

Computer Systems
Performance Evaluation
and Predict ion

This Page Intentionally Left Blank

Computer Systems
Performance Evaluation
and Prediction

Paul J. Fortier
Howard E. Michel

Digital PTess
An imprint of Elsevier Science

Ams te rdam • Boston • Heide lberg • London • N e w Y o r k . O x f o r d • Paris • San Diego
San Francisco • Singapore • Sydney • Tokyo

Digital Press is an imprint of Hsevier Science.

Copyright © 2003, Elsevier Science (USA). All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the publisher.

Recognizing the importance of preserving what has been written, Elsevier Science prints its
books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

Fortier, Paul J.
Computer systems performance evaluation / Paul J. Fortier, Howard E. Michel.

p. cm.

ISBN 1-55558-260-5 (pbk. :alk. paper)
1. Computer systemsmEvaluation. 2. Computer systems~Reliability. I. Michel,

Howard. II. Title.

QA76.9.E94 F67 2003
004.2'4mdc21 2002034389

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

The publisher offers special discounts on bulk orders of this book.
For information, please contact:

Manager of Special Sales
Elsevier Science
200 Wheeler Road
Burlington, MA 01803
Tel: 781-313-4700
Fax: 781-313-4882

For information on all Digital Press publications available, contact our World Wide Web home page
at: http://www.digitalpress.com or http://www.bh.com/digitalpress

1 0 9 8 7 6 5 4 3 2 1

Printed in the United States of America

This book is dedicated to my wife, Kathleen, and my children, Daniel,
Brian, and Nicole, for the encouragement, patience, and support they

provided during the development and writing of this book.

--P. J. E

This book is dedicated to my wife, Linnea, and my daughters, Kristin
and Megan, without whose love and understanding this work would not
have been possible, and to my parents, Howard and Christine, who gave

me a thirst for knowledge and skills to pursue it.

~ H . E. M.

This Page Intentionally Left Blank

Contents

Preface xi

I I n t r o d u c t i o n

I.I
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Evolution of computer systems architectures
Evolution of database systems
Evolution of operating systems
Evolution of computer networks
Need for performance evaluation
Role of performance evaluation in computer engineering
Overview of performance evaluation methods
Performance metrics and evaluation criteria

2
10
15
19
22
23
24
36

2 C o m p u t e r D a t a Processing H a r d w a r e A r c h i t e c t u r e

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

Introduction
Computer hardware architecture
CPU architectures
I/O architectures
Secondary storage and peripheral devices and architectures
Distributed and network architectures
Network topologies
Computer architectures
Computer systems support software architecture
Components of a database system's architecture
Summary

F u n d a m e n t a l C o n c e p t s and P e r f o r m a n c e Measures

3. I Introduction
3.2 Time

39

39
41
42
49
50
54
57
59
62
92

105

107

107
109

viii Contents

4

6

7

3.3 Events
3.4 Measurements (sampling)
3.5 Intervals
3.6 Response
3.7 Independence
3.8 Randomness
3.9 Workloads
3.10 Problems encountered in model development and use
3.11 A case study
3.12 Summary

General Measurement Principles

4. I Scheduling algorithms
4.2 Workloads
4.3 Summary

Probab i l i ty

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Random variables
Jointly distributed random variables
Probability distributions
Densities
Expectation
Some example probability distributions
Summary

Stochastic Processes

6. I Introduction
6.2 Basic definitions
6.3 Poisson process
6.4 Birth-death process
6.5 Markov process
6.6 Summary

Queuing Theory

7.1
7.2
7.3
7.4
7.5

Queuing systems
Networks of queues
Estimating parameters and distributions
Computational methods for queuing network solutions
Summary

II0
112
115
116
117
118
119
119
124
125

127

133
137
138

139

149
150
150
152
155
163
177

179

179
179
184
187
192
200

201

201
219
227
233
249

Contents ix

Simulation Analysis
8.1
8.2
8.3
8.4
8.5
8.6

Simulation process
Time control
Systems and modeling
Simulation languages
Applications of simulation
Summary

9 Petri Nets

9. I Introduction
9.2 Basic notation
9.3 Classical Petri nets
9.4 Timed Petri nets
9.5 Priority-based Petri nets
9.6 Colored Petri nets
9.7 Generalized Petri nets
9.8 Summary

10 Hardware Testbeds, Inst rumentat ion , Measurement ,
Data Extract ion, and Analysis

10.1 Derivation of performance evaluation parameters
10.2 Network performance tests
10.3 General methods of data extraction
10.4 Testbed and model workloads
10.5 Experimental design
10.6 Data presentation
10.7 Summary

I I System Performance Evaluation Tool Selection and Use
I1.1 Tool selection
11.2 Validation of results
11.3 Conducting experiments
11.4 Performance metrics
11.5 Evaluation
11.6 Summary

12 Analysis of Compute r Archi tectures

12. I Introduction

251
253
255
256
261
273
278

279

279
279
284
294
298
300
301
302

305

311
315
319
322
326
328
330

331

331
334
336
337
342
343

345

345

I Contents

x Contents

13

14

15

12.2 Case I: Central server computer system
12.3 Case I1: Multiple server computer system
12.4 Case II1: Petri net example
12.5 Summary

Analysis of Operating System Components
13. I Introduction
13.2 System architectures
13.3 Workloads
13.4 Experimental design and simulation
13.5 Experimental analysis and conclusion
13.6 Summary

Database Systems Performance Analysis
14. I Introduction
14.2 The testbed systems
14.3 The database systems
14.4 Testbed performance analysis testing
14.5 The results
14.6 Summary

Analysis of Computer Networks Components
15. I Introduction
15.2 Analytical modeling examples
15.3 Simulation modeling of local area networks
15.4 Summary

References

345
350
358
360

361
361
362
372
376
397
408

409
409
409
413
431
436
444

445
445
448
463
493

495

Index 505

Preface

This book provides an up-to-date treatment of the concepts and techniques
applied to the performance evaluation of computer systems. Computer sys-
tems in this context include computer systems hardware and software com-
ponents, computer architecture, computer networks, operating systems,
database systems, and middleware. The motivation in writing this book
comes from the inability to find one book that adequately covers analytical,
simulation, and empirical testbed techniques applied to the evaluation of
systems software and the computer systems that support them. The book
can be used as a single- or multiple-semester book about computer systems
performance evaluation or as a reference text for researchers and practition-
ers in the computer systems engineering and performance evaluation fields.

Over the last 10 to 25 years a vast body of knowledge has accumulated
dealing with the performance evaluation of computer systems. Specialized
measurement tools, both hardware and software, have become available to
aid in the testing and monitoring of a computer system's performance, as
have numerous simulation languages and tools aimed at specific compo-
nents of a computer system or for generalized modeling studies. Analytical
techniques and tools can be readily acquired and easily applied to the high-
level analysis of computer systems and their applications. However, many of
these efforts have resulted in disparate solutions whose results are difficult,
if not impossible, for the computer engineer or analyst to easily apply to
new problems. In addition, most realistic problems require the application
of all of these techniques at some level to ascertain the performance of a sys-
tem and all of its component elements to support rapid product design,
development, and fielding.

To consider performance in the design and development stages of a sys-
tem's inception, modeling must be used, since the intended product system
is not yet available for instrumentation and empirical testing. Modeling is
relatively well understood by practitioners in the field with the appropriate

xii Preface

background; however, these techniques are not as easily transferred to the
other members of a design team who could also benefit from such knowl-
edge. The purpose of this book is to make analytical-, simulation-, and
instrumentation-based modeling and performance evaluation of computer
systems components possible and understandable to a wider audience of
computer systems designers, developers, administrators, managers, and
users. The book assumes the reader has a familiarity with concepts in com-
puter systems architecture, computer systems software, computer networks,
and elementary mathematics including calculus and linear algebra.

The thrust of this book is to investigate the tools for performance evalu-
ation of computer systems and their components and provide an overview
of some tools used in practice.

Chapter 1 discusses computer systems performance evaluation and pre-
diction and why these techniques are necessary in today's world of ever
decreasing computer systems cost.

In Chapter 2 the components making up computer systems are exam-
ined in further detail regarding their architectures, basic hardware elements
construction, networks and topologies, operating systems control protocols
and architecture, database management systems components and technolo-
gies, distributed systems, client/server systems, and other computer systems
configurations.

Chapter 3 readdresses the modeling issue from the slant of modeling
computer systems, how the various tools have been useful in past systems,
and how they can be applied to future endeavors. The basic concepts of
time, events, measurements, intervals, response, and independence as they
pertain to computer systems are discussed.

Chapter 4 expands on the basic definitions outlined in Chapter 3. Con-
cepts in general measurement processes, service time distributions, schedul-
ing, and response time related to computer systems applications are
presented.

Chapter 5 introduces the concepts of probability of events. The concept
of sample space and its application to computing basic probability of event
occurrence within a sample space are investigated. This is followed by dis-
cussions of randomness of events and the relation of this phenomenon to
probability. Conditional and joint probability concepts are then presented,
as is the concept of random variables and probability distributions.

Chapter 6 builds on the fundamentals of probability into stochastic
processes. The basic definition of a stochastic process is provided and then
its relationship to the Poisson process is presented. With these definitions,

Preface xiii

the concept of a pure birth and death process is developed, as are analysis
techniques. The chapter then delves into the Markov process and Markov
chains as they relate to the analysis of computer systems and their elements.

In Chapter 7, we introduce the concept of a queue and the analysis tech-
niques required to evaluate single queues and networks of queues. These
techniques are then developed into modeling techniques applied to com-
puter systems evaluation.

Chapter 8 introduces the concept of simulation modeling. The methods
for constructing simulation models from a description of an intended mod-
eled system are presented. The concepts of simulation events and timekeep-
ing are addressed, followed by the application of techniques to computer
systems analysis.

Chapter 9 introduces another analysis technique: Petri nets. The basic
elements comprising Petri nets are developed and then applied to modeling
aspects of computer systems. Fundamental Petri nets are described, as are
timed and general Petri nets.

Chapter 10 shows prospective designers or architects how to model
future systems configurations using present systems information. The chap-
ter shows how to instrument a system in order to extract and measure sys-
tems performance numbers. These measurements and data are then used in
development of analysis processes for defining present performance and
predicting future performance of computer systems and their components.

Chapter 11 aids the reader in determining what specific analysis tool is
best used to evaluate a computer system or component of interest. The
modeler is presented material to aid in determining when to use analytical
techniques, which technique to use, and when to use it. If analytical tech-
niques are not the best to use, the reader is advised how to select a simula-
tion modeling tool and when to apply it in analyzing a computer system.
Finally, the reader is given information regarding when and how to select
the appropriate operational analysis tool for measuring and modeling exist-
ing computer systems and components.

Chapters 12 through 15 provide analysis examples for specific computer
systems components. Computer architecture and component evaluation are
provided, as are operating systems, database systems, and network systems
modeling and analysis.

I Preface

This Page Intentionally Left Blank

I
Introduction

What is computer systems performance evaluation and prediction and why
are these techniques necessary in today's world of ever decreasing computer
systems cost? To answer these questions requires the computer engineer to
understand how all elements of a computer system come into play in realiz-
ing a user's application and its implementation, fielding, and maintenance.
All aspects of a computer system's lifetime are important when trying to
understand issues of performance. It is not sufficient to simply buy the
"best" general-purpose computing machine one can find today and then
implement the intended application on it. One must consider how the sys-
tem will fit into an existing computing facility and what the requirements
on the computer system are today and what these requirements will be dur-
ing the computer system's lifetime.

The most important driving factors when designing, building, and field-
ing a computer system are that it performs the intended function correctly,
performs the intended function efficiently, and does so in a cost-effective
manner. Therefore, initial design for correctness may often outweigh per-
formance and cost as the driving force. Having said this, it is often the case
that computer systems designers think of performance, cost, and correctness
interchangeably. They are, however, different. A correct design may not
imply one that performs blazingly fast or is very cost effective. This may be
due to other considerations--for example, we may need to trade off
performance or perfect correctness to save cost per unit. This is more typical
of engineering designs. We do not always (if ever) have the luxury of infinite
time and budget, allowing one to design, build, and field the most elegant
and optimal-performing computer system. Therefore, we need methods to
aid us in developing systems where we can trade off these conflicting items
in some logical manner. That is what computer systems performance evalu-
ation is and what this book is all about.

2 I. I Evolution of computer systems architectures

I . I

The objective of this book is to describe a variety of performance analy-
sis methods that can be applied to the various stages of a computer system's
design, construction, fielding, and life-cycle maintenance. The goal is to
provide the reader with an understanding of what tools or techniques are
best applied within a computer system's life cycle so that the designer can
analyze alternatives and select near optimal solutions for each stage of this
process. We cannot hope to be exhaustive in our coverage of all aspects of a
computer system's design, nor can we do so for each analysis technique
available. Our goal is to provide sufficient detail, examples, and references
so that an interested reader can know what performance evaluation tech-
nique is best to apply, how to apply this technique to some level of sophisti-
cation, and where to look for further detailed information on a topic if it is
needed. Our intention is to provide more of an in-depth survey so that the
reader can understand how all the various concepts and techniques apply to
computer systems tradeoff analysis.

Evolution of computer systems architectures

Computers came into being with the development of the ENIAC computer
system in the late 1940s. The early ENIAC and subsequent computers were
constructed of vacuum tubes and filled a large room. These early computer
systems were dedicated to a single task and had no operating system. The
power of these early computers was less than that of the handheld calcula-
tors in use today. These computers were used mainly for ballistic missile tra-
jectory projections and military research. The architecture of these early
computers was based on the von Neumann stored program, single-stream
instruction flow architecture (Figure 1.1). This basic architecture and phi-
losophy is still in use today in most computer systems.

These early computer systems had no sophisticated operating systems,
databases, networks, or high-level programming languages to simplify their
operations. They stored program instructions and data needed for compu-
tation in the same place. Instructions were read from memory one at a time
and were mostly associated with the loading and storage of program data
from memory to registers where the data were to be operated on. Data in
these early systems were not shared by programs. If a program needed data
produced by another program, these data items were typically copied into a
region near the end of a program's space, and the end addresses were hard-
coded for use by the application program in which they were embedded.

A user application resides on a computer system. The computer system
provides the physical medium on which the data and programs are stored

I. I Evolution of computer systems architectures 3

Figure 1.1
Basic computer

system. Control
Unit

I 'nput I
Devices I

Memory

ALU

l 1
I/0 Processor ,,I Output [Devices I

and the processing capacity to manipulate the stored data. A processing unit
of a computer system consists of five main elements: the memory, an arith-
metic logic unit, an input unit, an output unit, and a control element. The
memory unit stores both the data for programs and the instructions of a
program that manipulates stored data.

The program's individual elements or instructions are fetched from the
memory one at a time and are interpreted by the control unit. The control
unit, depending on the interpretation of the instruction, determines what
computer operation to perform next. If the instruction requires no addi-
tional data, the control indicates to the arithmetic logic unit what operation
to perform and with what registers. (See Figure 1.1.)

If the instruction requires additional data, the control unit passes the
appropriate command to the memory (MAR, memory address register) to
fetch a data item from memory (MDR, memory data register) and to place
it in an appropriate register in the ALU (data register bank) (Figure 1.2).

l k
r

Figure 1.2
Low-level memory

access.
Memory
Array

ALU 1-"
$

Registers

I Chapter I

4 I. I Evolution of computer systems architectures

This continues until all required operands are in the appropriate registers of
the ALU. Once all operands are in place, the control unit commands the
ALU to perform the appropriate instruction--for example, multiplication,
addition, or subtraction. If the instruction indicated that an input or output
were required, the control element would transmit a word from the input
unit to the memory or ALU, depending on the instruction. If an output
instruction were decoded, the control unit would command the transmis-
sion of the appropriate memory word or register to the output channel indi-
cated. These five elements comprise the fundamental building blocks used
in the original von Neumann computer system and are found in most con-
temporary systems in some form or another.

A computer system is comprised of the five building blocks previously
described, as well as additional peripheral support devices, which aid in data
movement and processing. These basic building blocks are used to form the
general processing, control, storage, and input and output units that make
up modern computer systems. Devices typically are organized in a manner
that supports the application processing for which the computer system is
intended--for example, if massive amounts of data need to be stored, then
additional peripheral storage devices such as disks or tape units are required,
along with their required controllers or data channels.

To better describe the variations within architectures we will discuss
some details briefly--for example, the arithmetic logic unit (ALU) and the
control unit are merged together into a central processing unit, or CPU.
The CPU controls the flow of instructions and data in the computer sys-
tem. Memories can be broken down into hierarchies based on nearness to
the CPU and speed of access--for example, cache memory is small,
extremely fast memory used for instructions and data actively executing and
being used by the CPU. The primary memory is slower, but it is also
cheaper and contains more memory locations. It is used to store data and
instructions that will be used during the execution of applications presently
running on the CPU--for example, if you boot up your word processing
program on your personal computer, the operating system will attempt to
place the entire word processing program in primary memory. If there is
insufficient space, the operating system will partition the program into seg-
ments and pull them in as needed.

The portion of the program that cannot be stored in memory is main-
tained on a secondary storage device, typically a disk drive. This device has
a much greater storage capacity than the primary memory, typically costs
much less per unit of storage, and has data access times that are much
slower than the primary memory. An additional secondary storage device is

I. I Evolution of computer systems architectures 5

1 . 1 . 1

the tape drive unit. A tape drive is a simple storage device that can store
massive amounts of data~again, at less cost than the disk units but at a
reduced access speed. Other components of a computer system are input
and output units. These are used to extract data from the computer and
provide these data to external devices or to input data from the external
device. The external devices could be end-user terminals, sensors, informa-
tion network ports, video, voice, or other computers.

A computer system's architecture is constructed using basic building
blocks, such as CPUs, memories, disks, I/O, and other devices as needed.

In the following sections we will examine each of the components of a
computer system in more detail, as we examine how these devices can be
interconnected to support data processing applications.

CPU a r c h i t e c t u r e s

The central processing unit (CPU) is the core of a computer system and
consists of the arithmetic logic unit (ALU) and the control unit. The ALU
can come in a variety of configurations~from a single simple unit, up to
extremely complex units that perform complex operations. The primary
operation of the ALU is to take zero or more operands and perform the
function called for in the instruction. In addition to the ALU, the CPU
consists of a set of registers to store operands and intermediate results of
computations and to maintain information used by the CPU to determine
the state of its computations. For example, there are registers for the status
of the ALU's operation, for keeping count of the instruction to be per-
formed next, to keep data flowing in from memory or out to memory, to
maintain the instruction being executed, and for the location of operands
being operated on by the CPU. Each of these registers has a unique func-
tion within the CPU, and each is necessary for various classes of computer
architectures. A typical minimal architecture for a CPU and its registers is
shown in Figure 1.3 and consists of a primary memory connected to the
CPU via buses. There are registers in the CPU for holding instructions,
instruction operands, and results of operations; a program location counter,
containing either the location in memory for instructions or operands,
depending on the decoding of instructions; and a program counter contain-
ing the location of the next instruction to perform.

The CPU also contains the control unit. The control unit uses the status
registers and instructions in the instruction register to determine what func-
tions the CPU must perform on the registers, ALU, and data paths that
make up the CPU. The basic operation of the CPU follows a simple loop,

I Chapter I

6 I. I Evolution of computer systems architectures

L
Y

Figure 1.3
Typical CP U
architecture.

I . I . 2

.I "1 Memory I ~

MAR

MDR ALU+ I
Control ' [~

IR I

Data
reg

/
Operands and Results CPU

.

called the instruction execution cycle (Figure 1.4). There are six basic func-
tions performed in the instruction loop: instruction fetch, instruction
decode, operand effective address calculation, operand fetch, operation exe-
cution, and next address calculation. This execution sequence represents the
basic functions found in all computer systems. Variations in the number of
steps are found based on the type and length of the instruction.

I n s t r u c t i o n a r c h i t e c t u r e s

There are numerous ideas about how to organize computer systems around
the instruction set. One form, which has come of age with the new power-
fill workstations, is the reduced instruction set computer (RISC), where
each instruction is simple, but highly optimized. On the far spectrum of
architectures is the very long word instruction architecture, where each

Instruction
Fetch

.I Instruction
"1 Decode

Operand
Address

Computation
Operand

Fetch

Figure 1.4

Next Instruction
Address

Computation

Instruction cycle execution.

Instruction
Execution

I. I Evolution of computer systems architectures 7

I . I . 3

I . I . 4

Figure 1.5
CP U memory

access.

instruction may represent an enormous processing function. A middle
ground is the complex instruction set computer (CISC).

Memory-addressing schemes
There are also numerous ways in which to determine the address of an oper-
and from an instruction. Each address computation method has its benefits
in terms of instruction design flexibility. There are six major types of
addressing computation schemes found in computers: immediate, direct,
index, base, indirect, and two-operand. We will examine these further in
Chapter 2.

Memory architectures

Generally, a computer system's memory is organized as a regular structure,
addressed using the contents of a memory address register and with data
transferred through a memory data register (Figure 1.5). Memory architec-
tures are based on the organization of the memory words. The simplest
form is a linear two-dimensional structure. A second organization is the
two-and-a-half-dimensional architecture.

I10 architectures

Input and output architectures are used by computer systems to move
information into or out of the computer's main memory and have evolved
into many forms. I/O architectures typically rely on the use of one element
of the computer as the router of I/O transfers. This router can be the CPU,
the memory, or a specialized controller. Chapter 2 discusses these architec-
tures in greater detail.

Memory
Array

OPU

I Chapter I

8 I. I Evolution of computer systems architectures

I L

Figure 1.6
Memory hierarchy.

Storage Density
Registers I

I
Cache I

I
I Primary Mem I

Disk

Access Speed (~ Tape

I . I . 5

I . I . 6

Secondary storage and peripheral
device architectures

I/O devices connect to and control secondary storage devices. Primary
memory has grown over the years to a fairly high volume, but still not to the
point where additional data and program storage is not needed. The storage
hierarchy (Figure 1.6) consists of a variety of data storage types. From the
highest-speed memory element, cache, to the slowest-speed elements, such
as tape drives, the tradeoff the systems architect must make is the cost and
speed of the storage medium per unit of memory. Typical secondary storage
devices include magnetic tape drives, magnetic disk drives, compact optical
disk drives, and archival storage devices such as disk jukeboxes.

Magnetic tape information storage provides a low-cost, high-density
storage medium for low-access or slow-access data. An improvement over
tape storage is the random access disk units, which can have either remov-
able or internal fixed storage media. Archival storage devices typically are
composed of removable media configured into some array of devices.

N e t w o r k architectures

Networks evolved from the needs of applications and organizations to share
information and processing capacity in real time. Computer networks pro-
vide yet another input and output path for the computer to receive or send

I. I Evolution of computer systems architectures 9

information. Networks are architected in many ways: They could have a
central switching element, share a central storage repository, or could be
connected using intelligent interface units over a communications medium
such as telephone wires or digital cables. The configuration used depends
on the degree of synchronization and control required, as well as the physi-
cal distribution between computers. Chapter 2 will examine some architec-
tures and topology configurations for networked computer systems.

I . 1.7 C o m p u t e r architectures

Computer architectures represent the means of interconnectivity for a com-
puter's hardware components as well as the mode of data transfer and proc-
essing exhibited. Different computer architecture configurations have been
developed to speed up the movement of data, allowing for increased data
processing. The basic architecture has the CPU at the core with a main
memory and input/output system on either side of the CPU (see Figure
1.7). A second computer configuration is the central input/output control-
ler (see Figure 1.8). A third computer architecture uses the main memory as
the location in the computer system from which all data and instructions
flow in and out. A fourth computer architecture uses a common data and
control bus to interconnect all devices making up a computer system (see

Figure 1.7
Basic computer

architecture.

IPrinter I

I/0 CPU Memory

Hgure 1.8
Alternative

computer
architecture.

CPU
I/0

Controller
HUB

~ I 'ter I

Memory

I Chapter I

I0 1.2 Evolution of database systems

v

Figure 1.9
Common bus
architecture.

CPU m Memory I/0

l l
y

Figure 1.10
Dual bus

architecture.

I/0 Bus

CPU Memory I/0

1.2

Memory
Bus

Figure 1.9). An improvement on the single shared central bus architecture is
the dual bus architecture. This architecture either separates data and control
over the two buses or shares them to increase overall performance (see Fig-
ure 1.10).

We will see how these architectures and elements of the computer sys-
tem are used as we continue with our discussion of system architectures
and operations.

Evolut ion of da tabase systems

Database systems have been with us since the 1960s as research vehicles
(first-generation products wrapped around the hierarchical and network
data models) and since the mid 1980s as fully functional products using the
relational data model. Since these early beginnings, database systems have
evolved from simple repositories for persistent information to very powerful
tools for information management and use.

Database systems have been of interest to the computer systems
performance analyst and to computer systems applications developers since
the earliest days of commercial computers. Early computer systems lacked
extensive on-line data storage (primary memory as well as secondary disk
storage), forcing systems architects and developers to rely heavily on exter-
nally archived information (typically stored in tape drives). Initial data stor-
age repositories were constructed using simple direct addressing schemes
that linked specific storage to a specific device and specific location on that
device. For example, to extract a piece of information an application needed

1.2 Evolution of database systems II

to know what device a specific piece of information was stored on (e.g., disk
01) and the exact address on that device (e.g., sector 05, track 22, offset
255, length 1,024). Each device had its own unique way of storing, access-
ing, and retrieving information, making it very difficult to port applications
from one place to another.

These initial repositories evolved to more robust file management sys-
tems, driven by a move toward simplifying the application/system interface.
The drive to simplification was motivated by application developers and
operating systems evolutions to remove the complexity of the typical stor-
age hierarchy from the user/developer side and place it in the operating sys-
tem's side. The motivation was to do the interface at the operating system
level to simplify the interface. The initial file systems offered a simple inter-
face, where applications could access persistently stored information logi-
cally by file name instead of physically by specific address paths. These
initial file management systems offered the means for an application to log-
ically persistently store information for future retrieval and use. Initial file
systems offered a simple interface and implementation to store and retrieve
information using coarse semantic means. One could open a file, read the
record-oriented contents of a file, write a record or entire file, and close the
file. Information within the file had no meaning to the control software of
the operating system or to the database system. The file management soft-
ware knew about entry points to a file, or subset of a file, but nothing con-
cerning details of information content within the file. These early file
systems and their crude access schemes served the needs of early mainframe
machines, where jobs were run in a sequence and no sharing between jobs
was explicitly required at run time.

The advent of multiuser operating systems, and multiuser applications'
evolving needs for concurrent access to information stored in file systems,
spawned the need for database systems to evolve from single user persistent
stores into multiuser concurrent database systems. Multiuser and
multiprocessing computer systems demanded that stored information
within the application's computer system's file system be available for shar-
ing. In addition, this information was not only to be shared, but was to be
done so in a dynamic manner. Information storage, access, and retrieval~
within such evolving systems~needed more controls in order that informa-
tion could be shared, yet remain correct and consistent from the perspective
of all applications using it.

One problem with information sharing within the context of these new
systems was security~how do you allow only the owner, or group of users,
to access or alter a file while still providing for access by others? In concert

I Chapter I

12 1.2 Evolution of database systems

with this issue was access integrity~how to keep data intact and correct
while multiple users access, modify, add, or delete information. Initially, file
systems addressed most of these concerns by adding access controls, such as
locks, and access lists to file managers to control such access, but these did
not accomplish the intended goals. Though these were admirable enhance-
ments, they were far too crude to allow applications true sharing of on-line
data. Files needed to be further decomposed into finer-grained elements if
finer concurrency of access were to be achieved. Simple file-level locking
resulted in longer waits and reduced availability of data for use by other
applications.

To alleviate these problems, file systems added finer-grained definitions
of stored information. For example, files evolved from unstructured data to
structured, record-oriented collections of information, where each record
had a specific head and tail, as well as semantic meaning for the file system
and its organization. At first, semantic meanings may have simply repre-
sented the order of occurrence in a file system. Semantics of data dealing
with structure led to added organization of files by using records as the fun-
damental units of organization for applications-required information and
for environmental storage. Records provided a mechanism from which to
construct more complex storage structures. Records became the granularity
of storage used to construct file organization as well as access schemes. It
became easy to find a record within a file, since files became composed of
collections of records. Through such means, access controls such as record-
locking techniques evolved to control how access was to be allowed to these
files and encased records.

It was only a matter of time before records, grouped into files, took on
further semantic meaning and became the focal point for organizing infor-
mation. For example, to define a group of students, a set of records could be
defined so that each record holds the information needed to define a single
student. To organize the students in a way that the application can use
them, a file system could allocate one region of a file for storage of these
records or could provide a means to link related records in a chain using
some control strategy.

This structural concept for information focused around records led to
one of the first database system storage concepts and access schemes,
referred to as the network database model. The network database model
organizes data as linked lists or chains of related information. In the net-
work data model, any information that has a relationship to some other
piece of stored information must have a physical link to the related pieces of
information. The network database structuring model was formalized into

1.2 Evolution of database systems 13

the CODASYL database language standard and was widely implemented
but never found acceptance as a true standard. Network database systems
became the mainstay of most early information systems until the advent of
the relational database system in the 1970s. The network database systems
began to lose their luster in the mid to late 1970s into the early 1980s due
to their inherent complexity and limitations. The network model requires
information to be physically linked if a logical relationship between infor-
mation is required. This implied that as the number of logical relationships
between information items increased so did the required number of physi-
cal links to capture these logical relationships.

This added metadata requirement caused the complexity of applications
to increase exponentially in size, making this model a poor choice for any
system that would grow and change over time. The loss of a single link
could result in the database becoming useless to the original application it
was developed for. The complexity of the chains constructed within an
application over time made the maintenance of such systems very expen-
sive. Another detriment to this database model is encountered when one
attempts to access stored information within this data model. To access
information, the database must be entered at a specific entry point, fol-
lowed by the traversal of data chains (paths) defined by the encoded rela-
tionships between the data items. This does not mean that the needed
information will be found; the paths could be traversed and end in the end
of the path being encountered with no data being found. There are no ways
to bypass paths. To find specific data items one must traverse the path lead-
ing to this item and no other, if the information is to be located.

These and other limitations with the network database model led to the
gradual demise of the model. An issue to consider with the network model
is its legacy. Even though this model has not been the prevalent model of
new applications over the last 20 years, there are still many databases con-
structed from this model due to its early entrance and long use in the infor-
mation community. It is highly unlikely that all or even a majority of this
information will be rehosted in a newer data model such as the relational
model. Due to this large volume of legacy information, this model must be
understood from its impact on the past, present, and future of information
management systems. New systems, if they have a reach beyond their local
system, will possibly be required to interact with such legacy systems, neces-
sitating the understanding of their impact on performance.

The network database system's demise began with the development and
publication of Codd's relational database model and seminal paper pub-
lished in the early 1970s. The fundamental premise of the paper was that all

I Chapter I

14 1.2 Evolution of database systems

information in the database system can be formed into tables called rela-
tions. These relations have a regular structure, where each row of the table
has the same format. Relationships between tables are defined using con-
cepts of referential integrity and constraints. The fundamental way one
operates on these tables is through relational algebra and calculus tech-
niques. This paper's publication was followed by an experimental system
built by IBM called system R and another developed by university research
called Ingress. These early developments had as their goal the proof of the
relational database's theories. The relational model on paper showed much
promise, but constructing software to make it real was a daunting task. A
fundamental major difference in the two models is found in their model for
data acquisition. The network model is a procedural model, where a user
tells the system how to find the needed information, whereas the relational
model is nonprocedural, where one states what one wants and lets the "sys-
tem" find the information.

This shift in the fundamental way the database finds information was a
very significant one--the ramifications of which the industry still improves
upon. A fundamental need in the new model was system services to find
information. This system service is called "query processing." The funda-
mental function of query processing is to determine, given a user's query,
how to go about getting the requested piece of information from the rela-
tions stored in the database. Query processing led to further improvements
in accessing information from the database. One primary improvement was
in query optimization. The goal of query optimization is to find ways to
improve on the cost of extracting information from the database and do this
in real time.

These early relational database systems were instrumental in the devel-
opment of many concepts wrapped around improving concurrency of
access in database systems. The concept of concurrent access was not
present in early network-based databases. The theory of serializability as a
correctness criterion evolved from the relational model and its fundamental
theories, motivated by a need to have correct and concurrent access to
stored information. The serializability theory and concurrency control led
to further improvements in database technology. In particular, concepts for
transactions followed next--along with theories and concepts for recovery.
The fundamental tenet of transactions and transaction processing is that
they execute under the control of the 'TkCID" properties. These properties
dictate that transactions execute "atomically" (all or nothing), "consistently"
(all constraints on data correctness are valid), "isolated" (transactions exe-
cute as if done in isolation), and "durable" (effects of transaction execution

1.3 Evolution of operating systems 15

1.3

are not alterable except by another transactions execution). To guarantee
these properties requires concurrency control and recovery.

The relational model and relational databases led the way during the
1980s in innovations and growth within the database industry. Most of the
1980s was spent refining the theories of correctness for databases and for
their fundamental operation: the transaction. In addition to these funda-
mental improvements, the 1980s saw the improvement of the modeling
capability of the model.

This period was followed by another, which we'll call the object-oriented
period. During this period of time, the late 1980s and early 1990s, the need
of applications developers to more closely match the data types of their
applications with those provided by the database drove the need for more
semantic richness of data specification and operations on these data. The
object-oriented databases of this period met this need. The problem with
these early object-oriented databases was that they did not possess some of
the fundamental concepts developed during the evolution and growth of
the relational database systems.

The late 1990s and the beginning of the twenty-first century saw the
merger of the relational model with the object-oriented database model~
forming the object relational database model. This model was embraced by
the U.S. and international standards bodies as one worth refining and sup-
porting for growth. The major national and international vendors have
embraced this model as the next great database evolution and are all pres-
ently building products around the newly adopted standard with some of
their own extensions.

It appears after this revolution that the next major change in the data-
base arena will probably come in the area of transactions and transaction
processing. The conventional model wrapped around the concept of a flat
or single-tiered transaction execution segment controlled strictly by the
ACID properties may be altered. There is much research and development
looking at a variety of alternative execution models and theories of correct-
ness that may lead us into the next decade of database improvements.

Evolution of operating systems

A modern operating system is computer software, firmware, and possibly
hardware that interact at a low level with the computer system's hardware
components to manage the sharing of the computer's resources among vari-
ous software applications. The goal of this piece of systems software is to

I Chapter I

16 1.3 Evolution of operating systems

allow for the fair sharing of these resources among any and all active jobs
within the system. An operating system runs as the most privileged of soft-
ware elements on the system and requires basic hardware support for inter-
rupts and timers to effect control over executing programs.

Operating systems evolved over a long period of time, driven as much by
the hardware available as the needs of the applications running on the
machines. In the beginning, there were few tools available to enhance the
usefulness of a computer to the general populace, and they were relegated to
be used by a select few who could trudge through the translation of real
problems into sequences of simple machine instructions. These machine
instructions were at first in microcode (the lowest form of software) or
assembly code. In either case there were no controls over what the coder did
with the computer system. These early coders required great talent to be
able to master the art of changing a problem such as missile guidance into
the software required to carry it out. These early coders simply loaded the
software into the machine at a specific memory location and indicated to
the hardware to begin processing the job. The machine would continue
processing this same job until the machine detected an error (such as an
overflow) or there was a stop command issued to the machine. There were
no automated means to switch from one job to another.

The first operating system problem tackled by systems programmers to
change this situation was to develop a means to transition from one job to
another processing job without the need to stop the machine, enter the new
program, and start it up again, as was the case in the past. The monitor or
batch operating system concept provided the solution to this early defined
problem. These early systems offered means for operators to load several
jobs at one time; the computer system then performed them in a sequential
manner. As one job completed, the operating systems software would take
over control of the machine's hardware, set it up for the next job, and then
release control back to the new job, which then ran to completion.
Although this was a step in the right direction, the expensive computer sys-
tems of the day were not being efficiently utilized. New devices were being
developed to aid in input and output (early terminals) and storage
(improved disk drives, tape units), but the control mechanisms to use them
efficiently still were not there.

These new computer peripheral devices, which were coming into place
in the 1970s, provided the impetus for systems designers to find ways to
make them more fully utilized within the system. One of the biggest drivers
was the input/output terminal. These demanded that the system provide
mechanisms for the operators to input code and data and to request compi-

1.3 Evolution of operating systems 17

lation, linking, loading, and running of their jobs as if they were running
alone on the machine, when in reality there would be many users on the
machine concurrently. The system management service developed to meet
these demands was called the executive program.

The executive program provided policies and mechanisms for programs
and devices such as terminals to run concurrently under control of the exec-
utive's watchful eye. The function was to control interaction so that devices
did not interfere with each other in running their jobs on the machine.
They still, however, pretty much ran one at a time on the machine. This
crude operating system provided many of the rudimentary services expected
from an operating system and became the vehicle upon which many inno-
vations were developed.

Research carried out on these early executive programs led to supervi-
sor programs, which took on more functions from the systems operators
and coders. The supervisor programs provided rudimentary services for
"swapping" of programs from primary memory and control over the CPU
based on the concept of time slices. Following the success of these devel-
opments came the first true operating systems in the 1960s. Many of the
services found in modern operating systems today have their roots in this
early system.

Generically, an operating system provides the following services:

1. Hardware management (interrupt handling, timer management)

Interprocess synchronization and communications

Process management

Resource allocation (scheduling, dispatching)

5. Storage management and access (I/O)

6. Memory management

File management

8. Protection of system and user resources

An operating system begins with the management of a computer system's
hardware. Hardware management requires the ability to set limits on the
holding of resources and the ability to transfer control from an executing
program back to the operating system. These functions are realized through
the use of hardware timers and interrupt services. A hardware timer is a
counter that can be set to a specific count (time period). When the time
expires, an interrupt signal is released, which stops the processor, saves the
processor's state (saves all active register contents, ALU registers, status regis-

0

3.

4.

0

I Chapter I

18 1.3 Evolution of operating systems

ters, stack pointers, program counters, instruction registers, etc.), and turns
control over to an interrupt service routine. The interrupt service routine
examines the contents of predefined registers (e.g., the CPU status register or
a predefined interrupt register) or sets memory locations and determines
what operations are to be performed next. Typically, control is immediately
turned over to the operating system's kernel for servicing of the interrupt.

The goals of these services and developments had one common thread:
to make more efficient use of computing facilities. They were meant to pro-
vide convenient interfaces to users while hiding the details of the bare
machine from them. The operating system provides for transparent use of
computing resources, relieving users and operators from the burden of
needing to know the particular system's configuration. The operating sys-
tem also provided users and systems programmers protection from acciden-
tal or malicious destruction, theft, or unauthorized disclosure.

The most obvious accomplishment of an operating system is the hiding
of the computing platform's details and the optimal use of resources. Users
need not know what particular device they are using, only that they need
one of a certain class of device (e.g., a tape or disk). This shields users from
the problems of down components. If it were necessary to specify a particu-
lar device that was not available, work might not be able to go on. If the
user can specify a class of device, any one of that type can meet the need,
increasing the ability of the user to get the job done.

The systems programmers and the hardware and software researchers
did not end their quest for perfection at this point. There were more areas
to be looked at, and system problem areas needed to have solutions devel-
oped for them. Sharing of resources introduced its own set of problems. As
systems became more usable, more uses were envisioned and implemented.
Systems began to meet the raw processing capacity of the machines.
Designers needed to find ways to get additional resources to improve proc-
essing cycles for user applications. Software developers looked to streamline
computational complexity of the operating system, providing some relief.
Hardware designers improved the computational capacity of the systems
through improved architectures and instruction execution schemes. All
such improvements, however, were only temporary.

The research and development community began to look at ways to
improve performance within fixed or marginally improving processor per-
formance. The problem is that no matter how much we improve the
performance of a processor, it will still have a limited amount of available
cycles for applications and required systems services. The initial concept
looked at was not to grow single processing power, which is limited, but to

1.4 Evolution of computer networks 19

1 .4

instead add entire new processors. This concept was initially examined as
part of architecture improvements in the 1980s. The multiple processors
could each be set up to run their local operating systems, with added serv-
ices to allow remote systems to request services (resources) from another
machine that was not busy or not fully utilized. By using these systems calls,
multiple processors running separate operating systems could be synchro-
nized to perform a single, larger processing task in much less time. The
effective improvement in performance, however, is not simply the multipli-
cative factor of the number of machines but some fraction of this computa-
tion. This is due to the added overhead to synchronize the operations of the
loosely coupled systems.

These systems led to further research and experimentation. If loosely
coupled machines could be collected and grouped together to perform
larger functions, why couldn't they be grouped in a tightly bound fashion to
perform large computational applications that could not be done on a sin-
gle machine? These new systems were called "distributed processors." What
distinguishes these classes of systems from their loosely coupled multipro-
cessor counterparts is the degree of cohesiveness the processors exhibit. The
processor's operating system is a single global operating system, which is
spread across the machines in a variety of ways. In one case the entire oper-
ating system can be replicated on each site, with individual processors only
needing additional state information to indicate what their function is and
what their state presently is in relation to the entire distributed systems
state. The second configuration uses the concept of partitioning the operat-
ing systems components across the various sites of the distributed computer
system. Each processor then has a specific function~for example, process
scheduling or device access.

These new operating systems concepts are still being examined in the
realm of research and have not as yet found their way into the mainstream
systems. On the other hand, we have client/server processing, which uses a
form of the multiprocessing operating systems to provide for remote access
to resources. They differ, however, in not enforcing strict synchronization
requirements on client/server processing. Many additional protocols have
been developed to provide this form of processing, which is prevalent in
most products one uses today for computing remotely over the Web.

Evolut ion of c o m p u t e r ne tworks

The term network can mean many different things. It can imply an inter-
connection of railway tracks for the rail network; highways and streets for

I Chapter I

20 1.4 Evolution of computer networks

transportation networks; telephone lines and switching centers for the
phone network; coaxial lines for the cable television network; fiber lines for
cable communications networks; or the interconnection of service centers,
businesses, and so on to form a network. All of these configurations refer to
the means to tie together various resources so that they may operate as a
group, realizing the benefits of numbers, sharing, and communications in
such a group.

In computer systems terminology of a network is a combination of
interconnected computing equipment and programs used for moving infor-
mation (and computations) between points (nodes) in the network where it
may be generated, processed, stored, or used in whatever manner is deemed
appropriate. The interconnection may take on many forms, such as dedi-
cated links, shared links, telephone lines, microwave links, and satellite
links. Networks in this sense form a loose coalition of devices that share
information. This was one of the first uses of a network, although it was not
the last. Users found that the network could offer more than just informa-
tion sharing; it could offer other services for remote job execution and ulti-
mately distributed computing.

The earliest concept of a network was of a loose binding together of
devices or resources for sharing. An early computer communications net-
work that exhibited these traits was the ARPANET. ARPANET was first
brought on-line in 1969 as a research tool to investigate long-haul network
issues and to provide a tool for research and development solutions. It has
evolved into the Internet, connecting millions of computers over local area
networks, metropolitan area networks, and other wide area networks.
ARPANET provided the vehicle for early research into communications
protocols dealing with congestion, control, routing, addressing, remote
invocation, distributed computing, distributed operating systems and ser-
vices, and many other areas.

The reasons for using networks such as ARPANET were to provide
greater availability and access to a wider range of devices. Early applications
of computers dealt with performing engineering tasks and major data proc-
essing functions. As the technology of computers changed, and as research-
ers and users alike added more and more applications, information access
and manipulation took on greater emphasis.

Earlier networks provided the necessary information exchange services
but were limited to basically just this service. The information availability
stimulated more imaginative uses of this information. As this occurred and
the technology of networks improved, new applications arose. These new
applications not only used information exchange but also remote job execu-

1.4 Evolution of computer networks 21

tion. It began simply as sending a batch job down the link to a less busy
host, having the job completed there, and then shipping the results back to
the originator.

This sufficed for awhile, but it still did not provide the real-time or
interactive environments that users were beginning to become accustomed
to, including more advanced protocols and network operating systems to
provide further services for remote job invocation and synchronization. The
era of the local area network was coming. The wide area networks' biggest
shortfall was in throughput or turnaround time for jobs and interprocessor
communications. Because of the wide distances, delays of seconds were
commonplace and caused added overhead in performing otherwise simple
tasks. Network designers saw the need to provide another link in the net-
work: the local area network.

Local area networks began showing up on the networking landscape in
the early to mid 1970s as mostly research activities in universities and gov-
ernment laboratories. It was not until Ethernet was released in the mid
1970s that LANs became more widely available. Since that time, numerous
LAN designs have been produced to fit an extremely wide spectrum of user
requirements~for example, the fiber ring. Additionally, standards have
evolved, providing basic LAN topologies and their services to a greater
number of users.

Local area networks are finding their way into all aspects of modern soci-
ety. We find them in our homes through cable modems and phone modems,
automobiles via wireless technologies, banking (e.g., ATMs), schools via
Internet connections, businesses, government, and industry. There are not
too many aspects of information exchange and data processing in which a
LAN cannot be found. Local area networks and their associated technologies
represent one of the great growth areas of the 1990s and early 2000s. As
more and more LANs become available, so will new products and uses for
them. LANs are used to connect all personal computers in offices, class-
rooms, factory floors, retail establishments, and now even many homes.
They are used in these environments to send memoranda, issue directives,
schedule meetings, transmit documents, send e-mail, discover new informa-
tion, and process large volumes of data concurrently at many sites.

LANs are used to link factory robots together with area and factory
controllers. They provide sensor data, control data, and feedback to the
control centers, while at the same time providing a vehicle to issue pro-
duction changes and notices to users and robots alike. A fine example of a
local area network providing diverse services to the users is seen in Walt
Disney World. Disney uses LANs and computers to monitor all aspects of

I Chapter I

22 1.5 Need for performance evaluation

1.5

services, including fire protection, scheduling, ride management, on-line
information, security, personnel services, and a plethora of other park
management functions. Large banks, such as the World Bank, have
adopted LANs as the means to interconnect their various local sites into
smaller networks linked together by wide area networks. However, the
LAN is not for everyone.

Network evolution has not stopped there. As wireless technology has
improved, so has the interest in networking vendors to provide their services
to users of these domains. Wireless networks began fairly quietly in the
1970s with the Aloha net as the foundation. Since then, wireless phone net-
work development has opened the door for computer networks. Today one
of the great growth areas in networking will be in further developing wire-
less networks and integrating these into existing LAN and WAN networks
to provide an even wider array of applications to the wireless cell phone
community.

Need for per formance evaluat ion

Selecting a specific computer architecture for an application, an operating
system, a database system, or a wide area or local area network system that
will provide the optimum service to users requires up-front analysis and
knowledge. As indicated, a specific computer architecture, operating sys-
tem, database, and/or LAN are productivity-enhancing tools, but, as with
other tools, if they are not used properly, they can actually decrease produc-
tivity. An operating system can provide a means to increase concurrency of
access and to improve overall system resource utilization or it can become a
bottleneck by blocking access. A database system can provide the means to
more efficiently share information among many applications in a correct
and concurrent manner or it can cause extensive blocking of information by
dropping data availability. ALAN can provide a means to streamline infor-
mation processing and eliminate redundancies, but it may also deter users
from logging on because of link or protocol problems. To the common user,
operating systems resource management, data processing, data extraction,
data communications, and local area networks are a black hole of protocols,
access schemes, routing algorithms, cabling and topology issues, and service
problems. To alleviate these problems, the users should be educated about
the basics of computer architecture, operating systems, database systems,
and local area network technology and be provided with metrics and tools
with which they can adequately wade through the myriad issues and select a
computer system mapped to their needs.

1.6 Role of performance evaluation in computer engineering 23

When you look at the many options available for prospective computer
systems purchasers to evaluate, you can see the reasons for their distress. A
computer system can be very simple, providing just a single central process-
ing unit, single primary memory bank, a single I/O channel for peripheral
device access, and a single network link to interconnect to another machine.
Conversely, the computer system can be highly elaborate, with multiple
processors; cache memory; a high-tech associative memory system; SCSI
controlled disk banks; specialized graphics engines; and possibly its own dis-
tributed operating system, protocols, and services. The prospective com-
puter system purchaser must decide what type of motherboard(s) is
required and how many of these; what type of memory and its architecture;
what form of operating system, database system, and network cabling is
necessary; and the types of electrical characteristics, signaling scheme, pro-
tocol for controlling transfers, routing schemes, topology of interconnec-
tion, reliability requirements, system and component fault tolerance if
necessary, services, interface characteristics and requirements, and numer-
ous other aspects. The extent of control, understanding, and compatibility
with other equipment a user requires will decide which of these and other
issues need to be addressed before a computer system is purchased.

1.6 Role of performance evaluation
in computer engineering

Presently there is a great deal of interest and activity in the design and use of
computer systems, such as centralized, vector, parallel, distributed, and cli-
ent/server architectures. These computer systems are being researched,
developed, produced, and marketed by individuals and organizations from
government, industry, and academia. These research and development
activities are motivated by the rapidly changing technologies of devices,
software and systems, increased performance requirements, increasing com-
plexity and sophistication of basic building blocks, peripherals, intercon-
nections and control, the constant demand for improved reliability and
availability, and the increasing reliance of organizations on the use of com-
puter facilities in all aspects of business.

Present desktop computer systems provide more features than were pre-
viously available in a single, large time-sharing system. Specifically, some
features include the sharing of resources on a much more global scale, as
well as the fulfillment of system requirements such as expandability, flexibil-
ity, availability, reliability, reconfigurability, fault tolerance, graceful degra-
dation, responsiveness, speed, throughput capacity, logical complexity, and

I Chapter I

24 1.7 Overview of performance evaluation methods

1 . 7

ease of development (modularity). Another appealing feature of contempo-
rary computer systems is their ability to bring the computing power to the
user without sacrificing the ability to get at all the available information
assets from the business.

The optimal design and/or selection of a computer system is, therefore,
of the utmost importance if the target computing facility is to provide new
and improved services over what is presently available to the target domain
application. But how does one go about doing this? What techniques and
tools are available for this purpose? These are among the questions that this
book will address for the computer systems architect, researcher, designer,
purchaser, or student. It is set up to cover the essentials of modeling and
analysis of computer systems hardware and software environments. Covered
topics include the basic technologies associated with computer systems
hardware, software, and networking; details of modeling techniques used to
study computer hardware and software configurations; and the description
of software tools that have been used to model such systems.

Overv iew of per formance evaluat ion methods

Models provide a tool for users to define a system and its problems in a con-
cise fashion; they provide vehicles to ascertain critical elements, compo-
nents, and issues; they provide a means to assess designs or to synthesize and
evaluate proposed solutions; and they can be used as predictions to forecast
and aid in planning future enhancements or developments. In short, they
provide a laboratory environment in which to study a system even before it
exists or without actually effecting an actual implementation. In this light
models are descriptions of systems. Models typically are developed based on
theoretical laws and principles. They may be physical models (scaled repli-
cas), mathematical equations and relations (abstractions), or graphical rep-
resentations. Models are only as good as the information put into them.
That is, modeling of a system is easier and typically better if:

• Physical laws are available that can be used to describe it.

• Pictorial (graphical) representations can be made to provide better
understanding of the model.

• The system's inputs, elements, and outputs are of manageable mag-
nitude.

These all provide a means to construct and realize models, but the prob-
lem typically is that we do not have clear physical laws to go by; interactions
can be very difficult to describe; randomness of the system, environment, or

1.7 Overview of performance evaluation methods 25

Figure 1.11
Modelingprocess.

Abstraction process

users causes problems; and policies that drive processes are hard to quantify.
What typically transpires is that a "faithful" model of a system is con-
structed: one that provides insight into a critical aspect of a system, not all
of its components. That is, we typically model a slice of the real-world sys-
tem. What this implies is that the model is an abstraction of the real-world
system under study. With all abstractions, one must decide what elements
of the real world to include in the abstraction~that is, which ones are
important to realize as a "faithful" model. What we are talking about here is
intui t ion~that is, how well a modeler can select the significant elements;
how well these elements can be defined; and how well the interaction of
these significant elements is within themselves, among themselves, and with
the outside world.

Mode ls

As stated previously, a model is an abstraction of a system. (See Figure
1.11.) The realism of the model is based on the level of abstraction applied.
That is, if we know all there is about a system and are willing to pay for the
complexity of building a true model, the abstraction is near nil. On the
other hand, in most cases we wish to abstract the view we take of a system
to simplify the complexities. We wish to build a model that focuses on some
element(s) of interest and leave the rest of the system as only an interface
with no detail beyond proper inputs and outputs.

1.7.1

I Chapter I

26 1.7 Overview of performance evaluation methods

fw-

Figure 1.12
Abstraction of a

system.

1.7 .2

Fast

Cus,omer

The "system," as we have been calling it, is the real world that we wish to
model (e.g., a bank teller machine, a car wash, or some other tangible item
or process). In Figure 1.12 a system is considered to be a unified group of
objects united to perform some set function or process, whereas a model is
an abstraction of the system that extracts the important items and their
interactions.

The basic concept of this discussion is that a model is a modeler's subjec-
tive view of the system. This view defines what is important, what the pur-
pose is, detail, boundaries, and so on. The modeler must understand the
system in order to provide a faithful perspective of its important features
and to make the model useful.

M o d e l c o n s t r u c t i o n

In order to construct a model, we as modelers must follow predictable
methodologies in order to derive correct representations. The methodology
typically used consists of top-down decomposition and is pertinent to the
goal of being able to define the purpose of the model or its component at
each step and, based on this purpose, to derive the boundaries of the system
or component and develop the level of modeling detail. This iterative
method of developing purpose, boundaries, and modeling level smooths
out the rough or undefinable edges of the actual system or component,
thereby focusing on the critical elements of it.

The model's inputs are derived from the system under study as well as
from the performance measures we wish to extract. That is, the type of
inputs are detailed not only from the physical system but through the
model's intended use (this provides the experimental nature of the model).
For instance, in an automated teller machine, we wish to study the useful-
ness of fast service features, such as providing cash or set amounts of funds
quickly after the amount has been typed in. We may decide to ignore details
of the ATM's internal operations or user changes.

1.7 Overview of performance evaluation methods 27

The model would be the bank teller machine, its interface, and a model
(analytical, simulation) of the internal process. The experiment would be to
have users (experimenters) use the model as they would a real system and
measure its effectiveness. The measures would deal with the intent of the
design. That is, we would monitor which type of cash access feature was
used over another, which performed at a higher level, or which features were
not highly utilized.

The definition of the required performance measures drive the design
and/or redesign of the model. In reality, the entire process of formulating
and building a model of a real system occurs interactively. As insight is
gained about the real system through studying it for modeling purposes,
new design approaches and better models and components are derived.
This process of iteration continues until the modeler has achieved a level of
detail consistent with the view of the real system intended in the model-
purpose development phase. The level of detail indicates the importance of
each component in the modeler's eye as points that are to be evaluated.

To reiterate, the methodology for developing and using a model of a sys-
tem is as follows:

1. Define the problem to be studied as well as the criteria for analysis.

2. Define and/or refine the model of the system (includes develop-
ment of abstractions of the system into mathematical, logical, and
procedural relationships).

3. Collect data for input to the model (define the outside would and
what must be fed to or taken from the model to "simulate" that
world).

Select a modeling tool and prepare and augment the model for
tool implementation.

Verify that the tool implementation is an accurate reflection of
the model.

Validate that the tool implementation provides the desired accu-
racy or correspondence with the real-world system being modeled.

Experiment with the model to obtain performance measures.

Analyze the tool results.

Use these findings to derive designs and improvements for the
real-world system.

o

Q

,

,

8.

Q

I Chapter I

28 1.7 Overview of performance evaluation methods

Although some of these steps were defined previously, they will be read-
dressed here in the context of the methodology.

The first task in the methodology is to determine what the scope of the
problem is and if this real-world system is amenable to modeling. This task
consists of clearly defining the problem and explicitly delineating the objec-
tives of the investigation. This task may need to be reevaluated during the
entire model construction phase because of the nature of modeling. That is,
as more insight comes into the process, a better model, albeit a different
one, may be developed. This involves a redefinition of questions and the
evolution of a new problem definition.

Once a problem definition has been formulated, the task of defining and
refining a model of this real-world problem space can ensue. The model
typically is made up of multiple sections that are both static and dynamic.
They define elements of the system (static), their characteristics, and the
ways in which these elements interact over time to adjust or reflect the state
of the real system over time. As indicated earlier, this process of formulating
a model is largely dependent on the modeler's knowledge, understanding,
and expertise (art versus science). The modeler extracts the essence of the
real-world system without encasing superfluous detail. This concept
involves capturing the crucial (most important) aspects of the system with-
out undue complexity but with enough to realistically reflect the germane
aspects of the real system. The amount of detail to include in a model is
based mainly on its purpose. For example, if we wish to study the user
transaction ratio and types on an automated teller machine, we only need
model the machine as a consumer of all transaction times and their types.
We need not model the machine and its interactions with a parent database
in any detail but only from a gross exterior user level.

