = B i / C  i 

Xi = C i / T  

q i; = Co" / Ci 
We can represent the job completion rate of such a system as: 

J 0 -EXiqio (7.136) 
i=1 

and the utilization of any server i as: 

U i = X i S  i (7.137) 

If we think of the wait time at a particular server i at each increment of 
time during the observation period as the sum of the service times of the 
customers ahead of the new arrival, the total wait time accumulated for all 
jobs in the system over the period is: 

T 

w/-.lx, (,)d, 
0 

The average queue length at the server in question is given as: 

(7.138) 

_IV,. - W i l T  

and the response time of the server system is given as: 

(7.139) 

R i -WilC i (7.140) 

Combining equations (7.139) and (7.140), we obtain the operational 
equivalent of Little's result: 

N i -(Wi/C i ) ( C i / T  ) - R i X  i (7.141) 

If the system under study is in steady state, so that we have flow balance, 
we assume that the arrival rate to a queuing system is equal to the comple- 
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tion rate of that same system. We can also derive the server throughput rate 
for any server, j, as: 

m 

cj -£c/j 
i=0 

Cj - £(CiCo. ) /C i (7.142) 
i=0 

m 

cj -Zciqij 
i=0 

We can obtain the same expression as stated in equation (7.136), but 
generalized for any server it is- 

m 

X j - ~ _ X i q  0 • f o r j -  0,1 . . . . .  m (7.143) 
i=0 

The relationship derived yields a unique solution if applied to an open 
system, because the input throughput, X, is known. In a closed system, 
equation (7.143) will yield relative throughput rates, because we do not 
know the absolute value of X 0. 

Buzen [9] defines the visit ratio V i as the number of times a particular 
server, i, will be visited, relative to a given number of inputs. We can express 
this quantity as the ratio of the throughput at server i to the total input 
throughput: 

V i - X i / X  o (7.144) 

If we assume that the flow of jobs in the network is balanced, we can set 
V 0 = 1 (since all jobs pass through the network input) and solve for all of 
the other visit ratios using the following expression: 

m 

V s. -qoj~_Viqij (7.145) 
i=0 

Also, knowing the throughput of any server in the network allows us to 
find the throughput of any other server through a combination of equations 
(7.144) and (7.145). 

Now let's look at the total time a job remains in the system as a function 
of each server's throughput and average queue length. The total wait time 
for any job arriving at any server depends on how many jobs are ahead of 
the new one in the queue and on the rate that jobs get completed by the 
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server. At each server, we can use Little's result equation (7.141) in combi- 
nation with equation (7.144) to obtain: 

N i / X  o = ViR i (7.146) 

If we then sum equation (7.146) over all servers in the network, we 
obtain a general expression that can be interpreted as Little's result applied 
to the total system: 

m m 

 x lXo (7.147) 
i=1 i=1 

where the number of jobs in the system at any time is simply the sum of all 
jobs at the network's servers: 

m 

N - E N  i (7.148) 
i=0 

So we have: 

m 

N / X o  - E V i R i  (7.149) 
i=1 

The left-hand side of equation (7.149) can be thought of as an applica- 
tion of Little's result to the system as a whole; thus, we define the system 
response time as: 

m 

R - N I X  o - ~_~ViR i (7.150) 
i=1 

The final topic that we will cover under operational analysis is bottle- 
neck analysis in a closed system. In every network, one of the queuing sys- 
tems will eventually be unable to keep up with increased service demands as 
the number of jobs in the network increases. This particular server will sub- 
sequently determine the maximum throughput rate of the network as a 
whole. A device is considered to be saturated (e.g., unable to process jobs 
any faster) if its utilization becomes one. In this case, the throughput will be 
inversely proportional to the service time, since there will always be a job in 
service. 

X o -1IS  o (7.151) 

If we combine equations (7.137) and (7.144), we can express the relative 
utilization of any two servers in the network as follows" 
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Ui lU j - ViSiI~.Sj (7.152) 

Note that the ratios of the server utilizations do not depend upon the 
throughput of either server; the ratio remains constant independent of sys- 
tem load. Thus, the device with the largest value of ViS i will become the 
networks bottleneck as load increases. 

It is possible, then, to find the maximum possible system throughput 
when the bottleneck is in saturation. Since, for bottleneck server b, 
throughput is equal to the inverse of the service time, we can combine equa- 
tions (7.144) and (7.151) to obtain the maximum system throughput: 

Vb - Xb /X°  -1/X°Sb (7.153) 
Xo = l/VbSb 

The network response time, in the saturation case, is given by equation 
(7.150) as: 

R= N / X  o = N VbS~, (7.154) 

and is thus limited by the bottleneck server. 

Buzen and Denning [10] extend the operational results discussed previ- 
ously to systems with load-dependent behavior. Also, an earlier proposal for 
operational analysis of queuing networks can be found in [12]. 

Summary 
The areas covered in this chapter, from stochastic processes to queuing the- 
ory to basic estimation, span a wide range of topics, each with a wealth of 
specialities and techniques. The treatment given herein, although brief, is 
intended to illustrate the usefulness of statistical analysis and queuing the- 
ory and to provide a basis for understanding some of the techniques and 
methods used in simulation. More detailed discussions of the issues associ- 
ated with basic probability and statistics are found in many basic probabil- 
ity texts, notably [4, 5] and, for a queuing theory slant, in reference [3]. 
Queuing theory topics are discussed in reference [3], and also in references 
[2, 6, 7, 13]. Estimation, as related to queuing systems, is treated in refer- 
ences [2, 3]. The application of the techniques discussed in this chapter 
enables one to calculate, under certain assumptions and conditions, many 
of the interesting performance quantities that can be found with traditional 
queuing theory analysis. The results obtained, however, are often more 
intuitive and can be more easily related to the actual system for which they 
are intended. 
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8 
Simulation Analysis 

Simulation is the realization of a model for a system in computer executable 
form. That is, the model of the real-world system has been translated into a 
computer simulation language. The computer realization provides a vehicle 
to conduct experiments with the model in order to gain insight into the 
behavior and makeup of the system or to evaluate alternatives. Simulations, 
to be effective, require a precise formulation of the system to be studied, 
correct translation of this formulation into a computer program, and inter- 
pretation of the results. 

Simulation is usually undertaken because the complexity of most com- 
puter systems defies use of simpler mathematical means for realistic 
performance studies. This complexity may occur from inherent stochastic 
processes in the system, complex interactions of elements that lack mathe- 
matical formulations, or the sheer intractability of mathematical relation- 
ships that result from the system's equations and constraints. Because of 
these constraints and other reasons, simulation is often the tool for evalua- 
tion. Simulation provides many potential benefits to the modeler. It makes 
it possible to experiment and study the myriad complex internal interac- 
tions of a particular system, with the complexity left up to the modeler. 

Simulation allows for the sensitivity analysis of the system by providing a 
means to alter the model and observe the effects it has on the system's 
behavior. Through simulation we can often gain a better understanding of 
the real system. This is because of the detail of the model and the modeler's 
need to independently understand the computer system in order to faith- 
fully construct a simulation of it. The process of learning about the system 
in order to simulate it will often lead to suggestions for change and 
improvements. The simulation then provides a means to test these hypoth- 
eses. Simulation often leads to a better understanding of the importance of 
various elements of a system and how they interact with each other. It pro- 
vides a laboratory environment in which we can study and analyze many 
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alternatives and their impact well before a real system even exists or, if one 
exists, without disturbing or perturbing it. Simulation enables the modeler 
to study dynamic systems in real, compressed, or expanded time, providing 
a means to examine details of situations and processes that otherwise could 
not be performed. Finally, it provides a means to study the effects on an 
existing system of adding new components, services, and so on without test- 
ing them in the system. This provides a means to discover bottlenecks and 
other problems before we actually expend time and capital to perform the 
changes. 

Simulation has been used for a wide variety of purposes, as can be seen 
from the diversity of topics covered at annual simulation symposiums. Sim- 
ulation easily lends itself to many fields, including business, economics, 
marketing, education, politics, social sciences, behavioral sciences, natural 
sciences, international relations, transportation, war gaming, law enforce- 
ment, urban studies, global systems, space systems, computer design and 
operations, and myriad others. 

Up to this point we have used "system" to describe the intended mod- 
eled entity. In the context of simulation, it is used to designate a collection 
of objects with a well-defined set of interactions between them. A bank 
teller interacts with the line of customers, and the job the teller does may be 
considered a system in this context, with the customers and tellers forming 
the objects and the functions performed by each (deposit, withdrawal) as 
the set of interactions. 

Systems by nature are typically described as being continuous or dis- 
crete, where these terms imply the behavior of the variables associated with 
the system. They provide us, the modelers, with a context in which to place 
the model and on which to build. In both cases, the typical relation of vari- 
ables is built around time. In the case of the discrete model, time is assumed 
to step forward in fixed intervals determined by the events of occurrence 
versus some formulation, and in the continuous model, the variables change 
continually as time ticks forward. For example, with the bank scenario, if 
the variable of interest is the number of customers waiting for service, we 
have a dependent discrete "counting" sequence. On the other hand, if we 
are looking at a drive-up bank teller and are interested in the remaining fuel 
in each vehicle and the average, we could model the gasoline consumption 
as a continuous variable dependent on the time in line until exiting. 

Systems can possess both discrete and continuous variables and still be 
modeled. In reality, this is frequently the case. Another consideration in 
defining a system is the nature of its processes. Processes, whether they are 
discrete or continuous, can have another feature, that of being deterministic 
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or stochastic. A deterministic system is where, given an input x and initial 
conditions i, you will always derive the same output: y = f (x ,  i). That is, if 
we were to perform the same process an infinite number of times, with the 
same inputs and same initial state of the process, we would always realize 
the same result. 

On the other hand, if the system were stochastic, this would not hold. 
For the same system with input held at Xand initial state held at I, we could 
have the output Y take on one of many possible outputs. This is based on 
the random nature of stochastic processes. That is, they will be randomly 
distributed over the possible outcomes. For example, if the bank teller sys- 
tem is described as a discrete system, we are assuming that the service time 
of the server is exactly the same and the arrival rate of customers is fixed and 
nonvarying. However, if the same system is given some reality, we all know 
that service is random, based on the job the tellers must perform and how 
they perform it. Likewise customers do not arrive in perfect order; they 
arrive randomly. In both cases the model will give vastly different results. 

Simulat ion process 

The use of a digital computer to perform modeling and run experiments 
has been a popular technique for quite some time. In this environment sim- 
ulation can make systematic studies of problems that cannot be studied by 
other techniques. The simulation model describes the system in terms of 
the elements of interest and their interrelationships. Once completed, it 
provides a laboratory in which to carry out many experiments on these ele- 
ments and interactions. 

Simulation programs, as with generic modeling, require discrete phases 
to be performed in order to realize their full potential. They are as follows: 

1. Determine that the problem requires simulation. 

2. Formulate a model to solve the problem. 

Formulate a simulation model of the problem. 

Implement the model in a suitable language. 

Design simulation experiments. 

Validate the model. 

Perform experiments. 

The typical simulation model project will spend most of its time in 
phases 2, 3, and 4, because of the complexities associated with formulating 

, 

4. 

. 

6. 

7 "  
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the model and the conversion to simulation format and implementation in 
a language. Model formulation deals with the definition of critical elements 
of the real-world system and their interactions. Once these critical elements 
have been identified and defined (mathematically, behaviorally, function- 
ally) and their interactions (cause and effect, predecessor and successor, 
dependencies and nondependencies, data flows, and control flow) are 
defined in terms of their essence, simulation model development flows into 
and along with systems model definition. That is, as we develop a system 
model we can often directly define the simulation model structure. 

An important aspect of this model development is the selection of a 
proper level of simulation, which is directly proportional to the intended 
purpose of the performance evaluation, the degree of understanding of the 
system, its environment, and the output statistics required. On one 
extreme, for example, we could model our bank teller system down to the 
level of modeling all his or her actions. Or, on the other hand, we could 
model the teller service as strictly a gross estimate of time to perform service 
regardless of the type of service. The level to choose would be dependent on 
what is to be examined. In the first example, we may wish to isolate the 
most time-consuming aspect(s) of their functions so that we could develop 
ways to improve them. At the second level possibly all we wish to determine 
is based on the customer load, the average teller service time, and the opti- 
mal number of tellers to have on duty and when. 

The intent of the performance measure drives us directly to a simula- 
tion level of detail, which typically falls somewhere in between the two 
extremes: too low or too high to be useful. In most cases, however, we as 
modelers do not or cannot always foresee how the level of detail of all com- 
ponents can influence the model's ultimate usefulness. A solution typically 
used to cope with such uncertainties is to construct the model in a modu- 
lar fashion, allowing each component to migrate to the level consistent 
with its intent and overall impact on the simulation and system. What this 
typically drives us to is top-down model development, with each layer 
being refined as necessary. 

Simulations, beyond their structure (elements and interactions), require 
data input and data extraction to make them useful. The most usual simula- 
tions are either self-driven or trace-driven. In self-driven simulations the 
model itself (i.e., the program) has drivers embedded in it to provide the 
needed data to stimulate the simulation. These data are typically derived by 
various analytical distributions and linked with a random number genera- 
tor. In the example of the bank teller system, we have been using a self- 
driven simulation. We may use a Poisson arrival distribution to describe the 
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random nature of customers arriving to the system. Such a use is indicative 
of some artificially generated stream-to-model system inputs. 

In the other case, when we use trace-driven data, the simulation is being 
driven by outside stimuli. Typically these are extracted, reduced, and corre- 
lated data from an actual running system. For example, in our bank teller 
case we may wish to have a more realistic load base from which to compute 
the optimal number of tellers and their hours. In such a case we would mea- 
sure over some period of time the dynamics of customers arriving at the 
bank for service. This collected information would then be used to build a 
stored input sequence, which would drive the simulation based on these 
realistic data. This type of modeling is closer to the real-world system but 
has the disadvantage of requiring the up-front data collection and analysis 
to make such data available for use. 

8 . 2  T i m e  c o n t r o l  

In continuous and discrete simulation, the major concern in performing the 
simulation is time management and its use in affecting the dependent vari- 
ables. Timing in simulation programs is used to synchronize events, com- 
pute state changes, and control overall interactions. Timing can take on two 
modes: synchronous and asynchronous. 

Synchronous timing refers to a timing scheme in which time advances in 
fixed, appropriately chosen units of time, t. On each update of time the sys- 
tem state is updated to reflect this time change. That is, all events occurring 
during this time period are determined and their state adjusted accordingly. 
This process of advancing time (in steps) and updating the state of elements 
occurs until the simulation hits some boundary condition (time goes to a 
maximum, some event occurs, etc.). In our bank teller system timing is 
needed to determine arrivals and service. For the t-step organization on each 
stop we must check to see if an arrival should occur, if a service should be 
completed, or if a new one should be begun. An important concept or idea 
to keep in mind when using synchronous timing is that of step selection. If 
too great a step is chosen, events are seen to occur concurrently when in 
reality they may not be. On the other hand, too fine a granularity of time 
step will cause many steps to go by when nothing occurs. The latter will 
cause excessive computer run time but very fine differentiation between 
events. The former, on the other hand, will cause a distortion of everything 
and possibly a loss of usefulness. The important job of the modeler is to 
select the proper step time for the model to be useful but not be excessive in 
computer time. 
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Asynchronous, or event timing, differs from synchronous timing in that 
time is advanced in variable rather than fixed amounts. The concept is to 
keep track of events versus time steps. The time is advanced based on the 
next chronological event that is to occur. These chronological events are 
typically kept in a dynamic list, which is updated and adjusted on each 
event to reflect new events that are to occur in the future. 

In our bank teller example the event queue, or list, will comprise two 
events: the next arrival and the completion of the next service. Abstractly 
this method appears to be easier to visualize. The events must be ordered by 
occurrence and adjusted as new events arrive. The issue in this, as well as in 
the former case, is how to insert or schedule new events or new conditions 
in the simulations. The next section will investigate this and other aspects of 
how to use time in building simulations. 

Systems and modeling 

Up to this point, we have discussed generic attributes related to simulation 
modeling. We have not discussed the classes of modeling techniques avail- 
able or the classification of simulation implementation techniques (i.e., 
simulation languages). Simulation techniques include discrete event, con- 
tinuous change, queuing, combined, and hybrid techniques. Each provides 
a specific viewpoint to be applied to the simulation problem. They will also 
force the modeler to fit models to the idiosyncrasies of the techniques. 

8 . 3 .  I D i s c r e t e  m o d e l s  

In discrete simulation models, the real system's objects are typically referred 
to as entities. Entities carry with them attributes that describe them (i.e., 
their state description). Actions on these entities occur on boundary points 
or conditions. These conditions are referred to as events. Events such as 
arrivals, service standpoints, stop points, other event signaling, wait times, 
and so on are typical. 

The entities carry attributes that provide information on what to do 
with them based on other occurring events and conditions. Only on these 
event boundaries or condition occurrences can the state of entities change. 
For example, in our bank teller simulation, only on an arrival of a customer 
(arrival event) can a service event be scheduled, or only on a service event 
can an end of service event be scheduled. This implies that without events 
the simulation does not do anything. This modeling technique only works 
on the concept of scheduling events and acting on them. Therefore, it is 
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essential that the capability exists to place events into a schedule queue or 
list and to remove them based on some conditions of interest. 

What this technique implies is that all actions within the simulation are 
driven by the event boundaries. That is, event beginnings and endings can 
be other events to be simulated (i.e., to be brought into action). All things 
in between these event boundaries, or data collection points, are now 
changing. A simulation model using this technique requires the modeler to 
define all possible events within the real system and how these events affect 
the state of all the other events in the system. This process includes defining 
the events and developing definitions of change to other states at all event 
boundaries, of all activities that the entities can perform, and of the interac- 
tion among all the entities within the simulated system. In this type of sim- 
ulation modeling each event must trigger some other event within the 
system. If this condition does not hold, we cannot construct a realistic 
working simulation. This triggering provides the event's interaction and 
relationship with each other event. For example, for the model of a self- 
service automatic teller machine, we need to define at a minimum the fol- 
lowing entities and events: 

• Arrival events 

• Service events 

• Departure events 

• Collection events 

• Customer entities 

• Server entities 

The events guide how the process occurs and entities provide the 
medium being acted on, all of which are overseen by the collection event 
that provides the "snapshot" view of the system. This provides a means to 
extract statistics from entities. In this example, the following descriptions 
could be used to build a simple model: 

1. Arrival event 

• Schedule next arrival (present time + T). 

• If all tellers busy, number waiting = number waiting + 1. 

• If any teller is free and no one is before the waiting customer, 
schedule service event. 

2. Service event 

• Number of tellers busy = number of tellers busy + 1. 
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• Schedule service and event based on type of service. 

• Take start of service statistics. 

3. End service event 

• Number of tellers busy-- number tellers b u s y -  1. 

• Schedule arrival of customer. 

• Take end of service statistics. 

4. Entities 

• Tellers 

~ N u m b e r  of tellers 

~Service rates and types 

~Service types 

• Customers 

--Arrival rate 

~Dynamics  (service type required) 

A discrete event simulation (with an appropriate language) could be 
built using these events and entities as their basis. A model built this way 
uses these conditions to schedule some number of arrivals and some end 
conditions. The relationships that exist between the entities will keep the 
model executing, with statistics taken until the end condition is met. This 
example is extremely simplistic and by no means complete, but it does pro- 
vide a description of some of the basic concepts associated with discrete 
event simulations. 

Continuous modeling 

Continuous simulations deal with the modeling of physical events (proc- 
esses, behaviors, conditions) that can be described by some set of continu- 
ously changing dependent variables. These in turn are incorporated into 
differential, or difference, equations that describe the physical process. For 
example, we may wish to determine the rate of change of speed of a falling 
object shot from a catapult (see Figure 8.1) and its distance, R ,  from the cat- 
apault. Neglecting wind resistance, the equations for this are as follows. The 
velocity, v, at any time is found as: 

v x = v o cos 0 

Vy - v o sin 0 0 - gt 
(8.1) 
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and the distance in the x direction is: 

R = V~t = tv o cos0 (8.2) 

These quantities can be formulated into equations that can be modeled 
in a continuous language to determine their state at any period of time t. 

Using these state equations, we can build state-based changed simula- 
tions that provide us with the means to trigger on certain occurrences. For 
example, in these equations we may wish to trigger an event (shoot back 
when Vy is equal to 0). That is, when the projectile is not climbing any more 
and it has reached its maximum height, fire back. In this event the equation 
may look like this: 

vy - 0 ;  begin execution of shoot back (8.3) 

Another example of this type of triggering is shown in Figure 8.2. In this 
example, two continuous formulas are being computed over time; when 
their results are equivalent (crossover event), schedule some other event to 
occur. This type of operation allows us to trigger new computations or 
adjust values of present ones based on the relationship of continuous equa- 
tions with each other. 

Using combinations of self-triggers and comparative triggers (less than, 
greater than, equal to, etc.) we can construct ever more involved simulations 
of complex systems. The main job of a simulator in this type of simulation 
model is to develop a set of equations that define the dynamics of the sys- 
tem under study and determine how they are to interact. 
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8.3.3 

8.3.4 

Queuing modeling 

Another class of generic model is the queuing model. Queuing-based simu- 
lation languages exist (AWESIM, GPSS, Q-gert, Slam II) and have been 
used to solve a variety of problems. As was indicated earlier, many problems 
to be modeled can easily be described as an interconnection of queues, with 
various queuing disciplines and service rates. As such, a simulation language 
that supports queuing models and analysis of them would greatly simplify 
the modeling problem. In such languages there are facilities to support the 
definition of queues in terms of size of queue, number of servers, type of 
queue, queue discipline, server type, server discipline, creation of custom- 
ers, monitoring of operations, departure collection point, statistics collec- 
tion and correlation, and presentation of operations. In addition to basic 
services there may be others for slowing up customers or routing them to 
various places in the queuing network. Details of such a modeling tool will 
be highlighted later in this chapter. 

Combined modeling 

Each of the techniques described previously provides the modeler with a 
particular view upon which to fit the system's model. The discrete event- 
driven models provide us with a view in which systems are composed of 
entities and events that occur to change the state of these entities. Continu- 
ous models provide a means to perform simulations based on differential 
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8 . 4  

equations or difference formulas that describe time-varying dynamics of a 
system's operation. Queuing modeling provides the modeler with a view of 
systems comprised of queues and services. The structure comes from how 
they are interconnected and how these interconnections are driven by the 
outputs of the queue servers. 

The problem with all three techniques is that in order to use them, a 
modeler must formulate the problem in terms of the available structure of 
the technique. It cannot be formulated in a natural way and then translated 
easily. The burden of fitting it into a framework falls on the modeler and 
the simulation language. The solution is to provide a combined language 
that has the features of all three techniques. In such a language the modeler 
can build simulations in a top-down fashion, leaving details to lower levels. 
For instance, in our bank teller system, we could initially model it as a sin- 
gle queue with n servers (tellers). The queuing discipline is first-come, first- 
served, and the service discipline can be any simple distribution, such as 
exponential. This simple model will provide us with a sanity check of the 
correctness of our model and with bounds to quickly determine the system's 
limits. We could next decide to model the teller's service in greater detail by 
dropping this component's level down to the event modeling level. 

At this point we could model the teller's activity as a collection of events 
that need to be sequenced through in order for service to be completed. If 
possible, we could then incorporate continuous model aspects to get further 
refinement of some other feature. The main aspect to gather from this form 
of modeling is that it provides the modeler with the ability to easily model 
the level of detail necessary to simulate the system under study. 

8.3.5 Hybrid modeling 

Hybrid modeling refers to simulation modeling in which we incorporate 
features of the previous techniques with conventional programming lan- 
guages. This form of modeling could be as simple as doing the whole thing 
in a regular language and allowing lower levels of modeling by providing a 
conventional language interface. Most simulation languages provide a 
means to insert regular programming language code into them. Therefore, 
they all could be considered a variant of this technique. 

Simulation languages 

As the use of simulation has increased, so has the development of new sim- 
ulation languages. Simulation languages have been developed because of the 

I Chapter 8 
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8.4 .1  

unique needs of the modeling community to have system routines to keep 
track of time, maintain the state of the simulation, collect statistics, provide 
stimulus, and control interaction. All of these previously had to be done by 
each individual programmer. 

Early languages provided basic services by adding a callable routine from 
programming languages. These early languages provided for time and event 
management but little else. This chapter will look at four languages and dis- 
cuss the aspects they possess that aid in the simulation process. We will not, 
however, cover languages that are built on top of basic simulation lan- 
guages, such as Network II.5 and others. 

GASP IV  

GASP IV was developed in the early 1970s as a general-purpose simulation 
language and is still in use with variations today. As such we use this as a 
basic model for most languages in existence today. GASP IV is a FOR- 
TRAN-based simulation language that provides routines and structure to 
support the writing of discrete events, continuous and combined discrete 
events, and continuous simulation models. Discrete event models in GASP 
IV are written as a collection of system and user FORTRAN subroutines. 
GASP IV provides the user with the following routines: time management, 
file management (event files, storage and retrieval, copying of events, and 
finding of events), and data collection and analysis (both observation-based 
and time-based statistics). The user must develop a set of event routines that 
define and describe the mathematical-logical relationships for modeling the 
changes in state corresponding to each event and their interactions. 

As an example of GASP IV's use and structure, our bank teller problem 
will be examined once again. In order to model this problem in GASP we 
must determine the events of interest, their structure, and the boundaries 
upon which they are triggered. To simplify the example, it is assumed that 
there is no time delay between the ending of service for one customer and 
the beginning of another (if there is one waiting). The important measures 
or states will be the number of customers in the system and the teller's sta- 
tus. From these two system events a customer's arrival and a teller's end of 
service occur. These are also chosen as the points at which significant 
changes to a system's status occur. The activity that occurs is the beginning 
of service; this can be assumed to occur either when a customer arrives at an 
empty line or when the teller ends service to a customer. 

Entities in GASP are represented by arrays of attributes, where the 
attributes represent the descriptive information about the entity that the 
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Figure 8.3 
Basic model of 

GASP IV control. 
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modeler wishes to keep. Entities are the elements that are acted on during 
the simulation. Their attributes are adjusted based on occurrences of inter- 
est. A variable "busy" is used to indicate the status of the teller, and attribute 
(1) of customer is used to mark the customer's arrival time to the teller line. 
To make the simulation operate, the system-state must be initialized to 
some known values; in this case the teller is initialized not busy and the first 
arriving customer must be scheduled to arrive. Additionally, to keep the 
model running, the arriving customer must schedule another customer's 
arrival in the future based on a selected random time distribution. Statistics 
will be taken when service completes on the length of wait time and the 
number of customers waiting, in service, and in total. When we look at the 
GASP code we need to examine the structure of a typical GASP program 
(see Figure 8.3). As indicated by this figure, GASP IV exists as a single pro- 
gram in FORTRAN. Therefore, making it function requires a main pro- 

Dimension nset (1000) 
common/gcom/atrib (100, DP(100), DDL (100, DTNOW, 
II,MFA,MSTOP,NCLNR,NCRDR,NPRINT, NNRUN, 
NNSET, NTAPE,SS(100),SSL(100),TNEXT,TNOW,XX(100) 
Common Q Set 
Equivalence Nset(1 ),Qset(1 )) 
NNSet=1000 
NCRDR=5 
NPRINT=6 
NTAPE=7 
Call GASP 
Stop 
End 

I Chapter 8 
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Hgure 8.5 
Subroutine Event 

far bank teller 
problem. 

Figure 8.6 
Subroutine Intlc 

for bank teller 
problem. 

Subroutine Event (I) 
Goto (1,2), I 
1 Call arrival 

return 
2 Call end SRU 

return 
End 

gram and a call to the GASP program that will begin the simulation. 
Another function of the main program is to set up limits on the system, 
such as number of files, input, output, limits on events, and so on. Figure 
8.4 depicts the main program for our example. 

Once GASP has been called, the program runs under control of the 
GASP subprogram calling sequences. The GASP system's executive takes 
over and initializes the simulation using the user-supplied routine I n t l c .  
Once initialized, it begins simulation by examining the event list; if any 
events exist, it pulls them out, executes them, and takes statistics. The 
loop continues until the end conditions are met or an error occurs. To 
control events and make sense of them in FORTRAN requires the user to 
supply an event-sequencing routine called Event. This event-control rou- 
tine is called with the attribute number of the intended event. It will use 
this to call the actual event. For our bank teller example this routine is 
illustrated in Figure 8.5 with its two events shown. When this routine is 
called with an appropriate number, the intended event is called, executed, 
and control is returned to the event routine, which in turn returns control 
to the executive routine. 

These events are called based on what Filem (1) has stored in it. Filem 
(1) is operated on in a first-come, first-served basis, removing items one at a 
time. The events are stored in Filem (1) as attributes: attribute (1) is the 
time of the event, attribute (2) is the event type, and all other attributes are 
added user attributes for the entity. Figure 8.6 gives an example of how the 
file is initialized. 

Subroutine INTLC 
common/gcom/atrib (100, DP(100), DDL (100, DTNOW, 
I I,MFA,MSTOP,NCLNR,NCRDR,NPRINT, NNRUN, 
NNSET,NTAPE,SS(100),SSL(100),TNEXT,TNOW,XX(100) 
Equivalence (xx(1), Busy) 
Busy=0 
Atrib(2)=l 
Call filem 
return 
end 
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Hgure 8.7 
Arrival routine 

Event code. 

Figure 8.8 
End of service 

routine. 

Subroutine Arrival 
common/gcom/atrib (100, DP(100), DDL (100, DTNOW, 
II,MFA,MSTOP,NCLNR,NCRDR,NPRINT, NNRUN, 
NNSET,NTAPE,SS(100),SSL(100),TNEXT,TNOW,XX(100) 
Equivalence (xx(1), Busy) TIMST(Busy,TNOW,ISTAT) 
Att rib(1 )=TN OW+expon(20., 1 ) 
Attrib(2)=l 
Call filem(1 ) 
Call fUem(2,attrib(1 )) 
if (Busy=0) go to return 
10 Busy =1 
attrib ( 1 )=TNOW+u nfrm (10.,25,1 ) 
attrib(2)=l 
attrib(3)=TNOW 
Call filem(1 ) 
return 
end 

Figure 8.6 illustrates the initialization routine for the bank teller simula- 
tion. Filem (1), the event file, is loaded with the first arrival event (a cus- 
tomer) and the teller is set to not busy. 

Once Filem (1) has an event stored, the simulation can begin. The first 
event is a customer arrival indicated by the contents of attribute (2) of 
Filem (1), which is the only event at this time. The arrival event (see Figure 
8.7) performs the scheduling of the next arrival. 

After the next arrival is scheduled, the preset arrival is placed in the 
queue (Filem [2]). Then a test is made to see if the teller is busy. If so, we 
return to the main program or else we schedule an end of service event for 
the preset time plus a number chosen uniformly between 10 and 25. 

The second event, the end of service, is shown in Figure 8.8. This code 
determines statistics of time in system and busy statistics. The code also 
checks to see if there is any user in the queue, removes one if there is, and 
schedules another end of service for this user. 

Subroutine end SRU 
common/gcom/atrib (100, DP(100), DDL (100, DTNOW, 
II,MFA,MSTOP,NCLNR,NCRDR,NPRINT, NNRUN, 
NNSET, NTAPE,SS(100),SSL(100),TNEXT,TNOW,XX(100) 
TIMST(subusy,TNOW,T, ISTAT) 
TSYS=TNOW-Attrib(3) 
Call col CT(TSYS, 1 ) 
if(NNQ(2), 6T,0) go to 10 
busys=0 
return 
10 Call schd((2,unfrm(10.,25,1 ) attrib) 
return 
end 

I Chapter 8 
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8 . 4 . 2  

This simple example shows how GASP could be used to model a wide 
array of event-based models. Details of this language can be found in [14]. 

GPSS 

General-Purpose Simulation System (GPSS) is a process-oriented simula- 
tion language for modeling discrete systems. It uses a block-structuring 
notation to build models. These provide a set of standard blocks (see Figure 
8.9) that provides the control and operations for transactions (entities). A 
model is translated into a GPSS program by the selection of blocks to repre- 
sent the model's components and the linkage of them into a block diagram 
defining the logical structures of the system. GPSS interprets and executes 
the block diagram defined by the user, thereby providing the simulation. 
This interpretation is slow and, therefore, the language cannot be used to 
solve large problems. 

To illustrate GPSS we will again examine our bank teller system. It is 
viewed as a single-server queuing system with our teller and n customer 
arrivals (see Figure 8.10). Customers arrive with a mean interarrival time of 
10 minutes, exponentially distributed. The teller provides service to the cus- 
tomers in a uniform time between 5 and 15 minutes. The simulation will 
take statistics on queue length, utilization of teller, and time in system. The 
simulator builds the diagram shown in Figure 8.10 from the model of a 
queuing system based on the statistics to be taken. This structure is then 
translated to the code seen in Figure 8.11. The code is broken down into 
four sections. The top section is used to define the data needed to approxi- 
mate an exponential distribution and set up markers for the time-depend- 
ent statistics. 

The second segment is the main simulation code, and it performs the 
tasks of generating customers (14), taking statistics on arrival time (15), 
queuing up arriving customers (16), scheduling service (17; when flee, take 
control), departing the waiting line (18), delaying the exit by the appropri- 
ate service time of the teller (19), releasing the teller for the next customer 
(20), taking statistics on the customer's time in the system (21), and exiting 
the system (27). 

The third segment is a timing segment and is used to schedule the end of 
service routine. The model will schedule a dummy transaction at time 480, 
which will cause the terminate instruction to execute (counter set to 0). The 
fourth section, the control segment, begins the simulation by setting the 
termination counter and giving control over to the model segment. 
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Figure 8.9 
Basic GPSS 

modeling 
component blocks. 

Block Symbol Functional Description of Block 

~,D.E.F,G 

Seize 

I EnterB~ 
I LeaveB~) 

QueueB~ 
I De~aB~ 

Creates transactions as prescribed by 
the operands A,B,C,D,E,F, and G 

Destroys the arriving transaction and 
reduces the termination counter by A 

Advances simulated time as prescribed 
by operands A and B 

Causes transaction to await and capture 
facility A 

Frees facility A 

Causes transaction to await and capture 
B units of storage A 

Frees B units of storage A 

Increments the number in Queue A by B units 

Decrements the number in queue A by B units 

Assigns the value specified as B with 
modifier C to parameter number A of the 
transaction 

Assigns the current clock time to parameter 
number A of the transaction 

Assigns the value specified as B to save value 
location A 

Causes a transfer to location C with probability 
A, and location B with probability 1-A 

Causes a transfer to location C if A is not related 
to B according to operator X 
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y 

Figure 8.10 
GPSS model for 

the bank teller 
problem. 
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2 Simulate 
3 *  
4 XPDIS function RN1 ,C24 
5 0.0, 0.0/0.1, 0.104/0.2, 0.222/0.3, 0.355/0.4, 0.509/0.5, 0.69 
6 0.6, 0.915/0.7, 1.2/0.75, 1.38/0.8, 1.6/0.84, 1.83/0.88, 2.12/0.9 
7 2.3/0.92, 2.52/0.94, 2.81/0.95, 2.99/0.96, 3.2/0.97, 3.5/0.98 
8 4.0/0.99, 4.6/0.995, 5.3/0.998, 6.2/0.999, 7.0/0.9997, 8 
9 *  
10 TISYS table MP1,0,5,20 
11" 
12 * model segment 
13" 
14 Generate 10, FN$XPDIS 
15 Mark P1 
16 Queue Waitq 
17 Seize SRVR 
18 Depart Waitq 
19 Advance 10,5 
20 Release SRVR 
21 Tabulate TISYS 
22 Terminate 
23 * 
24 * timing segment 
25 * 
26 Generate 480 
27 Terminate 1 
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8.4.3 

This example shows some features of GPSS. GPSS is a simple modeling 
method that became widely used. However, this language was doomed by 
its interpretive operation, which made it extremely slow. The reader is 
encouraged to consult [15] for details of the language. 

Simscript 

Simscript was developed in the late 1960s as a general-purpose simulation 
language. See [16] for details about the language. It provides a discrete sim- 
ulation modeling framework with English-like flee-form syntax making 
for very readable and self-documenting models. Simscript supports two 
types of entities: permanent and temporary. For example, in the bank teller 
problem, the teller is permanent and the clients are temporary. Permanent 
entities exist for the entire duration of the simulation, whereas the tempo- 
rary entities come and go during it. Attributes of the entities are named, 
increasing their readability and meanings. 

A Simscript simulation is built of three pieces: a preamble, a main pro- 
gram, and event subprograms. The preamble defines the components of the 
model (entities, variables, arrays, etc.). The main program initializes all ele- 
ments to begin the simulation. The events define the user events used to 
model a system. To define these components we will again use the bank 
teller problem. We will assume arrivals are 10 minutes apart on average and 
exponentially distributed, and the teller service time is uniformly distrib- 
uted between 5 and 15 minutes. Figure 8.12 depicts code for this problem. 
It indicates many of Simscript's features, as follows: 

• Line 2 describes the wait time as being a system entity that has statis- 
tics associated with it, and it is a permanent entity since it is not indi- 
cated as being temporary. Therefore, we can keep statistics on it over 
the life of the model. 

[] Line 3 defines a temporary entity customer and indicates that it 
belongs to the wait time. 

• Lines 6 and 7 define the event names and their attributes. 

m Lines 9-14 define statistics to be taken on this entity. 

The main program or section is shown in section B. This portion sets up 
the initial conditions (i.e., setting the status of the teller to idle, scheduling 
the first arrival, and scheduling a stop in the simulation). The next three 
sections define the arrival, departure, and stop events. The arrival event 
schedules the next arrival to keep the event flow going, creates a customer, 
gives it time information, places it in the wait line, and schedules a teller 

I Chapter 8 
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A: 
1 Preamble 
2 the system owns a wait line and has a status temporary entities 
3 every customer has an enter time and may belong to the wait line 
4 event notices include arrival and stop simulation 
5 every departure has a teller 
6 define busy to mean 1 
7 define idle to mean 0 
8 define time in bank as a real variable 
9 tally no customers as the number, AV time and the mean, 
10 and Var time as the variance of time in bank 
11 accumulate avg util as the mean, and Var util as the 
12 Variance of status 
13 accumulate Ave waitline length as the mean, and 
14 var waitline length as the variance of N wait line 
15 end 

B: 
1 main 
2 let status=idle 
3 schedule an arrival now 
4 schedule a stop simulation in 8 hours 
5 start simulation 
6 end 

C: 
1. Event arrival 
2 schedule an arrival in exponential F(10.,1) minutes 
3 create a customer 
4 let enter time (customer)=time V 
5 if status=busy 
6 file the customer in the wait line 
7 return 
8 else 
9 let status=busy 
10 schedule a departure given customer in Uniform F(56.,15.,1) minutes 
11 return 
12 end 

D" 
1 event departure given customer 
2 define customer as an integer variable 
3 let time in back=1440.*(time v-enter time(customer) 
4 destroy the customer 
5 if the wait line is empty 
6 let status=idle 
7 return 
8 else 
9 remove the first customer from the wait line 
10 schedule a departure given customer in Uniform F(5., 15., 1) minutes 
11 return 
12 end 

E:  

1 event stop simulation 
2 start new page 
3 skip 5 lines 
4 print 1 line thus 
5 single teller wait line example 
6 skip 4 lines 
7 print 3 lines with no customers, av time, and var time thus 
8 Number of customers = * . . . . . . . .  
9 Average time in bank = ****. . . . .  
10 Variance of time in bank = ****. . . . .  
11 skip 4 lines 
12 print 2 lines with avg util and var util thus 
13 Average teller utilization = ****. . . . .  
14 Variance of utilization = ****. . . . .  
15 Skip 4 lines 
16 print 2 lines with avg queue length and var queue length thus 
17 Average wait line length = ****. . . . .  
18 Variance of wait time = ****. . . . .  
19 stop 
20 end 

L 
v 

Figure 8.12 Simscript bank tellerpension code. 

service if the line is empty. The departure event computes a customer's time 
in the bank, removes the customer, and schedules the next customer. The 
stop event outputs the collected statistics. 

8 . 4 . 4  S lam II 

Slam II, a simulation language for alternative modeling, was developed by 
Pritsker and Associates, West Lafayette, Indiana, in the late 1970s. It is a 
combined modeling language providing for queuing network analysis, dis- 
crete event, and continuous modeling in integrated form. Slam II provides 
features to easily integrate the three forms. 

At the highest end the modeler can use a network structure consisting of 
nodes and branches representing queues, servers, and decision points to 
construct a model of a system to be simulated. This, in turn, can be easily 
translated into Slam II code. Additionally, Slam provides the ability to mix 
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Figure 8.13 
Basic symbols and 

statements for Slam 
models. 

events and continuous models with network models by use of event nodes 
that call event code for discrete and/or continuous models. As in the previ- 
ous languages, the event-oriented Slam models are constructed of a set of 
events and the potential changes that can occur with each of them. These 
events define how the model interprets the event and state changes. Slam 
provides a set of standard support subprograms to aid the event-oriented 
modeler. As was the case in GASP, the Slam continuous models are built by 
specifying a set of continuous differential, or difference, equations that 
describe the dynamic behavior of the state variables. These equations are 
coded in FORTRAN (Slam's base language) using Slam's state variables. 

Slam II uses a set of basic symbols to describe the system being modeled, 
as does GPSS. Figure 8.13 depicts the basic Slam II symbols and their asso- 
ciated code statements. Only the first three characters of the statement 
names and the first four characters of node labels are significant. They will 
be used in the example of the bank teller. As before, we wish to have cus- 
tomers arriving on an average of every 10 minutes with an exponential dis- 
tribution and the first one to start at time 0. Additionally, the teller services 
the customers with a uniform distribution from 5 to 15 minutes. The 
resulting Slam network model is shown in Figure 8.14. References to nodes 
are made through node labels (NLBLs). When a node label is required, it is 
placed in a rectangle and appended to the base of the symbol. 

DUR, CONDITION 

Create node 

I RNUM I RLBL ICAPI IFL Repeats I Resource block 

i Res / Gate, Await node UR / 
I RES' UFRepeats I M ) Free node 

( ~  ~ Activity 

Terminate 

Queue node 

- - P ' ~  Select node 
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Figure 8.13 
(Continued) 
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Figure 8.15 
Slam [ [  bank teller 

problem code. 

1 Gen, Fortier, Bankteller, 5/22/2002,1; 
2 Limits, 2,1,100 
3 Network 
4 Create, Expon(10.), 0, 1; 
5 Teller Queue(1 ),0,-; 
6 Activity (1)/1, Unifrm(5., 15.); 
7 Term 100; Colct, Ini(1 ), system time,,1; 
8 end networks; 

The code for this network is shown in Figure 8.15. The first line of the 
code defines the modeler, the name of the model, and its date and version. 
The second line defines the limits of the model and files one USR attribute 
and up to 100 concurrent entities in the system at a time. Line 3 identifies 
this code as network code, and line 4 creates customers with a mean of 10 
minutes exponentially distributed. Line 5 defines queue 1 as a teller with no 
initial customers in its queue, an infinite queue with service uniformly dis- 
tributed from 5 to 15 minutes. Line 7 takes statistics or time in system from 
entities as they leave the server. Line 8 indicates that the simulation will run 
for 100 entities and then end. 

This code is extremely simple and provides much flexibility as to how to 
expand the system. To look at the tellers' operations in more detail, the queue 
could be replaced by an event node and the code for the teller event supplied 
to model (very similar to the code seen in earlier figures). (See [17].) 

8.5 Appl icat ions of simulation 

To illustrate the use of simulation a few example problems are given and 
models developed in the Slam II simulation language. The first example is 
an industrial plant with five stations building a production in assembly line 
fashion. The problem can be viewed in Figure 8.16. 

The plant takes in subassemblies and finishes them off in five steps. 
There is storage room at the beginning of the line, but once in the line a 
maximum of one unit per station is possible. The statistics we wish to deter- 
mine are workstation utilization, time to process through stations, number 
of units waiting, and total produced. The resulting Slam network is shown 

Workstation 1 

0 0 0 0  
¢. 

Arrival of 
new subunits 

y 

Figure 8.16 Assembly line example. 
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, ,,'~ished 
units 
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Figure 8.17 

Expon(.5) 
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Slam l i t  network model for the assembly line problem. 

in Figure 8.17. The resultant code would allow us to examine the items of 
interest without causing any loss of detail from the intended model. 

A second, more detailed example shows how simulation can be used to 
model a distributed database management system. The model is shown in 
Figure 8.18. Depicted is the process or servers in a node that services user 
database transactions. Users provide requests, and the operating system 
services them by pipelining the database requests to the transaction man- 
ager, which, in turn, provides reduced requests to the network database 

Figure 8.18 
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Queuing model of a distributed database system. 
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server, which determines where the actual access is to be performed. The 
local site chosen then accesses the information from the appropriate device. 
The details at each level were commensurate with the intended model. The 
queues were all modeled as events and then the code necessary to simulate 
them was developed. This simulation is being used to analyze optimization 
algorithms for distributed database systems. The Slam network is shown in 
Figure 8.19. 

Figure 8.19 
Slam II network Delay--xx(s)~'---~ Atrib(2)-4 and 

simulation model 
for a distributed 
database system. 
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DML 

8.5.1 The s imula t ion  p r o g r a m  

The simulation program constitutes the realization of the simulation 
model. It is constructed as a modular software package allowing for the 
interchanging of simulated database management components without 
causing undue stress to the other components of the model. The simulation 
program is composed of a set of Slam II network statements and detailed 
discrete event code (similar to GASP IV), which model the major computa- 
tional aspects of a distributed database management system, as previously 
defined. To provide the capability to model a wide range of topologies and 
database management architectures, the model is driven by a set of informa- 
tion tables that hold characteristics of the network topology and communi- 
cations, location of the data items, the contents of the data items, and 
statistics of use. The Slam II network code to realize this model is shown in 
Figure 8.20. This code clearly depicts the major components of the simula- 
tion program. Additionally, note that the EVENT 5 shown indicates that 
the particular node is not a simple queue representation; it also indicates a 
drop in detail into discrete event simulation code. Such events allow for 
greatly expanding the details of the aspect of the model. 
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T 

Figure 8.20 
Slam II network 

model code. 

This is a list of the activities in the network 

1 Enter to OPSYS 20PSYS to DML 
30PSYS to User 4 Optimize to LDBM 
5 Optimize to User 6 NMMDBM to DML 
7 LDBM to memory 8 LDBM to disk 
9 LDBM to tape 10 LDBM to DLOC 
11 Memory to RLDBM 12 disk to RLDBM 
13 Tape to RLDBM 14 RLDBM to LDBM 
15 DLOC to NMMDBM 16 DLOC to REQN 
17 REQN to NWDEL 18 NWDEL to NWDBM 
19 DML to NWDBM 20 DML to OPSYS 
21 NWDBM to Optimize 22 NWDBM to User 
23 LDBM to REQN 24 NWDBM to User 

The following statements are network input statements: 

Gen, P. Fortier, DBMS Queue SIMPROG, 5,22,2002,1; 
Umits, 10,20,500; 
Stat,1 ,hits on directory,10,1 .,1 .; 
Stat,2 hits on dictionary, 10,1 .,1 .; 
Stat,3,processing time,20,0.,10.; 
Stat,4, remote time, 10,0.,.05; 
Stat,5,failure rate,10,1.,1 .; 
Stat,6,optimizer time,10,0.,10.; 
Stat,7,Optimizer algorithm delay, 10,0., 10.; 
Stat,8,parsing delay, 10,0.,.0015; 
Stat,9,illegal operations, 10,1., 1.; 
Stat,10, translate delay, 10,0.,.01; 
Stat, 11 ,dictionary search, 10,0.,.00002; 
Network 
Resource/Opsproc(1 ),6; 
Resource/DMLproc(1),7; 
Resource/Netproc(1),8; 
Resource/Optproc(1),9; 
Resource/Locproc(1),10; 

Tape queue(4); 
act/13,,,RLDBM; 
Mem queue(2); 
act/11 ,XX(5),,RLDBM; 
Disk queue(3); 
act/12,XX(6),,RLDBM; 
RLDBM GOON; Request LDBM 
act/14,,,LDBM; 
DLOC Free, Iocproc/1; 
act; 
goon; 
act/15,,atrib(8).eq.15, NWDBM ret route, local source 
act/16,0.02,atrib(8).eq.16; ret route, remote source 
reqn goon; 
act/17,0.02; 
NWDEL queue(5); Network delay 
act/18,0.03,,NWDBM 
user colct,int(1), tim in sys, 40,0.,10.; 
act/20; 
terminate; 
endnetwork; 
init,0; 
fin; 

Enter, 1; 
act/l; 
Opsys await(6),opsproc/1; 
event,1; operating system 
act,XX(1); 
free, opsproc/1; 
act/3,,atrib(7).eq.3,user; service completed 
act/2,,atrib(7).eq.2; 
DML await(7),DMLproc/1; 
event,4; 
act,atrib(5); 
free, DMLprocJ1; 
act/20,,atrib(7).eq.20,opsys service completed 
act/19,,atrib(7).eq. 19,NWDBM; 
NWDBM await(8), NetprocJ1; 
event,2; Network database manager 
act, XX(2); 
free, NetprocJ1; 
act/6,,atrib(7).eq.6.DML processing completed 
act/22,,atrib(7).eq.22,user; data doesn't exist 
act/21, ,atrib(7).eq.21; 
optim await(9), optprocJ1; 
event,3; Query optimization 
act,XX(3); 
free, optprocJ1; 
act/4,,atrib(7).eq.4.0and atrib(4).eq.0,WLDBM; 
act/26,,atrib(7).eq.4 and atrib(4).eq. 1 ,LDBM; 
act/5,,atrib(7).eq.5, user; illegal query 
WLDBM await(10), Iocproc/1; 
LDBM event,5; local database manager 
act/7,XX(4),atrib(7).eq.7 or atrib(7).eq.78, rnem; 
act/8,XX(4),atrib(7).eq.8 or atrib(7).eq.78, disk; 
act/9,999999,atrib(7).eq.10,DLOC; 
act/23,,atrib(7).eq.23,REQN; 
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8.6 Summary 

This chapter introduced the use of simulation in building and analyzing a 
wide range of systems. Simulations were shown to be extremely versatile in 
their ability to model systems at varying levels of detail. They provide quick 
and precise models of systems to allow any studies to be performed at will. 
The main simulation techniques of discrete event, continuous, queuing, 
combined, and hybrid methods were described, as were four widely used 
languages: GASP, GPSS, Simscript, and Slam. This was followed by two 
simple examples to show how simulation can be used to study a real-world 
system. 