The process of developing the model from the problem statement is iter-
ative and time consuming. However, a fallout of this phase is the definition
of input data requirements. Added work typically will be required to gather
the defined data values to drive the model. Many times in model develop-
ment data inputs must be hypothesized or be based on preliminary analysis,
or the data may not require exact values for good modeling. The sensitivity
of the model is turned into some executable or analytical form and the data
can be analyzed as to their effects.

Once the planning and development of a model and data inputs have
been performed, the next task is to turn it into an analytical or executable
form. The modeling tool selected drives much of the remainder of the work.
Available tools include simulation, analytical modeling, testbeds, and opera-
tional analysis. Each of these modeling tools has its pros and cons. Simula-

1.7 Overview of performance evaluation methods 29

tion allows for a wide range of examinations based on the modeler's
expertise; analytical analysis provides best, worst, and average analysis but
only to the extent of the modeler's ability to define the system under study
mathematically. Testbeds provide a means to test the model on real hardware
components of a system, but they are very expensive and cumbersome.
Operational analysis requires that we have the real system available and that
we can get it to perform the desired study. This is not always an available
alternative in complex systems. In any case, the tool selected will determine
how the modeler develops the model, its inputs, and its experimental payoff.

Once a model and a modeling tool to implement it have been devel-
oped, the modeler develops the executable model. Once developed, this
model must be verified to determine if it accurately reflects the intended
real-world system under study. Verification typically is done by manually
checking that the model's computational results match those of the imple-
mentation. That is, do the abstract model and implemented model do the
same thing and provide consistent results?

Akin to verification is validation. Validation deals with determining if
the model's implementation provides an accurate depiction of the real-
world system being modeled. Testing for accuracy typically consists of a
comparison of the model and system structures against each other and a
comparison of model tool inputs, outputs, and processes versus the real sys-
tem for some known boundaries. If they meet some experimental or model-
ing variance criteria, we deem the model an accurate representation of the
system. If not, the deficiencies must be found, corrected, and the model
revalidated until concurrence is achieved.

Once the tool implementation of the model has been verified and vali-
dated, the modelers can perform the project's intended experiments. This
phase is the one in which the model's original limitations can be stretched
and new insights into the real system's intricacies can be gained. The limita-
tions on experimentation are directly related to the tool chosen: Simulation
is most flexible followed by testbeds, analytical analysis, and operational
analysis.

Once experimentation is complete, an ongoing analysis of results is
actively performed. This phase deals with collecting and analyzing experi-
mentally generated data to gain further insight into the system under study.
Based on the results generated, the modeler feeds these results into the deci-
sion-making process for the real-world system, potentially changing its
structure and operations based on the model's findings. A study is deemed
successful when the modeling effort provides some useful data to drive the
end product. The outputs can solidify a concept about the system, define a

I Chapter I

30 1.7 Overview of performance evaluation methods

1.7.3

deficiency, provide insight into improvements, or corroborate other infor-
mation about the system. Modeling is a useful tool with which to analyze
complex environments.

Modeling tools

As was briefly indicated in the previous section, there are major classes of
modeling tools in use today: analytical, simulation, testbed, and operational
analysis. Each has its niche in the modeler's repertoire of tools and is used
for varying reasons, as will be discussed later in the book.

Analytical modeling tools
Analytical modeling tools have been used as an implementation technique
for models for quite some time, the main reason being that they work. Ana-
lytical implementations of models rely on the ability of the modeler to
describe a model in mathematical terms. Typically, if a system can be
viewed as a collection of queues with service, wait, and analytical times
defined analytically, queuing analysis can be applied to solve the problem.
Other analytical tools such as Petri nets can also be applied to the solution
of such problems.

Some of the reasons why analytical models are chosen as a modeling tool
are as follows:

1. Analytical models capture more salient features of systems~that
is, most systems can be represented as queuing delays, service
times, arrival times, and so on, and, therefore, we can model from
this perspective, leaving out details.

2. Assumptions or analysis is realistic.

3. Algorithms to solve queuing equations are available in machine
form to speed analysis.

What is implied by this is that queuing models provide an easy and con-
cise means to develop analysis of queue-based systems. Queues are waiting
lines, and queuing theory is the study of waiting line dynamics.

In queuing analysis at the simplest level (one queue), there is a queue
(waiting line) that is being fed by incoming customers (arrival rate); the
queue is operated by a server, which extracts customers out of the queue
according to some service rate (see Figure 1.13).

The queue operates as follows: An arrival comes into the queue, and, if
the server is busy, the customer is put in a waiting facility (the queue) unless

1.7 Overview of performance evaluation methods 31

Figure 1.13
Single server queue.

the queue is full, in which case the customer is rejected (no room to wait).
On the other hand, if the queue is empty, the customer is brought into the
service location and is delayed the service rate time. The customer then
departs the queue.

In order to analyze this phenomenon we need to have notational and
analytical means (theories) with which to manipulate the notation. Addi-
tionally, to determine the usefulness of the technique, we need to know
what can be analyzed and what type of measure is derived from the queue.

The notation used (see Figure 1.13) to describe the queue phenomenon
is as follows: The arrival distribution defines the arrival patterns of custom-
ers into the queue. These are defined by a random variable that defines the
interarrival time. A typically used measure is the Poisson arrival process,
defined as:

P (arrival time) - 1 - e -~ (1.1)

where the average arrival rate is ~. The queue is defined as a storage reser-
voir for customers. Additionally, the policy it uses for accepting and remov-
ing customers is also defined. Examples of queuing disciplines typically
used are first-in first-out (FIFO) and last-in first-out (LIFO). The last main
component of the queue description is the service policy, which is the
method by which customers are accepted for service and the length of the
service. This service time is described by a distribution, a random variable.
A typical service time distribution is the random service given by:

Ws(t) - 1 - e - ' t (1.2)

where t >> 0, and the symbol }.t is reserved to describe this common distri-
bution for its average service rate. The distributions used to describe the
arrival rate and service ratios are many and variable; for example, the expo-
nential, general, Erlang, deterministic, or hyperexponential can be used.
The Kendall notation was developed to describe what type of queue is being
examined. The form of this notation is as follows:

A/B/c/K/ m/Z (1.3)

I Chapter I

32 1.7 Overview of performance evaluation methods

where A specifies the interarrival time distribution, B the service time distri-
bution, c the number of servers, K the system capacity, m the number in the
source, and Z the queue discipline.

This type of analysis can be used to generate statistics on average wait
time, average length of the queue, average service time, traffic intensity,
server utilization, mean time in system, and various probability of wait
times and expected service and wait times. More details on this modeling
and analysis technique will be presented in Chapter 7.

Simulation modeling tools
Simulation as a modeler's tool has been used for a long time and has been
applied to the modeling and analysis of many systems~for example, busi-
ness, economics, marketing, education, politics, social sciences, behavioral
sciences, international relations, transportation, law enforcement, urban
studies, global systems, computers, factories, and many more. Simulation
lends itself to such a variety of problems because of its flexibility. It is a
dynamic tool that provides the modeler with the ability to define models of
systems and put them into action. It provides a laboratory in which to study
myriad issues associated with a system without disturbing the actual system.
A wide range of experiments can be performed in a very controlled environ-
ment; time can be compressed, allowing the study of otherwise unobserv-
able phenomena, and sensitivity analysis can be done on all components.

However, simulation modeling can have its drawbacks. Model develop-
ment can become expensive and require extensive time to perform, assump-
tions made may become critical and cause a bias on the model or even make
it leave the bounds of reality, and, finally, the model may become too cum-
bersome to use and initialize effectively if it is allowed to grow uncon-
strained. To prevent many of these ill effects, the modeler must follow strict
policies of formulation, construction, and use. These will minimize the bad
effects while maximizing the benefits of simulation.

There are many simulation forms available based on the system being
studied. Basically there are four classes of simulation models: continuous,
discrete, queuing, and hybrid. These four techniques provide the necessary
robustness of methods to model most systems of interest. A continuous
model is one whose processing state changes in time based on time-varying
signals or variables. Discrete simulation relies instead on event conditions
and event transitions to change state. Queue-based simulations provide
dynamic means to construct and analyze queue-based systems. They
dynamically model the mathematical occurrences analyzed in analytical
techniques.

1.7 Overview of performance evaluation methods 33

Simulation models are constructed and utilized in the analysis of a sys-
tem based on the system's fit to simulation. That is, before we simulate a
real-world entity we must determine that the problem requires or is amena-
ble to simulation. The important factors to consider are the cost, the feasi-
bility of conducting useful experimentations, and the possibility of
mathematical or other forms of analysis. Once simulation is deemed a via-
ble candidate for model implementation, a formal model tuned to the form
of available simulation tools must be performed. Upon completion of a
model specification, the computer program that converts this model into
executable form must be developed. Finally, once the computer model is
verified and validated, the modeler can experiment with the simulation to
aid in the study of the real-world system.

Many languages are available to the modeler for use in developing the
computer-executable version of a model~for example, GPSS, Q-gert, Sim-
script, Slam, AWSIM, and Network 2.5. The choice of simulation language
is based on the users' needs and preferences, since any of these will provide a
usable modeling tool for implementing a simulation. Details of these and
the advantages of other aspects of simulation are addressed in Chapter 8.

Testbeds as modeling tools
Testbeds, as indicated previously, are composite abstractions of systems and
are used to study system components and interactions to gain further
insight into the essence of the real system. They are built of prototypes and
pieces of real system components and are used to provide insight into the
workings of an element(s) of a system. The important feature of a testbed is
that it only focuses on a subset of the total system. That is, the important
aspect that we wish to study, refine, or develop is the aspect implemented in
the testbed. All other aspects have stubs that provide their stimulus or
extract their load but are not themselves complete components, just simu-
lated pieces. The testbed provides a realistic hardware-software environment
with which to test components without having the ultimate system. The
testbed provides a means to improve the understanding of the functional
requirements and operational behavior of the system. It supplies measure-
ments from which quantitative results about the system can be derived. It
provides an integrated environment in which the interrelationships of solu-
tions to system problems can be evaluated. Finally, it provides an environ-
ment in which design decisions can be based on both theoretical and
empirical studies.

What all this discussion indicates, again, is that, as with simulation and
analytical tools, the testbed provides a laboratory environment in which the

I Chapter I

34 1.7 Overview of performance evaluation methods

modeled real-world system components can be experimented with, studied,
and evaluated from many angles. However, testbeds have their limitations
in that they cost more to develop and are limited in application to only
modeling systems and components amenable to such environments. For
example, we probably would not model a complex distributed computing
system in a testbed. We would instead consider analytical or simulation
models as a first pass and use a testbed between the initial concept and final
design. This will be more evident as we continue our discussion here and in
Chapter 8, where testbeds are discussed in much greater detail.

A testbed is made up of three components: an experimental subsystem, a
monitoring subsystem, and a simulation-stimulation subsystem. The exper-
imental subsystem is the collection of real-world system components and/or
prototypes that we wish to model and experiment with. The monitoring
subsystem consists of interfaces to the experimental system to extract raw
data and a support component to collate and analyze the collected informa-
tion. The simulation-stimulation subsystem provides the hooks and handles
necessary to provide the experimenter with real-world system inputs and
outputs to provide a realistic experimentation environment.

With these elements a testbed can provide a flexible and modular vehicle
with which to experiment with a wide range of different system stimuli,
configurations, and applications. The testbed approach provides a method
to investigate system aspects that are complementary to simulation and ana-
lytical methods.

Decisions about using a testbed over the other methods are driven
mainly by the cost associated with development and the actual benefits that
can be realized by such implementations. Additionally, the testbed results
are only as good as the monitor's ability to extract and analyze the occurring
real-world phenomena and the simulation-stimulation component's ability
to reflect a realistic interface with the environment.

Testbeds in the context of local area networks can and have been used to
analyze a wide range of components. The limitation to flexibility in analyz-
ing very diverse structures and implementations has and will continue to be
the cost associated with constructing a testbed. In the context of a computer
system, the testbed must implement a large portion of the computer sys-
tem's computing hardware, data storage hardware, data transfer hardware,
and possibly network hardware and software to be useful. By doing this,
however, the modeler is limited to studying this single configuration. It will
be seen in later sections what these modeling limitations and benefits are
and how they affect our approach to studying a system.

1.7 Overview of performance evaluation methods 35

Operational analysis as a modeling tool
The final tool from a modeler's perspective is operational analysis, also
sometimes referred to as empirical analysis. In this technique, the modeler is
not concerned as much with an abstraction of the system, but with how to
extract from the real system information upon which to develop the same
analysis of potential solutions that is provided with the other models.

Operational analysis is concerned with extracting information from a
working system that is used to develop projections about the system's future
operations. Additionally, this modeling method can be used by the other
three modeling techniques to derive meaningful information that can be fed
into their analysis processes or used to verify or validate their analysis opera-
tions.

Operational analysis deals with the measurement and evaluation of an
actual system in operation. Measurement is concerned with instrumenting
the system to extract the information. The means to perform this uses hard-
ware and/or software monitors.

Hardware monitors consist of a set of probes or sensors, a logic-sensing
device, a set of counters, and a display or recording unit. The probes moni-
tor the state of the chosen system points. Typically, probes can be pro-
grammed to trigger on a specific event, thereby providing the ability to trace
specific occurrences within a system.

The logic-sensing subsystem is used to interpret the raw input data
being probed into meaningful information items. The counters are used to
set sampling rates on other activities requiring timed intervals. The last
component records and displays the information as it is sensed and reduced.
Further assistance could be added to analyze the information further. The
ability to perform effective operational analysis is directly dependent on the
hardware and software monitors' ability to extract information. The hard-
ware monitor is only as effective as its ability to be hooked into the system
without causing undue disturbance.

The problem is that the hardware-based monitor cannot, in a computer
system, sense software-related events effectively. The interaction of software
and system hardware together will provide much more effective data for
operational analysis to be performed. Software monitors typically provide
event tracing or sampling styles. Event trace monitors are composed of a set
of system routines that is evoked on specific software occurrences, such as
CPU interrupts, scheduling phases, dispatching, lockouts, I/O access, and
so on. The software monitor is triggered on these events and records perti-
nent information on system status. The information can include the event

I Chapter I

36 1.8 Performance metrics and evaluation criteria

1 .8

triggered at the time, what process had control of the CPU prior to the
event, and the state of the CPU (registers, conditions, etc.). These data can
reveal much insight as to which programs have the most access to the CPU,
how much time is spent in system service overhead, device queue lengths,
and many other significant events.

The combination of the hardware and software monitors provides the
analyst with a rich set of data on which to perform analysis. Typical compu-
tations deal with computing various means and variances of uses of devices
and software and plotting relative frequencies of access and use.

The measurements and computations performed at this level only model
present system performance. The operational analyst must use these measures
to extend performance and to postulate new boundaries based on extending
the data into unknown regions and performing computations based on the
projected data. Using these techniques, the analyst can suggest changes and
improvements and predict their impact based on real information.

P e r f o r m a n c e met r ics and e v a l u a t i o n c r i t e r i a

Selecting a computer system architecture and system support software
requires performance metrics and evaluation criteria. In order to generate
such information, a user must follow a methodology of selection that
defines the user needs, the motivations, and the environmental and tech-
nological boundaries. As with the purchase of any product, the purchaser
should identify how the product (in this case a computer system) will be
used. This first element of the selection process is the most important,
since if we don't define the needs and uses properly, the remaining tasks
will have a predefined built-in error. Therefore, the prospective buyer
should compile a wish list of all potential uses. For example, the list may
include the following:

• Multiple processors

• Distributed file server

• Redundant disk drives

• Word processing

• Spreadsheet analysis

• Electronic mail

• Remote job entry

• Real-time control

1.8 Performance metrics and evaluation criteria 37

• Interactive log on and execution or results

[] Physical installation layouts

• Maximum node count and types

• Reliability considerations

• Network management

• Factory automation

• Computer types

• Video, audio, or both

• Interconnection to existing MANs or WANs

• Resource sharing

• Distributed computing

• Very large database

From this wish list the user must generate processing requirements,
communications transfer, and management requirements. For example,
given that we have N computers, which must be able to simultaneously
transfer data to other sites, we have given a requirement for bandwidth (or
an I / 0 rate maximum) and concurrency of access, both of which affect
protocols, topology, and media requirements, to name a few. This set of
processing requirements, communications transfer, and management
requirements can now be used to aid us in the other phases. The second
portion of the methodology is to develop a motivational purpose for the
computer system: to define why we want one in the first place. For example,
we may want to compete with our competitors, who are offering better or
extended service to their customers by the use of an enhanced backplane, to
have an edge in information availability to enhance the corporation's deci-
sion-making ability, or to provide better control or use of the company's
computing resources. The motivation for computing system selection will
also provide our prospective buyer or designer with more performance and
evaluation criteria upon which to base a decision.

The next phase within the computer systems evaluation methodology
is to assess the environmental and technological aspects in which the com-
puter system must fit. For example, is the computer system and its inter-
connection subsystem intended for implementation in a dirty, hot, cold,
or varying environment? Will the computer system or some of its compo-
nents be subjected to stress and strain from natural elements such as wind,
rain, snow, or lightning? Will the computer system or its components be

I Chapter I

38 1.8 Performance metrics and evaluation criteria

put in an air-conditioned computer room or be spread out throughout a
building? Is the building new construction or old construction? Will com-
puter systems interconnects need to penetrate floors and go up risers? If
so, what is the prevailing fire code? Will the computer system link many
buildings together? If so, will interconnections be strung overhead or be
poled from building to building? Will wiring be buried? Will it go under
water or within water-carrying pipes?

From a technological viewpoint, the computer system may need to
interconnect to a diverse set of present company assets and also be able to
link planned new resources. These resources have their own peculiarities in
terms of electrical specifications, pin count, and makeup. These peculiari-
ties will also map into requirements on the interface equipment and soft-
ware. The computer system's interconnect components must be able to
interface these devices directly or via an intermediate device, which should
be an off-the-shelf component if possible.

Once all these initial analyses have been completed and their data com-
piled, the prospective purchasers or designers should have a large volume of
data from which to drive the computer systems requirements.

The next question is: How to use these data to assist in the selection? Do
you compile these data into a model of a prospective computer system and
use this information to derive analytical and qualitative analysis of the pro-
spective computing system and then compare these results to other known
product parameters? Or is a simulation model more in line? In any case, a
means of evaluating these data must be provided and must be able to use
data that have been collected.

The collected data can be divided into quantitative and qualitative
classes. That is, there is one set of data from which specific performance
measures can be derived and another from which only subjective measures
can be derived. The quantitative data sets should be used to build a model
of the proposed system and derive composite measures to evaluate given
prospective computer systems architectures and configurations. The meth-
ods used for this analysis are analytical and simulation models. The testbed
and operational analysis methods may not be viable to test alternatives early
on in systems analysis.

2
Computer Data Processing
Ha rdwa re Arch itectu re

This chapter defines the hardware and software components used in com-
puter-based applications. Included here is the fundamental composition of
computers (CPU, memory, I/O), secondary storage devices, other periph-
eral input and output devices, multiprocessing architectures, and net-
works. Our discussions are tailored to focus on the architecture and use of
these components as they relate to computer management of persistent
data.

2.1 I n t r o d u c t i o n

A computer-based application resides on a computer system. The computer
system provides the physical medium on which the application data are
stored and the processing capacity to manipulate stored data. A processing
unit of a computer system consists of five main elements: the memory, an
arithmetic logic unit, an input unit, an output unit, and a control element.
The memory unit stores both the data for programs and the instructions of
a program that manipulates stored data.

The program's individual elements or instructions are fetched from the
memory one at a time and are interpreted by the control unit. The control
unit, depending on the interpretation of the instruction, determines what
computer operation to perform next. If the instruction requires no addi-
tional data, the control indicates to the arithmetic logic unit what operation
to perform and with what registers. (See Figure 2.1.)

If the instruction requires additional data, the control unit passes the
appropriate command to the memory (MAR, memory address register) to
fetch a data item from memory (MDR, memory data register) and to
place it in an appropriate register in the ALU (data register bank) (Figure
2.2). This continues until all required operands are in the appropriate

39

40 2. I Introduction

'1 Input A

"I Input B

Condition
Register

Hgure 2.1

=-] OutputC I ~

To Control
Unit

Basic processing unit of a computer.

registers of the ALU. Once all operands are in place, the control unit
commands the ALU to perform the appropriate instruction~for exam-
ple, multiplication, addition, or subtraction. If the instruction indicated
that an input or output were required, the control element would trans-
mit a word from the input unit to the memory or ALU, depending on the
instruction. If an output instruction were decoded, the control unit
would command the transmission of the appropriate memory word or
register to the output channel indicated. These five elements comprise the
fundamental building blocks used in the original von Neumann computer
system and are found in most contemporary computer systems in some
form or another.

In this chapter we will examine these fundamental building blocks and
see how they are used to form a variety of computer architectures.

l=.
Y

Figure 2.2

MAR 'i =i Memory

CPU memory access.

MDR

IR

Data
reg

/
Operands and Results

cPu I Control ~ +

2.2 Computer hardware architecture 41

2.2 C o m p u t e r hardware archi tecture

A computer system is comprised of the five building blocks previously
described, as well as additional peripheral support devices, which aid in data
movement and processing. These basic building blocks are used to form the
general processing, control, storage, and input and output units that make
up modern computer systems. Devices typically are organized in a manner
that supports the application processing for which the computer system is
intended~for example, if massive amounts of data need to be stored, then
additional peripheral storage devices such as disks or tape units are required,
along with their required controllers or data channels.

A computer system's architecture is constructed using basic building
blocks, such as CPUs, memories, disks, I/O, and other devices as needed.

To better describe the variations within architectures we will discuss
some details briefly~for example, the arithmetic logic unit (ALU) and the
control unit are merged together into a central processing unit or CPU. The
CPU controls the flow of instructions and data in the computer system.
Memories can be broken down into hierarchies based on nearness to the
CPU and speed of access~for example, cache memory is small, extremely
fast memory used for instructions and data actively executing and being
used by the CPU and usually resides on the same board or chip as the CPU.
The primary memory is slower, but it is also cheaper and contains more
memory locations. It is used to store data and instructions that will be used
during the execution of applications presently running on the CPU~for
example, if you boot up your word processing program on your personal
computer, the operating system will attempt to place the entire word proc-
essing program in primary memory. If there is insufficient space, the operat-
ing system will partition the program into segments and pull them in as
needed.

The portion of the program that cannot be stored in memory is main-
tained on a secondary storage device, typically a disk drive. This device has
a much greater storage capacity than the primary memory, typically costs
much less per unit of storage, and has data access times that are much
slower than the primary memory. A more recent external storage device is
the CD-ROM drive. This device, in its read-only mode (ROM), allows
users only to extract information from the drive. In the more recent read/
write variety the device can be used somewhat like the traditional tape
drive. An additional secondary storage device is the tape drive unit. A tape
drive is a simple storage device that can store massive amounts of da t a~
again, at less cost than the disk units but at a reduced access speed. Other

I Chapter 2

42 2.3 CPU architectures

2 . 3

components of a computer system are input and output units. These are
used to extract data from the computer and provide these data to external
devices or to input data from the external device. The external devices could
be end-user terminals, sensors, information network ports, video, voice, or
other computers.

In the following sections we will examine each of the components of a
computer system in more detail, as we examine how these devices can be
interconnected to support data processing applications.

CPU a r c h i t e c t u r e s

The central processing unit (CPU) is the brains of a computer system. The
CPU consists of the arithmetic logic unit (ALU) and the control unit, as
indicated previously. The ALU can come in a variety of configurations~
from a single simple unit, shown in Figure 2.1, that performs simple adds,
subtracts, increments, decrements, load, and store, up to extremely complex
units that perform operations such as multiply, divide, exponentiation, sine,
cosine, and so on. The primary operation of the ALU is to take zero or
more operands and perform the function called for in the instruction. In
addition to the ALU, the CPU consists of a set of registers to store operands
and intermediate results and to maintain information used by the CPU to
determine the state of its computations. There are registers for the status of
the ALU's operation, for keeping count of the instruction to be performed
next, to keep data flowing in from memory or out to memory, to maintain
the instruction being executed, and for the location of operands being oper-
ated on by the CPU.

Each of these registers has a unique function within the CPU, and each
is necessary for various classes of computer architectures. A typical minimal
architecture for a CPU and its registers is shown in Figure 2.3. This archi-
tecture consists of a primary memory connected to the CPU via buses that
use a memory address register and memory data register to address a loca-
tion in memory and transfer the contents of the location from the memory
into the memory data register or to transfer the contents of the memory
data register into memory. There are registers in the CPU for instructions
(the instruction or IR register), instruction operands, and results of opera-
tions; a location counter (which contains either the location in memory for
instructions or operands, depending on the decoding of instructions); a
program counter or PC (which maintains the location of the next instruc-
tion to perform); and status registers.

2.3 CPU architectures 43

L

Figure 2.3
The CPU and its

associated registers.
M
A
R

PC

Memory
Array

CPU

Registers

I M
; D

R

IR

The CPU also contains the control unit. The control unit uses the status
registers and instructions in the instruction register to determine what func-
tions the CPU must perform on the registers, ALU, and data paths that
make up the CPU. The basic operation of the CPU follows a simple loop
(unless interrupts occur that alter the flow of execution). This loop is called
the instruction execution cycle (Figure 2.4). There are six basic functions
performed in the instruction loop: instruction fetch, instruction decode,
operand effective address calculation, operand fetch, operation execution,
and next address calculation.

Instruction fetch uses the program counter register to point to the next
instruction stored in memory. The address is placed in the memory address
register and the instruction is then gated (electronically signaled by the
CPU control element to transfer the data) from the data memory into the
memory data register. The instruction then flows into the instruction regis-
ter under the direction of the control unit.

Instruction
Fetch

Instruction
Decode

Operand
Address

Computation
Operand

Fetch

Figure 2.4

Next Instruction i
Address

Computation J"

Instrumentation execution cycle.

Instruction
Execution

I Chapter 2

44 2.3 CPU architectures

2.3.1

Once an instruction is in the instruction register, the second cycle in
instruction execution can be performed---decode. To decode the instruc-
tion the control unit must recognize what type of instruction is being
requested--for example, does the instruction require additional data from
memory to perform its intended function, or does the instruction involve
only ALU resident registers?

The third cycle within instruction execution is the operand effective
address calculation. This phase of instruction execution operates by extract-
ing operand address information from the instruction and then performing
some form of calculation (e.g., base plus offset) with this information to
form a physical address in memory. We will discuss the various types of
addressing in later sections of this chapter. Once the type and number of
operands are determined, the ALU can acquire the operands and then set
up to perform the decoded instruction.

Once we have a physical address, we can fetch the operand (the fourth
function of the instruction execution cycle). To fetch the operand the effec-
tive address is placed in the memory address register, and the control gates
the contents pointed to by the memory address register into the memory
data register. The extracted operand is then gated from the memory data
register into an ALU register. If an additional operand is needed, the two
cycle steps for operand fetch would be repeated to get the remaining
operand. With all required operands in ALU registers the instruction
requested can now be performed. The instruction execution is controlled by
the CPU control unit. The control unit signals to the ALU to perform the
instruction~for example, if an add is requested the ALU would add the A
and B registers and place the result in the C register. After the instruction is
completed the last step in the instruction execution cycle can proceed.

The next address calculation uses the program counter and/or any perti-
nent computation result (such as a go to-type instruction) to determine
where in the memory the next instruction is to be found. The normal mode
of address calculation is to increment the contents of the program counter.
With the new address the instruction cycle begins once more.

This execution sequence represents the basic functions found in all com-
puter systems. Variations in the number of steps are found based on the
type and length of the instruction.

Instruction types

Based on the number of registers available and the configuration of these
registers several types of instruction are possible~for example, if many reg-

2.3 CPU architectures 45

isters are available, as would be the case in a stack computer, no address
computations are needed and the instruction, therefore, can be much
shorter both in format and execution time required. On the other hand, if
there are no general registers and all computations are performed by mem-
ory movements of data, then instructions will be longer and require more
time due to operand fetching and storage. The following are representative
of instruction types:

0-address instructions--This type of instruction is found in machines
where many general-purpose registers are available. This is the case in
stack machines and in some reduced instruction set machines.
Instructions of this type perform their function totally using registers.
If we have three general registers, A, B, and C, a typical format would
have the form:

R[A] < - - R[B] operator R[C] (2.1)

which indicates that the contents of registers B and C have the opera-
tor (such as add, subtract, multiply, etc.) performed on them, with
the result stored in general register C. Similarly, we could describe
instructions that use just one or two registers as follows:

R[B] < - - R[B] operator R[C] (2.2)

o r

operator R[C] (2.3)

which represents two-register and one-register instructions, respec-
tively. In the two-register case one of the operand registers is also used
as the result register. In the single-register case the operand register is
also the result register. The increment instruction is an example of
one-register instruction. This type of instruction is found in all
machines.

1-address instructions~In this type of instruction a single memory
address is found in the instruction. If another operand is used, it is
typically an accumulator or the top of a stack in a stack computer.
The typical format of these instructions has the form:

operator M[address] (2.4)

where the contents of the named memory address have the named
operator performed on them in conjunction with an implied special
register. An example of such an instruction could be as follows:

I Chapter 2

46 2.3 CPU architectures

Move M[100] (2.5)

o r

Add M[100] (2.6)

which moves the contents of memory location 100 into the ALU's
accumulator or adds the contents of memory address 100 with the
accumulator and stores the result in the accumulator. If the result
must be stored in memory, we would need a store instruction:

Store M[100] (2.7)

1-and-l/2-address instruct ions~Once we have an architecture that
has some general-purpose registers, we can provide more advanced
operations combining memory contents and the general registers.
The typical instruction performs an operation on a memory location's
contents with that of a general register~for example, we could add
the contents of a memory location with the contents of a general reg-
ister, A, as shown:

Add R[A], M[100] (2.8)

This instruction typically stores the result in the first named location
or register in the instruction. In this example it is register A.

2-address instructions Two address instructions utilize two memory
locations to perform an instruction~for example, a block move of N
words from one location in memory to another, or a block add. The
move may appear as follows:

Move N,M[IOO],M[IO00] (2.9)

2-and-l/2-address instructions This format uses two memory loca-
tions and a general register in the instruction. Typical of this type of
instruction is an operation involving two memory locations storing the
result in a register or an operation with a general register and a memory
location storing the result on another memory location, as shown:

R[A]-- >> M [100] operator M[1000]

M [1 0 0 0] - - >> M [100] operator R[A] (2.10)

3-address instructions~Another less common form of instruction
format is the three-address instruction. These instructions involve

2.3 CPU architectures 47

2.3 .2

2 .3 .3

three memory locations~two used for operands and one as the
results location. A typical format is shown:

M [2 0 0] - - >> M[100] operator M[300] (2.11)

Ins t ruc t ion archi tectures

There are numerous ideas about how to organize computer systems around
the instruction set. One form, which has come of age with the new power-
ful workstations, is the reduced instruction set computer (RISC). These
machines typically have a small number of instructions that are simple and
that take a relatively short equal number of clock cycles per instruction.
Each of the instructions is highly optimized and operates efficiently.
Machine-coded programs are typically longer, but the actual code may run
faster due to the highly optimized and regular code.

On the other side of the spectrum are architectures built around com-
plex instructions. These computers are referred to as complex instruction
set computers, or CISC. These machines use instructions that each perform
some complex functionmfor example, a matrix multiply or a complex
number manipulation trigonometric function. Each instruction may take
numerous machine cycles to perform and may itself be coded in lower-level
microcode. Programs written in this type of architecture may be shorter, but
may not take any less time and in some cases may even take more time due
to their complexity.

Memory-address ing schemes

Just as there are a variety of instruction formats, there are also numerous
ways in which to determine the address of an operand from an instruction.
Each form of address computation has its benefits in terms of instruction
design flexibility. There are six major types of addressing computation
schemes found in computers: immediate, direct, index, base, indirect, and
two-operand. We will briefly examine these.

Immediate~Immediate addressing is not really an addressing mode
into memory; rather, it is an instruction format that directly includes
the data to be acted on as part of the instruction. This form of oper-
and access simplifies the instruction execution cycle since no addi-
tional fetches are required.

Direct~For direct addressing there is no operand address decoding
required. The instruction operand address field contains the physical

I Chapter 2

48 2.3 CPU architectures

2.3.4

address of the operand. The control simply places the operand
address field into the memory address field and the operand is fetched
from memory.

Index~A refinement of direct addressing is indexed addressing. In
this form of operand address decoding, the operand address field is
added to the contents of a designated register to compute the effective
physical address.

Base--Base addressing expands on this concept. A base register con-
tains an address base, which is added to the indexed address to form
an effective physical address. This scheme is used in computer sys-
tems for addressing and partitioning the memory into segments.
When more than one base register is available in an architecture, we
can more easily manage partitioned memory for multiple users and
systems control software.

IndirectmFor this address computation scheme we use the contents
of a specified memory location as the effective address. The control
fetches the contents of the named memory location and uses this as
the memory address register pointer to extract the actual operand.

Two-operand addressing~In two-operand addressing any combina-
tion of the above schemes could be used together to access multiple
operands for an instruction.

Memory architectures

Memory storage can also have an architecture (configuration) that can aid
in the storing and fetching of memory contents. Generally a memory is
organized as a regular structure, which can be addressed using the memory
address register and have data transferred through the memory data register
(Figure 2.5). The memory is accessed through the combination of address-
ing and either drivers or sensors to write or read data from or to the mem-
ory data register. Memory structures are built based on the organization of
the memory words. The simplest form is a linear two-dimensional struc-
ture. Each memory location has a unique word line, which, when ener-
gized, gates the N-bit lines' (where N is the size of a data word in the
computer) contents into the memory data register.

A second organization is the two-and-a-half-dimension architecture. In
this memory structure the memory words are broken up into separate data
planes, each consisting of one bit for all memory locations. To access a word
the n planes must be energized with the composite X and Y coordinates,

2.4 I/0 architectures 49

le"

Figure 2.5
Memory access

mechanism. Memory
Array

OPU

7

which correspond to the wanted memory word. The individual plane driv-
ers gate the proper bit into the memory data register for the addressed
memory word. Other data organizations have been derived and we leave it
to the interested reader to investigate these.

2.4 I10 archi tectures

Input and output mechanisms are used by computer systems to move infor-
mation into or out of the computer's main memory. A typical sequence for
performing this movement of information from or to an input and output
device is as follows:

1. Select an I/O device.

2. Busy~wait until the device is ready.

3. Transfer a word from the device I/O buffer into the CPU accu-
mulator.

4. Transfer the contents of the accumulator into a memory location.

5. Compute the next memory location for I/O data.

6. Go back to step 2 and repeat until all data are transferred.

The above sequence assumes that all data must pass through the CPU to
control the flow.

If, instead, we have the ability to place or extract data directly to or from
memory without passing through the CPU, we can get further improve-
ments in performance and a refined architecture. To allow for the CPU to
be taken out of the I/O loop we need an additional control element. For I/
O to be controlled directly and bypass the CPU en route to memory
requires added control; this controller is referred to as a direct memory

I Chapter 2

50 2.5 Secondary storage and peripheral devices and architectures

2 . 5

access (DMA) device. The DMA device allows us to alter what the CPU
must do. The CPU issues a begin I/O command to the DMA control unit
with the address of the data block to be transferred. The CPU is now free
from added input and output overhead and can be relieved to do some
other processing or simply wait until the DMA responds that the transfer is
complete. To effectively provide this notification an added capability is
required of the CPU: an interrupt capability. The interrupts can be of sev-
eral types, as follows:

• Interrupts can be immediate, causing the CPU to halt and service the
interrupt.

• Interrupts can be deferred, allowing the CPU to service them when it
is ready.

• Interrupts can be prioritized, allowing for prompt service to critical
actions occurring in the system.

Secondary storage and peripheral devices
and architectures

Memory storage volume is always looked at as an important feature when
one thinks about acquiring a computer system. Whether the system is a
desktop personal computer, a workstation, or a large special-purpose proc-
essor, data storage has always been a major selling point and a requested fea-
ture. As the price of memory has come down, the size of memory purchased
for all classes of computers has gone up. One nonchanging feature is the
general structure of the memory hierarchy. No matter how sophisticated or
how simple the systems are, we will find that they all have something in
common. The designers of the systems have organized data storage to max-
imize performance and provide adequate information volume storage.

The storage hierarchy (Figure 2.6) consists of a variety of data storage
types that respond to the information needs of the system. From the high-
est-speed element (a cache) to the slowest-speed elements (archival devices),
the tradeoff is the cost and speed of the storage medium per unit of mem-
ory. What is being attempted is to match the speed of the computer proces-
sor with the highest-speed devices within a reasonable cost curve. In the
following sections we will examine the information storage devices outside
of the central processing unit realm. This leaves out the high-speed expen-
sive cache memories and primary memory. We will begin our review by
looking at tape devices, magnetic disks, and archival devices.

2.5 Secondary storage and peripheral devices and architectures 51

Figure 2.6 Registers Speed
Memory hierarchy. I

I Cache

I Primary Mem I
. t I

Tape

Fast I

I Sk,w]

Cost

[
Expensive I

Inexpensive

Size

I S, a" I

I 'ar e I

Volatile

m
1

Non-volatile

2.5.1 Tape storage devices

Magnetic tape information storage provides a low-cost, high-density storage
medium for low-access or slow-access data. A tape unit consists of the stor-
age medium (a spool of magnetic material formed into a tape), access elec-
tronics, and mechanical components (see Figure 2.7). A tape unit operates
in a simple manner. Data on a tape can only be accessed in sequential form.
Data must be located on the tape and then removed from the tape. A tape
drive mechanically can rewind a tape, sequentially search the tape, and stop
the tape. To access data stored on a tape an I/O program would have to
command the tape unit to rewind the tape and then sequentially search the
tape from the beginning until a match is found. Once found the addressed
data can be removed.

L
w-

Figure 2.7
Schematic diagram
of a magnetic tape

storage system.

Forward

. . . .

IR wl
heads

.0

I Chapter 2

52 2.5 Secondary storage and peripheral devices and architectures

2.5.2

IF"

Figure 2.8
Schematic diagram

of a magnetic or
optical disk system.

To improve the performance of tape units, additional storage semantic
access schemes have been devised. The beginning of the tape is reserved to
maintain pointers to the start points of files stored on the tape. Instead of
sequentially searching the entire tape, the controller searches the tape's
directory, finds out where on the tape (e.g., how many feet from the direc-
tory region) the data are stored, and then uses this information to fast for-
ward to the general location where linear search can resume. This allows for
a speedup in the access and transfer of the data stored on the device~an
important feature when a database management system is involved.

Magnetic and optical disk storage devices

An improvement over tape storage is the random access disk units, which
most users of computers are aware of. The disks can be removable or inter-
nal fixed forms. A disk unit is typically comprised of one or more of the
following: a controller, a movable access arm, and a magnetic storage
medium in the form of a rotating platter (see Figure 2.8). The platter(s) is
mounted on a spindle, which rotates at some given speed. The platter is
organized into a set of rings called tracks and a partitioning of these tracks
called sectors.

The movable arm contains the sensing and driving hardware to allow for
the reading and writing of the magnetic or optical data stored on the platter.
The controller orchestrates the access of the stored data based on a variety of
access algorithms, only the simplest of which we will discuss here. The sim-
plest form of disk access is that found in the sequential search paradigm.
The disk controller knows on what sector and track a data file is stored and
using this information the disk controller must perform some simple func-
tions, such as moving the access arm out to the track the data are stored on
(this is called seeking and the time it takes is called the seek time).

Once on the proper track, the controller must find the proper sector
where the data are stored. This requires the controller to recognize the start
of the sector markers on the track and to find the appropriate sector as it

Sector
Disk Plotter Track

Read/Write
Head

Disk
Controller

; I/O
to Computer

2.5 Secondary storage and peripheral devices and architectures 53

2.5.3

passes under the access arm's sensors. The time required for this is called the
rotation time. Once the arm is over the proper sector and track, the data
can be transferred from the medium to the controller. This time is called
the transfer time.

So, for the average access of a data file on a disk we must take the follow-
ing time:

T - t { s e e k } + t{rotate}+ t{transfer} (2.12)

One can readily see from this that the time to access data on a disk unit
is greater than that of the primary memory and would typically be less than
the time to extract a similar amount of data from a tape unit.

The density of the disk is based on the medium used to store the data.
Disk units built on a magnetic medium are getting fairly dense, but they are
approaching their limits. In addition, the medium is susceptible to failures
due to airborne pollutants and magnetic fields. To improve this the industry
has developed optical disk technology. This technology replaces the mag-
netic medium with an optical medium where data are stored as reflective
optical media. The medium is similar to what is seen in television optical
disk players.

Archival storage devices

Even with all of the disk and tape technology available, not all required data
for a computer system can be kept on line. To keep data that are only occa-
sionally needed we require archival storage devices. Archival storage devices
typically have removable media. If you have access to the new multimedia
systems or have a personal computer or workstation for use, you have inter-
acted with a form of archival device: the removable disk, compact disk, or
tape cartridge. This represents the most visible form of archival storage
device. Data are loaded into the system as needed and removed when com-
pleted. The most recent archival storage device developed, the CD read/
write drive, has begun to blur the distinction between archival and on-line
storage. Many systems use CD drives as enhanced storage for long-term
applications memory. Some systems have even gone to the length where
these represent the primary on-line storage.

Other, more elaborate, archival systems have been developed that use a
combination of mechanical and electrical systems to port media on line and
off line. These are similar to compact disk magazines and resemble juke-
boxes. When a particular data item is needed, its physical storage location is
found, and the medium is placed into the active storage hierarchy on line

I Chapter 2

54 2.6 Distributed and network architectures

where the archived data can now be accessed. Again, this is a useful feature
when we are talking about a very large database.

2 .6 D i s t r i b u t e d and n e t w o r k a r c h i t e c t u r e s

Not all systems consist of one computer. Modern systems used in academia,
business, and government are more frequently being interconnected to
form information-sharing systems or multiprocessing systems. These net-
works and computer interconnects are constructed by providing yet another
input and output path for the computer to receive or send information.
The input and output unit and controller for the network peripheral device
are called a network interface unit (NIU) or processor bus. The function of
these interface units and buses is to provide a seamless (typically) way for
one computer to interact with another as if they were located in the same
machine. Networks come in a variety of configurations~for example, the
NIUs can be configured as a single global bus topology, as a central star or
hub topology, as a ring topology, or as some hybrid. When interconnected
in such ways over a relatively small distance (a single floor, building, or
small organization), we have what is referred to as a local area network, or
LAN. ALAN is used to interconnect a subunit of some larger organization
or to interconnect a small number of users who need to share information.
Beyond a LAN we have wide area networks and the Internet. Multiproces-
sor systems are interconnected using similar concepts. They are combined
using shared buses or shared memory.

2.6.1 C o m p u t e r t o n e t w o r k in ter face e lements

The network can be formed in many ways: It could have a central switching
element, which could be a stand-alone computer acting as a router (see Fig-
ure 2.9a); it could share a central storage repository; or it could be con-
nected using intelligent interface units into a communications medium.

Figure 2.9a
Multiprocessor

computer system
with distributed

memory.

Memory

I M21 Central
Switch

• I I ol

Processors

2.6 Distributed and network architectures 55

Figure 2.9b
Multiprocessor I P I I

computer system
with Simms I Pa/i

memory.
P3 I I

Figure 2.9c
Multiprocessor

computer system
with private local

memory.

Memory

1!41

[Pn]

, ,

The configuration used depends on the degree of synchronization and con-
trol required, as well as the distribution between computers.

The tightly coupled multiprocessor uses a shared central memory as the
interconnection device (see Figure 2.9b). All processors on the network use
the central memory to access and pass data among the interconnected proc-
essors. This distributed architecture provides an easy means to coordinate
actions between processors. A distinction is that each processor does not
have any local memory; all instructions and data are acquired from the
shared memory bank. An improvement over this architecture is the loosely
coupled multiprocessor. In this architecture each processor has some pri-
mary local memory and is interconnected via a shared secondary storage
system. Each processor has its own operating system and local storage for
programs and local data. Coordination occurs through the passing of data
from one computer system to another through the shared storage device.
The data exchange and signaling of transfers are handled through mecha-
nisms such as messages or coordination of shared storage regions in the sec-
ondary storage medium.

©

I

Switch

©

I Chapter 2

56 2.6 Distributed and network architectures

Figure 2.9d
Multiprocessor

computer system
with a

communications
subsystem.

NIU I

I
I

I Nlu I I,,u I

Communications Media

2 . 6 . 2

I,,u I I,,u I
P' NIU=Network Interface Unit

A further refinement removes the shared secondary storage device and
replaces this with a communications switching element. The switch allows
each of the disjoint computer systems to address and send information
among themselves. Each computer system has its own local memory and
can have additional secondary storage devices (see Figure 2.9c). Each com-
puter communicates with interconnected systems by addressing the called
system, forming a connection, and then initiating a conversation. This is
analogous to how we converse over a phone system. The switching-based
distributed system requires additional software at each site to coordinate
a c c e s s .

A further enhancement is to remove the central switch and replace it
with a shared communications path (see Figure 2.9d). The path could be a
shared bus, a ring, or a star medium. The interconnected computers are
each required to have a medium interconnect unit, which controls the
access to the medium. This architecture requires further control software
and policies to allow for control over the shared medium. Only one com-
puter at a time can be accessing the medium and sending information. We
will see in subsequent sections how this software operates.

N e t w o r k b r i d g e s

We can further expand on the local area network or multiprocessing sys-
tems by introducing another networking control unit. To interconnect mul-
tiple networks or multiprocessing systems requires a bridge. (See Figure
2.10.) A bridge can be viewed as a speed-matching device to synchronize

Figure 2.10

ng

Connecting
networks through a

bridge.

2.7 Network topologies 57

the traffic between networks. Bridges typically contain software and hard-
ware to buffer incoming messages, to determine and rectify variances in
addresses on interconnected networks, and to forward messages to the
addressed unit. Routers and switches found in most medium to large net-
work configurations fall into this category of device.

2.7 N e t w o r k topologies

2.7.1

As mentioned earlier, there are a variety of interconnection topologies used
in local area networks. They are the global bus, the ring, and the star topol-
ogies.

Global bus topo logy

A global bus is a single shared medium, which can only be used by one
device at a time. The global bus is controlled by a variety of schemes. One
of the simplest is the carrier sense multiple access scheme. This protocol
works by using two principles: first, the delay taken to send a bit from one
end of the bus to the other and, second, the ability to send and then listen
to the medium. The protocol in its simplest form operates as follows:

• Listen to the bus~ifbusy, wait; if clear, send data.

• Once data have been sent, continue to listen and compare what is
heard against what was sent.

I Chapter 2

58 2.7 Network topologies

2.7.2

• If what was sent matches what is heard for the entire end-to-end com-
munications time, then I control the bus and can continue sending a
message (the assumption here is that if I wait for an end-to-end trans-
fer time, then all other nodes must have heard my message and will
now delay if they wish to transmit).

• When complete, go back into listen mode.

• If I do not hear the same message that I sent, then a collision occurred
on the bus. I immediately stop transmission and delay before trying
to send again.

By using this simple protocol, devices on the network can send and
receive messages fairly efficiently. The problem with this protocol is that it
inherently wastes media bandwidth in the sending and sensing process.

A different approach to control access to a global bus is based on a reser-
vation scheme. In a reservation scheme the available bandwidth is broken up
into chunks, which are then allocated to various devices on the network. To
access the medium to transmit data a device must first wait until its reserva-
tion slot becomes available. There are numerous schemes through which the
slots can be allocated and controlled. The problem with this approach is that
it is inherently static. The slots cannot be reallocated easily from one system
to another. Numerous variations on this protocol have been developed and
implemented in systems with varying degrees of success.

Ring topology

The ring topology links the computer systems in the network in a continu-
ous ring. Messages flow around the network from one computer system to
another until they return to the sender. (See Figure 2.11.) This topology
allows for better utilization of the medium. The medium can be broken
into slots that flow around the network. The slots are marked as either
empty or full depending on whether or not a message is present in the slot.
To send a message a computer senses the slot beginning and checks whether
it is full or empty. If the slot is full, the sender waits for the next slot. If the
slot is empty, the sender inserts its message. The problem with this scheme
is that the slot size limits the size of messages that can be sent in a single
slot. Variations on this protocol have alleviated this problem, but have their
own set of problems. A different protocol, which allows for variable-size
messages, is the insertion ring protocol. This protocol requires hardware
support to buffer incoming messages that would interfere with a sender's
message. A computer that wants to send a message on the network can

2.8 Computer architectures 59

Figure 2.11

I

simply send the message if no other message traffic is sensed by the sender.
If another message should then arrive at the sender's input during the trans-
mission of its own message, the sender simply queues up the arriving mes-
sage and appends it to the sending message when it has completed.

2 .7 .3 Star topology

The star topology has the physical layout of a star. It has a central network
processor at its center, with nodes arranged around and connected to the
central point. Wiring costs can be considerably higher with this topology.

2.8 C o m p u t e r archi tectures

To continue our earlier discussion of computer configurations we will
examine how the various components can be interconnected to form a
computer system. The basic premise of these architectures is to speed up the
movement of data to allow for increased processing. The basic architecture
has the CPU at the core with a main memory and input/output system on
either side of the CPU (see Figure 2.12). In this architecture all data flows
into, out of, and through the CPU under the control of the CPU. This rep-
resents the basic von Neumann architecture described earlier. Refinements
of this architecture have been designed to remove the CPU from the burden
of controlling all data movement.

I Chapter 2

60 2.8 Computer architectures

IL.
I v

Figure 2.12
Basic computer

architecture.

{
~ 1

I Printer I

I/0 CPU Memory

2.8.1

2.8.2

b~

r

Hgure 2.13
Computer

architecture
utilizing an I/O

controller.

Central I10 contro l ler architectures

To remove the CPU from the central function of coordinating all data flow
the central input/output controller architecture was developed (see Figure
2.13). This architecture has the IOC at the core of the system with the
CPU, main memory, and I/O devices connected to the IOC hub. To trans-
fer data from the main memory to an I/O device the CPU would command
the IOC to initiate the transfer. The data would flow under control of the
IOC from the main memory through the IOC to the named output device.
The problem with this architecture is that the CPU must also use the IOC
to transfer data from the main memory to the CPU. This results in poten-
tial reduction in CPU performance. Variations of this architecture have a
secondary path to the main memory for better service to the CPU.

M e m o r y - m a p p e d architectures

The main memory is the location in the computer system where all data
and instructions flow in and out. As a consequence of this, an architecture
was proposed that had the main memory as the central element (see Figure
2.14). The main memory sits between the CPU and I/O. All data flow
between the I/O and CPU goes through the memory. A variety of control
schemes have been devised to control the access to the shared memory. One

CPU
I/0

Controller
HUB

~] terl

Memory

2.8 Computer architectures 61

Figure 2.14
A computer system
organized around

memory.

2.8.3

2 .8 .4

tL.
v

Figure 2.15
Unibus

architecture.

CPU Memory
I/O

Controller
HUB L

~.,~ Printer i

is to partition the memory into regions: one region for the CPU to use and
one for each of the I/O devices on the system. To send data to an I/O device
the CPU simply addresses the memory location for the device. By doing
this the device's input register is directly loaded with the data. To the CPU
the I/O transfer is the same as a write to main memory.

Common bus archi tecture

An architecture that is similar to the global network architecture previously
described is the unibus architecture. The unibus or global bus architecture
uses a single communications bus to interconnect memory, CPU, and I/O
devices (see Figure 2.15). These elements are connected to the bus and
communicate with each other using addresses over the bus. As in the net-
work case, this design will result in reduced utilization if conflicts between
bus accesses are frequent. This architecture was successfully used in numer-
ous early digital equipment computers and is still in use in many systems.

Dual bus arch i tec ture

A refinement on the single bus architecture is the dual bus architecture (Fig-
ure 2.16). In this architecture the central hub of the computer is a dual bus
configuration: one bus for memory traffic and one for I/O traffic. All
devices, CPU, main memory, disks, tapes, terminals, and direct memory
access devices are connected to both buses. This architecture removed some
of the contention between the CPU memory accesses and I/O transfers.
The CPU and memory were free to actively move data to and from mem-

CPU Memory

I [
I/0

I Chapter 2

62 2.9 Computer systems support software architecture

Figure 2.16
Dual bus

architecture.

I/0 Bus

CPU Memory I/0

2.9

Memory
Bus

ory, as were the I/O devices, without conflict. An I/O device could be writ-
ing into one region of memory while the CPU was concurrently accessing
another section. Architectures that have derived from this philosophy are
more common in modern computer systems. We will see how these archi-
tectures and elements of the computer system are used by database manage-
ment systems as we continue with our discussion of database management
system architectures and operations.

Computer systems support
software architecture

A computer systems-based application requires services and cooperative
support from a collection of computer hardware and software to perform its
designated function. The application requires a computational platform
consisting of a CPU, memory, and secondary data storage, as well as a sup-
porting operational infrastructure consisting of an operating system, data-
base management system, network management, and additional process
and resource management components. To understand how a computer-
based application utilizes these components we must first understand the
operation of these software infrastructure elements.

The central processing unit (CPU) and the main memory make up the
basic computational engine and support the execution of all software within
this computer. The CPU is composed of a collection of registers, computa-
tional subunits, data paths, and status registers that are used to move data
about and to perform basic manipulations on these data (Figure 2.17). For
example, a CPU can add, subtract, multiply, divide, and compare values or
simply move them from one location to another. These are basic operations,
which the remainder of the system's infrastructure is built upon and where
it resides. The CPU also includes some additional support hardware, such
as timers, interrupt registers and latches, input and output registers, and
interconnections. For additional details on these elements refer to previous
sections in this chapter.

2.9 Computer systems support software architecture 63

Figure 2.17
Computational

engine.

Figure 2.18
Memory hierarchy.

Control

Register Set

Arithmetic Logic
Unit (ALU)

m Input

Output

In addition to the CPU, the other primary element within the basic sys-
tem is the memory. A memory hierarchy is typically comprised of high-speed
data registers, fast cache memory, primary memory, and secondary storage
(Figure 2.18). The memory hierarchy at the closest point to the CPU hard-
ware is populated with very expensive and limited high-speed registers.
These registers are used to move a very limited number of data items into
and out of the CPU for actual processing. The second level of the hierarchy
is the cache memory. A cache memory is a bank of high-speed memory
organized in a manner that allows for rapid retrieval of data; it executes at
nearly the speed of on-chip or CPU registers. A cache memory is used to
keep data most likely to be used next in close proximity to the CPU and in
fast storage. The problem with cache memory and registers is that they are
very expensive, thereby limiting the amount of either that may be found in
an architecture. This type of storage hardware requires additional infrastruc-

Registers Speed Cost Size

I
Cache

I
I Primary Mem [

Tape

Fast I

I,, skW I

T
I x en ive I

Inexpensive

$~ 1all [
Volatile

r
l

Non-volatile

I Chapter 2

64 2.9 Computer systems support software architecture

2.9.1

ture support from the operating system and hardware to maintain the most
appropriate piece of data in the most appropriate level of the hierarchy.

This control has typically been performed by a memory management
hardware and software combination that uses locality of reference and local-
ity of use principles to determine what information to place into the appro-
priate storage level and what information to remove.

The third element of the memory hierarchy is the primary memory. The
primary memory in most machines today is sized in the hundreds of mega-
bytes of storage range. This volume of storage allows for large portions of a
data processing task to be memory resident during processing for small data
processing applications. This is not to say that there is no swapping of infor-
mation between the primary memory and the bulk secondary storage disk
units. The volume of storage on such units is now in the order of tens of
gigabytes range. The main emphasis in a computer system is on how and
what performs the management of this hierarchy. The system's memory
manager could do the best job for the typical application, but at a cost to all
other high-performance applications of the operating system.

For the collection of computer hardware elements described previously,
a working computer system requires policies and mechanisms for control of
these resources and coordination between them to exist. This has typically
been the function of a computer's operating system. An operating system
consists of specialized software with hardware support to manage the inter-
action of the CPU and all other hardware elements supporting applications
software running on the computer system.

Operating systems architecture

An operating system is computer software that interacts at a low level with
the computer system's hardware to manage the sharing of the computer's
resources among various software applications. An operating system runs as
the most privileged of software elements on the system and requires basic
hardware support for interrupts and timers to effect control over executing
programs. An operating system typically provides the following services:

1. Hardware management (interrupt handling, timer management)

0 Interprocess synchronization and communications

Q Process management

0 Resource allocation (scheduling, dispatching)

. Storage management and access (I/O)

2.9 Computer systems support software architecture 65

6, Memory management

7. File management

8.

o

10.

Protection of system and user resources

Interprocess communications management

Network management

An operating system begins with the management of a computer sys-
tem's hardware. Hardware management requires the ability to set limits on
the holding of resources and the ability to transfer control from an execut-
ing program back to the operating system. These functions are realized
through the use of hardware timers and interrupt services. A hardware timer
is a counter that can be set to a specific count (time period). When the time
expires, an interrupt signal is released, which stops the processor, saves the
processor's state (saves all active register contents, ALU registers, status reg-
isters, stack pointers, program counters, instruction registers, etc.), and
turns control over to an interrupt service routine. The interrupt service rou-
tine examines the contents of predefined registers (e.g., the CPU status reg-
ister or a predefined interrupt register) or set memory locations and
determines what operations are to be performed next. Typically, control is
immediately turned over to the operating system's kernel for servicing of the
interrupt.

Interrupt management and semaphores
The use of interrupts is one means for an operating system to effect control
over the hardware of the system. Another means is through the use of coop-
erative software and control actions or instructions. The concept described
here is mutual exclusion. An operating system, to guarantee singular, nonin-
terfering access to a resource, must have a means to limit the access to a
resource or a resource allocation mechanism via some mutually exclusive
operator. A mutual exclusion primitive must possess the ability to limit
access to a region or resource by only one element at a time, even when con-
current access is being attempted (atomic action). The all-or-nothing opera-
tion of an atomic function is required for the gtlaranteed, nonconflicting
access and control over system resources by the operating system. A specific
hardware instruction called test and set is provided in many computer sys-
tems to support this mutual exclusion primitive. The instruction in a single
atomic instruction cycle reads a variable specified, tests its value against
some basic value, and sets the variable to a new value if the condition tested
for is valid.

I Chapter 2

66 2.9 Computer systems support software architecture

The test-and-set instruction forms the basis for constructing sema-
phores. A semaphore is a system variable that can exist in only one of two
states, either true or false, with no other valid states holding for the vari-
able. The semaphore variables have atomic operations that can be per-
formed on them, with no other operations outside of these being valid
operations. The valid operations are of two types. The first operation is a
request to set the variable, sometimes referred to as P(S). The second oper-
ation is a request to reset the variable and is sometimes referred to as V(S).
These act much like a flip-flop in a logic circuit. The flip-flop can be set or
reset, holding a zero or one value only. The set and reset operations of a
semaphore variable are used to construct lock and unlock operations on
resources or to hold and release operations on the resources. Semaphores
are used to construct monitors, which encase the control of an operating
system's controlled resource. For example, a monitor could be used as a
means to limit the access to a tape unit to one process at a time by con-
structing a queue of waiting processes and one service routine. The opera-
tion would be to build an outside shell around the tape service routine to
allow only one process access to it at a time. The P and V operators can be
used for this function.

P (S) If S = 0 THEN S := 1 ELSE Enqueue requester

Tape Service Routine (2.13)

V (S)S := 0, If Queue <> null then Dequeue

The processes that wish to use the tape service routine request service by
first requesting the set function P(S). If no process is presently using the
tape, then the S variable is zero. If it is free, the variable gets set, and the
process is allowed to enter the critical section of code reserved for the tape
service routine and use the routine. If the tape routine is already being used
(indicated by the S semaphore variable being set to one), the request is
enqueued, awaiting the release of the resource. Once a process finishes with
the tape service routine, the V(S) or reset operation is requested. The reset
operator resets the value of the semaphore back to zero and tests the queue
of waiting processes to see if any processes still require service. If there are
waiting processes, the top of the queue is removed and a P(S) request is
issued for the process, starting over the entire process.

In this manner, using semaphores, complex monitors can be constructed
to control access to a variety of system hardware and software resources.
Monitors and semaphores have been used as a means to construct synchro-
nization mechanisms to coordinate the actions of cooperating resources. For
example, using the simple P and V semaphores described, one could con-

2.9 Computer systems support software architecture 67

struct two cooperative resource management routines by using three sema-
phore variables and the P and V operators, as follows:

P (S) If S = 0 THEN S : = 1

P(M) If M = 0 THEN M := 1

Resource A Service Routine

V(M)M :=0

V(S1)S1 :=0

P (S1) If S1 = 0 THEN S1 := 1

P(M) If M = 0 THEN a := 1

Resource B Service Routine

V(M)M:=O
v(s)s :=0

(2.14)

The two semaphores (S and $1) would provide for the synchronous
operation of the two resources in such a way that they would toggle back
and forth--either the resource A service routine first followed by the
resource B service routine or the resource B service routine followed by the
resource A routine. They could not, however, be executed concurrently due
to the use of the M semaphore. One can see from this example some of the
rudimentary needs of the database management system's functions being
implemented using similar concepts to guarantee mutual restricted access to
database-stored information and management routines.

Process management
A process is typically viewed as the lowest executable level of software recog-
nized by the operating system. Processes can have additional internal man-
agement layers that are outside the domain of the operating system. The
process does not, however, equate to a user program. A user program may
be partitioned into multiple processes, or it could be a single process. The
process does not have to be a fixed-size image in the system. It can take a
variety of shapes and forms. The important aspect of a process is that there
is a measurable entity that the operating system knows about and has infor-
mation about, at least in terms of how this process interacts with and fits
into the resources being managed.

Process management performs the task of managing software processes
on a computer system. The operating system provides the services to create
a process (build and populate a process control block for a new process), to
kill a process (remove its process control block), to fork a process into tasks,
to join tasks, and to dispatch processes. A process is described in the operat-
ing system using a process control block, or PCB. The PCB is created for a
process upon its initial instantiation in the system. A typical process control
block contains information such as a process identifier; a process type (user,
system, database, network, etc.); process priority; process state information;
process resource requirements (memory, disks, peripherals, other processes,

I Chapter 2

68 2.9 Computer systems support software architecture

Hgure 2.19
Process states.

etc.); and the state of required resources, process size, and present process
memory load location. This is only a representative set of information and
is by no means complete.

The operating system uses the process control block information from
all processes within the system to coordinate the execution of all of the
processes in order to meet some operating system's goal, such as fair execu-
tion, equal execution times, or some minimum average execution time.
Processes run at a variety of levels within the operating system. Some pro-
cesses are privileged and can, therefore, access protected regions of memory
or hidden routines. Application processes may have no outside access other
than the programmer's immediate load image. Others, such as the database
management system, have some form of access rights in-between these two
extremes. Processes exist within the system in many different degrees of
completion, called states. A process within the system can be in one of these
four states: ready to run, running, suspended or blocked, and terminated or
dead (Figure 2.19).

The ready state refers to the state a process is in when it is prepared to
run on the hardware but is awaiting the go-ahead from the operating sys-
tem. To be in this state the process must have all the resources it requires to
run allocated or at least fully specified, and it must have a known state for
the resources stored in the PCB. Transitions from the ready state include
terminate, dispatch, or block.

Terminating the process can be the result of a user action to kill the
process or a command from another process, such as an operating system
command, due to resource removal or an error condition (e.g., a bad con-
trol word for a printer). Dispatching a process moves a process from the

2.9 Computer systems support software architecture 69

ready state to the running state due to a scheduling action. The block tran-
sition moves a process from the ready state to the waiting state and is due to
the removal of an acquired resource by the operating system or to some
other deficiency that will not allow the process to go forward.

The running state refers to the point when the process has control of the
CPU and is executing its instructions on the bare machine. The process has
control of the hardware at this level and is only removed from execution by
an interrupt from the operating system or an error condition. Transitions to
this state only occur under control of the operating system and are due to
scheduling actions. Transitions out of this state are due to a variety of condi-
tions. A process can go from the running state to the termination state upon
completion of execution, or a process can go back to the waiting state due
to an input/output request (which is serviced by another process) or to the
ready state due to an interrupt from the operating system for some other
condition.

The waiting or suspended state for a process is used to hold processes
that have not acquired the needed resources to execute or that have been
removed from active execution due to some blocking action. A waiting
action could be due to the transfer of data from the disk into memory or the
completion of a cooperating process. Transitions to the waiting state are
typically caused by requests for added resources, the removal or reallocation
of some needed resources waiting for a cooperating process to finish its serv-
ice, or waiting for resources to be freed up for other requests.

The termination or dead state is the state from which all processes origi-
nate and finally return to for exiting the system. This state is where a proc-
ess is originally given basic assets, such as a process control block, initial
memory load space, and so forth. In addition, this is the state where proc-
esses that have been terminated for whatever reason are returned. The func-
tions here deallocate held resources and remove the process from the
system.

Processes are moved from state to state based on the actions of various
operating system support routines, such as the scheduler, dispatcher, and
allocation routines. These routines have the job of determining when to
move a process from one state to another, which process to move from one
state to another, how to move the process, and where to move it. All these
decisions are based on the interpretation of the operating system's managed
process control block and the state of the system resources.

To determine which one of a set of ready processes to move from the
ready state to the running state requires a scheduling policy and supporting

I Chapter 2

70 2.9 Computer systems support software architecture

L
r

Figure 2.20
Process flow in a

round-robin
scheduler.

Suspended task

IIEIIC) Runnn0,ask t c
mechanism to implement this policy. Originally computer systems used
simple FIFO scheduling, where the next process in a list (queue, linked list,
or some other data structure of PCBs) is the process scheduled for transition
from the ready state to the running state. Other scheduling techniques try
to be more fair and break up running processes into chunks of time called
quantums. One such scheduler is the round-robin technique, where proc-
esses are moved from running to blocked or suspended states once they
exceed their allotted quantum of time (a time slice or period). Suspended
processes are placed on the circular queue, where they wait until they move
around to the front of the queue to once again receive service. In this man-
ner the CPU time is shared equally among all active processes (Figure 2.20).
This type of scheduling is typical of a time-share system.

There are other techniques where the quantum time is not equal and
where the selection process does not simply choose the next in line. The
time slices are broken up into varying levels with the top level being short,
small time slices; the intermediate being longer slices, but with also a longer
wait time between getting service; and, finally, a long-term scheduler, where
there is a greater time slice allocated but where the time between service
intervals is even greater (Figure 2.21).

A variety of other schedulers have been constructed for almost every
conceivable measurable system quantity. For example, schedulers have been
constructed that use priority (from a few levels to thousands of levels), exe-
cution time remaining, fixed deadline time scheduling, priority ceiling, and
other techniques to select which process will get serviced next.

Once a process has been scheduled for service, it still must be moved
from the inactive process control block state to a state where it is being pre-
pared to execute upon the hardware. The task of preparing the process for
actual execution falls on the operating system dispatcher. The dispatcher
accepts the given process control block from the scheduler and proceeds to
perform tasks required to ready the CPU for execution of the provided
process. The dispatcher loads the stored CPU register values for the process

2.9 Computer systems support software architecture 71

Figure 2.21
Multilevel time-
slice scheduling.

Level 2

Level 3

New jobs

Level1 1 I I I I J C / Runningltask ~

I c,u

into the appropriate registers and restores the CPU status registers. The
stored program counter for the process is loaded into the CPU's program
counter register, and the proper physical addressing information for the
process is loaded into the appropriate memory-addressing registers and data
structures. Once all of the parameters are in place, the dispatcher turns over
control to the process by making the program counter for the process the
next jump address from which to acquire the following instruction. The
dispatcher may also have the task of resetting timers and interrupt flags
before it turns over execution control of the CPU. The setting of interrupt
timers is essential if the operating system is to reacquire control of the CPU
at a later time.

Another operating system function responsible for the movement of
processes from one state to another state is the memory allocation service.
This will be discussed in more detail later in this chapter. Additional fea-
tures that the operating system must provide for process management
include error management and deadlock detection, both of which are also
important to a database management system but not in the form used in an
operating system. The error management services provide functions to
detect, correct, avoid, and prevent errors, depending on the class of service
required and the price the operating system and serviced applications are
willing to pay.

Deadlock detection is performed for the processes and for the resources
required by the processes running in the system. Deadlock occurs when one
process is holding a resource another requires and a resource this process
needs is held by the other (Figure 2.22). Deadlock management can take

I Chapter 2

72 2.9 Computer systems support software architecture

Figure 2.22
A deadlock. Wait on B Wait on A

Holds~-~ Resource Resource . ~ Holds
A I A A B

many forms. We may wish to detect deadlock and correct it by removing
some of the offenders. We may wish to prevent deadlock from occurring by
guaranteeing ahead of time that the allocation of requested resources cannot
result in a deadlock. One way to realize this is to preallocate all of the
resources needed for an executing process before it is allowed to begin. This
is a safe algorithm but one that has an enormous amount of built-in hold-
ing time on resources and one that will directly result in longer waiting time
by processes, resulting in longer overall execution times and lower system
process throughput. Another means to deadlock management is to avoid
deadlock altogether. Avoidance can be achieved by setting up resources in a
specific order of access, which must be followed by all processes. In this way
processes can only access resources in order and cannot hold a resource held
by another that you are waiting for. The circular wait is removed in this
approach.

Resource management
Resource management requires that the operating system coordinate the
access and transmission of information from resources connected to the
computer. Typical of functions handled by the resource management func-
tion of the operating system are memory management, peripheral device
initialization, device setup, control over the data transfer, and closing of the
peripheral device. In early systems the operating system controlled these
devices down to a low level. In more modern systems the operating system
sets up the parameters of a transfer and leaves the details of the data transfer
to the device controllers and to direct memory transfer control devices. This
leaves the operating system and CPU free to do other required resource
management tasks.

M e m o r y management
An operating system's storage manager manages the memory hierarchy of
the computer. The operating system in particular must coordinate the

2.9 Computer systems support software architecture 73

Figure 2.23
Memory map.

movement of information into and out of the computer's primary memory,
as well as the maintenance of the memory's free space. To perform these
functions an operating system typically uses a scheme where the primary
memory is broken up into fixed-size pieces called pages or variable-sized
pieces called segments. The operating system then manages the movement
of pages or segments in memory based on policies in use. The memory
manager must allocate space for processes upon initiation, deallocate space
when a process completes, and periodically clean up the memory space
when the memory becomes fragmented due to allocation and deallocation
of uneven partitions. The memory allocation problem is directly tied to the
memory map. (See Figure 2.23.)

The memory map indicates which areas in memory are allocated to a
process and which areas are free to be allocated to a new process. This mem-
ory map can be managed in a variety of ways to help the allocation man-
ager. The list of free areas can be organized into a free list, where the blocks
are structured as a tree of increasing block size, or as a heap, with the largest
block always toward the top of the heap. Memory allocation then becomes a
function of selecting a block of appropriate size based on the selection pol-
icy in place. Some policies include first fit, where the first block encoun-
tered that fits this process is selected. Another policy is best fit, where the
blocks are scanned until one is found that best fits the size of the process to
be loaded into the memory. There are numerous other schemes, but they
are beyond the scope of this chapter.

Program
Address
Space Physical Address Space

I Chapter 2

74 2.9 Computer systems support software architecture

r

Figure 2.24
Fragmented

memory.

Hand in hand with allocation is deallocation of memory. As pages or
segments are released by processes leaving the running state, they must be
removed from the allocated list and replaced into the free list of free pages
or segments. The deallocated segments are restored to the list in a block
equal to the size of the allocated process that held them. These free seg-
ments are then placed into the free list in a location appropriate to the size
of the free segments being restored.

However, not all replacements are done in such a nice manner on proc-
ess execution boundaries. Most are performed on a full or near-full primary
memory. In order to still allow processes to move forward in their execu-
tion, we must reorder the active pages by some policy that will allow us to
remove some active pages and let them be reallocated to other more
demanding or starved-out processes. The most common page replacement
algorithm and deallocation policy is based on the least recently used (LRU)
principle. This principle indicates that the least recently used page is most
likely to stay that way for the foreseeable future and, therefore, is a prime
candidate to be removed and replaced by a waiting process. Other schemes
used for page replacement include most recently used, least frequently used,
and random removal. All of these policies have been examined in detail in
the past and have merits for certain process activities, although for database
systems some of these are downright disastrous. The database process acts in
a way that is not typical of most applications and, therefore, will not react
the same to a certain policy.

Another job for memory management is to maintain a map of free
memory areas and to periodically clean up memory to free up larger contig-
uous chunks to make allocation easier. This process is called garbage collec-
tion and reallocation. The allocation and deallocation policies discussed

Free
Blocks

AIIocat~
Blocks

Deallocated
Blocks

2.9 Computer systems support software architecture 75

Figure 2.25
Marking free blocks

in memory.
Free
Blocks

Coalesced Blocks

AIIocateq
Blocks

Figure 2.26
Memory after

garbage collection.

previously result in memory becoming periodically fragmented. When
memory is fragmented into very fine fragments, it may become impossible
to find contiguous blocks of free memory to allocate to incoming processes
(Figure 2.24). To rectify this problem, memory management services peri-
odically check the map of memory to determine if cleaning up the loose
fragmented free blocks into larger segments will result in significant
increases in free contiguous blocks of sufficient size.

One technique scans all marked free blocks and coalesces adjacent holes
into marked, larger free segments. These are then added to the free list with
the coalesced disjoint holes removed from the free list (Figure 2.25).

This in itself may not result in sufficient free space of adequate size. To
get larger free blocks it may be necessary to periodically scan the entire
memory and reallocate where processes are stored to clean up the memory
allocation map into two areas--one a contiguous area consisting of all allo-
cated memory blocks and the other all free memory blocks. The process by
which all allocated blocks are moved and reallocated to one end of memory
is called compaction, and the process for reallocating all of the newly freed
space into the free list is referred to as garbage collection (Figure 2.26). As

Free
Blocks

AIIocatec
Compact~u
Blocks

I Chapter 2

76 2.9 Computer systems support software architecture

IL.

Figure 2.27
Memory with both

paging and
segmentation.

Segment Table
Primary Memory

L
Virtual Address

with a garbage truck, compaction strives to compress the contents into one
end of the container, freeing up the remainder of the space for more gar-
bage. The process requires the reallocation and movement of processes and
their addresses (all references must be changed in PCB and physical load
segments).

Beyond these basic memory management schemes some operating sys-
tems, along with support hardware and software, support both paging and
segmentation. In this scheme the memory is decomposed into segments. A
segment has some number of pages, and a page is of a fixed size. The seg-
ments are mapped into and out of memory as pages were in the first scheme
(see Figure 2.27).

File management
File management is a function of the operating system that controls the
structure and storage of information on nonprimary storage resources. A
typical application of file management is the files stored on a disk drive or
tape drive. Files are collections of data and/or programs that are moved to or
from memory. To perform this movement requires that the file's structure,
format, and location be known to the operating system. The file manager
uses this information to request memory space from the memory manager
to move a file from storage into the memory. When ready to move back
into storage, the file system uses information from the memory manager to
determine if any changes have been made to the file. If no changes have

2.9 Computer systems support software architecture 77

been made, then the file can simply be discarded. If changes have been
made, the file manager needs to determine if more space than the file origi-
nally occupied is required. If it is, the file is possibly stored in a different
location or requires fragmentation on the device. Similar to the memory
manager, the file manager may periodically be required to reallocate storage
space and move files to free up larger contiguous areas.

The file manager provides additional services to the applications. File
management provides functions to create, delete, and insert information
into files; append information to the end of a file; and alter the contents of
a file. File control mechanisms support the sharing of files among users in
order to control the form of access allowed, to structure files for optimal
space and time use, to name or rename files, and to copy and replicate files
as needed for system support.

Management of the location and contents of a file system is controlled
by the use of a file directory service. A file directory can be used as the
means to facilitate access to files and to limit the use of a file as specified by
the owner or the operating system. Some file managers organize files by
type, such as .EXE for executables, .TXT for text files, .FOR for FOR-
TRAN files, .PAS for Pascal files, and .C for C files. To aid in the manage-
ment of files the file manager maintains a file control block with
information about the files under its control. This information can facilitate
the maintenance and use of the files.

Protection
Protection is an operating system function that manages access to con-
trolled resources. Protection typically consists of access authorization, access
authentication, and access restrictions. The operating system checks the
authorization rights of a service requester before the service is performed. If
the proper rights exist, the access is allowed; if not, the requester is blocked
from access.

Access authorization is a process through which the operating system
determines that a process has the right to execute on this system. The most
common form of this control is the user name, which we are all familiar
with when we log on to a computer. The second form of operating system
protection is authentication. Authentication deals with the problem of a
user being verified as to who he or she claims to be. The most common
form of authentication is the password. The combination of user authoriza-
tion through a stored user name and user authentication through a pass-
word has proven adequate for most noncritical computer systems' access
restriction management. If necessary, these two methods can be applied to

I Chapter 2

78 2.9 Computer systems support software architecture

the access of any resource to limit access to it. The problem to be addressed
is the degree of protection required and the amount of overhead we are will-
ing to pay for it.

Access control is a more involved issue and deals with how to control the
use of information and programs by users who have authorization to be on
a system. To control who uses software on the system and how it is used, an
operating system must provide mechanisms to limit the execution rights of
controlled software. To do this operating systems use some form of access
control. The most common are access control lists, access control matrixes,
and capabilities. Access control lists provide a means to list all software ele-
ments to be controlled in the system and provide a list of users or processes
that have the right to use these software elements. The control can also limit
the type of execution rights the process or user may have. For example, we
may only allow for the invocation of a process, not the fleeing of the CPU
to the calling process. We may allow only read access to a region of a soft-
ware process or insert fights, or we may give unrestricted rights. The main
mechanism (the comparison of a user identifier against a list of rights) for
an access control list is performed in a centralized site, possibly within a sep-
arate operating system service or within the controlled software itself. Capa-
bilities perform a similar function but do it in a distributed fashion.
Capabilities are created for each controlled element and are requested by
processes that wish to use the controlled element. If the capability is appro-
priate for a process, it is given to the process. The process can then use the
capability like a ticket to access and use the controlled element.

Peripheral device management
Input/output and peripheral device management services were created to
remove the physical details of use from user processes and to provide for
more seamless and fair management of the resources. The goal of peripheral
device management services is to make access clear, clean, and transparent
to users. Management should remove all physical dependencies from users'
access requirements and replace these with logical mechanisms that are
already common in programming environments. The control is to make
access device independent. The user should not have to know what type of
device or where the device is located to access data or service software.

Management for peripheral devices is bound into two classes of operat-
ing systems service routines: I/O and device managers. The operating sys-
tem strives to make all accesses appear the same. The typical method is to
make all accesses have the look and feel of a file access. The I/O manage-
ment process has the function to set up and maintain the logical channels or

2.9 Computer systems support software architecture 79

2 . 9 . 2

paths between CPU-resident processes and the outside world. The func-
tions provided by this element include channel allocation and deallocation,
channel setup, channel coordination, and remote data transfer and control.
Included in this may be error detection and correction over the channel. In
concert with this function is the device management function. Device man-
agement services provide mechanisms to perform device-dependent setup,
allocation, control, synchronization, deallocation, and data transfer.

I/O and device management create the physical link and control the
transfer. Included in this function is the request for buffer assets for the
channel to utilize in transferring information from the secondary storage to
the internal computer's memory. The buffers are used as the intermediary
between the devices and the CPU. They allow for the concurrent operation
of the I/O with applications processing within the system. The I/O channel
control and device control are typically handled in an operating system as
an independent process. The operating system initiates the I/O or device
operation and departs, allowing the device and I/O managers to perform
the task and, when completed, interrupt the operating system to indicate
the completion of the task. The interrupt can be active, where it stops the
operating system for immediate service, or it can be message oriented,
where it sets some status indicator, which the operating system will check at
its leisure.

When integrated with the operating system's file manager, these routines
form a seamless link between the stored programs, data, and the run-time
system. The file manager is used for the direct access of logical storage ele-
ments by the operating system and controlled processes. The file manager
provides services to name files, address files, control access, select and coor-
dinate access paths, perform background copying and backup for recovery,
coordinate the allocation and deallocation of resources where file informa-
tion is located, and manage the placement (logical) of stored information.
An important function of the file management system is lock management.
File managers create, issue, and control the locking and unlocking of files
and records within files. This service is extremely important for concur-
rency control.

N e t w o r k c o n t r o l s o f t w a r e

Network management software manages the sending and receiving of infor-
mation over a communications medium. Typical functions include message
routing, naming, addressing, protection, media access, error detection and
correction, communications setup, and management.

I Chapter 2

80 2.9 Computer systems support software architecture

Routing is a system network management function needed to coordi-
nate the movement of information over a network(s). In a local area net-
work this function is not needed in all cases. Routing may simply require
sending the data in a certain direction over the medium, or it may require
more elaborate policies for selecting a channel or wire to send the message,
based on the sender's location and network traffic. Routing is a required
function in wide area networks such as the Internet.

Naming is required to facilitate the transparent access to all system
resources, local or remote. A naming scheme should have the following fea-
tures: provide for sharing of objects, provide access to replicants, and pro-
vide fully transparent access. The naming function must support two types
of names for each item managed: an internal (systems) name and en exter-
nal (user) name. The naming function must manage the translation and
management of the external names with internal (unique) names.

Addressing is the means through which the system determines where a
named item is located. Addressing schemes may be broken up into hierar-
chies, where local computers have their own set of names, which may not be
unique between systems. The combination of the system's address (a node
on the network) and the local name is sufficient to provide a system's
unique name. Likewise, we could have a unique name and address for each
network in a collection of interconnected networks.

Access control over a network deals with policies and mechanisms to
limit the mode of access given to network users. Access limitations could be
as simple as login privilege or more complex, such as limiting the type of
connections one can acquire or the type of access to remote information.
The mechanism for limiting access may be embedded in software accessing
the network or may be explicitly provided by the user of the software access-
ing the network.

Protection is a function of the operating system that deals with the
management of resources from malicious or accidental access that may
deadlock the system. There are two major classes of protection schemes:
The first tries to avoid the problem by preallocating resources; the second
allows deadlock to occur but provides means to detect and correct prob-
lems. Avoidance builds access to resources in a methodical fashion. One
scheme requires a process to acquire all resources it will need ahead of time
and hold them for the duration of its access. This is highly restrictive and
may cause excessive delays for other resources that may need the held
resources. Deadlock detection allows for more concurrent access of
resources but at the cost of potential deadlocks. One scheme requires the
construction of waits-for graphs, which allow for the detection of potential

2.9 Computer systems support software architecture 81

and actual deadlocks and provides mechanisms to remove deadlock by
aborting conflicting processes.

One can see from this simple description the possible problems from a
database's perspective. The operating system may limit the sharing of
resources between processes, even if the database would allow it. Media
access software controls the interaction of users and software processes with
the network. Typical mechanisms deal with the recognition and login inter-
action with a network node. Media access software deals with the connec-
tion to the communications medium and the setup of communications
sessions. Access allows a process to log in with the network and be recog-
nized by others over the network.

Communications setup and management act in conjunction with media
access software to interact with remote nodes and set up a link. Typically,
one node requests a linkup with a remote node. If the remote node can sup-
port an additional session, it creates a control block to hold information
about the setup. The requesting node is signaled that a session was success-
fully created. Once created the interacting processes can send and receive
information using their preallocated parameters.

Clientlserver policies and mechanisms
The client/server mode of remote resource access and control is common-
place. One just has to open up a trade magazine to find advertisements for
systems claiming client/server processing. The technique provides some of
the benefits of distributed systems but without the added control overhead.
Client/server participants operate by requesting and receiving services as
needed. Servers hold resources and can provide service to clients. Clients
require held resources and can request service from the server. The server
grants service to the clients based on the present use and the sharing policy
in place at the server. The methodology does not offer the tight synchroni-
zation one would find with distributed systems, but it does offer a simple
means to access and share remote resources in a uniform fashion. Its sim-
plicity has added to its popularity and growth.

Remote procedure call policies and mechanisms
A similar remote access mechanism is the remote procedure call mecha-
nism. As with local procedures, a requester must know the procedure's
name and the proper parameters. The requester calls the remote procedure
and the blocks awaiting the remote procedure's response. The called proce-
dure performs the requested service, and, on return of control to the caller,
the caller unblocks and continues processing. The procedure is exactly the

I Chapter 2

82 2.9 Computer systems support software architecture

2 .9 .3

same as the conventional procedure call except that the call is over a remote
channel to another site. Further details of network software and specifics
related to databases will be described in later chapters.

Faul t d e t e c t i o n and r e c o v e r y

An operating system has a requirement to monitor the system for errors,
faults, and failures and to provide mechanisms to correct these conditions
or to reconfigure around them. To detect errors or faults in the first place an
operating system uses a few basic functions. The first relies on hardware
detection of errors~for example, parity check bits, cyclic redundancy
checks, and computational checks such as overflows and divide by zero.
These provide for detection of intermittent or hard errors within the com-
munications and computational infrastructure of the machine. To check for
more subtle or buried errors requires the periodic initiation of fault-moni-
toring software. This software collects information from these basic hard-
ware elements and from running software using predefined test points.
These collected data are then periodically analyzed for patterns that may
indicate software or hardware errors present in the system. This software is
referred to as program-monitoring software.

Once an error condition has been detected using the operating system's
error-monitoring mechanisms, the next job is to determine where the error
is coming from and then to isolate the error down to some predetermined
hardware or software granularity~for example, for hardware down to a
replaceable board or a component such as an integrated circuit; for software
down to a module, process, function, or possibly a block or line of code; for
data within the file, down to the record or data item level. The level of iso-
lation provided will depend on the overhead and price the system is willing
to pay for the detection and isolation. This mechanism is typically called
fault localization. Fault localization operates by using known test drivers
and known responses to walk through system hardware and software ele-
ments testing for erroneous outputs. It is not, however, sufficient to simply
detect an erroneous output condition and assume this is the component at
fault. Errors can propagate through numerous layers of hardware and soft-
ware, only showing up in later stages. The goal of fault localization is to
detect an error, and then test back through all interacting elements to isolate
the fault or error to the appropriate culprit.

On isolation of a faulty hardware or software element, the operating sys-
tem must determine an appropriate action to relieve the system of the error.
The process of performing this function is called recovery and reconfigura-
tion. The most common method is to perform some recovery action first.

2.9 Computer systems support software architecture 83

2.9.4

The recovery may be as simple as reload and restart or just resetting the
already loaded software. More elaborate techniques include maintaining
partial execution history (register status, computation state) and to reset and
restart from some intermediary point in the software. If an error is more
elaborate, it may require the removal and replacement of the software or
hardware element to effect recovery.

If redundant hardware and software are available, the recovery can take
on a more global perspective. Recovery can look to other assets available
within the system to work around the errors or failures. This form of recov-
ery requires the reallocation of resources (both hardware and software) to fill
the gap left by the failed elements. This form of recovery is referred to as
reconfiguration. Reconfiguration will be discussed in further detail in later
chapters.

Database management systems

A database management system is composed of five elements: computer
hardware, software, data, people (users), and operations procedures. The
computer hardware consists of processing elements, volatile memory, sec-
ondary storage components, archival storage devices, input and output
devices, and possibly specialized computational devices and input sensors.
The software for a database can be broken up into three categories: infra-
structure support software, database software, and applications software.
The infrastructure support software includes the operating system and net-
work communications software. The database management system software
includes components for storage management, concurrency control, trans-
action processing, database manipulation interface, database definition
interface, and database control interface. Applications software is dependent
on user needs. Data are the commodity the database system is managing.
People and applications programs, as users, manipulate the stored data and,
as database administrators, examine and maintain the database for the users.
Operations procedures are developed and put into practice to provide addi-
tional support to the database system. Operations procedures include back-
ing up the database onto nonvolatile mass storage, such as tapes, on a
scheduled basis, and collection of operational statistics for use in tuning the
database's structure and performance.

A database management system performs as an applications process
under the control of the operating system. The database manager uses the
operating system's file management and memory management services to
store and retrieve the data in the database. Interface to the database manage-

! Chapter 2

84 2.9 Computer systems support software architecture

ment system is through three distinct paths: the database definition lan-
guage, database manipulation language, and database control language.

Database definition language
A database is constructed to manage data that must be maintained for
future use. The data in the database are organized into structured collec-
tions based on applications' informational needs. Data are placed in the
database in these predefined data structures. These data structures are
defined using data definition primitives within the database's language.
Data definition primitives allow the database designer to specify individual
data item composition as well as more complex data structures composed of
these low-level data items.

A data item represents the smallest identifiable piece of information
managed within the database. These data items, or attributes, are given a
unique name, and their physical structure and type are specified using data
types available within the given language. In the Structured Query Lan-
guage (SQL) used to define relational databases, a data item is defined at
the same time that a relation is defined. As an example, to define a person
relation in SQL we could use the following code:

CREATE TABLE person

(name
ssnum

bdate

saddr

city

state

zcode

VARCHAR (3 0) NOT NULL
INT(9) NOT NULL,

DATE NOT NULL,

VARCHAR (2 0) NOT NULL,

VARCHAR (2 0) NOT NULL,

VARCHAR (2 0) NOT NULL,

INT(9) NOT NULL,

PRIMARY KEY (ssnum))

This example defines a person data entity to be composed of seven dis-
tinct data items. Each data item is given an explicit data type and a maxi-
mum size for the data item~for example, the name can be from 1 to 50
characters long; the birthday is of type date. Date is defined in SQL as hav-
ing the form year-month-day and is comprised of four integers for year and
two integers for both the month and day entities.

Database definition typically uses a compilation process to build and
generate the database schema or data description model. The database defi-
nition process results in descriptions of the database in both logical and
physical terms and the generation of a mapping between the two, as shown
in the following code segment:

2.9 Computer systems support software architecture 85

CREATE TABLE customer

(cname VARCHAR (10) NOT NULL,

cnum INT (3) NOT NULL,

credlim DECIMAL (6, 2),

PRIMARY KEY (cnum))

CREATE TABLE order

(onum

cnu/n

spnum

date

amount

DECIMAL (5) NOT NULL,

DECIMAL (3) NOT NULL,

SMALL INT NOT NULL,

DECIMAL (6),

DECIMAL (6, 2) ,

PRIMARY KEY (onum))

These data definition constructs are from the Structured Query Lan-
guage (SQL) and specify two relations. One is a customer relation and the
other is an order relation. The customer relation is specified as having three
attributes: a customer name, a customer number, and a credit limit. The
key attribute for the relation is defined as the customer number attribute.
The second relation is a customer order relation. The customer order rela-
tion is composed of five attributes: order number, customer number, sup-
plier part number, date of the order, and dollar amount for the order. The
primary key for this relation is defined as the order number. Also notice that
since the customer number in the order relation is the same as the customer
number in the customer relation, this attribute constitutes a foreign key
into the customer relation. By using techniques such as this the relations are
linked together in an informational sense.

For all database models, there exists a language for the specification of
the database's structure and content. The specification is called the schema
design and represents the logical view of information that is to be managed
by a particular database management system. The specification gives the
designer the ability to map disjoint logical user views of information into a
comprehensive global view of information and finally into a mapping to
physical storage structures. This separation of the logical and physical data-
base structures results in transparency from the physical and logical depend-
encies of the data from the users. By doing this the database designer has the
ability to alter the physical storage structure and organization in order to
optimize low-level storage and retrieval efficiency without the need to alter
the logical user view and its application's code.

The database design language, beyond the basic ability to define data,
must also have the ability to alter specified data structures and their physical
representations after the database has been specified. Features to drop a
structure from the database, to insert a new structure, or to alter an existing

I Chapter 2

86 2.9 Computer systems support software architecture

structure need to be built into the language for completeness and for the
maintenance of a database. Keep in mind that most databases will not be
constructed, put in service, and removed over a short period of time. When
enterprises construct and populate a database, they do so continually over
the lifetime of their system. The lifetime of a database system in such an
enterprise may span decades, implying that growth and change are inevita-
ble and must be designed for up front. A database within such an environ-
ment is initially specified and put into service. After using the database,
some initial adjustments will be required. In addition, as the enterprise
grows and possibly changes the focus of its activities, so must its informa-
tion base change in order to stay competitive. One can see that a rigid,
unchangeable specification and operational structure will lead to obsoles-
cence and degradation of performance to the very applications the database
was initially specified to support. A database specification language and
implementation must be flexible in order to be useful and enduring.

Database manipulation language
The component of the database most visible and recognizable by database
professionals, as well as applications developers and possibly applications
users, is the data manipulation language. This component of the database
can take on many forms, the most common being a programming lan-
guage-like interface, which provides the ability to retrieve and store infor-
mation within the database previously specified by the database design
language.

The data manipulation language need not, however, take on a textual
and procedural view only. The data manipulation language can be visual, as
in the spatial data management system, where information is described
using icons and is retrieved using pictures that can be zoomed in on for
greater detail about an i tem~for example, given that we have a map of the
United States used as the top-level view for the querying of business infor-
mation, we may wish to find out what universities are within the southern
region of Massachusetts closest to Cape Cod. We would first select the type
of icons we wish depicted~for example, only show regions with universi-
ties by selecting the university icons. The visual display would then high-
light cities where major universities are located. To isolate a particular
university or to find out more about the area where a university is located,
we begin by selecting the area, say southeastern New England around Cape
Cod, by encircling the region. The display would then expand this area,
again only depicting the universities. To select a particular university select a
university icon (Figure 2.28). If we selected the University of Massachusetts

2.9 Computer systems support software architecture 87

r

Figure 2.28
Spatial data
management

system.
House Industry School Church Cities Nuclear Power

c7

GROUP r--I I--I

at Dartmouth, we may next get an aerial view of the university. To discover
more information we could select a building, then a department, or possibly
even a particular professor or course offering. In such a way the majority of
information needed could be extracted and displayed in visual form. There
are, however, limitations with this method. Not all information lends itself
to visual-only representation. We may be forced to place only a subset of the
totally available information in such a system and use a separate database
interface for more textual information.

A second type of interface is related more toward business uses of data-
bases. This type of interface uses a company's typical paper forms for infor-
mation about inventory, sales, employee records, and so forth as the
interface presented to the users of the database. An application or user sim-
ply selects the proper form, say an employee record form, and selects which
employee or group of employee records to look at by typing in information
on the form.

Figure 2.29 shows a form that may be used by a business to represent
customers or suppliers. The form shows the company's major information,
such as the company's name, address, phone number, fax machine number,
and e-mail address, and possibly some information about the type of prod-
uct or service it produces or supplies. In addition, the form may include

I Chapter 2

88 2.9 Computer systems support software architecture

L
r

Figure 2.29
Sample form. Oompaoy I I Add~ss I I

Te, I oi~l I

Fax [S,a,e I I

E mai, I Z,P I I

P,o~°o, Base I I F~I I Sa,es I

Fio~ I I Go I ' ° ~ I

some extra fields, which can be used to aid in finding information. In the
example screen of Figure 2.29, there is a separate field called Find on the
bottom of the screen. In this field a user could input parameters to be
looked for or qualifiers to aid in a search~for example, if we wished to
select all companies in Boston, Massachusetts, that are stored in our data-
base, there are two potential ways to do this. The first is to enter the names
Boston and Massachusetts in the appropriate city and state fields and select
Go on the bottom right of the screen. This would indicate to the database
to match any records that have these qualities in these particular fields. To
find additional entries with the same fields one would select the Next field
on the lower-right corner. An additional means to recover the same records
is to type All, Boston, and Massachusetts in the Find field of the form.

A third form of nontraditional data manipulation language is the query
by example, or QBE, type of facility. In a query by example environment
the user requests basic information about a record of interest~for example,
a company name. The system then returns a template, which may or may
not fit what is being requested. This template can then be used by the user
to further refine the query and to receive additional examples to use in for-
mulating a more precise query. The QBE interface developed for the rela-
tional model is closely tied to the forms-based interface. The examples
come back in the form of tables, and the user fills in known quantities. The
database then attempts to fill in a response table using this information as
the restriction information.

Other data manipulation languages are based on functional evaluation.
In these types of languages the users request information from the database
through the use of function calls. The function calls may return text, graph-
ics, video, sound, or a variety of data formats. The form returned is depend-
ent on the data formats of the function called and the parameters' data types.

2.9 Computer systems support software architecture 89

This form of query interface is most prevalent in object-oriented databases
and in multimedia and hypermedia databases. The information that is
passed between the database and the applications is in the native form of the
application, not in the base form of the database. This type of interface is
desirable in applications where data come in nontextual forms that neverthe-
less are stored and managed by a database management system.

The most prevalent form of data manipulation language today is still by
far the textual and procedural languages, such as Structured Query Lan-
guage (SQL) and Object Query Language (OQL). In these languages the
queries are formed much like a program in any programming language. The
query writer has some reserved words that provide some given functionality.
The typical query includes reserved words to select multiple records, a sin-
gle record, or a subset of a record; to specify where the record is to come
from; and any qualifiers on the access and retrieval of the requested infor-
mation. In languages of this form the queries take on the structure and exe-
cution flow of the program~for example, if we are looking at a relation
Order, of the form order number, order date, customer number, product
ordered, quantity ordered, unit cost, total cost, and want to find all orders
(the entire tuple) from the XYZ Company for bookbindings since May
1995, the following query could be used, given that the XYZ Company has
the customer number I 101:

Range of 0 is order;

SELECT O.onum, O.odate, O.cnum, O.pname, O.qty, O.uic,

O.ttl

FROM Orders

WHERE O.cnum := 'CI01' and O.odate > '4-30-95' and

O.pname := 'bindings' ;

In this query we first set an internal variable to range over all values of
the search relation. Second, we request the search look to retrieve all the
attributes of the relation Order in the same order in which they are stored.
Third, we specify where to look for these attributes, namely in relation
Order. And, finally, we restrict the selection to find and copy into our result
relation only those tuples that have the company number attribute stored
with the value of 'C101', the value for attribute order date greater than the
end of April (odate > '4-30-95'), and only the parts named 'bindings'.

The procedural languages such as SQL also have operators to insert new
tuples in the database, to create new relations, to modify existing relations,
to delete relations, and to update the contents of a relation. An insert of a
tuple into the previous relation could be readily performed by issuing the
following instruction:

I Chapter 2

90 2.9 Computer systems support software architecture

Range of 0 is order;

INSERT INTO Orders

VALUES ('0100', '5-21-95',

'1.25', '125.00') ;

'CI01', 'binding', 'i00',

To delete the same tuple from the database requires that we first find the
proper tuple, and then remove it from the relation. The code may appear as
follows:

Range of 0 is order;

DELETE FROM Orders

Where O.cnum := '0100' AND O.odate := '5-21-95', AND

O.cnum, -= 'CI01' AND O.pname := 'binding' AND O.qty :=

'i00' AND O.uic := '1.25' AND

O.ttl := '125.00' ;

A simpler means would be to refer to the intended tuple by its primary key
only. Since in a relational database the primary key by definition must
uniquely define a tuple in a relation, then this alone can be used to find and
delete the proper tuple. The reformed deletion operation would be as follows:

Range of 0 is order;

DELETE FROM Orders

Where O.onum := '0100' ;

What the reader should realize from this discussion is that there is no
one correct means of retrieving information from a database. There are,
however, standard means [1]. The important concept is that database
retrieval is different from conventional programming language processes.
There is a language of informational access, which has evolved and contin-
ues to evolve along with database technology. These languages, however,
will continue to be different from their programming language counterparts
primarily due to the differences in the requirements for persistent data
beyond the point of a program's existence and the requirements for consis-
tency and correctness of information beyond the scope of any single process
or program.

Database control language
The last component of the language interface to a database management
system is the data control language. This is also sometimes included as
part of the data definition language in some descriptions. We decompose
it here to help focus on some of the differences. In particular this compo-
nent of a database interface is typically used by the database administra-
tor. Typical functions provided at this layer are tools to monitor database
operations; restructure underlying physical storage; reset constraint values

2.9 Computer systems support software architecture 91

on data items; rename relations; create additional indexes; archive data;
and to grant, alter, or revoke privileges. The typical interface at this level
is textual oriented with specialized analysis tools used to analyze collected
information.

The database administrator could, for example, examine a set of range
constraints on an attribute value and determine, based on the user's
requirements, to alter them to increase the possible domain of values con-
sidered correct by this at tr ibute~for example, if the database administra-
tor feels that there is not a sufficient range of values to represent the job
categories in a company, he or she could elect to increase the number of
jobs and their titles as needed. If originally there were only three titles in
the company:

jobtitle IN {welding, management, sales}

but it is determined that the data structure must be expanded to more fully
meet the need of additional job categories, the data administrator simply
extends the list of valid items. This instruction simply adds three new cate-
gories to the list of allowable job titles. These new titles can now be used by
applications querying or modifying the database.

jobtitle IN (welding, management, metal cutter,
machinist, glass cutter, sales)

Constraints for the range of values of a data item can be altered by
increasing the values assigned to boundary values--for example, if an initial
constraint indicates that the customer number ranges from 1 to 500, but we
now find ourselves with 501 customers, the constraint must be altered to
allow storage of the new customer record. To change the constraint, simply
set RANGE OF Customer.cnum 1 . . . 750. Constraints on when to per-
form testing functions can be altered also--for example, test constraints on
reads, writes, or commit.

Beyond the alteration of constraints, database data control languages
provide instructions and constructs to grant additional privileges to users or
to revoke privileges. The GRANT statement is used to allow a user to per-
form certain manipulations--for example, to allow user Tom to read values
from the Customer relation can be done by:

GRANT SELECT ON Customer TO Tom;

One could also grant the rights to multiple operations within one state-
ment, as follows:

GRANT SELECT, UPDATE, INSERTION ON Customer TO Tom;

I Chapter 2

92 2. I0 Components of a database system's architecture

This statement grants selection, update, and insertion rights to the user
Tom on the relation Customer. In this manner the database administrator
can alter, add, or remove access rights to any items within the database. Not
all database systems and models support a wide variety of data control lan-
guage features. In several languages, many of these features would necessi-
tate bringing the database off line for alteration.

2 .10 Components of a database
system's a rch i tec ture

A database system is composed of much more than just the data defini-
tion language, data manipulation language, and data control language.
These simply represent the interface into the actual database system. The
core of a database management system is the collection of services that
provide the persistence of data in the database and the functionality to
guarantee the consistency and correctness of data and the adherence to
ACID properties by transactions (Figure 2.30). The ACID properties
include the atomic, consistent, independent, and durable execution of a
transaction on the database. We will discuss these in more detail later in
this chapter.

The architecture of a database system is comprised of a set of services
built on top of basic operating system services, system file storage services,

Figure 2.30
Architecture to

support a database
system.

Applications

Programming Interface

Security Management

Recovery Management

Transaction Management

Concurrency Control

Store Manager

Catalog Managemen s

2. I0 Components of a database system's architecture 93

2.10.1

2.10.2

and primary memory buffer management services. The file manager is the
database's interface to the persistent stored information. The information
managed for the database by the file system includes the internal, concep-
tual, and external schema for the stored information (metadatabase); the
actual database; and the database log file. The log files include before
images (buffer values), after images, redo records (actions of committed
transactions), undo records (actions of uncommitted transactions), commit
records, abort records, and transaction begin records.

Through the basic features of process management, interprocess com-
munications, synchronization, buffer management, and file management
the database systems services can be constructed. These services include cat-
alog management, integrity management, transaction management, con-
currency control, lock management, deadlock management, recovery
management, security management, query processing, communications
management, and log management. On top of the database services the
user's applications operate through the input/output view manager and the
data manipulation manager. In the following paragraphs we will briefly
review each of these. Following these brief overviews, we will review some of
these in greater detail.

Catalog manager

The catalog manager maintains information about the database's informa-
tion. These metadata form the schema for the database. The database
administrator, using data control language and data definition language
interfaces, can alter the schema. As an example, in SQL this portion of the
database would keep the definition for all relations, constraints, security
assertions, and mappings to physical storage.

Integrity manager

The integrity manager aids in the maintenance of the database's data items'
accuracy, correctness, and validity~for example, the integrity manager may
check that a data item is of the proper type through a mechanism that
determines when to do the check; how to do the check; and how to recover,
reject, or fix the condition when encountered. The integrity manager may
check to see that a data item is within a predefined domain of correct val-
ues, such as DOMAIN FIXED (5) or Weight GREATER THAN 0 AND
Weight LESS THAN 2000. These would test the ranges of values a data
item may span. Integrity checks can span multiple entities or relations~for
example, a referential integrity check in SQL can be used to see that the

I Chapter 2

94 2. I0 Components of a database system's architecture

2 .10 .3

relationship of many objects has a property that must hold for them to be
considered valid. Such a check could be that the SUM of all account bal-
ances at a bank must equal the bank's balance. An important aspect of this
management is when to perform the specified checks~for example, there is
a different cost if the checks are done at database definition time, on access
to the data item, on update of a data item, on an event such as a timer, or
on the commit of a transaction. The tradeoff is accuracy and validity of the
data versus performance. Checks done during run time will slow down the
database's processing throughput.

Transact ion manager

The transaction manager controls and coordinates the execution of transac-
tions within the database. For now just assume that a transaction is a collec-
tion of operations on the database that are bound together into a single run-
time unit. The transaction manager must perform tasks to initiate transac-
tions (scheduling); synchronize transaction execution with the database,
other transactions, and the operating system; coordinate intertransaction
communications; commit (completion) processing; and abort (failure)
processing, transaction constraint checking, and condition handling, as well
as transaction recovery (error) management. A transaction typically is of the
following form:

TRANSACTION T (Optional Input Parameters)

Specification Part

BEGIN

BODY of T

COMMIT or ABORT of T

RECOVERY PART of T

END

END TRANSACTION T

The initial statement names the transaction, allowing it to be possibly
precompiled and stored for later execution. The initial statement also leaves
space for transferring input parameters to the transaction, such as the loca-
tion of data to be executed. The specification part of the transaction is the
area where local variables for the transactions workspace are specified, as are
preconditions and postconditions on transaction execution, recovery condi-
tions, isolation level, access modes, and the diagnostic size to allocate. The
body contains the executable code for the transaction. The commit and
abort statements indicate the success or failure of the transaction. Finally,
the recovery part specifies user- or system-supplied recovery or condition
handlers for error processing and transaction completion processing.

2. I0 Components of a database system's architecture 95

2 .10 .4

2 .10 .5

2 .10 .6

Concurrency contro l manager

The concurrency control manager coordinates the actions of interactive
access to the database by concurrently running transactions. The goal of
concurrency control is to coordinate execution so that the VIEW or effect
from the database's perspective is the same as if the concurrently executing
transactions were executed in a serial fashion. This scheme is referred to as
the serializable execution of transactions. Concurrency control's serializabil-
ity theory has two basic modes: The simplest concerns the serializable exe-
cution of the read and write sets from conflicting transactions and is based
on either locking, timestamp ordering, or optimistic read and write conflict
resolution. The second concurrency control concept is more complex and
uses semantic knowledge of a transaction's execution to aid in coordination.
The major difference is that the granularity of the serialization operator is
not the read and write but rather complex functions and procedures as well
as complex data objects. The criterion of correct execution, however, is,
nevertheless, serialization across concurrent transactions.

Lock manager

The lock manager is designed to control the access to the database lock
table. The lock table of the database maintains the status of locks (read lock,
write lock, share lock, semantic lock, etc.) for each item of the database that
has been accessed. The lock manager isolates users from accessing the lock
table directly. To acquire access to lock status, the lock manager provides
lock and unlock primitives to database and user code. The lock can be a
read lock, which is granted (if no one holds a conflicting write lock) when a
transaction attempts to read a data item. A write lock can only be granted if
no other transaction holds a read or write lock on the data item. Locks in a
database can be viewed like semaphores in an operating system; they are
used as a means to guarantee exclusive use to an item within the database's
control.

Deadlock manager

When a locking protocol is being used, a lock held by one transaction can
block a lock request from another transaction. If there are no circular waits
for a lock, then the lock will ultimately be granted. If there are circular
waits, then deadlock occurs. Deadlock is the condition where two or more
transactions wait for resources held by another transaction that is waiting
for a resource you hold. Since no one can move forward, the system cannot

I Chapter 2

96 2. I0 Components of a database system's architecture

2.10.7

2.10.8

get any useful work done. The deadlock manager must detect when a dead-
lock condition holds and decide how to handle the condition. Typically,
one of the involved transactions is aborted and its locks released, thus allow-
ing other transactions to go on.

Recovery manager

The recovery manager must ensure that the database is always in a state that
is recoverable consistently and correctly. This is done by ensuring that the
database contains all or none of the effects of committed transactions and
none from aborted or running transactions. The recovery manager uses the
concept of a checkpoint (snapshot of the present state of the database) and a
log file (file of operations on the database) to aid in the recovery. For con-
ventional databases recovery attempts to bring the database back to an old
state of the database and initiate processing from there. To bring the data-
base back to a past state the recovery manager uses both undo, where
uncommitted or active transaction past views are restored, and redo, where
committed transactions not written to the database have their new states
restored to the persistent store. These undo and redo records are applied to
a checkpoint state to bring the database to some intermediate acceptable
consistent state. A second form of recovery attempts to move the database
forward by applying compensating transactions (to change committed
effects to acceptable forms based on semantic needs), by applying extrapola-
tions (to compute new acceptably correct and consistent future states), and
by applying condition handlers to user or system semantic actions at a vari-
ety of levels within the database.

Security manager

The security manager has the task of limiting access, modification, and
malicious intrusion to the database. To perform these control actions the
security manager requires that users be identified, authenticated, and
authorized for access and control over a data item being requested. Identifi-
cation is similar to typical login capabilities, where the security manager asks
the users to identify themselves. To make sure that not just anybody
attempts access the database may also ask a user to authenticate his or her
identity. This can be done with a password or by a variety of fairly elaborate
mechanisms. Once the user is allowed access, he or she is further restricted
to what can be viewed and altered. Authorization performs the function of
limiting access to only a desirable predefined level~for example, read only,
write only, alter capability, view restriction, and numerous other restrictions.

2. I0 Components of a database system's architecture 97

2.10.9

2.10.10

2.10.11

Query processing support manager

The query processor of a database system has the function of determining
how to answer the requests for information from a user in the most optimal
manner. The idea is that a query can be answered by a database system in a
variety of ways. The most straightforward is the brute-force approach. This,
however, is typically the most expensive in terms of time and resources con-
sumed--for example, the cost to join two tables will be the cost of scanning
each item of the first with each item of the second, or on the order of N
times N or N squared if we assume they are the same size. On the other
hand, if we could reduce the size of each by a factor of 2, then the cost drops
by one-half. This is easily accomplished if we perform a select first on each
before a join. If the size of N is large, this reduction can become significant
and have a meaningful result on the database's performance. To reduce the
cost of queries we look at heuristics on the order of access of relations and
their combinations, relation reductions via selections and projections, pre-
processing (sorting), iteration order, relation operator precedence ordering,
and numerous other factors.

Communications manager

The communications manager has the role of traffic cop in the database.
This service must coordinate the transfer of database data as well as status
information to aid in the processing of data. Communications may be
between database services, different databases, different processors, different
transactions, or within a transaction. Mechanisms such as simple message-
passing schemes, client/server protocols, and others have been implemented.

Log manager

The log manager has the job of coordinating the transfer of information
from the active database into secondary persistent storage to aid in the
recoverability of the database and to effectively mitigate the problem of the
operating system paging out information prematurely. The log maintains a
history of data flow in and out of the database, as well as actions that can
affect the database's state. This includes transactions before images, after
images, undo records, and redo records.

Transaction management
The transaction manager has the job of providing a bounded framework
around which to guarantee that the database stays consistent while concur-

I Chapter 2

98 2. I0 Components of a database system's architecture

rent operations execute on the database. The database manager, without
concurrency, canguarantee this with no problem~but this is neither inter-
esting to study nor practical in the real world. The real world of database
processing typically deals with a large database with a high degree of multi-
processing (concurrently executing transactions).

The execution of a transaction is similar to making a contract; both sides
are involved in the contract, they negotiate for a while, and then they either
come to a consensus and sign the contract, or they both walk away. A trans-
action is thus either all or nothing. A transaction must complete totally or
must not complete at all. Now that's a concept.

The transaction is meant to be used as a consistent and reliable unit of
work for the database system. A transaction interacts with the application's
environment and the database's concurrency control protocols to perform its
intended function (Figure 2.31 a). A transaction is required to guarantee four
properties when executing on a consistent database. These four properties
are called the transactions ACID properties; they include atomic, consistent,
independent, and durable executions of transactions on the database.

An ACID transaction guarantees that the database the transaction
begins with and the database it finishes with are consistent, that the data are
durable, that the transaction acted alone on the database, and that the trans-
action completely finished its actions on the database (Figure 2.3 lb).

The transaction ACID properties are as follows:

Atomic The atomic property implies that a transaction is an indi-
visible unit of execution that either completely performs its designed
function or else its effect on the database is as if the transaction never
began; that is, the database state an atomic transaction leaves if the
transaction does not totally commit is the same database state that the
transaction began with. On the other hand, if an atomic transaction
completes, then the database state it leaves has all of the changes the
transaction computed with no others installed.

Consistent~Consistent execution of a transaction requires that a
transaction transform an initial consistent database state to another
new consistent database state. The basic concept behind this trans-
action property is that the database is comprised of a set of data
items, which have constraints defined on them. The database, to be
considered consistent at any point in time, requires that these con-
straints on data items within the database all evaluate to true; that
is, none of these constraints can be violated if we are to have a con-

2. I0 Components of a database system's architecture 99

v

Figure 2 .31a
Database

transaction.

Figure 2 .31b
ACID transaction.

Inputs out0uts
LD,,t,J /

Ci True \ T1 = \ / .- True
N

!
i !
I /

i !

sistent database state. A valid transaction, which initially sees a data-
base that is consistent, must, upon commit, leave a database that is
still consistent.