9 
Petri Nets 

9.1 

9 .2  

I n t r o d u c t i o n  

Every tool applied to the modeling and analysis of computer systems has its 
place. Petri nets have a place in computer systems performance assessment, 
ranging somewhere between analytical queuing theory and computer simula- 
tion. This is due to the nature of Petri nets and their ability to model concur- 
rency, synchronization, mutual exclusion, conflict, and system state more 
completely than analytical models but not as completely as simulations. They 
have a fundamental theory dictating their analysis, but they act more like sim- 
ulations in that they allow the modeler to examine single entities within the 
system, as well as their movement and effect on the state of the entire system. 

Petri nets (PNs) provide a graphical tool as well as a notational method 
for the formal specification of systems. The systems they model tend to 
include more than simply an arrival rate and a service rate. They are used in 
situations where each entity passing through the system can bring individ- 
ual state information, which can be used to more completely and accurately 
model complex interactions such as contention and concurrency. 

Petri nets were first introduced in 1966 to describe concurrent systems. 
This initial introduction was followed by continual improvements~for 
example, the addition of timing to transitions, priority to transitions, types 
to tokens, and colors depicting conditions on places and tokens. These have 
been followed by the development of software tools to aid in the modeling 
and analysis of systems using Petri net concepts. 

Basic n o t a t i o n  

Petri nets represent computer systems by providing a means to abstract the 
basic elements of the system and its informational flow using only four fun- 
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280 9.2 Basic notation 

Figure 9.1 
Basic Petri net 

components. 

r 

Figure 9.2 
Example perpetual 

motion Petri net. 

Token 

) 
Place p 

arc 1 
Transition t 

damental components. These four Petri net modeling components are 
place, transition, arc, and token. Places are represented graphically as a cir- 
cle, transitions as a bar, arcs as directed line segments, and tokens as dots 
(Figure 9.1). Places are used to represent possible system components and 
their state. For example, a disk drive could be represented using a place, as 
could a program or other resource. Transitions are used to describe events 
that may result in different system states. For example, the action of reading 
an item from a disk drive or the action of writing an item to a disk drive 
could be modeled as separate transitions. Arcs represent the relationships 
that exist between the transitions and places. For example, disk read 
requests may be put in one place, and that place may be connected to the 
transition, "removing an item from a disk," thus indicating that this place is 
related to the transition. You can think of the arc as providing a path for the 
activation of a transition. Finally, tokens are used to define the state of the 
Petri net. Tokens in the basic Petri net model are nondescriptive markers, 
which are stored in places and are used in defining Petri net marking. 

The marking of a Petri net place by the placement of a token can be 
viewed as the statement of the condition of the place. For example, Figure 
9.2 illustrates a simple Petri net with only one place and one transition. The 
place is connected to the transition by an arc, and the transition is likewise 
connected to the place by a second arc. The former arc is an input arc, while 
the latter arc is an output arc. The placement of a token represents the 
active marking of the Petri net state. The Petri net shown in Figure 9.2 rep- 
resents a net that will continue to cycle forever. 

p~ t~ 
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Figure 9.3 
Petri net example. 
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Pl 
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P3 

Petri nets are described both graphically and using set notation. As 
described previously, a Petri net is composed of places (P), transitions (7), 
arcs (consisting of input functions, I, and output functions, 0), and tokens, 
which form the marking of the net (MP). Using this notation, we can 
describe a Petri net as a five tuple, M--  (P, T,I, O, MP), where P represents 
a set of places, P = {Pl, P2 . . . .  ,Pn}, with one place for each circle in the 
Petri net graph; T represents a set of transitions, T= {t 1, t 2, ... ,tin}, with 
one for each bar in the Petri net graph; I represents a bag of sets (bags is a 
generalization allowing for duplicates) of input functions for all transi- 
tions, I = {Ira,It2 . . . . .  Itm}, mapping places to transitions;, O represents a 
bag of sets of output functions for all transitions, O = {Otl, Or2, ... ,Otto}, 
mapping transitions to places; and MP represents the marking of places 
with tokens. The initial marking is referred to as MP O. MP 0 is represented 
as an ordered tuple of magnitude n, where n represents the number of 
places in our Petri net. Each place will have either no tokens or some integer 
number of tokens. For example, the Petri net graph depicted in Figure 9.3 
can be described using the previous notation as: 

M - (P ,T , I ,O ,  MP) 

P = {Pl' ~2' t)3' P4' t)5 } 
T 

I ( t l ) - -  {Pl} 

O ('1) -- {P2, P3,/05 } 

(9.1) 
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Figure 9.4 
Dual of  Petri Net 
from Figure 9.3. 

ta 

Pl 

Inverse o f  Petri Net 
from Figure 9.3. 

O ( t 3 ) - { P 4 }  (Cont. 9.1) 

M P  - ( 0 , 0 , 0 , 0 , 0 )  

The graphical notation depicts Petri nets as a directed bipartite graph. 
The graph, G, is described as a two tuple, G = (V,,A), where V represents a 
set of vertices, V= {v 1, v2,v 3 . . . .  ,Vs}; and A represents a bag of directed arcs, 
A = {al ,a2,a 3, ...  ,ai}. A n  arc, which is an element of A, is composed of a 
tuple with two vertices, a i = (vj, vk), where vj, v k ~ V. The set of vertices of 
the graph can be partitioned into two disjoint sets, P and T, where these sets 
have the properties V= P u T and P n T= 0. In addition, for an arc a i ~ A,  
if a i = (v.,vk), then either v. ~ P and v k e T or vice versa. That is, the two y y 
ends of the arc cannot be drawn from the same set; if v j e  P,, then v k e T 
and cannot be an element of P.. 

A Petri net model, as with many mathematical models, has a dual. The 
dual of a Petri net is defined as a Petri net where transitions are changed to 
places and places are changed to transitions. (See Figure 9.4.) The input and 
output functions are changed in that the inputs defined for the transition 

Pa 

v 

Figure 9.5 
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Figure 9.6 
Multipath arc. 0 

Pl 
7 , ,  

P2 

lb. Y 
Figure 9 . 7  

Multipath arc as 0 
bold line. Pl 

now represent inputs to places. Since this is not possible, the inputs become 
output functions and output functions become input functions. 

A Petri net can also have an inverse defined for it. The inverse of a Petri 
net keeps all places and transitions the same and switches the input func- 
tions with the output functions (Figure 9.5). 

Petri nets are defined also as multigraphs, since a place can represent 
multiple inputs and/or outputs from or to a transition. This implies that 
there could be several arcs between a single place and a transition. We could 
model these as single arcs but that could become cumbersome as the num- 
ber of arcs grows. A better way to model multiple arcs is either to represent 
the multiple arcs as a thick arc with the number of representative arcs 
embedded inside (Figure 9.6), or as a bold arc with a number attached to it 
as a label (Figure 9.7). 

Petri nets have a state. This state is defined by the cardinality of tokens 
and their distribution throughout the places in the Petri net. This marking 
can be represented as a function, It, defined over each place, iv, and results in 
a value, N, from the set of counting integers 0, 1 . . . . .  oo: 

gt .p  -9 N (9.2) 

The marking, ~, can also be defined as an n vector. The vector ~t pro- 
vides token information for each place, Pi, in a Petri net. The token infor- 
mation represents the number of tokens in the particular place (number of 
tokens in place, Pi, is lai): 

~1, - -  ( ~ 1 , 1 , ~ 2 , ~ 3  . . . . .  [LI, n ) ,  (9.3) 

where 

. = IPI and each  # i  • N , i - 0  . . . . .  n 

t 1 

7 '1 11 
Pa 
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Figure 9.8 
Marked Petri net. 
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Place markings represented as a function and place markings represented 
as a vector are related by ~t(pi) = ~t i. The markings at a specific point in time 
represent the state of the Petri net at that time. A marked Petri net, M = (C, 
g), is represented as a Petri net structure, M = (P, T,I, O) and its marking: 
M P  or la. This is also typically represented as M = (P, T,I, O, la). The mark- 
ing ~t changes as the Petri net changes state and is therefore typically repre- 
sented with a subscript t. Therefore, the true representation is: 

M =  ( P , T , I , O ,  btt ) (9.4) 

where represents the state of the Petri net at time t, where t is drawn from 
the set of nonnegative integer values. 

The marking of a Petri net is specified by placing tokens, which are rep- 
resented as dots in the graphical notation (Figure 9.8) in the places. The 
marking for the Petri net shown in Figure 9.8 represented as a vector would 
be btt= (1,2, 0, 0,1). If we assume this is the initial marking of this Petri net, 
then the definition becomes l.t 0 = (1,2, 0, 0,1), since this would be the 0th 
state this Petri net has visited. The number of tokens that may be assigned 
to a place is unbounded (though in later refined models we will see this can 
be limited). The set of all possible markings for a Petri net with n places is 
simply the set of all n vectors, N ~, where N represents all possible states and 
n the number of places. 

9.3 Classical Pe t r i  nets 

Given the basic definitions and notation from the prior section, we can now 
begin to examine how these fundamental elements can be used in modeling 
aspects of computer systems and ultimately entire systems. The first new 
notation required is that of Petri net state transitions. To move from one 
state to another state, a Petri net will fire all transitions that are enabled. 
The exact moment of firing can be pictured as occurring as a clock signal in 
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Figure 9.9 
Enabled transition. 

I(tl) = {Pl, P2, P2} 
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a computer system. When the clock begins a cycle (e.g., a rising edge) all 
gates that have signals enabling their execution do so during the cycle. Sim- 
ilarly, in a Petri net all transitions that are enabled will fire once during this 
cycle. 

Before we look at firing, we need to address the conditions required. 
Having tokens available in places is fundamental to the concept of enabling 
transitions. Therefore, it is important to know the state of the entire Petri 
net before preparing to fire enabled transitions. The enabling of a transition 
is caused by tokens being available in places that are members of a transi- 
tion's input function. Only if all of the places named in a transition's input 
functions have tokens available is a transition enabled (Figure 9.9). 

The Petri net shown in Figure 9.9 has the marking g0 = (1,2, 0), input 
function I ( t l )  - {PI,P2,P3}, and output function O(t 1) = {P3,P3,P3}" Given 
this initial marking and the defined input and output functions, transition 
t I is enabled, since it requires one token contributed by P1 and two tokens 
contributed by P2 to have all of its input functions satisfied with tokens 
available in the named places and in the required quantities. The tokens in 
these places are referred to as the transitions enabling tokens. Given that a 
transition is enabled at the beginning of a Petri net's firing cycle, it will fire 
the transition, causing the movement of the number of tokens from its 
input places to its output places, as modeled by the output function's arity. 
The result of this firing will be a new Petri net state, B1. For example, in 
Figure 9.9, given the initial state B0, transition t 1 will fire at the beginning 
of the firing cycle, removing one token from place Pl and two tokens from 
place P2 and placing these three tokens into place P3" The resulting new 
Petri net state is represented by the marking B1 -- (0,0,3), and is depicted in 
Figure 9.10. The firing action is considered an atomic action, in that it 
appears as if all of the tokens are removed from the input places and depos- 
ited into the output places instantaneously. 
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L .  

Figure 9.10 
New Petri net state. 

Pl I(tl) = {Pl, P2, P2} 

P2 

The firing of the Petri net provides the movement from one state to a 
new state. The new state is the only state reachable in a single total transi- 
tion firing of all the enabled transitions. The collection of all possible states 
that can be represented by this Petri net and its initial markings is called 
state-space. The collection of all states in the state-space of this Petri net can 
only be reached in sequence from the initial state to the final state by single 
step, state-space changes. This implies that a Petri net can only fire enabled 
transitions, and, after they fire, they cannot fire any newly enabled transi- 
tions until the next cycle. This single state Petri net state-change can be 
described using a next-state function, 8. This function, 8, when applied to a 
Petri net state, ~i, will cause the Petri net to transition from state ~i to a new 
state: gi÷l- The function 8 is then defined as: 

~(~ti { t } )  -- ~ti+ 1 (9.5) 

The set {t} represents the set of all enabled transitions within this Petri 
net. If a transition is not enabled, then this function is undefined. 

Beyond the basics defined here, Petri nets have been developed for the 
modeling of conditions not typically available through queuing theory. For 
example, synchronization, conflict, and concurrency are concepts not easily 
defined and modeled by queuing theory. 

To clarify some of the concepts covered we will take a look at a simple 
example: that of resource sharing. In this example, shown in Figure 9.11, 
we model two user processes requesting a specific resource (fires_idle)" If the 
resource is idle, there is a token present in the/Ores_idle place. If a process 
wanting this resource has a token in its place (e.g., P1 req), and the resource 
is idle (a token in Pres_idle), then the transition (e.g., tl_start) is enabled and 
can fire on the next cycle. When the transition fires, the resource now 
becomes unavailable (it is busy), and the second process must wait until the 
resource is released (Figure 9.12). 
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Figure 9.11 
Resource sharing 
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Figure 9.12 
Allocated resource. 
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Figure 9.13 
Petri net with an 

inhibitor. 

With these basic concepts we can now move on to more advanced ones. 
Very often in a computer system, when one process is accessing or even 
attempting to access some resource, others are blocked from trying to enter. 
This is the concept of a gate, lock, or semaphore. In the case of such items, 
when one job has control over the resource, others are blocked from 
attempting to access the resource, even if they have all the other resources 
they need to move forward with their execution. To model this concept of a 
lock or semaphore, Petri net modelers developed the concept of the inhibi- 
tor. An inhibitor is a function that relates a place (as a blocker) to a transi- 
tion. If a place, p, has an inhibitor relationship with a transition, t, then, 
when place p has a token present, transition t cannot fire, even if all input 
functions are satisfied and the transition would be otherwise enabled. For 
example, Figure 9.13 depicts the reader and writer problem. The problem 
states that when a writer is in the mode of writing, all readers must be 
blocked from accessing the held resource. In the example, the inhibitor is 
shown as an undirected arc with a small circle at the transition being inhib- 
ited by the place at the other end of the arc. The example shows that place, 
P6 is acting as the inhibitor to transition t 5. The Petri net is now described 
using the six-tuple, M = (P, T, I, O, N, H). In the set notation the inhibitor 

is described as H{ t 5} = {P6}. 

A Petri net's state, iLL, is said to be reachable from some other state, ~' ,  if 
there exists some finite number of firings of the Petri net beginning at state 
~l, which will result in the final marking iLL'. A reachability set [RS(g)] from 
each valid marking of our Petri net, M starting in state N, is defined as the 
set of all possible markings reachable through any set of firings. There is no 
reachability set possible for a Petri net with an initial null marking. 

f 

it, 

I 

t2 t4 t 6 j ~  
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The reachability set for a Petri net with an initial marking, ~t 0, is 
denoted RS(gt o) and is defined as the smallest set of markings, so that: 

~t o ~ RS (It o) and ~1E RS (~0 ) 

::Its T" 8 ( N , ( t ) ) - 9  ~2 (t + 1) (9.6) 

RS ( No ) 
To determine the reachability set, we must begin from the initial state, 

g0, and incrementally define each step possible emanating from this initial 
state and all states derivable from this state. Once a marking has been con- 
sidered, during any iteration, it cannot be considered again. The reachabil- 
ity set for the reader and writer graph shown in Figure 9.13 is as follows for 
k = 2 .  

~0 = 2p1+ p5 

~1 = pl + P2 + P5 
g2 = 2p2 + P5 

gt3= pl + p3 + p5 
~t4= P l + P 4 + P 5  

~5 = 1°2 +P3 +P5 

~6 - P2 + P4 + P5 
g7 = Pl +105 +P6 

~8 = p l+P7  

gt9= 2 p 3 + p  5 

~10 -" P3 +t94 +])5 

~11 "- P2 + P5 + P6 
gtl2 = 2p4 + P5 

~t13 = P2 + P7 

ILtl4 = P3 +105 +P6 

~15 -- t/4 +P5  +106 

~16 -" P3 + P7 

let17 = P4 + P7 

g18 = P5 + 2p6 

The reachability set contains no information about which transitions fired 
to reach the state markings. Such information can be found in a reachability 
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graph, shown in Figure 9.14. In this graph each node represents a state of the 
Petri net and each arc represents a direct transition, which is possible from one 
end of the directed arc to the other end due to a single transitions firing. For 
example, you can see that if we fire transition t 1 from go we can get to a new 
state, ~t 1, where a token has moved from place 1 to place 2. 

It is often desirable to model logical conditions. For example, to only fire 
a transition when there are more than n tokens in a place, we simply need to 
include an arc with arity n + 1. Since the basic condition on a transition fir- 
ing is that its connected input places meet the conditions of the transitions 
input function, by including n + 1 redundant  set items for the input place 
we can accomplish what we need (Figure 9.15). 

If we wish instead to test for the condition of equal to some value but 
not greater than the value, we can use an inhibitor of arity n + 1 to block a 

L .  

Y 

Figure 9.15 Po 
Petri net 

component to test 
condition greater 1 
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Figure 9.16 
Petri net 
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PO 

n + l  

to 

Pl 

transition if there are more than n tokens in place 0. To meet the equal con- 
dition we use the arc weighted at n to remove n items if there are n and only 
n items (Figure 9.16). If we wish to test for less than n items and remove the 
items, we could use the Petri net shown in Figure 9.17. Again, this Petri net 
uses an inhibitor function to block movement of the desired number of 
tokens. 

An important property required when modeling computer systems is 
that of conflict (Figure 9.18). In this example, when there is a token in place 
P0, both transitions t 1 and t 2 are enabled. However, only one of them may 
fire, since there is only one token available. As soon as one fires, say t 1, it 
removes the token from place P0 and transfers it to place Pl. As soon as tran- 
sition t 1 removes the token, transition t 2 is no longer enabled. If there were 
two tokens in place P0, then both of the transitions would be enabled and 
could fire during this firing cycle. Very often we wish to indicate which of 

Figure 9.17 
Petri net modeling 

conflict. Po 
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i v  

Figure 9.18 
Petri net 
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these transitions is to fire when only one can, and in which order if they 
both are able to fire. We will discuss some of these extended controls when 
we look at colored Petri nets and generalized Petri nets later in this chapter. 

Another important property required when modeling computer systems 
and software processes is concurrency. Concurrency is characterized by the 
concurrent or parallel execution of activities. For a Petri net to have concur- 
rent activities, it is required that we have concurrently enabled transitions. 
For example, in Figure 9.19, transitions t 1 and t 2 are considered concurrent, 
since they are both enabled at the same time in the Petri net marking. In 
our example, gt = (1,2, 0, 0) has transitions t I and t 2 enabled, and, therefore, 
they can fire concurrently. 

Very often a computer system can have both conflict and concurrency 
occur at the same time. In Figure 9.20 we have an initial marking, gt -- 
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(1,1,0,0,0), which results in transitions t 1 and t 2 being enabled, the condi- 
tion of concurrent transitions. If t 1 fires first, then we now have two transi- 
tions enabled, t 2 and t3. This then depicts conflict, since the token from P2 
can only satisfy one of the necessary conditions for the two transitions it is 
enabling at this point in time. 

A Petri net can have a variety of other qualities. For example, a Petri net 
state, let, is reachable from another state, let', of the same Petri net if there is 
an integer number of intermediate steps from let' that lead us to state ~. For 
example, in Figure 9.21 we have an initial state gt 0 = (3, 0, 0, 0), and a target 
state let' = (1,1,0,1). We can see from our computations of state transitions 
that our net can reach this target state in three firings of our net. A related 
property is that of reversibility. Reversibility is the property where, given 
some initial Petri net state, let, we can return back to this state, lEt, in finite 
time. In Figure 9.21 the initial state, ~0, is not reversible, since we cannot 
get back to this state in a finite number of steps. On the other hand, if the 
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initial state is ~'  -- (0,1,0,2), we find that we can return to this state every 
four state transitions. Therefore, this state is reversible. 

A Petri net is deadlocked if there are no transitions in the net that are 
enabled. In the example shown in Figure 9.22, the net has an initial mark- 
ing, iLL 0 = (0,0,2,0). This marking results in no transitions being enabled 
and no hope after an infinite amount of time of becoming enabled. Con- 
versely, a Petcl'net is considered live if there are any transitions enabled. 

A Petri net is defined to be k-place bounded if for all places in the net- 
work there are k or less tokens in each place for all possible states of the net- 
work. For example, in the Petri net shown in Figure 9.21, we have a three- 
bounded net, since all places in the network have at most three or less 
tokens in their places for all reachable states within the Petri net. 

Mutual exclusion is the final property we will define for traditional Petri 
nets. Mutual exclusion is defined for places and for transitions. The prop- 
erty holds for pairs of places or transitions within a Petri net. Two places, Pa 
andpb, are mutually exclusive in a Petri net system if for all states in the sys- 
tem places Pa and Pb are never both loaded with tokens concurrently. This 
implies that if one has tokens the other cannot. Similarly, for transitions, a 
Petri net possesses transition mutual exclusion if for all pairs of transitions 
in the Petri net, t a and t b, only one can be enabled during any state reach- 
able by this network. The properties presented in this section are generic 
and can be applied to most Petri nets. 

9 .4  T i m e d  Pet r i  nets 

The Petri nets covered in the previous section had transitions that when 
fired took no time to move tokens from one place to another. In any real 
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7~med Petri net. 
Pl 

system an activity does take some finite time to perform its operation. For 
example, to read a file from a disk, to execute a program, or to communi- 
cate with some other machine takes some real time. Adding time to the 
Petri net provides the Petri net modeler with another powerful tool with 
which to study the performance of computer systems. Time can be associ- 
ated with transitions, with selection of paths, with waiting in places, with 
inhibitors, and with any other component of the Petri net. 

The most typical way that time is used in Petri net modeling is associ- 
ated with transitions. This is because the firing of a transition can be viewed 
as the execution of an event being modeled~for example, a CPU execution 
cycle. Transitions that have time associated with them are referred to as 
timed transitions. These timed transitions are represented graphically as a 
rectangle or thick bars and are identified by designations beginning with t. 

In Figure 9.23, transition t I is a timed transition with time t 1 as its inter- 
val to complete its firing once enabled. The semantics of the firing are a bit 
different from that of the basic Petri nets looked at previously. When a tran- 
sition becomes enabled, its time period clock timer is set and begins to 
count down. Once the timer reaches 0, the transition fires, moving the 
token(s) from the input places for the transition to the output places for this 
transition. In the example shown in Figure 9.23, when a token arrives at 
place Pl,  the timer for transition t 1 is set to ~'1 and begins to count down. 
Once 1:1 time units have passed, the transition fires and the token is taken 
from/91 and moved to P2- The decrement of the timer must be at a constant 
fixed speed for all transitions in the Petri net model. In this way the transi- 
tion is made to model the operation of some element within the system 
being modeled. 

A consideration to think about is what occurs when a transition 
becomes nonenabled due to the initial enabling token being used to ulti- 
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Figure 9.24 
Timed Petri net 
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mately fire a competing transition. This condition is shown in Figure 9.24. 
If we assume that the time for transition t 1 is less than that for transition t 2, 
then, when place Pl receives a token, the two timers would begin counting 
down. At some time ( 2" 1) in the future, the timer for q would reach its zero 
value, resulting in the firing of transition t 1. Since the token enabling t 2 is 
now gone, t 2 is no longer enabled and, therefore, its timer (2" 2) would stop 
ticking down. The question now is what to do with transition t2's timer. 
There are two possibilities. The first is to simply reset the timer on the next 
cycle in which place Pl has a token present, enabling t 2. In this case, unless 
place Pl has a state where it has more than one token present, transition t 2 
will never fire. The second possible way to handle this situation is to allow 
transition t2's timer to maintain the present clock timer value (z  2 - Zl). In 
this second case, when the next token is received at place Pl,  the timer for 
transition t 1 resets its clock timer to 2" 1, and transition t 2 will continue 
counting down from time (z" 2 - Zl). If the remaining time in transition t2's 
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Figure 9.26 
Timed Petri net 
with immediate 

transitions. 

timer is less than transition t's timer, then transition t 2 will fire, leaving tran- 
sition t 1 with the remaining time (~'1 - ( ' r2-  Vl)). The choice of which pro- 
tocol to use will depend on the system one wishes to model. 

The timing need not be exclusively based on timers and counting. Some 
Petri net models have proposed using state transition timing graphs. In this 
case, each possible state, ~t, is enumerated, and a time period is set for each 
individual state to traverse from this state to the next state in the sequence 
(Figure 9.25). In this figure, state gl  will require (a: 2 or a: 1) time units to 
move from state ~t 1 to state ~2 and so on for all states defined in our system. 
This could also be represented using timed transition sequences, which 
depict the order of each transition in relation to all others. Such a descrip- 
tion may appear as: 

[(Tl,tl );(T2,t 2 );...;(Tj,tj ) ; . . . ]  (9.7) 

Transitions can also be represented as immediate t ransi t ions~that  is, 
transitions without any time delays associated with them. To model these in 
timed Petri nets, we simply can use a solid bar in the graphical mode or a 
timer of 0 if we are using Petri net notation. 

In the example shown in Figure 9.26, we use immediate transitions to 
capture a resource. These act like semaphores would in a real system. One 

Pactive_l Pactive_2 

trequest_l trequest_2 

Prequesting_l Pidle 
Prequesting_2 

Paccessing_l Paccessing_2 

tend_l 

I Chapter 9 



active process that is wing for the resource will win it, while the other will 
be forced to wait until the resource becomes free once again. 

9.5 

Figure 9.27 
Priority-based Petri 

net. 

Prior i ty -based Petri  nets 

The Petri nets defined in the previous section were improvements over the 
basic nets defined in the first section of this chapter. To continue this trend 
we next look at adding priority to a Petri net. The formal model now needs 
some additional elements. The Petri net is described by a nine tuple, M = 
(/9, T, I, O, H, H, Par, Pred, la). P represents the set of places of Petri net M. 
T is the set of transitions of Petri net M. I represents the set of input func- 
tions for the transitions of M. O represents the set of output functions for 
the transitions of M. H represents the inhibitor functions defined over the 
set of transitions in M. Par represents the parameter set for this Petri net, 
and Pred represents the predicates defining how the parameter set can be 
distributed. The symbol iLL represents the set of markings for this Petri net, 
and H represents the priority function defined over all transitions of Petri 
net M. The function H maps the priority for each transition to a set of inte- 
ger values representing their importance relative to each other in the net. 

Now we will look at the conditions for firing under these new nets. 
Transitions in priority Petri nets are enabled just as in basic Petri nets. If the 
transitions have their input places with the right amount of tokens, then 
they are prepared for enabling. The term used for this is concession. If a 
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Figure 9.28 
Timed and priority 

net. 

transition has concession (is enabled as in basic nets) and there are no addi- 
tional transitions in this network that are enabled in the present marking 
with priority greater than this transitions priority, then it is enabled. For- 
mally this set of conditions is represented as: 

t i is enabled if an~Itj ~ ~nly iftj < t~ (9.8) 

A transition that meets these criteria can fire. The result of firing is the 
same as in nets without priority. In the example depicted in Figure 9.27, 
transition t 1 has the lowest priority at 1, transition t 2 has the next lowest at 
2, and transitions t 3 and t 4 have the highest priority at 3. If we start with an 
initial marking, ~t -- (1,0, 0,1), only transition t 2 is enabled, since it has the 
highest priority and has the number of tokens available from its input func- 
tions as required for enabling. If you compute the next few possible states, 
you would see that transition t 1 will never be enabled, since it does not have 
the priority to overcome transition t2's priority. 

With the use of priority and timing we can do a more complete job of 
defining conditions such as contention, confusion, and concurrency. For 
example, the Petri net shown in Figure 9.28 has both timed and priority 
features. By combining these features we can now get the system to toggle 
between the two events. The inhibitor on transition t 2 causes this immedi- 
ate transition to be blocked from enabling until it has completed its service. 
In this way it allows transition t 1, with the lower priority, to get service 
while place P2 has tokens present. 
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9 .6  C o l o r e d  Pe t r i  nets  

In this section we will introduce some of the basic concepts of colored Petri 
nets. Colored Petri nets also add another dimension to tokens as well as to 
selection criteria used in determining firing by the addition of different 
token types. Tokens now can represent different functions. For example, we 
can use different tokens to represent operating system calls or different 
classes of jobs. These different tokens can then be used to determine which 
transition of multiple transitions available can operate. 

To represent this graphically we use colored tokens. The set of all possi- 
ble colors for the tokens represents the cardinality of the token set. Using 
this token set we can now redefine the definition of our Petri net, specifi- 
cally, to redefine the firing rules (called link algebra) for all transitions 
defined in our network. For example, in Figure 9.29, there are only two 
token types: black and white. These could represent two different types of 
jobs. Transitions can have priority and time associated with them as before 
and can also be defined to operate on only a specific token type. As also 
shown in Figure 9.29, transition t 1 has a priority and time associated with 
it. Arcs also have additional details associated with them. The arc from Pl to 
t 1 has a condition choose (n, P1), which selects n of one of the tokens to 
release to the transition. Other arcs are used to select only specific types of 
tokens. For example, the arcs leading out of transition t 1 leading to places P2 
and P3 have filters on them to only allow tokens of type black to traverse to 
place P2 and white to traverse to place P3" Conditions on arcs can be as 
complex as one wishes. We could use a complex condition that requires n 1 
of one type of token, n 2 of some other type, and none of some third type 

v 

Hgure 9.29 
Generalized Petri 

net. 

counter white 

t 2 t3 



9.7 Generalized Petri nets 301 

before we release just one token down a specified path. Using these complex 
methods, we can model just about any condition that may occur in a com- 
puter system we are modeling. The reader is directed to [18-20] for details 
about colored Petri nets. 

9 . 7  Genera l i zed  Pet r i  nets 

Generalized Petri nets are used to provide yet another refinement of the mod- 
els discussed up to this point. All of the other models had transitions, which, 
when fired, either were performed instantaneously or within some pre- 
described time period. The time period for a transitions firing, once set, was 
fixed and did not change over the course of the model's lifetime. This is ade- 
quate if we have deterministic timing in our modeled system and there is no 
variability. In reality we know this does not hold for most realistic systems. 
Generalized Petri net models alter this by providing mechanisms for associat- 
ing a random, exponentially distributed firing delay with timed transitions. 

The addition required to meet these new conditions for firing is a func- 
tion defined over transitions in the system. This new function is called rate 
or weight transition function. This function, W ( t  k, ~t), must be defined for 
each transition and state in the network. If the function does not need to be 
defined for all markings, then we can simply refer to the function as W(tk),  
where t k ~ T. The result of this function, W ( t  k, ~t) or W(tk),  is called the 
rate of transition t k in marking ~t if t k is timed and the weight of transition t k 
in marking ~t if t k is immediate. The value of this result is a random variable 
defined by the exponential function defined for the transition around the 
selected mean value. 

Firing of a transition in a generalized net occurs as in a timed net except 
that the time to fire the transition is computed using an exponential func- 
tion defined around a mean value. Each transition in the net must have a 
rate, r, defined for it. The rate is the mean value for use in computing the 
actual time to use in firing the transition. Once a transition is enabled, its 
computed timer value is decremented using a system-determined increment 
value until it either reaches 0 or it loses its enabling tokens. As in the timed 
net, we can use additional information or policies to decide how to use the 
state of the transition when it becomes nonenabled. We could use the 
remaining time in the computed time, reset the same time, or select another 
new time based on the same mean. All have merits based on the type of ele- 
ment being modeled. 

Another difference in this class of system is the concept of system state. 
The state of the system changes from one state to another state based on the 
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firings of all active and ready transitions during this present time interval. In 
Figure 9.30, the initial marking is ~t 0 = (2,0,0). If we use the colored net 
functions and simply change the transition times into rates, we now have a 
generalized Petri net. In the example, transition t 1, once enabled, will com- 
pute a transition rate using the mean rate, r 1, as the value fed into the negative 
exponential. Using the computed rate the timer would initiate decrements 
until it reached the firing point (timer value = 0). We would then use the 
selected token to determine which path to choose in leaving the transition. In 
the example, if the choice function chose white, then we would take the white 
path, resulting in a new system state, ~1 = (1,0,1). 

An important concept with these nets is that they would not compute 
the same state each time they executed from a given state, due to the ran- 
domness of the possible transition firing time. This is a desirable feature for 
such models, as it was when we used this same property for the memoryless 
property for arrival rates and service rates at queues. 

Summary 
Petri nets have been available as a modeling tool since the late 1960s. Since 
this point in time they have gone through many transitions and improve- 
ments. At first they were more of a curiosity than anything else, since there 
were no means available to construct and analyze models easily. Since these 
early days, many computerized tools have become available, allowing us to 
run simulations of a model's structure and to collect performance informa- 
tion. Some specialized Petri net analysis tools have also been developed and 
are widely available. 
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In this chapter we covered a basic introduction to Petri nets, their prop- 
erties, and their modeling capabilities. This basic overview was then fol- 
lowed up by more refinements on the basic model. First, we added the 
concept of transition time to our initial model concepts. We then followed 
this up with the concept of priority of transitions. Next, we introduced the 
concept of token types and transition firing rules in colored Petri nets. 
Finally, we completed our overview of Petri nets with a discussion of gener- 
alized Petri nets and their capabilities. 
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Hardware Testbeds, Instrumentation, 
Measurement, Data Extraction, 
andAnalysis 

In the previous chapters, we covered modeling from several perspectives, 
ranging from simulation to queuing models to Petri nets and to operational 
analysis. For those perspectives, only limited amounts of data are actually 
measured on an actual system. Often, the simplifying assumptions that are 
made so that model results are calculable enable us to obtain only an 
approximate analysis of the system's behavior. Also, the load conditions that 
are presented to an analytical or simulation model often are not tested in a 
real-world situation. These factors have two ramifications. The first is that 
more detailed analysis is difficult because of the lack of adequate real-world 
data. The second is that, even with a detailed model, validation of the 
model and its results must be weak at best. The latter statement is especially 
true for general-purpose simulation models such as those discussed 
throughout this book. Before a simulation can be used to predict the 
performance of any system, the results of its execution must be compared 
against a known baseline, and the simulation must be adjusted accordingly. 
One method of achieving this is through the instrumentation and collec- 
tion of performance data on an actual system. The results of these measure- 
ments are compared with the predicted results from a simulation model of 
the same system. When the results agree to within some predetermined tol- 
erance, the model is considered validated. 

This chapter discusses the use of prototype hardware testbeds as a tool 
for ascertaining actual measures for some of the performance quantities of 
interest, for performing controlled experiments to determine the opera- 
tional characteristics of different parts of a network, and for the validation 
of software simulation models. In particular, we will describe the imple- 
mentation of a hardware testbed, define the measurable quantities that we 
are interested in, derive operational relationships for nonmeasured quanti- 
ties, and give some results. 

305 



306 Hardware Testbeds, Instrumentation, Measurement, Data Extraction, and Analysis 

The construction of a special-purpose testbed can be costly if done solely 
for the purpose of estimating the final system performance. Often, however, 
a proof of concept prototype is constructed to test and validate design 
assumptions, to gain experience with the system, and to provide a vehicle 
for advanced development. Given that a prototype system often exists, it is 
advantageous to also consider instrumentation and test provisions in the 
prototype design. When performed within the scope of the prototyping 
effort, the relative cost of special performance measurement facilities 
becomes more acceptable. Some important facilities, which we will describe 
for a specific example later in this chapter, could include a system-wide time 
base for obtaining synchronous measurements, time-tagging hardware or 
software for timestamping events, counters for recording the number of 
occurrences of important events, and scenario drivers that can inject a 
known load into the system being modeled. Of course, it is desirable to 
make these facilities as unintrusive as possible so that their use does not 
interfere with the normal operation of the network under question. In some 
cases, portions of the final system software configuration may be substituted 
by special-purpose measurement facilities. The remainder of this chapter 
will discuss a prototype network configuration and will illustrate the tech- 
niques employed to measure its performance characteristics. 

The network that we will be discussing is situated in a prototype testbed 
that is instrumented for data collection and can generate network traffic. 
Each testbed node contains a host controller that can emulate a known traf- 
fic load or generate any specified pattern of message traffic. Experiments 
can be repeated so that different measurements can be taken or so that a 
specific communication-related parameter can be varied. Thus, the proto- 
type system's loading and recording mechanisms can be controlled in order 
to observe different network performance phenomena. 

In constructing a prototype testbed such as the one discussed here, it is 
desirable to keep hardware development costs at a minimum, to provide a 
flexible system so that changes in network design can be accommodated, 
and to provide the general-purpose driver capabilities discussed previously. 
One method of keeping hardware development costs down is to use off-the- 
shelf hardware components as much as possible. All node components that 
are not network specific can be implemented using standard board or sys- 
tem-level products. For example, the host processor for a node could be 
implemented with a single board computer or even with a personal com- 
puter. 

Flexibility in the design of the network-specific components is essential 
for minimizing the impact of the inevitable design changes that occur dur- 



Hardware Testbeds, Instrumentation, Measurement, Data Extraction, and Analysis 307 

ing the early network design and prototyping phase. One useful method for 
achieving a flexible prototype design is to reduce the speed of operation of 
the network. This allows some functions of the network to be implemented 
with more general-purpose components, such as a programmable micro- 
controller or state machine. After the prototype design has been analyzed 
and a near-final configuration decided upon, these functions can be transi- 
tioned into higher-speed implementations. The assumption here is that a 
uniform scaling of the speed of operation across all network-sensitive com- 
ponents will yield results that can be scaled back up to reflect the actual sys- 
tem's performance. This may not hold true in the strictest sense, such as 
where hardware characteristics change at higher speeds, but it will generally 
hold if the functionality of the network as a whole does not change. 

In order to provide general-purpose network driver and data collection 
capabilities, it is almost always necessary to have a detached host, whose 
only function is to generate network traffic and collect results. Also, it may 
be necessary to design in additional resources, whose only functions are to 
assist in traffic generation of data collection. It is important to adhere as 
much as possible to a layered network standard such as the International 
Organization for Standardizations model for Open Systems Interconnec- 
tion reference model (ISO's OSI model). By doing this, changes can be 
more or less localized to the level that is most affected, whereas the other 
levels can maintain their functionality. Thus, the same standards that pro- 
vide a degree of interoperability among networks of different types also pro- 
vide us with a useful template for building a flexible prototype system. 

The hardware testbed used here, for example, consists of several network 
nodes connected with a token bus LAN. Each node contains two single- 
board computers: one that implements the simulated host functions (the 
host) and provides for network loading and data collection and one that 
provides high-level control functions for the network hardware (the input/ 
output processor, or IOP). Additionally, each node contains a network 
adapter, whose function is to implement the network protocol. 

In this particular case, the network testbed models a general-purpose 
serial communication network. With a stable host and IOP design, a num- 
ber of different network types can be implemented by using different net- 
work adapters and front-end hardware. The network that we will examine 
uses a token access protocol. In this protocol, the node that holds the token 
has the option to transmit data, if there is message traffic queued for trans- 
mission by the host processor. If the node does have a message to send, it 
broadcasts the message over the communication bus. All other nodes listen 
for their identifying address in the message header and accept the message if 
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it is destined for them. After the transmission of a message has been com- 
pleted, or if there is no message to send, the token is passed to the next node 
on the network in a round-robin manner. The next node may or may not 
be physically adjacent to the current node. The overall structure of the net- 
work testbed is shown in Figure 10.1. 

A number of nodes, each with a network adapter, are attached to a linear 
token bus and also to a data analysis computer. During a test run, the net- 
work bus is used to transfer the simulated load. At the completion of the 
test, each node transmits its collected data to the data analysis computer for 
synthesis and analysis. Each node within the network testbed has an archi- 
tecture, as shown in Figure 10.2. 

The host computer serves two functions in this architecture. The first is 
to implement part of the layered protocol and to provide a simulated mes- 
sage load to it. The second is to collect the necessary performance data for 
subsequent analysis. Figure 10.3 shows the general structure of the host 
software that implements these functions. 

The IOP controls the flow of message traffic onto and off of the network 
through the network adapter. It also controls the DMA channels, provides a 
standard interface to the host computer, and collects network-specific per- 
formance statistics. Figure 10.4 shows the IOP's functional architecture. 

As mentioned earlier, it is advantageous to have the testbed components 
conform to a layered protocol standard. The testbed under discussion here 
implements levels 1 through 4, and part of level 5, of the OSI model for 
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layered protocols. Figure 10.5 shows how the various components map to 
the standard. In the layered model shown in Figure 10.5, the physical level 
implements the electrical and physical functions that are required to link 
the nodes. The data link layer provides the mechanisms necessary to reliably 
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transmit data over the physical link. Level 3, the network level, controls the 
switching of data through the network. In networks with multiple transmis- 
sion paths, the level 3 function controls over which links a message will be 
transferred. At the transport level, an error-flee communication facility 
between nodes is provided. Session control involves the initiation, mainte- 
nance, and termination of a communication session between processes. 
Level 6 provides any data translation, compaction, or encoding/decoding 
services that may be required by the application. At the top resides the 
application, which is any process that uses the communication facilities. 

For the example network, levels 1 and 2 provide physical connection via 
coaxial cables, the serialization and packing of data, and the synchroniza- 
tion and detection of data onto and off of the network. Since the network 
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discussed here is a global bus, there is no need for the switching functions of 
level 3. In cases where this is a factor, however, the function would be 
implemented in the IOE Transport control is best implemented in the IOP, 
because it relieves the host of performing error detection and retransmission 
and of managing individual message packets. Part of level 5 is implemented 
in the host so that messages can be assembled and queued for transmission 
to other nodes. Mechanisms for establishing interprocess connections are 
not implemented. 

The network that we will study as an example requires the acknowledg- 
ment of each message packet from the receiver. A missing or bad acknowl- 
edgment results in the retransmission of the packet in error. Messages are 
addressed to logical process identifiers, which are mapped to each node 
upon initialization. 

In the testbed model, a sequence of messages is treated as a series of 
time-ordered events. The event times are generated in the host according to 
a probability distribution that is representative of the desired loading char- 
acteristics. The time of message generation is recorded and collected for 
postrun analysis. As a message is transferred through the protocol layers and 
across the network, it is time-tagged, again for later analysis. In the follow- 
ing section, we will illustrate the use of these time tags and other collected 
data from a run, derive the performance evaluation parameters of interest, 
and show some experimental results that exemplify the techniques. 

Derivat ion of per formance 
evaluat ion parameters  

As mentioned earlier, the message traffic for the network under examination 
is generated in the host. A queue of messages awaiting transmission is 
implemented in the node memory shown in Figure 10.2. A message is, 
therefore, said to enter the network from the host processor and to exit 
through the same. 

After entering the network, the message is broken into a series of pack- 
ets, each of which is transmitted serially by the network adapter under the 
control of the IOE Only one network adapter may have control of the bus 
at any one time (i.e., only one may transmit at a time). This serial access is 
controlled by the circulating token. Thus, the network represents a single- 
server queuing system, where the service provided is the message transmis- 
sion. All messages in the system are of the same priority so that the system 
has only one customer class. 

I Chapter 10 



312 10.1 Derivation of performance evaluation parameters 

y 

Figure 10.6 
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Because access to the network is serial by node and because the only 
server in the system is the network itself, we can consider all message packet 
arrivals to the server as originating from a single queue. Thus, this single 
conceptual queue contains the combination of all messages in the individ- 
ual message queues, ordered by time. Figure 10.6 illustrates this concept. 

For this example, we will assume that messages arrive at the server 
according to a Poisson distribution. Thus, the probability that we get n 
arrivals at host i in an interval of length t is given as: 

P(n arrivals in interval t ) -  (~it)ne-kit 
n! 

(10.1) 

where ~i is the average interarrival rate at host i. For the Poisson distribu- 
tion, the time between arrivals is exponentially distributed, and the interar- 
rival time for messages at host i is generated as" 

Ai --1/~ i (10.2) 

The average interarrival time for the conceptual single network server, 
then, can be represented as: 

k 
Ai -- E l/~i (10.3) 

i=1 

We can represent the state of the system during the observation period as 
the number of messages awaiting transmission through the network. 
Because of the property of the Poisson arrival process whereby the probabil- 
ity of no more than one arrival or completion in any time period 
approaches one as the interval length approaches zero, the state transitions 
satisfy the one-step assumption. That is, the system state only transitions to 
neighboring states. A state is denoted, n(t), and defines the number of mes- 
sage packets awaiting transmission at time t. 

We will perform an analysis that is based upon the operational analysis 
techniques discussed in Chapter 7. The quantities for this evaluation are as 
follows: 
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W--Waiting time for a message packet measured from arrival into 
the network queue until the completion of transmission 

B---Busy time for the network defined as the total time that there is at 
least one message packet in the system 

These quantities are derived from measurements of three basic quantities 
measured by instrumentation hardware and software in the testbed. The 
basic measured quantities are as follows: 

A(n)~Number of arrivals into the system when there are n message 
packets in the system 

C(n)--Number of completions when there are n message packets in 
the system 

T(n)~Total amount of time when there are n message packets in the 
system 

Define the total over all n of each of the previous quantities as follows: 

k 

A= ~A(i) (arrivals) 
i=0 

(10.4) 

k 

C=~C(i) (completions) 
i=0 

(10.5) 

T= ~T(i) (observation period) (10.6) 
i=0 

In the previous summations, k represents the largest number of message 
packets awaiting transmission during the observation interval. If we assume 
flow balance, the total number of arrivals will equal the total number of 
completions during the observation period. The waiting and busy time 
defined earlier can be defined in terms of these quantities as: 

W-~iT(i)  (10.7) 
i=0 

k 
B-~T(i)=T-T(O) 

i=l 
(10.8) 

Along with these measures, we obtain three additional measures: mes- 
sage transmission time (tx), message arrival time (ta), and message reception 
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time (tr). These measures are shown in relation to a message transmission in 
Figure 10.7. 

As in Chapter 7, we define some performance parameters in terms of the 
basic operational quantities. These are summarized as follows: 

Mean queue length: N = W~ T (10.9) 

Mean response time: R -  W / C  (10.10) 

Utilization: U =  B I T  (10.11) 

Mean job service time: S -  B/C (10.12) 

Network throughput: X -  C/ T (10.13) 

Network service time: S - ~ tn/C where t n - t r - t~ 
All 

messages 

(10.14) 

The first five quantities are standard operational analysis results. The last 
relates to the performance of the transmission mechanisms, ignoring the 
queue wait time. 
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An analysis run is performed on the testbed by initializing all network hosts 
with a known arrival rate generator and then by using the generated mes- 
sage traffic to load the network while collecting the operational measures 
defined previously. After the run, the measures are combined and the 
desired performance measures are calculated. 

The example test performed on the network testbed was formulated to 
give an indication of when, for a certain network configuration, the net- 
work becomes saturated (i.e., the network utilization approaches 1). For the 
example shown here, packet lengths of 200 and 400 bytes were tested with 
three nodes generating network traffic. The arrival rates at all three nodes 
were set up to be equal, and this rate varied from approximately 600 packets 
per second to approximately 15,000 packets per second. A test run was 
made for each of several arrival rates in the interval. 

The mean queue length of packets awaiting transmission over the net- 
work for various arrival rates is shown in Figure 10.8. The values for each 
run using the measured values for T(i) and the queue lengths at each arrival 
time are found through a combination of equations (10.6), (10.7), and 
(10.9). Similarly, the mean response time was calculated using equations 
(10.5), (10.7), and (10.11) and is plotted in Figure 10.9. 
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Figure 10.9 
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The utilization curve, shown in Figure 10.10, illustrates the percentage 
of the available data bandwidth that is being used to transmit message pack- 
ets. From this graph, it can be seen that the particular network that we are 
analyzing approaches saturation (i.e., 100 percent utilization) rather quickly 
for the arrival rates and packet sizes shown. 
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Figure 10.11 shows the effect of an increased arrival rate on service time. 
In this case, we have defined service time as the system busy time per com- 
pletion, where the busy time considers the time a packet spends in the 
queue as well as the time it spends in transmission. When the system is sat- 
urated, however, there is always a packet ready to transmit, and so the queue 
fall-through time is hidden by this fact. Figure 10.12 illustrates this effect, 
which is known as pipelining. 
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Figure 10.13 
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In Figure 10.13, the network throughput is plotted against the system 
arrival rate. The results show that after saturation, network throughput for 
this type of network remains constant. This is an important property for 
some systems, especially since some network protocols cause degraded 
throughput under increased system load. 
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The final graph, shown in Figure 10.14, shows the time for a message to 
propagate through the network. This time does not include the queue wait 
time. When the system is lightly loaded, this time will include the time for 
the token to travel around the network. Under heavy load, the time 
includes the delay associated with transmissions of message packets at other 
nodes. 

This example has served a dual purpose: to illustrate the usefulness of 
hardware modeling in certain cases and to show the application of some of 
the operational analysis techniques discussed in Chapter 7. For hardware 
modeling, assumptions about the network behavior can be validated. Oper- 
ational analysis enables us to calculate quantities of interest that either are 
not directly measurable or that are too difficult to measure without disturb- 
ing the actual operation of the network itself. 

Genera l  m e t h o d s  of  d a t a  e x t r a c t i o n  

In the previous section we examined a system used to test system concepts 
before the final target system is constructed. Often we are faced with analyz- 
ing an existing system. This requires the computer systems analyst to 
develop methods for extracting information from a running system and for 
running experiments on an existing system. 

There are three methods for extracting information from an existing sys- 
tem: hardware monitors, software monitors, and accounting software (e.g., 
the operating system). Measurements for performance analysis are typically 
extracted using either hardware or software monitors specifically set up for 
the measurements of interest. Depending on what parameters are of inter- 
est, we may be able to measure them directly, or we may need to obtain the 
measures from intermediate measurements. 

Most computer systems, even your PC, provide means to determine 
resource utilization and a variety of other useful measurements. If the sys- 
tem is a timesharing system, one can typically determine how much CPU 
time was used by a process, how much memory it consumed, and possibly 
even how much time was spent in I/O processing. Information such as the 
number of users logged on to the system, number of I/O accesses per- 
formed by a user, page faults in memory, and active time for a process can 
be obtained. 

A problem with software developed for system accounting purposes is 
that it may not provide information concerning the system software com- 
ponents, such as the operating system. In many systems, the time spent by 
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the operating system doing its tasks may actually represent the lion's share of 
resource utilization. For example, most PCs will spend the majority of their 
time in the operating systems idle process. Due to this limitation most sys- 
tem accounting packages will not suffice in aiding us in analyzing a system's 
performance. Some of the newer operating systems provide users with many 
more tools for determining system resource utilization. For example, the 
task manager of most of the Microsoft products provides fairly good capa- 
bilities to monitor resource use and system performance. This package, 
however, is more closely related to software monitoring than to accounting 
software. 