Independent~Independence, sometimes referred to as the isolation
property of transactions, requires that each transaction accessing
shared data acts alone, without being affected by other concurrently
running transactions. This property basically indicates that a transac-
tion's effect on the database is as if it, and it alone, were executing on
the database. The function of this property is to require the removal
of any dependence of a transactions execution on any other transac-
tion's execution.

Durable The durability of a transaction's execution requires that once
a transaction is committed, its effects remain permanent in the data-
base. What this property implies is that the changes a transaction makes

Transactions

TM

Results

CC

I Chapter 2

I00 2. I0 Components of a database system's architecture

to the database do not disappear when the transaction terminates. Data
produced by a transaction and written to the database become perma-
nent. Data once written to the database can only be altered by another
transaction that reads and/or writes over this data item.

These transaction properties must hold for all transactions that execute
within a database management system if consistency, correctness, and valid-
ity of the database are to be maintained. The properties must hold even
when other transactions execute along with each other concurrently. In
addition, if adhered to, the properties will guarantee a correct and consis-
tent database even in the face of failures or errors. It is when we begin to
envision what policies and mechanisms for transaction execution and oper-
ations can be developed to guarantee these properties that problems occur.

Transaction basics
A transaction is a collection of applications code and database manipulation
code bound into an indivisible unit of execution; an example is shown in
the following code segment:

BEGIN-TRANSACTION Name
Applications Code
DB-Code
Applications Code
DB-Code
DB-Code

Applications Code
END TRANSACTION Name

A transaction is framed by the BEGIN TRANSACTION and END TRANSAC-
TION markers delineating the boundaries of the transaction--for example,
if we have the following three relations that describe an airline reservation
system:

FLIGHT(Fno, Date, Source, Destination, Seats-Sold, Capacity)
CUSTOMER(Cname, Address, Balance)
FlghtCust(FNO, Date, Cname, Special)

The first relation depicts the flight information--flight number, the
date of the flight, the city of origin, the destination city, the number of seats
sold for this flight, and the capacity of this plane. The second relation
describes the customers who will be flying on a flight; it gives their names,
addresses, and the balances owed on the tickets. The third relation describes
the relationship between the flights and the customers. This relation in par-

2. I0 Components of a database system's architecture I01

ticular indicates which flight, which passengers are flying on what date, and
any special requirements for these passengers~for example, maybe some-
one wants a McDonald's Happy Meal or a vegetarian meal.

To generate a simple transaction on these database relations, which make
a reservation for a customer, we could write the following pseudocoded rela-
tional Structured Query Language request or query:

BEGIN TRANSACTION Reservation

BEGIN

Input (FlightNo, date, customer, specl)

EXEX SQL UPDATE FLIGHT

SET Seats-Sold = Seats-Sold + 1

WHERE Fno = 'FlightNo' AND Date = 'date' ;

EXEX SQL INSERT INTO FlightCust (FNO, Date, Cname, Special)

VALUES (FlightNo, date, customer, specl)

OUTPUT ("Transaction Completed")

END TRANSACTION Reservation;

This transaction looks for input from the keyboard for the flight num-
ber, date of the flight, the customer's name, and any special requirements
the customer may have. These are input to transaction variables: FlightNo,
date, customer, and specl, respectively. The contents of these variables are
then inserted into the proper places within the relation through the VAL-
UES function. We update the count of seats sold for this flight by incre-
menting the value by one and then updating the value in the relation. The
transaction then updates the FlghtCust relation with the new information.
To be complete we should also update the customer relation; this will be left
as an exercise for the reader. This represents a simple transaction; however,
as it stands it will not guarantee the transaction ACID properties alone.

To guarantee the transaction ACID properties we need some additional
features within this simple transaction model. To meet the needs of atomic
execution we require a means to determine the conditions for termination
of a transaction, correct or otherwise. The first concept required for correct
execution and termination is the commit. Commit is used to indicate the
correct and atomic termination of a transaction. It includes the processing
necessary to ensure proper updating and marking of the database. The sec-
ond concept, called abort, is necessary for transactions that fail or stop exe-
cution for some reason. Abort conditions will include erroneous operations,
conflicts in accessing stored information, or the inability to meet the ACID
requirements on transaction processing. An abort requires that all of the
effects of a transaction are removed from the database before any other
transaction has a chance to see them. These two added features are neces-
sary to facilitate atomic execution, although not in isolation.

I Chapter 2

102 2. I0 Components of a database system's architecture

The commit action is necessary in order to synchronize the actions of
other elements of the database management system to make changes to the
database permanent~for example, this command may be used to cause the
database buffers and activity log to be flushed (force written) to the perma-
nent storage subsystem, thereby making the changes durable, as shown in
the following code segment:

BEGIN TRANSACTION Reservation

BEGIN

Input(FlightNo, date, customer,specl)

SELECT Seats-Sold, Capacity FROM FLIGHT ;

IF Seats-Sold > Capacity THEN

BEGIN

EXEX SQL UPDATE FLIGHT SET Seats-Sold = Seats-Sold + 1

WHERE Fno = 'FlightNo'

AND Date = 'date';

EXEX SQL INSERT INTO FlightCust(FNO, Date, Cname, Special)

VALUES(FlightNo, date, customer, specl)

OUTPUT("Transaction Completed")

COMMIT Reservation;

ELSEABORT Reservation;

END

END TRANSACTION Reservation;

This altered transaction now allows us either to go on with the transac-
tion if it has a chance to succeed, or abort the transaction if we cannot com-
plete it. In this example we would abort the transaction if we did not have a
seat remaining in the plane to give to this customer. If there is a seat, we sell
this customer a seat and commit the transaction.

Transaction formalization
A transaction, 77, is composed of a set of operations, Oj e {Read, Write},
where Oj is some operation from a transaction i on data items from the
database D.

Let Osi = U Oij represent the union of the set of all operations j from a
transaction i.

Finally, let Ni e {Abort, Commit} represent the set of termination con-
ditions on a transaction, either commit or abort.

A transaction is modeled as a partial ordering over its operations and end
conditions. The partial ordering is represented by P <<, which indicates that
the partial order P is composed of a set of operations, denoted S, and an
ordering relation that holds between the elements in S denoted <<.

2. I0 Components of a database system's architecture 103

2 .10 .12

With these definitions we can formally describe a transaction, 7~', as a
partial ordering of its composite operations, as follows:

Ti - {Si, << i} (2.15)

where

1. Si - OSi u N i (2.16)

2. For any two operations from 7~" - Oij, Oik ~ Osi

If O/j = R(X) and Oik - W (X) , then for any X

Either O/j << i Oik or Oik << i O/j

(2.17)

3. And for all O 0" ~ OSi, Oij << i N i (2.18)

What all this says is that a transaction is made up of reads, writes, and a
commit or an abort operation, and that there is an explicit ordering in a
transaction so that if a conflicting read precedes a conflicting write in the
history, a strict sequential ordering must always hold in this transaction for
these conflicting operations. In addition, all operations from the transac-
tions must precede the commit or the abort statements. This is an impor-
tant concept for developing correctness criteria for transaction executions,
especially when concurrency comes into play. The transaction ordering
must not be violated, to ensure that the transaction can perform the
intended operation.

Transaction processing in a database system strives for guaranteeing the
ACID properties, while delivering a high degree of data availability, no loss
of updates, avoidance of cascading aborts, and recoverability of the database
and transactions. A high degree of data availability is realized through
reduced blocking of read and write requests. No loss of updates is guaran-
teed by correct commit processing. The avoidance of cascading aborts is
provided for by robust recovery protocols. Finally, recovery is provided by
redundancy and the rules governing commit.

Database and system mismatch

The operating system migrates storage from primary memory to secondary
storage, based on the operating system's perspective on when this should be
done. Demand paging and limited storage dictate that this be performed on a
page fault basis. The database, however, may not wish the page to be written
back to secondary memory due to concurrency control and atomicity issues.
The database may wish to hold pages in memory until transaction commit

I Chapter 2

104 2. I0 Components of a database system's architecture

time and then flush to secondary storage. This would allow the database not
to require undo of transactions on failure, simply abort, and restart.

Related to this is I/O management and device management. The data-
base may wish to order access based on the queries being presented to it in
order to maintain ACID execution, whereas the operating system simply
will order the accesses to deliver the greatest throughput of data back to the
CPU. The order in which it returns information may be counterproductive
to the database, to the point where the database has waited so long for
needed data that when the data do come the operating system pages out the
database software to make room for the data, or it removes the data that the
new information is to be processed against. In either case this is not condu-
cive to optimal database processing.

The problem with the operating system for this type of problem is the I/O
buffer management policies and mechanisms. The database wants to use
and optimize buffers to maximize transaction throughput, while the operat-
ing system wants to maximize average process response.

The control of the processor itself by the operating system may block
essential functions that the database must perform--for example, the data-
base requires that the log of database actions be flushed to secondary storage
at specific points and in an uninterruptable manner in order to guarantee
recovery and correct execution. Likewise, to keep the database as consistent
as possible requires the database to flush committed data to the persistent
store when necessary and in an atomic operation. The operating system in
its wish to be fair may time-out a database function doing specifically this
operation. On another related issue, if a database is sorting and processing
two large data files against each other, it may wish to maintain direct con-
trol over how and when data traverse the boundaries from the storage to the
processor and back. Without direct control over the allocation and dealloca-
tion mechanisms, the database could be removed from one resource while
still holding another, causing a loss of the intended operation's continuity.

The operating system's locking mechanism works well for simple file
management, and for the majority of applications this is sufficient. But a
database needs better control over locking to allow locking at possibly a data
item level only. The reason for this is to allow more concurrency and less
blocking of data. The intent is to increase data availability by only locking
what is being used, not an entire file. To rectify this databases are forced to
use direct addressing and direct file management features to allow for their
own control over the file level of locking. However, in some operating sys-
tems the database still suffers under the control of the operating system's
lock manager, regardless of what mode is used.

2.1 I Summary 105

2.11

An operating system's interprocess communication mechanisms may be
too expensive to use within a database system. Many operating systems use
a form of message passing involving interrupt processing. Such mechanisms
may have a high cost in terms of overhead. A database may wish to provide
more simple IPC mechanisms using shared memory or semaphores, espe-
cially since a database is only another process within the operating system.

Scheduling in an operating system looks to maximize overall average
response time and to share resources fairly. Scheduling only deals with the
selection of a process to place onto the executing hardware. A database, on
the other hand, has a multilevel scheduling problem~not only must it
select which transaction to place into service at any point in time, but it
must also schedule which operation to perform on the underlying database
to meet concurrency control requirements. An operating system's scheduler
will not and does not provide such a service.

A database requires the use of copying, backup, and recovery services of
the underlying infrastructure to aid in constructing database recovery pro-
tocols. The problem is that many of the other features of an operating sys-
tem may get in the way and hinder the easy operation of database recovery.
The database wishes to dictate how and when it will force information out
to persistent storage. This is done in order to minimize the work (UNDO
and REDO) that must be done to recover the database to a known consis-
tent state. The operating system, on the other hand, will do this based on its
needs to reallocate storage for processes in execution. The operating system
will not take into account that this least recently used page will actually be
the next page to be used by the database. It will simply choose this page and
force it out immediately, based on its needs.

To make the operating system and database interface more compatible it
is desirable that the operating system use semantic information, which can
be provided by the database to make sound, informed decisions. This is not
to say that the database should overtake or dictate the moves of the operat-
ing system. Instead it should act in a cooperative fashion to maximize the
system-oriented needs of a database, which are more diverse than those of a
typical application. See [1] for further information on database systems.

Summary

A computer system is comprised of many elements. Primarily these are the
central processing unit, the memory unit, the secondary storage unit, the
input and output unit, and interconnection hardware. Each of these ele-
ments can be architected in a variety of ways, each with their own set of

I Chapter 2

106 2.1 I Summary

pros and cons. Computer systems are typically represented as either single
processor units, multiple processing units, distributed processing units, or
networked units. The policies for connecting these devices to meet the
needs of an application will dictate the final form of the system's architec-
ture.

The operating system and related support infrastructure services are used
by an application to organize, maintain, and manipulate information on a
specific computer architecture. The applications and operating system's
needs and priorities do not always match. Due to this impedance mismatch,
applications and have, in the past, tried to work around the operating sys-
tem instead of working with it. The most notorious was in the early days of
the IBM PC and the DOS operating system. Application programs typi-
cally bypassed the operating system and worked directly on the underlying
hardware. The result was that programs ~pically ran "IBM PC or 100%
compatible" machines. Another example is the operating system's manage-
ment of the memory hierarchy may be fair and reasonably optimal for the
average application running on the system but may not match the needs of
the database management system. The operating system strives to maintain
a reasonable set of data pages in memory for the application's use, but it
does not attempt to go beyond its own measures of effectiveness. The con-
cept today is to engineer systems so that they operate optimally, based on
the semantic needs and intent of the applications, which may go against the
operating system's average response time and fairness goals.

3
Fundamental Concepts and
Performance Measures

3.1 I n t r o d u c t i o n

Computer systems architects and designers look for configurations of com-
puter systems elements so that system performance meets desired measures.
What this means is that the computer system delivers a quality of service
that meets the demands of the user applications. But the measure of this
quality of service and the expectation of performance vary depending on
who you are. In the broadest context we may mean user response time, ease
of use, reliability, fault tolerance, and other such performance quantities.
The problem with some of these is that they are qualitative versus quantita-
tive measures. To be scientific and precise in our computer systems
performance studies, we must focus on measurable quantitative qualities of
a system under study.

There are many possible choices for measuring performance, but most
fall into one of two categories: system-oriented or user-oriented measures.
The system-oriented measures typically revolve around the concepts of
throughput and utilization. Throughput is defined as the average number
of items (e.g., transactions, processes, customers, jobs, etc.) processed per
unit of measured time. Throughput is meaningful when we also know
information about the capacity of the measured entity and the presented
workload of items at the entity over the measured time period. We can use
throughput measures to determine systems capacity by observing when the
number of waiting items is never zero and determining at what level, based
on the system's presented workload, the items never wait. Utilization is a
measure of the fraction of time that a particular resource is busy. One exam-
ple is CPU utilization. This could measure when the CPU is idle and when
it is functioning to perform a presented program.

107

108 3. I Introduction

The user-oriented performance measures typically include response time
or turnaround time. Response time and turnaround time refer to a view of
the system's elapsed time from the point a user or application initiates a job
on the system and when the job's answer or response is returned to the user.
From this simple definition it can readily be seen that these are not clear,
unambiguous measures, since there are many variables involved. For exam-
ple, I/O channel traffic may cause variations in the measure for the same
job, as would operating systems load, or CPU loads. Therefore, it is impera-
tive that if this measure is to be used, the performance modeler must be
unambiguous in his or her definition of this measure's meaning. These user
measures are all considered random, and, therefore, their measures are typi-
cally discussed in terms of expected or average values as well as variances
from these values.

In all cases, however, to make such measurements we need some basic
understanding of the environment and its parameters with which we are
working. One fundamental concept is that of time. To measure a physical
phenomenon we need a metric to measure it against. In computer systems
this metric is typically time. Time alone, however, is not sufficient; we
need to have a place from which to mark time. This place is sometimes
driven by an event in the system to be measured or simply a specified time.
For example, in a computer system we may wish to measure the time a
transaction takes to execute within a database system. We need to define
the events of interest for this transaction system~for example, beginning
the transaction, running the transaction, and ending or commitment of
the transaction. Given that we have time and events, we next need to
define when and how we measure these events and the intervals of interest
for these events.

Other basic concepts needed for our discussions of computer systems
performance include the means by which one measures or samples a system.
Measurements can take on many forms within an evaluation project, as will
be seen. Another aspect of time, which is important in computer systems
performance studies, is that of intervals. An interval represents a measured
distance of time representing a measured distance in a time period. For
example a day, week, or month represents intervals of time. Most important
to computer systems evaluation is the concept of response. Response repre-
sents a completion event for a measured ent i ty~for example, the time
between when a key is hit on a computer terminal and the user receives the
result.

To utilize the basic quantities of time, events, intervals, and response, we
need some additional concept concerning the relationships between all of

3.2 Time 109

3.2 T ime

these items. The typical concerns we have deal with the concepts of inde-
pendence and randomness as they relate to the items within a computer sys-
tem. Last, but not least, the concept of a workload and the relationship this
plays with a modeling project must be defined.

Time is the most fundamental of concepts needed for computer systems
performance analysis. Without a clear concept of time our performance
studies cannot take on quantitative qualities. Time as a quantity shows up
in several ways when one investigates a computer system's performance. For
example, we hear of concepts such as arrival time of an entity, the service
time for an entity, time between failures, time to repair, entity lifetime, and
numerous other quantities of time associated with computer systems
performance. Each of these quantities requires us to have a reference point
from which to determine their meanings.

In computer systems performance, we will be interested in the measure-
ment of time related to various operational events in the computer system
under study. These events will be marked by timestamp, and by using this
timestamp we will have the capability to determine the relative ordering of
these events in relation to each other. The timestamp of an event, E, would
be represented as E(t). The measurement or marking of the time, t, will
only be as good as the clock we use in representing the time of an event and
our ability to match the time representation with the event.

Time in a real-world system is represented in two major ways: either as a
continuum or as discrete intervals or steps. The best way to think of these
two measures of time is that discrete time represents a single instance of a
time clock's measures, whereas continuous time represents discrete time
intervals, where the intervals approach zero or are infinitely small.

Computer systems work using the concept of f'Lxed time intervals. These
intervals represent the time flame or limit into which a computer system's
clock breaks down a second. Typical computer systems clocks or cycle times
are measured in nanoseconds (10 -9 seconds) or in slices of about one-bil-
lionth of a second. Such fine gradations of a second help us to understand
the speed of computer systems and related components.

I am sure you all can relate to hearing about a processor's speed. When
we go to purchase a new personal computer, we are quoted a number of
measures of computer relative time. For example, a 1.5-GHz processor
implies that the processor will have a clock cycle of about 0.67 nanosec-

I Chapter 3

I I0 3.3 Events

onds, or 6.67 -l° seconds. This is not the only measure one needs to know
when measuring or sizing up a personal computer for purchase. The CPU
speed is important but is only one measure. We need to know how fast data
and instructions can be transferred from the external devices into the inter-
nal primary memory, and then how fast the primary memory can transfer
this information and instructions to the processor for actual execution.
Even though one is quoted the CPU speed, this does not represent the
actual measure of the machine's performance. We will see that the way
devices are interconnected and how they interact will dictate overall speed.
In this simple example, the slowest device in the system will ultimately dic-
tate the real speed.

3.3 Events

Time is an important measure, but it can only become useful for us if we
have a means to use it in measuring something within our computer system
under evaluation. An event describes an entity of interest in our system.
Events usually represent some act ion~for example, the beginning of a
clock cycle (Figure 3.1) or the end of a clock cycle. The beginning of a com-
puter's instruction execution cycle is another event, as is the end of the
cycle, the reading of a memory location, the initiation of a block data trans-
fer from a secondary storage device, and the initiation of a process or task.
All of these represent events of interest to the computer engineer or com-
puter architect.

Events, representing actions within our computer system, must all be
controlled, so that the sequencing or ordering (partial or total ordering) of

Figure 3.1
Example of a

computer clock.

time

3.3 Events I I I

Figure 3.2
Eventpartial

orderings.

these actions contributes to the accomplishment of some larger event. For
example, the simple computer clock cycle is used to mark the beginning of
an instruction's execution in a computer. The rising edge of the clock is
used by the processor to begin execution of the current instruction in the
instruction register and to prepare the next instruction for execution. The
multitude of parallel events being performed during each and every clock
cycle of the computer system's clock must be synchronized so that the
designed intentions are realized. For example, the instruction to perform
was loaded into the instruction register during the last sequence, while at
the same time the next instruction address was computed and possibly some
parameters for the instruction moved into place. Each action must be
designed and its sequencing in relation to other actions defined so that the
computer will work as intended.

Each simple action, from the clock ticks to more complex actions such
as an instruction's execution all become part of larger systems actions~for
example, the initiation of a direct memory transfer of data from a secondary
storage disk drive; the DMA transfer being used as part of the systems
memory management system's paging algorithms; and the paging algo-
rithm's relationship to the movement of one process actively running on the
CPU being replaced by another due to a process switch handled by the
operating system. All of these represent actions of interest to the computer
analyst. Each, however, has a different temporal relationship to the measure
of time. The clock cycle is measured in fractions of nanoseconds, the single
assembly-level instructions in tens of nanoseconds, main memory transfers
in the range of 100 nanoseconds, disk transfers in the milliseconds range,
operating systems file transfers in the tens of milliseconds range, and so on.

In terms of performance assessment the system analyst must have an
understanding of the events within the system under study and the rela-
tionship of these events among each other. For example, we need to know

I Chapter 3

112 3.4 Measurements (sampling)

that a file access event is composed of the disk access event, memory page
replacement algorithm event, and the main memory load and store events.
In addition to knowing the events involved with a higher-order event,
event orderings must also be understood. For example, it is important to
know that the page replacement algorithm must be accessed first, to deter-
mine which page to move, before the new page can be loaded into the pri-
mary memory. These event orderings can be represented by simple event
lists or by more complex partial orderings (Figure 3.2). These orderings
dictate what events need to be considered and how the events may need to
be measured, so that an accurate picture of the system's performance can be
determined.

3.4 Measurements (sampling)

How does one measure a system or component performance? This is the
main problem facing the computer systems performance analyst. To deter-
mine how to measure, when to measure, or what to measure, the analyst
must first know all of the events of interest in the system and the relation-
ship these events have with each other. The events, as we saw earlier, repre-
sent all of the real actions that occur in the computer system under study.
These events form a hierarchy of relationships, where the finer, granular
events are used to construct the coarse-grained events in the system. Even
with these definitions, however, we do not know enough to begin measure-
ments that will have meanings. We must know all the possible conditions
that hold for events in our system and when they can be valid. Given a set
of possible events and their values, we can describe a valid "state" for the
computer system under study.

State is an important concept when considering any computer system.
The state, S, is defined as the set of all events in our system along with valid
values for their condition within the defined state. This can be described as
follows:

S - { E 1 (value),E 2 (value), E 3 (value) E n (value)} (3.1)

where each of the events must have all component events valid, and their
own values must define valid states. For example, a state for a central proc-
essing unit may be defined as being composed of the following events and
values:

• The program counter address held in the program counter

• The instruction held in the instruction register

3.4 Measurements (sampling) 113

• The status and value of the index register

• The status and values in the condition control register

• The value in the arithmetic logic unit temporary registers

• The value on the data bus

• The value on the address bus

• The value in the memory data register

Once we have definitions for the events and the state of the system, we
can then begin to discuss the concept of measuring quantities within the
system. There are three primary types of measures: A, B, and C. They can
be described as follows:

Type A looks to count a number of items over a given time period.
For example, we may be interested in how often the CPU receives a
new instruction during each second. This would represent the
instruction speed of the processor, given the mix of instructions pre-
sented to the CPU.

Type B measures all state variables (valid events and their values). A
representation of this type of measurement may be to extract all of
the values for all internal registers and devices at the beginning of an
instruction execution cycle.

Type C measures the fraction of time the system is within a state. An
example of this measure may be to see what the fraction of time is
that the system is executing load instructions versus all other kinds of
instructions during the measured period of time.

It is not sufficient to simply determine the kind of event one wishes to
measure and the values representing this event. One must also be able to
recognize that a specified state has been reached and that all events and sta-
tus variables for the state are valid. In addition to recognizing that a valid
state has been reached, one must also be able to determine if we are at an
end or transitional point within a state. These are not easy to know when
one is attempting to measure a system.

In order to find out where we are within a state, we must have means to
measure the systems events we are interested in. There are a number of ways
to measure these events, each with its own issues. We can use hardware
monitoring, software monitoring, or hybrid monitoring. The decision
about which of these techniques to use is dependent on many factors, such
as accessibility, event frequency, monitor artifact, overhead of monitoring,
and the flexibility of the technique used.

I Chapter 3

114 3.4 Measurements (sampling)

Hardware monitoring requires that the system analyst have the ability to
add instrumentation to the measured system. For example, we may attach a
logic analyzer to measure the signals within the system or insert a specially
designed hardware card to extract some signals from a system. This mode of
measurement will allow us to measure some subset of the total system's
hardware elements. We can only measure what is exposed and available to
be attached to for monitoring. If the item or action we wish to monitor is
not easily accessible, we may not be able to get to it using a hardware moni-
tor. We may need to use some other means to extract the information from
the system.

Another form of hardware monitoring uses integral test hardware, which
is designed into the system being monitored during systems design. A com-
mon form of this monitoring scheme is found in very large scale integration
(VLSI) devices. Many VLSI devices are designed so that all data items of
interest can be tested in the device itself, or, at a minimum, the test data
points are brought outside of the chip so additional devices can be used to
gather this information and compute the health of the device.

In all of these cases it is imperative that the hardware monitoring be
designed as an integral component of the system, so that it will not interfere
with the operational system. It is not desirable for the monitoring equip-
ment to interfere with the system being monitored. If this is the case, the
results from the monitoring are suspect and may lead to erroneous conclu-
sions. The monitoring hardware must be selected and designed with the
device being measured in mind. The determination of sampling sites and
the frequency of measurements must be designed ahead of time, not after
the monitor has been put in place. The monitoring method has to be set up
ahead of time also. That is, we must determine if the monitor is to act syn-
chronously or asynchronously with the measured system. We must deter-
mine and define all aspects of the monitor's existence in the measured
system. Nothing can be left out if we are to get trustworthy data.

Software monitoring requires support from the system under study if it
is to be successful. Software monitoring requires that there be a means for
the monitor designers to get at systems hardware elements as well as low-
level software elements~for example, systems clocks, programmable tim-
ers, interrupt registers, and systems status registers. The typical software
monitor is designed for trace monitoring and sampling, not for synchro-
nous monitoring. In trace monitoring, the analyst adds additional code to a
code sequence so that the code's run time can be monitored. Typically we
would be interested in how often a code segment is entered, how long the

3.5 Intervals 115

3 . 5

code segment runs, or how much of the total systems time the code seg-
ment utilizes.

Software monitoring, as with hardware monitoring, still requires that we
know ahead of time where the sampling measures are to occur within the
system and the frequency of this sampling if our measurements are to have
meaning.

In software monitoring, where we are using sampled monitoring tech-
niques, we need to have access to low-level operating systems calls. This
type of access is required so that we may cause a system's interrupt and take
control of the system. The interrupt control would allow for entrance into
the system and collection of systems state information such as the contents
of registers and status flags. One positive aspect of this form of software
monitoring is that it may not lead to the alteration of any code, given that
all required information can be collected using available information.

A more common form of measurement uses hybrid monitoring. This
form of systems monitoring uses concepts and mechanisms from both hard-
ware and software monitoring. To utilize hardware monitoring we must go
through the same set of issues as was the case for hardware monitoring as
well as for software monitoring. The setup may require the synchronization
of multiple hardware and software setups. We must set up the control pro-
grams to determine when and how to monitor the system under test. We
must determine what to capture with hardware devices and what to capture
with software means. Upon execution of the monitoring subsystem, we
must determine how and how often to retrieve collected information. In
addition we must also determine how and when to synchronize the measur-
ing and measured systems.

Hybrid monitoring comes with its own set of problems. As in hardware
monitoring, we must have a means to extract signals of interest from our
system. We must determine which elements we wish to test are best tested
with hardware and which with software. We must understand and bound
the impact the monitoring software has on the monitored systems, so that
correct measurements are extracted. Finally, we must always keep in mind
that the measurements are only as good as the available measurement
points.

I n t e r v a l s

Measurement requires that we have a domain or environment in which we
are measuring. In computer systems the environment is the systems clocks

I Chapter 3

116 3.6 Response

3 . 6

Hgure 3.3
Example of

intervals

E1 E2 E3 E4

I I
t~ t 2 t 3 t 4

Interval I~ 12 I~

and the instruction execution cycle. Another major environment is the
high-order systems functions. In order to measure these items we need to
focus on their interval of execution. An interval represents a period of time
bounding the initiation of an event sequence of interest and the end of this
event sequence (Figure 3.3).

In Figure 3.3, the interval 11 is composed of Event l's time tag and Event
2's time tag. Intervals are used as a means to measure an event's sequences
period of execution or the period of time between such executions (in Fig-
ure 3.3, interval 2). Two intervals are the same if they represent the same
sequence of events (they are related) and the time interval between the
events is equivalent. Two intervals representing two separate sequences of
different events can also have equivalent intervals, but they are unrelated.

Response
Response is an important concept in computer systems performance stud-
ies. Response time represents a measure of the period of time a user or
application must wait from the point of issuing some action or command
until the completion and return of control for the requested command. The
typical measure used may pit the response time (an interval) against the sys-
tems load (stream of jobs). The curve may appear similar to that shown in
Figure 3.4.

The interpretation of this curve becomes an important means to evalu-
ate our system. In Figure 3.4 we see that the response time of our measured
action sequence stays within tolerable ranges (between 1.0 and 3.0) for
loads below approximately 60 percent of the capacity of the measured sys-
tem. As the load increases above this point, the response climbs exponen-
tially~reaching a saturation level when the system is fully loaded, yielding
an asymptotic response time approaching infinity. One can see from this
simple example the importance of response time as a measurement in mod-
eling and evaluating systems.

The problem is in trying to determine the response of what. It may not
be sufficient to look at our systems performance from only one measure or

3.7 Independence 117

r

Figure 3.4
Response time

versus system load.

Response
16

14

12

10

8
6

4

2

I I I I I I I I I I
.1 .2 3 .4 .5 .6 .7 .8 .9 1.0

Capacity

action sequence. We may be interested in a family of such action sequences,
requiring a series of separate tests to study the effect of each of these mea-
surable sequences against system load. In addition to this form of measure,
we may also be interested in how these various action sequences impact
each other as load increases. This would result in a family of response
curves, which need to be interpreted against each other and the loads.

3.7 Independence

Another very important concept in performance modeling and analysis is
that of independence. An action or event is considered independent of
another event or action if the occurrence of one does not influence the out-
come of the other. For example, the tossing of a coin followed by the rolling
of a die are independent, since the coin's toss has no impact on the out-
come. If we look at these events as two separate sample spaces, the interac-
tion of these events becomes clearer. The sample space for the coin's toss is
simply the set {H,T}, and the sample space for the die is simply the set
{1,2,3,4,5,6}. The sample space in Figure 3.5 is the Cartesian product of
these two independent spaces.

The independence of events in a system is an important concept to con-
sider when evaluating systems. If two events are independent, we need not

v

Figure 3.5
Cartesian product

of two independent
sample spaces.

1 2 3 4 5 6

H H1 H2 H3 H4 H5 H6
T T1 T2 T3 T4 T5 T6

I Chapter 3

118 3.8 Randomness

3 . 8

consider these as related items requiring us to examine their response in
relation to each other and their environment.

In a computer system, two programs that cannot run concurrently with
each other can be viewed as independent items and analyzed as such. Even
though they run on the same hardware and possibly use the same operating
systems software, since they cannot interfere with each other and are not
dependent in terms of sequencing, they can be evaluated as separate, unre-
lated items. It becomes an important part of our modeling and analysis of a
system to define all elements and their relationship to each other. These def-
initions can then be used to aid in the determination of independence. We
will discuss this property of events further when we look at probability and
then map this to computer systems elements.

R a n d o m n e s s

Just as important to modeling as the concept of independence is the con-
cept of randomness of events. Randomness is a property of an event and its
reoccurrence. If an event is random, it implies that there is not a pattern
that can be mapped onto the events to determine when they will occur
again. Randomness is difficult, if not impossible, to prove. The converse,
however, can be shown~that is, that an event is not random. We can use
the assertion that a pattern does not exist as a way of indicating that the past
will not aid in defining the future of an event. A random sequence of trials
is the realization of the property of independence defined in the previous
section.

Randomness is a mathematical concept. In mathematics we think of
random numbers coming from a random infinite source. In practice, there
are finite sequences of available numbers, and once they are generated they
now have a pattern. For example, if we roll the die, before we roll it we have
no idea which number will occur; but after it is rolled there is only one out-

come.

In a computer system, the events caused by external sources (e.g., user
key strokes, remote calls to a server) can be viewed as random events. Thus,
their occurrence cannot be predicted ahead of time nor can the future after
the last occurrence. This concept becomes very important when we wish to
analyze our computer systems using mathematical concepts.

More on the concept of randomness will be discussed when we look at
random variables and their use in modeling computing systems as Markov
chains and Markov processes in later chapters.

3. I0 Problems encountered in model development and use 119

3.9 W o r k l o a d s

3 . 1 0

A concept we have been discussing throughout the book up to this point is
that of workload, or, more simply, load. These terms represent an extremely
important element in our computer systems modeling problem. The work-
load or load represents the events or event sequences presented to the sys-
tem to model or drive the system under study. The load represents how
many of some event sequence are being offered for execution during some
given period of time. An example may be the number of instructions per
second and the mix of instruction types presented for execution per second.
The combination of the volume and the mix is important, as well as the
duration of the load.

The duration may be all at once, requiring the system to queue up the
requests and perform them as resources become available. This type of mix
and load would saturate the system up front and then decay to no load as
the items get processed. The duration could be endless, with the load con-
tinually refreshed to provide a constant saturation or equilibrium load to
the system. Loads can be periodic, where the instructions are presented all
at once for service and then allowed to be processed. The load is then reen-
tered after the prescribed period of time has passed, providing another spike
in processing requirement.

There is a science to workload development and selection for the com-
puter systems modeler. For example, the database community has devel-
oped a set of transactional workloads aimed at testing a variety of database
systems configurations. This set of transactions and the underlying database
system have been developed over a number of years through the measure-
ment of real database systems and the need to evaluate databases against
each other with a known well-formed set of loads. Likewise, the personal
computer industry has also developed a set of systems workloads aimed at
allowing customers to assess the performance of one computer architecture
against another.

P r o b l e m s e n c o u n t e r e d in m o d e l d e v e l o p m e n t
and use

Developing a performance assessment project for a specified system is not
without its pitfalls. We must start with developing a concept for what we
are evaluating and why. That is, does our performance study have as its goal
to measure the existing performance of a system or future possibilities? Are
we measuring the cost of the system now or in the future? Are we measuring

I Chapter 3

120 3. I0 Problems encountered in model development and use

the correctness of the system or the adequacy? How do we define these
terms? What dictates correctness or adequacy? Why do we need to perform
this study?

The typical analyst first begins with the primary concern, that the sys-
tem performs its intended design function correctly. For example, if a com-
puter system is to be able to perform concurrent operations, then a primary
measure is that it can do just that. A secondary concern of the modeler is
that the system has adequate performance and delivers this at a reasonable
cost. This implies that we need some way to measure and predict what is
adequate performance and what is reasonable cost.

To understand these terms we first need to put them in the context of an
environment where the system is to be operational. Even before this,
though, we must start by determining what is meant by the system. For
example, if it is a PC, we need to know what this term entails. Do we wish
to include the motherboard, processor type, memory volume and type, I /O
boards, graphics cards, disk drives, and maybe network interconnects? Or
do we simply mean the black box, without concern for what is inside? Once
the system of interest has been defined, the modeler must define what com-
ponents make up this system and what their importance is in the context of
the entire system.

Given the systems definition and the components definition, we next
must define the environment in which the system will operate. The envi-
ronment should only include the important factors defining it, not every-
thing. For example, if we are studying a PC architecture, we may wish to
know if it will be exposed to the elements, extreme temperatures, humidity,
and so on.

Once the environment is defined, we must determine what parameters
are of interest to us as analyst. These may include parameters upon which
the system is used or measured by. Some parameters may include things
such as the PC processor speed, the size of primary memory, and so forth.

The common answer with PC users and computer systems users in gen-
eral is that they cannot easily define the above terms. They typically look at
computer systems performance evaluation as only answering one question:
If my computer is not working up to snuff, can't I just add more of "what-
ever" to make it work better? The problem lies in how to know what "what-
ever" is needed. How much of this "whatever" is needed? The problem is
that one does not readily know when adding "whatever" that a certain
quantity will provide the intended result. More importantly, without per-
formance evaluation how do we know we are done?

3. I0 Problems encountered in model development and use 121

The problem the performance evaluator is faced with is how to deter-
mine what to measure and how to do this. There are two main classes of
techniques for computer systems performance assessment. The first is to
take an existing system and design some experiments involving possibly
hardware, software, or both. Then measure the result to determine what is
needed. The second class of modeling tool utilizes more abstract means.
These involve either analytical modeling or simulations. Analytical model-
ing typically uses queuing theory or Petri nets theory and can provide coarse
analysis of the systems under study. Simulations can provide more fidelity
but at an added cost in terms of design time and analysis. Simulations can
be designed as discrete event-based models, continuous-based models, or
combined models.

Performance measures used by the analyst in making a determination of
performance include responsiveness, use levels, missionability, dependabil-
ity, productivity, and predictability. Responsiveness indicates the system's
ability to be provided commands and to deliver answers within a reasonable
time period. Use level indicates the system's degree to which it is loaded--
for example, is the system 50 percent loaded or 100 percent saturated? Mis-
sionability refers to the system's ability to perform as it was intended for the
duration demanded. For example, a spaceship must be highly missionable.
Dependability is related to the last measure but indicates the system's ability
to resist failure or to stay operational. Productivity indicates a measure of
the throughput of the given system. And predictability indicates a measure
of a system's ability to operate as required under all or most conditions.

All of these measures have a place, given specific classes of systems. For
example, a general-purpose computing facility must possess the qualities of
being responsive, have good use levels, and be productive. High-availability
systems, such as transaction processing or database systems, must not only
be responsive but must possess a higher degree of dependability than the
general-purpose computing environment. Real-time control systems require
high responsiveness, dependability, and predictability. Mission-oriented sys-
tems, such as avionic control systems, require extremely high reliability over
short durations and must be responsive. Long-life applications, such as
spacecraft and autonomous underwater vehicles, must be highly depend-
able, missionable, and responsive.

There are common errors or mistakes computer systems performance
analysts make or must avoid when performing their tasks. The first and
most common is having no goals or ill-defined goals for the performance
study. The goals should include a specification for a model of the system or
component under study and definition of the techniques, metrics, and

I Chapter 3

122 3. I0 Problems encountered in model development and use

workload to be used in the evaluations. The second major problem is set-
ting biased goals. This is a very common mistake by the modeler. The goal
becomes to prove that "my system is superior to someone else's system."
This makes the analyst the jury, which will lead to bad judgments.

If the analyst uses an unsystematic approach to developing the model or
jumps into analysis before fully understanding the problem under study, the
results will be flawed. The choice of incorrect performance metrics or mis-
leading metrics will result in erroneous results and conclusions. Choosing
an unrepresentative or nonstressful workload will lead to misinterpretations
of system performance boundaries. Choosing the wrong evaluation tech-
nique~for example, analytical modeling, when a testbed is the right
choice~will lead to overly simplistic or complex analysis. Overlooking
important system parameters or not examining the interaction among sys-
tems parameters may lead to erroneous conclusions about sensitivities and
dependencies among system elements. Inappropriate experimental design
or bad choice of the level of detail can cause misleading conclusions. Erro-
neous analysis, no sensitivity analysis, or even no analysis lead to failure.
Ignoring input, internal or output errors, or the variability of these can
cause misleading interpretations of results. Not performing sensitivity anal-
ysis, outlier analysis, or ignoring change can also cause problems in inter-
preting or trusting results. Performing too complex an analysis or improper
presentation or interpretation of results, as well as the omission of assump-
tions and limitations, will yield a failed analysis.

To try to alleviate these problems the analyst should ask the following
questions before, during, and after an analysis has been done:

1. Is the system correctly defined and the goals of the analysis clearly
stated?

2. Are the goals stated in an unbiased manner?

3. Have all the steps of the analysis been followed systematically?

4. Is the problem clearly understood before analysis is begun?

5. Are the performance metrics relevant for this problem?

6. Is the workload correct for this problem?

7. Is the evaluation technique appropriate?

8. Is the list of parameters that affect performance complete?

9. Have all parameters that affect performance been chosen as fac-
tors to be used in experimental design?

3. I0 Problems encountered in model development and use 123

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Is the experimental design efficient in terms of time and results
expected?

Is the model's level of detail sufficient?

Are the measured data presented with analysis and interpretation?

Is the analysis statistically correct?

Has the sensitivity analysis been done?

Would errors in the input cause an insignificant change in the
results?

Have the outliers in the input or outputs been treated properly?

Have the future changes in the system and workload been mod-
eled?

Has the variance of input been taken into account?

Has the variance in results been analyzed?

Is the analysis easy and unambiguous to explain?

Is the presentation style suitable for its intended audience?

Have the results been presented graphically as much as possible?

Are the assumptions and limitations of the analysis clearly docu-
mented and accounted for?

When developing a performance study the sage performance analyst
would follow a systematic approach, which has the following point as its
components:

0

0

,

4.

o

6.

o

8.

,

10.

11.

State goals and define the system to be studied.

List services and outcomes clearly and completely.

Select the performance metrics.

List all systems parameters of interest.

Select the factors for the study.

Select the evaluation technique to apply.

Select the workload.

Design the experiments.

Analyze and interpret results.

Present results clearly and unambiguously.

Repeat if needed.

I Chapter 3

124 3. I I A case study

3.11 A case s t u d y

If we wished to study the issue of remote pipes versus remote procedure
calls, we could go through the following modeling effort. The first step is to
define the system we wish to study. This entails developing a model that
contains all of the major components of interest. In Figure 3.6 we postulate
such a definition.

The services we wish to focus on are small and large data transfers. We
will not be concerned with other details of the services.

The metrics we wish to focus on as well as some assumptions include
that there are no errors and no failures in the system. We wish to focus on
defining rates of access, time for performance, and resource requirement per
service. The resources we will focus on are the client, server, and network
elements.

These metrics and assumptions may lead us to focus on measurements
to be collected, such as elapsed time per call, maximum call rate per unit of
time, time required to complete a block of N successive calls, local CPU
time per call, remote CPU time per call, number of bytes sent over the link
per call, and so on.

These in turn will require us to focus on definition of the system's
parameters~for example, the speed of the local and remote CPUs, the
speed of the network, operating system overhead for interfacing with the
channels, operating system overhead for interfacing with the network, reli-
ability of the network, and so forth.

The workload parameters used to define the presented workload may
include the time between successive calls, the number and sizes of the call
parameters, number and size of the results, the type of channel used, and
other background loads on the local and remote site as well as on the net-
work.

Factors we may wish to study could include type of channel (RPC or
remote pipes), size of the network (long distance, local area network), size of
the calls (small, large), and the number of successive calls (can vary from
one, five, ten up to some saturation load).

The assumptions made may include fixing the type of CPU and operat-
ing system, ignoring retransmissions due to network errors, and doing
measurements with no other loads on hosts and networks.

The evaluation technique may be chosen as a prototype along with ana-
lytical models to validate or bound the expected results. The workload is

3.12 Summary 125

Figure 3.6
System definition.

Client

|
|
i !

Server

constructed using synthetic constructs. The experimental design will vary
all factors, resulting in a full factorial experimental design with 88 experi-
ments used. This represents the varying of all factors described over their
entire range of postulated values. The data analysis will involve determining
the variance of results and comparing these against each factor. This would
be followed by the plotting of all results in graphical form to better show
performance variations.

3.12 Summary

In this chapter we briefly described some of the fundamental concepts
required to initiate the analysis of computer systems. The first dealt with
the basic concept of time and how this unit can be used as a fundamental
means to measure performance. This description was then followed by a
description of the definition of events or actions within a domain. The con-
cepts of time and event were then melded to yield a means to identify
points from which to initiate measurement. The methods of measuring a
system were then described, focusing on hardware and software monitoring
and issues associated with each.

The next step in our investigation was to develop the concept of related
actions making up larger actions and the duration of these activities. The
duration was defined as the interval of a complex action or the time
between successive repetitions of a specified sequence.

With the concept of intervals we could then focus on measuring a
sequence of related actions. The focus of this section was to define response
time in relationship to a computer system's modeling and performance
analysis.

The concept of these complex interactions was addressed next. The
concepts of dependent and independent actions were developed. These
were then followed by the development of a definition for randomness of
such events within a computer system. It was pointed out that this con-

I Chapter 3

126 3.12 Summary

cept of randomness is an important one in simplifying some of our analy-
sis techniques.

This discussion was then followed up with an introduction to the con-
cept of a workload and what it represents in computer systems perform-
ance. The final section in this chapter discussed some of the hurdles facing
the computer systems analyst in the design, development, operation, and
completion of a performance study.

4
General Measu remen t Principles

In modeling computer systems, we typically are interested in the service
times of entities that utilize system resources. Entities in our discussion can
represent a variety of operations on a computer system. For example, we
may be interested in the time it takes to service an operating interrupt or, in
a database system, the time to lock a data item in the database. The
resources we are interested in are computer hardware elements and software
resources. The entities represent the operations that are performed using the
resources of the computer system. For example, if the resource is a central
processing unit, a program operating on the CPU would have a service time
composed of instruction execution (possibly driven by the instruction mix),
memory management, I/O management, and secondary device access and
transfer delays.

These components of the system under analysis are observable and pos-
sibly measurable. This does not mean that we need to measure all compo-
nents precisely and completely as deterministic points in time. It may
actually be more desirable to use average times and random service and
arrivals to model these resources and programs. If the focus of review is the
overall program operation, and not the components of this operation, then
the service times will appear to be unpredictable and, therefore, can be
assumed to be random. Without such assumptions, modeling a computer
system would get bogged down in the extraction and determination of
minute details, which may cloud our overall analysis.

Even though the service times for events may be unpredictable, we can
still describe them in a way amenable to modeling and analysis with fairly
good accuracy. For example, we can observe many event occurrences over a
long period of time and deduce the composite average service time from
this information with some degree of accuracy. Such approximations are
sufficient for many models and for their analysis, as will be seen in later
chapters.

127

128 General Measurement Principles

"" P(x) Figure 4.1
Probability 5/6

distribution for a
fair die. 4/6-

3/6 -

2/6 -

1/6 - I I I I I T
' I " "I" ' I " ' I " ' I " ' I "

1 2 3 4 5 6 Value

One of the most important approximations concerning events and serv-
ice distributions in a modeled system is that of probability distribution. It is
important in modeled systems to have a measure of the possibility of some
event occurring in relation to other events. The probability distribution
looks to assign discrete probability values or continuous intervals of proba-
ble values to events. The assumption is that individual service times or
events are independent and identically distributed (see Chapter 3). This is a
reasonable approximation to reality under most conditions.

The simplest form of a probability distribution is found when we have a
finite set of possible values. For example, the rolling of a fair die can only
take on the values of{1,2,3,4,5,6} and no others. In addition, the probabil-
ity of these individual values being rolled, given a fair die and an exhaustive
number of trials, is 1/6 each. The possible values and a graphical representa-
tion are shown in Figure 4.1.

In equation 4.1, P(x) represents the probability (or relative frequency) of
value x occurring. In Chapter 5, we will see that P(x) must possess the prop-
erties that 0 _< P(x) _ 1 for all possible values of x from our set of possible
values, and ~ P(x) = 1.

When using such measures, the most important parameter when model-
ing is the mean or expected value. This value corresponds to the average
value and is represented as:

E [X] - ~ _ x P (x) (4.1)
X

General Measurement Principles 129

Given the distribution of equation 4.1, E[X] would be calculated as:

E [X] - 1(1/6)+ 2 (1/6)+ 3(1/6)+ 4(1/6)+ 5(1/6)+ 6(1/6)
-3 .5

(4.2)

An additional generalized measurement typically used is the nth
moment and is computed as the sum of the x value raised to the nth power
times the probability of this value of x occurrence, or:

E[Xn]-Exnp(x) (4.3)
x

For our fair die example, the second moment would be found as:

E[X 2]= 12 (1/6)+ 22 (1/6)+ 32 (1/6)+

42 (1/6)+ 52 (1/6)+ 62 (1/6) = 15.167
(4.4)

A variation and more useful measure is the nth central moment, which
is found by examining the difference between measured values and the
expected value. The central moment is found by the formula:

E[(X-E[X])n]-E(x-E[X])np(x)
x

(4.5)

For our fair die example, the second central moment would be found as:

E l (X - E [X]) 2] - (4.6)

1/6[(-2.5) 2 + (-1.5) 2 + (-0.5) 2 + (0.5) 2 + (1.5) 2 + (2.5) 2] - 2.92

This measure of the second central moment has another name: the vari-
ance. The variance can be refined to give us an important measure, called
the standard deviation, by taking the square root of the variance. Typically
the variance is written ~2. In our example, for the fair die, the standard
deviation is found to be 1.7. The standard deviation tells us the average dis-
tance our measured values vary from the mean and can help in telling us
how variable our data are. An additional measure concerning the relation-
ship of actual values versus expected values is the coefficient of variation C x.
The coefficient of variation is defined as:

C x - cs x / E [X] (4.7)

I Chapter 4

130 General Measurement Principles

Figure 4.2
Probability density

function.
f(x)

l/a

In computer systems modeling it is possible to see coefficient of varia-
tion measures from below 1 to 10 and above. Most measures, however, will
tend to fall somewhere between these values.

In modeling computer systems we often must characterize arrival rates
and service rates using a variety of distribution functions. Typical distribu-
tions utilized include the exponential distribution, the normal distribution,
the uniform distribution, and geometric distributions. We will mention
them in overview in this chapter, discussing additional details in Chapter 5.

When looking at the values for an entity of interest, we have been exam-
ining how often the value occurs in comparison to all possible values. We
have used the discrete probability distribution up to this point, since our
examples assumed discrete values. Often in computer systems values for an
entity of interest will not be discrete; they will be continuous. For example,
the amount of time the CPU takes for every job it processes will typically
consist of real values, not discrete values. Such measures require that the
probability of a particular value we are interested in will vary over the full
range of possible values. Such probability functions are continuous and are
described by functions. The function describing the possible probability
values for our entity of interest is called the probability density function
(Figure 4.2), while the measure showing the systems probability is described
by the probability distribution function (Figure 4.3). The probability den-
sity function gives us the actual value for the probability of some entity at a
specific point in the state space for the item. The distribution function pro-
vides us with a probability measure indicating what the probability is that a
value is less than or equal to a specific value.

For the measures we introduced for expected values, variance, and the
central moment, the following changes in formula hold.

General Measurement Principles 131

r

Figure 4.3
Probability
distribution

function.

F(x)

For the mean:

o o

E[X]- I x f (x0)dx 0 (4.8)

for the variance:

o o

E [X 2] - I X2 f(x°)dx° (4.9)
~ o o

and for the central moment:

o o

{~2 -- I (X -- E[X]) 2 f (x 0)&0 (4.10)
~ o o

For the distribution shown in Figure 4.2 the probability density func-
tion would be described as:

O xo a
otherwise (4.11)

and for the probability distribution function as:

0 x o <0

r (x) - xo/a O<-xo <-a
1 xo>a

(4.12)

I Chapter 4

132 General Measurement Principles

The expected value for our example would be found as:

E[x]-a/2 (4.13)

The second moment for our example would be found as:

E [X 2] = a 2 / 3 (4.14)

and the variance called the central moment would be found as:

O 2 - - 12/12 (4.15)
One of the most important distributions for modeling computer sys-

tems is the exponential distribution (in particular the negative exponential).
For the exponential distribution the probability density function is
described as:

0 x o <0
f (x°) - ~,e-X*o x o _> 0 (4.16)

and for the probability distribution function as:

{7 xo o
F (x °) - -e-X~o x o > 0 (4.17)

The expected value for the exponential distribution is described as:

E[X] = I/~ (4.18)

The second moment is found as:

E[X2] - l/£2 (4.19)

The central moment is found as:

0 2 --1/~ 2 (4.20)

and the coefficient of variation is found as:

C x =1 (4.21)

In later chapters we will see the importance of this distribution when
examining computer systems. This distribution can be used in ways such
that we can get very close approximations of general systems operations.

4.1 Scheduling algorithms 133

4.1 Scheduling algorithms

When analyzing computer systems one ultimately must look at the schedul-
ing algorithms applied to resource allocation. The means by which
resources are allocated and then consumed are of utmost importance in
assessing the performance of a computer system. For example, scheduling
algorithms are applied when selecting which program runs on a CPU, what
I/O device is serviced, and when or how a specific device handles multiple
requests. When examining scheduling algorithms, two concepts must be
addressed. The first is the major job of the scheduling algorithm, which is
what job to select to run next. The second is to determine if the job pres-
ently running is the most appropriate to run and if not, should it be pre-
empted (removed from service).

The most basic form of scheduling algorithm is first-come first-served
(FCFS). In this scheduling algorithm jobs enter the system and get operated
on based on their arrival time. The job with the earliest arrival time gets
served next. This algorithm does not apply preemption to a running job,
since the running job would still hold the criterion of having the earliest
arrival time. A scheduling algorithm that operates opposite from the FCFS
is the last-come first-served (LCFS) algorithm. In this algorithm the job
with the most recent time tag is selected for operation. Given this algo-
rithm's selection criteria, it is possible that this algorithm could be preemp-
tive. The job being serviced is no longer the last to come in for service. The
preemption decision must be made based on the resource's ability to be
halted in midstream and then restarted at some future time. Processors typ-
ically can be preempted, since there are facilities to save registers and other
information needed to restart a job at some later time. Other devices, such
as a disk drive or I/O channel, may not have the ability to halt a job and
pick it up at some later point.

A number and variety of scheduling algorithms are associated with proc-
essor scheduling. One of the most common processor scheduling algo-
rithms is round robin. Round-robin scheduling is a combination algorithm.
It uses FCFS scheduling, along with preemption. The processor's service is
broken into chunks of time called quantum. These quanta or time slices are
then used as the measure for service. Jobs get scheduled in an FCFS fashion
as long as their required service time does not exceed the time of a quan-
tum. If their required service time exceeds this, the job is preempted and
placed in the back of the set of pending jobs. This motion of placing a job
back into the FCFS scheduling pipe continues until the job ultimately com-
pletes. Thus, the job's service time is broken up into some number of equal,

I Chapter 4

134 4.1 Scheduling algorithms

4.1.1

fixed-size time slices. The major issue with round-robin scheduling is the
selection of quantum size. The reason quantum size selection is so impor-
tant is due to the nature of preemption. Preempting a job requires overhead
from the operating system to stop the job, save its state, and install a new
job. If the time for these tasks is large in comparison to the quantum size,
then performance will suffer. Many different rules of thumb have been
developed in designing such systems. Most look to make the overhead a
very small fraction of the size of the quantum~typically, orders of magni-
tude smaller. A method used for approximating round-robin scheduling
when the quantum is very large compared with the overhead is processor
sharing (PS). This model of round-robin scheduling is used in theoretical
analysis, as we will see in later chapters.

Another algorithm is shortest remaining time first (SRTF). In this algo-
rithm the job that requires the least amount of resource time is selected as
the next job to service. The CPU scheduling algorithm SRTF does support
preemption. When an arriving job is found to have a smaller estimated exe-
cution time than the presently running job, the running job is preempted
and replaced by the new job. The problem with this scheduling algorithm is
that one must know the processing requirements of each job ahead of time,
which is typically not the case. Due to this limitation it is not often used.
The algorithm is, however, optimal and used as a comparison with other
more practical algorithms.

A useful algorithm related to SRTF is the value-driven algorithm, where
both the time of execution and the value of getting the job completed
within some time frame are known ahead of time. This class of algorithm is
found in real-time, deadline-driven systems. The algorithm selects the next
job to do based on nearness to its deadline and the computation of the value
it returns if done now. The algorithm also is preemptive in that it will
remove an executing job from the processor if the contending job is nearer
its deadline and has a higher relative value. The interest in these classes of
scheduling algorithms is that they deliver support for the most critical oper-
ations at a cost to overall throughput.

Relationship between scheduling
and distributions

In determining the performance of a computer system, the usual measure is
throughput. In the discussions that follow we consider this to be the mean
number of jobs passing through some point of interest in our architecture
during an interval of time--for example, the number of jobs leaving the

4.1 Scheduling algorithms 135

4.1.2

y

H ~ e 4.4
Resource in

equilibrium.

CPU per minute. In most cases we will realize the maximum value for
throughput when our resources are fully utilized (busy).

In the previous section we introduced measures that we can use now.
The coefficient of variation defined previously is a good way to examine the
variability of our data. If the service times are highly variable, C > 1, then
most measures will be smaller than the mean and some will be larger. For
example, in the exponential distribution, C - 1, one would find from the
probability density function that about 63 percent of the values are below
the mean. Such variability would cause problems with certain scheduling
algorithms~for example, the FCFS scheduling algorithm, since jobs with
large resource requirements will cause added delays to the majority of jobs
that will be smaller than the mean. The effect can be further compounded
by other resources dependent on the FCFS scheduled resource. For exam-
ple, if jobs pile up waiting for CPU service, other resources such as disk
drives and I/O devices would go idle.

One scheduling algorithm that is not as susceptible to this phenomenon
is the round-robin scheduling protocol. Since no job, whether large or
small, can acquire and hold the resource longer than a single quantum at a
time, larger jobs will not starve out smaller jobs. This fact makes the round-
robin scheduling protocol a nice algorithm for measuring resource utiliza-
tion with variable loads. If we were to compare the FCFS and round-robin
scheduling protocols with each other for highly variable and highly corre-
lated loads, we would see that as the loads became more correlated the algo-
rithms performed in a more similar manner. On the other hand, as the data
become more variable the round-robin scheduling protocol performs better
than the FCFS.

Relationship to computer systems performance

For modeling computer systems and their components we typically will be
interested in determining the throughput, utilization, and mean service
times for each of the elements of interest over a wide range of loads. The
analysis from a theoretical perspective will always assume equilibrium has
been reached, implying that the number of arrivals at some resource is equal
to the number of departures from the resource (Figure 4.4).

Arrivals
Resource

Departures

Arrivals = Departures

i Chapter 4

136 4.1 Scheduling algorithms

The flow out of the resource is called its throughput. The mean service
time is E[X], as defined previously, and the mean service rate is 1/E[X]. The
utilization for this resource is defined as the fraction of time the resource is
busy (U). The throughput of the resource must be equivalent to the service
rate of the resource, when it is busy, times the fraction of the time it is busy.

This can be represented as:

Throughput- U/E[X] (4.22)

If we have n identical devices in our system~for example, multiple
CPUs with the same properties~then the throughput for these would be
described as:

Throughput- nU/E[X] (4.23)

These simple relationships between utilization and expected time of
service will be important measures in analyzing the performance of systems,
as will be seen in later chapters.

Also of interest to the modeler is the size of the collection of jobs await-
ing service at a resource and the time these jobs spend waiting for their serv-
ice. First, we need to define the resource queue length. This is defined as the
average number of jobs found waiting for service over the lifetime of this
resource. Theoretically this can be found using the probability of having n
waiting jobs times the number of jobs for all values of n:

Lq-E[Lq]-~np(n) (4.24)
n=l

where P(n) represents the probability that the resource's queue length is n.
The mean queuing time (resource waiting time) can be found from:

o o

- e [d = f qog (qo) o
0

(4.25)

where fq (qo) represents the probability density function for the resource's
queuing times. From these observations it can be shown that:

Lq -gvTq (4.26)

This formula indicates that we can find the average queue length given
that we know the average queuing time and the rate of arrivals ~ (or serv-
iced items) for the resource of interest. This simple observation was discov-
ered by J. D. Little and is referred to as Little's Law. More will be said on

4.2 Workloads 137

4 . 2

this formula and its application to computer systems performance analysis
in later chapters.

W o r k l o a d s

In order that we can model and analyze systems, we need to develop means
to test and/or stress systems of interest. These means to test or stress systems
are called workloads. A workload should be developed so it faithfully mod-
els the nature of the true load on the system of interest. Workloads are con-
structed based on the focus of the analysis. For example, if we are interested
in examining the hardware of a computer system in comparison to another,
our focus may be on the low-level instructions. We would need to measure
the instruction mix seen on a running system and then develop a synthetic
mix of instructions based on these measures. Another example is to measure
transaction throughput through some database system. This workload
would have transactional units of work that read and write data items from
the database system and do some additional computational work mimick-
ing the real system. The database community has developed such workloads
for conventional databases, object relational databases, data warehouses,
and data mining. These workloads are called TP benchmarks.

When designing a workload, it is important that we understand how the
workload will load down the system of interest. It is not sufficient to simply
provide a token load; the load must provide the means to stress the system
being analyzed. We want workloads that will cause the measured system to
go into saturation. We want to see where the system gets to 1 O0 percent uti-
lization of resources and to sustain such loads for some duration of time.

Once a workload is developed, we will want to use some form of distri-
bution function to select items from our workload and to present them to
the system for service. For example, if we have developed n transaction
types for our database system analysis, we may wish to use a uniform distri-
bution to select database data items for the transactions to operate on and
use the exponential distribution to present transactions to the system for
processing. Using these means our workload will be presented to our system
in a way that mimics the real-world situation, but which we have total con-
trol over.

Workloads also need to be developed so they test the components we
want them to test. For example, if we are testing the database system, a sim-
ple instruction mix workload will not provide the kind of information we
are interested in. The instructions alone are not representative of the desired
load: transactions. Transactions are composed of transactional boundaries,

I Chapter 4

138 4.3 Summary

4 . 3

database access and alteration commands, and data manipulation com-
mands. More on workloads will follow in later chapters.

Summary
In this chapter we introduced some basic concepts needed for computer sys-
tems performance evaluation. The concept of service time-related resources
is introduced, as are some basic concepts for use of these measures. The fun-
damental concepts involved in probability density and probability distribu-
tion functions are developed. These are then used to develop basic
definitions for expected or mean values, the nth moment of a distribution.
The special second moment, called the central moment, is developed, as is
the definition and formulation for variance and coefficient of variation. The
discussion then changed to scheduling algorithms used in computer sys-
tems. We introduce priority scheduling, round-robin, first-come first-
served, last-come first-served, and the deadline-driven value function sched-
uling algorithms.

This is followed by a discussion of how these items relate to computer
systems modeling. The relationship scheduling algorithms have with distri-
bution functions is presented, as is their relationship to performance stud-
ies. The last topic presented is that of workloads. The concept of what a
workload is and how it is used in computer systems modeling is presented
from an introductory perspective.

S
Probability

Queuing theory and queuing analysis are based on the use of probability
theory and the concept of random variables. We utilize the concepts
embodied in probability in a number of different ways. For example, we
may ask what the probability is of the Boston Bruins winning the Stanley
Cup this year. How likely is George W. Bush to be reelected after the events
of this year? How likely is it to snow on the top of Mt. Washington in New
Hampshire in January of this year? Most of the time a general answer would
suffice. For example, it is highly probable that snow will fall sometime in
January on Mt. Washington. Conversely, based on the last 30 years of frus-
tration, it is also highly unlikely that the Boston Bruins will win the Stanley
Cup this year. Probability theory allows us to make more precise definitions
for the probability of an event occurring based on past history or on specific
available measurements, as we will see. In this chapter, we will introduce the
concepts of probability, joint probability, conditioned probability, and inde-
pendence. We will then move on to probability distributions, stochastic
processes, and, finally, the basics of queuing theory.

Before discussing queuing analysis, it is necessary to introduce some
concepts from probability theory and statistics. In basic probability theory,
we start with the ideas of random events and sample spaces. Take, for
instance, the experiment that involves tossing a fair die (an experiment typ-
ically defines a procedure that yields a simple outcome, which may be
assigned a probability of occurrence). The sample space of an experiment is
simply the set of all possible outcomes~in this case the set {1,2,3,4,5,6} for
the die. An event is defined as a subset of a sample space and may consist of
none, one, or more of the sample space elements. In the die experiment, an
event may be the occurrence of a 2 or that the number that appears is odd.
The sample space, then, contains all of the individual outcomes of an exper-
iment. For the previous statement to hold, it is necessary that all possible
outcomes of an experiment are known.

139

140 Probability

The fundamental tenet of probability states that the chance of a particu-
lar outcome occurring is determined by the ratio of the number of favorable
outcomes (successes) to the total number of outcomes (the sample space).
Expressed as a formula for some event, A:

Number of successful outcomes

P (A) - Total number of possible outcomes
(5.1)

From the previous example, the probability of rolling a 2, stated as P(2),
using a fair die, is equal to the ratio 1/6 or 0.167. In this experiment, 1 rep-
resents the favorable outcome or success of our experiment, and 6 repre-
sents the total number of possible outcomes from rolling the die. Likewise,
we could determine the probability of rolling an odd number (1, 3, or 5)
stated as P(odd), as 3/6 or 0.5. In this experiment, 3 represents the number
of possible outcomes that represent favorable outcomes for this experiment,
and 6 represents the total number of possible outcomes from rolling the die.
Another example using playing cards may further refine this definition. If
we have a well-shuffled deck of cards with 52 possible cards that could be
drawn, and we wish to know the probability of drawing a king, this could
be stated as:

P(drawing a king)

Total number of successful outcomes (e.g., a king = 4)

Total number of outcomes (e.g., 52 cards in the deck)

= 4/52 or 0.077

One could ask the probability of drawing the king of hearts as:

P (drawing a king)

Total number of successful outcomes (e.g., # of king of hearts - 1)

(5.2)

Total number of outcomes (e.g., 52 cards in the deck)

= 1/52 or 0.019 (5.3)

In all cases, the value for the probability of an event occurring within a
range of all possible events must span from 0, where the event does not
occur (e.g., rolling a zero with a die; since there are no zeros on the die, this
is not possible) to a maximum of 1 (e.g., the probability of rolling an odd or
even number with the die) indicating the event always occurs.

In the examples cited, each number on the die must have an equal
chance of being rolled. Likewise, in the cards example, each card must have
an equal chance of being drawn. No number on the die face or card in the

Probability 141

deck can be differentiated so that it would be more likely to be chosen or
rolled (e.g., a weighted die is not a fair die).

The theory of probability was constructed based on the concept of
mutual exclusion (disjointedness) of events. That is, events cannot occur at
the same time in an experiment if they are mutually exclusive. For example,
the rolling of the fair die can result in one of six possible outcomes, but not
two or more of them at the same time. A second example is a fair c o i n ~
flipping the coin will result in a head or tail being displayed but not both a
head and tail. Therefore, the outcome of the event rolling a die and getting
a 1 versus all other numbers is said to be mutually exclusive, as is the flip-
ping of the coin resulting in either the head or tail but not both.

Another important property within the field of probability is that of
independence. For example, if we have a coin and a die, we intuitively
understand that the event of flipping the coin and rolling the die have
independent outcomes. That is, the result of one will not affect the out-
come of the other. The sample space for the two events is composed of the
Cartesian product of the two independent spaces; since all events of both
are independently possible, the resulting sample space must include all pos-
sible combinations of the two independent spaces.

If we believe that this property of equal likelihood exists, then the
probability of any of these outcomes must be equal and composed of the
multiplicative probability of each independently. In the previous exam-
ple, the fair coin flip has a sample space consisting of the elements of the
set {H,T}, each with a probability of 1/2, and the fair die has a sample
space consisting of the elements of the set {1,2,3,4,5,6}, each with a
probability of 116. The probability of the combination of either of these
events occurring would be derived from the Cartesian product set
{H1,H2,H3,H4,HS,H6,T1,T2,T3,T4,TS,T6}, with any of these com-
bined events, yielding an equal probability equal to 1/2 × 1/6, or 1/12.

In general, when events are independent, sample spaces where each event
occurs are equally likely. If there are n 1 items in the first event space, n 2 in
the second, and n m in the last sample space, then the sample space of the
combined events space is equal to the sum of the size of each of these spaces:

Combined sample space = (n I + n 2 + . . . + n m) (5.4)

The probability of any individual event occurring is then equal to 1/(n 1 +
n 2 + . . . + nm), which, in the previous example, was found to be 1/12.

We will not always be interested in the likelihood of just one event from
a total sample space occurring but rather some subset of events from the

I Chapter 5

142 Probability

total space. For example, we may be interested in the likelihood of only one
head occurring during the flipping of four coins. The complete sample
space for this experiment has exactly 16 possible outcomes:

{ HHHH, HHHT, HHTH, HTHH, THHH, TTHH, THHT, HHTT, THTH, HTHT, HTTH,
HTTT, THTT, TTHT, TTTH, TTTT)

From this space, we can see that the events meeting the desired outcome
of only one head results in the subset:

(HTTT, THTT, TTHT, TTTH }

where each item in this subset is equally likely to occur from the original
set, so each has the equal probability of 1/16. Their combined probability
would represent the desired probability of only one head occurring and
would be equal to the sum of their probability: 4/16 or 1/4. In this exam-
ple, we are using the additive probabilities of these events to see the likeli-
hood of one of these occurring from the original set. To compute the subset
probability we need only know the size of the original set and the size of the
subset.

More often, we are faced with the problem of determining the possibil-
ity of some event occurring given that some prior event has already
occurred. For example, we may be asked the probability of our computer
system failing given that one memory chip has failed. This concept of
related or dependent events is called conditional probability. The effect of
applying this property to two independent event spaces is to remove some
of the possible combinations from the final combined space of possible val-
ues. For example, we may be asked what the probability is of getting exactly
one head after the first element was found to be a tail in the four-coin toss.
The initial sample space was 16, but given that we removed the events
where the initial toss resulted in a tail, the resultant space now has only
eight possible outcomes and from these there are only three within the sub-
space meeting our final desired outcome.

To compute what the probability is in this case, we can do a few things.
First, we can compute the probability of realizing the tail on the first toss as
8/16 and the probability that there is one head from the last three tosses as
3/8. Many times it iseasier to compute the opposite occurrence. That is,
let's compute the probability that the final event does not happen. First, we
may reason that the sample space now excludes all events where the first
item was a head, or eight events. There are now only 16 - 8 or 8 equally
likely events remaining in our space. Of these remaining 8, there are five
ways in which, given a tail first, we do not get exactly one head. The proba-
bility of at least one head is then the ratio of the number of successes (3) to

Probability 143

the total number of possible events (1 6 - 8) or 8, resulting in a probability
of 3/8.

Several operations on the events in the sample space yield important
properties of events. By definition, the intersection of two events is the set
that contains all elements common to both events. The intersection of sets
A and B is written AB. By extension, the intersection of several events con-
tains those elements common to each event. Two events are said to be
mutually exclusive if their intersection yields the null set. The union of two
events yields the set of all of the elements that are in either event or in both
events. The union of sets A and B is written A vo B.

The complement of an event, denoted A, represents all elements except
those defined in the event A. The following definition, known as DeMor-
gaffs Law, is useful for relating the complements of two events:

(5.5)

Permutations and combinations of elements in a sample space may take
many different forms. Often, we can form probability measures about com-
binations of sample points, and the basic combinations and permutations
discussed in the following text are of use in this task. By definition, a com-
bination is an unordered selection of items, whereas a permutation is an
ordered selection of items. The most basic combination involves the occur-
rence of one of n 1 events, followed by one of n 2 events, and so on to one of
n k events. Thus, for each path taken to get to the last event, k, there are n k
possible choices. Backing up one level, there were nk_ 1 choices at that level,
thereby yielding nk_ Ink choices for the last two events. Following similar
logic backing up to the first level yields:

k
"1"2"" "k-l"k -- H ni (5.6)

i-1

possible paths. For example, in a string of five digits, each of which may
take on the values 0 through 9, there are 10 x 10 x 10 x 10 x 10 = 100,000
possible combinations, or n k possible outcomes, where n = 10 and k = 5 in
the sample space. The assumption is that once an item has been sampled, it
is returned to the space for possible resampling. This is sometimes referred
to as sampling with replacement. The probability distribution for a random
selection of items is uniform; therefore, each item in the sample space will
have the probability of 1/n k.

When dealing with unique elements that may be arranged in different
ways, we speak of permutations. When we have n things and sample n

I Chapter 5

144 Probability

times, but do not replace the sample items before the next selection, we now
have a selection without replacement, also referred to as a permutation. For
n distinct objects, if we choose one and place it aside, we then have n - 1
left to choose from. Repeating the exercise leaves n - 2 to choose from, and
so on down to 1. The number of different permutations of these n elements
is the number of choices you can make at each step in the select and put
aside process and is equal to:

p(n,n) = (n)(n- 1) (n - 2) . . . (2) (1) - n! (5.7)

The common notation P(n,k) denotes the number of permutations of n
items taken k at a time. To find the numerical value for a random selection
we can use similar logic. The first item may be selected in n ways, the sec-
ond in n - 1 ways, the third in n - 2 ways, and the kth or last item we
choose in n - k - 1 ways. Choosing from n distinct items taken in groups of
k at a time yields the following number of permutations or product space
for this experiment:

P(n,k)- (n)(n- 1) (n - 2) . . . (n - k + 1) - {n!}/(n- k)! (5.8)

The permutation yields the number of possible distinct groups of k
items when picked from a pool of n. We can see that this is the more general
case of the previous expression and reduces to equation (5.7) when k = n
(also, by definition, 0! = 1). For example, if we wished to see how many
ways we could arrange three computer servers on a workbench of five dis-
tinct servers, we would assume that the order of the servers has some mean-
ing; therefore, we have:

P (5, 3)= (5) (5 - 1) (5 - 2) - 60 ways (5.9)

A combination is a permutation when the order is ignored. One special
case occurs when there are only two kinds of items to be selected. These are
called binomial coefficients or C(n,k). The number of combinations of n
items taken k at a time (denoted C[n,k]) is equivalent to P(n,k) reduced by
the total number of k element groups that have the same elements but in
different orders (e.g., P[k,k]). This is intuitively correct, because order is
unimportant for a combination, and, hence, there will be fewer unique
combinations than permutations for any given set of k items. P(k,k) is given
in equation (5.7), hence:

C (n,k)- {n!}/k!(n- k!)! (5.10)

Probability 145

Alternatively, one can state that each set of k elements can form P(k,k) =
k! permutations, which, when multiplied by C(n,k), yields P(n,k). Dividing
by P(k,k) yields:

P(k.k)C(..k)-P(..k) (5.11)

C(n,k)- P(n,k)/P(k,k) - n!/(n- k)!k! (5.12)

Now that we have characterized some of the ways that we can construct
sample spaces, we can determine how to apply probabilities to the events in
the sample space. The first step to achieving this is to assign a set of weights to
the events in the sample space. The choice of which weighting factor to apply
to which event in the sample space is not an easy task. One method is to
employ observations over a sufficiently long period so that a large sample of
all possible outcomes is obtained. This is the so-called "observation, deduc-
tion, and prediction cycle," and it is useful for developing weights for proc-
esses where an underlying model of the process either does not exist or is too
complex to yield event weights. This method, sometimes called the "classical
probability definition," defines the probability of any event as the following:

P(A)=NA/N (5.13)

where P(A) denotes the probability of event A, N A is the total number of
observations where the event A occurred, and N is the total number of
observations made. An extension to the classical definition, called the "rela-
tive frequency definition," is given as:

P (A) = lim (NA/N)= NA/N (5.14)
n - -) o o

The preceding two approaches, combinations/permutations and relative
frequency, are often used in practice as a means of establishing a hypothesis
about how a process behaves. These methods do indeed define hypotheses
because they are both based on the observation of a finite number of obser-
vations. This fact drives the desire to develop axiomatic definitions for the
basic laws of probability.

Probability theory, therefore, is based upon a set of three axioms. By def-
inition, the probability of an event is given by a positive number. That is:

P(A)>-O (5.15)

The following relationship is also defined:

P (S) = I (5.16)

I Chapter 5

146 Probability

That is, the sum of all of the probabilities of all of the events in the total
sample space S is equal to 1. This is sometimes called the "certain event."
The previous two definitions represent the first two axioms and necessarily
restrict the probability of any event to between 0 and 1 inclusively. The
third is based on the property of mutual exclusion, which states that two
events are mutually exclusive if, and only if, the occurrence of one of the
events positively excludes the occurrence of the other. In set terminology,
this states that the intersection of the two events contains no elements; that
is, it is the null set. For example, the two events in the coin-toss experiment
(heads and tails) are mutually exclusive. The third axiom, then, states that
the combined probability of events A or B occurring is equal to the sum of
their individual probabilities. That is:

P(A or B) - P(A)+ P(B) (5.17)

So, for example, the probability of a head being tossed or a 6 being
rolled is equal to the probability of a head being tossed or 1/2, plus the
probability of rolling a 6, or 1/6, which is 4/6.

The reader is cautioned that the expression to the left of the equal sign
reads the probability of event A or event B, whereas the right-hand expres-
sion reads the probability of event A plus the probability of event B. This is
an important relationship between set theory and the numerical representa-
tion of probabilities.

The three axioms of probability are as follows:

I. P(E)>_O (5.18)

II. P (S) = I (5.19)

III. If AB=O, t h e n P (A + B) = P (A) + P (B) (5.20)

In equation (5.20), the terminology AB is taken as the set A intersected
with the set B. The sample space is defined on the total set {A 1 ... A k} as:

S = A I + A 2 +... + A k (5.21)

A very important topic in probability theory is that of conditional prob-
ability. Consider the following experiment in which we have the events A,
B, and AB. For example, a disk crash and a memory failure could be event A
and B, respectively, and a disk and memory failure at the same time is event
AB. The event AB contains the events that are in A and B. Let us say that
this event (AB) occurs NAB times. Let N B denote the number of times event

B occurs on its own. If we want to know the relative frequency of event A
given that event B occurred, we could do the following experiment and
computation:

Relative frequency (A) = NAB / N B (5.22)

P(A[B)- (NAB/N)/(NB/N)- NAB/N B

That is, if both events A and B occur (event AB), the number of times event
A occurs when event B also occurs is found as a fraction of the space of
event B where event A intersects (see Figure 5.1). The notation for this rela-
tive frequency is denoted P(A[B) and reads as the conditional probability of
event A given event B also occurred. If we form the following expression
from equation (4.16):

(5.23)

(5.24)

and apply equation (5.14), we obtain the traditional conditional probability
definition:

P(AIB)- P(AB)/P(B)

(5.25)

One interesting simplification of equation (5.23) occurs when event A is
contained in, or is a subset of, event B, so that AB = A. In this case, equa-
tion (5.23) becomes:

I f A B - A, then P(AIB)- P(A)/P(B)

P(AB)= P(A)xP(B)

Two events, A and B, are independent if their Venn diagrams do not
intersect. The independence of two events is defined by the following for-
mula:

o r

(5.26)

Figure 5.1
Conditional

probability space
Venn diagram.

P(A)- P(AB)/P(B)- P(AIB) (5.27)

Probability 147

I Chapter 5

148 Probability

This definition states that the relative number of occurrences of event A
is equal to the relative number of occurrences of event A given event B
occurred. In simpler terms, the independence of two or more events indi-
cates that the occurrence of one event does not allow one to infer anything
about the occurrence of the other.

Bayes's theorem is stated as follows: If we have a number of mutually
exclusive events, B 1, B 2 ... B N, whose union defines the event space (or,
more formally, a subset of the sample space), for some experiment, and an
arbitrary event A from the sample space, the conditional probability of any
event B k in the set B 1, B 2 ... B N, given that event A occurs, is given by:

P(BklA)=(P(Bk)XP(AIBk))~Ni~=lP(Bi)xP(AIBi) (5.28)

This result is an important statement, because it relates the conditional
probability of any event of a subspace of events relative to an arbitrary event
of the sample space to the conditional probability of the arbitrary event rel-
ative to all of the other events in the subspace. The theorem is a result of the
total probability theorem, which states that:

P(A)- P(AI8) P(8) +... + P (AI) P(B,) (5.29)

The theorem holds because the events B 1 ... B k are mutually exclusive,
and, therefore, event A = A S = A (B 1, B 2, ... B k) = A B 1 + A B 2 + ... ABle ... so
that:

P(A)- P(AB 1)+ P(AB 2)+... + P(AB k) (5.30)

Since events B1, B2 ... B k are mutually exclusive, so are events A B 1, A B 2,
... A B k. Applying the conditional probability definition of equation (5.24) to
equation (5.30) yields equation (5.28).

One other relationship that is often useful when examining conditional
probability of two events is the following:

P (A + B) - P (A) + P (B) - P (A B) (5.31)

This formula states that for any two events, A and B, if we wish to deter-
mine if event A or B occurred or that both occurred, we need to examine
them in isolation and in unison. This follows from the discussions of sets of
events earlier in this chapter. Since the union of the events A and B yields all
sample points in A and B considered together, the sum of the events sepa-
rately will yield the same quantity plus an extra element for each element in

5.1 Random variables 149

the intersection of the two events. Thus, we must subtract the intersection
to form the equality, hence equation (5.30). Note that equation (5.31) is
essentially an extended version of equation (5.20), where AB does not equal
the null set.

5.1 R a n d o m var iab les

Thus far, we have been discussing experiments, along with their associated
event space, in the context of the probabilities of occurrence of the events.
We will now move on to a topic of great importance, which relates the basic
probability measures to real-world quantities. The concept of a random
variable relates the probabilities of the outcomes of an experiment to a range
or set of numbers. A random variable, then, is defined as a function whose
input values are the events of the sample space and whose outcome is a real
number. For example, we could have an experiment in which the outcome
is the length of each message that arrives over a communication line. A ran-
dom variable defined on this experiment could be the number of messages
that equaled a certain character count. Often, we want to consider a range
of values of the random variables~for instance, the range of messages
greater than x 1. This is denoted here as {X_< Xl}, where X denotes the ran-
dom variable and x 1 is a value for the random variable at a specific point.
We may call this set the event where the random variable X yields a value
greater than x 1.

Continuing with the previous example, suppose we had the following
outcomes from the message-length experiment: The random variable
defined by the number of times a particular message length seen. Referring
to Figure 5.2; the event {X> 2000} contains the outcomes of messages 1, 4,
5, and 6.

Random variables may be either discrete or continuous. A discrete ran-
dom variable is one that is defined on an experiment in which the number
of events in the set of outcomes is finite or infinite (i.e., it is possible to

y

Figure 5.2
Outcomes of the

message length
experiment.

Outcome
Message
Length

2,097
500

1,259
5,794
4,258
5,205

I Chapter 5

150 5.3 Probability distributions

5 . 2

assign a positive integer to each event, even if there are an infinite number
of outcomes). A continuous random variable is one that is defined on an
experiment in which the number of possible outcomes is infinite (i.e.,
defined on the real line). The concept of random variables forms the foun-
dation for the discussion of probability distributions and density functions.

Jointly distr ibuted random variables

Suppose we have an experiment that has two or more random variables
defined on its event space and we wish to form a random variable that takes
into account each of the individual random variables. These are called
jointly distributed random variables, and they represent the intersections of
the individual random variable event spaces. Jointly distributed random
variables are represented with the following notation:

{X < xl,Y < yl} (5.32)

Stated simply, joint random variables derive their output from a func-
tion whose domain is the set of outcomes for all of the individual random
variable domains.

It should be noted here that more complicated combinations and condi-
tions for the random variable function may be constructed. For example,
consider the following random variables:

{X 1 _< X _< x 2 } where X 1 < X 2 (5.33)

{X 1 > X , x 2 < X } where X 1 > X 2 (5.34)

{X 1 _< X _< x 2, Yl < Y -< Y2 } where X 1 < X 2 and Yl < Y2 (5.35)

5.3 Probabi l i ty distr ibutions

The concept of a random variable in and of itself does not lend itself to
extensive practical use. To remedy this we define a distribution function for
each random variable X. The distribution function is typically represented
as:

F(x) = P(X_< x) (5.36

5.3 Probability distributions 151

Figure 5.3
Example

distribution
functions.

By its definition, the distribution function assumes values from 0 to 1.
Also, the distribution function is nondecreasing as x increases in value.
These properties are summarized as follows:

Property I: lim F (x) - 0 (5.37)
X--+--oo

PropertylI: lim F (x) - I (5.38)
X--)oo

Property III: F (X 1) ~ F (X 2) i f X 1 _< X 2 (5.39)

Distribution functions are also called cumulative distribution functions,
because at any x along the distribution, the area under the curve to the left
of x represents the cumulative total of the probabilities of the random vari-
ables {x _< X}. Figure 5.3 shows some example distribution functions.

From Figure 5.3, it is obvious on these functions are called distribution
functions because they show exactly how the probability of the random
variable is distributed over the range of the random variable values.

The distribution function shown in Figure 5.3a is a continuous function,
because it is based upon a continuous random variable. Figure 5.3b shows a
discrete distribution function that is based upon a discrete random variable.

F(X)

X1

b)

F(X)

I

m i [

Xl

I Chapter 5

152 5.4 Densities

A joint distribution is one that defines how the probability is associated
with each of several random variables. Thus, we can state a function that
defines a joint distribution as"

F(x, y)= P(X <_x, r <_ y)
This function can be interpreted as-

(5.40)

F(x,y)= P(X <_x intersected with Y _< y) (5.41)

We are also interested in the individual distribution functions of X and Y
given the joint distribution of equation (5.40). For instance, the distribu-
tion of X given F(x,y), also called the marginal distribution function of X
corresponding to F(x,y), is given as:

F x (x) = lim Ix, Y (x, y) (5.42)
y-+oo

o r

(x)- 6c¢ (x,°°)
The same is true for the marginal distribution of E

(5.43)

rv (y)- (oo, y) (5.44)
The marginal distributions of the random variables given previously

result from the definitions of random variables and of distribution func-
tions. Remember that a random variable is defined with a range of values
along the real axis and that the distribution function is defined as the cumu-
lative probability that the random variable will attain at least a certain value.
The probability that the random variable will obtain a value less than infin-
ity is equal to one. Thus, the marginal distribution for a random variable
given a joint distribution is clear given that:

(X <_ x)= (X <_ x,Y <_ oo) (5.45)

5.4 Densi t ies

A density function defines the derivative of the distribution function, indi-
cating the rate of change of the probability distribution:

f (x) - dF (x)/dx (5.46)

5.4 Densities 153

This definition holds for continuous random variables. For discrete ran-
dom variables, the density function is defined as the discrete probabilities
that the random variable equals a specific value for its range of possible val-
ues. That is:

fx (x)- P[X = x]- EP(X)8(x- X) (5.47)

where 8(x - X) is a delta function that is 1 when x = X and 0 elsewhere.

From the previous relationships, we can see how the distribution func-
tion is formed. For each value of the random variable, we can integrate (for
a continuous function) up to that point to find the cumulative probability
to that point. The probabilities are summed for discrete functions:

X

F(x)- I f (t)dt (5.48)
~ o o

X

F(x)Zf(n)
n - - o o

We know from the previous discussions that F(~) - 1, so that:

(5.49)

and

i f(t)dt- 1 (5.50)
m o o

o o

y_~ f (t) = 1 (5.51)

In a manner similar to that shown previously for finding the distribution
function from the density function for a single random variable, we can find
the joint distribution from the joint density. The relationship is given by:

x y

F(x, y)- I I f (t,u) dt du
- - o o . - o o

(5.52)

Similarly, a discrete distribution can be found from the discrete density:

x y

F(x, y)- ~ ~ f (i,j) (5.53)
i--ooj--oo

I Chapter 5

154 5.4 Densities

As with singularly distributed densities, the total area under the proba-
bility density function is given by:

o o o o

I f (x, y) dx dy - 1 (5.54)
~ o o m o o

Obtaining the density function from the distribution function for a con-
tinuous case is given by:

as:

f (x, y) - a2F (x, y)/axOy (5.5 5)

We define the marginal density of a jointly distributed random variable

o o

fY(Y)- I f (x, y)dx (5.56)
m o o

The independence property is defined on joint distributions as:

r(x, y)- (x)&(y) 5.57

and for joint densities as:

f (x, y)- fx (x)fy (y) (5.58)

In some cases, it is necessary to define combined joint distributions in
which one of the variables is discrete and the other continuous. The joint
density, where y represents the continuous variable and i represents the dis-
crete one, is written as:

f (i, y) - fxly (yli)P x (i) (5.59)

This expression introduces another important point: conditional distri-
butions. For discrete random variables, the conditional function can be
defined as the following:

fxly (x [y) - f (x, y)/fy (y) (5.60)

Similarly, we can define the conditional density ofy given x from equa-
tion (5.60). The following results:

f (x,y)- fxlY (x]y)fy (y)- fxly (x]y)f x (x) (5.61)

5.5 Expectation 155

5 . 5

This is a convenient way to relate the conditional densities for the two
random variables. If the random variables X and Y are independent, equa-
tion (5.60) becomes:

f (x,Y)- fx(x)fy(Y)
and the following results:

f~qx (y]x)- fY (Y)
From equations (5.56) and (5.60), we can substitute to get:

(5.62)

(5.63)

o o

fY (y)- ~ fx (x)f~x (ylx) d~ (5.64)
- - o o

and also (for the marginal density of X):

o o

fx (x)= ~ f¢ (y)f~l~ (x, y)dy ~5.65)

Combining equations (5.60), (5.61), and (5.64), we obtain Bayes's rule
for continuous random variables:

s l (xly)- fx(x)f~x(yl x)
i fx (x)f~x (ylx)~ (5.66)

- - - o o

This concludes our discussion about the properties of probability distri-
butions and densities. In the next section, we will explore some methods for
obtaining often used statistics about random variables by using their distri-
butions and densities.

Expectation
Although both the distribution and density functions of a random variable
provide all of the information necessary to describe its behavior, we often
wish to have a single quantity (or a small number of them) that provides
summary information of the random variable. One such measure is the
expected value, or expectation, of a random variable. The expected value is
also called the mean. Expectation for a discrete random variable X is
defined as:

I Chapter 5

156 5.5 Expectation

E[X] - ~_ xP (x) (5.67)
X

and for a continuous random variable Xwith density function fix) as:

o o

E[X]- I x f (x)dx (5.68)

Suppose now that we have a function of a random variable X, say g(X).
The expectation is given as:

o o

E[g(X)]- I g(x) f (x)dx (5.69)
---oo

for continuous random variables, and as:

E[g(X)] - Eg(xlP(x) (5.70)
X

for discrete random variables.

If we have jointly distributed random variables, the expectation is
defined for discrete random variables as:

E[g(X,Y)] = ~_~ ~_~g(x, y) f (x, y)
x y

and for continuous random variables as"

(5.71)

o o o o

- - o o - - o o

(5.72)

for the function g(X, Y). These formulations for expected values are valid if
the right-hand sides of the respective equations are less than infinity.

There are a few useful laws relating to expectation that we will now dis-
cuss. Suppose that we wish to find the following:

o o

;[aX+b]- j" (ax+b)f(x)dx (5.73)
~ o o

The expression on the right becomes:

5.5 Expectation 157

i oo
a x f (x)& + b I f (x)&

--oo ..-oo

(5.74)

From equations (5.51) and (5.69), equation (5.74) becomes:

E[aX + b]- a E[Xl+ b (5.75)

Setting either a or b to zero results in the following:

e[~x]- a~[X] (5.76)

,:[b]-b (5.77)

Now suppose that we have the following:

oo

E[g(X)+ h (X)] - I (g(x)+ h(x))f (x)dx (5.78)

The integral becomes"

i oo g(x) f (x)dx + I h(x)f (x)dx (5.79)

From equation (5.68), we obtain:

u[g(x) + h(x)] = ~[g (x)] + ~[h (x)]
Similarly, for functions of two random variables, we get:

(5.8o)

oo oo

E[g(X,Y)+ h(X,Y)]- I I (g(x, y)+ h(x, y))f (x, y)dydx
~ o o - - - o o

(5.81)

which becomes:

oo oo oo oo

~ o o . - - o o . - - o o - - - o o

(5.82)

From equation (5.72), we obtain:

e [g (x , r) + h (x, r)] - z: [g (x, r)] + ~ [h (x,r)] (5.83)

I Chapter 5

158 5.5 Expectation

Similarly,

E[X+Y]-E[X]+E[Y] (5.84)

Consider the case of two independent random variables, X and Y, by
equation (5.72):

o o o o

E [X Y] - I ~ xyf (x, y)dydx (5.85)
- - o o - - - o o

which, because of equation (5.58), becomes"

o o o o

f] ,~f~ (x)f~ (y)dy~ (5.86)
~ o o - - o o

Separating the integrals by integrands yields:

o o o o

f x f~ (x)~ f y f~ (y)dy (5.873

From equations (5.69) and (5.85), we get:

; [xv] = r [x]~ [r] (5.88)
for the independent random variables X and Y.

For one special function of a random variable, g (X) - x n, the expecta-
tion ofg (X) is known as the "nth moment" of the random variable X. The
first moment ofg (X) is defined as the mean of the random variable X for
g(X) = X. Moments, as defined previously, are centered at the origin and are
thus called "moments about the origin." A more common and useful defini-
tion of moments involves the shifting of the density function so that the
mean is centered at the origin. Moments defined as such are called "central
moments," because they are defined on density functions that have been
centered at the origin. Thus, the function of the random variable becomes:

(5.89) g (X) - (x - ~) n

where the mean is given by:

~ = E [X] (5.90)

The central moment, or moment about the mean, is therefore defined
as:

5.5 Expectation 159

" n - - El(X-’) n] - - E(X--’) n f (x) (5.91)
n

for the discrete random variable X, and as:

~n -] (X--~) n f (x)dx (5.92)

for the continuous random variable X.

An important measure of the variability of the distribution of a function
about the mean is called the "variance." This measure tells us, loosely speak-
ing, how concentrated the values of the functions are relative to the mean. A
small variance, therefore, indicates that the probability is that the range of
function values is concentrated near the mean, while a large variance sug-
gests that the values are more spread out. The variance of a random variable
is defined by its second central moment and represented as:

o o

(~2 -- Var[X] -,2 - E[(X_~) 2] = I (x-')2 f(x)dx
~oo

(5.93)

Note the use of several different notations; all are common. For some
functions, fl[x), the integral of equation (5.93) may be difficult to evaluate.
Fortunately, we can derive an alternative expression for the variance, as fol-
lows:

(~2-- E [(X _ ~) 2]

= E [X 2 - 2 X I,.t + ~t 2]

= E [X 2] - 2 ~ E [X] + ~ 2

by equation (5.90) (5.94)

= E [X 2] - 2 ~ 2 + ~ 2

0 2 - E[X2]-~i 2

The standard deviation of a random variable is defined as the square root
of the variance and is denoted as:

(5.95)

I Chapter 5

160 5.5 Expectation

The covariance of two random variables is a measure of the degree of lin-
ear dependence, also called "correlation," of the two variables. The covari-
ance is defined as:

Cov [X,Y]- E[(X-btx)(Y-.,)] (5.96)

If X and Yare independent, the covariance is equal to zero. This results
from the following:

by equation (5.90):

- E [X Y - X p y - Ygx + gtx gtx]

= e[xyl- e[x]- x e[z]+ x
(5.97)

= E [X Y] - 2pygt x + gt x gt x (Cont. 5.97)

by using equation (5.88) we get:

Cov[XY]- E [X] E [Y] - p y p x (Cont. 5.97)

Equation (5.97) gives a more convenient means for calculating covari-
ance. Two random variables are said to be uncorrelated if Cov IX, Y] = 0.

There are several useful properties of the variance, which we will now
discuss; this will be followed by the method for developing a lower bound
on the probability for any random variable, given a distance from the mean
measured in standard deviations.

From equations (5.75, 5.76, 5.77, and 5.94), we can easily show that:

2]

by using (5.93):

2 _ = ;[(X-,x]wIxl

(5.98)

(Cont. 5.98)

From equations (5.76) and (5.93):

5.5 Expectation 161

Var [aX] - E [(a X - E [aX]) 2]

=E[a2(X-E[X]) 2] (5.99)

)2 =a2E[(X-gx] - a2Var[X]

For two jointly distributed random variables, X and Y, the variance is
defined as:

Var [X + Y]-E[(X+ Y-E[X+Y]) 2]
12

t2)2

= Var [X] + Var [Y] + 2 Cov[X,Y]
Given any random variable, it is possible to derive an expression that

defines the minimum probability of a random variable lying within k stan-
dard deviations of its mean. The theorem is known as Chebyshev's Theo-
rem and is stated as follows:

P((bt - ko) < X < (It + ko)) >_ 1-(1/k 2) (5.101)

Equation (5.101) can be derived as follows. From equation (5.93):

o o

~2 - I (x-la)2 f(x)dx (5.102)

~t-k~
~2 - I (x-~t)2 f (x)dx

~t+k~
+ I (x-la)2 f(xldx

la-ka
o o

+ I (x-la)2 f(x)dx
~t+k~

(5.103)

I Chapter 5

162 5.5 Expectation

Because the middle integral is positive or zero, we can remove it from
the expression to get:

l.t-k~ o o

02 >_ f (x-B)2 f (x) dx + I (x-bt)2 f (x) dx
-oo ~t+ko

Within the range:

x>_~+ko
and

x <_gt-ko
we have:

Ix- l>-ko
so that:

(X - - ~) 2 _> (k(y) 2

Thus, we can substitute into equation (5.104):

~-ko

02 --> I (k(y)2 f (x) dx + S (ko) 2 f (x) dx
-oo ~t+ko

and divide to get:

(~2 g-k~ oo

- I I S(x)
kk(YJ 2 -oo l.t+le~

rewriting equation (5.107):

ll-ko oo oo g+ko

I f(x)dx+ I f (x) d x - I f (x) d x - I f(x)dx<-l/k 2
- o o g + k o - o o ~t-ko

and from equation (5.50):

g+ko

1- I f(x)dx<-l/k2
l.t-leo

(5.104)

(5.105)

(5.106)

(5.107)

(5.108)

(5.109)

(5.110)

(5.111)

5.6 Some example probability distributions 163

5 . 6

From equation (5.48) we have:

g+/~

P(~t-kcs)<X<(g+k~)- f f (x)dx
~-i~

Thus, equation (5.101) results:

~+/~

P(~t- k6) < X < (~i + k6) - ~ f (xl dx >_ l-1]k 2
~t-l~

(5.112)

(5.113)

Some example probability distributions

In this section, we will examine some discrete and some continuous proba-
bility distributions that will help to solidify the basic probability theory of
the previous sections. Many of these distributions are commonly used to
model real-world processes and to help arrive at estimates for quantities of
interest in real-world systems. We will discuss the properties of each distri-
bution and we will also discuss the process of deriving random deviates,
given a certain distribution that models a real-world process.

5 . 6 . I U n i f o r m d i s t r i b u t i o n

The simplest of all probability distributions is the discrete uniform distribu-
tion. Such a distribution states that all values of the random variable are
equally probable and depend only upon the number of possible outcomes
of the experiment. The density function for the uniform distribution is
given as:

f (x)= 1/k x = X l , X 2 ,x k (5.114)

where k is the number of possible outcomes. The experiment where the ran-
dom variable X = P(n), n = 1 to 6, and the event is the toss of a die that
results in a discrete uniform probability distribution. A plot of the density
function for the uniform distribution is shown in Figure 5.4.

The mean of the uniform distribution is found by equation (5.66) and is
given by:

k
E[X]-Exi(Vk) (5.115)

i=1

I Chapter 5

164 5.6 Some example probability distributions

L ,
v

Hgure 5.4
Uniform density

function.

f(x)

1/k

5 . 6 . 2

1 2 3 K

The standard deviation is found by:

k
(y2 - E [(X _ ~) 2] -- E (x i _~t) 2 f (xi)

i=1

k (xi _ ~) 2

i=1

(5.116)

B i n o m i n a l d i s t r i b u t i o n

The concept of a Bernoulli trial is important in many discrete distributions.
A Bernoulli trial is an experiment in which the outcome can be only success
or failure. Random variables defined on successive Bernoulli trials make up
several of the discrete density functions we will discuss.

An important discrete probability distribution is the binomial distribu-
tion. This distribution results from experiments in which there are only two
possible outcomes of an experiment, such as a coin toss. For the distribu-
tion, one outcome is chosen to represent success and the other failure. A
binomial experiment also requires that the probability of success remains
constant for successive trials, that the trials are independent, and that each
experimental outcome results in success or failure. Since the trials are inde-
pendent, the total probability for an experiment with x successes and n trials
can be found by simply multiplying the probability of each event (see equa-
tion [5.26]). If the probability of success is given as p and if q = 1 - p , we
have:

P (x successes in n tr ials)- pxq(n-x) (5.117)

5.6 Some example probability distributions 165

For the binomial distribution, we want to find the number of successes
in n independent trials, given that we know the probability of success for
any individual trial. The number of successes in n trials is a combination, as
given in equation (5.10). The probability of x successes in n trials, then, is
the expression for the binomial distribution:

f (x) = C (n , x) p x q n-x x = 1,2,3, n (5.118)

Suppose we have a binomial experiment in which the outcomes of n
experiments can be used to represent the random variable X, which denotes
the number of successes in n trials. Thus, by equation (5.84) and by the def-
inition of binomial random variables:

E[X] - E[x 1]+ E[x 2]+,,,+ E[x n]
(5.119)

Since the variance of any of the individual experiments is pq, by equa-
tion (5.100) the variance of a binomial density can be found to be:

Var [X] - Var [x1] + Var [x2] + ... + Var [Xn]

Var [X] - npq
(5.120)

Suppose that we wish to know how many Bernoulli trials occur before
the first success in a sequence of trials occurs. If the first trial yields a success
and the probability of success for any trial is p, the probability of the ran-
dom variable X is p. If the probability of failure is given as q = 1 - p and we
have success on the second trial, we obtain a probability ofpq. Extending to
k - 1 failures before an eventual success, we obtain what is known as the
"geometric distribution," where:

f(k)= pqk-1 k-" 1,2 (5.121)

Finding the expected value of the geometric density function is a bit
tricky but can be accomplished as follows. By equation (5.67),

cx~

E[X]-Eipq(i-1)
i-1

o o

E [g] - p E i q (i - 1)
i=1

(5.122)

I Chapter 5

166 5.6 Some example probability distributions

5 .6 .3

d E[X]-Pi~=o~q i
_ pd £ qi

E[X] -~ i=0
E[x]-P---~[1 (Cont. 5.122)

P
(l - q) 2

E[X]- I/p
The fifth line of the derivation above results because the value of q is less

than or equal to 1; thus, the summation converges to 1 / (1 - q). The vari-
ance of the geometric density is not derived here but is given as:

Va t [X] - q/p2 (5.123)

Poisson d i s t r i b u t i o n

A widely used discrete density function that is useful for deriving statistics
about the number of successes during a given time period is the Poisson dis-
tribution. The Poisson density function is popular mainly because it
describes many real-word processes very well. In computer systems, requests
for jobs at a CPU are often represented by a Poisson process. The Poisson
density function is defined as:

f (x)- (e-¢~ x)Ix! x - O, 1,2 (5.124)

where the parameter ~ is defined as the average number of successes during
the interval. Several conditions must prevail for a Poisson density function
to exist. These are that the successes for one interval are independent of the
successes in any other interval, that the probability of a success during an
interval of extremely short length is near zero, and that the probability of
only one success during a short interval depends only upon the length of
the interval. Interestingly, the mean of the Poisson distribution is part of its
definition. The expected value can be found as:

5.6 Some example probability distributions 167

oo e_~tgtx
~[x]- Z x ~

x=O x!
o o

E[X]- E xe-'~tx (5.125)
x=l X!

oo e_~t~x_ 1
E[X]-]t~ (x- l)V

X = I

Now, if we let y = x - 1, we arrive at a summation of the density function
from 1 to infinity, which, by equation (5.51), is equal to 1:

E[X]-~t£ e-~tl'tY
y=o Y?

e[x]-~
(5.126)

The variance of the Poisson distribution can be found by first finding
E[X(X- 1)] and then using the result in equation (5.94):

oo E[X(X-1)]- E x(x-1)e ~tbt x
x=O x? (5.127)

The first two terms of this summation are zero, so we have:

o o E[X(X-1)]- Z x(x-1)e-~tl'tx
x=2 X!

o o e-l.t~x-2~2
EEX(X-1)]- E (x - 2)'

X ' - 2

(5.128)

By equation (5.51), and, ifwe let x=y + 2, we get:

oo

EEX(X_I)]_It2 E e ggY=g2
y=O Y!

By equation (5.94), we get:

(5.129)

~= ~[x=] ~t2
~2 ~ [x =] ~[x]+~[x] ~2 (5.130)

I Chapter 5

168 5.6 Some example probability distributions

5 . 6 . 4

By equation (5.84), we get:

0 2 - E [X 2 - X] - F E [X] - . 2

0 2 -- E l K (X - 1)] + E [X] - bt 2

By equation (5.127), we get:

(5.131)

(~2 = 11£2 + ~ _ ~ 2 = ~ (5.132)

The previous density functions provide some examples of the more com-
mon discrete random variables. Distributions such as these are useful for
modeling real-world processes in which the quantities of interest are count-
able items.

In addition to the basic discrete density functions described earlier, there
are several continuous densities. Continuous density functions are charac-
terized by the fact that the value off{x) at any point x is zero. However, the
probability that any value x lies between x and some small delta is approxi-
matelyf(x) times the delta value.

Gaussian d i s t r i b u t i o n

One of the most important continuous probability distributions, and prob-
ably the most widely used, is the "normal," or Gaussian distribution.

The density function of a normal random variable X is given as:

1 e-1/217] 2 (5.133)
f (x) - ¢sx /~

Figure 5.5 shows a few normal curves (also known as bell curves because
of their bell-like shapes). The flatter curve has a larger standard deviation
than the thinner curves. The expected value of the normal curve is found as
follows. By equation (5.67):

oo X -1/2(~~-cg)2 do ¢
e [x] - I e (5.134)

If we substitute the following:

x - l a y - - ~
(y

or x - ~ y + ~
(5.135)

5.6 Some example probability distributions 169

Hgt~e 5.5
A few normal

c u r v e s .

f(x)

g x

we get:

1 oo y 2

x /~ I (Y6+g)e 2 dy
~ o o

oo _y2 oo y2
0 2 g 2 E [X] - x /~ I y e dy + . , ~ I e dy

--.oo .-.oo

(5.136)

If, in the second integral, we replace y by the following:

(5.137)

we clearly see the integral of a density function, which is equal to 1"

E [X I - x / ~ I Ye dy + ~ I e 2~ . ; dx
~ o o oo

oo y2

E[X]- ~-~ I y e ~ dy + t.t
.moo

(5.138)

The expression in the remaining integral is an odd function because of
the presence of y. Since an odd function integrated over symmetric limits is
zero, the mean becomes:

E [X] - g (5.139)

I Chapter 5

170 5.6 Some example probability distributions

We can find the variance of the normal distribution as follows:

E l (X - }'t)2] - 1 oo)2-l(x-~ / 2 ~ x ~ f (x-~t e 2 ' ' ; dx
- - o o

Making the same substitution as before, we get:

0'2 L"[(X- ~)2] - %/~ i y2g(--~)a/y
--oo

(5.140)

(5.141)

N o w , we can integrate by parts:

Let:

y2

u - y, v - - e 2

and

y2

du=dy, dv= ye 2

then:

(5.142)

E ,-] E (X-u) 2 N/~ ye 2 I + e-Tdy
y ~ - . . o o - - o o

As before, the first interval equals zero, and the second integral can be
shown to be:

oo y2
fe 2

--oo

(5.143)

so we have:

0.2 EI(X- ~)2] - %/~ I0 + ~]

E[(X-~) 2] -0 .2
(5.144)

For the normal curve, the mean occurs at the mode, which is defined as
the value that appears most in the distribution.

Finding the probability that a normally distributed random variable falls
between two values requires the solution of the integral:

5.6 Some example probability distributions 171

l(x-,]
1 e-~ , - - ~ dx (5 145) P (Xl < X < x2) - o x / ~

Xl

This integral is not easily solvable and is best approached using numeri-
cal means. In order to be useful, however, we would need to generate a table
for each value of mean and standard deviation. We would like to avoid this
by having only one standard normal curve. If we make the substitution:

z - (x-g) / (s , dx -(sdz (5.146)

in the previous equation, we obtain:

1 ~ z2
~_~ e 2 ~

zl

where:

(5.147)

z- (x- ,) /o , ~-odz (5.148)

The expression is equivalent to a normal distribution of mean equal to
zero and standard deviation of one. Thus, we can transform any normal dis-
tribution into the standard normal curve with zero mean and a standard
deviation of one. For example, let's compute the probability that any nor-
mally distributed random variable falls within one standard deviation of the
mean. To do so, we need to generate some sort of table for the standard nor-
mal distribution. Table 5.1 gives values for the standard normal distribution
integrated from minus infinity to x.

1 x x 2

~ c x ~

Let:

X 1 - - ~ - - (~ a n d x 2 - ~ + (~

then:

z~ = (~ - o - .) / o and z , - (~ + o - .) / o

(5.149)

SO:

Z 1 -- - -1 and Z 2 -- 1

I Chapter 5

172 5.6 Some example probability distributions

The left-hand side of equation (5.143) can be rewritten as:

P (x 1 < X < x 2) - p (X < x 2) - p (X < x 1) (5.150)

y

Table 5.1 Standard Normal Curve Values

x+O.O0 x+O.Ol x+O.02
0.50000 0.50401 0.50800
0.53993 0.54391 0.54790
0.57955 0.58348 0.58740
0.61839 0.62221 0.62603
0.65607 0.65976 0.66343
0.69225 0.69578 0.69929
0.72666 0.72999 0.73331
0.75905 0.76217 0.76527
0.78923 0.79212 0.79498
0.81707 0.81972 0.82234
0.84248 0.84487 0.84724

0.86535 0.86751 0.86964
0.88584 0.88775 0.88965
0.90400 0.90569 0.90736
0.91994 0.92142 0.92287
0.93379 0.93507 0.93633
0.94571 0.94681 0.94788
0.95587 0.95679 0.95770
0.96443 0.96521 0.96597
0.97158 0.97223 0.97286
0.97749 0.97803 0.97855
0.98235 0.98279 0.98321
0.98629 0.98664 0.98698
0.98944 0.98972 0.98999
0.99194 0.99216 0.99237
0.99391 0.99408 0.99424
0.99543 0.99556 0.99569
0.99661 0.99671 0.99681
0.99750 0.99758 0.99765
0.99818 0.99824 0.99829
0.99868 0.99873 0.99877
0.99906 0.99909 0.99912
0.99933 0.99935 0.99937
0.99953 0.99954 0.99956
0.99967 0.99968 0.99969
0.99977 0.99978 0.99978

0.99984 0.99984 0.99985
0.99989 0.99989 0.99990
0.99992 0.99992 0.99993
0.99994 0.99995 0.99995
0.99996 0.99996 0.99996

x+O.03 x+O.04 x+O.05
0.51199 0.51597 0.51996
0.55187 0.55585 0.55981
0.59130 0.59520 0.59909
0.62983 0.63362 0.63739
0.66709 0.67074 0.67436
0.70277 0.70624 0.70970
0.73660 0.73987 0.74312
0.76834 0.77139 0.77442
0.79783 0.80065 0.80344
0.82495 0.82753 0.83008
0.84959 0.85192 0.85421

0.87174 0.87383 0.87589
0.89152 0.89337 0.89520
0.90901 0.91063 0.91224
0.92431 0.92572 0.92712
0.93756 0.93878 0.93998
0.94894 0.94998 0.95100
0.95860 0.95947 0.96034
0.96672 0.96745 0.96817
0.97348 0.97409 0.97468
0.97906 0.97956 0.98005
0.98363 0.98403 0.98443
0.98731 0.98764 0.98795
0.99025 0.99051 0.99077
0.99258 0.99279 0.99298
0.99441 0.99456 0.99472
0.99582 0.99594 0.99606
0.99690 0.99700 0.99709
0.99773 0.99780 0.99787
0.99835 0.99840 0.99845
0.99881 0.99885 0.99888
0.99915 0.99918 0.99920
0.99939 0.99942 0.99944
0.99957 0.99959 0.99960
0.99970 0.99971 0.99972
0.99979 0.99980 0.99981

0.99986 0.99986 0.99987
0.99990 0.99990 0.99991
0.99993 0.99993 0.99993
0.99995 0.99995 0.99995
0.99996 0.99997 0.99997

x+O.06 x+O.07 x+O.08
0.52394 0.52794 0.53194
0.56378 0.56773 0.57168
0.60297 0.60684 0.61070
0.64116 0.64490 0.64864
0.67798 0.68157 0.68515
0.71313 0.71654 0.71993
0.74635 0.74956 0.75274
0.77743 0.78041 0.78337
0.80622 0.80897 0.81169
0.83261 0.83512 0.83760
0.85649 0.85874 0.86097
0.87793 0.87994 0.88193
0.89701 0.89879 0.90055
0.91382 0.91538 0.91692
0.92849 0.92985 0.93118
0.94117 0.94233 0.94348
0.95201 0.95300 0.95397
0.96119 0.96202 0.96284
0.96888 0.96957 0.97026
0.97527 0.97584 0.97640
0.98053 0.98100 0.98146
0.98482 0.98520 0.98557
0.98827 0.98857 0.98887
0.99101 0.99125 0.99149
0.99318 0.99337 0.99355
0.99487 0.99502 0.99516
0.99618 0.99629 0.99640
0.99717 0.99726 0.99734
0.99793 0.99800 0.99806
0.99850 0.99855 0.99859
0.99892 0.99896 0.99899
0.99923 0.99926 0.99928
0.99945 0.99947 0.99949
0.99962 0.99963 0.99964
0.99973 0.99974 0.99975
0.99981 0.99982 0.99983
0.99987 0.99988 0.99988
0.99991 0.99991 0.99992
0.99994 0.99994 0.99994
0.99995 0.99996 0.99996
0.99997 0.99997 0.99997

x+O. 09
0.53594
0.57562
0.61455
0.65236
0.68871
0.72331
0.75591
0.78631
0.81439
0.84006
0.86317
0.88389
0.90228
0.91844
0.93250
0.94460
0.95493
0.96364
0.97093
0.97695
0.98191
0.98593
0.98916
0.99172
0.99373
0.99530
0.99650
0.99742
0.99812
0.99864
0.99902
0.99930
0.99951
0.99966
0.99976
0.99983
0.99988
0.99992
0.99994
0.99996
0.99997

5.6 Some example probability distributions 173

f(x)

5.6.5

bt-(~

k

Figure 5.6
Selected area

under a normal
distribution curve.