Software monitors utilize a collection of code fragments embedded in 
the operating system, or applications program, to gather performance data. 
The monitoring software must be kept to a minimum in order that its 
impact on the running system being measured is minimal. The main modes 
to construct software monitors use either a sampling or event approach. In 
the sampling approach, monitor code fragments are invoked periodically to 
determine the status of the system. Each of the monitoring code fragments 
has a specific function. One may be examining memory use, and another, 
CPU or I/O. Using the retrieved information, the monitor can over time 
construct a fairly accurate image of the systems behavior. The problem with 
sampling is that some parameters or events of interest may be missed if the 
sampling period does not fall into their path. The advantage of this 
approach, however, is its simplicity and lower systems impact. By changing 
the sampling frequency the load on the system can be increased or reduced 
as needed. The main design issue when developing a sampling scheme is to 
determine the appropriate sampling frequency and measurement points 
within the system. 

The event design approach for a software monitor requires that the 
designers of the monitor have an understanding of the events within the 
system with which they can synchronize monitoring. For example, CPU 
task switching is an important event, as is I/O and memory allocation and 
deallocation. In order for the events to be monitored, the operating systems 
code must be altered. The code must be adjusted so that when the event 
occurs, required information can be extracted by the operating system and 
recorded to a file. For example, we may wish to record what process was 
allocated or deallocated memory, what process is acquiring the CPU, and 
the times associated with these events. The event files can then be processed 
at some later time to extract the performance measures for the system. If  we 

can define all events of interest and provide handles into the operating sys- 
tems code to extract information about them, then we can construct a fairly 
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good model of the system under study. Using event traces one can deter- 
mine the duration of every CPU service time and the resources consumed 
during each of these cycles. 

If we do not have access to the operating systems code, then this 
approach is not feasible. One could augment applications code and be able 
to extract timings for this code. This would provide at least a measure of the 
duration of time an application holds a resource and can be used as a means 
to assess system performance, if the application is designed appropriately. 
The problem with all these approaches is that they will cause their own 
impact on systems performance. The sampling software will consume 
resources and cause additional delays to be added to the performance mea- 
surements, possibly causing them to indicate erroneous values. Studies have 
shown that a software monitor can consume as much as 20 percent of the 
systems resources, making the performance results questionable. If we 
choose the type of events carefully and limit added code to the minimum 
required to capture information, the overhead can be dropped to approxi- 
mately 5 percent. The tradeoff is fidelity of information versus the overhead 
of the measurement software. 

Besides the problem with impacting system operations, software moni- 
tors have other problems. The trace method of data collection can lead to 
large volumes of information to store and process, making it hard to use 
effectively. Software monitors also must be configured to fit into a system's 
architecture, making them one of a kind implementations. Due to this lim- 
itation, there are no commercially available software monitor general archi- 
tectures. In addition, implementing software monitors requires significant 
expertise in operating systems coding, which is not an everyday capability 
for most programmers. Due to this limitation, this technique is not used 
very often. We are left to use the monitoring capabilities delivered with an 
operating system. 

Hardware monitors provide another means to access performance infor- 
mation. A hardware monitor is composed of a collection of digital hardware 
connected to the system under measurement. For example, an oscilloscope 
is a general-purpose hardware monitoring device constructed to allow for 
the monitoring of hardware activities. Hardware monitors can be as simple 
as a few gates to entire computer systems including all the peripherals. 
Hardware monitors are readily available from commercial sources. 

Hardware monitors must be connected in some way to our system in 
order to collect data, which are in the form of signals. The points we attach 
the hardware monitor to represent our test points or probe points. The test 
points are places in the computer system under examination accessible for 
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measurement. For example, we may wish to probe the interrupt lines of the 
CPU, so we can determine when task switches are occurring. We may wish 
to examine specific memory locations to test when values cross some point 
or are altered. By attaching the monitor's test probes at these points, we can 
observer systems behavior over some time flame. We can also use multiple 
test points in conjunction with each other to synchronize when to extract 
signals based on the measurement or detection of some other test point. 
The measurements are typically done without adding any additional over- 
head to the measured system, a distinct advantage over the software moni- 
toring approach. 

A difficulty with hardware monitors is knowing when to use them and 
where to place the test points. For example, where do you measure to know 
if a CPU is busy? How do we know it is busy with an operating system 
function or an application? Most systems vendors have developed their 
components and systems with ready-to-use monitoring points to aid in sys- 
tem debug and repairs. This makes it relatively easy to determine where to 
place our test points. If these test points are not available, then hardware 
monitoring will be very difficult to implement. 

The monitoring devices must have the capability to collect measured 
test point data and store these data for future processing and analysis. This 
is necessary so that we can determine the utilization of tested components 
within a system: the number of measured units that pass a point over some 
time frame--for example, how many jobs are presented to the CPU for 
processing over some period of time, and what percentage of this time the 
CPU was busy or idle. 

The limitation with hardware monitoring is that we can only measure 
hardware signals and possibly the contents of registers or memory (if 
allowed). We typically will not know what the operating system is specifi- 
cally doing at the point we are measuring. Due to this limitation, hardware 
monitors are usually used in conjunction with some form of event trace 
software in order to allow for later interpretation of hardware operations. 

Testbed  and m o d e l  w o r k l o a d s  

The term workload defines the load placed on a real system (typically mea- 
sured or observed on a computer system while it runs normal operations), 
while the term test or model workload denotes a computer system's load con- 
structed and applied to a system for performance studies (typically synthe- 
sized using characteristics from a real workload). For most modeling 
projects the use of a synthetic workload makes more sense, since we can 
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control the load applied to the experiments. By controlling the load applied 
to a computer system under analysis, we can possibly predict the outcome 
of the experiment or force the experiment to test specific components of the 
system. In addition to this reason, synthetic workloads do not possibly con- 
tain real information, which may be sensitive or valuable to the system 
under study, and its compromise or loss would be significant. Once a valid 
synthetic workload has been developed, it can be reused to study additional 
systems. An example is the Transaction Processing Consortium (TPC) 
workloads developed to study database systems. These TPC workloads have 
been used by vendors and customers to study various database systems and 
to determine which is better for different applications. Some of these work- 
loads have been specialized for data mining or for distributed databases and 
other specialized applications. 

To study computer architectures, a variety of instruction workloads have 
been developed. These are focused on low-level operations and consist of 
mixes of loads, stores, comparisons, branches, additions, subtractions, float- 
ing-point operations, multiplications, divisions, shift operations, logical 
operations, and register operations. These instruction mix workloads have 
become standardized for specific architectures such as PCs. 

Other workloads do not focus on low-level operations but wish to exam- 
ine more coarse-grained architectural concepts. These would be developed 
using high-order languages and would be designed to test things such as file 
transfer, task switching, memory management policies, and other operating 
systems components. 

Some popular benchmarks include the TPC benchmarks described pre- 
viously for examining database systems, the Sieve benchmark used to exam- 
ine PCs and microprocessors, Ackerman's function for testing procedure 
call mechanisms in computer systems, Whetstone kernel developed to test 
low-level assembly-level operations, the Linpack package to test floating- 
point operations, the Drystone benchmark for testing low-level integer 
operations, and the Spec benchmark suite for measuring engineering-type 
applications (e.g., compilation, electronic design, VLSI circuit simulation, 
and complex mathematics manipulations such as matrix multiplications) on 
a computer system. 

Given that all of these and other workloads exist, modelers must still 
determine which to use or which method to use in constructing their own 
workload for a given modeling project. There are four main considerations 
applicable when selecting a workload for a project. They are the computer 
systems services exercised by the workload, the level of detail to be applied, 
closeness to realistic load, and timeliness. 
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The most important component of the workload selection is to deter- 
mine the services one wishes to examine. Making this list of services can be 
very daunting and time consuming but is time well spent. First, one must 
determine the system under test. This represents the complete set of com- 
ponents making up a system being studied. Often we may be focusing on 
some single component or some small set of components for comparison, 
called the components under study. For example, an operating system 
design team may be interested in different process scheduling algorithms on 
the total operating systems performance. The determination of the system 
and its components is a very important step in workload development and 
should not be trivialized. 

An example will illustrate the service's concept. We are interested in this 
example: comparing an off-line backup paging storage system using disk 
drive arrays (e.g., such as one would find in a large database log subsystem). 
The system consists of several disk data systems, each containing multiple 
disk drives. The disk drives have separate read and write subsystems. Each 
subsystem uses fixed magnetic heads for these operations. If we specify the 
architecture from the highest level and work down to lower levels, the serv- 
ices, factors, metrics, and workloads are defined as follows: 

1. Backup system 

• Services: backup pages, backup changed pages, restore pages, 
list backed-up pages 

• Factors: page size, batch or background process, incremental 
or full backup 

• Metrics: backup time, restoration time 

• Workload: a database system with log pages to be backed u p ~  
vary frequency of logging 

2. Disk data system 

• Services: read/write to a disk 

• Factors: type of disk drive 

• Metrics: speed, reliability, time between failures 

• Workload: synthetic program generating transaction-like disk 
I/O requests 

3. Disk drives 

• Services: read record, write record, find record 
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• Factors: disk drive capacity, number of tracks, number of cyl- 
inders, number of read/write heads 

• Metrics: time to find record, time to read record, time to write 
record, data lost rate, requests per unit time 

• Workload: synthetic program generating realistic operations 
requests to the disk drives 

4. Read/write subsystem 

• Services: read data, write data 

• Factors: data encoding technique, implementation technology 

• Metrics: I/O bandwidth, density of media 

• Workload: read/write data streams with varying patterns 

5. Read/write heads 

• Services: read signal and write signal 

• Factors: composition, head spacing, record gap size 

• Metrics: magnetic field strength, hysteresis 

• Workload: reads and writes of varying power strengths, disks 
moving at various rotational speeds 

After we have completed the specification of the system and the compo- 
nents of interest, we need to determine the level of detail required in pro- 
ducing and recording requests for the defined services. A workload 
description can be as detailed as providing definitions for all events in the 
system or can simply be an aggregate or generalization of this load. Some 
possibilities for the detail may be average resource demand, most frequent 
request, frequency of request types (e.g., 25 percent reads and 75 percent 
writes), a timestamped sequence of specific requests, or some distribution of 
resource demands. 

Typical modeling projects begin by using a variant of the concept of 
most frequently requested service. For example, in a transaction processing 
system we may use a simple debit-credit benchmark from the TPC bench- 
marks. Such a selection would be valid if a particular service is requested 
much more than others. A second alternative is to be more specific and con- 
struct a workload by selecting specific services, their characteristics, and fre- 
quency. The Linpack package is such a workload. It selects very specific 
computer operations in very prescribed patterns to test specific components 
of the system. The next alternative is to construct a time stamped record, 
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where each record represents a specific request for a specific service along 
with details of the actual access (such a description could be constructed by 
taking a trace of all activities of an existing system). In most cases this type 
of workload may be too difficult to construct and to validate for use in all 
but the most complex modeling projects. The aggregate resource demand 
approach is similar to what we would expect to see in an analytical model. 
We look to characterize each request for services as averages or distributions. 
For example, each request may be characterized as requiring 50 units of one 
particular resource and 25 units of some other and making these requests 
every 1,000 units of time. 

No matter which of these approaches we use, the modeler must deter- 
mine if the selected load is representative of the real system load. Typically 
we will be interested in determining if the service request's load has similar 
arrival characteristics, resource demands, and resource utilization demands 
as the real load. 

Finally, a developed workload should faithfully model the changes in use 
patterns in a timely manner. For example, the TPC benchmarks have con- 
tinued to evolve to meet the needs of changing database systems design and 
use. The original TPC workloads were designed for the "bankers" database 
problem. That is, they simply were looking to provide transaction loads to 
well-structured, simple, flat relational database specifications. They were 
record oriented and had no dimensions beyond the simple relational model 
of the day. These have evolved now to include benchmarks for the new 
object relational databases and for data warehouses and data mining sys- 
tems. Other important considerations in developing a workload include 
repeatability, external components impact, and load leveling. Repeatability 
looks at a workload's ability to be reproduced faithfully with little added 
overhead. External components impact looks to capture and characterize 
impacts on the system under study by nonessential components. Finally, 
load leveling may be of interest if our study wishes to examine a system 
under best-case or worst-case scenarios. 

10.5 Experimental design 

Once we have a testbed to study a computer system and a workload to load 
the testbed with, we need to design experiments that will help in discover- 
ing the performance limitations we as modelers are focused on. A correct 
experimental design will provide the maximum analysis information with 
the minimal number of experimental runs required. Some terminology 
must be introduced to make this discussion meaningful. A performance 
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variable is a measured outcome for an experiment for a single component, 
process, or possibly an entire system. A factor is a variable that may have an 
impact on the performance variables and typically represents items that can 
be varied during an experiment. The steps are values a factor can take on 
during an experimental sequence of runs. For example, a CPU's memory 
may be adjusted from a minimum value to a maximum value in some dis- 
tinct number of discrete steps. Each of these steps represents a value for the 
factor under study. Factors need not all be important. Typically, experi- 
ments on computer systems will have multiple factors, some very important 
(such as CPU speed) and others only peripherally important (such as termi- 
nal speed). Experiments may be repeated and are then referred to as repli- 
cants. An entire performance study for a particular system consists of a 
number of discrete experiments when taken together this set of experi- 
ments constitutes the experimental design. Factors may have a correspon- 
dence to each other and must be defined as having a dependency. 

Experimental design comes in a variety of ways. Three typical designs 
are the simple, fractional factorial, and full factorial designs. In a simple 
design, we start with a fixed configuration and vary one factor at a time to 
determine how this factor impacts performance. For example, when mea- 
suring the performance of a virtual memory management component, we 
may wish to study systems design by varying the size of the available pri- 
mary memory. By running separate experiments, each with all conditions 
held stable except the memory size, we may be able to determine some use- 
ful information concerning the virtual memory management systems opera- 
tions. The total number of experiments required for a simple design is 
simply the sum of the number of experiments for each factor. For example, 
if we wish to study the memory management system with three different 
memory sizes, using three separate CPUs and three different disk drives 
using three workloads, we would need: 

N - (3 memory sizes)+ (3 CPU types) (10.15) 

+ (3 disk drive models) + (3 workloads) - 12 

total experiments to be run. This form of experiment would give us some 
information but may not indicate to us how the various elements interact 
with each other. To determine how the factors interact we would need to 
run either fractional factorial experiments or full factorial experiments. In 
the fractional factorial experiments we may wish to examine only a few of 
our factor terms actively against each other. In this case we would require 
additional numbers of experiments. In our example, if we are interested in 
how the CPUs interact with the memory, we would be required to test all 
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combinations of these against each other. This would require additional 
experiments to be run as multiples of each other. For our simple example we 
would now require: 

N - (3 memory sizes ) (3 CPU types ) (10.16) 

((3 disk drive models ) + (3 workloads)) - 54 

experiments to be run versus the original 12 for the simple design method. 
For a full factorial experimental design we simple vary all of the factors 
against each other. In this case we would now require that we perform: 

N -  (3 memory sizes)(3 CPU types) (10.17) 

(3 disk drive models )(3 workloads ) = 81 

specific experiments to look at how all of these factors affect each other over 
their entire range of values. 

When doing experiments using factorial designs it is also important to 
determine how necessary the various factors are in relation to each other. 
This is typically determined using allocation of variation. In this method 
the importance of a factor is measured by the portion of the total variation 
in the performance variable explained by this factor. For example, if two 
factors explain 90 percent and 5 percent of the performance variation, 
respectively, then the second term can be considered to have little effect on 
the performance variable. The sample variance for a measure is found as: 

#exp 

Sample variance-s 2 - ~ ( f / -  f ) 2 / ( # e x p -  1) (10.18) 
i=1 

where f i s  the mean response time for all of the experiments combined for 
our measured performance variable. Many more such correlations between 
information must be examined and understood if we are to make sense of 
the performance information being returned by our models. More details 
on how to interpret such information can be found in the references. 

Data presentation 

If one cannot prepare and present the results of a performance study clearly 
and simply, then the study would be deemed a failure, no matter how much 
effort was put into the work. The aim of every performance study is to aid 
the analyst and associated client in making a decision regarding the com- 
puter system being studied. To aid in this analysis the modeler must possess 
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the ability to determine what medium is best to use in making specific 
information available~for example, words, graphs, pictures, charts, anima- 
tion, or some other means amenable to the domain being studied. 

The old saying that a picture is worth a thousand words is one the mod- 
eler must take to heart and strive to realize. Graphics are one of the best 
means to convey differences between studied components or systems. It is 
relatively easy to see that one CPU performs better than another when they 
are shown clearly in graphical form and the graph clearly depicts the relative 
performance differences. There are many kinds of graphics available to 
depict such comparisons~for example, line graphs, bar charts, pie charts, 
histograms, and Gantt charts. In all cases it is critical that we understand 
what is being plotted and why, in order that we select the correct variables 
and styles in which to represent them. 

One such value that impacts the choice of which chart to use is the type 
of variable displayed. Is the variable being plotted quantitative or qualita- 
tive, is it ordered or unordered, is it discrete, or is the value continuous? 
Qualitative variables are those where there is no specific measure present, 
merely a category. For example, microprocessors, servers, and mainframe 
computers are all classes of computers, but there is no measured value when 
we use these terms alone. Quantitative values are those that we can measure 
explicitly~for example, the number of instructions per second or the num- 
ber of I/O requests per period. We would probably use a line graph to show 
the time-based relationship between a continuous set of variables. On the 
other hand, if we had discrete value variables, we may decide to use a histo- 
gram or bar chart to depict these. 

When deciding what form to use it is important that the modeler keep a 
few important concepts in mind. First, choose a reporting mechanism that 
will require minimum effort from the reader. The differences you wish to 
depict should be clearly defined and displayed so that the client will have no 
problem coming to the same conclusion that the modeler did after the 
experiments were run. Make sure that all pertinent information is provided 
on the graph so the reader need not look elsewhere to fill in the blanks. 
Keep it simple. Even though the second item indicated to put all pertinent 
information on the graph, one also must make sure that no nonuseful infor- 
mation finds its way onto the graph. Try to use standard methods of 
describing and displaying information. For example, the origin of the graph 
is expected by most people to be labeled as the zero point in both dimen- 
sions. Finally, try to avoid ambiguity. For example, make sure all axes are 
labeled clearly (e.g., use names, not symbols), show the scales used clearly 
(e.g., log scales, decimal, etc.), and use clear differences to depict different 
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values of variables (e.g., CPU type 1 is red, CPU type 2 is black, etc.). The 
scales being used should be set so they clearly depict the differences. This 
last important concept should not be overlooked. Choosing an inappropri- 
ate scale may make a claim look better or worse than it really is. The inter- 
ested reader is pointed to texts on statistics that focus on data representation 
for more complete discussions and examples of some of these concepts. 

Summary 

In this chapter we introduced many new concepts. The first was the use of 
testbed systems to allow the modeler to construct subsets or even entire sys- 
tems to be used as environments in which to iron out the performance 
issues with new or existing designs before they are built or before an existing 
system is altered. This presentation was then followed by an example of a 
network testbed used to analyze protocols. This example helped the reader 
to understand the ways in which a testbed can be effectively used as part of 
a larger modeling effort. 

This discussion was then followed by a general discussion of measure- 
ment techniques applied within testbed and existing systems. The primary 
techniques described are hardware monitors and software monitors. The 
benefits and shortfalls of each technique were discussed along with exam- 
ples of how they may be applied within a modeling project. 

The discussion then changes to looking at the development of work- 
loads to drive testbed environments. We focus on the types of workloads 
and how the modeler decides on which level of detail to focus the workload, 
how to determine the system and components the workload is to stress, and 
what types of services are to be mimicked. This is then followed by a pres- 
entation dealing with structuring the workload as either an average load, a 
real load, or something in between. We follow this up with a discussion of 
testbed result presentation and some concepts concerning good practice in 
presenting performance study outputs to the client. 
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System Performance Evaluation Tool 
Selection and Use 

Once we have decided to perform an assessment of performance for some 
target computer system, we still must decide which of the techniques we 
have discussed is the most appropriate for the proposed performance study. 
Many different considerations must be taken into account before we make 
such a decision. 

I1 .1  Tool  se lec t ion  

The four techniques for computer systems performance evaluation include 
analytical modeling, Petri net modeling, simulation modeling, and empiri- 
cal or testbed analysis. Depending on the criteria placed on the computer 
systems analysis, some rough selection metrics can be determined. The 
most important criterion deals with the stage of the computer systems life 
cycle. For example, measurements are only available as a modeling possibil- 
ity if the system already exists, or something similar exists. On the other 
hand, if it is a new computer system, which has not been built, then analyt- 
ical modeling, Petri nets, or simulation modeling makes more sense. If we 
are in the earliest phases of the life cycle, when we are examining tradeoffs 
on many components, we may wish to use analytical modeling, since it can 
provide relatively quick answers to tradeoff questions, allowing us to deter- 
mine early on if a subset of n alternatives is best for more detailed modeling. 
Once we have completed this rough analysis, and narrowed our choices of 
alternatives to some smaller subset, we would probably wish to apply Petri 
nets to further refine our choices. Petri nets add the ability to model and 
trade off concurrency, conflict, and synchronization, something impossible 
to accomplish with analytical modeling. Once we have completed our anal- 
ysis using Petri nets and have further narrowed our choices to only a few 
components, we could next look toward simulation. Simulation provides 
the ability to produce very detailed models of a target system or just some 
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specific contentious component. The goal at each of these early stages of a 
computer system's design and development is to narrow the number of 
choices to allow us to optimally choose the best architecture and compo- 
nents for a given computer system's applications requirements. Finally, once 
the system is constructed, we would apply empirical modeling. This would 
allow us to verify that our early modeling was correct and to possibly iden- 
tify areas where our new system could be further refined and improved 
before delivery to a customer. 

The next criterion for consideration when deciding on which modeling 
tool to use is the time we have to do the modeling task. In most situations 
a model is requested because some problem has occurred, and an answer to 
it was needed last week. There is a saying that time is money, and in com- 
puter systems modeling it is no different. If we have all the time in the 
world to perform our evaluations, then we probably would walk through 
each model, refining our analysis as was defined under the criterion of the 
time stage. The problem is that we typically do not have such a luxury. If 
time is short, then we typically can only use analytical or Petri net model- 
ing, with analytical modeling winning out if time is very short. If time is 
important, but not critical, then we would look at Petri nets and simula- 
tion as being the next models of choice. Petri nets take less time to develop 
than simulations but would also provide us with possibly less detailed anal- 
ysis information. If the system exists, then measurements may be appropri- 
ate over simulation modeling, if the number of alternatives we are looking 
at is small. If the number of alternatives is significant, then simulation 
would win out, even though it typically would take more time than mea- 
surements. 

The third modeling tool selection criterion is referred to as tool avail- 
ability. When we say availability we mean many different aspects. The first 
to come to mind is availability of a computer-based tool. For example, if we 
had a tool allowing us to simply define queuing models and to vary model- 
ing factors and system component characteristics, then analytical modeling 
would be much easier to apply. On the other hand, if no such tool exists 
that can support the kind of model we are proposing, then by availability 
we imply that the modelers have the capability and knowledge to construct 
an analytical model and perform the tradeoff analysis using this model. 
Likewise, if we are looking to use Petri nets, we first would check if existing 
computer-based tools exist. Second, do we have modelers who have knowl- 
edge of the tools, and, third, if no tools exist, does our modeling staff have 
the knowledge to construct a Petri net model of the target computer sys- 
tem? If we are looking toward constructing a simulation model, we would 
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first look to see if a simulation tool exists off the shelf that provides the class 
of model we require. For example, one can readily purchase a number of 
simulation tools aimed at network analysis, possibly some for architectures 
and probably none for operating systems. If a specific model exists, we must 
determine if it meets the needs of the modeling task, and, if not, can it be 
tailored to meet the demands. If existing tools do not suffice for the model- 
ing task, we must select a general-purpose simulation language, or general- 
purpose programming language, and construct our simulation model from 
scratch. This is a time-consuming and laborious task, requiring perform- 
ance modelers with the requisite simulation design and programming skills. 

The selected modeling tool's ability to deliver accurate information con- 
cerning the system under analysis is also very important. Regarding accu- 
racy, we want to know if the model delivers information that would closely 
map to the target system. Analytical models require the modeler to make 
many tradeoffs and assumptions to simplify the development of the model 
and to make it tractable. Such simplifications make the results also suspect. 
Petri nets suffer from similar problems, but they are not as severe as in the 
analytical model case. Simulations allow the modeler to incorporate more 
details from the target computer system and may require less assumptions, 
thereby mapping closer to the target system. Measuring the target system 
may provide the best results but is also subject to possible problems caused 
by the measurement technique applied. If we use software monitoring, the 
monitor load on the system may be significant enough to throw off the 
accuracy of the results significantly. This criterion must not be overlooked 
and must be fully understood when making a decision on selecting a mod- 
eling tool to use. 

The fourth criterion applicable when deciding on which modeling tool 
to use is that of the model's ability to compare different alternatives simply 
and completely. If a model does not provide the capability to alter parame- 
ters and check alternatives, then it is not providing the capability required 
of a performance tradeoff study. The least flexible tool is the testbed and 
empirical models. These are very difficult to change, since we would require 
possibly multiple components being integrated into the environment to test 
alternative components or, if we are comparing entire systems, having these 
entire systems available. Analytical models can be quickly altered to exam- 
ine different configurations or components and, therefore, make an attrac- 
tive tool for analysis requiring numerous tradeoff studies. Petri nets are also 
similar to analytical models and lend themselves to fairly easy alteration. 
Simulation models can be constructed so that they also provide the ability 
to trade off various components against each other. For example, if we are 
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trading off memory-management protocols, we could implement them all 
in one module, and keep all of the remaining components of the simulation 
model unchanged. Such an approach would readily allow us to focus on the 
differences each of these protocols would provide in the given system. 

A selection criterion often overlooked by the modeling team is that of 
cost. Most modeling projects focus on the goal at hand and don't always 
treat this project like any other engineering project, where both perform- 
ance and cost must be considered. The cost can include the system under 
study, the tool to be used in performing tradeoff studies, and the modeling 
staff. Intuitively, one can see that if we use empirical or testbed systems as 
our tools, the cost will consist of the cost of the actual system, plus the cost 
of setting up these systems for measurements and the cost of the perform- 
ance assessment staff doing the assessment. These costs can far exceed the 
budget for most but the largest system development projects. In addition, 
the cost of altering systems between analysis runs may be prohibitive and 
may not even be possible. Because of this, simulations are typically used in 
large systems analysis projects, where many tradeoff studies are required. 
The simulation is much easier to alter and run than the real system or even 
a testbed. Finally, analytical and Petri net models may be the least expensive 
to produce, since they do not typically require large software developments 
or implementations. The major cost in these types of studies would be the 
analyst's salary and time. 

V a l i d a t i o n  o f  r e s u l t s  

The tool selected must produce results that are correct and consistent and, 
therefore, convincing to our client. If the results and assumptions used to 
get to them are too far from the expected systems result, the analysis may be 
very suspect and will not be used. Analytical results readily fall into this 
venue, since most people are skeptical when it comes to the assumptions 
and simplifications required to make these models workable. Simulations 
also suffer from this at times, due to the nature of simulation model con- 
struction. Simulations also typically require the modeler to make tradeoffs 
when it comes to specific details. Some of these tradeoffs may make the 
model's results less realistic to the client. Also, many simulation developers 
suffer from one major flaw. They often do not fully validate the correctness 
of their models before they apply them to the problem being studied. 

Once we determine which modeling tool to use and have constructed 
our model, we still cannot simply begin running our experiments. The 
selected tool and model must be validated so we believe the results they pro- 
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duce. The validation of one tool starts by selecting another tool or tools, 
and collecting information from the other tools. Using this collected infor- 
mation the modeler runs the new tool for the same configuration and com- 
pares the results provided by the multiple tools. The results collected from 
all the tools should lead the modeler to the same conclusions. There are no 
hard and fast rules as to how a validated tool's results should compare point 
to point with the tool used for validation. Many simulation studies have 
used a measure that looks for aggregate results not to differ by more than 5 
percent, give or take a few percentage points. 

The validation requires the modeler to look at a variety of components 
of the model. First, does the model have a correspondence to the real system 
under study? That is, is it a faithful representation of the real system? For 
example, if the model has two processors and the real system has one, it is 
not a faithful representation. Second, are the assumptions used by the mod- 
eler realistic in terms of the real-world system being modeled? Third, does 
the model's input parameters and distributions track that of the real system 
values, if available? If they are not available, do they track those of some 
other model constructed for a similar project that was validated? Finally, do 
the results and conclusions from the model map favorably to those of the 
measured system or other tools? In addition, do the conclusions from the 
model being validated follow those of the real system or other model consis- 
tently and correctly? 

Each of these questions can be answered in a variety of ways. They can 
be determined using expert intuition, by measuring the system and compar- 
ing the results, or through analytical results. Expert intuition comes from an 
individual modeler who has performed many tests in the past. Using this 
wealth of knowledge, the modeler may be able to examine the results and 
model and determine if they appear~"in his or her opinion"~to be repre- 
sentative of a faithful and correct rendition of the system under study. 
These experts are drawn from designers, architects, implementers, analysts, 
maintainers, operators, and even users of the systems being studied. What 
we do not want is the validation expert coming from the team used to 
design the model being validated. 

Real system measurement is the most reliable means of model valida- 
tion, but it also can be the hardest to come by. This is because the real sys- 
tem may not exist yet, or collected information may not exist. Possibly the 
measurements for an existing system, if they are available, may not represent 
the full spectrum of information needed to corroborate the model's data. 
The last method for obtaining the required validation information is by 
using analytical results. As long as the model we are trying to validate is not 
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an analytical model, this is an available and acceptable means of validating 
information. By setting the parameters for a simulation to those of an ana- 
lytical model, we should in theory be able to faithfully determine the same 
results as those generated by the analytical model. 

Conducting experiments 

Given that we have selected a tool, constructed our model, and validated 
the model, we must next develop our experiments to perform the initially 
intended function for the performance study. To develop our experiments 
we must have an idea as to what the performance metrics will be (perfor- 
mance variables) for the study. We saw previously, in Chapter 8, that to 
develop a set of performance variables we must begin by developing a list 
of services to be offered by the system under study. Given that we have 
done this selection and definition of services, we next must determine all 
possible outcomes for the service. For example, each service can have a 
request for service pending, be in service, be completing service, or reject- 
ing a service request. The results of the service request are to accept the 
request for future service, perform the service either correctly or incor- 
rectly, or simply reject the request as not being possible. For example, the 
lock manager for a database system can accept a request for a lock and 
either grant it, delay it, perform the request erroneously, or refuse the lock 
request altogether. 

If the system performs the request correctly, the performance is mea- 
sured as the time taken to perform the service, the rate the service is per- 
formed at, and the resources consumed while performing the requested 
service. These three metrics relate to the measures of responsiveness, pro- 
ductivity, and utilization~all important components of any computer sys- 
tem's performance study. These measures have also been altered to show 
speed, reliability, and availability. For example, the responsiveness of a trans- 
action processing system is measured by its response time. This consists of 
the time between a transaction's request for service and the response to the 
transaction from the server. The transaction processing systems productivity 
is measured by its throughput. The throughput consists of the number of 
transactions performed completely during some prescribed unit of time 
(e.g., per minute or second). The third measure, utilization, provides a mea- 
sure of a resource's business. In the transaction processing example, we 
could see what percentage of time the server is busy serving transactions ver- 
sus the time it is idle during the same interval of time as the throughput 
measure. Using such information we can begin to isolate problems within 
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our system. For example, the service that is the most highly utilized may 
represent the system's bottleneck. 

If a service is done erroneously, we also wish to capture this information. 
Error detection and measurement are important in determining a service's 
resiliency and tolerance to errors. For example, in the transaction processing 
system, we may want to know what caused the errors and the failure of 
transactions being processed. It may be important to know that an error 
occurred due to a hardware failure or a software failure, or was caused by 
contention or a poor transaction design. Each will tell us something about 
the product we are evaluating. If a resource cannot perform the service 
function at all, it may imply it is down, or 100 percent utilized. Once again, 
knowing what state the resource is in will aid in the determination of its 
overall performance. 

P e r f o r m a n c e  m e t r i c s  

In studies involving computer systems we will typically be interested in 
many such measures, not simply one for the system. The computer systems 
we will model are composed of systems, components, and users. All will 
have their own measures reflected, and each provides a different lens into 
the performance of the systems as a whole. Some metrics will be systemwide 
or global, while others will be localized or individual. There are cases where 
optimizing an individual metric will impact the global metric and other 
times when it will have little or no effect. Also, the different levels may have 
different primary goals. We may be looking for high utilization at one level 
and low utilization at another, depending on the goals for the system and 
the individual components making it up. This indicates that the metrics for 
modeling must be chosen at differing levels so that an appropriate analysis 
of the true system performance can be determined. The modeler must 
determine the full set of metrics available for some study. Then these met- 
rics must be examined in relation to their variability, redundancy, and com- 
pleteness. If a metric has low variability, it may be assumed to be static, 
removing it from our list of services and measures to consider. If one vari- 
able provides the same information another provides, one of them should 
be dropped. For example, the queue length is equal to the number in service 
plus those waiting for service, so we need not keep track of them all. Com- 
pleteness deals with making sure the set of variables provides as reflective a 
set as that from the real system. 

When modeling computer systems, there are many commonly encoun- 
tered performance metrics. The most common are response time (sometimes 
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Figure 11.1 
Typical response 

time measurement. 

called speed, turnaround time, reaction time), throughput (sometimes called 
capacity or bandwidth), utilization (sometimes referred to as efficiency or 
business), reliability, and cost/performance ratio. 

Response t i m e  

Response time is broadly defined as the time interval between a user's 
request for service and the services return of results, as shown in Figure 
11.1. In reality this is overly simplistic and not what occurs. There are many 
more components on both sides of the request/response making up the true 
measure. If we think about the same transaction processing system we have 
used in our previous example, we begin with the user inputting the transac- 
tion. We assume this is a single step, but it can be much longer if the user is 
using an interactive interface to the transactional service. The database sys- 
tem must set up the appropriate data structures and provide resources for 
the transaction to execute. The transaction then is executed by the database 
engine. The transaction then completes processing and prepares the trans- 
action results and sends them off, as shown in Figure 11.2. Each of these 
steps, while a bit more complete than the simplistic model, is still only a 
partial representation of the full transaction processing cycle in a commer- 
cial database system. 

Each of these components of the transaction response time is a response 
time component. These components are the subparts of the total transac- 
tion response time, just as queue wait time and server time represent the job 
time in a queuing model. 

The response time for a computer system will typically increase as the 
load increases. Many measures have been developed to provide rules of 
thumb for such scenarios. One, called the stretch factor, is computed as the 
expected response time over the expected service time, or: 

Stretch factor - E[W]/E[S] (11.1) 
This measure is depicted in Figure 11.3. In most real systems we wish to 

see this stretch factor to have a computed value of approximately 5. If the 
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factor rises above this approximation, this implies longer waiting times in 
relation to service times and, therefore, lower availability of the resource and 
higher utilization. 

T h r o u g h p u t  

The throughput is a measure of the number of items being measured (e.g., 
transactions) that receive service (e.g., complete transaction execution) over 
some predefined period of time. For the transaction system we have been 
discussing, this would be measured as transactions per second, or TPS. In 
computer systems' CPUs, the measure is MIPS, or million instructions per 
second. In communications systems it may be MPS for messages per second 
or BPS for bits per second. Throughput, as with response time, will grow as 
additional load is placed on a system. However, unlike response time, there 
will be a point where the throughput will maximize and possibly begin to 
degrade, as shown in Figure 11.4. In this figure you will note that the 
throughput seems to increase over a wide range of load and then slows as we 
reach a saturation point. In the throughput case, the throughput increases 
to some maximal level and then levels off. At a critical point in the load, 
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where the response time has begun to increase exponentially, the through- 
put begins to degrade below the maximum. Such curves are typical of com- 
puter systems where there is inadequate service capacity for the presented 
load. We always want to keep throughput near its peak, but not too far into 
the saturation region, in order that resources stay available for spikes in 
load. 

Eff ic iency 

Another important measure is efficiency. This measure is related to utiliza- 
tion and throughput. The relationships look at a ratio of the maximum 
achievable throughput compared with the actual throughput: 

Efficiency =real throughput/theoretical throughput (11.2) 

If we have a processor rated at 100 megaflops (floating-point operations) 
and, when run in a testbed we measure 90 megaflops, the processor's effi- 
ciency is 90 percent. Efficiency can also be measured for multiple resource 
systems. One common use is when looking at the performance speedup of 
having one processor versus n processors. Efficiency in this class of environ- 
ment is calculated as the ratio of the theoretical throughput times the num- 
ber of devices divided by the speed of a single device. 

In Figure 11.5 we see that the theoretical efficiency of adding more proc- 
essors is a linear curve with an efficiency equal to the number of devices 
applied. The real measured curve shows a much different story. The effi- 
ciency is not linear and continues to degrade as more devices are added. 
This is due to the added overhead involved in keeping the processors effec- 
tively utilized in performing tasks. 
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I 1.4.4 Ut i l i za t ion ,  rel iabil i ty,  and avai labi l i ty  

The utilization of a resource is a measure of how busy the resource is. It is 
computed as the fraction of time the resource is busy servicing clients 
divided by the entire time period: 

Utilization - time busy/(time busy + time idle) (11.3) 

The goal in most systems is not to saturate resources (i.e., keep them 
100 percent busy) but to balance the utilization so that no device is more 
heavily utilized than another. In principle this is the goal, but in reality this 
is very difficult to achieve. Utilization is an important measure when exam- 
ining systems. Different devices in the system have different average utiliza- 
tion values. For example, processors typically will be highly utilized, while 
memory, disks, and other peripheral devices will all have smaller fractional 
use time. 

Other important measures in analyzing computer systems include sys- 
tems reliability and systems availability. Reliability is a measure of the prob- 
ability of errors or a measure of the typical time between errors. Most 
computer systems are fairly reliable, with hardware being more reliable than 
software. The availability of a system is measured in relation to reliability. If 
a system is highly reliable, it will be available more likely than not. But if a 
system is unreliable, then it will have periods of downtime, where the sys- 
tem is not running or is running erroneously. In the case of failures, another 
important metric is the mean time to repair, or MTTR. The M T T R  will 
indicate on average how long the system will be unavailable after an error. If 
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errors can be quantified and predicted, we can also develop metrics such as 
mean time to failure, or MTTE 

A final measure used by systems analysts when comparing systems or 
components is the cost versus performance ratio. This measure is useful in 
determining which of multiple systems, having the same relative perform- 
ance, is a better buy. The cost in this case includes, minimally, the hardware 
and software but also may include licensing, installation, maintenance, and 
even operations. 

11.5 Eva luat ion  

All these performance measurements mean nothing unless there is some 
relationship associated with the measure. For example, how do we know if 
for some given metric it is important to maximize its value or minimize its 
value? To make sound judgments we must understand the measures we are 
taking and what their relationship is to system values, as shown in Figure 
11.6. For example, for a CPU do we wish to have a high number of instruc- 
tions per second or a low number? Are we looking for medians or modes? It 
makes a difference in how the results get interpreted. To make sound deci- 
sions about how to interpret the measurements requires that we understand 
how they are related to each other. For example, high disk utilization may 
map to low system throughput. Or high CPU utilization may map to high 
throughput. It is important to know which is which in order to make sound 
decisions. 

Figure 11.6 
Metrics versus 

usefulness. 

Throughput 
utilization 
response 

Best? 

Metric 
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I 1.6 

How do we know what is adequate or good performance~especially if 
the system for which we are considering this question does not exist as yet. 
The problem is that of setting performance requirements for an as yet non- 
existing system. Typically we specify requirements in a nonquantitative way. 
We may make statements such as: The system should have low overhead, 
the memory and processor speeds should be synchronized, there should be a 
low probability of failure, and so on. In all of these cases we have stated 
qualitative requirements, which may be very hard to measure and realize. 
They are nonspecific, nonmeasurable, and, therefore, unacceptable. To 
change this the analyst should look at what the system will be required to 
do, and what capacity would be needed for a typical system with the same 
loads. We may also wish to add in some growth factor, say 100 percent. 
Therefore, we would specify a system that will meet our processing require- 
ments and still have growth capacity equal to that being used in the present 
system. 

S u m m a r y  

In this chapter we introduced some simple rules to consider when selecting 
a modeling tool for a specific modeling project. We indicated that if time 
and money were not a factor we would use all methods. First, we would 
apply analytical modeling to quickly eliminate alternative designs that 
would not meet the needs of the target system. Second, we would apply 
Petri net models to further compare and remove alternatives from consider- 
ation. Third, we would use simulation to study a few alternative compo- 
nents or systems. Simulation provides for very detailed modeling of 
components or operations if so desired. The fourth tool to apply would be 
testbeds. These are much more complex, and we would use this alternative 
when we are down to only a few alternatives, possibly only one, that need to 
be validated. 

Since it is not a perfect world, time and money do count; therefore, our 
modeling tool selection would be driven by these considerations. If cost is 
of paramount importance, we may look to analytical modeling, since it is 
relatively cheap if we happen to have queuing analysts on our staff. If cost is 
not a problem, then building testbeds would be the way to go. If cost falls 
somewhere between this, we would choose simulation or Petri nets. If time 
is of the essence, we would also recommend queuing theory over the others, 
since a model can be developed and analyzed. If time is available, then sim- 
ulation or testbeds would be appropriate choices. 
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After this discussion, the chapter moved on to examining some of the 
components of a modeling project that also assist us in deciding on which 
modeling tool to apply. The metrics we need and their fidelity or accuracy 
will also push us toward specific tools. If we need very accurate information, 
we may wish to use testbeds and empirical models, since we are measuring 
the real system or a prototype of it. If we are less concerned with accuracy, 
we may wish to use analytical models, since they can be easily constructed 
and provide coarse-grained analysis. 

The chapter then goes on to discuss some of the implications of model- 
ing a system~for example, how to determine if the model's data are correct, 
or if the results are good or bad. Interpretation of results is dependent on 
knowing the measurements being taken and their relationship to important 
systems metrics, such as throughput, utilization, and response time. 



/ 2  
Analysis of Computer Architectures 

Analytical modeling and Petri net modeling were introduced in previous 
chapters. In these discussions, we addressed basic concepts of queuing sys- 
tems and Petri net theories, their application to computer systems model- 
ing, and an introduction to computer systems modeling. This chapter will 
address the use of analytical and Petri net models, specifically for their use as 
performance evaluation tools applied to the modeling of computer architec- 
tures. 

12.1 

12.2 

I n t r o d u c t i o n  

In the past several years, the use of analytical and Petri net performance 
models instead of the more widely used and familiar simulation methods 
has become increasingly popular because of their relative simplicity of 
implementation and robustness of application results. These analytical and 
Petri net models have been successful in estimating such performance mea- 
sures as processor throughput, average queue length, mean response times, 
resource contention, and synchronization for some real systems. This chap- 
ter is an introduction to queuing and Petri net modeling techniques applied 
to computer architectures and is not meant as an in-depth study. 

Of  interest to most modelers is the classic central server model of a com- 
puter system, such as a single PC or workstation, and the multiprocessor 
model one would typically find in a server. For this reason, we will examine 
these two models as an initial example of how to apply analytical modeling 
techniques to the solution of a system's performance assessment. 

Case I: Cen t ra l  server  c o m p u t e r  system 

The central server model, shown in Figure 12.1, is typical of most desktop 
computers and single processor servers in service today. The main elements 
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y 

Figure 12.1 
Central server 

model. 
~! CPU .I ,/oi 
I "I I 

of this model are the CPU, memory, and I/O devices (disks, network con- 
nections, etc.). In addition to these major components, the model must also 
depict how these components are connected to each other, forming the 
architecture of the central server computer system. The interconnection 
would consist of paths for new program initiation and for active programs 
to circulate through the system. The assumption here is that the number of 
jobs (programs) circulating in the system is steady and fixed. Each of the 
fixed number of jobs performs some CPU activity, followed by some I/O 
activity, and back to the CPU for additional service. 

The modeled system would be typical of computers one would find on a 
person's desk in a high-capacity business office. Such a computer system 
would consist of a single CPU (such as a Pentium IV with onboard cache), 
matched speed main memory (128 MB to 1 GB), at least one disk drive, 
and numerous other peripheral devices. The machine would also be con- 
nected to the Internet and may service remote service calls. The operating 
system is one of the industry standards (Microsoft XP, LINUX). 

The processing capacity of the CPU and each of the I/O devices is 
denoted by la i = 1/Ts(i), where Ts(i) is the average service time for the spec- 
ified device. The flow of control for a job in the system is directed by the 
branching probabilities, Pl,P2,P3 ..... Pn" On leaving the CPU a job may 
loop back to the CPU for more service, with probabilitypl. The interpreta- 
tion of this can be that the program is going back for more service, or it is 
completing and being replaced by another new program. 

The remaining values are easier to interpret. The probabilities 
P2,P3 .... ,pndetermine what percentage of I/O requests go to which device. 
From earlier chapters you will recall that: 

n 

Z P i  -1  (12.1) 
i=1 

The value ~t i, i = 1,2 ..... n, represents the service rates for each defined 
server in the model. The service rate is the number of instructions per- 
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formed divided by the raw speed of the device. For example, the CPU serv- 
ice rate is defined as: 

CPU instructions per job 
~1 --CPU service rate-  (12.2) 

CPU speed in instructions per second 

In most analyses we make the assumption that the service discipline is 
FCFS and that the arrival rate and service rates are exponentially distributed 
and the queuing discipline is FCFS. The key metrics we are interested in 
discovering are throughput and utilization. 

The typical method to compute this is to use Buzeffs algorithm. This 
algorithm determines the probability of having different numbers of jobs in 
different servers at a point in time. The number of jobs at any particular 
node is not independent of the remainder of the systems nodes, since the 
total number in the system must be kept steady. This algorithm proves that 
the probability of the jobs being spread around the servers in a particular 
distribution is: 

),i Prob(kl,k2, . . ., km ) = (1/G (K ) )  i~=2 (t.tl (811xi ) (12.3) 

Using this property and Little's Law we can compute some of the met- 
rics of interest as: 

Pl = CPU utilization 

P i - I / O  device utilizations 

= Pi~ti (Pi/[-ti ) for i=  2,3 ..... M 

= system throughput (12.4) 

= PlPI~I jobs per unit time 

E(k i ) = average jobs at node i 

K G ( k - n )  for i - 1 , 2  .... M -- E ('1 (Pi/~i ))n G(A) 
n=l 

One of the most important components of Buzen's algorithm is the 
function G(k) for k= 1,2,3 ..... M. To perform this computation a partial 
function g(k,m) is defined. The details of this function were provided in 
Chapter 7. Repeating some of the important aspects of computing G(k)" 
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g(k,1) = 1 for k -  0,1,2 ..... K 

g(O,m) = 1 for m -  1,2, .... M 

g(k,m) = g(k,m-1)+ (Pl (Pm/~m)g( k -  1,m)) (12.5) 

G(k) -g (k ,M)  fork=0,1 ..... K 

Details of the solution can be found in [9]. 

As an example of the operation of this algorithm we can set some of the 
values for a test system. If we assume we have a system with a CPU and 
three I/O devices, M -  4. We can set the service rate for the I/O devices as 
all the same P2 - P3 - P4 - 10 I/Os per second. The CPU is set at P l = 
18.33 quantum slices per job. If we set K -  8 tasks circulating through the 
system and run it through Buzen's algorithm we would find the results 
shown in the following chart. 

CPU Time Disk I/0 CPU D i s k  Throughput 
per Request Ra te  Utilization Utilization Requests/sec 
0.6 10 0.96 0.53 1.6 
0.3 10 0.67 0.74 2.23 
0.6 15 1.00 0.37 1.66 
0.3 15 0.88 0.65 2.92 

A similar analysis could be developed using a Petri net instead of the 
queuing model. Figure 12.2 depicts a Petri net example for the single I/O 
device system shown in Figure 12.1. 

In the depicted model, jobs get submitted through a set of terminals rep- 
resented by the think place and the term transition. Once a job is requesting 
service, it is moved into the wait CPU place to wait for the CPU to become 
available. Once it is available, the waiting job acquires the CPU and models 
using it by moving into the use CPU place, followed by the CPU transition, 
which models the execution cycle of the CPU. After a job has completed its 
use of the CPU, it moves to the choose place. In this place a decision must be 
made to check if the job is complete or if more I/O is needed. If completed, 
the token representing a job moves back to the think place to become a new 
job later. If I/O is needed, the token moves to the disk wait place to busy 
wait for the disk resource. Once the resource is freed, the job acquires the 
disk and models using the disk by moving into the use disk place followed by 
enabling of the disk transition. Upon completion of disk use, the token (job) 
goes back into the wait CPU place to reacquire the CPU. If we wish to 
model more disk drives, we simply make more branches from the choose 
place and replicate the loop for the disk drive (Figure 12.3). 
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Figure 12.2 
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Multiple disk 

example Petri net. 
Wait CPU 

CPUidle 

Job 
complete 

Think Term Get CPU 

Disk1 

Diskn 

USecPu 

USeDisk 

CPU 

Get I/O 

Get I/O 

USeDisk 

Choose 

I/O 

I/O 
wait 

I/O 

I/O 
wait 

I Chapter 12 



350 12.3 Case I1' Multiple server computer system 

If we set the timed transitions as follows: Term 0.1, CPU 1.0, and Disk at 
0.8, and the places initially loaded with tokens as: t h ink -  6, CPU_idle - 1, 
and Disk_idle- 1, we can proceed with the analysis. The first analysis must 
be to determine if the model is bounded and live. That is to say, there are 
no deadlock states and the net is configured so it can initiate firings. By 
examining this net we can also see that there are four major place flows 
through the net. Flow 1 - th ink ,  waitCPU, Use CPU, and Choose. Flow 
2 - If we s e t -  think, waitCPU, Use CPU, Choose, diskwait, and use disk. 
Flow 3 - CPUidle, useCPU. Flow 4 - diskidle, use disk. The first flow cor- 
responds to jobs using the CPU and completing with no need for I/O. The 
second flow also represents jobs using the CPU but also requiring and using 
I/O devices. The third flow loop represents the CPU cycle of busy and idle, 
and the final flow loop represents the disk cycle of busy and idle time. Since 
all of the places of the Petri net are covered by these flows, the net is 
bounded. This also implies that this network has a finite reachability graph, 
and, therefore, the underlying Markov chain has a finite state space. 

Using these flows we can compute the average time for jobs to flow 
through each loop by running this model. If we ran the model with the 
same data as in the queuing model, the same results would follow. More 
details about this model and others can be found in [10]. 