P ~+(~

The values from the table for z = - 1 and 1, respectively, are:

P (z < - 1) = 0.1587

P (z < 1) - 0.8413

Therefore, we have:

(5.151)

P(x 1 < X < x 2) - P (X < x 2) - P (X < x 1)

Figure 5.6 shows the selected area under the normal curve.

(5.152)

Exponent ia l d is t r ibut ion

A simpler continuous distribution, the exponential, is important in queuing
theory and therefore is discussed here. Its main attraction is that it has the
Markovian property, which states that the probability of occurrence of an
event is completely independent of the history of the experiment. This
characteristic is also called the "memoryless" property. The expression for an
exponential distribution is given as:

otherwise (5.153)

The graph of an exponential curve is shown in Figure 5.7.

We will see later that the exponential distribution, because of its Mark-
ovian property, will be useful for representing service time distributions in
queuing systems.

I Chapter 5

174 5.6 Some example probability distributions

Figure 5.7
Exponential

probability density
function.

f(x)

Suppose that the time a computer user spends at a system terminal is
exponentially distributed over time. The probability that the user will be at
a terminal for n minutes is given as:

o o

P (X > _ n) - f f (x) d x
n

(5.154) o o

f.
n

P (g > n) - e -n~

The probability distribution function for the exponential function is
shown in Figure 5.8 and given as:

{1 - e -x~ x > 0
F(x) = P(X < x) - 0 otherwise (5.155)

As with any distribution function, we can find the same result by pick-
ing the point n, representing the probability that the user will be at a termi-
nal for less than n minutes, and using equation (5.19) to find the
probability of the complementary event (see also Figure 5.8)"

P(X>_n)- l -F(n)
P(X >_ n)= 1 - (1 - e - '~) (5.156)

P(X>_n)-e -n~

5.6 Some example probability distributions 175

Figure 5.8
Exponential
probability
distribution

function.

F(x)

1 -

x x

The mean of an exponential random variable is found as:

oo

E[X]-Ix~,e-~xdx
o

If we let:

u = x and v - - e - ~

du- dx and dv- £e-~xdx
and integrate by parts where:

b b b

we obtain:

b
E[X]--xe-XXT-I-e-~dx

o o

because:

lim xe -xx = 0
X - - .) o o

o o

E[Xl=O-f-e-~dx
o

(5.157)

(5.158)

(5.159)

(5.160)

(5.161)

I Chapter 5

176 5.6 Some example probability distributions

5.6.6

o o E[X]--1]~, e -~ [
0

E[X]- lim 1/k e -xx + 1/k

e[Xl-

(Cont. 5.161)

We may find the variance of the exponential random variable as follows:

v a r [X] - E [(X - ~) 2] - f (x - ~1,)2 ~ e - k x ~

o o o o o o

var [X] - 5~x2e-kxdx-2btS~xe-~dx + ILt2~J'e-~dx
0 0 0

(5.162)

We can see that by equations 5.157 through 5.161, the second interval
evaluates to 1/~. The third interval evaluates to 1/)~ (as shown in 5.161). To
solve this first interval, we introduce the gamma function, denoted as:

o o

F[t]-~x'-le-xdx
0

(5.163)

The gamma function can be solved for a positive value of the parameter
to yield:

F [n] - (n - 1) ! (5.164)

We can now use equation (5.164) to help find the solution to equation
(5.162) and arrive at the variance for an exponential distribution:

var [X] - 1/~ 2 (5.165)

Erlang distr ibut ion

The exponential density function is often used to represent the service time of
a server at the end of a waiting line. In some cases, it is desirable to represent
several identical servers with a single density function whose statistics are the
same as for a single equivalent exponential server. The distribution that satis-
fies these conditions is called the "Erlang distribution" and is given as:

f(x)-I)~k()~kx)k-Xe-)~kx (k - 1)! x > 0 (5.166)

5.7 Summary 177

Figure 5.9
Erla n g density

functions for
selected values of k.

f(x)
4 ~ . - ~ K = oo

K= I

1 2 3 4

with parameters k and k. Figure 5.9 shows a graph of the Erlang density
function for various values of k for a given value of k. The mean and stan-
dard deviations of the Erlang density function are given as:

E[X] - I/~, (5.167)

var [X]- 1/kX2 (5.168)

The probability distribution function is given as:

F (x) = l - e - ~ 1+ (5.169)
i=0 i!

It is important to note that the expected value for the Erlang density is
the same as for an exponential with the same parameter, E, and is indepen-
dent of the number of Erlangian servers (e.g., parallel servers).

5.7 Summary

This chapter introduced some of the basic probability concepts that are use-
ful for understanding and analyzing queuing network models. Many addi-
tional, more complex probability densities are known to be useful for
representing certain types of real-world processes. These are beyond the
scope of this book but may be found in many probability and statistics texts
(see [2-6]). The densities presented in this book, however, are commonly
used in queuing analysis due to their applicability to many arrival and ser-
vice processes and because of their relative computational simplicity.

I Chapter 5

This Page Intentionally Left Blank

6
Stochas tic Processes

6.1 I n t r o d u c t i o n

Markov processes are powerful analytical tools applicable to the analysis of
computer systems. They provide accurate, yet relatively simple means to
construct representations of systems and to mathematically analyze a com-
puter system. Markov processes require that we have an understanding of
stochastic processes and their analysis. This chapter provides the back-
ground necessary to perform the modeling and analysis of such systems.

6 .2 Basic d e f i n i t i o n s

A stochastic process involves the representation of a family of random vari-
ables. A random variable is represented as a function on a variable, f(x),
which approximates a number with the result of some experiment. The
variable X is one possible value from a family of variables, from a sample
space represented as ~. For example, for a toss of a coin the entire sample
space is ~ = {heads, tails}, and the random variable X may equal the map-
ping x = {1,0}, representing the functional mapping of the event set {heads,
tails} to the event random variable mapping set {1,0}. (SeeTable 6.1.)

A stochastic process is represented or described as a family of random
variables, denoted X(t), where one value of the random variable X exists for
each value of t. The random variable, X, has a set of possible values defined

IV

Table 6.1 Functional Mapping

Events = Heads Tails

X = 0 1

179

180 6.2 Basic definitions

by the state space, X(t), for the random variable X, with values selected by
the parameter set, T (sometimes called the index set), whose values are
drawn from a subset of the total index set 77.

As with random variables, stochastic processes are classified as being
continuous or discrete. Stochastic processes can have either discrete or con-
tinuous state spaces as well as discrete or continuous index sets. For exam-
ple, the number of commands, X(t), received by a timesharing computer
system during some time interval (0,t) can be represented as having a con-
tinuous index parameter and a discrete state space. A second example could
be the number of students attending the tenth lecture of a course. This can
be represented as having a discrete index set and a discrete state space. In
general, if the number of states in the state space is finite, then the stochas-
tic process has a discrete state space. Likewise, if the index set for the state
space is finite and counting, then the index set is also discrete. For continu-
ous systems, the number of possible values for the variables are not discrete
(i.e., real valued). For the index set to be continuous, the set of possible val-
ues must be real and can approach infinite.

One important form of stochastic process is the counting process. A
counting stochastic process is one where we wish to count the number of
events that occur in some time interval, represented as N(t), where N is
drawn from the discrete set of counting positive integers from the set
{ 0,1,2,3 }. In addition, the index set for such a counting stochastic proc-
ess is drawn from the continuous space of time, where time is from some
reference point {t _> 0}. The requirement for this stochastic process is that
for the value of the index set 0, the random variable N(0) = 0. For values of
t < 0, the value of N(t) is undefined. This implies that the values of N(t)
only exist for values of the index set above 0, and the values of N(t) for all
ranges of t above 0 are positive nonnegative values. A second property for a
counting stochastic process deals with the relationship discrete values drawn
from the state space have with each other. For any two values of the index
set--for example, indexes s and t, where s < t ~ t h e values of the random
variables must have the relationship X(s) <_ X(t). Finally, if we look over
some interval of values for the index set--for example, values s and t ~
N(t) - N(s) represents the number of events from our represented events
that have occurred by time t after time s and bounded by t.

When discussing stochastic processes, it is often important to be able to
determine the order of a function, such that we can focus on the dominant
component. One way of doing this is to use notation from computer sci-
ence and analysis of algorithms. The definition of the "order" of computa-

6.2 Basic definitions 181

tion for an algorithm is often referred to as the order of a function. Two
common ones are little-oh, written o(h), and big-oh, written O(h), where h
indicates the variable of the function. Little ah describes the order or size of
a function as the value of the function, when divided by the value of h,
approaches the limiting value of o, as it approaches O. This is depicted as:

lim f (h) =0 (6.1)
h-~0 h

If a function of h, when divided by h, does not result in O, then the func-
tion is not o(h). If it does approach 0 as the limit is approached, then the
function is o(h). For example:

f (x) - x 2 is o(h) because

x 2
lim ~ - lim x - 0
x-o0 x x-o0 (6.2)
f (x) - x is not o (h) because

lim x _ 1 ¢ 0
x--)0 X

This concept of the order of a function can be used in understanding
stochastic processes and in simplifying their analysis, as will be shown. For
example, suppose x is an exponential random variable with parameter)~ and
is described by the following probability function:

P[x < h] = 1 - e -kh (6.3)

We may wish to determine what the probability is that x is less than t + h
given that it is greater than t. (See Figure 6.1.)

P[x + hlx > - P[x h] (6.4)

Jumping ahead and applying a concept not yet described~that of the
Markov property of exponential distributions~we can show that:

l _ e-)~h

= l - [1-)~h] + E (-)~h)n
n=2 n!

This indicates that the function order is o(h).

(6.5)

I Chapter 6

182 6.2 Basic definitions

w.-

Figure 6.1
Stochastic process

for P[x<t+h[x>t].

v

Figure 6.2
Independent

stochastic processes.

='1
t + h

* time

Another important property is that of independent and stationary incre-
ments. A stochastic process has independent increments if events in the
sample space {x(t), t _ o}, occurring in nonoverlapping intervals, do not
have the same value. For example, with regard to Figure 6.2, x(bl) -x (a l) ;~
x(b2) - x(a2).

A stochastic process has a stationary increment if the values of a random
variable over similar ranges are equivalent. For example, if over two intervals
x(t), x(s) and x (t + h), x(s + h), the value for x (t + h) - x (s + h) has the same
distribution as x(t) - x(s) for all values of h > 0, then the stochastic process
has stationary increments. (See Figure 6.3.)

Another way of looking at this definition is that ifx(t) - x(s) - x (t + h) -
x(s + h), then this stochastic process has stationary increments.

As an example, we assume N(t) is the number of phone calls handled by
a certain central office between midnight and some time, t, on a workday
(Figure 6.4).

This process can be looked at as possessing independent increments, not
stationary increments. If we look at two values for time, 8:00 A.M. and
12:00 noon, the values from 8:00 A.M. to 10:00 A.M. and from 12:00 noon
to 2:00 P.M. do not show the same value for the variable N(t) . Therefore,
this stochastic process does not have stationary intervals but does have inde-
pendent increments.

These concepts of discrete and continuous state space and index set,
along with the concepts of independent and stationary increments, can be
used to further understand the properties of various systems~for example,
if we look at another stochastic process: tossing of a fair coin. We can
describe one such stochastic process as counting the number of heads
flipped during n flips of a fair coin. Such a stochastic process is referred to as

I I I i -= time
al bl a2 b2

6.2 Basic definitions 183

r

Hgure 6.3
Stationary

stochastic processes.
I I I l

s t s + h t + h
-= t ime

a Bernoulli process. If we let X 1, X 2, X 3, ... be independent identically dis-
tributed Bernoulli random variables, the property for each value of x is:

10 with probability P

Xi - with probability 1 - P

The value of 1 represents a successful outcome (e.g., flipping a head),
and 0 represents the failure of flipping a head.

S,, - XI + Xz + X3 +... + Xn (6.6)

Therefore, S n is a Bernoulli process (discrete parameter, discrete state).

For each n, S n has a binomial distribution:

P[Sn _ k] _ [n]p (1- P)n-k

k -0 ,1 ,2 ,n

(6.7)

Starting at any point within the sample space, the number of trials, y,
before the next success has the geometric distribution with the probability:

P[y - k]- (1- p)k p k -O,1 (6.8)

i w

Figure 6.4
Example phone call

volume.

N(O #

f

I I
8:00 A.M. 12:00 noon 4:00 P.M.

I Chapter 6

184 6.3 Poisson process

6.3 Poisson process

An important stochastic process used in computer systems performance
evaluation is the Poisson process. A Poisson stochastic process has the prop-
erty that events are independent, and the interarrival times of events can be
described using the exponential distribution F(t) -- 1 - e xt. For example,
the events described could be the arrival of a transaction for service, the
completion of transaction processing, or the service time for the transac-
tion. Given that the mean time between some event is l /k, the rate of
occurrence of the events will be ;it,. The Poisson process possesses the follow-
ing properties:

1. Occurrences of events during nonoverlapping intervals of time are
independent.

2. For small increments of time the probability of zero events is 1 -
kAt, and the probability of an event occurring during the same
time is kAt.

Poisson stochastic processes have many desirable properties. If two Pois-
son arrival streams are merged, the resultant stream is also a Poisson stream
with the rate equal to the sum of the input rates. Consider, for example,
Figure 6.5 with {Nl(t),t _~ 0} and Rate ~1, {N2(t), t ~- 0} and Rate)~2, the
resultant stream, {Nsum(t),t _~ 0}, has Rate ~1 + ~2-

If a Poisson stream is divided into two streams, with each event going to
stream A with probability PA and stream B with probability PB, the result-
ing streams are Poisson with rates PA)~ and PB)~. (See Figure 6.6.)

Let's look at an example using some of the basic properties of the Pois-
son process and some of the fundamental concepts from probability. In this
example, a computer center has a large number of separate system compo-
nents that may fail--for example, terminals, tape drives, disks, printers,
sensors, CPUs, and so on. When these items fail, they do not bring the
entire computer system down. We know that for this system there are on
the average 0.6 failures per day. Failures are independent. These failures can
be represented by a Poisson process with rate)~- 0.6 (per day). In addi-

y

Figure 6.5
Two Poisson arrival

streams merging.
©

6.3 Poisson process 185

L
v

Hgure 6.6
Poisson stream

dividing.

tion, the time between failures is observed to be exponentially distributed.
What is the mean time between failures?

P['Cn < s]= l - e -ks ~ - 0.6/day

E [a:n] = 1/2~- 1.666 days = 39.99 hours between failures
(6.9)

Using the initial conditions, we can see that the number of failures in an
interval of t days has the Poisson distribution with a mean of 0.6t. We can
use this to determine the number of failures we could expect during any
specific period of time. For example, we could ask what the probability is of
exactly one failure in a 24-hour period.

P[Yt - k] - e -;~t (~'t)/e
k~

P[Yt - 1 d a y] - e -°.6 (0 .6) = (0 . 5 4 8 8) (0 . 6) = 0.32928
1!

(6.10)

Or we could ask what the probability is of less than five failures in a week.

4
/ [y7 < 5]- E P[y = k]

k=O
4 k

= E e-)~, (2~t)
k=o k!

4 (0.6×7)k
= E e(-°'6x7)

k=o k!

= e_4.2 I1 + (4"2/1) + ((4"2)2/2 !) 1

=0.5898

(6.11)

This implies that we have a 0.5898 probability of getting less than five
failures within this period of time.

y ~Z
P A / /

~ (~
PB ~ ' ~ PB~

I Chapter 6

186 6.3 Poisson process

Conversely, we could start from a random point in time and determine
what the probability is that no failure will occur during the next 24 hours.

P[T, n > 1 day] = P[Yl - 0] - e -~t - e -°.6 - 0.5488 (6.12)

Using the fundamental properties of the Poisson process we could postu-
late other questions as we discover or measure our system. For example,
suppose exactly 24 hours has elapsed with no failures. What is the expected
time until the next failure? The Poisson process supports the memoryless
property~that is, past history does not aid in predicting future history
(independent increments). The result of this question is the same as the ini-
tial question, which asked what the probability is of the next failure.

P['C n < s] - l - e -ks k - . 6 / d a y
(6.13)

E['c n] - 1/~,- 1.666 days- 39.99 hours between failures

As another example, we know that four out of every five failures is a
terminal problem, where each of these failures occurs with equal probabil-
ity on each failure (see Figure 6.7). We may wish to determine what the
process describing the terminal failure is. One must first recognize that
this can be modeled as a Poisson process, where the total stream (repre-
senting failures) can be broken into a split stream, both of which also are
Poisson processes. Given this assumption, we can state that this is a Pois-
son process with rate PA ~, = (4/5) 0.6 - 0.48/day for the terminal failures.

The average time between terminal failures is 2.083 days.

We can also determine the number of terminal failures in t days given by:

P l y - k] - e -xt (~'t)k
k1

_ e_0.48 t (0.48t) k
k~

(6.14)

I V

Figure 6.7
Possibility of a

terminal failure.
k = 0 . 6

~'~~Other failure

6.4 Birth-death process 187

6.4 B i r t h - d e a t h process

The Poisson stochastic processes are related to a more general family of sto-
chastic processes called birth-death processes. In birth-death stochastic
processes we are concerned with a state space of random variables where the
values range from 0, representing no members in the population, up to
potentially an infinite number, representing a constantly growing popula-
tion. More realistically we are interested in fixed-size populations that go
through incremental additions to the population (births) and incremental
deletions from the population (deaths).

For any specific level (possible range of values or specific number) in the
population there is an associated birth rate and a death rate. This rate may
be constant for each level but need not be. The birth-death stochastic proc-
ess is described as a continuous parameter (index set) discrete state space
stochastic process (Figure 6.8).

{x(t) , t>_O} (6.15)

E(n), n = O, 1, 2 describes the state and x(t) = n means x(t) is in state
E(n) at time t.

For any stochastic process, x(t) t >_ O, to be a birth-death stochastic proc-
ess, the process must be a discrete state space continuous parameter stochas-
tic process, and it must have the following additional properties:

1. State changes are only in increments of +1 and the value of E n is
never negative.

Figure 6.8
Example birth-

death process.

f(x)

5

1 u

1
r--

0 -~t

I Chapter 6

188 6.4 Birth-death process

2. If the system is in state E n at time t, the probability of a transition
to En+ 1 during the interval (t, t + h) is:

~nh + o(h)

and to En_ 1 is:

~nh + o(h).
3. The probability of more than one transition during an interval of

length h is o(h).
If we examine a birth-death process from any particular state, E n, we can

see that we enter the state from only two other locations: either from state
En+ 1 or En_ 1 (Figure 6.9).

Using this knowledge we can compute a variety of important perform-
ance measures. All of these measures will be derived from the basis of com-
puting the differential difference equations. These equations examine the
birth-death stochastic process from the relationship with the initial state
and the flow rates between states. We compute these focused on one node
or state, as in Figure 6.9.

Let Pn (t) - P[X (t) - n] (6.16)

be the probability that the system is in state E n at time t.

What is Pn (t + h) for small h?

Pn (t Jr h) - Pn (t) (l - ()~nh + o (h))) (1 - (~n h + o(h)))
+ Pn-i (t)(~n-ih + o(h))
+ Pn+i (t)(J-tn+lh + o(h)) (6.17)

+ o(h)

- [1 - ~n h -~nh]Pn (t)+ ~n-I h Pn-I (t)
+[~n+lhPn+l (t)+o(h)

Transposing the term Pn(t) and dividing by h:

Pn (t + h)- /o n (t) = -(~n + ~n)/)n (t)

h (6.18)

+~n-i Pn-i (t)+ ~n+l Pn+l (t)+ o(h)
h

6.4 Birth-death process 189

v
Figure 6.9 Zn_ I Zn

Example stochastic
process state

transition diagram.

~n ~n + I

Taking the limit as h --5 0:

d Pn (t) -- --(~n + [~n)Pn (t) + ~n-1 Pn-1 (t) + ~n+l Pn+l (t) for n >_ 1

dt (6.19)

d P0 (t) - _~0P0 (t) + ~1 P1 (t) for n - 0
dt

Equation 6.19 gives the relationship of the initial state to the first state
and the initial birth and death rate. We will see the importance of this sim-
ple property of the birth-death stochastic process as we continue our devel-
opment of this stochastic process and apply this to analyzing computer
systems as simple queues and networks of queues.

One specialized example of the birth-death process looks at the condi-
tion when there are only births and no deaths, and, further, the birth rate is
independent of the state and constant. More specifically, we make the fol-
lowing assumptions"

1. There is a birth rate with mean rate ~n = ~ > 0.

2. There are no deaths; therefore, the death rate is ~t n = 0.

Using this information and the basic birth-death analysis previously
described, we can show that:

dP n (t) _-~Pn (t)+ ~Pn-1 (t) for n > 1
dt

d P 0 (t) _ _ k p ° (t) for n - 0

dt

The probability of being in any state is:

(6.20)

= , n>O and t > O
n!

(6.21)

I Chapter 6

190 6.4 Birth-death process

which indicates that this is a Poisson process. The Poisson process can be
modeled as a pure birth process with constant birth rate.

The general case birth-death process is a bit more complicated when
finding time-dependent solutions. If, however, we look at the point where
the system is nearing some limiting value, then the system can be assumed
to be stationary and, therefore, equilibrium solutions exist for the system. In
these equilibrium or steady-state solutions, we assume:

d
lim --+ ~ = 0 for each n (6.22)
t--)oo i t

and

lim -+ Pn (t)- Pn for each n (6.23)
t--+oo

We can focus on the various states and compute the differential difference
equations from a general node (any n _> 1) and for the initial state n - 0, as:

1. 0 - ~n-1Pn-1 + ~n+lPn+l - (~n + ~n) Pn, rl ~ 1 (6.24)

2. O - ~ I P 1 -k , oP o (6.25)

The solution for these differential difference equations, using a bit of
algebra, is shown as:

Pn+l = ~n Pn, n > l
~n+l

... 0

P2 =)~lPl -)~0)~1 P0
~12 ~-11~2

= Po ,
glg21a3 ...lan

n_>l

(6.26)

and

o o

XPn --1
n=O

The solutions described here focus on the use of balance equations to
solve for the various state probabilities. Balance equations can be used, since

6.4 Birth-death process 191

Figure 6 . 1 0
Graphical

representation for
the birth-death

process.

Figure 6 .11
Transition rate

diagram.

~0 ~1 ~"n-1 ~'n

~1"1 ~1"2 ll'l'n ~l'n + I

we assume the system has reached equilibrium and, therefore, will migrate
between stable states; no matter which state we happen to look at, this will
hold. The balance equations examine each state, E n, once equilibrium is
reached; the rate of transition into state E n and the rate of transition out of
E n are computed such that:

Rate of entering E - rate of leaving E
n n

From the birth-death process we find that:

1. ~n_l Pn_l .-b ~n+lPn+l - (~n + ~n)Pn , n > l (6.27)

2. ~1 P1 = ~0 P0 (6.28)

Also:

o o

~_~Pn - 1 (6.29)
n=O

A graphical representation for the birth-death process is shown in Fig-
ure 6.10.

The rate transition diagram of an equilibrium analysis for a single server
with no waiting line is shown in Figure 6.11. The example has Poisson
arrivals with a rate of £ and exponential service with a rate of ~t. The bal-
ance equations for this example are:

and (6.30)

Pl +P0 = 1

I Chapter 6

192 6.5 Markov process

6 . 5

Solving the balance equations yields:

P l - (;~/P)P0 and P0 + ()~ /P)P0-1

Therefore:

(6.31)

P
P0 = ~ (6.32) k + p

The importance of this initial overview of the birth and death stochastic
process, the representation of this process using transition rate diagrams,
and the assumption of equilibrium and solution techniques using equilib-
rium will make more sense as we begin to look at general representations
and mappings to computer systems.

M a r k o v process

A Markov process is a stochastic process with some additional properties. If
stochastic processes' future state probabilities only depend on the present
state probabilities and not how they reached this state, then it is a Markov
process.

More formally, a stochastic process {X(t), t ~ T} is a Markov process if
for any set of n + 1 values t I < t 2 < ... < t n < tn+ 1 in the index set and any set
of states {x 1, x2, ... , x n, Xn+l}:

P[X(tn+ 1)- Xn+l]X(t 1)- Xl,X(t 2)- x 2 X(t n) - Xn]
= p[X(tn+l) _ Xn+l]X(t n)_ Xn] (6.33)

Figure 6.12
Mapping of

Markov process to
other stochastic

processes.

6.5 Markov process 193

y

Figure 6.13
Example

probability state
transition matrix.

All birth-death processes are Markov processes; hence, the Poisson proc-
ess is also a Markov process (Figure 6.12).

A discrete-state Markov process is called a Markov chain. Markov chains
consist of discrete states {Eo,E1,E 2 }. These states typically are described
using nonnegative integers {0,1,2,3,4 } instead of the more formal
description given previously. A discrete time Markov chain makes state
transitions at times t n, n = 1,2,3, ... (possibly into the same state). The nota-
tion for this transition and the resultant state is:

{ X (t n),t n - 0,1,2 }--+ { X n} (6.34)

We will normally be interested only in Markov chains that have station-
ary state transition probabilities:

P[Xn+ 1 - jlxn - i] - P[Xm+ 1 - jlx = i]
= PijV m, n,i, j

(6.35)

The state transition probability, Pij, represents the probability of transi-
tioning from state i to state j. For an entire Markov chain, we represent the
collection of all such transition probabilities as a state transition matrix P, as
shown in Figure 6.13.

p - . . ,

Poo Po~ Po2 " " Poj

P~o Pl~ P12 ... Plj

P20 P21 P22 "'" P2j

P30 P31 P32 "'" P3j

Pio P~ Pi2 "'" Pij

I Chapter 6

194 6.5 Markov process

Figure 6.14
State transition

diagram.

q

The requirements for entries in the state transition probability matrix
are as follows:

Pij >- 0 i , j - 0,1,2,... (6.36)

o o

Y_~Pij - 1 i - 1,2,3 (6.37)
j=O

An example using such a matrix will involve a sequence of Bernoulli tri-
als. In a Bernoulli experiment there can only be success or failure. An experi-
ment succeeds with a probability ofp and fails with a probability of q -- 1 - p .
In this example, we assume that the state at trial n, with the value X n, is the
number of uninterrupted successes (i.e., length of consecutive successes). In
the example suppose the following experiments occur. The values for the
sample space, index n and X n, are shown as:

Sample: trial: F S S F F S S S F

n = 0 1 2 3 4 5 6 7 8

Xn= 01 2 0 0 1 2 3 0

The state transition diagram is shown in Figure 6.14.

The resulting probability state transition matrix is composed of the fol-
lowing elements, as seen in Figure 6.15.

l w

Figure 6.15
Transition

probability matrix.

P = (Pi j) =

qoo PO~ 0 0

q~o 0 P12 0

q20 0 0 P23

q30 0 0 0

6.5 Markov process 195

Figure 6 .16
Communications

systems stages.

Using these probabilities we now wish to compute the state probabilities
for the entire graph, assuming equilibrium as before.

If we let Hj (~) represent the probability of being in state j after the nth
step (transition):

n5 n) -P[x. -j] (6.38)
then:

o o

(n+l) H j - Z H i(n) ~" (n) ,
i=0

(6.39)

Finite states: j-- 0,1,2 n - 1"

(n+l) _ ~ H(n) .(n)
Hj i P/j , V j

i=0
(6.40)

let _,'(n' matrix:

1j(,,) -(H~on),II{ n) I-I~n{) (6.41)

Then in vector notation:

H(n+l) - H (n) . p (n) (6.42)

Stationary (homogeneous) transition probabilities-

p(n) = p(m) , V n ,m

= P

H(n+l) - H(n)op
(6.43)

An example, assume we have a communications system that transmits
the digits 0 and 1 through several stages (Figure 6.16). We assume that at
each stage there is a probability of 0.75 that the output will be the same
digit as the input.

Source Destination

I Chapter 6

196 6.5 Markov process

v

Figure 6.17
Transition

probabilities for the
communications

systems of
Figure 6.16.

X 1 X 2 X 3 X .

.75 .75 .75 .75
~0 -~0 ~-0 ~-0

1 ; 1 ~1 ~-1
.75 .75 .75

One question we may ask is what the probability that a 0 entering the
first stage is output as a 0 from the fourth stage. The solution requires repre-
senting the problem as a Markov chain and probability a matrix solution:
Let the state at steps n, X n, denote the value output by the nth stage.

Assume a 0 is input to stage 1 as shown in Figure 6.17.

What is the probability that X 4 = O?

U (n+l) = H (n) P (6.44)

Let:

0 (°) - (1 , 0)

1-I (1) -- l'-[(o)p

H(2) = I I (1)p = I I (o)p2

I I(3)- I-[(2)p - H(O)p3

H(4) = H(3)p - 1-I(O)p4

Given the probability state transition matrix:

(6.45)

p~

0.75 0.25

0.25 0.75

p2 = 0.~81 5 0.375

5 0.625

p4 =
87s o.5312s]

6.5 Markov process 197

• (H(04),HI4)) - (1, 0) P 4

= (0.53125, 0.46875)

The general solution using stationary Markov chains yields:

H(n) - [I(°)P n, n step transition probability matrix.

6 .5 .1

L
V

Figure 6.18
Transition state

diagram (Bernoulli
trials, coin toss).

M a r k o v cha in d e f i n i t i o n s

State j is said to be reachable from state i if it is possible for the chain to pro-
ceed from state i to state j in a finite number of transitions:

> 0, for some n > 0 (6.46)

If every state is reachable from every other state, the chain is said to be
irreducible. Using the Bernoulli coin toss trials as before, we get the transi-
tion state diagram shown in Figure 6.18.

In Figure 6.18, we can see that if we are in any of the states, we can reach
every other state in some number of steps. For example, if we are in state 3
we can reach state 0 by transitioning through arch 3,0. We can then get to
state 1 by arch 0,1 and then to state 2 by transitioning by arch 1,2. One
other point to note is that if we are in state 0, we can transition back to state
0 by the arch 0,0. After checking all paths from all pairs we can see that this
Markov chain is irreducible.

In the second example (Figure 6.19), this graph is reducible, since there
is at least one path (arch 0,11) that will not allow the elements of one sub-
chain (consisting of nodes 11, 12, 13, and 14) from connecting to sub-
chains 21, 22, 23, and 24.

We will generally be interested in the behavior of processes that can be
represented by irreducible chains, since they are more easily solved and
equilibrium can be achieved or assumed in such systems.

q
P P P

I Chapter 6

198 6.5 Markov process

Figure 6.19
Reducible

transition diagram.

Another property of interest in Markov chains is the concept of ergotic
chains. A discrete time Markov chain is said to be ergotic if (1) you can get
from any state to any other state (i.e., irreducible), (2) for each of these
states there are paths of various lengths back to that state (i.e., not all multi-
ples of the same integer [aperiodic]), (3) upon leaving the state you will
return with probability 1 within a finite mean time (positive recurrent).
This last property implies the first, in that a path must exist and it must visit
at most all of the arches.

A Markov chain is said to have a stationary distribution ifi

H - (H0,H1,H 2 Hn_l) (6.47)
n states

and if there is a vector H such that:

rI_ =I3P (6.48)

with

H i _ 0 V i (6.49)

and

E H i - 1 (6.50)

Equivalently:

(n~ -- I I j for j - 0, 1,... (6.51) lim I I j ,
n----~oo

6.5 Markov process 199

For an ergotic Markov chain, the limit:

[I lim I J (n) - - lim l -J(°)P n (6.52)
n- -)oo n - -)oo

always exists and forms a stationary probability distribution that is indepen-
dent of the initial state:

H(°) (6.53)

The limiting distribution is the unique solution to the equations:

[I - r i p 1) balance equation

~[~ H j - 1 2) sum of probabilities

Furthermore, for each state:

(6.54)

H j - 1/m i (6.55)

where m i is the mean recurrence time for state i, the mean number of steps
taken to return to the state after leaving.

Example: Communication system
What is the limiting probability that a 0 entered into the first stage is out-
put as a 0 from the nth stage as lim n --) oo (Figure 6.20)?

1. Balance equation:

H = H P

0.75

= H 0.25 0.75

rate entering = rate leaving

,

H o x 0.75 + H o x 0.25 - H 1 x 0.25 + H o x 0.75

H o - H 1

Sum of probabilities:

(6.56)

I-[o +1-[1-1

I Chapter 6

200 6.6 Summary

Figure 6.20
State diagram.

.25

.75

.25

.75

Hence:

H o - 0.5 and H 1 - 0.5

rI -(0.5,0.5)

which is a stationary distribution.

6.6 Summary

In this chapter, we introduced some of the basic concepts related to random
variables and stochastic processes. It was shown that stochastic processes
have some fundamental properties that allow them to be readily applied to
the study of computer systems. One of these is the concept of the Poisson
process and its application to the concept of expected arrival rates or service
rates for events within stochastic processes. One special stochastic process is
the birth-death process. This process was used to develop the concepts of
equilibrium states and balance equations. These were used to determine
state probabilities. A further refinement on the birth-death process is the
Markov chain. The Markov chain has additional properties that lend it to
the application of computer systems modeling. The reader is encouraged to
consult [2-5] for further details.

7
Queuing Theory

7 .1

In this chapter, we will build upon the basic probability theory covered in
Chapter 5 and stochastic processes covered in Chapter 6. The discussions
will lead to the definition and analysis of several useful queuing models for
the behavior of many types of service systems. The methods discussed
herein complement those provided by simulation analysis. Frequently, the
development of a general queuing model for a particular system will aid in
the development of a refined Petri net model or a detailed simulation of
specific parts of the system. Also, the results and behavior observed from
simulation help to tune the analytical models.

This chapter is organized into three general topics: queuing models, esti-
mation, and computational methods for theoretical systems analysis. Sto-
chastic processes form the basis for many of the analytical techniques that
apply to the queuing systems that we will discuss. The section on estimation
provides some methods for defining the values that parameterize the queu-
ing models with real-world data.

Queuing systems
In this section, we will cover the basic analysis techniques associated with
queuing systems. The prime motivation for performing queuing analysis is
to assess local system behavior under a variety of assumptions, initial condi-
tions, and operational scenarios. The modeling aspect seeks to represent the
behavior of system components as processes that have calculable statistics
and that adequately reflect reality. Thus, the use of queuing analysis pro-
vides us with a set of techniques for calculating quantities, such as wait time
for service, throughput of a server, the effect of different servers or queuing
strategies, and the effects of coupled and closed networks of queues.

201

202 7.1 Queuing systems

The assumption that we must make in order to take advantage of these
techniques is that the system under observation can be adequately repre-
sented by a queuing system. In the remainder of this section, we will first
look at analytical modeling in general, at the characteristics of the systems
that we are interested in modeling, and then at the suitability of queuing
models in general and their use in particular.

What are we seeking to quantify when we set out to model a system?
The answer can be summed up in just one word: performance. This one
word, however, may have very different meaning for different people. Take
automobile performance, for instance. For the speed enthusiast, perform-
ance is how fast the car can go and how quickly it can get to that speed. For
the back-road driver, it is the ability to corner without difficulty under
severe conditions. For the economist, high performance means fuel effi-
ciency and low maintenance costs. The list goes on. So it is for the perform-
ance of a computer system as well. At issue here are performance measures,
such as the utilization of the system components, effective throughput,
average waiting time for a potential user, average number of users in the sys-
tem at any given time, and the availability of service resources.

In addition, trade-off analyses and "what if' studies can be performed to
establish performance measures such as speedup and improved availability.
In general, such studies provide the ability to analyze the sensitivity of the
previously mentioned measures to changes in the system under study.

The general process of analytical modeling involves mapping the behav-
ior of a complex system onto a relatively simpler system, solving the simpler
system for the measures of interest, and then extrapolating the results back
to the complex system. Sometimes this process has several levels, where
models are broken into submodels. Here, the lowest-level models are solved
(or partially solved) first, their results propagated up to the next higher layer
for inclusion in that layer's solution, and so on to the top level.

In some cases, portions of a model can be replaced by a technique called
decomposition, or isolation. Here, a queuing subsystem is replaced with a
flow-equivalent server, where the server output is precalculated for each
number of units (or customers) in the system. Thus, the job flow through
the flow-equivalent server can be implemented using a simple lookup table
indexed by the number of customers currently in the system. This tech-
nique is appropriate if the impact of the removed subsystem is minimal
when compared with the effect of other model subsystems.

The basic premise behind the use of queuing models for computer systems
analysis is that the components of a computer system can be represented by a

7. I Queuing systems 203

Figure 7.1
Single $#r12#r

model.

Arrivals ,111 Oeoa ures
Queue Server

network of servers (or resources) and waiting lines (queues). A server is
defined as an entity that can affect, or even stop, the flow of jobs through
the system. In a computer system, a server may be the CPU, I/O channel,
memory, or a communication port. A waiting line is just that: a place where
jobs queue for service. To make a queuing model work, jobs (or customers
or message packets or anything else that requires the sort of processing pro-
vided by the server) are inserted into the network. A simple example, the
single server model, is shown in Figure 7.1. In that system, jobs arrive at
some rate, queue for service on a first-come first-served basis, receive ser-
vice, and exit the system. This kind of model, with jobs entering and leav-
ing the system, is called an open queuing system model.

By cascading simple queuing models and allowing the existence of paral-
lel servers, networks of queues and servers may be formed. These combina-
tions are formally called queuing networks, although we will also call them
network models and queuing systems. Figure 7.2 shows one such model of
a computer system with a fixed number of jobs competing for a CPU and
two I/O processors.

In Figure 7.2, jobs that have finished I/O service loop back into the
CPU queue for another cycle of computation and I/O. A system like this,
where the number of customers remains constant, is called a closed queuing
network system model.

A combination of open and closed concepts is certainly possible if one
considers each job to have an associated class. For example, a computer sys-
tem may contain two job classes, interactive and system, where interactive
jobs come and go as users log on and off and where system jobs execute
continually. A system that contains both open and closed class customers is
called mixed.

The concept of customer classes also allows different classes to receive
different treatment at the same server, as well as the definition of a group of

Figure 7.2
Queuing network 3 Jobs

model. ---~ I[; f l l

1 CPU 2 I/0 Devices

I Chapter 7

204 7. I Queuing systems

customers as open or closed. A system with more than one customer class is
called multiclass, and it may be either open, closed, or mixed.

Once we have a network model established, the collection of n 1 custom-
ers at server 1, n 2 at server 2, and so on for the entire collection of queues in
the network system defines the state of the network model. An analytical
model for a queuing network would provide a method for calculating the
probability that the network is in a particular state (i.e., that the number of
customers is at certain levels for each queue and service center). In addition,
network throughput, mean queue length for any server, and mean response
time (wait time and service time) for any server can be found by a variety of
methods.

In a network model, a server typically has associated with it a service
time distribution, from which customer service times are drawn. Upon
arrival at a server, a customer receives service, the duration of which is deter-
mined by the service time distribution.

We will now turn our attention to some of the more well-known queu-
ing systems, the notation used to represent them, the performance quanti-
ties of interest, and the methods for calculating them. We have already
introduced many notations for the quantities of interest for random vari-
ables and stochastic processes. Figure 7.3 reviews these and adds a host of
others that will be useful for the analysis of queuing systems. The following
text briefly discusses the more important parameters.

The arrival rate for a queuing system defines the stream of arrivals into a
queue from some outside source. This rate is defined as an average rate,
which is derived from an arrival process. The average interarrival time for a
given arrival process is denoted as:

E['~] = 1/X (7.1)

The service rate parameter is defined in a way that is similar to the
arrival rate. This rate is also an average rate, which defines how many cus-
tomers are processed per unit time when the server is busy. The service rate
can be cast in terms of the service time random variable as:

g= l/E[s] (7.2)

Often, we wish to know the probability that the system will contain
exactly n customers at steady state. Accounting for all of the probabilities
for n ranging from zero to infinity defines the probability distribution for
the number of customers in the system.

7. I Queuing systems 205

l w

Figure 7.3
Stochastic processes

and random
variable notation.

Figure 7.4
Kendall notation.

g

Pn
C

N

L

Wq

S

Nq
kq

Ns
W

Arrival rate at entrance to a queue

Service rate (average) of a server

Probability that there are n customers in the system at steady state

Number of identical servers in the queuing system

Random variable for the number of customers at steady state

E[N], expected number of customers in the system at steady state

Random variable for customer waiting time in a queue

Random variable for customer service time

Random variable for the number of customers in a queue at steady state

E[Nq], expected number of customers in a queue at steady state

Random variable for the number of customers at a server at steady state

Wq+S, random variable for the total time in a system

The number of identical servers in a system indicates that a customer
leaving a queue may proceed to one of C servers as soon as one becomes

nonbusy (free).

Of interest for any queuing system is the average number of customers
(N) in the system at steady state. This value can be thought of as the sum of
all customers in queues (Nq) and at servers (Ns)"

N - Nq + Ns (7.3)
L-e[NI-e[N]+e[Ns]

The total time a customer spends in the system can also be thought of as
the sum of wait time in the queues (qt) and time at the servers (st). The total
time, and expected total time at steady state, therefore, are given as:

W=Wq +S
E[W] - E['I~q] + E[S] (7.4)

NBIclK/m/Z
where

A arrival process definition

B service time distribution

c number of identical servers

K maximum number of customers allowed in the system (default = oo)

m number of customers allowed to arrive before the arrival process stops (default = oo)

Z discipline used to order customers in the queue (default = FIFO)

I Chapter 7

206 7. I Queuing systems

Figure 7.5
Kendall notation

symbol definitions.

7.1.1

v

Figure 7.6
M/M/1 queuing

system modeL

D deterministic service time or arrival rate

G general service time or arrival rate

M Markovian (exponential) service time or arrival rate

In addition to the notation described previously for the quantities asso-
ciated with queuing systems, it is also useful to introduce a notation for the
parameters of a queuing system. The notation we will use here is known as
the Kendall notation, illustrated in Figure 7.4.

The symbols used in a Kendall notation description also have some stan-
dard definitions. Figure 7.5 shows the more common designators for the A
and B fields of the notation.

The service discipline used to order customers in the queue can be any
of a variety of types, such as first-in first-out (FIFO), last in first out
(LIFO), priority ordered, random ordered, and others. Next, we will exam-
ine several queuing systems and give expressions for the more important
performance quantities.

The MIMI I queuing system

The M/M/1 queuing system is characterized by a Poisson arrival process and
exponential service time distributions, with one server, and a FIFO queue
ordering discipline. The system, shown in Figure 7.6, may represent an input
buffer holding incoming data bytes, with an I/O processor as the server. A few
of the quantities that we will be interested in for this type of queuing system
are the average queue length, the wait time for a customer in the queue, the
total time a customer spends in the system, and the server utilization.

Let's look at the exponential service distribution first. It is given as:

S = bt e-lat (7.5)

and is shown in Figure 7.7. In the figure, E[S] is the average service time of
a customer at the server. Next, let's derive the steady-state equations for the
M I M I 1 system.

Queue Server rate =

7. I Queuing systems 207

IL.
r

Figure 7.7
Exponential service

distribution.

E[S] = 1 / # t ~-

The M/M/1 system is a birth-death process, as discussed in Chapter 6.
Let us assume that:

P, (t) - probablility that n customers are in the system at time t (7.6)

From earlier discussions about birth-death processes, we know that:

Pn (t + h)- Pn (t) [l - ~n h --Bn h]
+Pn-1 (t)~n-lh + Pn+l (t)Bn+lh + o(h) (7.7)

and

P0 (t + h) = Po (t)-Po (t)~oh+ Pl (t)~lh+ o(h) (7.8)

Following the same reasoning for deriving the steady-state probabilities
as we did for the general birth-death process, we obtain the steady-state
equations for the M/M/1 system:

kP0 =BP1 (7.9)

(~, + ~)Pn = ~Pn-1 + ~Pn+l for n > 0 (7.10)

Now, if we let u denote the average server utilization, we define this
quantity as the mean service time of a single customer divided by the mean
interarrival time (see equations [7.1] and [7.2]), then:

u=(1/B)/(1/X)=X/B (7.11)

I Chapter 7

208 7. I Queuing systems

Solving the steady-state equations (7.9) and (7.10), we obtain:

P1 - "" Po for n - 0 (7.12)
bt

Similarly, for n = 1

(~, +U)pl = ZPo + up2
uP2 = (z + ~) P o - Z &

P2 - (1 + 5g/bt)P 1 - (),,/bt) P o (7.13)

/'2 = (1 + z/~,) (z/u) po - (z/~) po

e2 - (z /~)2 po f o r , , - 1

Similarly:

& =(z/~)~po

Pn - (~/B)n Po for n > 0 (7.14)

Pn =BnP0 for n > 0

We assume here that u is less than 1 so that we have a finite queue
length. Now, we know that:

oo

XPn=l
n=0

and

SO:

£ Pn = Po Z un =1 (7.15)
n=O n=O

n = 0

The right-hand side of equation (7.15) is recognized as a geometric pro-

P0 - 1 - u - 1 - (SL/B)

1

P° = 1 / (l - B) (7.16)

gression that has the following solution:

7. I Queuing systems 209

z, z, k k k
1
" ~

(
1

g g la g la
i v

Hgwre 7.8 M/M/1 system state transition diagram.

Combining equations (7.14) and (7.16), we arrive at the steady-state
probability that there are n customers in an M/M/1 system:

Pn - (1- (~/B))(~/B) n (7.17)

Figure 7.8 shows the state transition diagram for the M/M/1 queuing
system.

Now let's look at the average number of customers in the system at steady
state. This is given as the expected value of N, which can be found by:

o o

E [N] - ~_nP.
n=O

- ~ n (1 - (~/B))(~/ILt) n
n=O

- (1 -~ , l~)~n(~ l l . t) n
n=O

= (1 - (£/g))((;~/bt) + 2()~/B)2 + 3 ()v/l.t) 3 +. . .)

= (1-()v/B))()v/B)(1 + 2(£/B)1 + 3(~/,) 2 +...)
o o

= (I- (V~)) (Vu) Z, (Vu)"-'
n=l

(1- (~/~1)(~/~1

(~-(~/~t) ~

E[N]- Z/B
1- ()~/B)

(7.18)

I Chapter 7

210 7.1 Queuing systems

The average amount of time that a customer must wait in the queue,
assuming that other customers are already in the queue, is given as the num-
ber of customers ahead divided by the average service time of the server:

EIWqln=il-i/g (7.19)

The expected wait time in the queue, then, is a function of the average
wait time and the steady-state probability of having i customers in the system:

o o

i=1

=(1/g)E[N] (7.20)

(x/.:)
E[WqJ- i-(~,/t.t)
Combining the queue waiting time (equation [7.20]) and the expected

service time E[s] (equation [7.2]) yields the total customer time in the sys-
tem, called the expected wait time:

()~/t.t a) 1
- - q _ _ _

1-(~/B) B

_ 1 (() ~ / B) +1)

1(1 /

=B 1 - ~ / .

If we rewrite equation (7.18) as:

E[N]= ~,/(g- ~,)
using equation (7.21), we obtain Little's result:

E[N]-£E[W]

(7.21)

(7.22)

(7.23)

7.1 Queuing systems 21 I

Little's result holds in general for any queuing system in steady state that
conforms to the flow balance assumption discussed earlier. As such, it gives
us an important relationship for the effect of arrival rate and queue length
on total customer wait time. A related result, also attributed to Little, states
the equivalent for queue length and queue waiting time and also holds for
queuing systems in steady state:

(7.24)

This second version of Little's result says that the expected queue length
can be found directly from the arrival rate times the expected queue wait
time.

The total waiting time in the system, then, can be found by using Little's
result or by summing the queue wait time and the expected service time.

Server utilization is a useful quantity for determining how many equiva-
lent servers must be provided to service a given arrival process. The method
is straightforward and involves solving an MIMI 1 queuing system using the
methods indicated previously. Suppose, for instance, that we have an MIMI 1
system with an arrival rate of six customers per minute and a service time of
ten seconds. Then the server utilization, as given by equation (7.11), is 1.
This means that the server can be expected to be busy 100 percent of the
time, but that it can, in fact, process enough customers so that infinite
queue buildup is prevented. Suppose now that the arrival rate increases to
60 customers per minute so that the server utilization becomes 10, an over-
load situation. If we speed up the server by 10, however, or provide ten serv-
ers of the original speed, the utilization would again be 1. In general, then,
if the utilization is less than 1, the server can keep up with the flow of cus-
tomers and an infinite queue will not result. If, however, the utilization is
greater than 1, the utilization, rounded up to the next largest integer, gives
an indication of the number of identical servers that is necessary to keep up
with the customer flow.

A final interesting property of the M/M/1 queuing system is the fact
that the queue waiting time and total waiting time both have exponential
distributions. For instance, the queue wait time can be found as follows:

t

n=l 0

(7.25)

I Chapter 7

212 7.1 Queuing systems

From equation (7.14) and the distribution (Poisson), we get:

o o t ~nxn_l
P[O < Wq < t] - E (~ b / g) n (1-(~,/gt)).[(n_ 1)! e-~a6c

n=l 0

t oo (~x)n -1

= !~e-~x (1- (~/lx))E ~7-~ ~
0 n=l
t

= .[~e-i~ (1 - (X,/ILt)) e~dx
0

= ~/lX f (lX- ~)e-(~-~)xdx

-~,/~[1-e-t(~t-~.)]

(7.26)

From equation (7.21), we substitute to get:

P[O < Wq < t] - ~,/~[l-e-t/E[W]] (7.27)

Including P[Wq- 0]"

P[Wq <_ t] = Po + ~L/~t[l-e-t/E[W]] (7.28)
L

By substituting Wq[0] - 1 - - - •
~t

'1 - 1 -]
From these distributions, we can find the percentiles for the expected

wait time for r percent of the total number of customers. The percentile of
any random variable is defined as:

P[x <_ Tc(r)] - r/lO0 (7.30)

In the case of queue wait time, for example, if we wish to find the wait
time that 90 percent of the customers in the system will not exceed, we have:

1- e-=(9°)/E[W] -- 0.9

O. 1 - e-=(90)/E[W]

In(0.1)= -I1;/(90)
E[w]

x(90)=2.3E[W]
(7.31)

7.1 Queuing systems 213

7. 1.2 The MIMI I IK system

An interesting and realistic variation on the basic M/M/1 system is a system
with a finite queue size. In this system, once the queue is full, new arrivals
are lost and are never provided service. This is quite realistic, for example, in
an input system with finite input buffer space and no flow-control protocol.
The birth-death state transition diagram for the M/M/1 /K system is shown
in Figure 7.9.

As for the M/M/1 system, we have:

Pn "- (~ /~)n Po for n > n > 0

Using the law of total probability, we also have:

(7.32)

~P1-1
i=0
K

E () ~ / ~) i P0 - 1
i=0

K
PO E (~/~) i -1

i=0

The summation is a geometric series, which yields:

1 - (~,/~) K+I
Po =1 i f ~ , .].t

1 - (~,/bt)

(7.33)

SO:

1- (~/bt)
Po = (7.34)

1-- (~/[Lt) K+I

k ~)~ k k k

~t bt bt ~t bt bt

Figure 7.9 State diagram for the M/M/1/Ksystem.

I Chapter 7

214 7.1 Queuing systems

Substituting into equation (7.32) yields:

"en --" 1-(k/~)+l(~lnforK>n>O

If the arrival rate is equal to the service rate, we have:

(7.35)

K
Po ~z_~ (~/la)i = 1 for k - ~

i=1
Po = 1 / (K + I) for k - ~

and

(7.36)

P~ = 1/(K + 1) for K _> n > 0 and £ = ~ (7.37)

The expected number of customers in the system, for a system with
nonequal arrival and service rates, is found as:

K
E[N] : ~ iPi

i=O

" - ~ i 1 i = 0 _(~/~)K+I

E[N] = i

After some algebra and simplification of the summation, we get:

(7.38)

E[N]- (kilt) _ (K + 1)(~,/gt) K+I for k ¢
1 - (k/la) 1 - (~/gt) K+I

(7.39)

We can see that, for very large values of K, the second term approximates
zero and we get the same expression as for the M/M/1 system.

7.1 Queuing systems 215

7.1.3

r

Figure 7.10
An MIM/C system,

~ r C=3.

For the case where the arrival and service rates are equal:

K

E [N] - ~ iPi
i=O

K (7.40)
1 Z i

E[N]- K +----~ i=o

E[N]- K/2 (f o r k = g)

qTb compute the wait time distribution for the MIMIIlK system, we
must compute the probability for the number of customers in the queue
when a customer arrives, given that the customer is admitted to the system.
This is given as:

P(n customers in sys tem[N<K)- /9 , / (1- Pk) (7.41)

From this, we can arrive at the wait time distribution:

K-1 N (~ t) K
P(w <_ t) = X- Z Pn/(I-- PK) Z e-~t'

N=O K=O K!
(7.42)

This quantity can be found in the same way as the statistic for the M/M/1
system.

The MIMIC system

The M/M/C system, shown in Figure 7.10, consists of a single waiting line
that feeds C identical servers. The arrival process is considered to be Pois-
son, and the servers have exponential service times. The state transition dia-
gram for an M/M/C system is shown in Figure 7.11. Now let's write some
of the flow balance equations for the state transition diagram.

v

I Chapter 7

216 7.1 Queuing systems

~2
P2 - 2bt--TPo

£3

PC ~ ~

Pc+I -

~c
c ! ~t c P°

kC+l

CC!~L C+l Po

PN
X,N

CN-CC!~ N Po

so that:

Pg

~Npo
N ! ~ N for N < C

~,Npo for N > C
CN-CC!~ N

(7.43)

7.1~ _ ~ ~ ~ Figure
State transition
diagram for an
M/M/C system,

for C = 3. ~t 2g 311 3g 3g

7.1 Queuing systems 217

To find the probability of no customers in the system, we sum all proba-
bilities:

1 - P011+ ~/bt + (x'/bt) 2/2 +"" + (~/bt)C/c!+
(~/~)C+l/CC!+.. .+ ()~/~t) N /CN-CC!+ . . .1

1=100 ()~/t.tli /i! + Ci-CC!)
i=1 "=

(7.44)

1-P°(~()~/bt)i/i'+()~/bt)C/C'(1-(~'/Cbt))

The expected queue length can be found by subtracting the number of
customers in service from the expected number of customers in the system:

o o X
N=C

E[Nq]_ Po (~'/I't)c (x'/Cb t)
C!(1-(X,/Cbt)) 2

Using LiMe's result, we can compute the queue wait time:

The total wait time is:

(7.45)

(7.46)

The total number of customers in the system is:

E [N] - X w

E[N] = E[Nq] + (~/bt) (7.48)

For some multiple server systems, no queue is provided for customers to
wait for service. In this case, a customer who arrives when all servers are
busy is turned away, perhaps to try again later. The state transition diagram
is shown in Figure 7.12. This system is often referred to as the M/M/C loss
system, because customers who arrive when all servers are busy are lost.

I Chapter 7

218 7.1 Queuing systems

v

Figure 7.12
M/M/C loss system.

7 . 1 . 4

k k k k

2g (C- 1) # C#

Writing the flow balance equations, we obtain the steady-state probabilities
as we did for the MIMIC system:

PAr - (~ , / ,) N / i V ! - 1 + (k / ,) + (k/~t) 2 /2!+. . . (k/la) c /C! (7.49)

The probability that a customer will be turned away, then, can be found
from the previous expression with N-- G. Since there is no queue, the queue
length and queue waiting time are zero, and the total wait time is the
expected service time.

The MIGI I sys tem

The queuing systems that we have discussed so far have all had the Markov
property for arrival and service processes, making it possible to model the
system as a birth-death process and to write the flow balance equations by
inspection. Next, we will look at a system in which the service time does not
have the Markov property. In the M/G/1 system, each customer has differ-
ent and independent service times. Because service times are not guaranteed
to be Markovian, the system is not representative of a Markov chain and we
must resort to other methods to derive meaningful statistics. One approach
commonly taken is to look at the process that describes jobs leaving the sys-
tem, which is a stochastic process that also happens to be a Markov chain. It
has been shown [3] that, in the limit, the distribution for the number of
jobs in the system at any point in time and the number of jobs in the system
observed when a customer departs from the system, are identical.

Summarizing the procedure, then, we can analyze certain aspects of the
system that are described by a non-Markovian process by observing a Mark-
ovian subportion of the system (in this case the departure process) and
extrapolating the results back to the original system. This type of analysis
relies on what is known as an embedded Markov chain. The derivation of
the statistics for the M/G/1 system is beyond the scope of this book.

The general M/G/1 system is useful in many situations, because we can
characterize a known service process in terms of its moments and then eval-
uate its performance in the presence of a random arrival process.

7.2 Networks of queues 219

7.2

7 .1 .5 The GIMI I system

In the previous section, we discussed the situation in which a system had a
non-Markovian service process. Next, we will consider the case in which the
service time is random and the arrival process is non-Markovian. We will
assume that the interarrival times are independent and identically distrib-
uted. Again, we can find an embedded Markov chain in this system whose
behavior is essentially equivalent to the system's behavior at steady state. In
this case, the random variable defining the number of customers in the sys-
tem, at precisely the time when another arrival occurs, forms a process that
is a Markov chain. As with the other systems that we have discussed, the sta-
tistics of interest use the probability of having an empty system in calculat-
ing their values.