12.3  Case I1: M u l t i p l e  s e r v e r  c o m p u t e r  s y s t e m  

Another classic analysis is that of the multiprocessor. In this case, we can 
replace the central server model with multiple examples of the same model 
cascaded together (Figure 12.4), or we could examine more elaborate imple- 

t ~  

Figure 12.4 
Multiprocessor 

model using central 
processor ;I c Pu "I I/O I I 

;I c,u I i I 
I 
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Figure 12.5a 
Shared memory 

model. 

mentations~for example, the shared memory model (Figure 12.5a) or the 
multiple bank shared memory model (Figure 12.5b). 

The analysis of any one of these architectures would follow methodology 
similar to that of the single CPU case described previously. The system we 
choose to model here is the multiprocessor case. This is more indicative of 

Figure 12.5b 
Multibank shared 

memory model. 

f 

cI 
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realistic systems, where multiple servers are interconnected to serve several 
users. 

If we decide to model the system shown in Figure 12.5b, we have essen- 
tially the problem of memory allocation to processors. A processor can have 
all of the memory or none of the memory or anything in between. Alloca- 
tions are done using the entire memory module. That is, a CPU cannot 
share a memory module with another CPU during a cycle. 

On each CPU cycle, each processor makes a memory request. If there is 
a free memory meeting the CPU's request, it gets filled; otherwise, the CPU 
must wait until the next cycle. Each memory module for which there is a 
memory access request can fill only one request. When several processors 
make memory module requests to the same memory module, only one is 
served (chosen at random from those requesting). The other processors will 
make the same memory module request on the next cycle. New memory 
requests for each processor are chosen randomly from the M memory mod- 
ules using a uniform distribution. 

Let the system state be the number of memory requests for each mem- 
ory module: 

K-(kl,k2,k3,... ,km) (12.6) 

where k i represents the memory request by processors for memory bank i. 

At the start of a cycle the sum of all requests cannot exceed the number 
of processors in the system, N." 

km + kz + k3 +... + km = N (12.7) 

The total number of possible states is related to the number of ways N 
processor requests can be distributed to M memory modules: 

[ M + N - 1 ] _ ( M + N - 1 ) _ N  [ M - 1  (M+N-1)!(M_ 1)!N! (12.8) 

or, in other terms, how to allocate N balls to M cells. 

For N = 2 and M = 4 (see Figure 12.6) the possible way to allocate the 
four memory modules to processors (indistinguishable from each other) is 
shown in Table 12.1. 
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lv  

Figure 12 .6  
Multiprocessor 

system with N = 2 
a n d M =  4. 

Switch 

and is found by: 

( M + N - 1 ) !  5! 5*4 
- ~ - - ~ - 1 0  (12.9) 

( M - 1 ) ! N !  3!2! 2 

We can see that if the number of processors requesting memory modules 
and the number of memory modules are increased, the number of possible 
states grows very quickly, making this analysis difficult for even relatively 
small problems, as shown inTable 12.2. 

Table 12.1 Possible Ways to Allocate Memory 

Memory 

1 2 3 4 

1 0 0 0 2 

2 0 0 1 1 

3 0 0 2 0 

4 0 1 0 1 

5 0 1 1 0 

6 0 2 0 0 

7 1 o o 1 

10 

1 0 1 0 

1 1 0 0 

2 0 0 0 
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Y 

Table 12.2 Number of States for Selected Number 
of Processors and Memory Modules 

N M # States 

2 4 10 

3 5 35 

4 7 210 

Let H = (hl,h 2 ..... h m) represent the intermediate state, when the mem- 
ory access requested on a cycle has been filled and the new requests have not 
yet been made: 

{~i - 1  i fk  i >O, Vi 

h i -  i f k i - 0  

Let G represent a new (feasible) system state: 

(12.10) 

G=(gl ,gz ,g3  .... ,gm) 

First, let's define: 

(12.11) 

d i - g i - h i  
x= di 

that is, number of new request 
(12.12) 

Note:  The state G can be reached from state Kin  one cycle if, and only if, d i 
_> 0 for each i. 

12.3.1 Properties 

If G is reachable from Kin  one cycle, the probability it will in fact 
be the next state is given by: 

0 

x! [ 1 I x  (12.13) 
P ( K, a ) = dl ! d2 i [ . . dm ! -m 

where x represents the number of new requests. 

The system can be described by a Markov chain, since the next 
state probabilities at any time depend only on the current state. 
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3. The system is aperiodic, since a one-step transition from a state to 
itself is possible at any time. 

4. The system is irreducible, since it can reach any other in a finite 
number of steps. 

Hence, since it is a finite state process, it is also an ergotic Markov proc- 
ess. Also, since these conditions hold, there is an equilibrium state probabil- 
ity distribution, H, so that: 

H - H P  (12.14) 

where P is the state transition matrix (described in Chapters 6 and 7)" 

H - ( H , , H 2 , H 3 , H  4 ..... Hj  ) (12.15) 

A performance assessment typically made in such system configura- 
tions to determine what the effective processor power of the N processors 
with M memory system is: 

EP (N, M) - the expected number of instructions 
excuted per second compared with an 
N -  1, M -  1 system 

(12.16) 

Let Proc(i) represent the number of memory requests serviced (instruc- 
tions executed) when the system is in state i: 

J .'. EP(N,M) = E Proc ( i )Hi  
i=1 

(12.17) 

For the simple case where N = 2 and M = 2, we have the system illus- 
trated in Figure 12.7. 

Figure 12.7 P1 P2 
Multiprocessor 

systemwithN=2 I I andM= 2. 
Switch 

I I 
ml m 2 
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Figure 12.8 
Probability state 

transition diagram. 
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/ 

1/2 

The possible states this model could be in, representing the requested 
memory requested by the two processors, is described as (see Figure 12.8)" 

States (klk2) • 

1(2,0) 

1] 3 
2(1,1) j -  - = - - ' - - - 3  

N 2!1! 

3(0,2) 

(12.18) 

Using the general formula: 

~ , ~ ~ ,  x, /~) x 
dl!d2!.. .dm! (12.19) 

1 ,12 20, P((2,0),(1,1)) - ~.-~l.V - 2  

which represents the probability of being in state (2,0) and transitioning to 
state (1,1). Similarly, the probability of being in state (1,1) and traversing to 
state (2,0) would be found as: 

/ 1 
P((1,1),(2,0)) - 2.~.  - -4  (12.21) 

and so on. 
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The balance equations for this Markov chain can be found using the 
relationship: 

Flow In - Flow Out  (12.22) 

State 1: 1 /2H 1+ 1 /4H 2 = H I 

Flow In - Flow Out  (12.23) 

State 2: 1 /2H 3 + 1 /4H 2 = H 3 

Solving these simultaneous equations yields: 

2H 1 + H 2 = 4H 1 

2H 3 + H 2 = 4H 3 

.'. H 2 = 2H x (12.24) 

H 2 = 2H 3 

H 1 = H  3 = l / 2 H  2 

and since: 

H 1 + H 2 + H 3 = 1 (12.25) 

then: 

H 1 = .25 

H 2 = .50 (12.26) 

H 3 = .25 

The discovered effective processor power is computed using the relation- 
ship: 

E P ( 2 , 2 ) -  ~[[H i Proc( i )  (12.27) 
i 

where 

i Proc(i) number  of instructions executed in state i: 

1 1 

2 2 

3 1 

EP ( 2 , 2 ) -  1H 1 + 21-12 + 11-13 = . 2 5 +  1 . 0 + . 2 5 - 1 . 5  
(12.28) 
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Table 12.3 Summary of Speed Up for M Memory and N Processors 

M N Processors 

Memory Modules 2 3 4 5 

2 1.5 m ~ 

3 1.667 2.048 

4 1.750 2.269 2.62 m 

5 1.800 2.409 2 .863 3.199 

6 1.833 2.505 3 .036 3.453 

7 1.857 2.575 3 .166 3.648 

8 1.875 2 .627 3.265 3.801 

9 1.889 2.668 3 .344 3.925 

10 1.900 2.701 3 .407  4.025 

Results for M memory modules (2 < M < 10) and N processors (2 < N < 
5) are summarized in Table 12.3. 

Limitations: The model does not take into account memory interference 
caused by I /O operations. It also assumes the processors and memory are 
synchronized, as are memory access/cycle. 

12.4 Case II1: Pe t r i  ne t  e x a m p l e  

We could look at the same problem from a Petri net perspective. In this case 
we make some of the same assumptions: There are np processors, n m shared 
memory modules, and n b data buses. In the previous theoretical analysis we 
ignored the data buses. Each of the processors has local memory, which gets 
used until a page miss. At this point an access to an external memory mod- 
ule is required, resulting in a new page being loaded into the local processor 
memory. The miss rate is exponentially distributed and set at 1/)~. The 
access time to the shared memory is also assumed to be exponentially dis- 
tributed with mean 1/~. If we originally set np= 5, n m = 3, and n b = 2, we 
have the initial configuration seen in Figure 12.9. The model depicted con- 
tains two places per memory module (one place for processor tokens and 
one place for bus tokens) and one timed transition (for memory allocation 
and use). There are also two immediate transitions associated with synchro- 
nizing and controlling the memory access. For the size model we postulated 
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Figure 12.9 

P2 
Memory 1 ~ 0 .  ~ MemoryN 

t2 i • • • 

P4 

P3 

Petri net model for multiprocessor system. 

we would have nine total places, four timed transitions, and six immediate 
transitions. Tokens in place P2 represent data buses available for use. Tokens 
in place P1 represent processors executing on their local memory. An impor- 
tant assumption in this model is that every processor and memory module 
act in an identical manner. 

When a processor completes its local memory access (has a page miss 
resulting in firing transition tl) and requires more shared memory 
resources, a token is moved from place P1 to place P3" A processor deter- 
mines which memory it needs by firing the immediate transition, t 2, on the 
memory module it has chosen using a probabilistic branch. Once t 2 fires, a 
token is moved from place 3 to place 4. Once a token is in place 4, the proc- 
essor is requesting access to a data bus. The bus is used to connect the proc- 
essor to the memory module. The processor acquires the memory desired, 
and then acquires a data bus to retrieve the needed information. Once a 
processor has the bus, signaled by the firing of transition t 3, and has 
acquired the memory (indicated by the token in place, P5), it begins to 
model using the memory module by initiating the timer on transition t 4. 
Upon completion of using the bus, the token representing the processor 
and the bus are routed back to their initial places, P2 and P1. 
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If we run this model with inputs similar to what were applied to the 
queuing model discussed previously, we would find results that very closely 
match the queuing model case. That is, we would find out that the effec- 
tive processor power would be proportional to about 2.05 with the config- 
uration as specified. We could improve on this if we made the access 
balanced, implying that no single processor could hold more than one 
memory at a time. This would increase our effective processor capacity to 
approximately 3.2. 

12.5 Summary 

In this chapter, we applied the analytical tools developed in Chapters 1 
through 11 to the analysis of various computer architecture. We first looked 
at a simple central-server computer system typical of most desktop com- 
puter systems and then we looked a multiple-server computer system. We 
performed these analyses first analytically and then using Petri nets. This 
chapter is presented as a guide to the reader in analyzing computer architec- 
tures and not as a comparison of various architectures or components. 
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13.1 

m 
m 

This chapter is divided into the following sections. Section 13.1 covers an 
introduction to the specific performance evaluation conducted, its basic 
concepts, the types of workloads being used, the experimental design for the 
performance analysis, and an introduction to the simulation toolkit used 
for the evaluation. Section 13.2 includes the architecture of the four operat- 
ing systems being used. We have tried to keep the architectures very specific 
to the experiments being carried out. Section 13.3 is focused on statistics, 
analysis of the results obtained from experiments, sensitivity analysis, cost/ 
performance issues, and presentation in the form of graphs and charts. Sec- 
tion 13.4 discusses experimental design and simulation. Section 13.5 covers 
conclusions about the performance analysis. 1 

I n t r o d u c t i o n  

Computer systems users, administrators, and designers are all interested in 
performance evaluations, since their goal is to obtain or provide the highest 
performance at lowest cost. Performance evaluation is essential at every step 
in the life cycle of a computer system. This includes design, manufacturing, 
use, upgrade, and so on. We need to perform this evaluation in order to pre- 
dict the adequacy of the system. In order to do this performance evaluation 
we must define the system correctly; define its components; state the envi- 
ronment in which the system resides; and define parameters, which we mea- 
sure and on which the system is built. Computer systems are a backbone of 
an organization, which might have its clients scattered around the globe. If 
the system doesn't perform the way it is intended to, it results in loss of 
infrastructure, efficiency, and credibility of the organization. So a sound 
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evaluation of the computer system is of prime importance. This encom- 
passes not only the hardware/software performance but also a cost versus, 
performance measure. For any computer system performance measures 
such as responsiveness, missionability, dependability, and productivity are of 
immense importance. There are different techniques of performance evalu- 
ation. We can identify them as two major classes. One includes designing 
an experiment (HW/SW/Stimulus), and the second includes modeling, 
which might be analytical (queuing, Petri nets) or by simulation (discrete, 
continuous, combined). This study utilizes both of these techniques to per- 
form a comparison among the four operating systems. 

This chapter evaluates the performance of four operating systems: 
Microsoft's Windows XP, Windows ME, Windows NT, and LINUX 7.2. 
These operating system performance assessments were completed by a grad- 
uate computer systems performance evaluation class at UMass Dartmouth 
during the spring semester of 2002. The performance evaluation of these 
operating systems was performed on an x86 architecture. The operating sys- 
tems' performance was examined using three specific types of workloads. 
The evaluation is based on the currently available major releases of these 
operating systems "as-is" without performance tuning. Each team was asked 
to design "high-level" models and convert these models into a simulation by 
using the AWESIM simulation toolkit. Teams came up with a common 
experimental design and performed specific types of performance tests to 
measure the response of the four operating systems pertaining to specific 
factors. Each team performed a comparative analysis. 

1 3 .2  Sys tem a r c h i t e c t u r e s  

For the performance evaluation analysis of the operating systems, the com- 
puter systems architecture plays a prime role. This section includes the 
operating system architectures for LINUX 7.2, Windows ME, Windows 
XP, and Windows NT. 

1 3 . 2 .  I L I N U X  a r c h i t e c t u r e  

Red Hat LINUX 7.2 
As part of the larger effort to evaluate the relative performance of LINUX 
versus several other operating systems, we considered key components of 
LINUX in order to lay the foundation for this comparison. Here we exam- 
ine the LINUX policies and parameters used in the last stable version of 
kernel 2.4. The distribution used for our evaluation is Red Hat LINUX 7.2. 
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LINUX supports multitasking, which is the ability to have many pro- 
grams running simultaneously. For example, it is possible to format a disk, 
download a file from a BBS, and edit in a word processor--all simulta- 
neously. 

Task structure and process table 

LINUX manages the processes in the system; each process is represented 
by a t a s k _ s t r u c t  data structure. The task vector is an array of pointers to 
every t a s k _ s t r u c t  data structure in the system. As processes are created, a 
new t a s k _ s t r u c t  is allocated from system memory and added into t a s k _  
vec to r .  The t a s k _ s t r u c t  structures are linked in two ways: as a hash 
table, hashed by pid, and as a circular, doubly linked list using p->next  
_ t a s k  and p - > p r e v _ t a s k  pointers. The tasks are hashed by their p id  
value. The hash table is used to quickly find a task by given pid,  which uses 
f £nd_task_.pid ( ). The circular doubly linked list that uses p - > n e x t _ t a s k  
and p->prev__task is maintained so that one could go through all tasks on 
the system easily. 

Task flags contain information about the process states, which are not 
mutually exclusive. The scheduler needs the information in order to decide 
which process in the system deserves to run. Every process in the system has 
an identifier. The process identifier is not an index into t a s k _ v e c t o r ;  it is 
simply a number. Each process also has user and group identifiers; these are 
used to control this process's access to its files and devices in the system. 

Links 
In a LINUX system no process is independent of any other process. Every 
process in the system except the initial process, called i n i t ,  has a parent 
process. New processes are not created; they are copied, or rather cloned, 
from previous processes. Every t a s k _ s t r u c t  representing a process keeps 
pointers to its parents and to its siblings (those processes with the same par- 
ent process), as well as to its own child processes. Additionally, all of the 
processes in the system are held in a doubly linked list, whose root is the 
i n i t  process's t a s k _ s t r u c t  data structure. This list allows the LINUX 
kernel to look at every process in the system. It needs to do this to provide 
support for commands such as ps or k i l l .  

Times and timers 

The kernel keeps track of each process's creation time as well as the CPU 
time that it consumes during its lifetime. For each clock tick, the kernel 
updates the amount of time in jiffies that the current process has spent in 
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system and in user mode. LINUX also supports process-specific interval 
timers; processes can use system calls to set up timers and to send signals to 
themselves when the timers expire. These timers can be single-shot or peri- 
odic timers. 

File system 
Processes can open and close files as they wish and the process's 
t a s k _ s t r u c t  contains pointers to descriptors for each open file as well as 
pointers to two VFS i-nodes. Each VFS i-node uniquely describes a file or 
directory within a file system and also provides a uniform interface to the 
underlying file systems. The field p->fs  contains file system information, 
which, under LINUX, means three pieces of information: root directory's 
d_entry and mountpoint, alternate root directory's d_entry and mount- 
point, and current working directory's d_entry and mountpoint. 

Virtual memory 
Most processes have some virtual memory (kernel threads and daemons do 
not), and the LINUX kernel must track how that virtual memory is 
mapped onto the system's physical memory. The fields p->mm and 
p->active_mm point, respectively, to the process's address space described 
by the mm_struct structure and to the active address space if the process 
doesn't have a real one (e.g., kernel threads). 

Paging 
To approximate a least recently used (LRU) algorithm for page replacement, 
LINUX finds a process with the most NRU (not recently used) pages to 
swap pages from. Unlike a standard clock algorithm, which tends to take a 
few pages from all processes, this will result in taking a large number of 
pages from a few processes. Sometimes LINUX will deal with this situation 
by temporarily removing the most victimized process from the pool of con- 
currently running processes. Different kernels of LINUX handle these 
details differently. 

Kernel 2.4 
Kernel 2.4 finds a compromise between kernel 2.0's aging and 2.2's lack of 
aging. It does so by changing the method of decreasing the age. Age is 
decreased exponentially as opposed to linearly. This helps prevent one proc- 
ess with a high page-fault rate from getting more than its share of pages and 
thereby hurting other processes, and it prevents a page that is only referenced 
once from being given the same wait as a page that is referenced 20 times. 
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13 .2 .2  

To have memory more efficiently utilized, kernel 2.4 reintroduces the 
method used in kernel 2.0 for selecting processes to contribute NRU pages. 
Going through a process list each time, it checks only about 6 percent of the 
address space in each process to search for NRU pages before it goes to the 
next process. Similar to kernel 2.0, this method increases the possibility of 
thrashing. 

W i n d o w s  X P  a r c h i t e c t u r e  

Windows XP Professional is built on the proven code base of Windows NT 
and Windows 2000, which features a 32-bit computing architecture, as well 
as a fully protected memory model. Windows XP Professional is designed 
to allow multiple applications to run simultaneously, while ensuring great 
system response and stability. 

Disk management 
Microsoft Windows XP offers two types of disk storage: basic and dynamic. 

Basic disk storage 

A disk initialized for basic storage is called a basic disk. A basic disk contains 
basic volumes, such as primary partitions, extended partitions, and logical 
drives. Additionally, basic volumes include multidisk volumes, which are 
created by using Windows NT 4.0 or earlier, such as volume sets, stripe sets, 
mirror sets, and stripe sets with parity. Windows XP does not support this 
multidisk basic volume. 

Dynamic disk storage 
A disk initialized for dynamic storage is called a dynamic disk. A dynamic 
disk contains dynamic volumes, such as simple volumes, spanned volumes, 
striped volumes, mirrored volumes, and RAID-5 volumes. With dynamic 
storage, disk and volume management can be performed without the need 
to restart Windows. Mirrored volumes or RAID-5 volumes cannot be cre- 
ated on Windows XP Professional-based computers. However, a Windows 
XP Professional-based computer can be used to create a mirrored or RAID- 
5 volume on remote computers that are running Windows 2000 Server, 
Windows 2000 Advanced Server, or Windows 2000 Data Center Server. 

Storage types are separate from the file system type. A basic or dynamic 
disk can contain any combination of FAT16, FAT32, or NTFS partitions 
or volumes. 
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File systems 
Windows XP supports three different file systems: File Allocation Table 
(FAT); FAT16, FAT32, and NTFS (NT file system); NTFS is the recom- 
mended file system. NTFS provides advanced file system features such as 
security, transacted operations, large volumes, and better performance on 
large volumes. Such capabilities are not available on either FAT16 or 
FAT32. Windows XP provides native support for NTFS volumes on such 
large sizes, while a FAT32 volume is supported only for sizes up to 32 GB. 
Under Windows XP, NTFS supports a maximum file size of up to the disk 
size. Windows XP delivers new features (such as support for acquiring and 
editing video files) that frequently result in creation of files that exceed 
4 GB in size. NTFS is a journaling file system. NTFS writes a log of 
changes being made, which offers significant benefit in cases where a system 
loses power, experiences an unexpected reset, or crashes. NTFS can quickly 
return the disk to a consistent state without running CHKDSK. This yields 
a better user experience and results in fewer support calls. 

Memory management 
Windows XP, like most modern operating systems, uses virtual memory. 
Windows XP regularly checks that the memory assigned to a particular 
application is actually in use and maintains an estimate for each application 
indicating the amount of memory that could reasonably be taken away 
without affecting performance. A reserve of memory is kept on hand to be 
used as needed. When this reserve sinks too low, it is replenished by trim- 
ming working sets. These estimates are used as a guideline to determine 
where memory should be taken from. 

Virtual memory is divided among the space taken by the applications, 
driver code, allocated and mapped data used by the system, and the space 
used by the system. In Windows, physical memory has page-pooled and 
non-page-pooled allocations. Non-page-pooled memory is for code that is 
time critical, such as the Virtual Memory Manager (VMM). Page-pooled 
memory is mapped to disk files and allows the OS to swap the memory 
pages out to disk if additional physical memory is needed elsewhere. Pool 
memory is managed by a system of descriptors, called page table entries 
(PTE), that incorporates memory page frame numbers which point to 
physical memory pages. In addition to memory page frame numbers, the 
PTE contains bits on the use status of the page~in use, dirty, clean, and 
unused. The memory manager keeps track of page status with page table 
lists for fetching and reuse. 
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13.2.3 

In the fight between drivers or processes for memory under low-memory 
conditions, the user often loses. Generally, these conditions are temporary 
and are relieved when a driver or process flees up its blocks. When a driver 
or application process needs memory, it asks the system for a memory allo- 
cation. The allocation is either provided or denied. In past versions of Win- 
dows, allocation routines that must succeed were allowed to force the 
system to give the driver some memory. Unfortunately, during lean memory 
times, it could crash the system. To help get past these low times, Windows 
XP no longer permits drivers to allocate must-succeed requests. If an appli- 
cation or driver uses a must-succeed request, it is denied. All internal Win- 
dows XP drivers have been rewritten to avoid the use of must-succeed 
requests. Third-party drivers will also have to comply to earn signed driver 
status. 

Another step taken by Windows XP for more robust memory handling 
is I /0  throttling. For performance reasons, Windows tries to do as much 
processing in parallel as possible. However, if memory use gets to the point 
where there is none left to allocate, Windows will throttle down its process- 
ing of memory to one page a time, using the resources it can. While this 
slows the system, it doesn't crash. 

Windows N T  a r c h i t e c t u r e  

The Executive 
NT's Executive subsystems make up the most important layer in kernel 
mode, and they perform most of the functions traditionally associated with 
operating systems. The subsystems have separate responsibilities and names. 
NT doesn't assign Executive subsystems to different processes; NT doesn't 
place the Executive subsystems in different image files. 

Object Manager 
The Object Manager is one of the NT's Executive subsystems. Other Exec- 
utive subsystems use the Object Manager to define and manage objects that 
represent resources. The Object Manager performs object-management 
duties that include identification and reference counting. 

Virtual Memory Manager 
The Virtual Memory Manager has two main duties: to create and manage 
address maps for processes and to control physical memory allocation. NT 
4.0 implements a 32-bit (4-GB) address space; however, applications can 

I Chapter 13 



368 13.2 System architectures 

directly access only the first 2 GB. The 2-GB to 4-GB portion of the 
address space is for the kernel-mode portions of NT, and it doesn't change. 
The Virtual Memory Manager implements demand-paged virtual memory, 
which means it manages memory in individual segments, or pages. In x86 
systems, a page is 4,096 bytes. The Virtual Memory Manager has advanced 
capabilities that implement file memory mapping, memory sharing, and 
copy-on-write page protection. NT uses file memory mapping to load exe- 
cutable images and DLLs efficiently. Copy-on-write is an optimization 
related to memory sharing in which several programs share common data 
that each program can modify individually. When one program writes to a 
copy-on-write page that it shares with another program, the program that 
makes the modification gets its own version of the copy-on-write page to 
scribble on. The other program then becomes the original page's sole owner. 
NT uses copy-on-write optimization when several applications share the 
writeable portions of system DLLs. 

I/0 Manager 
The I/O Manager is responsible for integrating add-on device drivers with 
NT. Device drivers, which are dynamically loaded kernel-mode compo- 
nents, provide hardware support. A device driver controls a specific type of 
hardware device by translating the commands that NT directs to the device 
into device-specific commands that manipulate the hardware to carry out 
the commands. The I/O Manager supports asynchronous, packet-based 
I/O. The I/O Manager supports 64-bit file offsets and layered device driv- 
ers. Using 64-bit offsets lets NT's file systems address extremely large files 
and lets disk device drivers address extremely large disks. Layering lets 
device drivers divide their labor. 

Cache Manager 
The Cache Manager works closely with the Virtual Memory Manager and 
file system drivers. The Cache Manager maintains NT's global (shared by 
all file systems) file system cache. The working-set tuner assigns physical 
memory to the file system cache. The NT cache is file oriented rather than 
disk-block oriented. 

Process Manager 
The Process Manager in NT wraps the kernel's process object and adds to it 
a process identifier (PID), the access token, an address map, and a handle 
table. The Process Manager performs a similar operation on the kernel's 
thread object, adding to it a thread identifier (TID) and statistics. These 
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statistics include process and thread start and exit times and various virtual- 
memory counters. 

The kernel 
NT's kernel operates more closely with hardware than the Executive does, 
and it contains CPU-specific code. NT's thread scheduler, called the dis- 
patcher by NT's developers, resides in the kernel. The dispatcher imple- 
ments 32 priority levels: 0-31. The dispatcher reserves priority level 0 for a 
system thread that zeros memory pages as a background task. Priority levels 
1 through 15 are variable (with some fixed priority levels) and are where 
programs execute; priority levels 16 through 31 are fixed priority levels that 
only administrators can access. The NT dispatcher is a preemptive sched- 
uler. The CPU's time is divided into slices called quanta. When a thread 
runs to the end of its quantum and doesn't yield the CPU, the dispatcher 
will step in and preempt it or schedule another thread of equal priority that 
is waiting to run. NT implements most synchronization primitives in the 
kernel. The kernel implements and manages its own object types, and ker- 
nel objects represent NT's synchronization primitives. 

1 3 . 2 . 4  W i n d o w s  M E  a r c h i t e c t u r e  

The team documented the architecture based on Windows 98, because . . . .  
lennium is based on the architecture of Windows 98 and sufficient data are 
unavailable on Windows Millennium. 

Memory management 
In Windows 98, memory is accessed using a 32-bit linear addressing 
scheme. A 32-bit addressing system can access up to 4 GB of memory. 
Thus, in Windows 98, when an application attempts to access memory, it 
simply specifies a 32-bit memory address. (The minimum allocation of vir- 
tual memory is one 4-KB page.) 

Windows 98's Virtual Memory Manager (VMM) controls allocating 
physical and logical memory. When you launch a new application, the Vir- 
tual Memory Manager initializes the virtual address space. Windows 98's 
VMM can address up to 4 GB, including space on your system's hard 
drives, so now programmers can write programs to exploit large amounts of 
memory without worrying about the type of memory or the amount of 
memory available. 
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Windows 98's Virtual Memory Manager provides this large, virtual 
memory space to applications via two memory management processes: pag- 
ing and mapped file I/O. 

Paging 
Every page of memory falls into one of three categories: page directories, 
page tables, or page flames. For time-sensitive applications and those with 
other special memory performance requirements, the VMM enables a user 
subsystem or process with special privileges to lock selected virtual pages 
into its working set to ensure that a critical page is not paged out of mem- 
ory during the application. 

In implementing the virtual memory process, Windows 98 creates a 
hard disk swap file to which it writes information that will not fit into phys- 
ical (RAM) memory. Windows 98's swap file is dynamic and can shrink or 
grow based on the operations performed on the system. (The Windows 98 
swap file still has to be created during system startup if it doesn't already 
exist, slowing startup time.) 

Happed file I/O 

If an application attempts to load a file larger than both the system RAM 
and the paging file (swap file) combined, Virtual Memory Manager's 
mapped file I/O services are used. Mapped file I/O enables the Virtual 
Memory Manager to map virtual memory addresses to a large file, inform 
the application that the file is available, and then load only the pieces of the 
file that the application actually intends to use. Because only portions of the 
large file are loaded into memory (RAM or page file), this greatly decreases 
file load time and system resource drainage. It's a very useful service for 
database applications that often require access to huge files. 

Protection 
In Windows 98, each type of application~16 bit, 32 bit, or MS-DOS~is  
protected from the other. The Windows 98 memory system also helps segre- 
gate applications from other applications and from their own memory seg- 
ments. Due to improved protection in Windows 98, a rebellious 16-bit- 
based application cannot easily bring down the system as a whole, nor can it 
bring down other MS-DOS applications or 32-bit applications. However, 
crashing 16-bit applications still can affect other running 16-bit-based appli- 
cations. Each type of application~l 6 bit, 32 bit, or MS-DOS--has a corre- 
sponding Virtual Machine Manager. Protection improvements also include 
the use of separate message queues for each running 32-bit application. 
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Disk and file system overview 

Clusters 

Windows 98, as with DOS before it, allocates disk space in clusters. A clus- 
ter is a group of sectors on a disk. The number of sectors in a cluster varies 
according to the drive type and partition size. When Windows 98 stores a 
file on disk, it doesn't store the file on a sector-by-sector basis. Rather, Win- 
dows 98 allocates enough clusters to contain the file. 

The FAT 

With so many clusters on a disk, Windows 98 needs some way to keep track 
of where each file and directory reside. Essentially, Windows 98 needs to 
know the starting and ending cluster for each file. The file allocation table, 
or FAT, provides that information. The FAT contains an entry for every 
cluster on the disk, and Windows 98 uses the FAT to keep track of which 
clusters are allocated to which files and directories. The FAT is the key that 
enables Windows 98 to locate, read, and write files on the disk. 

VFAT, CDFS, and VCACHE 

Windows for Workgroups introduced VFAT, a virtual installable file system 
driver that provided a 32-bit interface between applications and the file sys- 
tem. VFAT operates in protected mode, enabling Windows 98 and applica- 
tions, 16 bit or 32 bit, to access the file system without switching the 
processor from protected mode to real mode, which significantly improves 
performance. Working in conjunction with VFAT is a virtual cache called 
VCACHE, a 32-bit protected-mode disk cache. A disk cache improves file 
I/O performance by caching recently used data and reading these data from 
memory rather than disk on subsequent requests for the data. Windows 98 
includes a 32-bit protected-mode CD-ROM file system driver, called 
CDFS. CDFS improves file I/O by enabling applications to read from the 
CD-ROM drive in protected mode rather than requiring the system to 
switch to real mode to read the CD. 

FAT32 

FAT32 gets its name by using a 32-bit addressing scheme instead of a 16-bit 
one. FAT32 enables the root directory to live anywhere on the disk and be 
as long as it needs to be. FAT32 also keeps redundant backups of more crit- 
ical disk information, making FAT32 partitions less susceptible to failure or 
data corruption. FAT32 uses space more efficiently than FAT16. Its cluster 
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sizes are smaller, because its 32-bit addressing scheme can directly address 
more of them. 

FAT32 has many drawbacks as well as advantages. The first downside of 
FAT32 as opposed to FAT16 is speed. FAT32 is slightly slower in perform- 
ing many common file operations. The second downside is backward com- 
patibility. A whole host of applications and procedures will not work with 
FAT32 partitions. Also, compressed drives cannot be formatted as FAT32, 
and removable drives should not be formatted as FAT32. Laptops will not 
be able to perform any suspend-to-disk functions on FAT32 drives, and if 
the reader's PC supports power management hibernation, it will be turned 
off if the drive is formatted to FAT32. Finally, a drive using FAT32 cannot 
have Windows 98 uninstalled. 

1 3 . 3  W o r k l o a d s  

Workloads are the most crucial part of any performance evaluation project. 
There are some important considerations when we select workloads for the 
evaluation, such as services rendered by the workloads, level of details, effec- 
tive representation, and timeliness. 

13.3.1 Workloads description 

Workloads can be described as follows: 

1. Processes: To test the OS's ability to handle multiple processes. 
This includes creating, scheduling, allocating resources, and kill- 
ing the process. This can be implemented by running a C or Java 
program that will create a large number of processes and threads. 
This program will run without termination~that is, infinitely. 
Using this method the system is bound to crash after a certain 
number of processes. The program will record in a file the proc- 
esses and at what time they were created. In this way we will have 
a good feel for what the OS can handle. 

2. Computation: To test the computational ability of each OS, 
assuming the hardware is the same for all the configurations. The 
OS handling of the ALU can be tested by forcing it to execute a 
large number of difficult mathematical functions. 

The following sections include the detailed description of the three 
workloads considered for the performance evaluation of the operating sys- 
tems, which are as follows: 
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A MATLAB program, which does operations on a matrix, such as 
adding, multiplying, calculating the determinant, and inverse 
matrices. 

An I/O intensive C program. 

A C program that creates multiple processes. 

Workload programs used by Windows ME~Windows XP/Windows 
NT/LINUX operating systems 
The programs that were used by the three Microsoft groups and one 
LINUX group are as follows. The first, workload1, is a C program, which 
opens a number of files and writes a number of bytes to them. It runs nine 
different experiments three times each. The second is similar to the first 
except that it opens up a number of processes with different sleep times 
between the processes to see how many the OS can handle. It runs nine 
experiments three times each. The third workload is a MATLAB program, 
which runs a number of matrix operations with different matrix sizes and 
number of matrices. It runs nine experiments three times each. The three 
programs have been written to automatically run the experiments and 
record the data in appropriate files. 

Along with these three programs, there is a fourth program called perfor- 
mance monitor, which will record CPU utilization and memory utilization 
every 500 milliseconds. Then the CPU and memory utilization will be 
compared with the beginning and ending times of the experiments, and the 
response time of those experiments are recorded in Excel files. 

The first program runs by choosing among 500, 750, and 1,000 bytes to 
write to a file and among 100, 500, and 1,000 files to write in. This gives a 
total of nine experiments. Each experiment is run three times. The response 
time of each of the 27 experiments is recorded in a file. This is done by 
opening the file, appending to it, and closing it every time a new experi- 
ment is run. The program writes the number of bytes, number of files, 
beginning time of experiment, ending time of experiment, and response 
time of the experiment in one line in the file, called work1, tx t .  This file 
need not be created when the program is run. 

The second program is similar to the first. It chooses among 10, 100, 
and 1,000 processes and sleep times of 0, 100, and 1,000 milliseconds 
between the processes. As in workload1, it is written to the file with the 
same format as in work1, t x t .  It records the number of processes instead of 
number of bytes and process rate (sleep time) instead of number of files. 
This is written in work2, tx t .  
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The third program is a MATLAB program. It is composed of two files. 
The first is matr ix .m,  which is a program that takes in the number of 
matrices and the size of the matrix and runs a number of operations on 
these matrices. The mat r ix .m file is run by the workload3 .m file. This file 
chooses among matrices or size 10 × 10, 50 × 50, or 100 × 100 elements 
and uses either 10, 100, or 1,000 matrices. The mat r ix .m file writes to a 
file called work3, t x t  in the same format as w o r k l o a d 2  but with matrix 
size instead of number of processes and matrix number instead of process 
rate. 

The fourth program is the performance monitor program. This program 
reads the CPU utilization and memory utilization of the system and writes- 
them to a file specified by the experimenter. The time and the CPU and 
memory utilization are recorded every 500 milliseconds. 

In order to derive information, we had to use the beginning and ending 
times of an experiment in any of the workloads and then find a timestamp 
immediately before the beginning time and immediately after the experi- 
ment ending time. This would give us a number of readings between the 
beginning and ending times. We would then take the average of the read- 
ings we are concerned with and that would complete the required informa- 
tion for that experiment. 

Running these programs on Windows ME 

Running these programs on ME proved to be a little difficult at times. Ini- 
tially, the three workloads were identical for the three OSs with the excep- 
tion that ME does not have the Process cmd.exe, which is used in 
w o r k l o a d 2  to  test the number of processes that the system can handle. 
Instead, we use the option of mem. exe. It is a similar console application. 
Also, in order to use the performance monitor program, we had to use our 
own system calls. 

While running the workload2 program, ME was not able to use the 
mem. exe program after executing a number of processes. It would run some 
of them and then it would run out of memory. An error message would 
appear indicating that mem. exe could not be found even though it had just 
run with the number of processes or lower. This occured at about 100 pro- 
cesses with 100 milliseconds sleep time between processes. 

MATLAB program workload for LINUX 7.2 

The purpose of this MATLAB program is to determine the memory per- 
centage utilization and the CPU percentage utilization that occur during 
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selected matrix operations written in MATLAB code. These operations 
were multiplication of matrices, addition of matrices, and inverse and deter- 
minant operations. To conduct these experiments, we varied the matrix size 
from 10 × 10 to 50 × 50 to 100 x 100 and the number of matrices from 10 
to 100 to 1,000. According to the project specifications, we classified these 
parameters as small, medium, and large. The program was run by giving a 
UNIX command at the command prompt. It was of the form m a t f i n a l  
(experiment number, matrix size, number of matrices). 

To calculate the percentage of CPU utilization, we used the MATLAB 
commands of t i c ,  toe, and CPU time. These commands were called 
before and after the matrix operations previously mentioned; their results 
were stored and used to calculate the percentage of CPU utilization. The 
t i c  command starts the stopwatch timer, and the toc command stops the 
stopwatch timer. The toe command returns the time elapsed between its 
calling, and the call to t i c ;  therefore toc measures the elapsed time for the 
matrix operations. The CPU time command gives the CPU time that has 
passed since MATLAB started. This value of CPU time was divided by the 
toe value to give the CPU utilization. 

To calculate the percentage of memory utilization, we used a C program 
(amitfinal. c), which was called from the MATLAB program before and 
after the matrix operations. This C program was called from within the 
MATLAB program by creating a MATLAB executable (mex) format--that 
is, extending MATLAB with C. The C program made use of UNIX system 
commands to acquire system information regarding memory--the amount 
of RAM, available memory, cached memory, and so on. In order to capture 
these memory values, we wrote the output of the C program into a text file 
called mem. t x t .  The contents of this file were read by the MATLAB pro- 
gram by using f i d  () and fopen () commands. 

Taking a look at the before and after values and by using simple mathe- 
matical formulas we calculate the memory used by the system in perform- 
ing the matrix operations. Knowing the total memory used by other 
processes in the system, we could determine what percentage of memory 
our MATLAB program used. We could also verify these results by using the 
top command at the command prompt. The top-command returned the 
amount of memory used by the MATLAB software (including the memory 
used to set up the MATLAB software during initialization and the memory 
taken up by the operations of the MATLAB program), while the MATLAB 
program code we used returned the memory required for the matrix opera- 
tions only. It's up to the user to decide which one to use for making appro- 
priate conclusions. In order to run the C program from the MATLAB 
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program, we had to include MATLAB executable commands to compile 
and run the C program. Finally, the required values, such as size of matrix, 
number of matrices, percentage of CPU utilization, and percentage of 
memory utilization, were printed. Since there was no way of verifying the 
percentage of memory use printed by the MATLAB program, we preferred 
to use the system monitor. 

1 3.4 Exper imenta l  design and simulat ion 

1 3.4.1 H a r d w a r e  speci f icat ions f o r  t h e  systems used 

To ensure that all the operating systems were tested on a level playing field, 
the four PCs that were used had identical hardware. The hardware for each 
of the machines was as shown in Table 13.1. 

To ensure that all of the machines were indeed equal in the sense of 
performance capabilities, an independent group ran a PC performance 
benchmark to validate. The results are discussed in the next section. 

1 3 .4 .2  PC b e n c h m a r k  

Passmarlc" the performance test 
The performance test comprises 22 individual benchmark tests, which are 
available in six test suites. The six different test suites are as follows: 

• Integer and floating-point mathematical operations 

• Tests of standard two-dimensional graphical functions 

• Reading, writing, and seeking within disk files 

• Memory allocation and access 

• Tests of the MMX (multimedia extensions) within newer CPUs 

• A test of the DirectX 3D graphics system 

The test results reported are shown as relative values. The larger the 
number the faster the computer. For example, a computer with a result of 

Iw. 

Table 13.1 Tested Configuration 

CPU Pentium III @ 500 MHz 

Total RAM 256 MB 
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Table 13.2 

40 can process roughly twice as much data as a computer with a result of 
20. The Passmark rating is a weighted average of all the other test results 
and gives a single overall indication of the computer's performance. The 
bigger the number the faster the computer. The results we observed are 
shown in Table 13.2. 

Observed Test Results for the Passmark Pe~ornance Suites* 

S. No. Parameter Tested Win NT Win XP LINUX 7.2 Win ME 

1 Math--Addition 96.6 96.2 94.6 97.0 

2 Math~Subtraction 96.4 97.1 96.2 97.6 

3 MathmMultiplication 101.1 101.4 101.4 103.1 

4 Math--Division 12.9 12.8 12.9 13.0 

Math--Floating-Point Addition 87.7 87.8 87.6 88.7 

Math--Floating-Point Subtraction 89.4 89.5 88.6 90.1 

MathmFloating-Point Multiplication 91.7 91.7 90.9 92.3 

Math--Floating-Point Division 14.8 14.8 14.8 14.9 

Math--Maximum Mega FLOPS 171.2 172.2 170.7 177.6 

10 Graphics 2D--Lines 17.5 17.6 17.5 17.8 

11 Graphics 2D--Bitmaps 12.9 12.9 12.8 12.9 

12 Graphics 2D--Shapes 4.7 4.7 4.7 4.7 

13 Graphics 3D--Many Worlds 22.9 23.0 22.9 22.9 

14 Memory--Allocated Small Blocks 86.6 87.6 87.0 87.6 

15 MemorymRead Cached 67.9 68.4 68.0 68.5 

16 Memory--Read Uncached 48.7 48.8 50 49.1 

17 Memory--Write 40.8 41.1 40.9 41.4 

18 Disk--Sequential Read 3.2 3.8 3.7 3.1 

19 Disk--Sequential Write 2.9 3.4 3.4 2.9 

20 Disk--Random Seek 1.2 2.3 3.6 2.1 

21 MMX Addition 97.7 94.5 97.8 99.4 

*The bold text indicates the highest values for each category. 
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Table 13.2 Observed Test Results for the Passmark pe~Cornance Suites* (continued) 

S. No. Parameter Tested Win NT Win XP LINUX 7.2 Win ME 

22 MMXmSubtraction 92.3 98.2 93.3 96.0 

23 MMX--Multiplication 97.8 97.5 96.9 99.1 

24 Math Mark 75.6 75.8 75.2 76.8 

25 2D Mark 46.7 46.9 46.7 47.1 

26 Memory Mark 58.7 59.2 59.2 59.4 

27 Disk Mark 19.3 25.1 28.4 21.5 

28 3D Graphics Mark 15.5 15.7 15.5 15.6 

29 MMX Mark 48.8 49.2 48.9 50 

30 Passmark Rating 45.7 47.2 47.8 46.7 

*The bold text indicates the highest values for each category. 

1 3 .4 .3  B u r n - i n  t e s t  

What the burn-in test does is a thorough exercise of the hardware in a PC in 
a short period of time, in the same way as normal applications use a PC over 
a long period of time. It tests the following items: 

1. CPU 

2. Hard drives 

3. CD-ROMs 

4. Sound cards 

5. 2D graphics 

6. 3D graphics 

7. RAM 

8. Network connections and printers 

The results we observed are shown in Table 13.3. 

1 3 .4 .4  E x p e r i m e n t a l  design 

Operating system performance depends on several factors. In order to con- 
duct a proper analysis, the effects of each factor must be isolated from those 
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Table 13.3 Observed Test Results for the Burn-in Test 

S. No. System Information Win  XP Win NT Win ME LINUX 7.2 

2 Number of CPU 1 1 1 1 

3 CPU manufacturer Intel Intel Intel Intel 

4 CPU type Celeron Celeron Celeron Celeron 

5 CPU features MMX MMX MMX MMX 

6 CPU Serial # N/A or disabled N/A or disabled N/A or disabled N/A or disabled 

7 CPU1 speed 501.3 MHz 501.3 MHz 501.3 MHz 501.2 MHz 

8 CPU Level 2 Cache 128 KB 128 KB 128 KB 128 KB 

9 RAM 267,821,056 Bytes 267,821,056 Bytes 267,821,056 Bytes 
(256 MB) (256 MB) (256 MB) 

267,821,056 Bytes 
(256 MB) 

10 Color depth 24 24 24 24 

of others so that meaningful estimates of their positive or negative contribu- 
tions to performance can be made. For this evaluation, we created the three 
workloads previously mentioned to exercise the process's management, 
memory management, and I/O management subsystems of the operating 
systems under study. All three workloads exercise these subsystems, 
although each workload was designed to stress particular subsystems. The 
first workload, which performs the matrix operations, is computationally 
extensive and requires large memory allocations. Therefore, this workload is 
primarily focusing on exercising the memory management subsystem. The 
second workload, which creates, writes to, and deletes an array of varying 
sized files, focuses on exercising the file management or I/O management 
subsystem. The last workload, which forks UNIX and DOS shell processes, 
was designed to stress the process management subsystem. 

The experimental design for this study is summarized in Table 13.4. 

We use a full factorial design to utilize every possible combination at all 
levels of all factors. By limiting the number of factors and their correspond- 
ing level, we can take advantage of this design to examine all possible com- 
binations of configuration and workload. The measures chosen for 
comparison are response time, CPU utilization, disk utilization, memory 
allocation, and stability. Table 13.4 shows the factors and their levels. To 
increase statistical significance while keeping the number of experiments at 
a reasonable level, experiments were repeated three times for every combina- 
tion of factors and levels. The resulting number of experiments for this 
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Table 13.4 A 3 4 Experimental Design* 

Workload Factors and Factor Values Replications 

A MATLAB program performing matrix opera- 
tions on an array of varying sized matrices. This 
program also records response times. 

Size of Matrix--SmaU, Medium, Large (defined 
in program) 

Number of Matrices--10, 100, 1000 

A C program that creates, writes to, and deletes a 
number of varying sized files and records 
response times. 

Size of File--Small (1 KB), Medium (10 KB), 
Large (100 KB) 

Number of Files--10, 100, 1000 

A C program that forks several UNIX/DOS 
shell processes. This program also records 
response times. 

Number of Processes-- 10, 100, 1000 

Process Arrival Rate--Slow (100 p/s), Medium 
(1,000 p/s), Fast (all at once) 

*[(3 Workloads) x (3 Levels for factorl) x (3 Levels for factor2) x (3 Replications)] = 81 Experiments 

design is 81, calculated as follows: (3 workloads) × (3 levels for factor l) x (3 
levels for factor2) × (3 replications). 

1 3 . 4 . 5  S i m u l a t i o n  

A simulation involves many activities, including data collection, building 
models, executing the simulation, generating alternatives, analyzing out- 
puts, and presenting results. Simulation systems provide software support 
for all the activities. AWESIM is a simulation system that supports model 
building, analysis of models using simulation, and the presentation of simu- 
lation results. The AWESIM user interface is built on a see-point-select phi- 
losophy employing multiple windows, a series of menus within each 
window, and a mouse to select menu items. Each team was assigned to pre- 
pare a high-level model before using the AWESIM simulation toolkit. The 
following section includes the high-level model for each group, the corre- 
sponding AWESIM model, and the reports. 

AWESIM model for LINUX 7.2 
In designing the AWESIM model, the LINUX team worked closely with 
the NT team. The NT team focused mainly on process scheduling, whereas 
the LINUX team focused mainly on memory management. There was, of 
course, overlap in the design of both sections, and some differences emerged 
on the final model for each team due to differences of the operating systems 
and to differences of opinion over which design was best. 
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Before looking at the diagram it is essential to first know what resources 
are being modeled and what attributes the entities have. The only resources 
modeled were memory and CPU. CPU has an allocation unit of one, since 
for any point in time only one process has the CPU; memory has as many 
allocation units as the system being modeled has pages. The attributes are as 
follows: ATRIB[1] - total CPU time needed, ATPdB[2] - timestamp (used 
for the LRU approximation), ATRIB[3] = remaining time needed before 
process terminates, LTRIB[1] = priority, LTRIB[2] = total number of pages 
the process will ever need, LTPdB[3] - total number of reads remaining, 
LTPdB[4] - total number of writes remaining, LTPdB[5] - total number of 
pages currently held, and LT1LIB[6] indicates if the entity represents the 
MATLAB program or the C forking program. As a note, ATRIBs are reals 
whereas the LTRIBs are integers. ATRIB[2] deserves more explanation. The 
way the LRU was approximated was by using timestamps every time a 
memory reference was made. 

However, instead of using a timestamp for every page held (which 
admittedly would have been much better), a single timestamp was used for 
each process. The logic is that whatever process least recently referenced 
memory also has the least recently used page. Once this algorithm was 
determined acceptable, another problem came up: swapping pages. If proc- 
ess A has a page miss, and process B has the LRU (least recently used page), 
process A can take a page from process B with a preempt node using 
ATRIB[2] to indicate priority. The problem occurs, however, when the 
process itself has the LRU, since a process can clearly not preempt itself. 
This was solved with the combination of the node HaveLRU and a user- 
defined function. 

At the HavenRU node, if process A has the LRU, it will go onto the 
swapwself node; otherwise, the entity will be routed to the preempt node. 
The user-defined function merely examines the timestamp of all entities 
possessing at least one page of memory. It then returns the value of the 
LRU's timestamp. A branch can then be used to see if the entity's timestamp 
equals the LRU's timestamp. Whenever an entity does preempt another 
entity in this manner, it becomes necessary to increment LTRIB[5] (since it 
now holds more than one page). Once the preceding concepts are under- 
stood, the rest of the model becomes simple to understand. 

Model 

Processes are created at the create node, create_proc, but they are not told 
whether they are to simulate the MATI~B program or the C forking pro- 
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gram until the goon-node, Initialize, randomly chooses to forward the 
entity to the assign-node forking or the assign-node MATLAB. Once the 
correct attributes have been set, the process must obtain a page of memory 
by entering the await node, mem_wai t. After the page of memory has been 
obtained, the fact is recorded by incrementing the value of LTRIB[5] via the 
assign-node Getvrstvg.  Once the page has been obtained, the process 
waits in the ready queue. From the ready queue the process goes to the pre- 
empt-node, cpu_wait, where it will either preempt the current process 
(provided ATRIB[3] gives it a higher priority than the current process) and 
send the preempted process back to the ready queue, or it will simply wait 
until the current running process releases the CPU. Once the entity has 
control of the CPU, the next sequence of steps is determined by which 
process the entity is to simulate. 

Forking 
The entity modeling the forking program will first go to the goon-node, 
fork, from where it will release the CPU at the flee-node, cpu_free2,  and 
its memory at the flee-node, mem_free2. Once both resources have been 
freed, the entity will split, sending one copy of itself (the parent) to the ter- 
minate-node end and the other copy of itself (the child) to the assign-node 
child,  where it will record its number of pages as being zero. The ch i ld  
then attempts to get its first page of memory by going to the await-node, 
mem wait. 

MATLAB 

The entity modeling the MATLAB program will first go to the goon-node, 
processmatlab,  from where it will branch, depending on whether or not it 
has any reads or writes to perform. If there are no reads or writes to per- 
form, the entity will be routed to the assign-node Ionotreq,  where 
ATRIB[1] will be decremented by the duration of the time slice. Next, the 
CPU is released through the release-node cpu_free. If there is any process- 
ing remaining to be done, the entity will be routed back to the ready queue; 
otherwise, it will release its memory via the flee-node mere_free and termi- 
nate by going to the terminate-node end. 

If, however, there are any reads or writes that must be performed, the 
entity will first be routed to the assign-node Ioreq, where the value for 
ATRIB[1] will be decremented between zero and the value of the time 
slice~depending on when the I/O is requested. It will then release the 
CPU via the flee-node cpuio_free,  from where it will be routed to the 
goon-node requestpage. 
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Once a page is requested, it must first be determined whether or not the 
process already owns that page. The model deals with this by assuming that 
the probability a page is already owned is equal to the current number of 
pages held, divided by the total number of pages needed. The value of this 
probability is used for the branches. If it is determined that the process does 
in fact have the necessary page, the entity will be routed to the goon-node 
GetPageFrame, which simulates finding the page flame, and is then routed 
to the goon-node addoffse t ,  which indicates that the offset is being added 
to the page flame. After addoffse t ,  if there are any writes to perform, the 
entity is routed to the goon-node wr i te  and then to the assign-node 
necWrite, where the timestamp is obtained and the number of writes 
remaining to be performed is decremented. After the write, the entity 
returns to the ready queue. If no writes remain, then a read needs to be per- 
formed (since we wouldn't be here in the first place if there were neither 
reads nor writes). The entity will first be routed to the goon-node read, 
from where it will be routed to the assign-node DecReed, which is similar to 
the DecWrite node. After changing the attributes, the entity is routed to 
the ready queue. 

If the process does not have the page being requested, it needs to find 
the LRU and exchange it with the needed page. First, it must be determined 
if the process itself contains the LRU, so the entity is first routed to the 
goon-node HaveLRU, where it uses the user-defined function to determine 
whether or not it has the LRU and then branches accordingly. If it does 
have the LRU, the entity only needs to swap out its LRU and swap in the 
new page; this is handled through the goon-node swapWzelf, after which 
the entity can be routed to the goon-node GetPageFrame. If the entity does 
not have the LRU, it goes to a preempt node to try to take a page away from 
the process with the LRU (done by using timestamp ATRIB[2]--as the 
priority) and use it for itself. Once it gets a page, the number of currently 
held pages is incremented with the assign node, and the entity is then 
routed to the goon-node GetPageFrame.  Figure 15.1 illustrates the model 
for INUX 7.2. 

AWESIM model for Windows XP 

Modeling of the system 

We have modeled CPU scheduling based on the Windows NT architecture. 
We have provided a high-level model and implemented the AWESIM 
model based on this high-level model. The following text describes how the 
CPU is scheduled in the operating system. 

I Chapter 13 
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Figure 13.1 Modd~r LINUX 7.2. 

CPU scheduling 

This operating system uses a preemptive muhithreading system. That is, it 
lets several processes execute simultaneously and switches among them rap- 
idly to create the illusion that each process is the only process running on 
the machine. This scenario assumes a uniprocessor environment. 
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Hg~e 13.1 (Continued) 

The basic scheduling unit is a thread. The system assigns each thread a 
priority number from 1 to 31, where higher numbers signal higher priori- 
ties. It reserves priorities 16 through 31 (real-time priorities) for use by 
time-critical operations. A process priority class is a priority level around 
which the process's threads get executed. New processes inherit the priority 
class of their parent. Process threads start at the priority level associated with 
their process's priority class. 

The relative priorities that can change a thread's priority from its process 
class priority are highest, above normal, normal, below normal, and lowest. 
Threads must take turns running on the CPU so that one thread doesn't 
prevent other threads from performing work. One of the scheduler's jobs is 
to assign units of CPU time (quantum) to threads. A quantum is typically 
very short in duration, but threads receive quantum so frequently that the 
system appears to run smoothly~even when many threads are performing 
work. The scheduler must make a CPU scheduling decision every time one 
of the following three situations occurs: 

1. A thread's quantum on the CPU expires. 

2. A thread waits for an event to occur. 

5. A thread becomes ready to execute. 

The scheduler executes the FindReadyThread algorithm to decide 
whether another thread needs to take over the CPU. If a higher-priority 
thread is ready to execute, it replaces (or preempts) the thread that was run- 
ning. VindReadyThread and ReadyThread are the key algorithms the 
scheduler uses to determine how threads take turns on the CPU. Find- 
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ReadyThread locates the highest-priority thread that is ready to execute. The 
scheduler keeps track of all ready-to-execute threads in the Dispatcher 
Ready List. The VindReadyThread algorithm scans the Dispatcher Ready 
List and picks the front thread in the highest-priority nonempty queue. 
ReadyThread is the algorithm that places threads in the Dispatcher Ready 
List. When ReadyTlaread receives a ready-to-execute thread, it checks to see 
whether the thread has a higher priority than the executing thread. If the 
new thread has a higher priority, it preempts the current thread and the cur- 
rent thread goes to the Dispatcher Ready List. Otherwise, ReadyThread 
places the ready-to-execute thread in the appropriate Dispatcher Ready List. 
At the front of the queue, ReadyThread places threads that the scheduler 
pulls off the CPU before they complete at least one quantum; all other 
threads (including blocked threads) go to the end of the queue. 

High-level model 
Figure 13.2 illustrates the high-level model of the CPU scheduler that we 
implemented in AWESIM. 

Assumptions 
We have made a number of assumptions while implementing the network 
model. These are: 

1. Processes that have I/O are given a fixed time for those operations 
t o  o c c u r .  

2. A fixed quantum size. 

3. Preempted processes return to the end of the queue instead of 
going to the head. 

4. The model will only consider I/O operations. Interrupts and 
forking operations will not be considered. 

AWESIM model 
The AWESIM model is the implementation of the high-level model 
described previously. The following are the working details of the model: 

1. Each created process has the following attributes: total process 
time, priority I/O, and whether or not the process will perform an 
I/O operation. 

2. If a process has an I/O operation, then the time of occurrence and 
the total time for the I/O are allocated. 

3. Processes with different priorities go to the different queues. 
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Figure 13.2 High-level model of CPU scheduler implemented in AWESIM. 
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Since CPU is allocated to a process for a quantum, calculations 
are done to calculate the remaining time of the process after the 
quantum has expired. 

Preemption is done based on priority using the preempt-node, 
and, again, the remaining time for the process to complete is cal- 
culated. 

The preempted processes are sent to a queue, which goes back to 
the different priority queues. 

All the processes go to the await-node, where they wait for the 
CPU. When the CPU becomes available, they use it for either the 
full length of the quantum or until a preemption or an I/O 
request occurs. 

When an I/O request occurs, the process waits in the I/O await- 
node where it will be assigned one unit of the I/O resource. The 
processes that have finished I/O go back to the ready queue. 

After a resource (I/O or the CPU) is used, it is freed to be allo- 
cated to the next entity (process). 

After a process completes an I/O operation, its status is changed 
to reflect that it does not require more I/O operations. 

A process is terminated upon completion of the total time allo- 
cated to it. 
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12. Collect-nodes were implemented to collect statistics such as the 
number of processes being preempted, the number of processes 
with different priorities, and the number of processes performing 
I/O. 

Figure 13.3 illustrates the AWESIM model for CPU scheduling. 

The design description of the AWESIM model is as follows. The high- 
level model concentrates on CPU scheduling; therefore the two resources in 
the AWESIM model are CPU and I/O. The create-node creates 100 entities 
(processes), which are assigned with different attributes (with each attribute 
defining a specific function). LTRIB[0] gives the total time of execution of 
the process, including the time taken for executing the I/O operation. 
Whether a process has I/O or not is defined by LTRIB[1]. The time at 
which the I/O occurs within the total execution time is indicated by 
LTRIB[2]. Each process is assigned a priority, which is given by LTRIB[4]. 

In our model, a process departing the create-node will have either a pri- 
ority 1, 2, or 3. Depending on the priority value, the entities are sent to 
their respective queues. Here the entities branch, depending on the value of 
LTRIB[ 1 ]. The time required by the process for execution is compared with 
the time slice available on the CPU and, accordingly, the resource is made 
available to execute the process. 

If a process with a low priority is currently being serviced by the CPU 
and a process with high priority comes in, then the preempt-node preempts 
the low-priority process and sends it to queue 4 for future service. Also, any 
process with I/O requirements after being serviced by the CPU will be sent 
to the I/O await-node, and subsequently serviced by the I/O resource. Any 
process with leftover execution time is sent back to the initial queues to 
complete its execution. The two resources are freed by using a free-node 
after the service. 

AWESIM model results 

The summary of the output is given in a report, from which we are able to 
find the utilization rate of the different queues, queue lengths, utilization of 
service activities, and the parameters related to the other nodes. From this 
evaluation we have been able to find the percentages of CPU utilization and 
I/O utilization. The inclusion of the collect-nodes at every stage of the 
AWESIM model yields results, which give details about the different prior- 
ities that are attributed to the processes, the number of processes that are 
preempted, and whether a process has an I/O or not. 
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AWESIM model for Windows ME 

High-level model 

In the basic high-level model for Windows 98, every incoming process is 
directed to the operating system. The OS, depending on the type of service 
requested, directs the process either to the I/O or memory. If it is a memory 
request, then the operating system checks to see whether the requested data 
are present in the cache. If not, it checks for the data in the main memory 
and transfers the block of data into the cache. If it is not a memory request, 
then it is an I/O request. Eventually, after an I/O request or memory access, 
it finally goes to the CPU. Once the processing in the CPU is complete, it 
can get into the I/O or memory chain or terminate. Figure 13.4 illustrates 
the high-level network model. 

The simulation model for Windows ME focuses on the basic function- 
ing of two aspects: memory access and I/O. The model deals with them in 
the simplest way and with the level of detail necessary to simulate the con- 
ditions realistically. The simulation model for Windows focuses on basic 
functioning of the two main modes as closely as possible. There is one 
entity creation node. The entities emanating from this are fed into three 
assign-nodes, which assign a set of attributes to these entities to differentiate 
their behavior in the system. These are as follows: 

1. ATRIB[1] corresponds to the type of service needed: I/O or sim- 
ple memory access. 

2. ATRIB[2] is for priority that ranges from 5 to 15. 

3. ATRIB[3] corresponds to the number of reinstalls or the number 
of times the entity needs to be serviced. 

These entities pass through the assign-node queue in the input queue 
waiting to acquire their respective resources (cache, main memory, and I/O) 

I0001 
Incoming 

Processes 

Operating 
System 

Cache I-. Miss ~1 Main 
I"" Transfer I Memory 

~np PU 

. I l 
I Terminate 
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at the await-nodes. The resources are assigned based on a process's priority. 
After acquiring the resources, they all queue at the await-node for the CPU 
resource (CPU clock pulses). After getting serviced by the CPU, the entities 
move on and free their respective resources at the flee-node and terminate. 
Entities that need multiple services go back to the input queue. This is done 
by checking ATRIB3 and changing ATRIB1 to create a realistic behavior. 
The model also tries to incorporate forking by creating some entities within 
the process. This is visible in the entity count on the activities. 

Figure 13.5 illustrates the AWESIM model for Windows ME. 

AWESIM model for Windows NT 

Figure 13.6 illustrates the AWESIM model for Windows NT. 

In developing the AWESIM model (virtual memory part), the NT  team 
worked closely with the LINUX team. The NT team focused mainly on 
CPU process scheduling, I/O scheduling, and virtual memory. We could 
not get into details such as file management and object manager, because 
the internals of the operating system were not available. 

Before getting into the actual model, it is essential to look at what kind 
of resources are being modeled and what attributes they have. 

The resources are memory, CPU, and I/O manager. Out of these, the 
memory and CPU are modeled as a single source of resource, whereas the 
I/O manager (which manages various I/O devices) is modeled as a group 
resource, meaning it has an n number of resources instead of having only 
one. The CPU has an allocation unit of one, since, for any one point in 
time, only one process acquires the CPU; memory has as many allocation 
units as the system being modeled has pages. 

The attributes are as follows: 

ATRIB[1] = The total CPU time required by a process. 

ATRIB[2] = Defines the priority of a process. This value is assigned 
using a probability function. If this value is 1, then it is assumed that 
the process belongs to a higher priority than the rest of the processes, 
and a zero indicates a lower priority. There was a probablity of 0.1 
that a process would have a priority of one. 

LTRIB[1] = The total number of pages a process needs. Again, to 
assign the number of pages, we used a random function, UNFRM, 
which generates values from 1 to 5. 

LTRIB[2] = The probability that the processes might require an I/O 
operation such as printing, waiting on a subroutine, and so on. 
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LTRIB[3] = Number of pages requested from the memory, initially 
bearing a value of 0. 

LTRIB[4] -- The total number of pages currently held in memory. 

LTRIB[5] = The timestamp, used to compute the LRU. 

The way the LRU works is as follows. Every time a memory reference is 
made, the timestamp is updated. However, instead of using a timestamp for 
every page held, a single timestamp was used for each process. The logic is 

ATR~B[~ = 1 
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Figure 13.6 AWESIM model for Windows NT. 
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Figure 13.6 (Continued) 

that whatever process least recently referenced memory also has the least 
recently used page. 

Suppose X and Y are two processes: X has a page miss and Y has the 
LRU. Process X can take a page from process Y with a preempt-node using 
LTRIB[5] to indicate priority. But this logic has a problem whenever proc- 
ess X has the LRU, since it cannot preempt itself. This is solved by using a 
rtaveLRO-node and a user-defined function, which simply examine the 
timestamp of all entries possessing at least one page of memory and return- 
ing the value of LRU's timestamp. A branch can then be used to see if the 
entity's timestamp equals the LRU's timestamp. At the HaveLRU-node, the 
processes then check for themselves whether they have the LRU. If so, they 
will go on to swapself-node, where they simply swap themselves; other- 
wise, they will be routed to the preempt-node. Whenever an entity does 
preempt another entity in this manner, it becomes necessary to increment 
LTRIB[3] (since it holds more than one page). 

N e t w o r k  model  
Processes are created at the create-node, create_proc. Once the correct 
attributes have been set, the processes must obtain a page of memory by 
waiting for an await-node, mem_wait. Initially all the processes are allocated 
a single page of memory. After acquiring the page, this fact is recorded by 
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incrementing the value of LTRIB[3] via the assign-node GetFrstPage. 
Once the page has been obtained, the processes wait in the ready queue for 
the CPU. Thereafter, they go to a preempt-node, cpu_wai t, where they will 
either preempt the current process (provided the CPU encounters a higher- 
priority process than the current process) and send the preempted process 
back to the ready queue, or they will simply wait until the current running 
process releases the CPU. Once the entity has control of the CPU, the next 
sequence of steps is determined by the node io_reqmnt, which determines 
whether it requires I/O or not depending on the value of LTRIB[2]. Here 
two issues arise. What if an entity requires I/O and what if it doesn't? 

What if the entities do not require I/O? They proceed from the node 
io_reqmnt toward node pages_mem, which assigns the value of LTRIB[3]/ 
LTRIB[1] to LTRIB[4]. The logic behind doing this is to check whether or 
not the corresponding process has the required number of pages depending 
on the value of LTRIB[4]. Here two issues arise. What if a page fault occurs 
and what if it does not? 

If there isn't a page fault, then the processes get processed and go to an 
assign-node, where we update ATRIB[1] and the timestamp in LTRIB[5], 
thereafter fleeing the CPU and sending the processes back to the ready 
queue. 

If there is a page fault, then we free the CPU from that process, since it is 
waiting for another page. After doing this, we need to update ATRIB[1], 
since we need to take into account the time that the process already spent in 
CPU executing up to that moment--that  is, before the page fault occured. 
After updating ATRIB[1], the process goes to node mem_full_or_not, 
which checks whether the memory is full or not. 

If the memory is not full, then the process gets the required number of 
pages by updating LTRIB[3] in an assign-node, page_al loc,  and thereafter 
it waits for memory at the await-node, mev__wai t. 

If the memory is full, the entity is routed through a check_lru node, 
which computes the LRU using the user-defined function discussed previ- 
ously and branches accordingly. 

If the entity does have the LRU, the entity only needs to swap out its 
LRU page and swap in the new page. This is handled through the go-on 
node SwapSelf, after which the entity can be routed through the go-on 
node oetvagevrave,  which simulates finding the page flame and adding 
the offset to it. After adding offset, the required read/write operation is per- 
formed by routing the entity through the go-on node perform_rw. After 
doing this, the entities are routed through an assign node, upd_time, which 
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updates the timestamp of the entities that accessed the memory. After 
updating the timestamp, the entities are sent back to the ready queue, since 
they are done with their operation. 

If the entity does not have the LRU, it goes to a preempt-node, 
mem_greempt, to try to take a page away from the process with the LRU 
(done by timestamp LTRIB[3]) and use it for itself. After preempting the 
LRU, the timestamp, LTRIB[5], is again updated and gets the requested 
page by waiting for the await-node, mem_wai t, for memory resource. 

What if the entities do require I/O? Entities requiring I/O are freed from 
the CPU and routed through an assign-node, ioreq,  which updates the 
total execution time already spent by the entity in the CPU. After this, enti- 
ties wait at an await-node, iowai t, on the group resource I/O block, which 
has various standard I/O resources, such as monitor, mouse, keyboard, and 
printer. After the entities are serviced by the resource, the attribute 
LTRIB[2] is set to zero, assuming that the entity no longer requires assi- 
tional I/O. After this the entities are routed through a flee-node, free_io, 
where all the resources allocated to that entity are freed. Finally, the entities 
are routed back to the ready queue, since they are done with their execu- 
tion. 

Why isn't the A WESIM model validated by experimental results? 
The results of AWESIM were so obviously wrong (e.g., CPU utilization 
equals 100 percent), that without any validation it was instantly known the 
model was invalid. Considering that parts of the model were actually left 
out, this is not a surprise. Without these parts a valid model is impossible, 
so rather than trying to force the data to fit into a validation scheme, we will 
instead explain why the results were so poor, and why that cannot be 
changed. 

The first obviously incorrect piece of data is that CPU is 100 percent 
utilized. This is because we do not simulate any I/O, so the only thing to 
make a process give up CPU is termination or end of time slice. In either 
case another process instantly replaces it, yielding an unrealistically high uti- 
lization rate. 

All other problems run into the same general problem~we could not 
obtain appropriate values for attributes. An example of this is that we would 
like to know the number of reads or writes the MATLAB program per- 
forms, but all we are given is particular operations. These operations could 
represent any number of reads and writes. This forced us to use an arbitrary 
number for reads and writes. Also, the total number of pages a process will 
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ever request was unknown to the simulator, forcing an arbitrary number for 
that as well. Other arbitrarily chosen numbers were as follows: duration of 
time slice, time to perform a single read, time to perform a single write, and 
total length of CPU time (not counting I/O times) to complete the process. 

Obviously, even if the model nodes and activities are perfect, with so 
many arbitrary numbers the results cannot possibly be expected to be valid. 
The model is useful for explaining, from a high-level point of view, how the 
LINUX operating system works, and was also a useful educational experi- 
ence to design, but as far as determining real-world behavior goes, the 
model is useless. 

13.5 Experimental analysis and conclusion 

This section includes the intermediate analysis of the experimental results. 
These results compare each workload in individual scenarios. Based on 
these results the final conclusion regarding the tradeoff between the operat- 
ing systems concludes this chapter. 

1 3 . 5 .  I F i le  t r a n s f e r  w o r k l o a d  

For the file transfer workload, when the file size is constant and the number 
of files is increased, the response time and CPU utilization increase linearly, 
whereas memory utilization remains almost constant for XP, NT, and ME. 
But in the case of LINUX, the response time increases, but the CPU utiliza- 
tion decreases and the memory utilization remains constant. 

Tables 13.5 through 13.7 show the ranges of CPU use and memory uti- 
lization, depending on the number of files for each OS. 

Observations for Table 13.5: Windows ME, NT, and XP all increased 
their CPU use ranges, while LINUX decreased its range. LINUX perform- 

Table 13.5 CPU Use and Memory Utilization for File Size = 500 

Operating System CPU Range Memory Utilization 

ME 56.5-88.8 10 

NT 87.37-98.08 10 

LINUX 13.0-99.9 0.3 

XP 13.92-26.7 18 
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Table 13.6 

r 

Table 13.7 

CPU Use and Memory Utilization For File Size = 750 

Operating System CPU Range Memory Utilization 

ME 62.0-87.8 10 

NT 6.35-98.49 10 

LINUX 13.7-99.9 0.4 

XP 16.16-32.77 17.99 

ance fell within the range of 75.6-99.9 for 100 files. For file numbers of 
500 and 1,000 the CPU use was between 13 and 16.8 with a varying trend. 

Observations for Table 13.6: Windows ME, NT, and XP all increased 
their CPU utilization ranges, while LINUX decreased its utilization range; 
overall measurements varied greatly in the case of 100 files. CPU utilization 
measurements varied from 98.3 for the first experiment, 24.4 for the second 
experiment, and 99.9 for the third experiment. However, for 500 and 1,000 
files it ranged from 13.7 to 15.9, showing less variability. Some of this vari- 
ability could be smoothed out by performing more experiments at each 
level and averaging their results. The time allotted to our experiment did 
not allow us to do this, however. 

Observations for Table 13.7: Windows ME, NT, and XP all increased in 
their CPU utilization ranges over the full spectrum of measurements, while 
LINUX decreased overall, staying at about 98 percent for the three experi- 
mental runs. However, for 500 and 1,000 files its CPU utilization ranged 
from 12.9 to 15.6. 

CPU Use andMemory Utilization for File Size = 1,000 

Operating System CPU Range Memory Utilization 

ME 60.0-87.8. 10 

NT 96.11-97.68 10-11 

LINUX: 12.9-98.2 0.5 

XP 18.156-30.91 17.98 
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Table 13.8 CPU Use and Memory Utilization for Process Rate = 0 

Operating System CPU Range Memory Utilization 

ME 61.67-91.2 10-12 

NT: 3.38-85.625 11-26 

LINUX 25-75 0.1 

XP 47-86 17.23-18 

13 .5 .2  

v 

Table 13.9 

Process c r e a t i o n  w o r k l o a d  

For the process creation workload, we realize that the CPU utilization is 
approximately linear for XP and LINUX with an increasing slope, while 
NT and ME vary widely in their CPU utilization. Also, for XP, the response 
time decreases when the number of processes rate increases. For each num- 
ber of processes the performance range is higher than the previous number, 
but it decreases as the processes rate increases. 

Tables 13.8 through 13.10 show the ranges of CPU utilization and 
memory utilization depending on the process rates for each OS. 

Observations for Table 13.8: The Windows NT CPU utilization is 
approximately 22 percent for ten processes but increases to between 77 per- 
cent and 85 percent for 100 processes and drops down to about 50 percent 
for 1,000 processes. Also, for 1,000 processes, the memory utilization 
increases even though the CPU utilization decreases. 

Observations for Table 3.9: For the case of a process rate of 100, NT 
generally increases linearly with the exception of some values where it hap- 

CPU Use and Memory Utilization for Process Rate = 1 O0 

Operating System CPU Range Memory Utilization 

ME 60.05-73.25: 10-14.56 

NT 12.33-31.59 11-15 

LINUX 37.1-73.3 0.1 

XP 77.3-85.27 17.98-18.99 
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Table 13.10 

13 .5 .3  

Table 13.11 

CPU Use and Memory Utilization for Process Rate = 1,000 

Operating System CPU Range Memory Utilization 

ME 56.13-58.85 1.322-11 

NT 3.42-4.62 11-20.98 

LINUX 41.6-74.1 0.1 

XP 18.156-30.91 17.97-17.99 

pens to use a little less CPU utilization. However, the memory utilization 
seems to increase linearly. For LINUX the process rate stays in the range of 
37 to 41 for a number of processes equaling 10 and 100, but for 1,000 the 
utilization jumps to between 50 percent and 70 percent. 

Observations for Table 3.10: NT and XP remained almost constant in 
their CPU, with a fluctuation of about 3 percent to 4 percent. The only OS 
showing a variation in the percentage of CPU utilization was LINUX, rang- 
ing from 41.6 to 74.1. On the contrary, ME showed a decrease in CPU uti- 
lization with the increase in the number of processes. As the number of 
processes increased, the memory utilization also increased considerably 
(maximum of 8 percent in NT). 

M A T L A B  w o r k l o a d  

For the matrix operations for the MATLAB workload, with constant matrix 
size and varying number of matrices, the response time and CPU utilization 
in the case of Windows ME, NT, and XP increase, whereas the memory uti- 
lization remains almost constant. (See Tables 13.11 through 13.14.) 

Observations for Table 13.11: Windows NT and XP performed simi- 
larly, with CPU utilization exponentially increasing when the number of 

CPU Use and Memory Utilization for Matrix Size = 10 × 10 

Operating System CPU Range Memory Utilization 

ME 51.5-76.66 2-2.5 

NT 2-74 16 

LINUX N/A N/A 

XP 4.5-56.67 17.97-17.99 
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Table 13.12 

r 

Table 13.13 

CPU Use and Memory Utilization for Matrix Size = 50 × 50 

Operating System CPU Range Memory Utilization 

ME 55-99.78 4-11.97 

NT 14-99.62 16-18 

LINUX 46-48.37 4.2 

XP 7.66-99.17 28-30.97 

matrices was increased from 10 to 1,000. The variation was a bit less in 
ME, ranging from 51 percent to 77 percent. Even for ten matrices it con- 
sumed a lot of computational power. For the LINUX OS, the experiment 
was conducted with different parameters. The matrix size started at 50 and 
went up to 1,000, while for the Windows-based OS it started at 10 and 
went up to 100. The amount of memory consumed was considerably less in 
the ME system (2.5 percent) as compared with the other Windows-based 
operating systems. On the other hand, the percentage of variation was fairly 
constant in all three of them. 

Observations for Table 13.12: Percentage utilization of CPU for N T  
and XP increased exponentially when the number of matrices was increased 
from 10 to 1,000. The variation was a bit less in ME, ranging from 55 per- 
cent to 100 percent. Considerably, ME consumed more CPU even for a 
lesser number of matrices. For the LINUX OS, the CPU consumption 
didn't vary much but still consumed a lot of computational power for a 
lesser number of matrices, similar to ME. The amount of memory con- 
sumed was considerably less in the LINUX operating system (4.2 percent) 
as compared with the Windows-based operating systems. On the other 
hand, the percentage of variation in performance was fairly constant in all 
four of them. 

CPU Use and Memory Utilization for Matrix Size = 1 O0 × 100 

Operating System CPU Range Memory Utilization 

ME 59-99.98 0.30-4.25 

NT 39.50-100 16-24.98 

LINUX 81.22-81.97 4.2 

XP 7.3-100 28-41 
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Table 13.14 CPU Use and Memory Utilization for Matrix Size = 1,000 x 1,000 

Operating System CPU Range Memory Utilization 

LINUX 96.76 - 96.95 17.95-19.5 

1 3 . 5 . 4  

Table 13.15 

Observations for Table 13.13: All three of the Windows-based machines 
saturated their CPU utilization when the number of matrices was about 
1,000. In this scenario too, Windows ME consumed more CPU resources 
even for small numbers of matrices. For the LINUX operating system, the 
CPU consumption didn't vary much but still consumed a significant 
amount of computational power for small numbers of matrices, similar to 
ME. The amount of memory consumed was considerably less in the 
LINUX operating system (4.2 percent) as compared with the other Win- 
dows-based OSs. 

Observations for Table 13.14: Only the LINUX team tested a matrix of 
this size. In this case the CPU utilization was almost pushed to the limit. 
The memory utilization was still less compared with the Windows-based 
machines. 

Fina l  c o n c l u s i o n  

The following tables were deduced by calculating the average statistical 
measured values for the actual tables collected in the study for the different 
operating systems. The measure used is a ratio of the CPU utilization 
divided by the product of the memory use and overall response time for 
each experiment. 

Table 13.15 gives the results for the process experiments. 

Results for the Process Experiments 

Operating System Response Time (ms) % CPU Utilization % Memory Utilization CPU/(Mem*res) 

XP 35,290.95 82.34 19.43 12E-05 

ME 150,110.33 68.98 8.96 5.13E-05 

NT 148,956.52 27.03 13.91 1.3E-05 

LINUX 7,400.5 49.83 0.1 6733.3E-05 
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Table 13.16 Results for the MATLAB Experiments 

Operating System Response Time (ms) % CPU Utilization % Memory Utilization CPU/(Mem*res) 

XP 218.66 99.56 35.975 0.012657 

ME 224.555 99.715 26.45 0.016789 

NT 222.345 98.7 21.46 0.020685 

LINUX - -  65.17 4.2 0.069941" 

* In order to get a value for this table it was necessary to have a response time for LINUX. The response time for the other oper- 
ating systems was averaged; this way the LINUX response time essentially doesn't come into play. 

iw- 

Table 13.17 

Table 13.16 gives the results for the MATLAB experiments. 

Table 13.17 gives the results for the file experiments. 

No operating system dominates in performance for all the workloads 
that were used in this study. Each of the operating systems outperforms 
other operating systems in its own way. To determine which system per- 
forms best for each workload, we used the formula in the final columns, 
which is equal to the CPU utilization divided by the product of the mem- 
ory utilization and the response time. 

LINUX performs well in forking new processes. This can be deduced 
from the table values for process experiments, where it utilizes the least 
memory, average CPU utilization, and minimum response time as com- 
pared with other operating systems, giving it the best value in the aggregate 
measure for performance. The second best system based on this measure is 
the XP operating system, which has a value worse than LINUX's by a factor 
of 561. Next comes NT, which has a value worse than XP's by a factor of 
9.2. Finally, ME is the worst, with a value that is offby a factor of 3.9 when 
compared with NT. 

Results for the File Experiments 

Operating System Response time (ms) % CPU Utilization % Memory Utilization CPU/(Mem*res) 

XP 164,194 67.74 17.95 2.29839E-05 

ME 965.36 74.05 10 767.0714E-05 

NT 129,030 96.06 10.29 7.23497E-05 

LINUX 42,625.88 89.28 22.6 9.26771E-05 
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13 .5 .5  

For the experiments involving matrix operations in MATLAB, LINUX 
out performs the other operating systems, since it utilizes the least amount 
of memory and has an average CPU utilization with an aggregate perform- 
ance measure of 0.069941, making it better than NT by a factor of 3.38. 
NT is better than ME by a factor of 1.23, and ME is better than XP by a 
factor of 1.33. 

Windows ME manages files efficiently compared with the other operat- 
ing systems, with an aggregate performance measure of 7.67E-03. This 
measure is then followed by LINUX, which is found to perform worse by a 
factor of 82.7. NT in turn performs worse than LINUX by a factor of 1.28, 
and XP is found to be worse than NT by a factor of 3.14. 

T a b u l a r  resul ts  

Tables 13.18 through 13.20 show results for the various workloads. 
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13.6 Summary 

This chapter represents the results of a graduate course in computer system 
performance evaluation conducted at the University of Massachusetts Dart- 
mouth. It is presented to show the difficulties associated with evaluating the 
performance of real-world computer systems, particularly their operating 
systems. 

This study attempted to perform an evaluation of four operating sys- 
tems. The experiments developed appeared to provide the tests we wished 
to perform, but our ability to adequately collect reliable measurements led 
to our inability to do the study with any degree of reliability. If this study 
were to be done again, the teams would need to use hardware-monitoring 
concepts in order to get at low-level system parameters to more fully under- 
stand how the systems performed. The teams also lacked experience in per- 
forming such tests and analyzing results, leading to other problems, as one 
can deduce from these results. We included such a study in this book to 
highlight many of the problems encountered when performing such tests. 
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Database Systems Performance Analysis 

14.1 

14.2 

In t roduct ion  

The previous chapter addressed the issue of operating systems evaluation. It 
focused on the use of testbeds and commercial-grade software to assess the 
relative performance of four operating systems. This chapter follows a simi- 
lar path; we will be evaluating industrial-grade software products used in 
many applications. We will discuss database on-line transaction processing 
as the overall application domain. The main focus, however, is the assess- 
ment of four commercial-grade database systems running on a fixed set of 
testbed hardware and systems software (the operating system). 

Four database systems currently compete for the top position in the 
database market, each claiming to be the fastest in the world. These data- 
bases are IBM DB2, Informix UDB, Microsoft SQ_L Server, and Oracle 8i. 
This chapter demonstrates which of these four database systems is the 
"best" not only in terms of speed but also cost. 

This chapter is divided into three main sections. First, a description of 
the four systems that were used to test the databases is given. In the next 
section the results of a PC performance benchmark are shown to prove that 
all the PC hardware configurations were the same. The second portion 
details the procedures taken by each database evaluation team to run a stan- 
dard benchmark on its test database. Finally, the results of the standard 
benchmark and a cost analysis show which database is the "best." 

The tes tbed  systems 

To ensure that all the databases were tested on a level playing field, the four 
PCs used were configured with identical hardware. The hardware for each 
of the machines is defined in Table 14.1. 
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Table 14.1 

14.2.1 

Testbed Configuration 

CPU: Pentium III @ 500 MHz 

Total RAM: 256 MB 

Operating System: Windows NT 4.0 Service Pack 5 

To ensure that all of the machines were equal in the sense of perform- 
ance capabilities, an independent performance assessment group ran a PC 
performance benchmark to validate each machine's performance specifica- 
tions before the actual database benchmark tests were performed. The 
results are discussed in the next section. 

PC p e r f o r m a n c e  assessment b e n c h m a r k  

The PC computer architecture performance test utilized is comprised of 22 
individual benchmark tests that are available in six test suites. The six differ- 
ent test suites test for the following: 

• Integer and floating-point mathematical operations 

• Tests of standard two-dimensional graphical functions 

• Reading, writing, and seeking within disk files 

• Memory allocation and access 

• Tests of the MMX (multimedia extensions) in newer CPUs 

• A test of the DirectX 3D graphics system 

The test results reported are shown as relative values. The larger the 
number the faster the computer. For example, a computer with a result of 
40 can process roughly twice as much data as a computer with a result of 
20. The Passmark rating is a weighted average of all the other test results 
and gives a single overall indication of the computer's performance. The 
bigger the number the faster the computer. The results we observed are 
shown in Table 14.2. 

Assessment of results 
The performance assessment test found that the computer system configured 
for the DB2 servers appeared to have better performance than the other sys- 
tems in most of the tests. However, the Passmark rating (weighted average of 
all test results giving a single overall indication of performance) of the com- 
puter system configured for the SQL Server 2000 was the highest. 
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Table 14.2 Testbed Architecture Performance Results 

Parameter Tested Oracle System Informix System SQL System DB2 System 

Math--Addition 96.6 96.2 94.6 97.0 

Math~Subtraction 96.4 97.1 96.2 97.6 

Math--Multiplication 101.1 101.4 101.4 103.1 

Math--Division 12.9 12.8 12.9 13.0 

Math--Floating-Point Addition 87.7 87.8 87.6 88.7 

Math--Floating-Point Subtraction 89.4 89.5 88.6 90.1 

Math-Floating-Point Multiplication 91.7 91.7 90.9 92.3 

Math--Floating-Point Division 14.8 14.8 14.8 14.9 

Math--Maximum Mega FLOPS 171.2 172.2 170.7 177.6 

Graphics 2D--Lines 17.5 17.6 17.5 17.8 

Graphics 2D--Bitmaps 12.9 12.9 12.8 12.9 

Graphics 2D--Shapes 4.7 4.7 4.7 4.7 

Graphics 3D--Many Worlds 22.9 23.0 22.9 22.9 

Memory--Allocated Small Blocks 86.6 87.6 87.0 87.6 

Memory--Read Cached 67.9 68.4 68.0 68.5 

Memory--Read Uncached 48.7 48.8 50.0 49.1 

Memory--Write 40.8 41.1 40.9 41.4 

Disk--Sequential Read 3.2 3.8 3.7 3.1 

Disk--Sequential Write 2.9 3.4 3.4 2.9 

Disk--Random Seek 1.2 2.3 3.6 2.1 

MMX--Addition 97.7 94.5 97.8 99.4 

MMX--Subtraction 92.3 98.2 93.3 96.0 

MMXmMultiplication 97.8 97.5 96.9 99.1 

Math Mark 75.6 75.8 75.2 76.8 

2D Mark 46.7 46.9 46.7 47.1 

Memory Mark 58.7 59.2 59.2 59.4 

Disk Mark 19.3 25.1 28.4 21.5 

3D Graphics Mark 15.5 15.7 15.5 15.6 

MMX Mark 48.8 49.2 48.9 50.0 

Passmark Rating 45.7 47.2 47.8 46.7 
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Table 14.3 

B u r n - i n  t e s t  

The computer system hardware burn-in test is a thorough exercise of the 
hardware in a PC performed over a short period of time, in the same way as 
normal applications use a PC over a long period of time. The burn-in test 
assesses the following items: 

• CPU 

• Hard drives 

• CD-ROMs 

• Sound cards 

• 2D graphics 

• 3D graphics 

• RAM 

• Network connections and printers 

Burn-in test  assessment  

From the results shown in Table 14.3, we can see that the SQL Server 
2000's CPU speed is 0.1 MHz less than the other machines. This difference 

Burn-In Test Results 

System Information: Informix Oracle DB2 SQL Server 

Operating System: Win NT4 Win NT4 Win NT4 Win NT4 

Number of CPUs: 1 1 1 1 

CPU Manufacturer: Intel Intel Intel Intel 

CPU Type: Celeron Celeron Celeron Celeron 

CPU Features: MMX MMX MMX MMX 

CPU Serial #: N/A or disabled N/A or disabled N/A or disabled N/A or disabled 

CPU1 Speed: 501.3 MHz 501.3 MHz 501.3 MHz 501.2 MHz 

CPU Level 2 Cache: 128 KB 128 KB 128 KB 128 KB 

RAM: 

267,821,056 Bytes 267,821,056 Bytes 267,821,056 Bytes 267,821,056 Bytes 
(256 MB) (256 MB) (256 MB) (256 MB) 

Color Depth: 24 24 24 24 
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is not significant, unless the duration of performance assessment tests spans 
a long period of time. All other measurements indicated the four testbed 
machines were equivalent. 

14.3 The database systems 

1 4 . 3 .  I D a t a b a s e  I - - O r a c l e  a r c h i t e c t u r a l  s t r u c t u r e  

The components comprising the Oracle database system are executed using 
virtual memory structures and basic application processes. Processes are jobs 
or tasks that work in the memory of these computers. Oracle has always 
placed great emphasis on portability: providing uniform features and facili- 
ties across the greatest possible range of operating environments. Oracle 
implements a common architecture, which includes the following compo- 
nents: 

• An area of memory available to all Oracle sessions, known as the sys- 
tem global area (SGA). This area of memory includes recently 
accessed data blocks (the buffer cache), SQL and PL/SQL objects 
(the library cache), and transaction information (the redo log buffer). 
The SGA may also contain session information. 

• Several tasks that perform dedicated database activities, including the 
database writer (DBWR), redo log writer (LGWR), system monitor 
(SMON), process monitor (PMON), and log archiver (ARCH). 
Other tasks may be configured if required to support Oracle options, 
such as parallel query, distributed database, or multithreaded servers. 
We will refer to these tasks as background tasks (although they are 
also often referred to as background processes). 

• Oracle data files, which contain the tables, indexes, and other seg- 
ments that form the Oracle instance. 

• Redo logs, which record critical transaction information required for 
roll-forward in the event of instance failure. 

• A separate task created to perform database operations on behalf of 
each Oracle session, referred to as a dedicated server. If the multi- 
threaded server option is implemented, many sessions can be sup- 
ported by a smaller number of shared servers. 

• A SQL*Net listener task, which establishes connections from external 
systems. 

I Chapter 14 
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Database and redo log files are generally implemented using the operat- 
ing system's native file system or raw disk partitions, and port-specific dif- 
ferences at the file level are relatively minor. However, the memory and 
process structure of an Oracle instance will vary significantly, depending on 
how the operating system implements process and memory management. 

The architecture of Oracle in a Windows NT environment is somewhat 
different from UNIX. Oracle takes advantage of NT's strong support for 
threads. In almost all operating systems, a process is prevented from access- 
ing memory belonging to another process. Threads belonging to the same 
process, however, share a common memory address space and are able to 
share memory easily. 

On NT, the Oracle instance is implemented as a single NT process (Fig- 
ure 14.1). This process includes threads that implement each of the tasks 
required for the Oracle instance. Therefore, there is a thread for each of the 
background and server tasks plus a two-thread overhead per client connec- 
tion. Because each thread shares the same memory space, there is no need to 
implement the SGA in shared memory; if you implement the SGA within 
the instance's process memory, it is available to all threads within the process. 

Oracle's architecture suits the NT process/thread model. However, the 
single-process model restricts the total memory available to threads belong- 

Figure 14.1 Oracle process and thread structure on NT. 
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ing to the Oracle instance on NT. Prior to NT version 3.51, the memory 
limit for a single process was only 256 M B ~ a  severe limitation for even 
moderately sized Oracle instances. In NT version 4.0, a process may address 
up to 4 GB of virtual memory. However, 2 GB of this memory is reserved 
for system overhead, allowing only 2 GB for Oracle. At first glance, 2 GB 
might sound like a generous memory allocation for an Oracle instance. But 
remember that this area of memory must be sufficient to store the SGA and 
data segments for all Oracle sessions. Furthermore, the 2 GB is a virtual 
memory limit; it's possible that 2 GB of virtual memory will be expended 
when physical memory use is actually far lower. There are currently two 
options for extending the 2-GB limit: In Windows NT Server Enterprise 
Edition, you can reduce the system component of process memory to 1 GB, 
allowing up to 3 GB of memory for the Oracle instance. On Alpha NT 
platforms, the very large memory (VLM) option allows up to 8 GB of 
memory to be made available to the Oracle instance. 

Oracle's multithreaded server option allows multiple client processes to 
share a smaller number of Oracle server processes. This approach can 
reduce memory requirements and process overhead. Multithreaded server is 
also available on NT, but only from Oracle 8 onward. Using multithreaded 
server under Windows NT can reduce the number of threads in the Oracle 
process as well as overall memory requirements. One may also be able to use 
the Oracle 8 connection pooling and concentrating facilities to further 
reduce thread and memory overhead. 

Transactions 

Oracle supports many types of transactions, including read-only, read/write, 
and discrete transactions. Depending on the transaction type set for the 
transaction, the Oracle database will provide different data consistency 
guarantees. If no transaction type is set for a transaction, it defaults to read/ 
write. For each transaction, Oracle must keep track of the transaction and 
the effect it has on the database. This is done to ensure that if the transac- 
tion does not finish, it can be rolled back and the effects of the transaction 
"undone" from the database. This will ensure database consistency. Oracle 
uses a special type of segment to record the specifics of the transaction. 

Note: The queries run for the TPC-H experiment did not have any transac- 
tion type set, so they ran as read/write transactions. 
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Query optimization 
Oracle provides an internal system feature called the optimizer. The opti- 
mizer will determine one or more execution plans that it can use to execute 
the SQL statement. Oracle 8i has three choices: cost, rule, and choose. The 
cost-based optimizer will execute the SQL statement using the plan that has 
the lowest cost. The rule-based optimizer will execute the SQL statement 
according to user-defined rules set up in the database. The choose optimizer 
will choose the lowest-cost optimization (cost or rule) that can execute the 
SQL statement. In order to determine the best execution plans for SQL 
statements, Oracle uses statistics that are stored in the database. These sta- 
tistics must be updated periodically on the database tables, indexes, and 
other database objects. If the database is modified after the statistics are gen- 
erated (after analyzing the tables), the optimizer might not execute with the 
least cost; therefore, it is crucial to regularly generate statistics on the data- 
base tables. 

One of the most costly execution plans is the full table scan. Full table 
scans require Oracle to read every row in the table. Another execution plan 
to find rows of a table is by searching an index of a table. Optimizers can be 
passed hints to allow them to choose the best execution paths for a SQL 
statement. One of these hints could be to use indexes. Other optimizer 
hints include first rows, all rows, full table scan, nested loop, merge join, use 
hash join, and so on. Hints can be added to SQL statements to ensure the 
optimizer executes the SQL statement using the specific execution plan. 

Note: The TPC-H queries were run with the Oracle database optimizer set 
to Choose. No indexes were implemented; all of the tables were analyzed 
prior to running the queries. No hints were added to the TPC-H queries, 
since doing so would violate the comparison guidelines. 

Concurrency control and Iock/ng 
Oracle uses locking mechanisms to protect data from being destroyed by 
concurrent transactions. Oracle provides both automatic and explicit lock- 
ing capabilities. By default, Oracle provides locking for database resources 
for transactions in the database. The system will automatically set locks on 
tables and rows; the levels of the locks will depend on the transaction func- 
tion (reads, inserts, updates, and deletes). Oracle can set locks in two lock 
modes: shared or exclusive. Shared locks are set on database resources so 
that many transactions can access the resource. Exclusive locks are set on 
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14.3.2 

Hgure 14.2 
Configurable pool 

database server 

resources that ensure one transaction has exclusive access to the database 
resource. Exclusive locks ensure transaction serialization. DML locks are 
Oracle locks that are automatically set on tables and indexes for transactions 
using DML operations (update, insert, delete). Oracle also automatically 
sets DDL locks on Oracle resources when DDL operations are used (create, 
alter, and drop). 

Database 2 - - I n f o r m i x  Dynamic Server  
a rch i tec tura l  s t ruc tu re  

Informix Dynamic Server is a multithreaded object-relational database 
server that manages data stored in rows and columns in a table. It employs a 
single processor or symmetric multiprocessing (SMP) systems and dynamic 
scalable architecture to deliver database scalability, manageability, and per- 
formance. Dynamic Server can be used for on-line transaction processing 
(OLTP), packaging applications, data-warehousing applications, and Web 
solutions. 

Dynamic scalable architecture 

The foundation of Informix Dynamic Server's superior performance, scal- 
ability, and reliability is its parallel database architecture, dynamic scalable 
architecture (DSA), built to fully exploit the inherent processing power of 
any hardware (Figure 14.2). DSA enables all major database operations, 
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such as I/O, complex queries, index builds, log recovery, and backups and 
restores, to execute in parallel across all available system resources. Informix 
Dynamic Server's core architecture was designed from the ground up to 
provide built-in multithreading and parallel processing capabilities. Parallel 
processing is achieved through dividing large user tasks into subtasks, thus 
enabling processing to be distributed across all available resources. 

The key advantages of Informix Dynamic Server are as follows; 

• Maximum performance and scalability through a superior multi- 
threaded parallel processing architecture 

• Reduced operating system overhead through bypassing operating sys- 
tem limits 

• Local table partitioning for superior parallel I/O operations and high- 
availability database administration 

• Parallel SQL functionality increases performance and lets all database 
operations execute in parallel, thereby eliminating potential bottle- 
necks 

• High database availability for supporting a wide range of business- 
critical applications on open systems platforms 

• Dynamic, distributed on-line system administration for monitoring 
tasks and distributing workloads 

• Full feature parity on Windows NT and UNIX operating systems 

• Full RDBMS functionality across all hardware architectures (uniproc- 
essor, symmetric multiprocessing, and cluster systems) and database 
models (relational and object relational) enables seamless migration 
of applications, data, and skills 

Locking~ data consistency, isolation, and recovery 
While high availability ensures integrity at the system level, data consistency 
ensures consistency at the transaction level. Informix Dynamic Server main- 
tains data consistency via transaction logging and internal consistency 
checking and by establishing and enforcing locking procedures, isolation 
levels, and business rules. 

When an operation is unable to be completed, the partially completed 
transaction must be removed from the database to maintain data consis- 
tency. To remove any partially completed transaction, Informix Dynamic 
Server maintains a historical record of all transactions in the logical logs and 
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automatically uses these transaction records as a reference to restore the 
database to the state prior to the transaction. 

Internal consistency checking is designed to alert the Informix Dynamic 
Server administrator to data and system inconsistencies. Informix Dynamic 
Server contains a data-level layer of checks, which can detect data inconsis- 
tencies that might be caused by hardware or operating system errors. If 
inconsistencies are detected, this internal mechanism automatically writes 
messages to the Informix Dynamic Server message log. 

Other important features for maintaining data consistency are locking 
procedures and process isolation. These security measures prevent other 
users from changing data that are currently being read or modified and also 
helps the system detect when conflicting locks are held. Row- and page- 
level locking are specified when the table is created or altered. Table- and 
database-level locking are specified in the user's application. 

The isolation level is the degree to which your read operation is isolated 
from concurrent actions of other database server processes: what modifica- 
tions other processes can make to the records you are reading and what 
records you can read while other processes are reading or modifying them. 
Informix Dynamic Server has four isolation levels: dirty read, committed 
read, cursor stability, and repeatable read. 