N e t w o r k s of queues

Until now, we have been considering queuing systems that contain only one
station. That is, the systems that we have looked at have a single queue and
a single server or set of servers, and customers arrive only at that queue and
depart only following service. This situation is fine for relatively simple sys-
tems that are either not connected to other systems or that can be consid-
ered isolated from other, connected systems. Now, we will consider the case
in which several queuing systems are interconnected and attempt to find
meaningful statistics on such a system's behavior.

Referring to section 7.1, we recall that a network of queues results from
connecting the departure stream of one queuing system to the queue input
of another, for an arbitrary number of queuing systems connected in an
arbitrary way. Also, we discussed the concept of open and closed networks
in which an open network was defined as one in which arrivals from, and
departures to, the outside world are permitted, and a closed network is one
in which they are not permitted. We will discuss general classes of both
types here.

7.2. I Closed n e t w o r k s

Consider the closed three-stage network of queues shown in Figure 7.13.
Assume that the service time for each server is exponentially distributed and
unique to that server and that the system contains two customers. We can

I Chapter 7

220 7.2 Networks of queues

l w

Figure 7.13
A three-stage closed

queuing network.

stage 1

)
stage 2 stage 3

describe this system as a Markov process with each state in the process
defined as the triplet:

State ={NI,N2,N3} (7.50)

where N i is the number of customers in the i queue. Also, since we have two
customers"

E N i - 2 (7.51)
i=1

The state transition diagram for the system, with the states labeled as
defined in equation (7.50), is shown in Figure 7.14. The labels on the edges
denote customer movements from stage to stage and are dependent upon
the service rate for the stage from which a customer is departing.

To find the steady-state probabilities for each state in the system, we can
write flow balance equations. As discussed earlier, the flow balance assump-
tion states that we can represent the steady-state probabilities of a Markov
process by writing the equations that balance the flow of customers into and
out of the states in the network. For each individual state, then, we can
write a balance equation that equates flow into a state with flow out of a
state. For the states of Figure 7.14, we can write the following balance equa-
tions:

rt(2,0,O)B1 - rt(1,O,1)B3 (7.52)

71;(1,1,0)(B 1 + B2)= g(2,0,O)l-tl + g(O,l,1)l-t 3 (7.53)

g (O , 2 , 0) B 2 - g(1 ,1 ,O)lLt 1 (7.54)

Ir (1, O,1) (B3 +B1)= ~(1,1,0)B2 + rt(O,O,2)gt 3 (7.55)

rt (O, l,1) (B2 + B3) = rt(O,2,0)ltt2 + 71;(1,0,1)~ 1 (7.56)

rt(O, 0,2)bt 3 = rt(O,l,1)B2 (7.57)

7.2 Networks of queues 221

State transition ~ -- ~i,--- ~ /I -- ",--- ~ _
rate diagram for a

simplecZosed ~x~ 8, 8 a ~ ~ 8 1 8~ a I
s s,em

ga

when:

(N 1 , N 2 , N 3) - Probability of state {N 1, N 2 , N 3 }

Keeping in mind that the sum of all of the state probabilities must equal
1, this network has the solution:

g(N1,N2,N3)_ K (1/~1)N1 (1/~ 2)N2 (1/~ 3)N3 (7.58)

where K is a normalization constant to ensure that the probabilities sum
to 1"

1
K - (7.59) 2 2 2

Z Z Z r t (i , j , k)
i=0 j=0 k=0

Now, using equations 7.52 through 7.59, and the fact that all probabili-
ties sum to 1, we can solve the flow balance equations for the individual
state probabilities. Once we have the state probabilities, we can find the
expected length at any of the servers, as follows:

states
E[Nq] - ~ iP[N = i at queue k] (7.60)

i=1

Because the state probabilities at the queues are not the same as for the
queuing systems in isolation, we cannot find the expected wait time in a

I Chapter 7

222 7.2 Networks of queues

w"

Figure 7.15
Arbitrary closed

system.

queue by simply multiplying the number of customers by the service time
at that queue. Instead, we will first calculate the throughput for each queu-
ing system and then apply Little's result using the throughput as a measure
of the arrival rate at a particular queue. Therefore, the throughput at a par-
ticular queue can be found by multiplying the probability of having a cus-
tomer in that queue (e.g., the server is busy) times the expected service
rate:

~ i -" P(server is busy)g (7.61)

Now, using Little's result, we can calculate the time spent in each queue
by a customer at the respective queues:

Wq - E[Nk]/~ i (7.62)

The total round-trip waiting time for a customer in the system can be
found by summing up all of the queue waiting times. It can also be found
directly by using Little's result and the average throughput for the system.
Thus, for two customers, we have:

Wq ---- 2/~avg (7.63)

Next, let's consider an arbitrary closed network with M queues and N
customers. Assume that all servers have exponential service time distribu-
tions. For the sake of discussion, the network in Figure 7.15 will represent
our arbitrary network. Let's define a branching probability as the probabil-

7.2 Networks of queues 223

ity of having any customer follow a particular branch when arriving at a
branch point. Therefore, let:

P/j = Probability that a customer leaving server i goes to queue j

For any server i:

(7.64)

~Y, Po -1 (7.65)
~ j

The conservation of flow in the system requires that:

M

~,j -- E ~ i P / j (7.66)
i=1

Define the relative throughput of a server, i, as:

M

B(j)= ~B(i)Pij (7.67)
i=1

Since the B terms are relative, we can arbitrarily set one of them equal to
1 and solve for the others. Once we have all of the terms, the steady-state
probabilities are given by:

P(N1,N2,N3,N 4 NM)= K]-[|B(i) "~Ni (7.68)
7T~) = ~ti

Equation (7.67) can be derived by assuming the conservation of flow for
a particular state and then by solving the system of equations as we did for
the previous example. Let's pick a state, S, so that:

S-(kl,k2,k 3 kM) (7.69)

and examine the effects of arrivals and departures of customers from queue
j. Define another state, A, that is identical to S except that it has one more
customer at queue i and one less customer at queue j than S. Thus, A is a
neighbor state of S. We are postulating that the rate of entering state S due
to an arrival at queue j is balanced by the rate of leaving state S due to a
departure from queue j. Since there may be more than one state A, where
there is one more customer at queue i and one less at j, we must balance all
such states against state S. Equating the flows results in:

M
E P[~"]~iPij - P[S]~j (7.70)
i-1

I Chapter 7

224 7.2 Networks of queues

7.2.2

From equation (7.68):

P[4]-xl-I B(j)
j=l ~tj ~i

(7.71) / p[sl_x H e(j) e(j)
j=l ~j ~j

The last term in each of the previous two expressions arises from having
a customer in service at the respective servers. Substituting these expressions
into equation (7.70) and simplifying, we get:

M
Z B (i) P i j - B (j) (7.72)
i=1

which is what we postulated in equation (7.67).

Now that we have equation (7.72), we can generate a set of equations
that we can solve simultaneously by setting one of the B terms equal to 1. In
a manner similar to the previous example, we can also find the normaliza-
tion constant K and therefore solve equation (7.68) for the system's steady-
state probabilities and also for the expected queue lengths using equation
(7.60).

If we consider the closed network over a long period of time, the relative
throughput terms can be thought of as indicators of the relative number of
times a customer visits the associated server, also called the visit ratio. This
interpretation is useful for determining which server is the most utilized,
also known as bottleneck analysis. Define the relative amount of work done
by a server, i, as:

Relative work by the server i - B (i)/~t i (7.73)

Since this value is also the relative utilization of that server, the server
with the highest such ratio is the system bottleneck.

Open networks

Next, we will discuss another class of queuing networks: those that contain
sources and sinks. We will assume that customers may arrive at any queue
from an outside source according to a Poisson process that is specific for
that queue. We can think of these arrival processes as all originating from a
single arrival process with branches, each with an associated branching

7.2 Networks of queues 225

Figure 7.16
Open system mode/.

probability. Figure 7.16 shows such an arrival process and a hypothetical
open network with M queues and associated servers.

We also assume exponential service rates for all servers in the system. In
this case, the aggregate arrival rate is equivalent to the sum of all of the indi-
vidual arrival rates discussed earlier. If each individual arrival rate is defined
as:

Arrival rate of queue i -]¢i

the aggregate rate is given as:

(7.74)

M
~,-- E]¢i

i=1

and the branching probabilities as:

(7.75)

as:

Poi - ~[i / ~ (7.76)

Customers leaving the system also do so with the probabilities defined

M
P/o- 1 - E ~ (7.77)

j=l

This definition states that the probability of a job leaving the system is
equal to the complement of the probability that a job will remain in the
system.

Pm

Arrival process
with rate ~, P02

P0m ~ ' ~

I Chapter 7

226 7.2 Networks of queues

As with the closed network discussed earlier, we can propose a set of
throughput terms, denoted B(i) for each queue and server i. Thus:

M

B(i)- Z B(j)P O
j=0
M (7.78)

B(i)- ~_~ B(j)Pij + '~i
j=l

Since we know the throughput arriving from the outside source, we can
set:

B(O) =)~ (7.79)

and solve for the remaining B terms. In the case of an open network, the B
terms will represent actual, not relative, throughput at a server, i, because
they are derived from the aggregate arrival rate. Because of this, we can
define each server's utilization as:

vi (7.80)
After solving for all of the B(i) terms, the steady-state probabilities are

given as:

P (NI,) - :l-I
i=1 g i (7.81)
M

= x H u i N i
i-1

where, again, K is a normalization constant. We can sum all of the state
probabilities and solve for Kto obtain:

M

K-H(I-U)
i=1

Thus, the expression for the steady-state probabilities becomes:

(7.82)

M

P (NI ' N2 ' N3' N4 NM) - n (1- Ui) Ui Ni
i=1

(7.83)

If we look at equation (7.17), we see that the expression just derived is
actually the product of terms that can be obtained by treating each queue

7.3 Estimating parameters and distributions 227

7 . 3

and server as an M/M/1 queue system in isolation. This result is known as
Jackson's theorem, and it states that, although the arrival rate at each server
in an open system may not be Poisson, we can find the probability distribu-
tion function for the number of customers in any queue, as if the arrival
process were Poisson (and, thereby, use equation [7.17] for the M/M/1 sys-
tem). Jackson's theorem further states that each queue system in the net-
work behaves as an M/M/1 system, with arrival rate defined by:

M

j=l
(7.84)

which is simply equation (7.78) recast in more familiar terms.

It is worthwhile to note that Jackson's theorem applies to open systems
in which the individual queue systems are M / M / C i. That is, each server may
actually be comprised of a different number (i) of identical servers. Thus,
the steady-state probabilities for each queue system in the network are also
given by the equation for such a system in isolation with the arrival rate, as
described in equation (7.84). The full proof of Jackson's theorem is given in
[8].

Estimating parameters and distributions

Now that we have discussed various aspects of queuing theory, we should
review some of the ways that we can parameterize the models that we
choose. In this section, we will discuss various methods that can be used to
determine whether a certain statistic or distribution appropriately describes
an observed process. Specifically, we will cover hypothesis testing, estima-
tors for some statistics, and goodness of fit tests. We will start with hypoth-
esis testing in general.

A hypothesis test is a technique used to determine whether or not to
believe a certain statement about a real-world phenomenon and to give
some measure as to what degree to believe the statement. A hypothesis is
usually stated in two parts: the first concerning the statistic or characteristic
that we are hypothesizing about and the second concerning the value that is
postulated for the statistic. For example, we may hypothesize that the mean
value of an observed process is less than 10 or that the observed process is
Gaussian. The positive statement of a hypothesis is usually called the null
hypothesis and is denoted as H0. Associated with the null hypothesis is an
alternative, denoted H1. The idea here is to have the two hypotheses com-
plement each other so that only one will be selected as probable. The two

I Chapter 7

228 7.3 Estimating parameters and distributions

hypotheses, H0 and H1, form the basis for the hypothesis test methodology
outlined in the following paragraph.

A hypothesis test is usually performed in four general steps, which lead
to the acceptance or rejection of the initial hypothesis. The first step is to
formulate the null hypothesis H0 and the alternative hypothesis H1. Next,
decide upon a statistic to test against. The statistic is typically the sample
mean or variance. Third, a set of outcomes for the test statistic is chosen so
that the outcome of the test statistic will fall within the set with a specific
probability, given that H0 is true. That is, if H0 is true, we say that the
value of the test statistic will fail within the set selected (sometimes called
the critical region) with probability P (also called the test's level of signifi-
cance). The idea is to select a critical region so that the probability of the
test statistic value falling within the region is small, typically between 0.01
and 0.05. An occurrence of this event, then, indicates that the hypothesis
H0 is not a good choice and should be rejected. Conversely, we could select
a large probability, say 0.9, in which case the occurrence of the event indi-
cates that the null hypothesis should be accepted. The final step in the proc-
ess is to collect some sample data and to calculate the test statistic.

The next immediate problem for performing a hypothesis test is to
define the expressions that describe the sample statistics we are interested in.
These are commonly referred to as estimators, because they estimate the sta-
tistic that could be derived from a distribution that exactly models the real
process. The most commonly used estimators are the sample mean and the
sample variance.

In order to calculate the sample statistics, we must first obtain a random
sample from the experimental population. A random sample is defined here
as a sequence of observations of the real-world process, where each value
observed has an equal probability of being selected and where each observa-
tion is independent of the others in the sample. Thus, a random sample is a
sequence of random variables that are independent and identically distrib-
uted.

For a random sample of size n, where n is the number of samples
obtained, the sample mean is defined as:

n

.~ = _1 ~_ Xi (7.85)
n i=1

The sample variance is defined as:

7.3 Estimating parameters and distributions 229

$2 _ I _ _ ~ ~ (X i _ ~) 2 (7.86)
n - 1 i=1

The sample standard deviation is defined as it was for the standard devi-
ation of a distribution and is repeated here as:

S - x / ~ (7.87)

In the above three expressions, the random variable X i represents the ith
observation in the random sample.

Now that we can calculate the statistics for a random sample of some
phenomenon, how can we relate these estimates to the actual statistics of
the underlying process? For this, we use a theorem known as the sampling
theorem. It states that, for a random sample, as previously described, with a
finite mean, the sample mean and expected value are equivalent and the
sample variance and the variance are also equivalent. That is, the sample sta-
tistics are said to be consistent, unbiased estimators. The sampling theorem
also states several other important relations, including the following expres-
sion relating the variance of the sample mean and the variance of the ran-
dom variable describing the process. This expression:

Var[X]-Var[X]/n (7.88)

states that as the sample size gets larger, the variance of the sample mean
gets smaller, indicating that it is closer to the true mean of X.

These estimates lead to still another question: Given that we know (or
think that we know) the type of distribution that our random sample
comes from, how do we estimate the parameters of such a distribution
from the random sample data? There are two widely used methods for
doing just this: the method of moments and the method of maximum like-
lihood estimation.

The method of moments is useful when we think we know the distribu-
tion of the sample but do not know what the distribution parameters are.
Suppose the distribution whose parameters we wish to estimate has n
parameters. In this method, we first find the first n distribution moments,
as described in Chapter 5. Next, we calculate the first n sample moments
and equate the results to the moments found earlier. From this we get n
equations in n unknowns, which can then be solved simultaneously for the

I Chapter 7

230 7.3 Estimating parameters and distributions

desired parameters. We derive the kth sample moment for a sample size of
m samples as:

M k - l ~ x / k (7.89)
n i=1

where X i is the i sample point in the random sample.

In maximum likelihood estimation, we try to pick the distribution
parameters that maximize the probability of yielding the observed values in
the random sample. To do this, we first form what is called the likelihood
function. This consists of the values of the assumed probability distribution
function at the points observed in the random sample. This function, for a
continuous random variable whose distribution has only one parameter, is:

L(O) - f (Xx) f (x2) f (x3)... f (Xm) (7.90)

For a random variable whose distribution has n parameters, we will have
n equations, similar to equation (7.90). We then find the maximum of each
equation with respect to each parameter. Finally, the set of n equations in n
unknowns can be solved for the necessary parameters.

Now that we have outlined several methods for estimating the statistics
of a distribution that describes the real-world process, we turn our attention
to the reliability of our estimates. One measure of this reliability is called
the confidence interval. A confidence interval is defined as a range of values,
centered at the estimate of the statistic of interest, where the actual value of
the statistic will fall within a fixed probability. For example, a 90-percent
confidence interval for the mean of a particular random variable based upon
a given sample may be defined as the range of values within a distance, r, of
the estimated mean. In this case, r is chosen so that the fraction of times
that an actual mean lands within the interval is 90 percent. The general pro-
cedure for defining a confidence interval requires the construction of a
known distribution, say C, from the estimates of the statistic being esti-
mated. Next, we pick an interval so that:

P(a<C<b)=z (7.91)

where z is the desired confidence level. Finally, we evaluate C using the
value X i so that the relationship:

a < C(Xi)<b (7.92)

7.3 Estimating parameters and distributions 231

is maintained. We can alternatively solve C for the points X a and X b, where
C (X a) = a and C (X b) = b. These are the end points of the 100-percent con-
fidence interval.

This procedure assumes that we know the distribution of C before we
find the confidence interval. If this is not the case, and the sample size is
large, we can assume that the sample distribution is normal and can obtain
a reliable confidence interval for the value of the mean. In this case, we first
form the statistic:

T - (X ' - ltt)/(c~x/-n) (7.93)

Since X is assumed normal, T in this case is also normal with a mean of
0 and a standard deviation of 1. Again, we define a percent confidence
interval and determine a and b so that:

P (a < T < b) = z

The desired confidence interval for the mean is then given by:

(7.94)

(X - b) ¢s/ q~n < bt < (X + a) cs/ x~n (7.95)

Confidence intervals for the variance when the population distribution is
unknown can be found using the previously described method, although the
results will be poor if the actual population distribution is far from normal.

Now that we have explored several techniques for estimating the parame-
ters of distributions, we will look at some methods for finding a distribution
that fits the sampled data. Typically, we will have found the sample mean
and standard deviation and now want to find a random variable that ade-
quately represents the sample population. The tests employed here are usu-
ally called goodness of fit tests. We will discuss two tests, the chi-square test
and the Kolmogorov-Smirnov test. These tests fall under the general head-
ing of hypothesis testing, and, therefore, we use the same hypothesis-form-
ing techniques described earlier. In both tests, we start with a null hypothesis
that the population has a certain distribution, and then we obtain a statistic
that indicates whether we should accept the null hypothesis.

In the chi-square test, we determine whether the distribution of the null
hypothesis appropriately fits the population by comparing the categories of
the collected sample value to what can be generated by the assumed distri-
bution. The premise is that we can find k bins, B 1 B k, so that each
value in the random sample falls into one, and only one, bin. After finding

I Chapter 7

232 7.3 Estimating parameters and distributions

an appropriate set of bins, we partition the samples into them and record
the number of samples that land in each. Next, we take a corresponding
number of samples from the hypothesized population distribution and allo-
cate them to the same bins. If any of the second set of samples (those taken
from the distribution) fail to fall in only one bin, we have not selected an
appropriate set of bins and must choose another set. For whatever type of
distribution that we are testing against, the appropriate distribution param-
eters can be found using one of the estimation techniques described earlier.
Continuing with the test, we now calculate the following statistic:

K (NSi _gDi) 2
C - ~[~ (7.96)

i=1 NDi
where NS i denotes the number of elements in bin i due to the random sam-
ple, and ND i is the number in bin i due to the hypothesized distribution.
The basis of this test is that the statistic of equation (7.96) has a chi-square
distribution. The degree of freedom of the chi-square distribution is defined
as one less than the number of sample bins minus the number of parameters
in the hypothesized distribution:

M = k - 1- number of parameters (7.97)

Next, we decide on the level of significance that we wish to test for.
Using the following expression, we can calculate the probability density
function for a chi-square distribution with n degrees of freedom:

fx (x)-fl 1/((n/2)- 1)')(2-n/2)(x(n/2)-I)(e_(x/2)) othel~sef°r x > 0 (7.98)

The final step is to find the value ofXfor which the integral with respect
to x of equation (7.98), evaluated from x to infinity, is equal to the desired
level of significance. The final test states that if the value of x just found is
greater or equal to the chi-square statistic calculated in equation (7.96), the
assumed distribution is not a good fit at the desired level of significance.
That is, we reject the null hypothesis if:

X>_C (7.99)

An alternative approach for the chi-square test is to form the value C - ~ ,
where ¢ is some small value. We then use the result to find the probability
that x is greater than C - ~. The resultant probability gives us an indication
as to the approximate level or significance that we may accept the null
hypothesis. Several references give tables for the critical values of the chi-

7.4 Computational methods for queuing network solutions 233

7 . 4

square distribution. These tables may be used in place of calculating the dis-
tribution values.

Another so-called goodness of fit test is the Kolmogorov-Smirnov test.
The test is based upon the magnitude ordering of the sample, the calcula-
tion of the maximum difference between the sample points and the
assumed distribution, and a determination of the level of fit of the assumed
distribution. A formal description of this test appears in a number of statis-
tics texts. Here we will describe a more intuitive approach, which is some-
what easier to experiment with.

As mentioned earlier, the first step of this test is to arrange the sample
values in ascending order according to magnitude. For each point x i in the
arranged sample, we find the fraction, ~, of the number of total samples
that is less in magnitude than the given value. Next, for the assumed distri-
bution, we find the value, K i, that will yield the same fraction,]~, for a given
number of samples. Finally, we plot K i versus x i for all i. The resulting plot
will indicate a good fit if the data form approximately a straight line with a
slope of unity. If the fit is a straight line with a slope other than unity, the
assumed distribution parameters may be tuned to achieve the desired
results. Otherwise, we should try another assumed distribution.

Computat ional methods for queuing
ne twork solutions

In Chapters 5 and 6 and the previous sections of this chapter, we intro-
duced probability theory and analysis techniques for performing classical
queuing system analysis. Those analyses, however, tend to be complex even
for simple systems. In an effort to rectify this situation, three alternative
analysis methods have emerged.

The first method, from Buzen [9], gives a technique for finding the nor-
malization constant that is required for the solution of certain product form
networks. The method does not require the solution of the normalization
summation described in Chapter 5. Instead, it uses an iterative solution,
which is simpler to implement.

The next method, from Buzen and Denning [10], introduced a method-
ology for assessing the match of a given assumption for the system under
analysis. In addition, they defined the performance quantities of interest in
terms of their operational relationships in the system under study. For that
reason, this kind of analysis is known as operational analysis.

I Chapter 7

234 7.4 Computational methods for queuing network solutions

7 . 4 . 1

Figure 7.17
Central server

model.

The third analysis method, from Reiser and Lavenberg [11], attempts to
simplify the analysis of queuing networks. By using the mean waiting time
and mean queue size, in conjunction with Little's result, the solution of a
system of queues can asymptotically approach the exact solution, with sim-
pler computational requirements. This type of analysis is called mean value
analysis.

In this section, we will discuss these methods and models. Some of the
results are specific to the type of model used, while others are more general.
The specific model cases, however, can be used to approximate a given sys-
tem or portion of a system and to obtain an initial feeling for the system's
actual behavior.

C e n t r a l s e r v e r m o d e l

The central server model, shown in Figure 7.17, was originally proposed as
a model for jobs in a multiprogramming computer. It is a closed network
and we assume that a constant (K) number of jobs are always in process. In
the original model, programs are serviced by the CPU (server 1) and then
are routed to one of M - 1 I/O devices (servers 2 through M). After receiv-
ing I/O service, the program again queues for CPU time. If a program com-
pletes execution, it is rerouted into the CPU queue to start another job,
thereby keeping the number of jobs in the system equal to K. This can be

9 2

P1 = ~

Server 1 P4 ~F~

Server 2

Server 3

Server 4

Server m

7.4 Computational methods for queuing network solutions 235

thought of as a system in which there is always a job waiting to enter the
system at the CPU queue, but it will not do so until a job completes. The
actual jobs in the system, therefore, may vary over time, but the number in
circulation at any given time remains constant.

The central server model can be adapted to represent other systems
besides a CPU and its associated I/O devices. For instance, we could choose
server 1 to represent a multichannel DMA controller and servers 2 through
M to represent the output channels. Or, we could adjust the branching
probabilities to represent a system in which the jobs remain constant and
never complete (i.e., P1 = 0). This could be useful for a dedicated I/O
server. Alternatively, we could choose one of the servers 2 through M to rep-
resent an idle period for a job or I/O channel.

Although we may be able to formulate a central server model that some-
what reflects the actual situation, the match may not be precise. The benefit
of this model, however, is the computational simplicity of many of its
important performance parameters. Next, we will develop the computa-
tional model for this queuing network.

In the central server model, the servers are assumed to have exponential
service time distributions. As shown in Figure 7.17, the exit from the cen-
tral server has several branches, each with an associated branching probabil-
ity, Pi. There are a total of K customers (jobs) in the system at any time. Let
us define the state of the system:

s - (kl,k

where k i denotes the number of customers in queue i. Thus:

(7.100)

M
~_ k i - K (7.101)
i=1

If we define B(i) as the probability of going to server i after service at
server 1, and we let B(1) = 1, then:

B i = P/, for i = 2, 3, M (7.102)

Using the same techniques described previously for closed queuing net-
works, we can obtain the state probabilities as:

P (k l , k 2 , . . . , k M) - norm H P/~l
i=1 ~i

(7.103)

I Chapter 7

236 7.4 Computational methods for queuing network solutions

This equation for the state probabilities is called product form, and it
can be solved by finding the normalization constant, norm, as outlined in
the earlier sections of this chapter. The described methods, however, require
the solution of M simultaneous equations. An alternative method with
fewer computations is as follows:

Let:

x'~ P(kl,k2...kM) 1 G(k) = L = ~ (7.104)
all states norm norm

Pi~l
G (k) = E n ~i

all states i=1
(7.105)

Let the states for the summation include all states where equation
(7.101) holds. Also, we stipulate that k i >_ O. Define another function
g(k, m) where there are m queues in the system instead of M. The following,
then, is true:

g(k,m)=G(k) (7.106)

where k is the total number of customers in the system with M queues.
Thus, we can further define g(k, m) as:

Pigl (7.107) g(k,m)- E n ~i
all states i-1

We can break up the right-hand summation as:

all states i=l }.tl all states i=l gti (7.108)
with km>0 with km=0

For the first summation in equation (7.108), if we always have at least
one customer in queue m, we can think of the system as having k - 1 cus-
tomers circulating through m queues. We must also remove the product
term that relates to customers in queue m. Similarly, in the second summa-
tion, if queue m is always empty, then we can think of the system as having
m - 1 queues and k customers. Thus, equation (7.108) becomes:

7.4 Computational methods for queuing network solutions 237

g(k,m) mPm'l E ~=11~1 ki'b
~m aU states

with km>0

ta~t~ fi IPi'll ki
all s with i=1 ~ i
m-1 queues

(7.109)

The two summations can be rewritten, using equations (7.105) and
(7.106), as:

g(k,m)- Pm~l g(k-l,m)+ g(k,m-1) (7.110)
gtm

For k = 0, and for m = 1, equation (7.110) becomes:

g(O,m) = 1 for m - 1,2 M (7.111)

g (k, 1) - 1 for k - 0,1 , K (7.112)

We now have a set of initial conditions equations ([7.111] and [7.112])
and a recursive relationship, equation (7.110), for calculating the values up
to g(K,M) = G(K). Then, we can use equations (7.103) and (7.104) to cal-
culate the state probabilities. The computat ion is as follows:

Suppose we have a network similar to that shown in Figure 7.17, where

M = 3, let 1 = 0.9, g2 = 0.5, g3 = 0.9, Pl = 0.7, P2 = 0.2, and P3 = 0.1. Fur-
thermore, suppose that there are k = 2 customers in the system. From equa-
tion (7.111), we know that:

g(0,1) = 1

g(0,2) = 1

g(0,3) = 1

and from equation (7.112) we know that:

g(0,1) = 1

g(1,1) = 1

g(2,1) = 1

We can arrange these values in a grid, as shown in Figure 7.18. The
computat ion proceeds one row at a time and ends up with a value for g(2,3)
= G(2).

I Chapter 7

238 7.4 Computational methods for queuing network solutions

k

Figure 7.18
G(k) grid

calculation. Number of
customers (k)

Number of queues (m)

1 2 3

1.36

1.5

1.46

1.65

,,,,,

g(2,3) = G(2)

For example, to calculate g(1,2), we would proceed as follows:

g (1 , 2) - P2~l g (0 , 2) + g(1,1)
~2

g (1 , 2) _ (0"2)(0"9)
(0.5) (1) + (1)

g(1,2) = 1.36

Thus, for Figure 7.18, the normalization constant is equal to 0.6. With
two customers, we can now calculate the state probabilities using equation
(7.103).

Buzen [9] gives several expressions for performance measures that are
based upon this general computational structure. One of these measures is
the device utilization, U i, for server i. Normally, we define the utilization of
a device as the sum of the state probabilities where there is at least one cus-
tomer at server i.

< - X
All states
with ki>o

(7.113)

Ui-llG(k) E ~ (Pj"l)kj
All states j=l ~ j (7.114)
with ki >0

7.4 Computational methods for queuing network solutions 239

Using similar reasoning, as we did for equation (7.109), we can treat
equation (7.114) as a system with one less customer, multiplied by the fac-
tor that accounts for always having a customer at queue i. Thus, we get:

g i m

m
1 Pi tl E i-i(Pj tl) kj

G(k) ~i Allstates j= l ~ j
with k-1
customers

(7.115)

SO"

Ui = P i l l G (K - 1)
~i G (K) (7.116)

We have already calculated the values for G(K) and G(K- 1), as in Fig-
ure 7.18, so calculating the utilization of a device is straightforward. From
this, we can find the throughput of device i as:

G (K - 1)
~i -- Wi~i - P / ~ l (7.117) a(x)
Looking back to equation (7.114), we can extend equation (7.116) to

find the probability that the queue length at server i will be greater or equal
to some value n:

P(N i > n)= l/G(k) Z

so that:

All states
with k i >n
customers

/ (7.118)

P(Ni>n)=[Pi~lln~i G(K-n)G(K) (7.119)

Applying equation (7.118) to the case where the queue length is n + 1,
we can obtain the probability of n customers in queue i.

P(Ni _n)_l(pil.tl ~t i G(K_n) l_iipil.tl ~t i G(K-n-1) (7.120)

I Chapter 7

240 7.4 Computational methods for queuing network solutions

n, l (I ~i G(K) G(K- n)- ~i G(K- n- 1) (7.121)

Now that we have derived an expression for the probability of having n
customers in the queue, we can use equation (5.66) to obtain an expression
for expected queue length:

K
E[Ni]-~_~jP forNi - j

j=l

_ ~ j ~.~1 1 O(K-j)- ~~ a(K-n-1) j=l ~ gi G(K) ~t i
.-1....~IPi~I'IIG(K_I)_I~i~'IIG(K_2))I

G(K) iv gi gi
/(Pill)2 (~i Pill)/ +2 ~, O(K-2)- ~i O(K-3)

+...+ gl(Pi~tl]k[G(o) pt.~l G(_l)) }-ti

(7.122)

We can now expand and collect terms, keeping in mind that we have
defined G(K< 0) - 0, to get:

1 ~[~ / Pa.[Ltl i E[Ni]- G(K~-j~=I[~ i G(K-j) (7.123)

The expected delay through a queue, then, can be found from Little's
result, using the throughput and expected queue length values just found:

E [W/] - E[N i]/ki (7.124)

These techniques allow the efficient computation of the important sta-
tistics for the model shown in Figure 7.17. Next, we will discuss another,
slightly more general computational method: mean value analysis.

7.4 Computational methods for queuing network solutions 241

7.4 .2 Mean value analysis

The analyses described so far have all calculated, at one point or another,
expressions for queue length distributions or state probabilities. This is per-
fectly acceptable for rather simple systems involving few customers and
queuing systems. In the following discussion, we will explore an iterative
method for finding some of the performance measures of interest without
calculating the aforementioned distributions. The drawback to this is that
the analysis refers only to the mean values of certain performance measures.

The techniques we are interested in here apply to closed queuing net-
works that have a product form solution for the state probabilities. The
solutions are based on the assumption that a customer, arriving at any
queue in a closed system that is at steady state, experiences a wait in the
queue that is equivalent to the steady-state wait time for that queue with the
arriving customer removed. Thus, the behavior of a network with one more
customer is based upon the behavior before its arrival. This assumption
leads to an iterative algorithm where the steady-state performance charac-
teristics for the system with n + 1 customers are derived from the character-
istics with n customers, which are derived from a system with n - 1
customers, and so on down to one customer.

The general algorithm, then, allows us to compute average values for
queue length, throughput, server utilization, and wait time by starting with
an expression for one customer in the system and working up to any num-
ber of customers.

The main theorem behind mean value analysis states that the mean wait
time for customers at any server in the network is related to the solution of
the same network with one fewer customers. In conjunction with the wait
time, we apply Little's result to obtain the total network throughput and
then apply it again to each individual server to get the average queue length
at each server.

The expression for wait time related to a network with one fewer cus-
tomers is given as:

W(k) =l/g [1 + Nq (k - 1)] (7.125)

where gt is the mean service time required by a customer at the server. The
quantities W(k) and Nq(k- 1) denote the mean wait time for a system with
k customers at the queue and the mean number of customers in the queue

I Chapter 7

242 7.4 Computational methods for queuing network solutions

with k - 1 customers in the system, respectively. This expression holds for
systems with first-come first-serve queuing disciplines with single, constant
rate servers at each queue.

Next, we can apply Little's result to find the mean throughput for the
network:

k (k) - k/avg, wait t ime- k/EQ~iW i (k) (7.126)
/ alli

where O is the visit ratio for the server considering all other servers. The
visit ratio values will be discussed later in this chapter.

Finally, we can use Little's result on the servers to compare the average
queue lengths:

Nq (k)- arrival rate × average wait tim
(7.127)

Nq (k) - (~ i)~ (k) Wi (k)

Now we have a new expression for mean queue length that we can use in
equation (7.125) to start another iteration.

The general procedure, then, is to start with an empty system (K= 0)
and iterate equations (7.125) through (7.127) until we reach the desired
value of K. For one iteration, we calculate the values for each queue system
in the network before passing on to the next equation. Figure 7.19 shows a
simple network to illustrate the technique. In the example, if we start with 0
customers, we obtain the following quantities from equations (7.125)
through (7.127). In the following expressions, the subscripts denote the
queue/server pair that the measure is associated with. The general iteration
algorithm is as follows:

The first iteration is:

W 1 (1) - 1/~ 1 (1 + 0) - 1/~ 1
W 2 (1) - 1/B2 (1 + 0) - 1/B 2

W 3 (1) - 1/B3 (1 + 0) - 1/B3

// o2 o,))~(1)- Q~I+ +
gl g2 g3

N1(1) - e1)~(1)W1(1)

N2 (1) - O2~ (1)R72 (1)

N3 (1) - O3)~ (1)W3 (1)

(7.128)

7.4 Computational methods for queuing network solutions 243

Figure 7.19
Network for mean

variable analysis.

The second iteration is:

W 1 (2) - 1/~ 1 (1 + N 1 (1))

W 2 (2) - 1/~ 2 (1 + N 2 (1))

W 3 (2) - 1/bt 3 (1 + N 3 (1))

~, (2) - 1/(O1W1 (2) + O2W2 (2) + O3W3 (2)) (7.129)

N1 (2) - O1~ (2)W1(2)

N2 (2) = O2~(2)W2 (2)

N3 (2) - O3~,(2)W3 (2)

The visit ratios, O i, are obtained as follows. Pick a server and set its visit
ratio value O i to 1. Next, formulate the equations that contribute to the
visit ratio for that queue by looking at all queues that feed it. Equate the
feeder visit ratios, multiplied by the respective branching probabilities, to
the next in line (QSi). Continue this process for each queue system until we
have m relationships in m unknowns, where m is the number of queuing
systems. We can then solve this system of equations to obtain the desired
visit ratios. Note that the visit ratios are relative quantities. For Figure 7.19,
the visit ratios would be calculated as follows:

0 1 = 1

Q~I =P2Q~2
Q~2 =Q~I +Q~3 (7.130)

Q~3 -- P2Q~2

The algorithm is iterated until we reach the desired network population,
where we can calculate the mean performance measures for the network.

Server 1
infinite server

Pa

1

Server 2 Server 3

I Chapter 7

244 7.4 Computational methods for queuing network solutions

7.4.3 Operational analysis

The methods for performing queuing analysis given in the beginning of the
chapter provide close approximations to the actual systems they represent. It
is contended, however, that the assumption that the various distributions
and relationships that we use to represent their real-world counterparts can-
not be proven to be absolutely accurate. Furthermore, the stochastic models
studied earlier yield relationships that cannot be absolutely proven to be
valid during any observation period.

Operational analysis, on the other hand, is based upon the observation of
basic, measurable quantities that can be combined into operational relation-
ships. Furthermore, the observation period for which the system is analyzed
is finite. The assumption is that the basic quantities, called operational vari-
ables, are measurable (at least in theory). The basic operational variables that
are commonly found in operational analysis are as follows:

T= the observation period length

A = the number of arrivals during the observation period

B = the server busy time during the observation period

C = the number of job completions during the observation period

In addition to the measurable quantities, there are several fundamental
relationships that define other useful quantities. These are as follows:

k = arrival rate = AI T
X= completion rate = C/T
U= server utilization = B~ T
S - mean service time per job = B/C
Several operational identities are also defined that hold under certain

operational assumptions. The first, which relates server utilization to the
completion rate and mean service time, is derived as follows:

X.S - (C / T) (B / C) - B/T (7.131)

X.S =U
This relationship holds in all cases and is thus referred to as an opera-

tional law.

If we assume that the system is in steady-state equilibrium, we can state
that the number of arrivals and the number of completions during a given
observation period will be equal (i.e., the flow balance assumption). This

7.4 Computational methods for queuing network solutions 245

statement may not always be true, but it can be measured and verified for
any observation period of interest. Thus, it is called an operational theorem.
From this, we can derive another relationship, which holds when the system
is in flow balance:

A = C

A / T = C / T

~ , = X (7.132)

~S = XS

~,S = U

One advantageous property of operational analysis is that the technique
can be used for open and closed networks. The one condition, however,
that must be met is that the network under consideration must be what is
called operationally connected. That is, no server may be idle during the
entire observation period.

For a closed system, we know the number of jobs in circulation in the
network and we find the system throughput at a particular point in the net-
work. Other quantities can then be derived using that throughput as a start-
ing point. In an open system, the throughput at the exit from the network is
assumed to be known, and we use this to find the number of customers at
the queues.

Let's look now at some basic operational quantities. Suppose that we
have an arbitrary network that is observed over a period of T. For each
queue system in the network, we observe and collect the following data:

A i = number of arrivals at queuing system i

B i = busy time of server i

C O. = number of times a job goes directly from server i to server j's
queue

Jobs that arrive from an external source or that leave to an external sink
are denoted by Aoi and Cio. The number of arrivals to and departures from
the system are given by:

m

Number of arrivals A0 - ~[~A ~
j=l

(7.133)

m

Number of departures C o - ~ Ci, ,
i=1

(7.134)

I Chapter 7

246 7.4 Computational methods for queuing network solutions

and the total number of completions at server i is given as"

m

C i - E C i j (7.135)
j=l

From the basic measured quantities defined previously, several other per-
formance quantities can be derived, as follows:

Utilization of server i:

Mean service time of server i:

Output rate of server i:

Routing frequency from server i to j:

wi= &/T
S i = B i / C i

Xi = C i / T

q i; = Co" / Ci
We can represent the job completion rate of such a system as:

J 0 -EXiqio (7.136)
i=1

and the utilization of any server i as:

U i = X i S i (7.137)

If we think of the wait time at a particular server i at each increment of
time during the observation period as the sum of the service times of the
customers ahead of the new arrival, the total wait time accumulated for all
jobs in the system over the period is:

T

w/-.lx, (,)d,
0

The average queue length at the server in question is given as:

(7.138)

_IV,. - W i l T

and the response time of the server system is given as:

(7.139)

R i -WilC i (7.140)

Combining equations (7.139) and (7.140), we obtain the operational
equivalent of Little's result:

N i -(Wi/C i) (C i / T) - R i X i (7.141)

If the system under study is in steady state, so that we have flow balance,
we assume that the arrival rate to a queuing system is equal to the comple-

7.4 Computational methods for queuing network solutions 247

tion rate of that same system. We can also derive the server throughput rate
for any server, j, as:

m

cj -£c/j
i=0

Cj - £(CiCo.) /C i (7.142)
i=0

m

cj -Zciqij
i=0

We can obtain the same expression as stated in equation (7.136), but
generalized for any server it is-

m

X j - ~ _ X i q 0 • f o r j - 0,1 m (7.143)
i=0

The relationship derived yields a unique solution if applied to an open
system, because the input throughput, X, is known. In a closed system,
equation (7.143) will yield relative throughput rates, because we do not
know the absolute value of X 0.

Buzen [9] defines the visit ratio V i as the number of times a particular
server, i, will be visited, relative to a given number of inputs. We can express
this quantity as the ratio of the throughput at server i to the total input
throughput:

V i - X i / X o (7.144)

If we assume that the flow of jobs in the network is balanced, we can set
V 0 = 1 (since all jobs pass through the network input) and solve for all of
the other visit ratios using the following expression:

m

V s. -qoj~_Viqij (7.145)
i=0

Also, knowing the throughput of any server in the network allows us to
find the throughput of any other server through a combination of equations
(7.144) and (7.145).

Now let's look at the total time a job remains in the system as a function
of each server's throughput and average queue length. The total wait time
for any job arriving at any server depends on how many jobs are ahead of
the new one in the queue and on the rate that jobs get completed by the

I Chapter 7

248 7.4 Computational methods for queuing network solutions

server. At each server, we can use Little's result equation (7.141) in combi-
nation with equation (7.144) to obtain:

N i / X o = ViR i (7.146)

If we then sum equation (7.146) over all servers in the network, we
obtain a general expression that can be interpreted as Little's result applied
to the total system:

m m

 x lXo (7.147)
i=1 i=1

where the number of jobs in the system at any time is simply the sum of all
jobs at the network's servers:

m

N - E N i (7.148)
i=0

So we have:

m

N / X o - E V i R i (7.149)
i=1

The left-hand side of equation (7.149) can be thought of as an applica-
tion of Little's result to the system as a whole; thus, we define the system
response time as:

m

R - N I X o - ~_~ViR i (7.150)
i=1

The final topic that we will cover under operational analysis is bottle-
neck analysis in a closed system. In every network, one of the queuing sys-
tems will eventually be unable to keep up with increased service demands as
the number of jobs in the network increases. This particular server will sub-
sequently determine the maximum throughput rate of the network as a
whole. A device is considered to be saturated (e.g., unable to process jobs
any faster) if its utilization becomes one. In this case, the throughput will be
inversely proportional to the service time, since there will always be a job in
service.

X o -1IS o (7.151)

If we combine equations (7.137) and (7.144), we can express the relative
utilization of any two servers in the network as follows"

7.5 Summary 249

7 . 5

Ui lU j - ViSiI~.Sj (7.152)

Note that the ratios of the server utilizations do not depend upon the
throughput of either server; the ratio remains constant independent of sys-
tem load. Thus, the device with the largest value of ViS i will become the
networks bottleneck as load increases.

It is possible, then, to find the maximum possible system throughput
when the bottleneck is in saturation. Since, for bottleneck server b,
throughput is equal to the inverse of the service time, we can combine equa-
tions (7.144) and (7.151) to obtain the maximum system throughput:

Vb - Xb /X° -1/X°Sb (7.153)
Xo = l/VbSb

The network response time, in the saturation case, is given by equation
(7.150) as:

R= N / X o = N VbS~, (7.154)

and is thus limited by the bottleneck server.

Buzen and Denning [10] extend the operational results discussed previ-
ously to systems with load-dependent behavior. Also, an earlier proposal for
operational analysis of queuing networks can be found in [12].

Summary
The areas covered in this chapter, from stochastic processes to queuing the-
ory to basic estimation, span a wide range of topics, each with a wealth of
specialities and techniques. The treatment given herein, although brief, is
intended to illustrate the usefulness of statistical analysis and queuing the-
ory and to provide a basis for understanding some of the techniques and
methods used in simulation. More detailed discussions of the issues associ-
ated with basic probability and statistics are found in many basic probabil-
ity texts, notably [4, 5] and, for a queuing theory slant, in reference [3].
Queuing theory topics are discussed in reference [3], and also in references
[2, 6, 7, 13]. Estimation, as related to queuing systems, is treated in refer-
ences [2, 3]. The application of the techniques discussed in this chapter
enables one to calculate, under certain assumptions and conditions, many
of the interesting performance quantities that can be found with traditional
queuing theory analysis. The results obtained, however, are often more
intuitive and can be more easily related to the actual system for which they
are intended.

I Chapter 7

This Page Intentionally Left Blank

8
Simulation Analysis

Simulation is the realization of a model for a system in computer executable
form. That is, the model of the real-world system has been translated into a
computer simulation language. The computer realization provides a vehicle
to conduct experiments with the model in order to gain insight into the
behavior and makeup of the system or to evaluate alternatives. Simulations,
to be effective, require a precise formulation of the system to be studied,
correct translation of this formulation into a computer program, and inter-
pretation of the results.

Simulation is usually undertaken because the complexity of most com-
puter systems defies use of simpler mathematical means for realistic
performance studies. This complexity may occur from inherent stochastic
processes in the system, complex interactions of elements that lack mathe-
matical formulations, or the sheer intractability of mathematical relation-
ships that result from the system's equations and constraints. Because of
these constraints and other reasons, simulation is often the tool for evalua-
tion. Simulation provides many potential benefits to the modeler. It makes
it possible to experiment and study the myriad complex internal interac-
tions of a particular system, with the complexity left up to the modeler.

Simulation allows for the sensitivity analysis of the system by providing a
means to alter the model and observe the effects it has on the system's
behavior. Through simulation we can often gain a better understanding of
the real system. This is because of the detail of the model and the modeler's
need to independently understand the computer system in order to faith-
fully construct a simulation of it. The process of learning about the system
in order to simulate it will often lead to suggestions for change and
improvements. The simulation then provides a means to test these hypoth-
eses. Simulation often leads to a better understanding of the importance of
various elements of a system and how they interact with each other. It pro-
vides a laboratory environment in which we can study and analyze many

251

252 Simulation Analysis

alternatives and their impact well before a real system even exists or, if one
exists, without disturbing or perturbing it. Simulation enables the modeler
to study dynamic systems in real, compressed, or expanded time, providing
a means to examine details of situations and processes that otherwise could
not be performed. Finally, it provides a means to study the effects on an
existing system of adding new components, services, and so on without test-
ing them in the system. This provides a means to discover bottlenecks and
other problems before we actually expend time and capital to perform the
changes.

Simulation has been used for a wide variety of purposes, as can be seen
from the diversity of topics covered at annual simulation symposiums. Sim-
ulation easily lends itself to many fields, including business, economics,
marketing, education, politics, social sciences, behavioral sciences, natural
sciences, international relations, transportation, war gaming, law enforce-
ment, urban studies, global systems, space systems, computer design and
operations, and myriad others.

Up to this point we have used "system" to describe the intended mod-
eled entity. In the context of simulation, it is used to designate a collection
of objects with a well-defined set of interactions between them. A bank
teller interacts with the line of customers, and the job the teller does may be
considered a system in this context, with the customers and tellers forming
the objects and the functions performed by each (deposit, withdrawal) as
the set of interactions.

Systems by nature are typically described as being continuous or dis-
crete, where these terms imply the behavior of the variables associated with
the system. They provide us, the modelers, with a context in which to place
the model and on which to build. In both cases, the typical relation of vari-
ables is built around time. In the case of the discrete model, time is assumed
to step forward in fixed intervals determined by the events of occurrence
versus some formulation, and in the continuous model, the variables change
continually as time ticks forward. For example, with the bank scenario, if
the variable of interest is the number of customers waiting for service, we
have a dependent discrete "counting" sequence. On the other hand, if we
are looking at a drive-up bank teller and are interested in the remaining fuel
in each vehicle and the average, we could model the gasoline consumption
as a continuous variable dependent on the time in line until exiting.

Systems can possess both discrete and continuous variables and still be
modeled. In reality, this is frequently the case. Another consideration in
defining a system is the nature of its processes. Processes, whether they are
discrete or continuous, can have another feature, that of being deterministic

8.1 Simulation process 253

8.1

or stochastic. A deterministic system is where, given an input x and initial
conditions i, you will always derive the same output: y = f (x , i). That is, if
we were to perform the same process an infinite number of times, with the
same inputs and same initial state of the process, we would always realize
the same result.

On the other hand, if the system were stochastic, this would not hold.
For the same system with input held at Xand initial state held at I, we could
have the output Y take on one of many possible outputs. This is based on
the random nature of stochastic processes. That is, they will be randomly
distributed over the possible outcomes. For example, if the bank teller sys-
tem is described as a discrete system, we are assuming that the service time
of the server is exactly the same and the arrival rate of customers is fixed and
nonvarying. However, if the same system is given some reality, we all know
that service is random, based on the job the tellers must perform and how
they perform it. Likewise customers do not arrive in perfect order; they
arrive randomly. In both cases the model will give vastly different results.

Simulat ion process

The use of a digital computer to perform modeling and run experiments
has been a popular technique for quite some time. In this environment sim-
ulation can make systematic studies of problems that cannot be studied by
other techniques. The simulation model describes the system in terms of
the elements of interest and their interrelationships. Once completed, it
provides a laboratory in which to carry out many experiments on these ele-
ments and interactions.

Simulation programs, as with generic modeling, require discrete phases
to be performed in order to realize their full potential. They are as follows:

1. Determine that the problem requires simulation.

2. Formulate a model to solve the problem.

Formulate a simulation model of the problem.

Implement the model in a suitable language.

Design simulation experiments.

Validate the model.

Perform experiments.

The typical simulation model project will spend most of its time in
phases 2, 3, and 4, because of the complexities associated with formulating

,

4.

.

6.

7 "

I Chapter 8

254 8.1 Simulation process

the model and the conversion to simulation format and implementation in
a language. Model formulation deals with the definition of critical elements
of the real-world system and their interactions. Once these critical elements
have been identified and defined (mathematically, behaviorally, function-
ally) and their interactions (cause and effect, predecessor and successor,
dependencies and nondependencies, data flows, and control flow) are
defined in terms of their essence, simulation model development flows into
and along with systems model definition. That is, as we develop a system
model we can often directly define the simulation model structure.

An important aspect of this model development is the selection of a
proper level of simulation, which is directly proportional to the intended
purpose of the performance evaluation, the degree of understanding of the
system, its environment, and the output statistics required. On one
extreme, for example, we could model our bank teller system down to the
level of modeling all his or her actions. Or, on the other hand, we could
model the teller service as strictly a gross estimate of time to perform service
regardless of the type of service. The level to choose would be dependent on
what is to be examined. In the first example, we may wish to isolate the
most time-consuming aspect(s) of their functions so that we could develop
ways to improve them. At the second level possibly all we wish to determine
is based on the customer load, the average teller service time, and the opti-
mal number of tellers to have on duty and when.

The intent of the performance measure drives us directly to a simula-
tion level of detail, which typically falls somewhere in between the two
extremes: too low or too high to be useful. In most cases, however, we as
modelers do not or cannot always foresee how the level of detail of all com-
ponents can influence the model's ultimate usefulness. A solution typically
used to cope with such uncertainties is to construct the model in a modu-
lar fashion, allowing each component to migrate to the level consistent
with its intent and overall impact on the simulation and system. What this
typically drives us to is top-down model development, with each layer
being refined as necessary.

Simulations, beyond their structure (elements and interactions), require
data input and data extraction to make them useful. The most usual simula-
tions are either self-driven or trace-driven. In self-driven simulations the
model itself (i.e., the program) has drivers embedded in it to provide the
needed data to stimulate the simulation. These data are typically derived by
various analytical distributions and linked with a random number genera-
tor. In the example of the bank teller system, we have been using a self-
driven simulation. We may use a Poisson arrival distribution to describe the

8.2 Time control 255

random nature of customers arriving to the system. Such a use is indicative
of some artificially generated stream-to-model system inputs.

In the other case, when we use trace-driven data, the simulation is being
driven by outside stimuli. Typically these are extracted, reduced, and corre-
lated data from an actual running system. For example, in our bank teller
case we may wish to have a more realistic load base from which to compute
the optimal number of tellers and their hours. In such a case we would mea-
sure over some period of time the dynamics of customers arriving at the
bank for service. This collected information would then be used to build a
stored input sequence, which would drive the simulation based on these
realistic data. This type of modeling is closer to the real-world system but
has the disadvantage of requiring the up-front data collection and analysis
to make such data available for use.

8 . 2 T i m e c o n t r o l

In continuous and discrete simulation, the major concern in performing the
simulation is time management and its use in affecting the dependent vari-
ables. Timing in simulation programs is used to synchronize events, com-
pute state changes, and control overall interactions. Timing can take on two
modes: synchronous and asynchronous.

Synchronous timing refers to a timing scheme in which time advances in
fixed, appropriately chosen units of time, t. On each update of time the sys-
tem state is updated to reflect this time change. That is, all events occurring
during this time period are determined and their state adjusted accordingly.
This process of advancing time (in steps) and updating the state of elements
occurs until the simulation hits some boundary condition (time goes to a
maximum, some event occurs, etc.). In our bank teller system timing is
needed to determine arrivals and service. For the t-step organization on each
stop we must check to see if an arrival should occur, if a service should be
completed, or if a new one should be begun. An important concept or idea
to keep in mind when using synchronous timing is that of step selection. If
too great a step is chosen, events are seen to occur concurrently when in
reality they may not be. On the other hand, too fine a granularity of time
step will cause many steps to go by when nothing occurs. The latter will
cause excessive computer run time but very fine differentiation between
events. The former, on the other hand, will cause a distortion of everything
and possibly a loss of usefulness. The important job of the modeler is to
select the proper step time for the model to be useful but not be excessive in
computer time.

I Chapter 8

256 8.3 Systems and modeling

8 . 3

Asynchronous, or event timing, differs from synchronous timing in that
time is advanced in variable rather than fixed amounts. The concept is to
keep track of events versus time steps. The time is advanced based on the
next chronological event that is to occur. These chronological events are
typically kept in a dynamic list, which is updated and adjusted on each
event to reflect new events that are to occur in the future.

In our bank teller example the event queue, or list, will comprise two
events: the next arrival and the completion of the next service. Abstractly
this method appears to be easier to visualize. The events must be ordered by
occurrence and adjusted as new events arrive. The issue in this, as well as in
the former case, is how to insert or schedule new events or new conditions
in the simulations. The next section will investigate this and other aspects of
how to use time in building simulations.

Systems and modeling

Up to this point, we have discussed generic attributes related to simulation
modeling. We have not discussed the classes of modeling techniques avail-
able or the classification of simulation implementation techniques (i.e.,
simulation languages). Simulation techniques include discrete event, con-
tinuous change, queuing, combined, and hybrid techniques. Each provides
a specific viewpoint to be applied to the simulation problem. They will also
force the modeler to fit models to the idiosyncrasies of the techniques.

8 . 3 . I D i s c r e t e m o d e l s

In discrete simulation models, the real system's objects are typically referred
to as entities. Entities carry with them attributes that describe them (i.e.,
their state description). Actions on these entities occur on boundary points
or conditions. These conditions are referred to as events. Events such as
arrivals, service standpoints, stop points, other event signaling, wait times,
and so on are typical.

The entities carry attributes that provide information on what to do
with them based on other occurring events and conditions. Only on these
event boundaries or condition occurrences can the state of entities change.
For example, in our bank teller simulation, only on an arrival of a customer
(arrival event) can a service event be scheduled, or only on a service event
can an end of service event be scheduled. This implies that without events
the simulation does not do anything. This modeling technique only works
on the concept of scheduling events and acting on them. Therefore, it is

8.3 Systems and modeling 257

essential that the capability exists to place events into a schedule queue or
list and to remove them based on some conditions of interest.

What this technique implies is that all actions within the simulation are
driven by the event boundaries. That is, event beginnings and endings can
be other events to be simulated (i.e., to be brought into action). All things
in between these event boundaries, or data collection points, are now
changing. A simulation model using this technique requires the modeler to
define all possible events within the real system and how these events affect
the state of all the other events in the system. This process includes defining
the events and developing definitions of change to other states at all event
boundaries, of all activities that the entities can perform, and of the interac-
tion among all the entities within the simulated system. In this type of sim-
ulation modeling each event must trigger some other event within the
system. If this condition does not hold, we cannot construct a realistic
working simulation. This triggering provides the event's interaction and
relationship with each other event. For example, for the model of a self-
service automatic teller machine, we need to define at a minimum the fol-
lowing entities and events:

• Arrival events

• Service events

• Departure events

• Collection events

• Customer entities

• Server entities

The events guide how the process occurs and entities provide the
medium being acted on, all of which are overseen by the collection event
that provides the "snapshot" view of the system. This provides a means to
extract statistics from entities. In this example, the following descriptions
could be used to build a simple model:

1. Arrival event

• Schedule next arrival (present time + T).