Join methods 
When Informix must join tables, it chooses any of three algorithms. All 
joins are minimally two-table joins; multitable joins are resolved by joining 
initial resultant sets to subsequent tables in turn. The optimizer chooses 
which join method to use based on costs, except when you override this 
decision by setting OPTCOMPIND. Joins are described as follows: 

Nested Loop Join: When the join columns on both tables are 
indexed, this method is usually the most efficient. The first table is 
scanned in any order. The join columns are matched via the indexes 
to form a resultant row. A row from the second table is then looked 
up via the index. Occasionally, Informix will construct a dynamic 
index on the second table to enable this join. These joins are often the 
most efficient for OLTP applications. 

Sort Merge Join: After filters are applied, the database engine scans 
both tables in the order of the join filter. Both tables might need to be 
sorted first. If an index exists on the join column, no sort is necessary. 
This method is usually chosen when either or both join columns do 
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not have an index. After the tables are sorted, joining is a simple mat- 
ter of merging the sorted values. 

• Hash Join: Available starting in version 7, the hash merge join first 
scans one table and puts its hashed key values in a hash table. The sec- 
ond table is then scanned once, and its join values are looked up in 
the hash table. Hash joins are often faster than sort merge joins 
because no sort is required. Even though creating the hash table 
requires some overhead, with most DSS applications in which the 
tables involved are very large, this method is usually preferred. 

Cost-based query optimizer 
Informix Dynamic Server's cost-based optimizer will automatically deter- 
mine the fastest way to retrieve data from a database table based on detailed 
information about the distribution of those data within the table's columns. 
The optimizer collects and calculates statistics about this data distribution 
and will pick the return path that has the least impact on system 
resources~in some cases this will be a parallelized return path, but in others 
it might be a sequential process. All that is needed to control the degree of 
parallelism is the memory grant manager. 

To provide users with a degree of control, Informix Dynamic Server 
offers optimizer directives that let users bypass the optimizer. Areas that 
users can control include the following: 

• Access methods: This lets users specify how to access a table. For 
example, a user can direct the optimizer to use a specific index. 

• Join methods: This lets users specify how to join a table to the other 
tables in the query. For example, users can specify that the optimizer 
use a hash join. 

• Join order: This lets users direct the optimizer to join tables in a spe- 
cific order. 

• Optimization goal: This lets users specify whether a query is to be 
optimized by response time (which returns the first set of rows) or by 
total time (which returns all rows). 

Memory handling by Informix 
All memory used by the Informix Dynamic Server is shared among the pool 
of virtual processors. In this way, Informix Dynamic Server can be config- 
ured to automatically add more memory to its shared memory pool in order 
to process client requests expeditiously. Data from the read-only data 
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dictionary (system catalog) and stored procedures are shared among users 
rather than copied, resulting in optimized memory utilization and fast 
execution of heavily used procedures. This feature can provide substantial 
benefit in many applications, particularly those accessing many tables with 
a large number of columns and/or many stored procedures. Informix 
Dynamic Server also allocates an area, called the thread stack, in the virtual 
portion of shared memory to store nonshared data for the functions that a 
thread executes. The thread's stack tracks the state of a user session and 
enables a virtual processor to protect a thread's nonshared data from being 
overwritten by other threads concurrently executing the same code. Infor- 
mix Dynamic Server dynamically grows the stack for certain operations 
such as recursive stored procedures. Informix Dynamic Server's shared 
memory minimizes fragmentation so that memory utilization does not 
degrade over time. Beyond the initial allocation, shared memory segments 
are automatically added in large chunks as needed but can also be added by 
the administrator while the database is running. The memory management 
system will also attempt to automatically grow the memory segment when 
it runs out of memory. When a user session terminates, the memory it used 
is freed and reused by another session. Memory can be reclaimed by the 
operating system by fleeing the memory allocated to the database. User 
threads can, therefore, easily migrate among the virtual processors, contrib- 
uting to Informix Dynamic Server's scalability as the number of users 
increases. 

D a t a b a s e  3 - - I B M  D B 2  a r c h i t e c t u r a l  s t r u c t u r e  

Conceptually, DB2 is a relational database management system. Physically, 
DB2 is an amalgamation of address spaces and intersystem communication 
links, which, when adequately tied together, provides the services of a rela- 
tional database management system. 

Beginning with DB2 version 3, each DB2 subsystem consists of three or 
four tasks started from the operator console 1. Each task runs in a portion 
of the CPU called an address space. Version 4 of DB2 provides an addi- 
tional address space for stored procedures. A description of these five 
address spaces (Figure 14.3) follows. 

• The DBAS, or Database Services Address Space, provides the facility 
for manipulating DB2 data structures. The default name for this 
address space is DSNDBM1, but each individual shop may rename 
any of the DB2 address spaces. The DBAS is responsible for running 
SQL statements and managing data buffers. It contains the core logic 
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Components o f  the database services address space. 

of the database management system. Three individual components 
make up the DBAS: the Relational Data System, the Data Manager, 
and the Buffer Manager. Each of these components performs specific 
tasks. 

• The SSAS, or System Services Address Space, coordinates the attach- 
ment of DB2 to other subsystems (CICS, IMS/DC, or TSO). SSAS 
is also responsible for all logging activities (physical logging, log archi- 
val, and BSDS). DSNMSTR is the default name for this address 
space. 

• The third address space required by DB2 is the IRLM, or Intersystem 
Resource Lock Manager. The IRLM is responsible for managing DB2 
locks (including deadlock detection). The default name of this 
address space is IRLMPROC. 

• The fourth DB2 version 3 address space, DDF, or Distributed Data 
Facility, is the only optional one. The DDF is required only if distrib- 
uted database functionality is needed. 
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• The newest address space, SPAS, or Stored Procedure Address Space, 
has been added to DB2 version 4 to support stored procedures and 
remote procedure calls (RPCs). The SPAS runs as an allied address 
space providing an independent environment for stored procedures 
to execute. This effectively isolates the user-written stored procedure 
code in its own little world so that it cannot interfere with the system 
code of DB2 itself. 

These five address spaces contain the logic to effectively handle all DB2 
functionality. 

The functionality of the DBAS 
Recall that the DBAS is responsible for executing SQL and is composed of 
three distinct components: the relational system, the data manager, and the 
buffer manager. Each component passes a SQL statement to the next com- 
ponent, and, when results are returned, each component passes the results 
back. 

The Relational Data System (RDS) is the component that gives DB2 its 
set orientation. When a SQL statement requesting a set of columns and 
rows is passed to the RDS, it determines the best mechanism for satisfying 
the request. Note that the RDS can parse a SQL statement and determine 
its needs. These needs may include any of the features supported by a rela- 
tional database (such as selection, projection, or join). When a SQL state- 
ment is received by the RDS, it checks authorization; translates the data 
element names being accessed into internal identifiers; checks the syntax of 
the SQL; and optimizes the SQL, creating an access path. 

The RDS then passes the optimized SQL statement to the Data Man- 
ager (DM) component. The DM delves deeper into the data being 
accessed. In other words, the DM is the component of DB2 that analyzes 
rows (either table rows or index rows) of data. The DM analyzes the request 
for data and then calls the Buffer Manager to satisfy the request. 

The Buffer Manager (BM) accesses data for other DB2 components. A 
data buffer is often referred to as a cache in other DBMSs. The BM uses 
pools of memory set aside for the storage of frequently accessed data in 
order to create an efficient data access environment. When a request is 
passed to the BM, it must determine whether the data are in the appropriate 
buffer pool. If they are, the BM accesses these data and sends them to the 
DM. If these data are not in the buffer pool, the BM calls the VSAM Media 
Manager to read the data and send them back to the BM, which in turn 
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sends these data back to the DM. The DM receives the data passed to it by 
the BM and applies as many predicates as possible to reduce the answer set. 
Only Stage 1 predicates are applied in the DM. Finally, the RDS receives 
the data from the DM. All Stage 2 predicates are applied, the necessary sort- 
ing is performed, and the results are returned to the requester. 

An understanding of the internal components of DB2 can be helpful 
when developing a DB2 application. For example, consider Stage 1 and 
Stage 2 predictates. It is easier to understand that Stage 1 predicates are 
more efficient than Stage 2 predicates, because you know they are evaluated 
earlier in the process (in the DM instead of the RDS). Therefore, they avoid 
the overhead associated with the passing of additional data from one com- 
ponent to another. 

DB2 memory management 
The Database Manager Shared Memory is allocated when the database 
manager is started using the c tb2s~re  command, and remains allocated 
until the database manager is stopped using the ctb2ueop. This memory is 
used to manage activity across all database connections. From the Database 
Manager Shared Memory, all other memory is attached and/or allocated. 
The Database Global Memory (also called Database Shared Memory) is 
allocated for each database when the database is activated using the ACTI- 
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VATE DATABASE command or when the first application connects to the 
database. The Database Global Memory remains allocated until the data- 
base is deactivated using the DEACTIVATE DATABASE command or when 
the last application disconnects from the database. The Database Global 
Memory contains memory areas such as buffer pools, lock list, database 
heap, and utility heap. The database manager configuration parameter, 
NUMDB, defines the maximum number of concurrent active databases. If 
the value of this parameter increases, the number of Database Global Mem- 
ory segments may grow, depending on the number of active databases. 

Figure 14.4 shows how memory is used to support applications. In the 
previous section we introduced some configuration parameters that may 
affect the number of memory segments. We now introduce the configura- 
tion parameters, which allow you to control the size of each memory by 
limiting its size. 

The Database Manager Shared Memory is required for the Database 
Manager to run. The size of this memory is affected by the following con- 
figuration parameters: 

• Database System Monitor Heap Size (MON_HEAP_SZ) 

• Audit Buffer Size (AUDIT_BUF_SZ) 

• FCM Buffers (FCM_NUM_BUFFERS) 

• FCM Message Anchors (FCM_NUM_ANCHORS) 

• FCM Connection Entries (FCM_NUM_CONNECT) 

• FCM Request Blocks (FCM_NUM_RQB) 

The Database Manager uses the fast communication manager (FCM) 
component to transfer data between DB2 agents when intrapartition paral- 
lelism is enabled. Thus, if you do not enable intrapartition parallelism, 
memory areas required for FCM buffers, message anchors, connection 
entries, and request blocks are not allocated. The maximum size of the 
Database Global Memory segment is determined by the following configu- 
ration parameters: 

Buffer pool size explicitly specified when the buffer pools were cre- 
ated or altered (the value of BUFFPAGE database configuration 
parameter is taken if 1 is specified) 

• Maximum storage for lock list (LOCKLIST) 

• Database heap (DBHEAP) 

• Utility heap size (UTIL_HEAP_SZ) 
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• Extended storage memory segment size (ESTORE_SEG_SZ) 

• Number of extended storage memory segments 
(NUM_ESTORE_SEGS) 

• Package cache size (PCKCACHESZ) 

• Application global memory is determined by the following configura- 
tion parameter: application control heap size (APP_CTL_HF_akP_SZ) 

Query optimization 
Query optimization is the part of the query process in which the database 
system compares different query strategies and chooses the one with the 
least expected cost. The query optimizer, which carries out this function, is 
a key part of the relational database and determines the most efficient way 
to access data. It makes it possible for the user to request the data without 
specifying how these data should be retrieved. 

The cost of accessing a query is a weighted combination of the I/O and 
processing costs. The I/O cost is the cost of accessing index and data pages 
from disk. Processing cost is estimated by assigning an instruction count to 
each step in computing the result of the query. There are two approaches to 
optimization. They are as follows: 

• Cost based: This was developed by IBM. The optimizer estimates the 
cost of each processing method of the query and chooses the one with 
the lowest estimate. Presently, most systems use this. 

• Heuristic: Rules are based on the form of the query. Oracle used this 
at one point. Presently, no system uses this. 

The query optimizer has the job of selecting the appropriate indexes for 
acquiring data, classifying predicates used in a query, performing simple 
data reductions, selecting access paths, determining the order of a join, per- 
forming predicate transformations, performing Boolean logic transforma- 
tions, and performing subquery transformations~all in the name of 
making query processing more efficient. 

Concurrency control and Iock/ng in DB2 
The granularity of locking within a database management system represents 
a definite tradeoff between concurrency and CPU overhead. Whenever a 
finer granularity of locking is desired, an increase in the use of available 
CPU resources may be required, because locking in general increases CPU 
path length. No I/O operations are done, but each lock request requires 
two-way communication between DB2 and the internal resource lock man- 
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ager (IRLM). However, it is also possible there may or may not be an 
increase in the number of potential lock requests. For example, for read- 
only SQL with highly effective lock avoidance you may not see any increase 
in the number of DB2 lock requests to the IRLM. 

A DB2 thread makes lock requests through IRLM services. Transaction 
locks are owned by the work unit or thread and managed by the IRLM. 
DB2 objects that are candidates for transaction locking are as follows: 

• Table space 

• Partition 

• Table 

m Page 

• Row 

The locking mechanisms must also perform many other operations in 
the name of locking~for example, manage the lock hierarchy, lock dura- 
tion, the modes of locks, lock escalation, lock suspension, and deadlock 
detection and recovery. 

Join methods 
When multiple tables are requested within a single SQL statement, DB2 
must perform a join. When joining tables, the access type (tablespace scan 
or index scan) defines how each single table will be accessed; understanding 
the join method defines how the result sets from multiple tables will be 
combined to deliver a unified result set back to the requester. While more 
than two tables can be joined together in a single SQL statement, DB2 will 
always perform the join operation in a series of steps. Each step joins only 
two tables together, and a composite table is passed to the next step in the 
series. The plan tables will describe how these tables are joined together and 
the order in which each table is accessed. 

Database 4 - - M i c r o s o f t  SQL Server  
a rch i tec tura l  s t ruc tu re  

Microsoft SQL Server 2000 persistently stores data in database-controlled 
tables organized as relations managed in physical files (Figure 14.5). When 
using a database, work is performed primarily with the logical components, 
such as tables, views, procedures, and user space. The physical implementa- 
tion of relations and their realization as files is largely transparent. 
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Figure 14.5 
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Each instance of a SQL Server has four system databases (master, model, 
tempdb, and msdb) and one or more user databases (Figure 14.6). Some 
organizations have only one user database, containing all the data for their 
organization. Some organizations have different databases for each group in 
their organization and sometimes a database used by a single application. 

It is not necessary to run multiple copies of the SQL Server database 
engine to allow multiple users to access the databases on a server. An instance 
of the SQL Server Standard or Enterprise Edition is capable of handling thou- 
sands of users working in multiple databases at the same time. Each instance 
of SQL Server makes all databases in the instance available to all users who 
connect to t 'he instance, subject to the defined security permissions. 

Server compute[ 

SQL Server 

! i 

User databases | | 

r 
System databases 

master tempdb msdb model ’,i payroll 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i , 

~ales employees 

r -  

Figm'e 14.6 Logical tablespace structures. 
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When connecting to an instance of SQL Server, your connection is asso- 
ciated with a particular database on the server. This database is called the 
current database. You are usually connected to a database defined as your 
default database by the system administrator, although you can use connec- 
tion options in the database APIs to specify another database. You can 
switch from one database to another using either the Transact-SQL USE 
database_name statement or an API function that changes your current 
database context. 

SQL Server 2000 allows you to detach databases from an instance of 
SQL Server and then reattach them to another instance, or even attach the 
database back to the same instance. If you have a SQL Server database file, 
you can tell SQL Server when you connect to attach that database file with 
a specific database name. 

The memory algorithms and use of memory by SQL Server objects are 
major changes in SQL Server 7.0 over SQL Server 6.5 that improve the per- 
formance of the database and also minimize the work the database adminis- 
trator must do to configure memory for good performance. 

Microsoft SQL Server 7.0 has dramatically improved the way memory is 
allocated and accessed. Unlike SQL Server 6.5, in which memory is man- 
aged by the database administrator with configuration settings, SQL Server 
7.0 has a memory manager to eliminate manual memory management. 

SQL Server 6.5 has a memory configuration option, which allocates a 
fixed amount of memory on startup--that is, memory is segmented and 
manually managed. If the parameter is set too high, SQL Server cannot 
start. The database administrator must first determine how much memory 
SQL Server should use versus the operating system. For example, with 256 
MB of memory, SQL Server may get 200 MB and leave 56 MB for the 
operating system. This in itself is an art, not a science. It is very difficult to 
plan how much the database alone needs, much less plan what the operat- 
ing system and other applications, such as Web servers running on the same 
computer, might need. Use of memory is not stagnant; it is possible that 
SQL Server may need more memory from 8:00 A.M. to 5:00 P.M., and the 
operating system may need more memory from 5:00 P.M. to  8 :00  A.M. to  

run nightly batch work. Changing the memory configuration requires a 
shutdown and startup of SQL Server 6.5. 

When SQL Server 7.0 starts, its dynamic memory allocation determines 
how much memory to allocate based on how much memory the Windows 
NT operating system and applications for Windows NT are using. For 
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example, assume that Windows NT has a total of 512 MB of memory. 
When SQL Server starts up, Windows NT and the applications running on 
Windows NT are using 72 MB of memory. SQL Server uses available mem- 
ory, leaving 5 MB flee. Therefore, SQL Server uses 435 MB of memory-- 
512 MB total-  72 MB for active Windows N T -  5 MB of free memory. If 
another Windows NT-based application is started and uses the 5 MB of 
free space, SQL Server proactively releases memory to ensure that 5 MB of 
free space always remains flee. Conversely, if Windows NT releases memory 
so that the free memory is more than 5 MB, SQL Server uses that memory 
for database operations. 

This dynamic memory algorithm has many advantages. You no longer 
need to guess the correct memory percentages for Windows NT, Windows 
NT-based applications, and SQL Server. You can also avoid Windows NT 
paging during times of heavy Windows NT use, and you can use Windows 
NT free memory during times of light Windows NT use. The memory 
algorithm for SQL Server 7.0 Desktop Edition works differently. Rather 
than taking memory when it is flee, it gives memory back to the operating 
system when it is not needed. This is because it is more likely that the Desk- 
top Edition is running other applications. 

Lock/ng architecture 
Microsoft SQL Server 2000 uses locks to implement pessimistic concur- 
rency control among multiple users performing modifications in a database 
at the same time. By default, SQL Server manages both transactions and 
locks on a per connection basis. For example, if an application opens two 
SQL Server connections, locks acquired by one connection cannot be 
shared with the other connection. Neither connection can acquire locks 
that would conflict with locks held by the other connection. Only bound 
connections are not affected by this rule. 

SQL Server locks are applied at various levels of granularity in the data- 
base. Locks can be acquired on rows, pages, keys, ranges of keys, indexes, 
tables, or databases. SQL Server dynamically determines the appropriate level 
at which to place locks for each Transact-SQL statement. The level at which 
locks are acquired can vary for different objects referenced by the same 
query~for example, one table may be very small and have a table lock 
applied, while another, larger table may have row locks applied. The level at 
which locks are applied does not have to be specified by users and needs no 
configuration by administrators. Each instance of SQL Server ensures that 
locks granted at one level of granularity respect locks granted at another level. 
There are several lock modes: shared, update, exclusive, intent, and schema. 
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If several connections become blocked waiting for conflicting locks on a 
single resource, the locks are granted on a first come, first served basis as the 
preceding connections free their locks. In support of concurrent operations, 
SQL Server has an algorithm to detect deadlocks. If an instance of SQL 
Server detects a deadlock, it will terminate one transaction, allowing the 
other to continue. 

SQL Server can dynamically escalate or de-escalate the granularity or 
type of locks. For example, if an update acquires a large number of row 
locks and has locked a significant percentage of a table, the row locks are 
escalated to a table lock. If a table lock is acquired, the row locks are 
released. SQL Server 2000 rarely needs to escalate locks; the query opti- 
mizer usually chooses the correct lock granularity at the time the execution 
plan is compiled. 

Structured Query Language 
To work with data in a database, you have to use a set of commands and 
statements (language) defined by the DBMS software. Several different lan- 
guages can be used with relational databases; the most common is SQL. 
The American National Standards Institute (ANSI) and the International 
Organization for Standardization (ISO) define software standards, includ- 
ing standards for the SQL language. SQL Server 2000 supports the entry 
level of SQL-92, the SQL standard published by ANSI and ISO in 1992. 
The dialect of SQL supported by Microsoft SQL Server is called Transact- 
SQL (T-SQL). T-SQL is the primary language used by Microsoft SQL 
Server applications. 

Summary of special features 
Microsoft SQL Server 2000 gives users an excellent streamlined database 
platform for large-scale, on-line transactional processing (OLTP), data 
warehousing, and e-commerce applications. The improvements made to 
SQL Server version 7.0 provide a fully integrated XML environment, add a 
new data mining feature in analysis services, and enhance repository tech- 
nology with metadata services. SQL Server 2000 enhances the performance, 
reliability, quality, and ease of use of SQL Server 7.0. 

Testbed performance analysis testing 

A true comparison of the four databases requires a plain benchmark that 
does not take advantage of any of the special features within any of the data- 
bases. In order to do this our team researched the latest benchmarks pro- 
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vided by the Transaction Processing Council (TPC~www.tpc.org). Three 
benchmarks were found that would allow us to test OLTP. These were 
TPC-C, TPC-H, and TPC-R. Of the three, TCP-C version 5 is designed as 
the latest OLTP benchmark. However, the TPC has not yet made the 
benchmark available for public use. As such, TPC-H and TPC-R were 
looked at. Both of these benchmarks are for decision-support databases in 
data warehousing. It was discovered that TPC-H is a revised version of 
TPC-R. The only difference between the two benchmarks is the implemen- 
tation rules. 

It was the decision of the performance evaluation team, due to the lim- 
ited amount of time the group would have to learn the benchmarks, learn 
the databases, and do any real analysis, that it would be best to use TPC-H. 
This decision was made, since we would have less options to worry about 
during the implementation of the benchmark. This benchmark consists of a 
suite of business-oriented ad hoc queries and concurrent data modifica- 
tions. Its main purpose is to help examine large volumes of data and execute 
queries with a high degree of complexity. 

The next task was to determine what type of workloads the databases 
would run and how these loads would be run. 

Workloads 

The key concern in the benchmarking of a system is the specification of the 
workload. The workload of a computer is defined as the set of all inputs the 
system receives from its environment. The groups used the queries defined 
in the TPC-H benchmark (Table 14.4) as the basic workload. 

14.4.2 Preparing for  the testing 

In order to ensure that the testing was standard, one of the performance 
tests in the TPC-H benchmark was chosen and modified. The planned 
modifications were the insertion of refreshes, as required by the TPC-H 
specifications, and the use of indexing. Thus, two runs would be done: one 
with no indexing and refreshes, and one with indexing and refreshes. 
Refreshes are required by the TPC-H specification, but the locations of 
these refreshes in the queries are left to the tester. To ensure that all data- 
bases ran the queries in the same order, performance test #1 (Appendix A of 
TPC-H Benchmark) was used with three predetermined refreshes. 
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Table 14.4 TPC-HBenchmark 

Query l~Pricing 
Summary Report 

This query will select a pricing summary report for all line items shipped as of a given 
date (substitution variable). The date is within 6 to 120 days of the greatest ship date 
contained in the database. A count of the number of line items is included in each 
group. 

Query 2~Minimum 
Cost Supplier 

This query will find, in a given region for each part of a certain type and size, the sup- 
plier that can supply it at the lowest cost. If multiple suppliers in that region offer the 
same lowest price for the part, the query will list the parts from the suppliers with the 
100 highest account balances. 

Query 3~Shipping 
Priority 

This query will determine the shipping priority and potential revenue, defined as the 
sum of the extended price of the orders having the largest revenue among those that 
had not been shipped as of a given date. If more than ten unshipped orders exist, only 
the ten orders with the largest revenue are listed. 

Query 4--Order 
Priority Checking 

This query will count the number of orders that were ordered in a given quarter of a 
given year in which at least one line item was received later than its committed date. 

Query 5~Local 
Supplier Volume 

This query will list, for each country in a region, the revenue volume that resulted 
from line item transactions in which the customer ordering parts and the supplier fill- 
ing them were both in the same country. The query only considers parts ordered in a 
certain year. 

Query 6--Forecasting 
Revenue Change 

This query will quantify the amount of revenue increase that would have resulted 
from eliminating certain company-wide discounts in a given percentage range in a 
given year. 

Query 7~Volume 
Shipping 

This query will determine the value of goods shipped between certain countries to 
help in the renegotiation of shipping contracts. 

Query 8~National 
Market Share 

This query will determine how the market share of a given country within a given 
region has changed over two years for a given part type. 

Query 9mProduct 
Type Profit Measure 

This query determines how much profit is made on a given line of parts, broken out 
by supplier country and year. 

Query 10~Returned 
Item Reporting 

This query identifies customers who might be having problems with the parts that are 
shipped to them. 

Query 1 ln lmpor tan t  
Stock Identification 

This query finds the most important subset of suppliers' stock in a given country. 

Query 12mShipping 
Modes and Order 
Priority 

This query determines whether selecting less expensive modes of shipping is nega- 
tively affecting the critical-priority orders by causing more parts to be received by cus- 
tomers after the committed date. 

Query 13nCustomer 
Distribution 

This query will determine the relationships between customers and the size of their 
orders. 
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Table 14.4 TPC-H Benchmark (continued) 

Query 14---Promotion 
Effect 

This query will find the percentage of revenue in a year from promotional parts (the 
time period is a substitution parameter selected when creating the query with the 
QGEN application using the Seed variable). 

Query 15 Top 
Supplier 

This query will find the supplier that contributed the most revenue for all parts 
shipped during a specific time period (the time period is a substitution parameter 
selected when creating the query with the QGEN application using the Seed variable). 

Query 16--Parts/ 
Supplier Relationship 

This query will find the count of suppliers that can supply parts that meet particular 
customer requirements. The brand, type, and product sizes are substitution parameters 
selected when creating the query with the QGEN application using the Seed variable. 

Query 17~Small 
Quantity/Order Revenue 

This query will find line item and part for a given brand and type and determine the 
average quantity of the parts ordered if the quantity is 20 percent less of the average 
for a seven-year period (the brand and container are substitution parameters selected 
when creating the query with the QGEN application using the Seed variable). 

Query 18--Large- 
Volume Customer 

This query will find the top 100 customers who have ever placed a large-quantity 
order (the quantity is the substitution parameter selected when creating the query 
with the QGEN application using the Seed variable). 

Query 19wDiscounted 
Revenue 

This query will find the gross discounted revenue for all orders for three different 
types of parts (the part type, container, quantity, ship mode, and shipping instruc- 
tions are substitution parameters selected when creating the query with the QGEN 
application using the Seed variable). 

Query 20~Potential 
Part Promotion 

This query will find the suppliers that have an excess of a given part available for a 
specific year (the part name and date are the substitution parameters selected when 
creating the query with the QGEN application using the Seed variable). 

Query 21--Suppliers 
That Kept Orders 
Waiting 

This query will find the suppliers, for a given country, whose product was part of a 
multiple supplier order where they failed to meet the committed delivery date (the 
country is a substitution parameter selected when creating the query with the QGEN 
application using the Seed variable). 

Query 22--Global 
Sales Opportunity 

This query will find the customers within a specific set of country codes who have not 
placed orders for seven years but still have a positive balance (the country codes are 
substitution parameters selected when creating the query with the QGEN application 
using the Seed variable). 

No indexing 
T h e  nonindexing  run was used as a baseline with  which to compare  an 

indexing run. T h e  group knew that  indexing would  greatly decrease the 

t ime taken to complete  the performance test but  desired a quanti tat ive 

result. At the t ime of  this writing, no team had successfully comple ted  a 

nonindexing run on any of  the database systems. T h e  procedures a t t empted  
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Table 14.5 

are discussed later in the chapter. The primary reason for not completing a 
nonindexed test was lack of time. It was possible to complete an individual 
test of each of the queries in the performance test with no refreshes. These 
results are defined in greater detail in section 14.5. 

Indexing 
As can be deduced from the previous section, if nonindexing was not com- 
pleted neither was indexing. Representatives from each of the teams got 
together, however, to determine what should have been indexed. Their 
work is presented in Table 14.5 to provide future testers a hint as to what 
can be done next. 

Running all queries together 
A Persistent Stored Modules (PSM) Committee was tasked to create a file 
that would run all queries using the TPC-H order, defined in the standard 

Proposed lndexes for Benchmark Tests 

Foreign Keys 

CREATE INDEX tpch.c_nk ON tpch.customer(c_nationkey ASC) 

CREATE INDEX tpch.s_nk ON tpch.supplier(s_nationkey ASC) 

CREATE INDEX tpch.ps_pk ON tpch.partsupp(ps_suppkey ASC) 

CREATE INDEX tpch.ps_sk ON tpch.partsupp(ps_suppkey ASC) 

CREATE INDEX tpch. l_ok ON tpch.lineitem(l_orderkey ASC) 

Primary Keys 

CREATE UNIQUE INDEX tpch.c_ck ON tpch.customer(c_custkey ASC) 

CREATE UNIQUE INDEX tpch.p_pk ON tpch.part(p_partkey ASC) 

CREATE UNIQUE INDEX tpch.s_sk ON tpch.supplier(s_suppkey ASC) 

CREATE UNIQUE INDEX tpch.o_ok ON tpch.orderd(o_orderkey ASC) 

CREATE UNIQUE INDEX tpch.ps_pk_sk ON tpch.partsupp(ps_partkey ASC, ps_suppkey ASC) 

CERATE UNIQUE INDEX tpch.ps_sk_pk ON tpch.partsupp(ps_suppkey ASC, ps_partkey ASC) 

Useful Date Fields 

CREATE INDEX tpch.o_od ON tpch.orders(o_orderdate ASC) 

CREATE INDEX tpch. l_sd ON tpch.lineitem(l_shipdate ASC) 
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in Appendix A, for all the teams. This committee needed to determine how 
to keep track of the time each query ran, the total time, and how the 
refreshes would be handled. Unfortunately, the only team that was able to 
use the file was the Microsoft SQL Server team. The other teams would 
have had to modify the file tremendously in order for it to work on their 
databases. Due to a lack of time, the decision was made not to do this and 
instead run the queries individually. 

14.4.3 Testbed procedures for  each configuration 

Four basic procedures were needed to run the benchmark on each separate 
configuration. First, the creation of the database and the database tables for 
the databases was needed. Second, the newly created tables were populated 
with the benchmark test data. Third, several sample runs on the individual 
queries were done to ensure that the systems were running properly and 
providing each team a way of optimizing the system prior to the test. 
Finally, the performance tests were run on each system. 

14.5  T h e  resu l ts  

Table 14.6 shows the results of completed experiments by each of the teams 
for the four databases studied. 

Note that the time for each query is measured in seconds. As can be seen 
from the table, a side-by-side comparison of the databases is not entirely 
possible. This is due to many factors, as will be discussed shortly. The major 
reason appears to be the memory use by each database. Only Microsoft and 
DB2 were able to acquire and use 100 percent of their available memory, 
while Oracle and Informix were able to use only one-third of the available 
memory. To compare all the database systems together some assumptions 
have been made. First, it is clearly visible by a cursory review that Microsoft 
SQL beats DB2 in performance from the results depicted in Table 14.6. 
Upon a more comprehensive review of the data presented in Table 14.6, we 
find that DB2 runs between 1.03 times faster than SQL Server down to 
0.01 times the performance of SQL Server. Also note that DB2 only per- 
forms better than SQL Server for one test, test 18, which looks at large-vol- 
ume customers. In all other cases SQL Server outperforms DB2 on average 
by 53 percent. Given these results, we can now focus on comparing 
Microsoft SQL against Informix and Oracle. 

The assumption is to decrease the amount of memory that Microsoft 
SQL uses to the same level as Informix and Oracle. In doing this we use a 
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Table 14.6 Results of the Testbed TPC-H Experiments 

Query # Informix DB2 SQL Oracle 

1 510 510 431 335 

2 21,600 3,180 44 81,840 

3 3,180 842 465 532 

4 1,530 Error: unknown 300 1,818 

5 Error: memory Error: unknown 314 20,040 

6 250 388 245 269 

7 Error: unknown Error: unknown 311 466 

8 Error: syntax 27,157 309 Error: syntax 

9 Error: syntax 1,286 409 Error: syntax 

10 2,760 30,672 316 529 

11 95 144 41 199 

12 480 453 298 464 

13 Not run 126 89 Error: syntax 

14 660 460 253 331 

15 600 338 247 600 

16 240 915 54 2,848 

17 Not run 797 504 2,700 

18 12,660 1,127 1,169 8,100 

19 240 354 250 1,091 

20 Not run 467 288 Not run 

21 Error: unknown 1,569 809 1,560 

22 Error: unknown 594 61 Error: syntax 

CPU Use 100% 100% 100% 100% 

Mem. Use 30% 100% 100% 38% 

linear approach to find the new times. The  theory is that if you cut the 

amoun t  of  memory  by 50 percent, it will take twice as long. In these tests, 

since Informix and Oracle used one-third the memory  of  SQL Server, we 
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Table 14.7 

assume that the time would be proportional to 3.33 times that of a system 
with one-third the memory. It should be noted that this has not been tested. 
Also, since not all queries could be run on Informix or Oracle, only those 
queries that ran on these systems have been taken into account. All other 
queries have been dropped. Keeping this in mind we have two new tables, 
Table 14.7 and Table 14.8, for Informix and Oracle. 

Informix versus Reweighted SQL Server 

Query # Informix SQL 

1 510 1,437 

2 m 147 

3 3,180 1,550 

4 1,530 1,000 

5 m 1,047 

6 250 817 

7 ~ 1,037 

8 ~ 1,030 

9 ~ 1,363 

10 2,760 1,053 

11 95 137 

12 480 993 

13 ~ 297 

14 660 843 

15 600 823 

16 240 180 

17 1,680 

18 12,660 3,897 

19 240 833 

20 m 960 

21 2,697 

22 m 203 

Mem. Use 30% 30% 



14.5 The results 439 

Table 14.8 Oracle venus Scaled SQL Server 

Query# Oracle SQL 

1 335 1,437 

2 81,840 147 

3 532 1,550 

4 1,818 1,000 

5 20,040 1,047 

6 269 817 

7 466 1,037 

8 - -  1,030 

9 1,363 

10 529 1,053 

11 199 137 

12 464 993 

13 m 297 

14 331 843 

15 600 823 

16 2,848 180 

17 2,700 1,680 

18 8,100 3,897 

19 1,091 833 

20 m 960 

21 1,560 2,697 

22 ~ 203 

Mem. Use 38% 38% 

Comparing Informix against Microsoft SQL Server using the recom- 

puted performance values, we see that 7 of the 12 queries ran faster on 

Informix than on Microsoft SQL Server. As can be seen in Figure 14.7, 

Informix is 67 percent faster. If we look more closely at these data, we can 

see that the Informix database performs between 3.4 times faster down to 

0.3 times the speed of the scaled SQL Server. The overall weighted differ- 

I Chapter 14 
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Figure 14.7 
Informix versus 
Microsoft SQL 

Server 

Figure 14.8 
Oracle venus 

Microsoft SQL 
Server. 

Informix vs. Microsoft 

33% 

67% 

B Informixll MS-SQL] 

ence places Informix's performance at 1.48 times that of the SQL Server's 
scaled performance. 

Comparing Oracle against Microsoft SQL Server using the recomputed 
performance values, we see that 9 of the 17 queries run faster on Oracle 
than on Microsoft SQL Server. As can be seen in Figure 14.8, Oracle is 
computed to be 57 percent faster on average. If we look more closely at 
these data, we can see that the Oracle database system performs between 4.2 
times faster down to 0.001 times the speed of the scaled SQL Server. The 

Oracle vs. Microsoft 

43% 

57% 

• Oracle • MS-SQL I 
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overall weighted difference places Oracle's performance at 1.76 times that of 
the SQL Server's scaled performance. 

Thus, under our assumptions utilized to perform this weighted analysis, 
both Informix and Oracle perform better than SQL Server under most con- 
ditions. We still need to determine whether Informix's database is superior 
to Oracle's database given the same comparisons. To do this analysis we 
have normalized both databases' data to run at 100 percent memory use. 
Table 14.9 shows the new weighted results. 

Comparing Informix against Oracle using the recomputed performance 
values, we see that 9 of the 12 queries ran faster on Oracle than on Infor- 

Table 14.9 Informix versus Oracle 

Query # Informix Oracle 

1 1,700 882 

3 10,600 1,400 

4 5,100 4,784 

6 833 708 

10 9,200 1,392 

11 317 524 

12 1,600 1,221 

13 

14 2,200 871 

15 2,000 1,579 

16 800 7,495 

17 

18 42,200 21,316 
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Informix versus Oracle (continued) 

Query # Informix Oracle 

19 800 2,871 

20 

21 

22 

Mem. Use 100% 100% 

mix. As can be seen in Figure 14.9, Oracle is 75 percent faster on average 
than Informix. If we look more closely at these data, we can see that the 
Oracle database performs between 7.7 times faster down to 1.07 times the 
speed of the scaled Informix Server for all but two queries. For query 16 
(parts/supplier) and for query 18 (large-volume customer) the Informix 
database ran significantly faster than Oracle: from 3.5 to 9.36 times faster 
to be exact. However, since these seem to be outlier queries, we computed 
the overall performance measures by removing the effect of these two and 
Oracle's two best performing queries. The overall weighted difference places 
Oracle's performance at 1.38 times that of Informix's Dynamic Server 
scaled performance. Thus, Oracle is the winner in terms of performance 
using these assumptions and tests. 

Informix vs. Oracle 

I m Oracle • Inf ormix I 
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14.5.1 Cost versus p e r f o r m a n c e  

O f  course, performance is not everything. Cost must be taken into account. 
To consider cost we obtained a rough value for the purchase cost per data- 

base system and then computed a cost per second for performance. 

To provide a rough comparison on cost we have averaged the amount  of 

time it takes each database to run all of the queries used in the models and 

then used that value to divide the purchase cost (Table 14.10). 

Table 14.10 Cost/PeCormance Comparison 

Query # Informix DB2 SQL Oracle 

1 510 1,700 1,437 424 

2 21,600 10,600 147 103,664 

3 3,180 2,807 1,550 674 

4 1,530 0 1,000 2,303 

5 0 0 1,407 25,384 

6 250 1,293 817 341 

7 0 0 1,037 590 

8 0 90,523 1,030 0 

9 0 4,287 1,363 0 

10 2,760 102,240 1,053 670 

11 95 480 137 252 

12 480 1,510 993 588 

13 0 420 297 0 

14 660 1,553 843 419 

15 600 1,127 823 760 

16 240 3,050 180 3,607 

17 0 2,657 1,680 3,420 

18 12,660 3,757 3,897 10,260 

19 240 1,180 833 1,382 

20 0 1,557 960 0 

I Chapter 14 
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Table 14.10 Cost/Pe~ormance Comparison (continued) 

Query # Informix DB2 SQL Oracle 

21 0 5,230 2,697 1,976 

22 0 1,980 203 0 

Total Time: 44,805 237,930 24,023 156,715 

Avg. Time: 3,447 12,523 1,092 9,219 

Cost of DB: 128,000 105,000 86,000 105,000 

$/Sec: $37.14 $8.38 $78.76 $11.30 

Note that when taking the average time for each database, those queries 
that had 0 value were not taken into account. Table 14.10 shows that the 
cheapest DB in terms of cost and performance is DB2, followed by Oracle, 
Informix, and then Microsoft. 

14.6 Summary 

Based on the assumptions we made to compare IBM DB2 and Microsoft 
SQL Server 2000 with Informix UDB and Oracle 8i, it is clear that on a 
performance and cost level IBM's DB2 is the best choice. Of  course, this is 
subject to interpretation. If you are not concerned with memory use on 
your system or do not care about configuring your system, then Microsoft 
SQL Server can be very appealing, since you can plug and play and be ready 
to go with it. Using IBM's DB2 requires more administration before the 
performance shown in this chapter is achieved. Ultimately, it depends on 
what one plans to do with the database that becomes the decision factor. 



/ 5  
Analysis of Computer 
Networks Components 

Earlier chapters introduced the basic concepts and theories embodied in 
analytical modeling. Addressed were basic concepts in queuing systems the- 
ory, its application to computer systems modeling, and an introduction to 
network modeling. This chapter will address the use of analytical and simu- 
lation models specifically from the viewpoint of use as performance evalua- 
tion tools. 

15.1 I n t r o d u c t i o n  

In the past several years, the use of analytical performance models instead of 
the more widely used and familiar methods has become increasingly popu- 
lar because of their relative simplicity of implementation and robustness of 
applications. These analytical models have been successful in estimation of 
such performance measures as throughputs, average queue lengths, and 
mean response times for a real system. This chapter is an introduction to 
queuing techniques for the modeling of computer communication net- 
works, not an in-depth study. 

The use of modeling to describe and imitate a real system has been with 
us since the beginning of the information revolution. These models are used 
not only to measure the performance of existing systems but also as part of 
the design and development of new systems. This latter goal is best attained 
through the use of analytical queuing models, as we will see in the following 
discussion of methods of performance evaluation. 

The major performance evaluation tools (see Figure 15.1) other than 
queuing models are rules of thumb, linear projection, simulation, and 
benchmarking. These methods are listed in order of increasing complexity 
and implementation difficulty. The rules of thumb have been defined by 
the observation of operational systems and can be generally applied to local 

445 
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Figure 15.1 
Spectrum of 

computer system 
modeling 

techniques. 
Rules of 
thumb 

complexity, cost of development effort 

Linear 
projection 

Analytical 
queuing 
models 

Simulation Bench- 
marking 

systems and extrapolated to distributed systems and networks. These rules 
take the following form: 

1. Generally, channel use in direct access storage devices (DASD) 
should not exceed 35 percent for on-line and 40 percent for batch 
applications. 

2. Individual DASD devices used should not exceed 35 percent. 

3. Average arm seek time on a DASD device should not exceed 50 
cylinders. 

4. No block size for auxiliary storage should exceed 4 Kbytes. 

These rules are useful in that they are easy to apply, economical to use, 
and can be applied to day-to-day operations. They are limited in the sense 
that they cannot be used to predict the usefulness of hardware or software 
upgrades. 

The linear projection method has been used to pick up on the rules of 
thumb at the prediction limitation point. Although results can be obtained, 
the accuracy of the results is limited by the fact that a linear projection is 
used to predict the behavior of inherently nonlinear systems. This method 
also requires the availability of an existing system to measure the pertinent 
performance criteria to be used as a base for the projection and estimation 
of future resource requirements. 

For simulation and benchmarking, there is no absolute distinction 
between development and implementation costs. Simulation allows the 
model to contain much more detail than the other methods, but this may 
not be an advantage when compared with queuing methods, where it has 
been found that too much information just serves to cloud the issue. Some 
simulation models are as large and cumbersome as the system they are mod- 
eling. The benchmarking method is the oldest and most used, but it is usu- 
ally only helpful in the selection of the best hardware to process a known 
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load. This is to say that the method requires existing hardware and, there- 
fore, is not useful in the evaluation of hardware updates. 

With the previous comments on other existing performance evaluation 
tools, we can assess the placement of queuing models and their overall use- 
fulness. Queuing models reside between linear projection and simulation in 
terms of cost and complexity of implementation. Queuing models may be 
much simpler than the system they are modeling, because only the most 
pertinent performance parameters need to be accounted for. Not only do 
queuing models have a place in the evaluation of existing systems, but they 
also may be used in the design and development phase of new systems to 
help in the selection of hardware and hardware-software interaction to 
avoid system bottlenecks. 

Recent advances in analytical modeling techniques are making analyti- 
cal models increasingly capable of representing more and more aspects of 
the modeled system. Consequently, these techniques have been growing in 
popularity. 

One method commonly used in system design is queuing analysis. 
Queuing models are more precise than other analytical techniques that pre- 
dict performance based on average values [21]. One reason is that queuing 
models allow greater detail to be used in describing systems, and, hence, 
they capture the more important features of the system. Often, several sub- 
models are required, as follows: 

1. Workload model. Specifies the characteristics of the resource 
demands on various equipment found in the system. 

Configuration or system structure model. Specifies the hardware 
characteristics of the system. 

Scheduling model. Specifies the scheduling algorithms whereby 
resources are allocated. 

Queuing models can be categorized as either deterministic or stochastic 
in nature. If the design parameters to the model are known from prior expe- 
rience or measurements, a deterministic analysis of the system may be car- 
ried out. Conversely, if the design parameters are not known, a stochastic 
analysis using various probability distributions is normally required. 

Typical design parameters would include such items as: 

1. Interarrival rate of events 

0 

, 

0 

, 

Service times of these events 

Number of servers being modeled 
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4. System capacity (i.e., number of events currently being processed 
and in queues) 

5. Queuing discipline employed (i.e., FIFO, LIFO, etc.) 

Normally, queuing models provide some of the following performance 
attributes: 

1. Average queue lengths 

2. Average waiting time in queues 

3. Use statistics 

4. Average response times 

Although queuing models have one overriding advantage in that they are 
cheap to use, there are a number of significant limitations to this method, as 
follows: 

1. Because these models assume the system has reached a steady state 
or equilibrium, peak or transient conditions are not modeled. 

2. These models are limited as to the complexity of the problems 
that can be solved. As problems become more complex or addi- 
tional details are required, other methods must be used to model 
the systems. 

3. Without actually measuring various design parameters, it is diffi- 
cult to determine whether the characteristics of the data used will 
represent the system under investigation. 

1 5.2 Analytical modeling examples 

To better understand how these techniques can be used to model and ana- 
lyze a system, we will undertake two studies: one for the early well-known 
Honeywell Experimental Distributed Processing system (HXDP) and the 
other for the token bus. In both cases, similar quantities are sought~  
namely, average scan time (time for control to sequence around once) versus 
message size. The intent is to analyze the efficiency of the control protocol 
and network characteristics. 

1 5 . 2 .  I H X D P  m o d e l  

Introduction 
The HXDP system consists of processors connected to interface units that 
are joined by a bit-serial global bus. Bus allocation is governed by the v e c -  
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Figure 15.2 
Scan blocks. 

tor-driven proportional access mechanism. Prior to system initialization, 
the 256-bit vectors are set for each processor so that for each time slice one, 
and only one, interface unit has a 1 in its index. The number of different 
schedules (possible combinations of l s and 0s) for a system containing N 
interface units is, therefore, theoretically equal to N × N 256, which is exor- 
bitant even when N = 2. This scheme, however, cycles through the same 
pattern over and over again. Nonetheless, rather than develop a model 
allowing for any of the possible schedules, it was decided to constrain the 
allowable schedules to ease the computation. 

It is assumed, consequently, that the schedule mechanism is as follows: 
Every interface unit is assigned a 1 only once in the index, after which the 
initial pattern repeats itself until the 256th index for processor N is set; this 
pattern is termed a scan block. The interface units, in turn, are sequentially 
logically numbered and are given a logical unit number. 

One illustration of such a schedule with the corresponding scan blocks 
would be for four IUs (see Figure 15.2). One schedule would contain 256•4 
= 64 scan blocks. Another schedule might be as shown in Figure 15.3. The 
sequence of events in the constrained system is then as follows: The reallo- 
cation signal arrives at logical unit 1 (the IU with the first 1 bit); if there is a 
message waiting service, the interface unit is granted the bus and the mes- 
sage is serviced. Once the message arrives at the destination, an acknowledg- 
ment is sent back to the source, after which a reallocation signal is sent out, 
the index is updated, and the next logical IU gets bus access. The sequence 
proceeds until IU N is serviced, after which (because of the assumptions) 
logical unit 1 is serviced. This continues ad infinitum. 

Scan block 

Scan block 

Logical 
Unit # 

I 
1 

I 

I 
3 
I 
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Figure 15.3 

Another scan block. 
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The scan time is, then, the time it takes to scan through the logical 
sequence of IUs once--that is, through the scan block. Table 15.1 lists the 
terms and their definitions. 

lb. 
y 

Table 15.1 Symbols and Their Definitions 

Symbol Definition 

N Number of interface units in the system 

Tsi Time requirement to service a message at interface unit i 

Tr/ Time delay associated with the reallocation signal passing from interface unit with logical sequence i to i + 1 

~i Average message arrival rate at interface unit i 

I: Time to scan through entire sequence of IUs 

Average or expected scan 

~i Set equal to 1 or 0 depending on whether IU has message awaiting transmittal or not 

The time it takes to send the message of predetermined constant size from IUi to IUi+I separated by dis- 
tance d 

Tac k The time it takes to send the acknowledgment from IUi to IUi+ 1 separated by distance d 

T R The time it takes to send the reaUocation signal from IUi to IUi+ 1 separated by distance d 

P The probability of an arbitrary interface unit requiring service during one scan 
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Analytical modeling of the HXDP bus 
It is assumed that the messages are arriving at an exponential rate. The 
probability that an arbitrary interface unit will require service during one 
scan is: 

o o  

P - S ( 1 - e  -zt ) f~ ( t )d t  (15.1) 

where f~(t)is the probability density function of the scan time. For )~t small, 
we use the approximation that e -~'t ~ 1 - )~t. Thus: 

o o  

P - S ( 1 - e  -kt ) f~ ( t )d t  - )~-~ (15.2) 

For varying message arrival rates = )~i, this evaluation becomes: 

o o  

Pi -- S )~itfx ( t )d t  -- ~i ~ (15.3) 
~ o o  

V'C i, which is the segment of the scan time that can be attributed to IUi, is: 

V'[i -- ~i (Tsi -[- Tack )+  Tr (15.4) 

where Tac k is the time it takes for acknowledgment (ack) to be sent back to 
i, if there was a message received, and T r is the time it takes for the realloca- 
tion signal to go from IU logical number i to IU logical i + 1. But ~i can 
only take on values 0 or 1, and we assume that a uniform destination distri- 
bution and an IU in the HXDP system communicates with itself via the 
bus: 

1 N 
E(~i (Tsi + Tack ) ) - - ~  Z(li- kl(Ts + Tack))P/ 

k=l 
(15.5) 

This implies that: 

N N N x-1/NZZ(li-kl(Ts + Tack))P/+Zli-(i+X)lTR 
i=1 k-1 i=1 

(15.6) 

where ] i -  k] represents the number of interface units away from the source 
interface unit i where interface unit k is located. 
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Substituting )~i~- ~. we get: 

~ =  
N 

~(Ts + Tack) E (i2 + (1 + N ) ( - i  + (1/2)N))~ i 
N i=1 

N 

+ Z l i - ( i  + l)lTR 
i=1 

Thus: 

(15.7) 

N 

Z l i - ( i  + l)lTR 
'I~-- /=1 (15 .8)  

where index i denotes the logical number of the interface unit. 

The main constraint on the model is: 

((Ts + Tac k ) /N)[~k=l (k2+( l+N)( -k+ (1/2)N))])~k <<1 (15.9) 

The effect on the average scan time, x, can now be determined by vary- 
ing any combination of the following parameters: 

1. The number of interface units, N 

2. The arrival rates, kk 

3. The logical numbering of the interface units 

4. The distances between neighboring interface units 

5. The average size of the arriving messages 

Graphic outputs 
Figures 15.4 through 15.7 show the resultant computations for the scan 
time versus the message size for various changes in arrival rate, processor 
location, and quantity. These results will be compared with those of the 
simulator described later in this chapter. 
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Figure 15.4 
Scan time versus 

message size, 
configuration 1 
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Figure 15.6 
Scan time versus 

message size, 
configuration lb. 

o ~  

0") 

> v -  

10.0 

9.0 

8.0 

7.0 

6.0 

5.0 

4.0 

3.0 

2.0 

1.0 

Con f igu ra t i on  1 : 6 4  p r o c e s s o r s  
x = 1 /sec  = * 
x = 1110sec = A 

100 200 300 400 

A A 
I I I I 

500 600 700 800 

# of bits in arriving messages 

IUIogical ~ ~-~ ~-~ ~ ~-~ ~ .................. ~ ~-] ~ 
Numbers 

L 
r 

Figure 15.7 
Scan time versus 

message size, 
configuration 2b. 

= - 8  

O 

O O  > ~ - .  

< x  

10.0 - 

9.0- 

8 , 0 - -  

7.0-- 

6.0-- 

5.0-- 

4.0- 

3.0-- 

2.0-- 

1.0-- 

Con f igu ra t i on  1 : 6 4  p r o c e s s o r s  
x = 1 /sec  = * 
x = 1110sec = A 

..________--*---~ ___________-----~ 

I I 
100 200 

I I I I I I 
300 400 500 600 700 800 

# of bits in arriving messages 

,U,ogica, l-el M I~  I-fl M I-~ .................. M M M I~1 Numbers 



15.2 Analytical modeling examples 455 

15.2.2 Token bus d is t r ibu ted  system 

Introduction 
The token bus distributed processing system (a local computer network) 
consists of processors connected to interface units, which, in turn, are con- 
nected by a common communications medium: the global bus. The alloca- 
tion of the bus is controlled by the cyclic passing of tokens in a sequential 
manner from lowest numbered interface unit (IU) to the next highest until 
all numbered IUs have been interrogated and serviced. The sequential num- 
bering is determined during power-up, and once steady state has been 
reached may be assumed to remain constant for modeling purposes. If an 
IU requires no service, control is passed to the next IU with an associated 
delay. The time it takes for the control to pass through the sequence com- 
pletely is termed the scan time (as previously discussed). 

Rather than investigating the entire token bus system, per se, emphasis 
will be on the bus, or the IU and bus layer, for modeling purposes. The 
main body of the example documents the development of the analytical 
models~in particular, the solution of the models for the value of the aver- 
age scan time. The analytical computation of the scan time allows one to 
further determine such interesting and practical bus parameters as average 
message waiting time, average queue length, and bus use. From the derived 
formulas, one can readily ascertain the effect on bus parameters of increas- 
ing the number of processors, altering the sequential placement of proces- 
sors, or varying the message arrival rates. 

Preliminary formulations and definitions 
The message arriving at the processor is assumed to follow a Poisson distri- 
but ion~in other words: 

P ( r , t ) -  ()~t)Re-)~t (R-0 ,1 ,2  .... ) (15.10) 
R~ 

where P(r,t) is the probability that r messages arrive in time t, with each 
message being of the same size. 

Service is required if there are one or more message arrivals in time t or: 

p(1 or more arrivals, t ) - 1 -  P(O,t), 

which, in t u rn , - l - ( (~ t ) ° /O! ) e  -~t - l - e  -~t 
(15.11) 
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Since the assumption is that steady state has been reached, we can let 
fL(t) denote the probability density function of the scan time x. The corre- 
sponding cumulative distribution is then equal to: 

A 
(15.12) 

t 

I A(u)du 
U~---OO 

Let P denote the probability of an arbitrary processor requiring service 
during one scan: 

o o  

P -  I (1-e-kt) f~(t)dt  (15.13) 
. - - o o  

If more than one arrival occurs at any processor in any scan, that arrival 
can be considered blocked. This message will then have to wait at least one 
scan time before it can be placed on the bus. This implies that: 

P (blocking)- P (more than one arrival in scan time) (15.14) 

( mor.e.than one m. essage )= 1 - [ P ( 0 , t ) +  P(1,t)] 
P \requmng service m nme t 

= 1 - [e -~.t + Xte -gt ] 

To enable the evaluation of 19, for e -zt= 1-~t, implies that: 

(15.15) 

o o  o o  

P -  I (1-e-Xt )A  ( t )d t -  ~ ~ (t)dt (15.16) 

which is equal to k~, by definition of expected value. 

The relationship of P-- k~ will be used for all the models for simplifica- 
tion purposes. For clarity and convenience, Table 15.2 contains the symbols 
and their corresponding definitions, which will be used in the development 
of the analytical models. 

Anal~ical modeling of the token bus 
The analytical models developed for the token bus will be presented in an 
order reflecting an increasing degree of complexity and, consequently, a 
relaxation of the corresponding mathematical assumptions. In each of the 
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Table 15.2 Symbols and Their Definitions 

Symbol Definition 

N Number of processors and consequently number of interface units due to a one-to-one correspondence 
in the system 

The time required to service a message at an interface unit 

Tsi The time required to service a message at an interface unit i 

Time delay associated with control (token) passing from an interface unit to its physically nearest neigh- 
bor interface unit 

Time delay associated with control (token) passing from an interface unit with logical sequence number 
i to its neighbor interface unit i + 1 

Average message arrival rate at interface unit 

Average message arrival rate at interface unit i 

Time to scan through entire sequence of IUs 

Average or expected scan 

/3i Set equal to 1 or 0 depending upon whether IU has message awaiting transmittal or not 

Distance between interface units i and i + 1 

The time it takes to send the message of predetermined constant size from IUi to IU/+I separated by 
distance d 

UF Bus use factor 

The probability of an arbitrary interface unit requiring service during one scan 

models, a steady state, constant message size, and equal spacing between 
processors will be assumed. In addition, once the IU has been given control 
of the bus, it will be assumed that the message buffer for the interface unit 
will be emptied instantaneously onto the bus. The underlying specific 
assumptions in each case will be clearly outlined. 

Case l 

In the basic analytical model, it will be assumed that the arrival rate of mes- 
sages at each of the N interface units is equivalent and is represented by k. 
In addition, it is assumed that once steady state has been reached, the 
sequential (logical) numbering of the interface units is identical to the phys- 
ical numbering (spatial numbering from left to right)~that is, it follows 
the representation shown in Figure 15.8. 
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Figure 15.8 
Physical and logical 

numbering of  
interface units. 

Interface unit 
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If we let T c denote the time delay associated with the token (control) 
passing from one interface unit to another, the Tci for each interface unit 
may be considered the same, since it has been assumed that the processors 
are equidistant from one another, and, consequently, the control will need 
to traverse the same distance from a processor to its next (with next highest 
sequence number) neighbor. 

Another essential time parameter is the time it takes to service a message 
for any interface unit. In a ring topology with a token-passing scheme one 
could consider T s, which is the time required to service a processor, to aver- 
age out to the same value over time for all processors. Reference [22] shows 
that the same conclusion cannot be reached for the bus topology. Time to 
service a message is a function to the destination IU. Therefore, the place- 
ment of the source IU within the bus topology will affect the average time it 
takes to service one of its messages. For example, if N =  3, we have the con- 
figuration shown in Figure 15.9. 

For interface unit 1 to transmit a message to processor 2, the message 
will have to traverse the distance from I to 2; for interface unit 1 to transmit 
a message to 3, it will have to traverse the distance from 1 to 3. If we repre- 
sent the equal distance between two neighboring interface units as d, and 
we let each of the other IUs be potential similar message destinations (e.g., a 
uniform distribution for message destinations is assumed): 

E(T~lsource- 1 ) 

= 1//2 ( (d /ve loc i t y  estimate ) + 1/2 (2d/velocity estimate )) 
(15.17) 

where d/velocity estimate = t s - time to send the message of the chosen size 
from i to i + 1" 

= /gzts + ts - 3 / 2 t  s (15.18) 

For processor 2, as the source processor, the corresponding equation 
becomes: 

E(T,I source-  2 ) -  ~ t  s + ~2ts - t, (15.19) 
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v 

Figure 15.9 
Token bus with Interface 
three interface unit number 

units. 

Let Tsi denote the time it takes to service a message at interface unit i. 
The time it takes for the token to pass from the ith IU to the i + 1st inter- 
face unit may then be expressed as: 

Vx i -- ~iTsi + T c where 

_ ~1, if IU has a message awaiting transmittal; 

/ O, otherwise 

(15.20) 

The total scan time becomes: 

N N 
x - E V x i  orx-E(~iTs i  + r c )  (15.21) 

i-1 i-1 

Now, taking expectations of both sides of equation (15.21) we get the 
average value of scan time ~ as: 

N N N 
-~- EE(~iTsi )+~E(T~ )=EE(~iTsi )+NT~ 

i=1 i=1 i=1 

Next, by definition of the expected value of product: 

(15.22) 

E (~iTsi) - E E ~iTsiP ( ~iTsi ) (15.23) 

Since it was mentioned previously that Tsi is a function of the distance 
that the message has to travel, and since ~i can only take on the value 0 to 1- 

N 
1 i_ kl t,P (15.24) E (~iTsi) - N---~X k=l 

where i -  k represents the number of interface units away from the source 
interface unit i, the destination interface unit k is located, and any interface 
unit other than i has an equally likely probability of being a destination 
interface unit. That is, a probability 1 /N-  1. 
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P is the probability derived in the preliminary formulation. In summary: 

1 N N  - ZZli-kltsP+NTc 
N - 1  i=1 k=l 

N N 

_ tsp Z Z l i - k l N T  c 
- N -  1 i=1 k=l 

= + N T  c 
N - 1  3 

- ~ , P ( N ( N  + 1))/3+ Xr~ 

Substituting P = ~g into (15.25): 

(15.25) 

-g= t s ~ ( N ( N  + 1))/3+ NT c 

-g = (i - (ts~ ( N  ( N  + 1/)/3))+ NTc 

-~= (NT c ) / (1 -  ~ , ( N ( N  + i ) t  s )/3) 

(15.26) 

This equation is valid, based upon the assumption and approximations 
if, and only if: 

( X ( N ( N  + 1)t s )/3)<< 1 (15.27) 

C a s e  II 

In this model, we relax the assumptions that all the interface units have 
identical message arrival rates equal to k, by allowing for message arrival 
rates of ki for interface unit i. However, we retain the assumption of the 
hypothetical, logical, or physical configuration, which, in turn, will be elim- 
inated in the subsequent case. The relaxation of the assumptions is being 
done in a gradual manner to emphasize the evolutionary nature of the 
development of the analytical models. The relaxation of the equivalent mes- 
sage arrival rates will allow for a greater realm of applicability and conse- 
quently, of testing but will, naturally, complicate the ultimate formula for x. 

Since each interface unit now has a characteristic message arrival rate, ki 
for interface unit i, P now becomes: 

o o  

Pi = I (1-  e-;~ t ) f~ ( t )dt  
- - o o  

Pi = ~i -~ 

(15.28) 
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Equation (15.21) is still applicable~that is" 

N N 

~= E V g i  - E(~iTsi  + Tc ) 
i=2 i=1 

Furthermore, x is still: 

(15.29) 

N "g = E E (~iTsi ) + NTc 
i=1 

where: 

(15.30) 

( 1 E (~iTsi )- N-1 k=l (15.31) 

1 
(15.32) 

~--( ts ) i=1 

Substituting £i~ = & 

-X-(N-l'r" )~(i2+(I+N)(_i+((1/i)N))£i)+NT 
Thus, 

(15.33) 

(15.34) 

m "C-- NTc 
1-( ts )[~(i2+(l+N)(-i+((1/2)N)£i)) I N - 1  i:1 

(15.35) 

Case III 
This model incorporates major modifications, which should permit the 
model to better reflect the actual system. In particular, it is assumed that 
once steady state has been reached, the logical numbering does not have to 
reflect the physical location, but, in fact, the steady-state configuration 
could be as shown in Figure 15.10. 

The logical sequence numbering of the token bus system may assume 
any out of the N! possible, different choices of the steady state with an 
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I L  

Figure 15.10 
Mapping logical to 

physical location. 

Interface unit 
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equal probability. Therefore, it is of the utmost importance to develop a 
model that can reflect all N! of the possible combinations. 

Consequently, T c, now, is not a constant but must in some sense reflect 
the time it takes for the token to travel the distance from interface unit i to 
interface unit i + 1. 

Let i represent the logical sequence number of the interface unit; then Vg i 
= ~iTsi + Tci; where Tci = the time for a token to traverse the distance from 
the IU with logical sequence i to the IU with logical sequence i + 1 (N + 1 
becomes IU 1). 

In the previous models, the logical sequence number and the physical 
number of the interface units were identical; therefore, it was not necessary 
to state explicitly the correspondence of the index i. 

The total scan time is now expressed by: 

N N 

-- E Vgi or a: = ~ ~iTsi + T s (15.36) 
i=1 i--1 

The average value of scan time equals: 

N N 

-~ -- E E (~iTsi )+ E E(Td) (15.37) 
i=1 i=1 

which, for a known configuration, is equal to: 

N N 

-g= EE(~ iTs i  )+ E l i - ( i  + 1)It c (15.38) 
i=1 i=1 

N + 1 denotes 1, due to cycling, where t c is the time it takes for the con- 
trol to pass from any interface unit k to physical unit k + 1. 

We have previously evaluated: 

N 

g=EE(~irsi) (15.39) 
i=1 
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and, in order to take advantage of the results, the index k will denote the 
physical number of the interface unit, while the index i will denote the log- 
ical number of it. 

Combining the results and making the substitution: 

)~k-~ = Pk (15.40) 

we get: 

N 
£1i-(i+l)ltc 

-~_ i=1 (15.41) 

1- E(k2 + (1 + N) ( -k  + 
k=l 

From equation (15.41), the effect on the average scan time can be deter- 
mined by varying any combination of the following variables: 

1. The number of interface units, N 

The arrival rates, £k, of the messages at the interface units with 
logical numbers, k 

Varying the logical sequential numbering of the interface units 

Varying the distances between neighboring interface units 

5. Varying the average size of the messages arriving at the interface 
units 

The main constraint of the model is: 

0 

, 

4. 

(15.42) 

1 5.3  S i m u l a t i o n  m o d e l i n g  of  local  a r e a  n e t w o r k s  

15.3.1 Computer networks (the model) 

A computer network can be considered to be any interconnection of an 
assembly of computing elements (systems, terminals, etc.) together with 
communications facilities that provide intra- and internetwork communica- 
tions. 

These networks range in organization from two processors sharing a 
memory to large numbers of relatively independent computers connected 
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over geographically long distances. (The computing elements themselves 
may be networks, in which case it is possible to have recursive systems of 
networks ad infinitum.) The basic attributes of a network that distinguish 
its architecture include its topology or overall organization, composition, 
size, channel type and utilization strategy, and control mechanism. 

Using the nomenclature and taxonomy discussed for computer inter- 
connection structures, a particular system can be characterized by its trans- 
fer strategy (direct or indirect), transfer control mechanism (centralized or 
decentralized), and its transfer path structure (dedicated or shared). Various 
network topologies, such as ring, bus, and star, are seen as embodiments of 
unique combinations of these characteristics (see Figure 15.11). 

Network composition can be either heterogeneous or homogeneous, 
depending on either the similarity of the nodes or the attached computing 
elements. Network size generally refers to the number of nodes or comput- 
ing elements. With respect to its communications channels, a network may 
be homogeneous or it may employ a variety of media. Overall network con- 
trol or management is usually either highly centralized or completely dis- 
tributed. If the hardware used for passing line control from one device to 

Interconnection for communication 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  t . . . . . . . . . . . . . . .  t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Transfer Direct Indilrect strategy 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 . . . . .  1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Transfer I I 
control (none) centralized centralized 

routing routing 
_._n? .e !bo~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 . . . .  [ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I . . . .  { . . . . . . . . . . . . . . . . . . . . . .  4 . . . .  r . . . . . . . . . . . . . . . .  
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Figure 15.11 Taxonomy of computer interconnection structures. 
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another is largely concentrated in one location, it is referred to as centralized 
control. The location of the hardware could be within one of the devices 
that is connected to the network, or it could be a separate hardware unit. If 
the control logic is largely distributed throughout the different devices con- 
nected to the network, it is called decentralized control. 

Implementation-independent issues that are dependent on system 
attributes are modularity, connection flexibility, failure effect, failure recon- 
figuration, bottleneck, and logical complexity. A subset of all possible com- 
puter systems is that of local computer networks (LCNs). Although no 
standard definition of the term exists, an LCN is generally regarded as being 
a network so structured as to combine the resource sharing of remote net- 
working and the parallelism of multiprocessing. A usually valid criterion for 
establishing a network as an LCN is that its internodal distances are in the 
range of 0.1 to 10 km with a transfer rate of I to 100 Mbps. 

Bus-structured LCN 
The range of systems to be studied will be confined to what is known in the 
LCN taxonomy as category 3 bus-structured systems (Figure 15.12). As 
opposed to such point-to-point media technologies as circuit and message 

Evolution context 

LCN taxonomy and systems 

I 
I 

New system/subsystem 
concepts 

I 
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I 
Reason Distributed processing 
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communication 
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I v  

Figure 15.13 
Generalized 
distributed 

computer network. 

switching, a bus-structured system consists of a set of shared lines that can 
be used by only one unit at a time. This implies the need for bus-control 
schemes to avoid inevitable bus-use conflicts. 

Network components 
As a first step in developing a general LCN simulation, the network model 
illustrated in Figure 15.13 is established. A network consists of an arbitrary 
number of interconnected network nodes. Each node consists of one or 
more host computing elements or processors connected to an independent 
front-end processor termed an interface unit (IU). 

The hosts are the producers and consumers of all messages, and they 
represent independent systems, terminals, gateways to other networks, and 
other such instances of computing elements. The IUs handle all nodal and 
network communication functions, such as message handling, flow control, 
and system reconfiguration. The lines represent the physical transmission 
media that interconnect the nodes. The IUs, together with the line inter- 
connection structure, comprise the communication subnetwork. 

The model in Figure 15.13 isolates the major hardware units involved in 
the transfer of information between processes in different hosts. At this level 
no distinction is made between instances of messages such as data blocks 
and acknowledgments. In order to develop and refine the model, the major 
elements, structures, and activities must be further defined. 

,," "', 
/ ~l I 

P2/I P, I 
I I i I i 

/' ,//,/'""//" 

'" n Legend: 
P: host computer 
I: interface unit 
I: line 
IQ: input queue 
OQ: output queue 
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Host processors 
Host or processor components generally include computation and control 
elements, various levels of memory, and input and output peripherals. As 
far as the system is concerned, each processor's behavior can be considered 
to be reflected in appropriate distribution functions that describe the rate at 
which the processor produces and consumes interprocessor messages. These 
functions reflect a given processor's inherent processing power and loading 
based on processor parameters, exogenous communication levels, and inter- 
network communications. 

Queues 
Queues are shared memory buffer structures through which information 
transfer between a processor and its IU takes place. For each node there will 
be an output (line) queue for messages awaiting transmission as well as one 
or more input (message) queues containing unprocessed receptions. The 
queue memory area may be located in the processor or in the IU depending 
on the implementation. Functionally, both are equivalent. 

Associated with queues are control variables, which are maintained and 
monitored by both the processors and IUs to provide for the simultaneous 
and asynchronous access of the queues. The most common types are linear, 
circular, and linked queues. Linear queues (buffers) are used when the 
extent of a message is known and the buffer structure can be allocated in 
advance. The use of circular buffers is appropriate if several messages of 
undetermined length are to be buffered before one of them is processed. A 
pool of chained queues is used if the message sizes and arrival times vary 
over wide ranges that cannot be predicted in advance and the messages are 
not removed in order of their arrival. 

Messages are deposited (written) into and withdrawn (read) from queues 
using various strategies such as FIFO (first-in, first-out), LIFO (last-in, 
first-out), and longest message first. 

Queue access is controlled in order to prevent writing into a full queue, 
reading from an empty queue, and reading information as it is being written. 

Interface units 
Insofar as its role in the network is concerned, the interface unit is the most 
complex unit with respect to both hardware and software. The basic func- 
tion of the IU is to enable its processor to communicate with others in the 
network as well as to contribute to overall network functioning. This 
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involves system (re)initialization, flow control, error detection, and manage- 
ment. 

When the IU detects that its processor has a message to send, it formats 
the message for transmission and becomes a contender for exclusive use of 
the communications channels. Upon allocation of control, the controller 
transmits the message and, depending on the implementation, may await a 
response from the destination processor. 

Upon completion of resource (bus) utilization, the IU must be able to 
pass control to the next candidate according to the allocation scheme. If 
there is an IU failure, the other IUs must be able to substitute for it insofar 
as its network control responsibilities are concerned. 

Communication lines 
The lines are the physical connections between network nodes over which 
control and data transmissions travel. Common equivalent terms are chan- 
nel and circuit. A particular circuit is either uni- or bi-directional (by nature 
and/or use) and supports continuous transmissions provided by analog or 
digital techniques. 

Circuits are supported using a variety of media, such as coaxial cables, 
twisted pairs, fiber optics, microwave links, laser links, and so on. For the 
purposes of the simulation it is not necessary to be concerned about these 
low-level characteristics except as they are represented by a set of channel 
characteristics: the maximum data rate, delay and error parameters, and 
directional limitations. 

It is also useful to consider setup characteristics if a point-to-point cir- 
cuit is not always dedicated to a network. These setup characteristics may 
include the signaling mechanism and delay, circuit setup delay, and the 
delay for breaking the circuit. In the systems that will be examined later in 
the chapter, setup characteristics will not be a factor. 

Maximum data rates vary from 50 Kbps (twisted pair) up to 150 Mbps 
(optical cables). This rate represents the raw transmission capability of the 
line and is not the same as the net rate at which information is transferred. 
There is always an overhead. Various factors, such as logic failures, elec- 
tronic interference, and physical damage, give rise to transmission degrada- 
tions ranging from single-bit errors to total line failure. Depending on the 
type of line used, typical error rates vary from 1 in 10,000 to 1 in 
10,000,000 bits transmitted. 
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Interconnection structures 

Various network aspects, such as scheduling, message routing, and reconfig- 
uration, are fundamentally related to a networks physical interconnection 
structure. For example, eligibility for bus control may be dependent on 
position, the time for a message transfer may be dependent on the location 
of the processors involved, or a networks continued functioning may be 
contingent upon the existence of a redundant link. This structure may be 
represented by a topological organization of the three hardware arche- 
types~nodes, paths, and switches~that are involved in the transfer of 
information between processes at different nodes. 

These transfers are called message transmissions and do not distinguish 
between instances of messages, such as data blocks, service requests, sema- 
phores, and so on. Likewise, in restricting consideration to structural issues 
it is unnecessary to distinguish between a computing element and its inter- 
face. They are lumped together as the entity node. The switching elements 
affect the routing or the destination in some way. 

Figure 15.14 shows a general model of an interconnected system. For 
simplicity, the class of systems with only one switch is represented. 

Node 1 ............................................................................................ 

) 
""-...., .... . .......... 

.................................................................................................................................. -" 

N o d e  2 ............................................................................................ 
..... .-" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -.. 

• " .............. ~".-~.. ................................ ' .......... 

................................................................................................... 
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.............. 
/ /  / ....... ,.,.. 

[ 'n ) 
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........ ,. ............................................................................................................. . ........... . . /" 
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Figure 15.14 General interconnection model 
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-1 
I 
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Figure 15.15 

Loop Total interconnect Star 

Examples of interconnection structures. 

Associated with each node and switch are a number of paths or links. 
Each node can connect to the rest of the network through one, two, or mul- 
tiple links corresponding, respectively, to a bus system, a ring or loop struc- 
ture, or a fully interconnected network with direct links between each pair 
of nodes. Figure 15.15 shows specific examples of interconnection struc- 
tures. 

These diagrams suggest that the interconnection structure can be repre- 
sented by or implied in tables and/or algorithms that will enable the deter- 
mination of such things as the next eligible node for resource utilization, 
internodal lengths, reconfiguration parameters, and optimal paths. A com- 
plete representation might be underutilized in the present simulation effort 
but would provide for increased sophistication in the future. 

If the node is resolved into its components (i.e., the computing element 
and IU), it can be seen that the model can represent the interconnection 
aspects of the various control schemes possible for distributed networks. 
Since no assumption is made about the nature of the components of a node 
or of its communications with the rest of the network, it is possible for a 
particular node to represent a centralized controller dedicated solely to net- 
work management instead of a host processor in the usual sense. 
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1 5 . 3 . 2  P r o t o c o l s  

Network activities occur in a potentially hostile environment because of 
such factors as nonhomogeneous components, limited bandwidth, delay, 
unreliable transmissions, and competition for resources. In order to provide 
for the orderly coordination and control of activities, formal communica- 
tion conventions or protocols have been developed that encompass the elec- 
trical, mechanical, and functional characteristics of networks. 

These protocols are almost always complex, multilayered structures cor- 
responding to the layered physical and functional structure of networks. 
Each lower layer is functionally independent and entirely transparent to all 
higher-level layers. However, in order to function, all higher-level layers 
depend on the correct operation of the lower levels. 

Every time one protocol communicates by means of a protocol at a 
lower level, the lower-level protocol accepts all the data and control infor- 
mation of the higher-level protocol and then performs a number of func- 
tions upon it. In most cases, the lower-level protocol takes all the data and 
control information, treats it uniformly as data, and adds on its own enve- 
lope of control information. It is in the format of messages flowing through 
a network that the concept of a protocol hierarchy is most evident. The for- 
mat of transmitted messages shows clearly the layering of functions, just as a 
nesting of parentheses in a mathematical expression or in a programming 
language statement does. 

Among the functions provided by protocols are circuit establishment 
and maintenance, resource management, message control, and error detec- 
tion and correction. Performance of these functions provided by protocols 
are circuit establishment and maintenance, resource management, message 
control, and error detection and correction. 

Performance of these functions introduces delays in data transmission 
and requires adding headers and other housekeeping data fields to messages 
as well as requiring acknowledgment of correct reception or retransmission 
in case of errors. This reduces the useful data rate of a network. These over- 
head aspects of message transfer transmission are taken into account in a 
measure of the efficiency of the protocols. In general, a protocol is simply 
the set of mutually agreed upon conventions for handling the exchange of 
information between computing elements. Although these elements could 
be circuits, modems, terminals, concentrators, hosts, processors, or people, 
the view taken in this section is restricted to hosts and processors embedded 
within other equipment. 
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Figure 15.16 

The crux of maintaining a viable distributed environment lies in accept- 
ing the inherent unreliability of the message mechanism and to design proc- 
esses to cope with it. In earlier systems, protocols were designed in ad hoc 
fashion. Typically, these protocols were application specific and imple- 
mented as such. All recent protocol work has been moving in the direction 
of a hierarchical, multilayered structure, with the implementation details of 
each layer transparent to all other layers and hierarchies. 

Although there is no universal agreement on the names and numbers of 
protocol layers, a widely accepted standard is the International Organiza- 
tion for Standardization, (ISO), Open System Interconnect (OSI) model, 
which is shown in Figure 15.16. Using this organization, level 1 (physical 
layer) protocols include RS-232 and X.21 line-control standards, Manches- 
ter II encoding, encryption, link utilization time monitoring and control, 
transmission rate control, and synchronization. 

Level 2 (data link) provides for the reliable interchange of data between 
nodes connected by a physical data link. Functions include provision of 
data transparency (i.e., providing means to distinguish between data and 
control bits in a transmission); contention monitoring and resolution; the 
establishment, maintenance, and termination of interactions (transactions); 
error detection and correction; and nodal failure recovery. 
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A description of the operational aspects of the general network is best 
presented in the context of the previously defined protocol structure, since 
all possible network events and activities, intentional and otherwise, must 
be managed under this structure. The protocol structure also implies the 
underlying structures and functional mechanisms that support network 
operation. 

Before any control or data communications can be conducted, the actual 
means of signaling and bit transmission across a physical medium must be 
provided. Physical links must be established in accordance with the speci- 
fied network topology and line parameters. 

Frequently, an encoding scheme such as Manchester II is used on this 
level to provide for synchronization and error detection. In the Manchester 
II scheme each of the original data bits is transformed into two transmission 
bits in such a way that it is impossible to get three consecutive identical bits 
in the encoded message. This implies that the message receiver can detect 
errors by watching for this occurrence. Also, this encoding can be selectively 
disabled to provide unique, invalid waveforms that can be used as synchro- 
nization signals. 

Given the physical layer service capability to exchange signals across the 
physical medium, the data link layer is implemented to provide the capabil- 
ity of reliably exchanging a logical sequence of messages across the physical 
link. The fundamental functions of the layer include the provision of data 
transparency, message handling, line management, and error control. Since, 
in the original case, data and control information pass along the same line 
during a transmission, certain techniques must be provided to distinguish 
between the two. This is done by assigning control meanings to certain bit 
patterns that are prevented from occurring in the data stream through the 
use of such techniques as bit and byte stuffing and the previously described 
Manchester scheme. In this way, control sequences can be used to delimit 
the beginning and end of asynchronously transmitted, variable-length mes- 
sages. Common expressions for such sequences include BOM, EOM, and 
flag. 

The elementary unit of data transmission is usually the word. The num- 
ber of data words in a message is generally variable up to some maximum 
message length (MML), and a parity bit is usually appended to data and 
control words. Each message must include addressing information when- 
ever the sender and receiver are not directly connected. Addresses may be 
physical, in which case each node has a unique address, or they may be log- 
ical, in which case each node has associated with it one or more coded 
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sequences representing functional entities. A particular logical address may 
be associated with an arbitrary number of physical nodes, thus providing for 
single, multiple, or broadcast addressing. Address information may be con- 
tained in the data portion of a message or it may be part of the control 
information. 

Each transaction may be considered to be either a bilateral or a unilateral 
process, depending upon whether or not the sending process requires a 
response from the destination concerning the success of the transmission. In 
the systems in which a choice can be made between these alternatives, the 
message must contain information about this choice. Response types 
include but are not limited to the following: 

• NO REPLY R E Q U E S T E D ~ I n  the case of a message being sent to a 
process where multiple copies exist, the issuance of an acknowledg- 
ment is undesirable because collisions would result. 

• STATUS REQUESTED~Informat ion  regarding the success or fail- 
ure of the transmission is requested. 

• LOOPBACK REQUESTED~Loopback  is the situation in which a 
destination node is also the source node. 

15 .3 .3  T ransmiss ion  e r r o r  d e t e c t i o n  

In order to ensure that a transmission is occurring without error, it is neces- 
sary for the link control level to include a set of conventions between the 
sender and receiver for detecting and correcting errors. 

There are many possible methods for error control over a transmission 
link. Two general types of error control are forward error control and feed- 
back error control. The most practical and prevalent method is feedback 
control. 

The simplest form of detection is a parity check on each transmitted 
character. This is often called a vertical redundancy check, and it is used to 
provide protection against single bit errors within characters. A horizontal 
or longitudinal redundancy check (LRC) provides for a check across an 
entire message. This is done by computing a parity bit for each bit position 
of all the characters in the message. The most powerful form of check is the 
cyclic redundancy code check (CRC), which is a more comprehensive alge- 
braic process capable of detecting large numbers of bits with errors. 

There is a possibility that a message or response does not even arrive at 
its destination, irrespective of whether the information is good or bad. This 
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can result from either a physical failure, such as the failure of the link or of 
the destination node, or a logical failure, such as the use of an incorrect des- 
tination name. 

These possibilities can be detected by providing a time-out mechanism, 
which will cause a message to be retransmitted if, after an agreed upon delay 
(the response time-out), an acknowledgment has not been received. Many 
systems rely solely on the positive acknowledgment and time-out conven- 
tion and do not employ a negative acknowledgment. 

When multiple devices are sharing a bus, there must be some method by 
which a particular unit requests and obtains control of the bus and is 
allowed to transmit data over it. The major problem in this area is the reso- 
lution of inevitable bus request conflicts through the use of arbitration and 
scheduling schemes so that only one unit obtains the bus at a given time. 
Mechanisms must also be provided for system reinitialization and adjust- 
ment in the cases of system startup, nodal addition and removal, line fail- 
ures, and spurious transmissions in the system. 

In all systems collisions can occur when more than one control or data 
transmission simultaneously occurs. This may be caused by the use of ran- 
dom number techniques to generate allocation sequence numbers upon a 
node entering the system at startup or some later time, or it may be caused 
by a message with multiple destinations improperly asking for acknowledg- 
ment. Collisions are usually handled by the temporary or permanent 
removal of involved nodes or the retransmission of legitimate messages. 

A limit is often imposed on line use time to prevent a node from 
monopolizing the bus, either intentionally or because of nodal failure. This 
condition may be prevented by placing a limit on the maximum message 
size and/or monitoring line use to determine when a node is maintaining an 
active transmission state beyond that required to send the largest allowed 
message. 

This monitoring capability is achieved through the use of a loud-mouth 
timer, which is activated upon nodal allocation and provides an interrupt 
signal (or Causes a collision) if allowed to run out. The usual outcome is the 
removal of power from the transmitter circuitry, either temporarily or per- 
manently, and the informing of the host processor, when possible, of this 
condition. 

When talking about control, it is important to keep in mind that this is 
not usually associated with a specific physical device or location but is rather 
a functional entity distributed (replicated) throughout the network. 
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1 5 . 3 . 4  E v e n t s  

In order to precisely simulate the operational behavior of networks a more 
formal and quantitative analytical approach must be taken. In order to do 
this, the following concepts must be introduced. All actions and activities, 
intentional and otherwise, that can occur in system operation can be classi- 
fied as events. An event is defined as any occurrence, regardless of its dura- 
tion. Events have a number of characteristics, including the following: 

• An event has a beginning, an end, and a duration. 

• An event can be simple or complex. A simple event is one that cannot 
or, for the purposes of the simulation, need not be reduced into a 
simpler sequence of occurrences. Conversely, a complex event is one 
that consists of simpler events. 

• An event may be a random occurrence or of a stochastic nature, or it 
may be the deterministic result (effect) of an identifiable cause. 

• An event has a certain pattern of occurrence (e.g., periodic, aperiodic, 
synchronous, asynchronous, etc.). 

• Events belong to classes. The significance of an event class is that each 
member has the same effect as each other in a particular context. For 
example, in certain systems the corruption of a message by noise is 
equivalent in effect to the incorrect specification of a destination 
name~bo th  will result in a response time-out and a retransmission. 
Thus, these two events would be of the same class. 

• Events may be concurrent or disjointed (sequential). Events that 
coincide or overlap in time are concurrent; otherwise, they are dis- 
jointed. The concept of effective concurrency is introduced here. 
Sequential program structures are considered effectively concurrent if 
they can successfully represent or model events that are actually con- 
current. 

An example would be the action of processors requesting services. While 
this is an asynchronous, unpredictable event(s) concurrent with channel 
utilization by a particular node, these two aspects of system behavior utiliza- 
tion and contention can be effectively separated, since (except in the case of 
interrupts) the request will not be acted upon until utilization is complete. 
As long as a record of the duration of utilization is available, an effective his- 
tory of nodal requests can be generated just prior to contention resolution 
by the control module of the simulation program. 
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Following is a list of basic events that may be found to occur in the oper- 
ation of various LCNs. All system behavior can be ultimately reduced to 
sequences of these simple events. Events are listed under the component in 
which they occur. 

Processor 
• Production. This is the generation of a message by a host computing 

element. Parameters associated with this event are production time, 
message size, destination(s). 

• Queue inquiry. The determination by the processor of the state of an 
input or output queue before reading from or writing to it, respec- 
tively. 

• Output message disposition. Depending upon the buffer availability 
strategy, a generated message may be queued normally, it may be 
written over exiting queued data, it may be held by the processor 
until it can be queued, or it may be dumped. 

• Consumption (read message). This is the reading of a message in the 
input queue by the host computing element. Assuming a message is 
available in the input queue, it can be immediately consumed. Con- 
sumption with respect to a queue is similar to production. 

• Node. It is convenient to associate the following events with the 
entity node rather than either the computing element or the IU. 

• Addition. A node is considered added to the circuit when it informs 
the network that it wishes to be integrated into the system. This may 
occur upon initial power-up of the node or upon failure recovery. 

• Integration. This is when the node actually becomes a functional part 
of the network. 

• Failure. This is the failure of a node as a functional member of the 
network. 

Interface unit 
• Queue inquiry. This is analogous to the processor event. 

• Read message. The IU obtains message from an output queue. 

• Preprocess message. This is the formatting or packing of a message for 
transmission. It is to be distinguished from the formatting that is 
done by the processor. 
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• Request. The IU notifies the network that it wishes to use the bus. 
This may or may not involve the transmission of a control signal. 

• Connection. This is the actual acquisition of the channel for utiliza- 
tion. 

• (Re)transmission. This is the moment when the first word of a mes- 
sage is placed on the bus or, in the event of a message train, as in a 
ring structure, the first word of the first message. 

• Response time-out activation. In systems in which a response to a 
message transmission is required within a certain amount of time, a 
response timer is activated at some point during transmission. 

• Detection (identification). This is the detection by an IU of a mes- 
sage addressed to it. 

• Reception. This is the moment when the complete message has been 
received, processing on it has been completed, and it is ready to be 
queued. This may also be considered queue inquiry time as well as 
response transmission time. 

• Write message. This is when a received message is placed in the input 
queue. 

• Response reception. This is when the message source receives infor- 
mation from the destination regarding the transmission. 

• Delete message. This is the deletion of a message from an output 
queue following a successful transmission. 

• Relinquish. Upon completion of utilization, the IU signals that real- 
location is to occur. 

Using these concepts, overall system activity or flow can be represented 
by the following sequence of complex events: 

NODAL ACTIVITY --5 CONTROL/ARBITRATION --5 
UTILIZATION 

This simple structure is possible because the concept of effective concur- 
rency is valid in the case of global bus systems. 

Nodal Activity 
Nodal activity simulates the behavior of all nodes and interface units during 
the utilization period of a particular node. During this period nodal activity 
includes the following: 

[] The production and consumption of messages 
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1 5 . 3 . 5  

• Queue activity 

• IU background processing 

• Addition and removal of nodes from the network 

Control 
Control may be a number of possible sequences depending on circum- 
stances in which control is activated. 

Utilization 
The utilization event encompasses all activity associated with a node's utili- 
zation of the bus for the transmission of a message. Utilization begins with 
being connected to the bus and it terminates either gracefully, in the case of 
a successful transaction followed by a control output, or unintentionally, as 
the result of intervention by control because of a protocol violation (mes- 
sage too long, no reaUocation signal transmitted, etc.). 

T h e  L A N  s i m u l a t o r  m o d e l  s t r u c t u r e  

Based on the previous discussion of LAN structure and events, we can typ- 
ify a LAN as consisting of three major hardware classes: host machines, 
interface units, and communications links. Additionally, these hardware 
classes possess varying levels of software and functionality. 

The link level is concerned with the management and performance of 
bit-level physical transfers. This includes timing and control as well as 
mechanical and electrical interface. The interface units provide the main 
services to bring the simple communications media and protocols up to a 
true network. This component and its services must provide for node-to- 
node, host-to-node, and end-to-end protocols. This includes error detec- 
tion and correction, media acquisition and control, routing, flow control, 
message formatting, network transparency, maintenance of connections, 
and other services. The host class of device provides the LAN with end-user 
sites that require remote services from other hosts. The services provided at 
this level are host-to-node interface, host-to-host protocols, and resource- 
sharing protocols. Implemented at this level of a I_AN would be user-visible 
services, such as a distributed operating system, a distributed database man- 
agement system, mail services, and many others. A model of this structure 
implies a minimum of a component for each of these items. Therefore, the 
simulator must have components of sufficient generality and flexibility to 
model these components and provide for analysis. Figure 15.17 depicts 
these basic components and the necessary simulation components to mea- 

I Chapter 15 



480 15.3 Simulation modeling of local area networks 

Simulation 
controller 

control 

Logical/physical 
attributes of systems 

Ring, Bus, Star 

Number of processors, 
number of lOPs 

Characteristics of 
lOPs 

Characteristics of 
communications link 

Processor 
#1 

,i, data 
lOP 
#1 

T data 

Processor 
#2 

I data 
lOP 
#2 

I Oata 

Processor 
#N-  1 

data I 
lOP 

#N-  1 

data I 

Communication link 

Processor I 
#N r 

data I 
lOP 
#N 

data I 

Data 
collector 

l 

Figure 15.17 Basic components of a simulation model. 

sure the performance and operations of a simulation. Using this structure, it 
can be seen that the simulator consists of a modular structure with compo- 
nents that can be turned to the modeling of specific LAN nuances. The 
physical and logical characteristics peculiar to each system design are con- 
tained in independent software routines and/or data tables. The high-level 
design of the LAN model shows the need for the following functions: 

• A simulation controller, which will be responsible for the coordina- 
tion and timely operation of the remaining software modules. This 
function will initialize the system architecture and distributed com- 
puting techniques in accordance with user input data, schedule 
events, calculate system state, maintain the common timetables, and 
initiate the processing of the other software routines as dictated by the 
particular logical and physical configuration. 

• A system processor routine, which will be capable of simulating the 
time-dependent activity (data in, data out, processing time) of each 
proposed computing mode. 

• An interface processing routine, which will be capable of simulating 
the activity (time delays, message handling, priority determination, 
addressing technique, resource allocation, etc.) of each proposed 
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front-end processor as required by the particular logical and physical 
characteristics. 

• A communications link routine, which will be capable of simulating 
the timing delays and the data and control transfer characteristics of 
the proposed transmission medium. 

• A data collection routine, which will be responsible for collecting, 
formatting, and collating the requisite system evaluation parameters. 

Data items collected will include, but will not be limited to, a mini- 
mum, maximum, and average of the following: 

• Time to transmit message from A to B 

• Message wait time 

• Number of messages in the queue or system 

• Message size 

• Bus utilization 

• Interface unit timing (as previously presented) 

It will also include a postprocessing routine, which will be responsible 
for presenting the data in human-readable forms (graphs, plots, tables, etc.). 

1 5 . 3 . 6  L A N  s i m u l a t o r  o v e r v i e w  

This simulator was developed to provide a flexible research, development, 
and analysis tool for local area network architectures. The tool has been 
used to aid in the selection, development, and evaluation of local area net- 
work architectures that support large, distributed, real-time command con- 
trol and communications (C3) environments. 

The simulator was designed with the intention of comparing a wide 
range of possible distributed C3 configurations. This capability was 
achieved by providing the following: 

1. A modular structure, which allows the model to be adapted to 
suit a variety of system specifications 

2. A standard driving routine, which mimics the communications 
within a C3 system 

3. A standard routine, which analyzes the distributed system on the 
basis of detailed evaluation criteria 

Such a design allows for the implementation, testing, and evaluation of 
new strategies for improving system performance with little effort. 
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1 5 . 3 . 7  

1 5 . 3 . 8  

N e x t  even t  s i m u l a t i o n  

The modeling technique used in the LAN software simulation is called next 
event simulation. Next event simulation views the world as a sequence of 
events rather than a continuum. If a department store checkout line is sim- 
ulated in next event simulation, the process of checking out would be 
viewed as the following sequence: (1) a customer enters the checkout line, 
(2) the customer starts checkout, (3) the customer completes checkout. 
Between these events the customer is performing other activities, but these 
are unimportant if we are simply interested in the length of the waiting 
time. 

The view of time taken by next event simulation is important in under- 
standing the design and implementation of the LAN simulation. Time in 
next event simulation is viewed as a means of sequencing events and calcu- 
lating time-related statistics. Events one hour or one second in the future 
are treated identically. Simulation is achieved by creating a file that contains 
future events along with the time of their occurrence. A simple loop pro- 
gram scans this file and selects the event with the lowest time. At that time, 
an internal memory location, which contains the simulated time, is updated 
to the occurrence time of the event. After the event occurs, mathematical 
calculations or logical operations can be performed to schedule other 
dependent events. In the checkout line example, this means that when 
checkout begins, the end of the checkout event is scheduled. In this way, 
the simulation proceeds from event to event and time constantly progresses. 

The random or stochastic nature of scheduled events gives the simulation 
the characteristics of a real system. In the checkout line example, the time 
taken to serve a customer is not a constant; it may be one minute or ten min- 
utes. The service time is also randomly distributed. That is to say, the service 
time of previous customers does not have any effect on future customers. 
The service times usually fall into a pattern; that is, it may be highly likely 
that a service time is 5 minutes but relatively unlikely to be 20 minutes. The 
likelihood of certain service times can be described by theoretical patterns 
called distributions. These distributions can be used to generate service times 
or arrival patterns that resemble those occurring in real systems. 

L A N  m o d e l  i m p l e m e n t a t i o n  

The LAN simulator is a general-purpose simulation package used for mod- 
eling a wide range of local area network architectures. Its basic structure is 
shown in Figure 15.18 and consists of the following five major components: 
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Arrival module. The arrival module is concerned with generating 
the messages to be communicated and places them in an interface 
unit queue. It must also handle the queue overflow problem and 
the possibility of a processor being unavailable. 
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One of the critical modules of MALAN in terms of general characteris- 
tics modeling is the use module. Its major components are as follows: 

1. ADD NEXT MESSAGE TO THE FILE. This process takes the 
next message from the processor that has the right to send and 
stores it in a file until it arrives at its destination. 

2. SIMULATE TOPOLOGY. This routes the message through the 
simulation topology. 

3. SIMULATE TRANSACTION DELAY. It simulates the passage 
of a message over a physical transmission line (link), including 
messages retransmitted. 

4. SIMULATE MESSAGE ERRORS. This determines the number 
of retransmits and lost messages from information on the physical 
transmission line. 

5. UNFILE MESSAGE. This process removes messages from the 
message file upon completion of message transmission. 

6. SIMULATE STATUS CHANGE. This simulates the loss of a 
link or node. 

Table 15.3 describes the composition of entities represented in this 
model. Each of the items in the table is an attribute of the model's entities. 
Attribute 1 is the event time; it contains the time at which the message will 
arrive. Attribute 2 is the event type, which distinguishes this event as an 
arrival, since there are other events that occur in the system. Attribute 3 is 
the source IU number or the designated IU that generated the message. 
Attribute 4 is the destination IU number and describes the ultimate desti- 
nation of the message. Attribute 7 is the message size expressed in words. 
Attributes 17 and 18 are used when a message is too large to be sent in one 
packet. In this case, the message must be divided into a number of smaller 
messages, each with the same source, destination, and generation time. 
Attribute 17 is used to identify the sequence number of any multipacket 
message. Attribute 18 is used to identify the total number of packets in the 
entire message. With attributes 17 and 18, it can be determined when the 
complete message is received. 

As with interarrival times, message size and message destination must be 
generated by the system. Here again, the data could be generated by mea- 
surements within the real system or by using theoretical distributions. Thus, 
part of the arrival module is devoted to drawing from distributions of mes- 
sage size and message destination and initializing the appropriate attributes. 
The only remaining function performed by this submode is to divide mes- 
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Table 15.3 Entries in the LAN Simulator Model 

Attribute Data Name Data Type Abbreviation 

1 Event time real ETIM 

2 Event type real ETYP 

3 Source interface unit (IU) number integer SP 

4 Destination interface unit (IU) number integer DP 

5 Present interface unit (IU) number integer PP 

6 Generation time real GT 

7 Message size (words) integer MS 

8 Message overhead length (bits) integer MO 

9 Message wait time At 1 (in processor queue) real WT1 

10 Message wait time At 2 (transit from queue to IU) real WT2 

11 Message wait time At 3 (within IU) real WT3 

12 Message transfer time real TT 

13 Message transfer time real XFER 

14 Number of stops integer NS 

15 Number of retransmits integer RT 

16 Messages lost integer ML 

17 Sequence number of multipacketed messages integer NMES 

18 Number of parts to a packetized message integer PARTS 

19 Message time to complete integer MTTC 

20 Message priority integer MP 

21 Message identification (ID) number integer MI 

sages that exceed the max imum message size into a sequence of smaller mes- 

sages. The  total number  of messages generated is placed in attribute 18 of 

each message. Each message receives a sequence number, attribute 17. 

Once messages enter the system, they must  be held in a waiting line or 

queue until the IU can transmit them. To facilitate this, a FIFO queue is 

formed to contain the waiting messages. In a real system, this queue would 

consume some real memory, which normally would be limited. In the sim- 
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15.3.9 

ulated system, this limit must be taken into consideration. When queue 
memory is exceeded, appropriate action should be taken. 

Appropriate action consists of: (1) waiting until sufficient memory is 
free to accommodate the message, (2) throwing away the message, and (3) 
overwriting an older message. Any of these can be selected in this submode. 

Topology module description 
The topology module consists mainly of a group of subroutines that facili- 
tate the retrieval and modification of the data that physically describe the 
local computer network. These routines reside within the body of the simu- 
lation program with the exception of the initialization program, which is a 
separate entity. 

Analysis module 

The goal of the analysis module is to provide quantitative measures, which 
establish the effectiveness of distributed processing systems, and to provide 
statistical measures, which can be used to compare distributed processing 
systems having divergent design philosophies. To meet these goals, it is nec- 
essary to identify constant factors that unify distributed processing systems 
and derive statistical measures by which these factors can be compared. 
That is to say, a common language of analysis must be established by which 
a wide range of distributed systems can be described. 

Establishing analysis criteria 
In order to develop wide-ranging analysis criteria, it is necessary to identify 
those characteristics that are common among distributed processing sys- 
tems. These common characteristics will be developed into statistical mea- 
sures that analyze the relative merits of the underlying system. In 
developing common characteristics, three areas will be explored: (1) the 
basic physical structure of distributed processing networks, (2) the basic 
sequence of events, and (3) the overall function of distributed processing 
networks. 

To provide flexibility and simplicity, most distributed processing systems 
have adopted a modular design philosophy. Modularity has resulted in a 
common physical structure, which allows the distributed processing systems 
to be divided into several functional components. These component parts 
can be examined and evaluated separately. Dividing the evaluation of a sys- 
tem into functional components allows more accurate analysis of the inter- 
mediate factors that contribute to the strengths and weaknesses of a system. 
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Figure 15.19 Functional components of a distributed processing system. 

The basic functional components that form the physical structure of a 
typical distributed processing system are shown in Figure 15.19. This figure 
illustrates each distributed processing system in terms of the following com- 
ponents: (1) a number of processors that generate and consume messages, 
(2) a waiting line or queue containing messages that cannot be serviced 
immediately, (3) an interface unit that prepares messages for transmission, 
and (4) a communications network that performs the actual physical trans- 
mission of data. The physical implementation of these component parts 
differs widely from system to system. The outline presented in Figure 15.19 
represents an accurate, generalized picture of distributed processing systems. 
The physical mapping presented in Figure 15.19 allows the identification of 
certain common features and checkpoints, which are discussed in subse- 
quent paragraphs. 

The primary structural feature of quantitative interest in Figure 15.19 is 
the queue, or waiting line. The length of these queues gives some quantita- 
tive information concerning the effectiveness of the underlying communi- 
cations system. Exceptionally long or unbalanced queues could indicate the 
presence of system bottlenecks. Queues that grow and retreat wildly could 
suggest poor responsiveness to peak loads. 
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The basic components, which form the functional event structure in the 
typical distributed processing network, are shown in Figure 15.20. This fig- 
ure reproduces the same general physical layout presented in Figure 15.19 
but divides the passage of messages through the physical system into specific 
steps, or phases. The major events of interest along the message path of Fig- 
ure 15.20 are: (1) a message arrives, (2) a message enters the queue, (3) a 
message leaves the queue, (4) a message becomes available to the interface 
unit, (5) a message starts transmission, (6) a message ends transmission, and 
(7) a message becomes available to the receiving processor. 

These common checkpoints are significant, because they allow time 
measurements that chart the passage of the message through the system. As 
long as a particular system accurately implements communication, timing 
becomes a most critical factor. That is, the speed at which accurately trans- 
mitted messages are completed is of primary interest. This series of check- 
points allows analysis of overall as well as intermediate delays imposed on 
the communications process. 

The time between basic checkpoints and combinations of checkpoints 
gives rise to specific descriptive quantities, shown by the arrows in Figure 
15.20. These quantities will be compiled for each simulation run on spe- 
cific distributed processing networks. These are described in more detail, as 
follows: 

° System time is the time between message generation at the source 
processor and message reception by the sink processor. System 
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time quantifies the total delay the distributed processing system 
imposes on a message. 

2. Transfer time is the time that elapses between a message leaving 
the queue and its reception at the sink. Transfer time indicates the 
time required for the system to effect communications, disregard- 
ing the time spent waiting to commence the transfer process. 

3. Transmit time is the time a message spends in the process of phys- 
ical information transmission. This quantity indicates the actual 
timeliness of the low-level protocol and the speed of the physical 
transmission. 

4. Wait time is the time that must be expended before a message 
begins transmission. This quantity is divided into four smaller 
quantities: wtl, wt2, wt3, and wt4, described as follows: 

• wtl is the time a message spends in the queue. 

• wt2 is the interval between removing the message from the 
queue to the point at which the IU begins preparing the mes- 
sage for transmission. 

• wt3 accounts for the time required to prepare a message for 
transmission. 

• wt4 includes the time required to make the message available 
to the sink processor once the transmission is complete. 

5. Overhead time equals the sum of wt2, wt3, and wt4. The over- 
head time is considered the time that must be yielded to the IU as 
the price of message transmission. 

Analysis criteria can also be approached from a functional point of view. 
Functional criteria allow evaluation and comparison of the performance of 
distributed processing systems. These criteria fall into the following catego- 
ries: (1) the amount of information carried by the communications system 
in unit time (i.e., throughput), (2) the amount of useful information trans- 
ferred in unit time excluding overhead (i.e., information throughput), (3) 
the information lost in the communications process, (4) the amount of 
information overhead, and (5) the proportion of data that arrives late. 

The throughput statistics quantify the total volume of information car- 
ried by a distributed processing system in unit time. This value is an overall 
indicator of the capacity and utilization of a distributed processing system. 
Unfortunately, the volume of real information transferred is reduced by the 
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portion of overhead appended to the message. The overhead information is 
the part of a message that is attached by the distributed processing system to 
facilitate communication. The measurement of throughput that disregards 
overhead is called information throughput. 

In addition to the overall flow of information through the system, we are 
interested in the loss of information. This loss can be the result of three con- 
ditions: (1) message loss because of a full queue, (2) message loss because of 
a bit(s) in error during transmission, and (3) message loss because of the 
casualty of a system component. These quantities will be computed as a 
percent of the total number of messages transmitted. A statistic relating 
total messages lost will also be computed. 

Also of interest is the amount of overhead that is attached to each mes- 
sage. This quantity allows analysis of the degradation of system perform- 
ance caused by overhead. This statistic expresses overhead as a percentage of 
the total information transferred. 

A more sophisticated functional evaluation criterion is the data late sta- 
tistics. This statistic evaluates the proportion of messages that arrives past 
the time of expiration. In a very practical sense, this measure is one that is of 
ultimate concern in real-time environments. If all messages arrive in their 
allotted time, the system is working within capacity and responds to the 
peak requirements demanded of it. 

In summary, the criteria used for analysis are generated by three charac- 
teristics of distributed processing systems, as follows: 

1. Basic physical structure. This characteristic yields criteria such as 
queue length, which results from the physical link between the 
processor and interface unit. 

2. The event structure. This characteristic yields analysis criteria 
such as transmit time, which is the result of the requirement to 
physically transmit the data during some point in the communi- 
cations cycle. 

3. The overall function. This characteristic yields analysis criteria 
such as throughput, which results from the overall function of the 
system (i.e., to communicate). 

Analysis criteria and simulation 
From the point of view of statistical analysis, Figure 15.21 illustrates the 
essential nature of the model. The block on the left shows simulation mes- 
sages arriving to the communications network from the real-time system. 
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Messages in the simulation are not real system messages but are buffers of 
computer memory that contain information regarding the nature and his- 
tory of the message. The central block shows simulation of messages passing 
through the communications network. During this passage, data, which 
capture the history of the message, are added to the simulated message. 
When the message is either complete (reaches its destination) or lost (failed 
to reach its destination), the message is analyzed by the analysis module 
shown as the block on the right. 

During a simulation, many messages will take the path illustrated in Fig- 
ure 15.22. A large number of messages are required in order to build up 
what is called statistical significance. This refers to the fact that a large sam- 
ple of occurrences must be taken into consideration in order to eliminate 
any bias that may be produced by taking too small a random sample. 

The structure of the software for collecting statistics and formatting the 
final report is also shown in Figure 15.22. During a simulation run, infor- 
mation from large numbers of completed messages will be accumulated and 
stored, and the memory occupied by these messages will be released. At the 
end of a simulation run, these accumulated data will be used in statistical 
calculations, which will be formatted and presented in the form of a final 
report. 

Figure 15.22 
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Statistical output 
The statistics generated by the system can be divided into three main 
groups: (1) time independent, (2) time persistent, and (3) periodic. 

The time-independent statistics are from independent observations. The 
traditional mean and standard deviation can be calculated for this group. 
These data, which are accumulated during the simulation run, are as fol- 
lows: (1) the sum of each observed piece of data, (2) the sum of each piece 
of data squared, (3) the number of observations, and (4) the maximum 
value observed. From the accumulated data, the mean, standard deviation, 
and maximum observed value will be calculated and formatted for the final 
report. These statistics will be provided for all the time-independent data 
points. 

Time-persistent statistics are important when the time over which a 
parameter retains its value becomes critical. An example of this is a waiting 
line. If the line has ten members in it for 20 minutes and one member for 1 
minute, the average is not (1 + 10)/2, or 5.5. This quantity would indicate 
that there were approximately five members present in the line for a 21- 
minute period. The true average is more like 20/21 × 10 + 1/20 × 1, or 
9.57, or approximately 10. This is the time-persistent average. As can be 
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seen in this case, the average is weighted by the time period over which the 
value persisted. There is a similar argument that can be made for the time- 
persistent standard deviation. These data, which are accumulated during a 
simulation for the time-persistent case, are as follows: (1) the sum of the 
observed value times the period over which it retained that value, (2) the 
sum of the observed value squared times the period over which it retained 
its value, (3) the maximum observed value, and (4) the total period of 
observation. From these accumulated data, the time-persistent mean, the 
time-persistent standard deviation, and the maximum observed value will 
be calculated and formatted for the final report. These statistics will be pro- 
vided for all the time-persistent data points. 

Periodic statistics are designed to yield a plot of observations as a func- 
tion of time. This group of statistics affords a view of the system as it oper- 
ates in time. Data are accumulated as in the previous two examples, except, 
rather than sums of statistics, an individual data point graph of time versus 
the value of the data points will be plotted. These plots will be produced for 
all groups of periodic statistics. Some example plots for evaluations per- 
formed on the HXDP and token ring networks are shown in Figure 15.23. 

S u m m a r y  

This chapter illustrated the usefulness of analytical and simulation model- 
ing for studying a component of a local area network, in this case the con- 
trol scan time for the queuing model and throughput for the simulation. 
These models provide a fairly easy means to extract such information. They 
have been applied to a variety of other LAN problems. The reader inter- 
ested in more details of such modeling is directed to the references cited in 
this chapter. 
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Access control, 78, 80 
ACID transactions, 98-100 

atomic, 98 
consistent, 98-99 
durable, 99-100 
guaranteeing, 101 
illustrated, 99 
independent, 99 
See also Transactions 

Addressing, 80 
Analysis module, 486-93 

criteria and simulation, 490-91 
criteria establishment, 486-90 
defined, 483 
functional diagram, 491 
simulated message flow graph, 491 
statistical output, 492-93 
See also LAN simulator 

Analytical modeling, 202 
examples, 448-63 
flexibility and, 333 
HXDP model, 448-54 
process, 202 
token bus distribution system, 455-63 

Analytical modeling tools, 30-32 
defined, 30 
queuing analysis, 30-31 

Architectures, 2-10, 39-106 
building blocks, 41 
central I/O controller, 60 

central I/O controller architectures, 60 
common bus, 10, 61 
computer, 9-10, 59-62 
computer system support software, 

62-92 
construction of, 5 
CPU, 5-6, 42-49 
dual bus, 10, 61-62 
evolution of, 2-10 
instruction, 6-7, 47 
I/O, 7, 49-50 
memory, 7 
memory-mapped, 60-61 
network, 8-9, 54-57 
Neumann, 59 
operating systems, 64-79 
research, 23 
secondary storage, 8, 50-54 
summary, 105-7 
system, 362-72 

Archival storage devices, 53-54 
Arithmetic logic unit (ALU), 4, 41 

defined, 5, 42 
operation status, 5 
See also CPU 

ARPANET, 2O 
Asynchronous timing, 255 
Authentication, 77 
Authorization, 77 
Availability, 341 
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AWESIM models, 380-97 
experimental results and, 396-97 
LINUX 7.2, 380-83 
Windows ME, 390-91 
Windows NT, 391-96 
Windows XP, 383-89 
See also Operating systems simulation 

AWESIM simulation toolkit, 380 

Balance equations, 190-92, 220-21 
flow, 220-21 
for Markov chain, 357 

Base addressing, 48 
Bayes's theorem, 148 
Benchmarks, 323 

PC performance assessment, 376-78, 
410-11 

TPC-H, 433-34 
types of, 323 

Bernoulli process, 182-83 
Bernoulli trials, 164, 165 
Binominal distribution, 164-66 
Birth-death process, 187-92 

as continuous parameter discrete state 
space, 187 

defined, 187 
example, 187 
general case, 190 
graphical representation, 191 
M/M/I queuing system, 207 
properties, 187-88 
state transition diagram, 189 
transition rate diagram, 191 
See also Stochastic processes 

Branching probabilities, 235 
Bridges, 56-57 

defined, 56-57 
illustrated, 57 
See also Network architecture; Networks 

Bus-structured LCN, 465-66 
Bus topology, 57-58 

Busy time, 313 
Buzen's algorithm, 347 

Cache Manager, Windows NT, 368 
Catalog manager, 93 
CD-ROM drives, 41 
Central moments, 132, 158-59 
Central processing unit. See CPU 
Central server model, 234-40 

adaptation, 235 
analysis, 345-50 
defined, 234-35 
exponential service time distributions, 235 
illustrated, 234, 346 
See also Computational methods 

Chebyshev's Theorem, 161-63 
Checkpoints, 488 
Chi-square distribution, 232 
Chi-square test, 231,232 
Client/server policies, 81 
Closed networks, 219-24 

arbitrary, 222 
state transition rate diagram, 221 
three-stage, 219, 220 
See also Queuing networks 

CODASYL database language, 13 
Colored Petri nets, 300-301 

colored tokens, 300 
defined, 300 
See also Petri nets 

Combinations, 144 
Combined simulation modeling, 260-61 
Common bus architecture, 10, 61 
Communication lines, 468 
Communications manager, 97 
Compaction, 75-76 
Complex instruction set computer (CISC), 7 
Computational methods, 233-49 

central server model, 234-40 
mean value analysis, 234 
operational analysis, 233 
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See also Queuing networks 

Computer architectures, 9-10, 59-62 
analysis of, 345-60 
central I/O controller, 60 
common bus, 10, 61 
defined, 9 
dual bus, 10, 61-62 
illustrated, 9 
memory-mapped, 60-61 
Neumann, 59 
See also Architectures 

Computer systems 
architectures. See Architectures 
building blocks, 4, 41 
with communications subsystem, 56 
defined, 2-3 
design, 23-24 
illustrated, 3 
interconnection, 38 
multiprocessor, 55-56 
multiuser, 11 
research, 23 

Computer system support software 
architecture, 62-92 

database management system, 83-92 
fault detection/recovery, 82-83 
network control software, 79-82 
operating systems, 64-79 

Concurrency, 292 
control manager, 95 
Petri net modeling, 292 

Conditional probability, 146-48 
defined, 142 
densities, 154, 155 
space Venn diagram, 147 
See also Probability 

Confidence intervals, 230 
defining, 230 
percent, 231 
for --~ance, 231 

Configuration model, 447 
Continuous random variables, 150 
Continuous simulation modeling, 258-60 
Control events, 479 
Control unit, 42, 43 
Cost, modeling, 334 
Counting process, 180 
CPU, 4, 62 

ALU, 5 
architectures, 5-6, 42-49 
cycle of busy and idle, 350 
cycles, 352 
defined, 5, 41 
interrupts, 50 
memory access, 7, 40 
processing capacity, 346 
registers, 42-43, 63 
scheduling, 384-86 
service rate, 347 
speed, 110 
utilization, 375 

Cyclic redundancy check (CRC), 474 

Data 
presentation, 328-30 
qualitative, 38 
quantitative, 38 
simulation, 254 

Database management systems, 83-92 
database control language, 90-92 
database definition language, 84-86 
database manipulation language, 86-90 
elements, 83 
performance, 83 
See also Operating systems architecture 

Databases 
control language, 90-92 
defined, 84 
definition language, 84-86 
design language, 85-86 
manipulation language, 86-90 
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Database Services Address Space (DBAS), 
421-22 

BM, 423 
components, 422 
defined, 421 
DM, 423 
functionality, 423-24 
RDS, 423 
See also IBM DB2 

Database systems, 10-15 
catalog manager, 93 
communications manager, 97 
components, 92-105 
concurrency control manager, 95 
deadlock manager, 95-96 
evolution of, 10-15 
initial repositories, 10-11 
integrity manager, 93-94 
lock manager, 95 
log manager, 97-103 
network, 13-14 
object-oriented, 15 
operating system mismatch, 103-5 
query processing support manager, 97 
recovery manager, 96 
relational, 14-15 
security manager, 96 
support architecture, 92 
transaction manger, 94 

Database systems performance analysis, 
409-44 

burn-in test, 412-13 
burn-in test results, 412 
cost/performance comparison, 

443-44 
IBM DB2, 421-27 
indexing run, 435 
Informix Dynamic Server, 417-21 
introduction, 409 
Microsoft SQL Server, 427-31 
nonindexing run, 434-35 

Oracle architectural structure, 413-17 
PC performance assessment benchmark, 

410-11 
results, 436--44 
results assessment, 410 
running all queries together, 435-36 
summary, 444 
testbed architecture performance results, 

411 
testbed configuration, 410 
testbed procedures, 436 
testbed systems, 409-13 
testbed testing, 431-36 
testing preparation, 432-36 
workloads, 432 

Data control language, 90-92 
Data extraction, 254 

accounting software, 319-20 
hardware monitors, 321-22 
methods of, 319-22 
software monitors, 320-21 

Data manipulation language, 86-90 
defined, 86 
forms, 87-88 
functional evaluation, 88-89 
QBE, 88 
visual, 86-87 
See also Database management systems 

Deadlock detection, 71-72 
Deadlocked Petri nets, 294 
Deadlock manager, 95-96 
Design 

experimental, 326-28 
experimental, operating system, 378-80 
flexibility, 306-7 
fractional factorial, 327, 328 
full factorial, 327, 328 
simple, 327 

Direct addressing, 47-48 
Direct memory access (DMA) devices, 50 
Discrete random variables, 149-50 
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Discrete simulation models, 256-58 
building, 258 
defined, 256 
descriptions, 257-58 
entities/events definition, 257 
triggering, 257 
See also Simulation modeling 

Disk management, Windows XP, 
365 

Distributed architectures. 
See Network architectures 

Distributed processing systems 
checkpoints, 488 
functional components, 487 
information loss, 490 
overhead time, 489 
statistical output, 492-93 
system time, 488-89 
transfer time, 489 
transmit time, 489 
wait time, 489 

Distributed processors, 19 
Distributions 

chi-square, 232 
estimating, 227-33 
exponential service time, 235 
parameters, 230, 232 
sample, 231 
See also Probability distributions 

Dual bus architecture, 10, 61 

Effective processor power, 357 
Efficiency, 340-41 

defined, 340 
measurement, 340 
multiprocessor curve, 341 

ENIAC computer system, 2 
Erlang distribution, 176-77 

defined, 176 
See also Probability distributions 

Evaluation parameters, 311-14 

Events, 110-12 
characteristics, 476 
control, 479 
defined, 110 
hierarchy of relationships, 112 
independence of, 147 
interface unit, 477-78 
LAN simulation, 476-79 
nodal activity, 478-79 
partial orderings, 111 
processor, 477 
utilization, 479 
values, 112-13 
See also Performance measures 

Event timing, 256 
Executable models, 29 
Executive subsystems (NT), 367 
Expectation, 155-63 

for continuous random variable, 156 
defined, 155 
for discrete random variable, 155-56 
for function of random variable, 156 
nth moment, 158 
See also Random variables 

Expected delay, 240 
Expected waiting time, 210 
Experimental design, 326-28 

fractional factorial, 327, 328 
full factorial, 327, 328 
simple, 327 

Exponential distribution, 130, 173-76 
defined, 173 
illustrated, 175 
Markovian property, 173, 181 
random variable variance, 176 
service, 207 
See also Probability distributions 

Fault detection/recovery, 82-83 
File Allocation Table (FAT), 366, 371-72 

defined, 371 
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File Allocation Table (FAT) (cont'd.) 
FAT32, 371-72 
VFAT, 371 

File directories, 77 
File management, 76-77 

applications, 76 
defined, 76 
services, 77 
See also Operating systems architecture 

File systems 
LINUX, 364 
Windows ME, 371-72 
Windows XP, 366 

File transfer workload, 397-98 
constant file size, 397 
CPU use and memory utilization, 397, 398 
experiment results, 403 
observations, 397-98 
See also Operating systems analysis 

First-come first-served (FCFS), 133, 135 
First-in first-out (FIFO), 31,206 
Forking, 382 
Functional evaluation, 88-89 

Gamma function, 176 
GASP IV, 262-66 

basic model, 263 
defined, 262 
discrete event models, 262 
entity representation, 262-63 
example, 264-66 
main FORTRAN program, 263 
use/structure example, 262 
See also Simulation languages 

Gaussian distribution, 168-73 
defined, 168 
normal curve values, 172 
variance, 170 
See also Probability distributions 

Generalized Petri nets, 301-2 
defined, 301 

illustrated, 300 
See also Petri nets 

General-Purpose Simulation System (GPSS), 
266-69 

code for back teller problem, 268 
defined, 266 
example, 266-69 
model for bank teller problem, 268 
modeling component blocks, 267 
See also Simulation languages 

Geometric distribution, 130 
G/M/I queuing system, 219 
Graphics, 329 

Hardware 
development costs, 306 
management, 17-18 
timers, 17 

Hardware monitors, 114, 321-22 
availability, 321 
connection, 321-22 
limitations, 322 
simplicity, 321 
See also Data extraction 

Host processors, 467 
Host software architecture, 309 
HXDP model, 448-54 

analytical modeling of bus, 451-54 
average scan time effect, 452 
defined, 448-49 
graphic outputs, 452-54 
introduction, 448-50 
scan blocks, 449, 450 
scan time vs. message size, 453-54 
schedule mechanism, 449 
symbols/definitions, 450 
See also Analytical modeling 

Hybrid monitoring, 115 
Hybrid simulation modeling, 261 
Hypothesis test, 227-28 

defined, 227 
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performing, 228 
steps, 228 

IBM DB2, 421-27 
address spaces, 421-23 
concurrency control, 426-27 
cost/performance comparison, 443-44 
Database Global Memory segment, 

425-26 
Database Manager Shared Memory, 

424-25 
DBAS, 421-22 
DBAS functionality, 423-24 
DDF, 422 
defined, 421 
IRLM, 422 
join methods, 427 
locking, 426-27 
memory management, 424-26 
query optimization, 426 
results, 437 
SPAS, 423 
SSAS, 422 
See also Database systems performance 

analysis 
Immediate addressing, 47 
Independence, 117-18 

of events, 147 
probability and, 141 

Index addressing, 48 
Indirect addressing, 48 
Information sharing, 11-12 
Informix Dynamic Server, 417-21 

advantages, 418 
cost-based query optimizer, 420 
cost/performance comparison, 443-44 
data consistency, 419 
defined, 417 
dynamic scalable architecture (DSA), 

417-18 
isolation, 419 

join methods, 419-20 
locking, 418-19 
memory handling, 420-21 
optimizer directives, 420 
Oracle vs., 441-42 
recovery, 419 
results, 437 
SQL Server vs., 438, 440 
thread stack, 421 
See also Database systems performance 

analysis 
Input/output processor (IOP), 307 

design, 307 
functional architecture, 308 
transport control implementation, 311 

Instruction architectures, 6-7, 47 
Instruction execution 

cycle, 6, 43 
sequence, 44 

Instruction register, 44 
Instructions 

0-address, 45 
1-address, 45-46 
1-and- 1/2-address, 46 
2-address, 46 
2-and- 1/2-address, 46 
3-address, 46-47 
types of, 44-47 

Instrumentation, 305 
Integrity manager, 93-94 

defined, 93 
referential integrity check, 93-94 
See also Database systems 

Interface units 
events, 477-78 
LAN simulation modeling, 467-68 
network (NIUs), 54 
token bus distribution system, 459 

Interrupts 
management, 65-66 
types of, 50 
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Intervals, 115-16 
I/O architectures, 7, 49-50 
I/O Manager, Windows NT, 368 

Jackson's theorem, 227 
Jointly distributed random variables, 150 

defined, 150 
example, 150 
variance, 161 
See also Random variables 

Kendall notation, 31,205-6 
illustrated, 205 
symbol definitions, 206 
symbols, 206 

Kolmogorov-Smirnov test, 233 

LAN simulation modeling, 463-93 
analysis criteria, 489-91 
analysis module, 486-93 
bus-structured LCN, 465-66 
communication lines, 468 
communication link routine, 481 
components, 480 
computer networks, 463-70 
data collection routine, 481 
data items, 481 
evaluation metrics, 488 
events, 476-79 
host processors, 467 
interconnection structures, 469-70 
interface processing routine, 480-81 
interface units, 467-68 
model implementation, 482-86 
network components, 466-67 
next event simulation, 482 
protocols, 471-74 
queues, 467 
simulation controller, 480 
simulator model structure, 479-81 
simulator overview, 481 

system processor routine, 480 
transmission error detection, 474-75 
See also Local area networks (LANs) 

LAN simulator 
analysis module, 483, 486-93 
arbitrator module, 483 
arrival module, 483 
components, 482-83 
defined, 481 
design, 481 
entries, 485 
interface module, 483 
overview, 481 
structure illustration, 483 
topology module, 486 
use module, 483, 484 

Last-come first-served (LCFS), 133 
Last-in first-out (LIFO), 31,206 
LINUX, 362-65 

file system, 364 
kernel 2.4, 364-65 
links, 363 
MATLAB program workload for, 

374-76 
multitasking support, 363 
paging, 364 
Red Hat 7.2, 362-63 
task structure and process table, 363 
times and timers, 363-64 
virtual memory, 364 
See also System architectures 

LINUX AWESIM model, 380-83 
forking, 382 
illustrated, 384-85 
MATLAB, 382-83 
process creation, 381-82 
See also Operating systems simulation 

Little's Law, 136, 347 
Little's result, 210-11, 241 

in mean value analysis, 242 
operational analysis and, 246, 248 
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Load leveling, 326 
Local area networks (LANs), 21-22 

defined, 21 
evaluation metrics, 488 
simulation modeling, 463-93 
testbeds and, 34 
use o f, 21-22 
See also Networks 

Lock manager, 95 
Log manager, 97-103 

defined, 97 
transaction basics, 100-102 
transaction formalization, 102-3 
transaction management, 97-100 
See also Database systems 

Longitudinal redundancy check (LRC), 474 

Magnetic storage devices, 52-53 
Manchester II, 473 
Marginal distribution, 152, 155 
Markov chains 

balance equations for, 357 
communication system example, 

199-200 
definitions, 197-200 
discrete time, 193 
ergotic, 198, 199 
stationary, 197, 298 

Markov processes, 179, 192-200, 355 
defined, 192 
discrete-state, 193 
mapping, 192 
state transition diagram, 194 
transition probabilities, 194, 195-96 
transition probability matrix, 194 
See also Processes 

MATLAB program, 373 
defined, 374 
LINUX AWESIM model, 382-83 
purpose, 374 
workload for LINUX 7.2, 374-76 

MATLAB workload, 400-402 
CPU use and memory utilization, 400, 

401,402 
experiment results, 403 
matrix operations for, 400 
observations, 400-402 
See also Operating systems analysis 

Maximum likelihood estimation, 229, 230 
Mean queue length 

defined, 314 
illustrated, 315 

Mean response time 
defined, 314 
illustrated, 316 

Mean service time 
defined, 314 
illustrated, 317 

Mean value analysis, 241-43 
defined, 234, 241 
general algorithm, 241 
Little's result in, 242 
network for, 243 
theorem, 241 
See also Computational methods 

Measurement(s), 107-26, 112-15 
efficiency, 340 
hardware monitoring, 114 
hybrid monitoring, 115 
intervals, 115-16 
principles, 127-38 
probability density, 130 
probability distribution, 128-30 
real system, 335 
response time, 338 
software monitoring, 114-15 
special facilities, 306 
summary, 138 
types of, 113 
See also Performance measures 

Memory 
access mechanism, 49 
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Memory (cont'd.) 
after garbage collection, 75 
allocation, 71 
allocation methods, 353 
architectures, 7, 48-49 
compaction, 75-76 
deallocation, 74 
fragmented, 74 
hierarchy, 8, 51, 63, 64 
main, 62 
management, 72-76 
map, 73 
marking free blocks in, 75 
modules, 353 
with paging and segmentation, 76 
private local, 55 
Simms, 55 
speed up for, 358 
storage, 48, 50 
utilization, 375 
virtual, 364 

Memory addressing schemes, 7, 47-48 
base, 48 
direct, 47-48 
immediate, 47 
index, 48 
indirect, 48 
two-operand addressing, 48 
types of, 47 

Memory management, 72-76 
IBM DB2, 424-26 
Windows ME, 369-70 
Windows XP, 366-67 

Memory-mapped architectures, 60-61 
Message transmissions, 314, 469 
Method of moments, 229-30 
M/G/I queuing system, 218 
Microsoft SQL Server, 427-31 

cost/performance comparison, 443-44 
defined, 427 
dynamic memory allocation, 429-30 

Informix vs., 438, 440 
instances, 428 
locking structure, 430-31 
logical tablespace structures, 428 
memory allocation/access, 429 
memory configuration, 429 
Oracle vs., 439, 440 
results, 437 
special features, 431 
SQL, 431 
system databases, 428 
See also Database systems performance 

analysis 
Mission-oriented systems, 121 
M/M/C queuing system, 215-18 

defined, 215 
illustrated, 215 
loss system, 218 
state transition diagram, 216 
steady-state probabilities, 218 
See also Queuing systems 

M/M/I/K queuing system, 213-15 
defined, 213 
state diagram, 213 
wait time distribution, 215 
See also Queuing systems 

M/M/I queuing system, 206-12 
arrival rate, 211 
birth-death process, 207 
defined, 206 
in isolation, 227 

Little's result, 210-11 
model, 206 
state transition diagram, 209 
steady-state equations, 206-8 
See also Queuing systems 

Modeling tools, 28, 30-36 
analytical, 30-32 
availability, 332-33 
comparison criteria, 333-34 
conducting experiments and, 336-37 
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cost criteria, 334 
evaluation, 342-43 
operational analysis as, 35-36 
performance metrics, 337-42 
Petri nets, 331 
selecting, 331-34 
selection criteria, 331-34 
simulation, 28-29, 32-33 
testbeds as, 29, 33-34 
time criteria, 332 
types of, 331 
validation of results, 334-36 

Models, 25-26 
analytical, 30 
configuration, 447 
constructing, 26-30 
defined, 24 
development process, 28 
executable, 29 
"faithful," 25 
inputs, 26 
methodology, 26, 27, 28 
network, 203-4 
Petri net, 282 
process illustration, 25 
queuing, 202, 203, 447 
realizing, 24-25 
requirements, 24 
scheduling, 447 
sensitivity, 28 
simulation, 33, 256-61 
success, 29-30 
system abstraction, 26 
validating, 29 
verifying, 29 
workloads, 322-26, 447 
See also Performance evaluation 

Modularity, 486 
Moments, 158 

central, 132, 158-59 
nth, 158 

Multibank shared memory model, 351 
Multiple server computer system, 350-58 

multibank shared memory model, 351 
multiprocessor model, 350 
properties, 354-58 
shared memory model, 351 

Multiprocessor systems 
with central processor, 350 
with N=2/M=2, 355 
with N=2/M=4, 353 
number of states, 354 
Petri net model for, 359 
See also Processors 

Mutual exclusion, 294 

Naming, 80 
Network architectures, 8-9, 54-57 

bridges, 56-57 
interface elements, 54-56 

Network component analysis, 445-93 
analytical modeling examples, 448-63 
introduction, 445--48 
I_AN simulation modeling, 463-93 
summary, 493 

Network interface units (NIUs), 54 
Network management software, 79-82 

access control, 80 
addressing, 80 
client/server policies, 81 
defined, 79 
naming, 80 
protection, 80-81 
remote procedure call policies, 81-82 
routing, 80 

Network performance tests, 315-19 
Networks, 19-22 

ARPANET, 20 
bus-structured LCN, 465-66 
bus topology, 57-58 
closed, 219-24 
communication lines, 468 
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Networks (cont'd.) 
components, 466 
composition, 464 
database model, 13-14 
defined, 19-20, 463 
evolution of, 19-23 
formation, 54 
generalized distributed, 466 
host processors, 467 
interconnection structures, 464, 469-70 
interface units, 467-68 
IANs, 121-22 
message transmissions, 469 
queues, 467 
ring topology, 58-59 
size, 463-64 
star topology, 59 
topologies, 57-59 
WANs, 22 
wireless, 22 

Network servers, 312 
Network service time 

defined, 314 
illustrated, 318 

Networks of queues, 219-27 
closed networks, 219-24 
computational methods, 233-39 
open networks, 224-27 
three-stage, 219, 220 

Network throughput 
defined, 314 
illustrated, 318 

Neumann architecture, 59 
Next event simulation, 482 
Nodal activity events, 478-79 
Normal distribution, 130 
NT file system (NTFS), 366 
Null hypothesis, 227, 231,232 

Object Manager, Windows NT, 367 
Object-oriented database systems, 15 

Object Query Language (OQL), 89 
Open networks, 224-27 

model, 225 
steady-state probabilities, 226 
throughput terms, 226 
See also Queuing networks 

Operating systems, 15-19 
accomplishments, 118 
architectures, 362-72 
component analysis, 361-408 
database system mismatch, 103-5 
defined, 15 
early, 16 
evolution of, 15-19 
experimental analysis, 397-407 
experimental design and simulation, 

376-97 
hardware management, 17-18 
interprocess communication mechanisms, 

105 
locking mechanism, 104 
multiuser, 11 
new concepts, 19 
scheduling, 105 
services, 17, 64-65 
as software, 15-16 
workloads, 372-76 

Operating systems analysis, 397-407 
conclusion, 402-4 
file transfer workload, 397-98 
intermediate data (workload 1), 407 
intermediate data (workload 2), 405 
intermediate data (workload 3), 406 
MATLAB workload, 400-402 
process creation workload, 399-400 
tabular results, 404-7 

Operating systems architecture, 64-79 
file management, 76-77 
interrupt management and semaphores, 

65-67 
memory management, 72-76 
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peripheral device management, 78-79 
process management, 67-72 
protection, 77-78 
resource management, 72 

Operating systems simulation, 380-97 
LINUX 7.2, 380-83 
Windows ME, 390-91 
Windows NT, 391-96 
Windows XP, 383-89 

Operating systems testing, 376-80 
burn-in test, 378 
burn-in test results, 379 
configuration, 376 
experimental design, 378-80 
experimental design summary, 379-80 
hardware specifications, 376 
Passmark, 376-78 
Passmark test results, 377-78 
PC benchmark, 376-78 
simulation, 380-97 

Operational analysis, 35-36, 244-49 
advantages, 245 
basis, 244 
defined, 35, 233 
hardware/software monitors, 36 
Little's result and, 246, 248 
logic-sensing subsystem, 35 
measurements/computations, 36 
operational quantities, 245 
operational theorem, 245 
operational variables, 244 
performance quantities, 246 
See also Computational methods; Modeling 

tools 
Optical disk storage devices, 52-53 
Oracle database system, 413-17 

component execution, 413 
concurrency control/locking, 416-17 
cost/performance comparison, 443-44 
data files, 413 
DML locks, 417 

Informix vs., 441-42 
instance implementation, 414 
multithreaded server option, 415 
process and thread structure, 414 
query optimization, 416 
redo logs, 413, 414 
results, 437 
server processes, 415 
SQL Server vs., 439, 440 
system global area (SGA), 413 
tasks, 413 
transactions, 415 
See also Database systems performance 

analysis 

Page table entries (PTEs), 366 
Paging 

LINUX, 364 
Windows ME, 370 

Performance 
evaluation, 342-43 
evaluation parameters, 311-14 
network, tests, 315-19 
scheduling algorithm relationship to, 

135-37 
variables, 327 

Performance evaluation, 22-38 
criteria, 36-38 
methods, 24-36 
need for, 22-23 
role, in computer engineering, 23-24 

Performance measures, 107-26 
analysis questions, 122-23 
case study, 124-25 
events, 110-12 
independence, 117-18 
intervals, 115-16 
missionability, 121 
model development, 119-23 
predictability, 121 
problems, 119-23 
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Performance measures (cont'd.) 
productivity, 121 
randomness, 118 
responsiveness, 116-17, 121 
sampling, 112-15 
summary, 125-26 
system-oriented, 107, 108 
time, 109-10 
use level, 121 
user-oriented, 107 
workloads, 119, 124 

Performance metrics, 124, 337-42 
availability, 341 
cost vs. performance ratio, 342 
criteria, 36-38 
efficiency, 340-41 
reliability, 341 
response time, 337-38, 338-39 
throughput, 338, 339-40 
types of, 337-38 
usefulness vs., 342 
utilization, 338, 341--42 

Peripheral device management, 78-79 
defined, 78 
device, 78, 79 
file management integration, 79 
I/O, 78, 79 

Peripheral devices, 8, 50-54 
Permutations, 143, 144 
Petri nets (PNs), 279-303 

allocated resource, 287 
analysis, 358-60 
arcs, 280 
central server, 349 
classical, 284-94 
colored, 300-301 
components, 280 
component to test conditions, 290, 291, 

292 
deadlocked, 294 
defined, 279 

describing, 281 
enabled transitions, 285 
example illustration, 281 
firing, 286 
firing cycle, 285, 291 
flexibility and, 333 
generalized, 300, 301-2 
graph, 281 
indicating reachability/reversibility, 293 
with inhibitor, 288, 291 
introduction, 279 
inverse, 283 
k-place bounded, 294 
marked, 284 
model for multiprocessor system, 359 
modeling concurrency, 292 
modeling conflict, 291 
modeling confusion, 293 
models, 282 
moving from state to state, 284 
as multigraphs, 283 
multipath arcs, 283 
multiple disk example, 349 
mutual exclusion, 294 
new state, 286 
notation, 279-84 
perpetual motion example, 280 
places, 280 
places, marking of, 280 
priority-based, 298-99 
reachability graphs, 289-90 
reachability set, 288-89 
reachable state, 288 
resource sharing, 287 
state, 283 
summary, 302-3 
timed, 294-98 
tokens, 280 
tokens, placement of, 280 
transitions, 280, 282 

Pipelining, 317 
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Poisson distribution, 166-68 
arrival, 254-55 
defined, 166 
mean, 166 
for time between arrivals, 312 
variance, 167-68 
See also Probability distributions 

Poisson process, 184-86 
defined, 184 
fundamental properties, 186 
memoryless property support, 186 
modeling, 190 
property processing, 184 
See also Stochastic processes 

Priority-based Petri nets, 298-99 
defined, 298 
illustrated, 298 
timed and, 299 
See also Petri nets 

Probability, 139-77 
axioms of, 146 
combinations, 144 
computing, 142-43 
conditional, 142, 146-48 
fundamental tenet of, 140 
independence and, 141 
measures, 143 
permutations, 143, 144 
state transition diagram, 356 
state transition matrix, 193 
theory, 139, 141,145 
transition, 194, 195-96 
value of, 140 
weighting factors, 145 

Probability densities, 130, 152-55 
conditional, 154, 155 
defined, 152 
for discrete functions, 153 
distributed, 154 
Erlang, 176 
exponential, 174 

joint, 154 
marginal, 155 
Poisson, 166 

Probability distributions, 128-30, 150-52 
binominal, 164-66 
continuous, 151 
defined, 128 
discrete, 151 
Erlang, 176-77 
example, 151, 163-77 
exponential, 130, 173-76 
Gaussian, 168-73 
illustrated, 128 
joint, 152 
marginal, 152 
Poisson, 166-68 
for random selection, 143 
representation, 150 
uniform, 130, 163-64 
variance, 129, 131, 159 
See also Distributions 

Process creation workload, 399-400 
CPU use and memory utilization, 399, 400 
experiment results, 402 
observations, 399-400 
response time, 399 
See also Operating systems analysis 

Processes 
Bernoulli, 182-83 
birth-death, 187-92 
counting, 180 
defined, 67 
flow, 70 
Markov, 179, 192-200 
movement, 69 
Poisson, 184-86 
ready state, 68 
running state, 69 
scheduling, 70-71 
states, 68-69 
stochastic, 179-200 
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Processes (cont'd.) 
termination state, 69 
waiting state, 69 

Process management, 67-72 
deadlock detection, 71-72 
memory allocation service, 71 
scheduling, 70-71 
tasks, 67-68 
See also Operating systems architecture 

Process Manager, Windows NT, 368-69 
Processors 

distributed, 19 
events, 477 
host, 467 
See also Multiprocessor systems 

Product form, 236 
Protection, 77-78 

access control, 78 
authentication, 77 
authorization, 77 
defined, 77, 80 
Windows ME, 370 

Protocols, 471-74 
defined, 471 
function performance, 471 
functions, 471 
implementation, 472 
ISO standard, 472 
See also Local area networks (LANs); 

Networks 
Prototype testbeds, 305,306 

Query by example (QBE), 88 
Query processing support manager, 97 
Queue fall-through time, 317 
Queues, 467, 487 
Queuing 

analysis, 30-31, 201 
theory, 201-49 
time, 136 
waiting time, 210, 211 

Queuing models, 202-4 
advantages, 447 
cascading, 203 
cost/complexity, 447 
design parameters, 447--48 
deterministic, 447 
for distributed database system, 274 
jobs and, 203 
network, 203-4 
performance attributes, 448 
premise, 202-3 
single-server, 203 
stochastic, 447 
sub-models, 447 

Queuing networks, 219-27 
closed, 219-24 
computational methods, 

233-49 
open, 224-27 
three-stage, 219, 220 

Queuing simulation modeling, 260 
Queuing systems, 201-19 

arrival rate, 204 
G/M/I, 219 
M/G/I, 218 
M/M/C, 215-18 
M/M/I, 206-12 
MIMIIIK, 213-15 
service rate parameter, 204 

Randomness, 118 
Random variables, 149-50 

binominal, 165 
continuous, 150 
covariance of, 160 
defined, 149 
discrete, 149-50 
expectation, 155-63 
exponential, 176 
jointly distributed, 150, 161 
marginal distributions of, 152 
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percentile of, 212 
standard deviation, 159 
uncorrelated, 160 
variance, 159 

Reachability graphs, 289-90 
Reachability sets, 288-89 

determining, 289 
with initial marking, 289 
null marking and, 288 
See also Petri nets 

Recovery manager, 96 
Reduced instruction set computer (RISC), 

6,47 
Registers, 42-43, 63 

defined, 42 
illustrated, 43 
instruction, 44 
See also CPU 

Relational database systems, 14-15 
ACID properties, 14 
defined, 14 
See also Database systems 

Relative frequency definition, 145 
Reliability, 341 
Remote procedure call policies, 

81-82 
Resources 

in equilibrium, 135 
management, 72 
throughput, 136 
utilization, 341 

Response time, 116-17, 337-39 
defined, 116, 338 
load and, 338 
measurements, 338 
system load vs., 117 
See also Performance measures 

Reversibility, 293 
Ring topology, 58-59 
Round-robin scheduling, 133-34, 135 
Routing, 80 

Sampling theorem, 229 
Saturated devices, 248 
Scheduling, 70-71,105 

CPU, 384-86 
distributions and, 134-35 
goal, 105 
model, 447 
multilevel timeslice, 71 
process, 133 
See also Process management 

Scheduling algorithms, 133-37 
FCFS, 133, 135 
LCFS, 133 
relationship to computer systems 

performance, 135-37 
round robin, 133-34, 135 
SRTF, 134 
value-driven, 134 

Secondary storage 
architectures and, 8, 50-54 
archival devices, 53-54 
magnetic devices, 52-53 
optical devices, 52-53 
peripheral devices and, 50-54 
tape devices, 51-52 

Security manager, 96 
Semaphores, 66-67 
Shared memory model, 351 
Shortest remaining time first (SRTF), 

134 
Simscript, 269-70 

bank teller pension code, 270 
defined, 269 
features, 269 
simulation pieces, 269 
See also Simulation languages 

Simulation languages, 261-73 
development, 261-62 
early, 262 
GASP IV, 262-66 
GPSS, 266-69 

I Index 



522 Index 

Simulation languages (cont'd.) 
Simscript, 269-70 
SLAM II, 27O-73 

Simulation modeling, 256-61 
combined, 260-61 
continuous, 258-60 
discrete, 256-58 
hybrid, 261 
queuing, 260 

Simulation(s), 28-29, 32-33 
analysis, 251-78 
applications, 273-77 
continuous, 258 
data input/extraction and, 254 
discrete, 32 
drawbacks, 32 
flexibility and, 333-34 
LAN, 463-93 
models, 33, 256-61 
next event, 482 
operating system test, 380-97 
process, 253-55 
programs, 253, 276-77 
queue-based, 32 
reasons for using, 251 
summary, 278 
systems and, 252-53 
systems and modeling, 256-61 
time control, 255-56 
trace-driven data and, 255 
uses, 252 
See also Modeling tools 

SIAM II, 270-73 
advantages, 270-71 
bank teller problem code, 273 
bank teller problem network model, 272 
defined, 270 
FORTRAN coding, 271 
network model code, 277 
network model for assembly line problem, 

274 

network model for distributed database 
system, 275-76 

symbols/statements, 271-72 
See also Simulation languages 

Software monitors, 114-15, 320-21 
code fragments, 320 
drawbacks, 321 
event design approach, 320 
operating systems code access and, 321 
system resource use, 321 
See also Data extraction 

Star topology, 59 
State transition diagrams 

birth-death process, 189 
for closed system, 221 
Markov process, 194 
M/M/C queuing system, 216 
M/M/I queuing system, 209 
probability, 356 

State transition timing graph, 296 
Stochastic processes, 179-200, 205 

Bernoulli, 182-83 
continuous, 180 
counting process, 180 
defined, 179 
discrete, 180 
independent, 182 
Markov, 179, 192-200 
order of functions and, 180-81 
Poisson, 184-86 
representation, 179-80 
stationary, illustrated, 183 
stationary increment, 182 
See also Processes 

Structured Query Language (SQL), 84, 85, 
89, 431 

Synchronous timing, 255 
System architectures, 362-72 

LINUX, 362-65 
Windows ME, 369-72 
Windows NT, 367-69 
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Windows XP, 365-67 
See also Operating systems 

System-oriented performance measures, 107, 
108 

Tape storage devices, 51-52 
defined, 51 
performance, 52 
schematic diagram, 51 
See also Secondary storage 

Testbeds, 29, 33-34 
components, 34 
database performance analysis testing, 

431-36 
defined, 33 
flexibility and, 333 
general configuration, 308 
ISO correspondence, 310 
LANs and, 34 
network models, 307 
node architecture, 309 
prototype, 305, 306 
sequence of messages and, 311 
special-purpose, 306 
use decision, 34 
workloads, 322-26 
See also Modeling tools 

Throughput 
curves, 340 
defined, 136, 339 
degraded, under system load, 318 
device, 239 
input, 247 
Little's result with, 222 
network, 314, 318 
as performance metric, 339-40 
relative, 223 
server, 247 
system, maximum, 249 

Time, 109-10 
as quantity, 109 

in real-world system, 109 
See also Performance measures 

Timed Petri nets, 294-98 
with conflict, 296 
defined, 295 
illustrated, 295 
with immediate transitions, 297 
priority and, 299 
state transition timing graph, 296 
transitions, 295 
See also Petri nets 

Token bus distribution system, 455-63 
analytical modeling of bus, 456-63 
average scan time, 459, 462, 463 
case I, 457-60 
case II, 460-61 
case III, 461-63 
defined, 455 
introduction, 455 
logical sequence numbering, 461 
mapping logical to physical locations, 462 
message service time, 458 
physical/logical numbering, 458 
preliminary formulations, 455-56 
symbols/definitions, 457 
with three interface units, 459 
time delay, 458 
total scan time, 462 
See also Analytical modeling 

Total probability theorem, 148 
TPC-H benchmark, 433-34 
Tradeoff analysis, 202, 332 
Transaction manager, 94, 97-98 
Transaction processing, response partitioning, 

339 
Transaction Processing Consortium (TPC), 

323 
benchmarks, 323, 326 
workloads, 323 

Transactions, 97-103 
ACID, 98-100 
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Transactions (cont'd.) 
basics, 100-102 
defined, 100 
elements, 137-38 
execution of, 98 
formalizing, 102-3 
generating, 101 
modeled, 102 
processing, 103 

Transition probabilities, 195-96 
for communications system, 196 
matrix, 194, 197 
stationary, 195 

Transition rate diagram, 191 
Transitions, 282 

defined, 280 
enabled, 301 
firing of, 301 
immediate, 297 
timed Petri net, 295 
See also Petri nets (PNs) 

Transmission error detection, 474-75 
Triggers, 257 

comparative, 259 
self, 259 

Two-operand addressing, 48 

Unibus architecture, 61 
Uniform distribution, 130, 163-64 

defined, 163 
illustrated, 164 
mean, 163 
standard deviation, 164 
See also Probability distributions 

User-oriented performance measures, 107 
Utilization, 238, 248 

CPU, calculation, 375 
curve, 316 
defined, 314, 341 
events, 479 
illustrated, 316 

memory, calculation, 375 
ratios, 249 
relative, 248 
stretch factor compared with, 339 

Validation, 29 
information, obtaining, 335-36 
of results, 334-36 

Value-driven algorithm, 134 
Variance, 129, 131 

central moment, 132, 158 
confidence intervals, 231 
exponential distribution, 176 
Gaussian distribution, 170 
jointly distributed random variables, 161 
Poisson distribution, 167-68 
properties, 160 
sample, 228-29 

Verification, 29 
Very large scale integration (VLSI) devices, 

112 
Virtual Memory Manager (VMM) 

Windows 98, 369-70 
Windows NT, 367-68 
Windows XP, 366 

Wait time, 241 
distribution, 241 
expected, 210 
mean, 241 
for message packet, 313 

Weighting factors, 145 
Windows ME, 369-72 

clusters, 371 
FAT, 371 
FAT32, 371-72 
file system, 371-72 
mapped file I/O, 370 
memory management, 369-70 
paging, 370 
protection, 370 
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VFAT, 371 
workload programs, 374-76 
See also System architectures 

Windows ME AWESIM model, 390-91 
high-level, 390-91 
high-level illustration, 390 
illustrated, 392 
See also Operating systems simulation 

Windows NT, 367-69 
Cache Manager, 368 
dispatcher, 369 
Executive subsystem, 367 
I/O Manager, 368 
kernel, 369 
Object Manager, 367 
Oracle process/thread structure, 414 
Process Manager, 368-69 
Virtual Memory Manager, 367-68 
workload programs, 374 
See also System architectures 

Windows NT AWESIM model, 391-96 
attributes, 391-93 
development, 391 
illustrated, 393-94 
network model, 394-96 
process creation, 394-95 
See also Operating systems simulation 

Windows XP, 365-67 
basic storage, 365 
CPU scheduling, 384-86 
disk management, 365 
dynamic storage, 365 
file systems, 366 
memory management, 366-67 
workload programs, 374-76 
See also System architectures 

Windows XP AWESIM model, 383-89 
assumptions, 386 
CPU scheduling, 384-86 
high-level model, 386 
high-level model illustration, 387 
illustrated, 389 
modeling, 383 
results, 388 
working details, 386-88 
See also Operating systems simulation 

Workloads, 119, 124, 137-38, 372-76 
computation, 372 
defined, 322 
description, 372-76 
development, 137 
file transfer, 397-98 
importance, 372 
MATLAB, 400-402 
model, 322-26, 447 
process creation, 399-400 
processes, 372 
programs, 373-76 
testbed, 322-26 
TPC, 323 
transactional units, 137 
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