• If all tellers busy, number waiting = number waiting + 1.

• If any teller is free and no one is before the waiting customer,
schedule service event.

2. Service event

• Number of tellers busy = number of tellers busy + 1.

I Chapter 8

258 8.3 Systems and modeling

8.3.2

• Schedule service and event based on type of service.

• Take start of service statistics.

3. End service event

• Number of tellers busy-- number tellers b u s y - 1.

• Schedule arrival of customer.

• Take end of service statistics.

4. Entities

• Tellers

~ N u m b e r of tellers

~Service rates and types

~Service types

• Customers

--Arrival rate

~Dynamics (service type required)

A discrete event simulation (with an appropriate language) could be
built using these events and entities as their basis. A model built this way
uses these conditions to schedule some number of arrivals and some end
conditions. The relationships that exist between the entities will keep the
model executing, with statistics taken until the end condition is met. This
example is extremely simplistic and by no means complete, but it does pro-
vide a description of some of the basic concepts associated with discrete
event simulations.

Continuous modeling

Continuous simulations deal with the modeling of physical events (proc-
esses, behaviors, conditions) that can be described by some set of continu-
ously changing dependent variables. These in turn are incorporated into
differential, or difference, equations that describe the physical process. For
example, we may wish to determine the rate of change of speed of a falling
object shot from a catapult (see Figure 8.1) and its distance, R , from the cat-
apault. Neglecting wind resistance, the equations for this are as follows. The
velocity, v, at any time is found as:

v x = v o cos 0

Vy - v o sin 0 0 - gt
(8.1)

8.3 Systems and modeling 259

Release point
Y ~

-~ x 00
-~" (VX

r....
• " - .-[.?c.

Figm'e 8.1 Projectile motion.

%%%

5o

and the distance in the x direction is:

R = V~t = tv o cos0 (8.2)

These quantities can be formulated into equations that can be modeled
in a continuous language to determine their state at any period of time t.

Using these state equations, we can build state-based changed simula-
tions that provide us with the means to trigger on certain occurrences. For
example, in these equations we may wish to trigger an event (shoot back
when Vy is equal to 0). That is, when the projectile is not climbing any more
and it has reached its maximum height, fire back. In this event the equation
may look like this:

vy - 0 ; begin execution of shoot back (8.3)

Another example of this type of triggering is shown in Figure 8.2. In this
example, two continuous formulas are being computed over time; when
their results are equivalent (crossover event), schedule some other event to
occur. This type of operation allows us to trigger new computations or
adjust values of present ones based on the relationship of continuous equa-
tions with each other.

Using combinations of self-triggers and comparative triggers (less than,
greater than, equal to, etc.) we can construct ever more involved simulations
of complex systems. The main job of a simulator in this type of simulation
model is to develop a set of equations that define the dynamics of the sys-
tem under study and determine how they are to interact.

I Chapter 8

Figure 8.2
Continuous

variable plot.

SS(X) Crossover event / /

260 8.3 Systems and modeling

time

8.3.3

8.3.4

Queuing modeling

Another class of generic model is the queuing model. Queuing-based simu-
lation languages exist (AWESIM, GPSS, Q-gert, Slam II) and have been
used to solve a variety of problems. As was indicated earlier, many problems
to be modeled can easily be described as an interconnection of queues, with
various queuing disciplines and service rates. As such, a simulation language
that supports queuing models and analysis of them would greatly simplify
the modeling problem. In such languages there are facilities to support the
definition of queues in terms of size of queue, number of servers, type of
queue, queue discipline, server type, server discipline, creation of custom-
ers, monitoring of operations, departure collection point, statistics collec-
tion and correlation, and presentation of operations. In addition to basic
services there may be others for slowing up customers or routing them to
various places in the queuing network. Details of such a modeling tool will
be highlighted later in this chapter.

Combined modeling

Each of the techniques described previously provides the modeler with a
particular view upon which to fit the system's model. The discrete event-
driven models provide us with a view in which systems are composed of
entities and events that occur to change the state of these entities. Continu-
ous models provide a means to perform simulations based on differential

8.4 Simulation languages 261

8 . 4

equations or difference formulas that describe time-varying dynamics of a
system's operation. Queuing modeling provides the modeler with a view of
systems comprised of queues and services. The structure comes from how
they are interconnected and how these interconnections are driven by the
outputs of the queue servers.

The problem with all three techniques is that in order to use them, a
modeler must formulate the problem in terms of the available structure of
the technique. It cannot be formulated in a natural way and then translated
easily. The burden of fitting it into a framework falls on the modeler and
the simulation language. The solution is to provide a combined language
that has the features of all three techniques. In such a language the modeler
can build simulations in a top-down fashion, leaving details to lower levels.
For instance, in our bank teller system, we could initially model it as a sin-
gle queue with n servers (tellers). The queuing discipline is first-come, first-
served, and the service discipline can be any simple distribution, such as
exponential. This simple model will provide us with a sanity check of the
correctness of our model and with bounds to quickly determine the system's
limits. We could next decide to model the teller's service in greater detail by
dropping this component's level down to the event modeling level.

At this point we could model the teller's activity as a collection of events
that need to be sequenced through in order for service to be completed. If
possible, we could then incorporate continuous model aspects to get further
refinement of some other feature. The main aspect to gather from this form
of modeling is that it provides the modeler with the ability to easily model
the level of detail necessary to simulate the system under study.

8.3.5 Hybrid modeling

Hybrid modeling refers to simulation modeling in which we incorporate
features of the previous techniques with conventional programming lan-
guages. This form of modeling could be as simple as doing the whole thing
in a regular language and allowing lower levels of modeling by providing a
conventional language interface. Most simulation languages provide a
means to insert regular programming language code into them. Therefore,
they all could be considered a variant of this technique.

Simulation languages

As the use of simulation has increased, so has the development of new sim-
ulation languages. Simulation languages have been developed because of the

I Chapter 8

262 8.4 Simulation languages

8.4 .1

unique needs of the modeling community to have system routines to keep
track of time, maintain the state of the simulation, collect statistics, provide
stimulus, and control interaction. All of these previously had to be done by
each individual programmer.

Early languages provided basic services by adding a callable routine from
programming languages. These early languages provided for time and event
management but little else. This chapter will look at four languages and dis-
cuss the aspects they possess that aid in the simulation process. We will not,
however, cover languages that are built on top of basic simulation lan-
guages, such as Network II.5 and others.

GASP IV

GASP IV was developed in the early 1970s as a general-purpose simulation
language and is still in use with variations today. As such we use this as a
basic model for most languages in existence today. GASP IV is a FOR-
TRAN-based simulation language that provides routines and structure to
support the writing of discrete events, continuous and combined discrete
events, and continuous simulation models. Discrete event models in GASP
IV are written as a collection of system and user FORTRAN subroutines.
GASP IV provides the user with the following routines: time management,
file management (event files, storage and retrieval, copying of events, and
finding of events), and data collection and analysis (both observation-based
and time-based statistics). The user must develop a set of event routines that
define and describe the mathematical-logical relationships for modeling the
changes in state corresponding to each event and their interactions.

As an example of GASP IV's use and structure, our bank teller problem
will be examined once again. In order to model this problem in GASP we
must determine the events of interest, their structure, and the boundaries
upon which they are triggered. To simplify the example, it is assumed that
there is no time delay between the ending of service for one customer and
the beginning of another (if there is one waiting). The important measures
or states will be the number of customers in the system and the teller's sta-
tus. From these two system events a customer's arrival and a teller's end of
service occur. These are also chosen as the points at which significant
changes to a system's status occur. The activity that occurs is the beginning
of service; this can be assumed to occur either when a customer arrives at an
empty line or when the teller ends service to a customer.

Entities in GASP are represented by arrays of attributes, where the
attributes represent the descriptive information about the entity that the

8.4 Simulation languages 263

Figure 8.3
Basic model of

GASP IV control.

l
System state
initialization

E
t~

r

pe 1 ty[

r

Start

i

i I State variable
Executive i: ~i evaluation

i Event control Program monitoring
, ~ ~ and reporting

i

rent Event Program I Error
)e 2 type N trace I reporting

l l l l

Statistical computation
and report generation

Figure 8.4
GASP IV main

FORTRAN
program.

modeler wishes to keep. Entities are the elements that are acted on during
the simulation. Their attributes are adjusted based on occurrences of inter-
est. A variable "busy" is used to indicate the status of the teller, and attribute
(1) of customer is used to mark the customer's arrival time to the teller line.
To make the simulation operate, the system-state must be initialized to
some known values; in this case the teller is initialized not busy and the first
arriving customer must be scheduled to arrive. Additionally, to keep the
model running, the arriving customer must schedule another customer's
arrival in the future based on a selected random time distribution. Statistics
will be taken when service completes on the length of wait time and the
number of customers waiting, in service, and in total. When we look at the
GASP code we need to examine the structure of a typical GASP program
(see Figure 8.3). As indicated by this figure, GASP IV exists as a single pro-
gram in FORTRAN. Therefore, making it function requires a main pro-

Dimension nset (1000)
common/gcom/atrib (100, DP(100), DDL (100, DTNOW,
II,MFA,MSTOP,NCLNR,NCRDR,NPRINT, NNRUN,
NNSET, NTAPE,SS(100),SSL(100),TNEXT,TNOW,XX(100)
Common Q Set
Equivalence Nset(1),Qset(1))
NNSet=1000
NCRDR=5
NPRINT=6
NTAPE=7
Call GASP
Stop
End

I Chapter 8

264 8.4 Simulation languages

Hgure 8.5
Subroutine Event

far bank teller
problem.

Figure 8.6
Subroutine Intlc

for bank teller
problem.

Subroutine Event (I)
Goto (1,2), I
1 Call arrival

return
2 Call end SRU

return
End

gram and a call to the GASP program that will begin the simulation.
Another function of the main program is to set up limits on the system,
such as number of files, input, output, limits on events, and so on. Figure
8.4 depicts the main program for our example.

Once GASP has been called, the program runs under control of the
GASP subprogram calling sequences. The GASP system's executive takes
over and initializes the simulation using the user-supplied routine I n t l c .
Once initialized, it begins simulation by examining the event list; if any
events exist, it pulls them out, executes them, and takes statistics. The
loop continues until the end conditions are met or an error occurs. To
control events and make sense of them in FORTRAN requires the user to
supply an event-sequencing routine called Event. This event-control rou-
tine is called with the attribute number of the intended event. It will use
this to call the actual event. For our bank teller example this routine is
illustrated in Figure 8.5 with its two events shown. When this routine is
called with an appropriate number, the intended event is called, executed,
and control is returned to the event routine, which in turn returns control
to the executive routine.

These events are called based on what Filem (1) has stored in it. Filem
(1) is operated on in a first-come, first-served basis, removing items one at a
time. The events are stored in Filem (1) as attributes: attribute (1) is the
time of the event, attribute (2) is the event type, and all other attributes are
added user attributes for the entity. Figure 8.6 gives an example of how the
file is initialized.

Subroutine INTLC
common/gcom/atrib (100, DP(100), DDL (100, DTNOW,
I I,MFA,MSTOP,NCLNR,NCRDR,NPRINT, NNRUN,
NNSET,NTAPE,SS(100),SSL(100),TNEXT,TNOW,XX(100)
Equivalence (xx(1), Busy)
Busy=0
Atrib(2)=l
Call filem
return
end

8.4 Simulation languages 265

Hgure 8.7
Arrival routine

Event code.

Figure 8.8
End of service

routine.

Subroutine Arrival
common/gcom/atrib (100, DP(100), DDL (100, DTNOW,
II,MFA,MSTOP,NCLNR,NCRDR,NPRINT, NNRUN,
NNSET,NTAPE,SS(100),SSL(100),TNEXT,TNOW,XX(100)
Equivalence (xx(1), Busy) TIMST(Busy,TNOW,ISTAT)
Att rib(1)=TN OW+expon(20., 1)
Attrib(2)=l
Call filem(1)
Call fUem(2,attrib(1))
if (Busy=0) go to return
10 Busy =1
attrib (1)=TNOW+u nfrm (10.,25,1)
attrib(2)=l
attrib(3)=TNOW
Call filem(1)
return
end

Figure 8.6 illustrates the initialization routine for the bank teller simula-
tion. Filem (1), the event file, is loaded with the first arrival event (a cus-
tomer) and the teller is set to not busy.

Once Filem (1) has an event stored, the simulation can begin. The first
event is a customer arrival indicated by the contents of attribute (2) of
Filem (1), which is the only event at this time. The arrival event (see Figure
8.7) performs the scheduling of the next arrival.

After the next arrival is scheduled, the preset arrival is placed in the
queue (Filem [2]). Then a test is made to see if the teller is busy. If so, we
return to the main program or else we schedule an end of service event for
the preset time plus a number chosen uniformly between 10 and 25.

The second event, the end of service, is shown in Figure 8.8. This code
determines statistics of time in system and busy statistics. The code also
checks to see if there is any user in the queue, removes one if there is, and
schedules another end of service for this user.

Subroutine end SRU
common/gcom/atrib (100, DP(100), DDL (100, DTNOW,
II,MFA,MSTOP,NCLNR,NCRDR,NPRINT, NNRUN,
NNSET, NTAPE,SS(100),SSL(100),TNEXT,TNOW,XX(100)
TIMST(subusy,TNOW,T, ISTAT)
TSYS=TNOW-Attrib(3)
Call col CT(TSYS, 1)
if(NNQ(2), 6T,0) go to 10
busys=0
return
10 Call schd((2,unfrm(10.,25,1) attrib)
return
end

I Chapter 8

266 8.4 Simulation languages

8 . 4 . 2

This simple example shows how GASP could be used to model a wide
array of event-based models. Details of this language can be found in [14].

GPSS

General-Purpose Simulation System (GPSS) is a process-oriented simula-
tion language for modeling discrete systems. It uses a block-structuring
notation to build models. These provide a set of standard blocks (see Figure
8.9) that provides the control and operations for transactions (entities). A
model is translated into a GPSS program by the selection of blocks to repre-
sent the model's components and the linkage of them into a block diagram
defining the logical structures of the system. GPSS interprets and executes
the block diagram defined by the user, thereby providing the simulation.
This interpretation is slow and, therefore, the language cannot be used to
solve large problems.

To illustrate GPSS we will again examine our bank teller system. It is
viewed as a single-server queuing system with our teller and n customer
arrivals (see Figure 8.10). Customers arrive with a mean interarrival time of
10 minutes, exponentially distributed. The teller provides service to the cus-
tomers in a uniform time between 5 and 15 minutes. The simulation will
take statistics on queue length, utilization of teller, and time in system. The
simulator builds the diagram shown in Figure 8.10 from the model of a
queuing system based on the statistics to be taken. This structure is then
translated to the code seen in Figure 8.11. The code is broken down into
four sections. The top section is used to define the data needed to approxi-
mate an exponential distribution and set up markers for the time-depend-
ent statistics.

The second segment is the main simulation code, and it performs the
tasks of generating customers (14), taking statistics on arrival time (15),
queuing up arriving customers (16), scheduling service (17; when flee, take
control), departing the waiting line (18), delaying the exit by the appropri-
ate service time of the teller (19), releasing the teller for the next customer
(20), taking statistics on the customer's time in the system (21), and exiting
the system (27).

The third segment is a timing segment and is used to schedule the end of
service routine. The model will schedule a dummy transaction at time 480,
which will cause the terminate instruction to execute (counter set to 0). The
fourth section, the control segment, begins the simulation by setting the
termination counter and giving control over to the model segment.

8.4 Simulation languages 267

Figure 8.9
Basic GPSS

modeling
component blocks.

Block Symbol Functional Description of Block

~,D.E.F,G

Seize

I EnterB~
I LeaveB~)

QueueB~
I De~aB~

Creates transactions as prescribed by
the operands A,B,C,D,E,F, and G

Destroys the arriving transaction and
reduces the termination counter by A

Advances simulated time as prescribed
by operands A and B

Causes transaction to await and capture
facility A

Frees facility A

Causes transaction to await and capture
B units of storage A

Frees B units of storage A

Increments the number in Queue A by B units

Decrements the number in queue A by B units

Assigns the value specified as B with
modifier C to parameter number A of the
transaction

Assigns the current clock time to parameter
number A of the transaction

Assigns the value specified as B to save value
location A

Causes a transfer to location C with probability
A, and location B with probability 1-A

Causes a transfer to location C if A is not related
to B according to operator X

I Chapter 8

268 8.4 Simulation languages

y

Figure 8.10
GPSS model for

the bank teller
problem.

~ $ X P D I S

Seize I / / ~

÷
I Advance

10,5 I

I Release
÷

I Tabulate I TISYS I

Create customer arrivals . 480 z~
/

Mark arrival time ~ ~ , ~ , ._]

Add 1 to number in queue

Seize the server

Subtract 1 from number in queue

Delay by service time

Free the server

Record time in system

Exit the system

Generate transaction at time

Terminate the run

Figure 8.11
GPSS code for the

bank teller
problem.

2 Simulate
3 *
4 XPDIS function RN1 ,C24
5 0.0, 0.0/0.1, 0.104/0.2, 0.222/0.3, 0.355/0.4, 0.509/0.5, 0.69
6 0.6, 0.915/0.7, 1.2/0.75, 1.38/0.8, 1.6/0.84, 1.83/0.88, 2.12/0.9
7 2.3/0.92, 2.52/0.94, 2.81/0.95, 2.99/0.96, 3.2/0.97, 3.5/0.98
8 4.0/0.99, 4.6/0.995, 5.3/0.998, 6.2/0.999, 7.0/0.9997, 8
9 *
10 TISYS table MP1,0,5,20
11"
12 * model segment
13"
14 Generate 10, FN$XPDIS
15 Mark P1
16 Queue Waitq
17 Seize SRVR
18 Depart Waitq
19 Advance 10,5
20 Release SRVR
21 Tabulate TISYS
22 Terminate
23 *
24 * timing segment
25 *
26 Generate 480
27 Terminate 1

8.4 Simulation languages 269

8.4.3

This example shows some features of GPSS. GPSS is a simple modeling
method that became widely used. However, this language was doomed by
its interpretive operation, which made it extremely slow. The reader is
encouraged to consult [15] for details of the language.

Simscript

Simscript was developed in the late 1960s as a general-purpose simulation
language. See [16] for details about the language. It provides a discrete sim-
ulation modeling framework with English-like flee-form syntax making
for very readable and self-documenting models. Simscript supports two
types of entities: permanent and temporary. For example, in the bank teller
problem, the teller is permanent and the clients are temporary. Permanent
entities exist for the entire duration of the simulation, whereas the tempo-
rary entities come and go during it. Attributes of the entities are named,
increasing their readability and meanings.

A Simscript simulation is built of three pieces: a preamble, a main pro-
gram, and event subprograms. The preamble defines the components of the
model (entities, variables, arrays, etc.). The main program initializes all ele-
ments to begin the simulation. The events define the user events used to
model a system. To define these components we will again use the bank
teller problem. We will assume arrivals are 10 minutes apart on average and
exponentially distributed, and the teller service time is uniformly distrib-
uted between 5 and 15 minutes. Figure 8.12 depicts code for this problem.
It indicates many of Simscript's features, as follows:

• Line 2 describes the wait time as being a system entity that has statis-
tics associated with it, and it is a permanent entity since it is not indi-
cated as being temporary. Therefore, we can keep statistics on it over
the life of the model.

[] Line 3 defines a temporary entity customer and indicates that it
belongs to the wait time.

• Lines 6 and 7 define the event names and their attributes.

m Lines 9-14 define statistics to be taken on this entity.

The main program or section is shown in section B. This portion sets up
the initial conditions (i.e., setting the status of the teller to idle, scheduling
the first arrival, and scheduling a stop in the simulation). The next three
sections define the arrival, departure, and stop events. The arrival event
schedules the next arrival to keep the event flow going, creates a customer,
gives it time information, places it in the wait line, and schedules a teller

I Chapter 8

270 8.4 Simulation languages

A:
1 Preamble
2 the system owns a wait line and has a status temporary entities
3 every customer has an enter time and may belong to the wait line
4 event notices include arrival and stop simulation
5 every departure has a teller
6 define busy to mean 1
7 define idle to mean 0
8 define time in bank as a real variable
9 tally no customers as the number, AV time and the mean,
10 and Var time as the variance of time in bank
11 accumulate avg util as the mean, and Var util as the
12 Variance of status
13 accumulate Ave waitline length as the mean, and
14 var waitline length as the variance of N wait line
15 end

B:
1 main
2 let status=idle
3 schedule an arrival now
4 schedule a stop simulation in 8 hours
5 start simulation
6 end

C:
1. Event arrival
2 schedule an arrival in exponential F(10.,1) minutes
3 create a customer
4 let enter time (customer)=time V
5 if status=busy
6 file the customer in the wait line
7 return
8 else
9 let status=busy
10 schedule a departure given customer in Uniform F(56.,15.,1) minutes
11 return
12 end

D"
1 event departure given customer
2 define customer as an integer variable
3 let time in back=1440.*(time v-enter time(customer)
4 destroy the customer
5 if the wait line is empty
6 let status=idle
7 return
8 else
9 remove the first customer from the wait line
10 schedule a departure given customer in Uniform F(5., 15., 1) minutes
11 return
12 end

E:

1 event stop simulation
2 start new page
3 skip 5 lines
4 print 1 line thus
5 single teller wait line example
6 skip 4 lines
7 print 3 lines with no customers, av time, and var time thus
8 Number of customers = *
9 Average time in bank = ****.
10 Variance of time in bank = ****.
11 skip 4 lines
12 print 2 lines with avg util and var util thus
13 Average teller utilization = ****.
14 Variance of utilization = ****.
15 Skip 4 lines
16 print 2 lines with avg queue length and var queue length thus
17 Average wait line length = ****.
18 Variance of wait time = ****.
19 stop
20 end

L
v

Figure 8.12 Simscript bank tellerpension code.

service if the line is empty. The departure event computes a customer's time
in the bank, removes the customer, and schedules the next customer. The
stop event outputs the collected statistics.

8 . 4 . 4 S lam II

Slam II, a simulation language for alternative modeling, was developed by
Pritsker and Associates, West Lafayette, Indiana, in the late 1970s. It is a
combined modeling language providing for queuing network analysis, dis-
crete event, and continuous modeling in integrated form. Slam II provides
features to easily integrate the three forms.

At the highest end the modeler can use a network structure consisting of
nodes and branches representing queues, servers, and decision points to
construct a model of a system to be simulated. This, in turn, can be easily
translated into Slam II code. Additionally, Slam provides the ability to mix

8.4 Simulation languages 271

Figure 8.13
Basic symbols and

statements for Slam
models.

events and continuous models with network models by use of event nodes
that call event code for discrete and/or continuous models. As in the previ-
ous languages, the event-oriented Slam models are constructed of a set of
events and the potential changes that can occur with each of them. These
events define how the model interprets the event and state changes. Slam
provides a set of standard support subprograms to aid the event-oriented
modeler. As was the case in GASP, the Slam continuous models are built by
specifying a set of continuous differential, or difference, equations that
describe the dynamic behavior of the state variables. These equations are
coded in FORTRAN (Slam's base language) using Slam's state variables.

Slam II uses a set of basic symbols to describe the system being modeled,
as does GPSS. Figure 8.13 depicts the basic Slam II symbols and their asso-
ciated code statements. Only the first three characters of the statement
names and the first four characters of node labels are significant. They will
be used in the example of the bank teller. As before, we wish to have cus-
tomers arriving on an average of every 10 minutes with an exponential dis-
tribution and the first one to start at time 0. Additionally, the teller services
the customers with a uniform distribution from 5 to 15 minutes. The
resulting Slam network model is shown in Figure 8.14. References to nodes
are made through node labels (NLBLs). When a node label is required, it is
placed in a rectangle and appended to the base of the symbol.

DUR, CONDITION

Create node

I RNUM I RLBL ICAPI IFL Repeats I Resource block

i Res / Gate, Await node UR /
I RES' UFRepeats I M) Free node

(~ ~ Activity

Terminate

Queue node

- - P ' ~ Select node

I Chapter 8

272 8.4 Simulation languages

r

Figure 8.13
(Continued)

alue ID, H M

VAR = Value
VAR Value M ?

SAVE

ThreShsaVeRetain Addval M)

Collect node

Goon node

Assign node

Accumulate node

Batch node

Unbatch node

~ 1 PR ::SMT,ME I ~ Preempt node

I.u~ I ,~, [OP~Norc,os~ I 'F'I [repoat. I Gate block

(Gate ~ M) ' Open node

(Gate t M) Closed node

MVAL INLBLI I
Match node

Expon(10)

0 ~ ~ Unfrm(5,15) I., ///f-'~")'J~'k_

Figure 8.14 Slam I I bank tellerproblem network modeL

8.5 Applications of simulation 273

Figure 8.15
Slam [[bank teller

problem code.

1 Gen, Fortier, Bankteller, 5/22/2002,1;
2 Limits, 2,1,100
3 Network
4 Create, Expon(10.), 0, 1;
5 Teller Queue(1),0,-;
6 Activity (1)/1, Unifrm(5., 15.);
7 Term 100; Colct, Ini(1), system time,,1;
8 end networks;

The code for this network is shown in Figure 8.15. The first line of the
code defines the modeler, the name of the model, and its date and version.
The second line defines the limits of the model and files one USR attribute
and up to 100 concurrent entities in the system at a time. Line 3 identifies
this code as network code, and line 4 creates customers with a mean of 10
minutes exponentially distributed. Line 5 defines queue 1 as a teller with no
initial customers in its queue, an infinite queue with service uniformly dis-
tributed from 5 to 15 minutes. Line 7 takes statistics or time in system from
entities as they leave the server. Line 8 indicates that the simulation will run
for 100 entities and then end.

This code is extremely simple and provides much flexibility as to how to
expand the system. To look at the tellers' operations in more detail, the queue
could be replaced by an event node and the code for the teller event supplied
to model (very similar to the code seen in earlier figures). (See [17].)

8.5 Appl icat ions of simulation

To illustrate the use of simulation a few example problems are given and
models developed in the Slam II simulation language. The first example is
an industrial plant with five stations building a production in assembly line
fashion. The problem can be viewed in Figure 8.16.

The plant takes in subassemblies and finishes them off in five steps.
There is storage room at the beginning of the line, but once in the line a
maximum of one unit per station is possible. The statistics we wish to deter-
mine are workstation utilization, time to process through stations, number
of units waiting, and total produced. The resulting Slam network is shown

Workstation 1

0 0 0 0
¢.

Arrival of
new subunits

y

Figure 8.16 Assembly line example.

Workstation 2 Workstation 3 Workstation 4 Workstation 5

, ,,'~ished
units

I Chapter 8

274 8.5 Applications of simulation

Figure 8.17

Expon(.5)

Expon(1))

Expon(5)

~ ~ "t(1) ExpOn('75) ~ ' - syst:m

Slam l i t network model for the assembly line problem.

in Figure 8.17. The resultant code would allow us to examine the items of
interest without causing any loss of detail from the intended model.

A second, more detailed example shows how simulation can be used to
model a distributed database management system. The model is shown in
Figure 8.18. Depicted is the process or servers in a node that services user
database transactions. Users provide requests, and the operating system
services them by pipelining the database requests to the transaction man-
ager, which, in turn, provides reduced requests to the network database

Figure 8.18

Operating System Transaction Manager Network DBM

~1 III ~ ; F;i!Omr mote ~ Local Response

Users

Network Server

Remote Response

Queuing model of a distributed database system.

8.5 Applications of simulation 275

server, which determines where the actual access is to be performed. The
local site chosen then accesses the information from the appropriate device.
The details at each level were commensurate with the intended model. The
queues were all modeled as events and then the code necessary to simulate
them was developed. This simulation is being used to analyze optimization
algorithms for distributed database systems. The Slam network is shown in
Figure 8.19.

Figure 8.19
Slam II network Delay--xx(s)~'---~ Atrib(2)-4 and

simulation model
for a distributed
database system.

.

OPSYS 1

DMLpr° ' I)

I Chapter 8

276 8.5 Applications of simulation

DML

8.5.1 The s imula t ion p r o g r a m

The simulation program constitutes the realization of the simulation
model. It is constructed as a modular software package allowing for the
interchanging of simulated database management components without
causing undue stress to the other components of the model. The simulation
program is composed of a set of Slam II network statements and detailed
discrete event code (similar to GASP IV), which model the major computa-
tional aspects of a distributed database management system, as previously
defined. To provide the capability to model a wide range of topologies and
database management architectures, the model is driven by a set of informa-
tion tables that hold characteristics of the network topology and communi-
cations, location of the data items, the contents of the data items, and
statistics of use. The Slam II network code to realize this model is shown in
Figure 8.20. This code clearly depicts the major components of the simula-
tion program. Additionally, note that the EVENT 5 shown indicates that
the particular node is not a simple queue representation; it also indicates a
drop in detail into discrete event simulation code. Such events allow for
greatly expanding the details of the aspect of the model.

8.5 Applications of simulation 277

T

Figure 8.20
Slam II network

model code.

This is a list of the activities in the network

1 Enter to OPSYS 20PSYS to DML
30PSYS to User 4 Optimize to LDBM
5 Optimize to User 6 NMMDBM to DML
7 LDBM to memory 8 LDBM to disk
9 LDBM to tape 10 LDBM to DLOC
11 Memory to RLDBM 12 disk to RLDBM
13 Tape to RLDBM 14 RLDBM to LDBM
15 DLOC to NMMDBM 16 DLOC to REQN
17 REQN to NWDEL 18 NWDEL to NWDBM
19 DML to NWDBM 20 DML to OPSYS
21 NWDBM to Optimize 22 NWDBM to User
23 LDBM to REQN 24 NWDBM to User

The following statements are network input statements:

Gen, P. Fortier, DBMS Queue SIMPROG, 5,22,2002,1;
Umits, 10,20,500;
Stat,1 ,hits on directory,10,1 .,1 .;
Stat,2 hits on dictionary, 10,1 .,1 .;
Stat,3,processing time,20,0.,10.;
Stat,4, remote time, 10,0.,.05;
Stat,5,failure rate,10,1.,1 .;
Stat,6,optimizer time,10,0.,10.;
Stat,7,Optimizer algorithm delay, 10,0., 10.;
Stat,8,parsing delay, 10,0.,.0015;
Stat,9,illegal operations, 10,1., 1.;
Stat,10, translate delay, 10,0.,.01;
Stat, 11 ,dictionary search, 10,0.,.00002;
Network
Resource/Opsproc(1),6;
Resource/DMLproc(1),7;
Resource/Netproc(1),8;
Resource/Optproc(1),9;
Resource/Locproc(1),10;

Tape queue(4);
act/13,,,RLDBM;
Mem queue(2);
act/11 ,XX(5),,RLDBM;
Disk queue(3);
act/12,XX(6),,RLDBM;
RLDBM GOON; Request LDBM
act/14,,,LDBM;
DLOC Free, Iocproc/1;
act;
goon;
act/15,,atrib(8).eq.15, NWDBM ret route, local source
act/16,0.02,atrib(8).eq.16; ret route, remote source
reqn goon;
act/17,0.02;
NWDEL queue(5); Network delay
act/18,0.03,,NWDBM
user colct,int(1), tim in sys, 40,0.,10.;
act/20;
terminate;
endnetwork;
init,0;
fin;

Enter, 1;
act/l;
Opsys await(6),opsproc/1;
event,1; operating system
act,XX(1);
free, opsproc/1;
act/3,,atrib(7).eq.3,user; service completed
act/2,,atrib(7).eq.2;
DML await(7),DMLproc/1;
event,4;
act,atrib(5);
free, DMLprocJ1;
act/20,,atrib(7).eq.20,opsys service completed
act/19,,atrib(7).eq. 19,NWDBM;
NWDBM await(8), NetprocJ1;
event,2; Network database manager
act, XX(2);
free, NetprocJ1;
act/6,,atrib(7).eq.6.DML processing completed
act/22,,atrib(7).eq.22,user; data doesn't exist
act/21, ,atrib(7).eq.21;
optim await(9), optprocJ1;
event,3; Query optimization
act,XX(3);
free, optprocJ1;
act/4,,atrib(7).eq.4.0and atrib(4).eq.0,WLDBM;
act/26,,atrib(7).eq.4 and atrib(4).eq. 1 ,LDBM;
act/5,,atrib(7).eq.5, user; illegal query
WLDBM await(10), Iocproc/1;
LDBM event,5; local database manager
act/7,XX(4),atrib(7).eq.7 or atrib(7).eq.78, rnem;
act/8,XX(4),atrib(7).eq.8 or atrib(7).eq.78, disk;
act/9,999999,atrib(7).eq.10,DLOC;
act/23,,atrib(7).eq.23,REQN;

I Chapter 8

278 8.6 Summary

8.6 Summary

This chapter introduced the use of simulation in building and analyzing a
wide range of systems. Simulations were shown to be extremely versatile in
their ability to model systems at varying levels of detail. They provide quick
and precise models of systems to allow any studies to be performed at will.
The main simulation techniques of discrete event, continuous, queuing,
combined, and hybrid methods were described, as were four widely used
languages: GASP, GPSS, Simscript, and Slam. This was followed by two
simple examples to show how simulation can be used to study a real-world
system.

9
Petri Nets

9.1

9 .2

I n t r o d u c t i o n

Every tool applied to the modeling and analysis of computer systems has its
place. Petri nets have a place in computer systems performance assessment,
ranging somewhere between analytical queuing theory and computer simula-
tion. This is due to the nature of Petri nets and their ability to model concur-
rency, synchronization, mutual exclusion, conflict, and system state more
completely than analytical models but not as completely as simulations. They
have a fundamental theory dictating their analysis, but they act more like sim-
ulations in that they allow the modeler to examine single entities within the
system, as well as their movement and effect on the state of the entire system.

Petri nets (PNs) provide a graphical tool as well as a notational method
for the formal specification of systems. The systems they model tend to
include more than simply an arrival rate and a service rate. They are used in
situations where each entity passing through the system can bring individ-
ual state information, which can be used to more completely and accurately
model complex interactions such as contention and concurrency.

Petri nets were first introduced in 1966 to describe concurrent systems.
This initial introduction was followed by continual improvements~for
example, the addition of timing to transitions, priority to transitions, types
to tokens, and colors depicting conditions on places and tokens. These have
been followed by the development of software tools to aid in the modeling
and analysis of systems using Petri net concepts.

Basic n o t a t i o n

Petri nets represent computer systems by providing a means to abstract the
basic elements of the system and its informational flow using only four fun-

279

280 9.2 Basic notation

Figure 9.1
Basic Petri net

components.

r

Figure 9.2
Example perpetual

motion Petri net.

Token

)
Place p

arc 1
Transition t

damental components. These four Petri net modeling components are
place, transition, arc, and token. Places are represented graphically as a cir-
cle, transitions as a bar, arcs as directed line segments, and tokens as dots
(Figure 9.1). Places are used to represent possible system components and
their state. For example, a disk drive could be represented using a place, as
could a program or other resource. Transitions are used to describe events
that may result in different system states. For example, the action of reading
an item from a disk drive or the action of writing an item to a disk drive
could be modeled as separate transitions. Arcs represent the relationships
that exist between the transitions and places. For example, disk read
requests may be put in one place, and that place may be connected to the
transition, "removing an item from a disk," thus indicating that this place is
related to the transition. You can think of the arc as providing a path for the
activation of a transition. Finally, tokens are used to define the state of the
Petri net. Tokens in the basic Petri net model are nondescriptive markers,
which are stored in places and are used in defining Petri net marking.

The marking of a Petri net place by the placement of a token can be
viewed as the statement of the condition of the place. For example, Figure
9.2 illustrates a simple Petri net with only one place and one transition. The
place is connected to the transition by an arc, and the transition is likewise
connected to the place by a second arc. The former arc is an input arc, while
the latter arc is an output arc. The placement of a token represents the
active marking of the Petri net state. The Petri net shown in Figure 9.2 rep-
resents a net that will continue to cycle forever.

p~ t~

9.2 Basic notation 281

Figure 9.3
Petri net example.

@
Pl

tl t4

v

P3

Petri nets are described both graphically and using set notation. As
described previously, a Petri net is composed of places (P), transitions (7),
arcs (consisting of input functions, I, and output functions, 0), and tokens,
which form the marking of the net (MP). Using this notation, we can
describe a Petri net as a five tuple, M-- (P, T,I, O, MP), where P represents
a set of places, P = {Pl, P2 ,Pn}, with one place for each circle in the
Petri net graph; T represents a set of transitions, T= {t 1, t 2, ... ,tin}, with
one for each bar in the Petri net graph; I represents a bag of sets (bags is a
generalization allowing for duplicates) of input functions for all transi-
tions, I = {Ira,It2 Itm}, mapping places to transitions;, O represents a
bag of sets of output functions for all transitions, O = {Otl, Or2, ... ,Otto},
mapping transitions to places; and MP represents the marking of places
with tokens. The initial marking is referred to as MP O. MP 0 is represented
as an ordered tuple of magnitude n, where n represents the number of
places in our Petri net. Each place will have either no tokens or some integer
number of tokens. For example, the Petri net graph depicted in Figure 9.3
can be described using the previous notation as:

M - (P ,T , I ,O , MP)

P = {Pl' ~2' t)3' P4' t)5 }
T

I (t l) - - {Pl}

O ('1) -- {P2, P3,/05 }

(9.1)

I Chapter 9

282 9.2 Basic notation

Figure 9.4
Dual of Petri Net
from Figure 9.3.

ta

Pl

Inverse o f Petri Net
from Figure 9.3.

O (t 3) - { P 4 } (Cont. 9.1)

M P - (0 , 0 , 0 , 0 , 0)

The graphical notation depicts Petri nets as a directed bipartite graph.
The graph, G, is described as a two tuple, G = (V,,A), where V represents a
set of vertices, V= {v 1, v2,v 3 ,Vs}; and A represents a bag of directed arcs,
A = {al ,a2,a 3, ... ,ai}. A n arc, which is an element of A, is composed of a
tuple with two vertices, a i = (vj, vk), where vj, v k ~ V. The set of vertices of
the graph can be partitioned into two disjoint sets, P and T, where these sets
have the properties V= P u T and P n T= 0. In addition, for an arc a i ~ A,
if a i = (v.,vk), then either v. ~ P and v k e T or vice versa. That is, the two y y
ends of the arc cannot be drawn from the same set; if v j e P,, then v k e T
and cannot be an element of P..

A Petri net model, as with many mathematical models, has a dual. The
dual of a Petri net is defined as a Petri net where transitions are changed to
places and places are changed to transitions. (See Figure 9.4.) The input and
output functions are changed in that the inputs defined for the transition

Pa

v

Figure 9.5

9.2 Basic notation 283

Figure 9.6
Multipath arc. 0

Pl
7 , ,

P2

lb. Y
Figure 9 . 7

Multipath arc as 0
bold line. Pl

now represent inputs to places. Since this is not possible, the inputs become
output functions and output functions become input functions.

A Petri net can also have an inverse defined for it. The inverse of a Petri
net keeps all places and transitions the same and switches the input func-
tions with the output functions (Figure 9.5).

Petri nets are defined also as multigraphs, since a place can represent
multiple inputs and/or outputs from or to a transition. This implies that
there could be several arcs between a single place and a transition. We could
model these as single arcs but that could become cumbersome as the num-
ber of arcs grows. A better way to model multiple arcs is either to represent
the multiple arcs as a thick arc with the number of representative arcs
embedded inside (Figure 9.6), or as a bold arc with a number attached to it
as a label (Figure 9.7).

Petri nets have a state. This state is defined by the cardinality of tokens
and their distribution throughout the places in the Petri net. This marking
can be represented as a function, It, defined over each place, iv, and results in
a value, N, from the set of counting integers 0, 1 oo:

gt .p -9 N (9.2)

The marking, ~, can also be defined as an n vector. The vector ~t pro-
vides token information for each place, Pi, in a Petri net. The token infor-
mation represents the number of tokens in the particular place (number of
tokens in place, Pi, is lai):

~1, - - (~ 1 , 1 , ~ 2 , ~ 3 [LI, n) , (9.3)

where

. = IPI and each # i • N , i - 0 n

t 1

7 '1 11
Pa

I Chapter 9

284 9.3 Classical Petri nets

Figure 9.8
Marked Petri net.

©
Pl

132
t~ t.

Pa

Place markings represented as a function and place markings represented
as a vector are related by ~t(pi) = ~t i. The markings at a specific point in time
represent the state of the Petri net at that time. A marked Petri net, M = (C,
g), is represented as a Petri net structure, M = (P, T,I, O) and its marking:
M P or la. This is also typically represented as M = (P, T,I, O, la). The mark-
ing ~t changes as the Petri net changes state and is therefore typically repre-
sented with a subscript t. Therefore, the true representation is:

M = (P , T , I , O , btt) (9.4)

where represents the state of the Petri net at time t, where t is drawn from
the set of nonnegative integer values.

The marking of a Petri net is specified by placing tokens, which are rep-
resented as dots in the graphical notation (Figure 9.8) in the places. The
marking for the Petri net shown in Figure 9.8 represented as a vector would
be btt= (1,2, 0, 0,1). If we assume this is the initial marking of this Petri net,
then the definition becomes l.t 0 = (1,2, 0, 0,1), since this would be the 0th
state this Petri net has visited. The number of tokens that may be assigned
to a place is unbounded (though in later refined models we will see this can
be limited). The set of all possible markings for a Petri net with n places is
simply the set of all n vectors, N ~, where N represents all possible states and
n the number of places.

9.3 Classical Pe t r i nets

Given the basic definitions and notation from the prior section, we can now
begin to examine how these fundamental elements can be used in modeling
aspects of computer systems and ultimately entire systems. The first new
notation required is that of Petri net state transitions. To move from one
state to another state, a Petri net will fire all transitions that are enabled.
The exact moment of firing can be pictured as occurring as a clock signal in

9.3 Classical Petri nets 285

v

Figure 9.9
Enabled transition.

I(tl) = {Pl, P2, P2}
Pl

t~

@-----4
P3

p2

a computer system. When the clock begins a cycle (e.g., a rising edge) all
gates that have signals enabling their execution do so during the cycle. Sim-
ilarly, in a Petri net all transitions that are enabled will fire once during this
cycle.

Before we look at firing, we need to address the conditions required.
Having tokens available in places is fundamental to the concept of enabling
transitions. Therefore, it is important to know the state of the entire Petri
net before preparing to fire enabled transitions. The enabling of a transition
is caused by tokens being available in places that are members of a transi-
tion's input function. Only if all of the places named in a transition's input
functions have tokens available is a transition enabled (Figure 9.9).

The Petri net shown in Figure 9.9 has the marking g0 = (1,2, 0), input
function I (t l) - {PI,P2,P3}, and output function O(t 1) = {P3,P3,P3}" Given
this initial marking and the defined input and output functions, transition
t I is enabled, since it requires one token contributed by P1 and two tokens
contributed by P2 to have all of its input functions satisfied with tokens
available in the named places and in the required quantities. The tokens in
these places are referred to as the transitions enabling tokens. Given that a
transition is enabled at the beginning of a Petri net's firing cycle, it will fire
the transition, causing the movement of the number of tokens from its
input places to its output places, as modeled by the output function's arity.
The result of this firing will be a new Petri net state, B1. For example, in
Figure 9.9, given the initial state B0, transition t 1 will fire at the beginning
of the firing cycle, removing one token from place Pl and two tokens from
place P2 and placing these three tokens into place P3" The resulting new
Petri net state is represented by the marking B1 -- (0,0,3), and is depicted in
Figure 9.10. The firing action is considered an atomic action, in that it
appears as if all of the tokens are removed from the input places and depos-
ited into the output places instantaneously.

I Chapter 9

286 9.3 Classical Petri nets

L .

Figure 9.10
New Petri net state.

Pl I(tl) = {Pl, P2, P2}

P2

The firing of the Petri net provides the movement from one state to a
new state. The new state is the only state reachable in a single total transi-
tion firing of all the enabled transitions. The collection of all possible states
that can be represented by this Petri net and its initial markings is called
state-space. The collection of all states in the state-space of this Petri net can
only be reached in sequence from the initial state to the final state by single
step, state-space changes. This implies that a Petri net can only fire enabled
transitions, and, after they fire, they cannot fire any newly enabled transi-
tions until the next cycle. This single state Petri net state-change can be
described using a next-state function, 8. This function, 8, when applied to a
Petri net state, ~i, will cause the Petri net to transition from state ~i to a new
state: gi÷l- The function 8 is then defined as:

~(~ti { t }) -- ~ti+ 1 (9.5)

The set {t} represents the set of all enabled transitions within this Petri
net. If a transition is not enabled, then this function is undefined.

Beyond the basics defined here, Petri nets have been developed for the
modeling of conditions not typically available through queuing theory. For
example, synchronization, conflict, and concurrency are concepts not easily
defined and modeled by queuing theory.

To clarify some of the concepts covered we will take a look at a simple
example: that of resource sharing. In this example, shown in Figure 9.11,
we model two user processes requesting a specific resource (fires_idle)" If the
resource is idle, there is a token present in the/Ores_idle place. If a process
wanting this resource has a token in its place (e.g., P1 req), and the resource
is idle (a token in Pres_idle), then the transition (e.g., tl_start) is enabled and
can fire on the next cycle. When the transition fires, the resource now
becomes unavailable (it is busy), and the second process must wait until the
resource is released (Figure 9.12).

9.3 Classical Petri nets 287

Figure 9.11
Resource sharing

example. Pl_req

2

P2_req

t2_start

Figure 9.12
Allocated resource.

Pl_req P3_req

tl_start

tl_release

t2_start

I Chapter 9

288 9.3 Classical Petri nets

Figure 9.13
Petri net with an

inhibitor.

With these basic concepts we can now move on to more advanced ones.
Very often in a computer system, when one process is accessing or even
attempting to access some resource, others are blocked from trying to enter.
This is the concept of a gate, lock, or semaphore. In the case of such items,
when one job has control over the resource, others are blocked from
attempting to access the resource, even if they have all the other resources
they need to move forward with their execution. To model this concept of a
lock or semaphore, Petri net modelers developed the concept of the inhibi-
tor. An inhibitor is a function that relates a place (as a blocker) to a transi-
tion. If a place, p, has an inhibitor relationship with a transition, t, then,
when place p has a token present, transition t cannot fire, even if all input
functions are satisfied and the transition would be otherwise enabled. For
example, Figure 9.13 depicts the reader and writer problem. The problem
states that when a writer is in the mode of writing, all readers must be
blocked from accessing the held resource. In the example, the inhibitor is
shown as an undirected arc with a small circle at the transition being inhib-
ited by the place at the other end of the arc. The example shows that place,
P6 is acting as the inhibitor to transition t 5. The Petri net is now described
using the six-tuple, M = (P, T, I, O, N, H). In the set notation the inhibitor

is described as H{ t 5} = {P6}.

A Petri net's state, iLL, is said to be reachable from some other state, ~' , if
there exists some finite number of firings of the Petri net beginning at state
~l, which will result in the final marking iLL'. A reachability set [RS(g)] from
each valid marking of our Petri net, M starting in state N, is defined as the
set of all possible markings reachable through any set of firings. There is no
reachability set possible for a Petri net with an initial null marking.

f

it,

I

t2 t4 t 6 j ~

"1

P5

t7
t a t5

,G
P4 P7 7--')

9.3 Classical Petri nets 289

The reachability set for a Petri net with an initial marking, ~t 0, is
denoted RS(gt o) and is defined as the smallest set of markings, so that:

~t o ~ RS (It o) and ~1E RS (~0)

::Its T" 8 (N , (t)) - 9 ~2 (t + 1) (9.6)

RS (No)
To determine the reachability set, we must begin from the initial state,

g0, and incrementally define each step possible emanating from this initial
state and all states derivable from this state. Once a marking has been con-
sidered, during any iteration, it cannot be considered again. The reachabil-
ity set for the reader and writer graph shown in Figure 9.13 is as follows for
k = 2 .

~0 = 2p1+ p5

~1 = pl + P2 + P5
g2 = 2p2 + P5

gt3= pl + p3 + p5
~t4= P l + P 4 + P 5

~5 = 1°2 +P3 +P5

~6 - P2 + P4 + P5
g7 = Pl +105 +P6

~8 = p l+P7

gt9= 2 p 3 + p 5

~10 -" P3 +t94 +])5

~11 "- P2 + P5 + P6
gtl2 = 2p4 + P5

~t13 = P2 + P7

ILtl4 = P3 +105 +P6

~15 -- t/4 +P5 +106

~16 -" P3 + P7

let17 = P4 + P7

g18 = P5 + 2p6

The reachability set contains no information about which transitions fired
to reach the state markings. Such information can be found in a reachability

I Chapter 9

v

Figure 9.14 ,6

Reachability graph
for the reader and

writerproblem.

290 9.3 Classical Petri nets

graph, shown in Figure 9.14. In this graph each node represents a state of the
Petri net and each arc represents a direct transition, which is possible from one
end of the directed arc to the other end due to a single transitions firing. For
example, you can see that if we fire transition t 1 from go we can get to a new
state, ~t 1, where a token has moved from place 1 to place 2.

It is often desirable to model logical conditions. For example, to only fire
a transition when there are more than n tokens in a place, we simply need to
include an arc with arity n + 1. Since the basic condition on a transition fir-
ing is that its connected input places meet the conditions of the transitions
input function, by including n + 1 redundant set items for the input place
we can accomplish what we need (Figure 9.15).

If we wish instead to test for the condition of equal to some value but
not greater than the value, we can use an inhibitor of arity n + 1 to block a

L .

Y

Figure 9.15 Po
Petri net

component to test
condition greater 1

than M. to

Pl

9.3 Classical Petri nets 291

k y

Figure 9.16
Petri net

component to test
condition equal but
not greater than M.

PO

n + l

to

Pl

transition if there are more than n tokens in place 0. To meet the equal con-
dition we use the arc weighted at n to remove n items if there are n and only
n items (Figure 9.16). If we wish to test for less than n items and remove the
items, we could use the Petri net shown in Figure 9.17. Again, this Petri net
uses an inhibitor function to block movement of the desired number of
tokens.

An important property required when modeling computer systems is
that of conflict (Figure 9.18). In this example, when there is a token in place
P0, both transitions t 1 and t 2 are enabled. However, only one of them may
fire, since there is only one token available. As soon as one fires, say t 1, it
removes the token from place P0 and transfers it to place Pl. As soon as tran-
sition t 1 removes the token, transition t 2 is no longer enabled. If there were
two tokens in place P0, then both of the transitions would be enabled and
could fire during this firing cycle. Very often we wish to indicate which of

Figure 9.17
Petri net modeling

conflict. Po

to

I Chapter 9

292 9.3 Classical Petri nets

i v

Figure 9.18
Petri net

component to test
condition less than.

P0

tl t2

Pl) P2

these transitions is to fire when only one can, and in which order if they
both are able to fire. We will discuss some of these extended controls when
we look at colored Petri nets and generalized Petri nets later in this chapter.

Another important property required when modeling computer systems
and software processes is concurrency. Concurrency is characterized by the
concurrent or parallel execution of activities. For a Petri net to have concur-
rent activities, it is required that we have concurrently enabled transitions.
For example, in Figure 9.19, transitions t 1 and t 2 are considered concurrent,
since they are both enabled at the same time in the Petri net marking. In
our example, gt = (1,2, 0, 0) has transitions t I and t 2 enabled, and, therefore,
they can fire concurrently.

Very often a computer system can have both conflict and concurrency
occur at the same time. In Figure 9.20 we have an initial marking, gt --

Figure 9.19
Petri net modeling

concurrency.
Pl P2

t 1 t2

P3 P4

9.3 Classical Petri nets 293

IL

Figure 9.20 Pl P3 Ps

confusion.

P2 J t2 P.

1
(1,1,0,0,0), which results in transitions t 1 and t 2 being enabled, the condi-
tion of concurrent transitions. If t 1 fires first, then we now have two transi-
tions enabled, t 2 and t3. This then depicts conflict, since the token from P2
can only satisfy one of the necessary conditions for the two transitions it is
enabling at this point in time.

A Petri net can have a variety of other qualities. For example, a Petri net
state, let, is reachable from another state, let', of the same Petri net if there is
an integer number of intermediate steps from let' that lead us to state ~. For
example, in Figure 9.21 we have an initial state gt 0 = (3, 0, 0, 0), and a target
state let' = (1,1,0,1). We can see from our computations of state transitions
that our net can reach this target state in three firings of our net. A related
property is that of reversibility. Reversibility is the property where, given
some initial Petri net state, let, we can return back to this state, lEt, in finite
time. In Figure 9.21 the initial state, ~0, is not reversible, since we cannot
get back to this state in a finite number of steps. On the other hand, if the

Figure 9.21
Petri net indicating

reachability and
reversibility.

Po t~ p~ P3

t 4

l [

I Chapter 9

294 9.4 Timed Petri nets

Po tl

Deadlocked Petri
n e t .

v

Figure 9.22 Pl P3

t 4

initial state is ~' -- (0,1,0,2), we find that we can return to this state every
four state transitions. Therefore, this state is reversible.

A Petri net is deadlocked if there are no transitions in the net that are
enabled. In the example shown in Figure 9.22, the net has an initial mark-
ing, iLL 0 = (0,0,2,0). This marking results in no transitions being enabled
and no hope after an infinite amount of time of becoming enabled. Con-
versely, a Petcl'net is considered live if there are any transitions enabled.

A Petri net is defined to be k-place bounded if for all places in the net-
work there are k or less tokens in each place for all possible states of the net-
work. For example, in the Petri net shown in Figure 9.21, we have a three-
bounded net, since all places in the network have at most three or less
tokens in their places for all reachable states within the Petri net.

Mutual exclusion is the final property we will define for traditional Petri
nets. Mutual exclusion is defined for places and for transitions. The prop-
erty holds for pairs of places or transitions within a Petri net. Two places, Pa
andpb, are mutually exclusive in a Petri net system if for all states in the sys-
tem places Pa and Pb are never both loaded with tokens concurrently. This
implies that if one has tokens the other cannot. Similarly, for transitions, a
Petri net possesses transition mutual exclusion if for all pairs of transitions
in the Petri net, t a and t b, only one can be enabled during any state reach-
able by this network. The properties presented in this section are generic
and can be applied to most Petri nets.

9 .4 T i m e d Pet r i nets

The Petri nets covered in the previous section had transitions that when
fired took no time to move tokens from one place to another. In any real

9.4 Timed Petri nets 295

7~med Petri net.
Pl

system an activity does take some finite time to perform its operation. For
example, to read a file from a disk, to execute a program, or to communi-
cate with some other machine takes some real time. Adding time to the
Petri net provides the Petri net modeler with another powerful tool with
which to study the performance of computer systems. Time can be associ-
ated with transitions, with selection of paths, with waiting in places, with
inhibitors, and with any other component of the Petri net.

The most typical way that time is used in Petri net modeling is associ-
ated with transitions. This is because the firing of a transition can be viewed
as the execution of an event being modeled~for example, a CPU execution
cycle. Transitions that have time associated with them are referred to as
timed transitions. These timed transitions are represented graphically as a
rectangle or thick bars and are identified by designations beginning with t.

In Figure 9.23, transition t I is a timed transition with time t 1 as its inter-
val to complete its firing once enabled. The semantics of the firing are a bit
different from that of the basic Petri nets looked at previously. When a tran-
sition becomes enabled, its time period clock timer is set and begins to
count down. Once the timer reaches 0, the transition fires, moving the
token(s) from the input places for the transition to the output places for this
transition. In the example shown in Figure 9.23, when a token arrives at
place Pl, the timer for transition t 1 is set to ~'1 and begins to count down.
Once 1:1 time units have passed, the transition fires and the token is taken
from/91 and moved to P2- The decrement of the timer must be at a constant
fixed speed for all transitions in the Petri net model. In this way the transi-
tion is made to model the operation of some element within the system
being modeled.

A consideration to think about is what occurs when a transition
becomes nonenabled due to the initial enabling token being used to ulti-

r

Figure 9.23

I It1 timel;1

I Chapter 9

296 9.4 Timed Petri nets

Figure 9.24
Timed Petri net

with conflict.

Figure 9.25
State transition

timing graph.

P0

Time '~1 tl Time ~'2 t2

Pl) P2

mately fire a competing transition. This condition is shown in Figure 9.24.
If we assume that the time for transition t 1 is less than that for transition t 2,
then, when place Pl receives a token, the two timers would begin counting
down. At some time (2" 1) in the future, the timer for q would reach its zero
value, resulting in the firing of transition t 1. Since the token enabling t 2 is
now gone, t 2 is no longer enabled and, therefore, its timer (2" 2) would stop
ticking down. The question now is what to do with transition t2's timer.
There are two possibilities. The first is to simply reset the timer on the next
cycle in which place Pl has a token present, enabling t 2. In this case, unless
place Pl has a state where it has more than one token present, transition t 2
will never fire. The second possible way to handle this situation is to allow
transition t2's timer to maintain the present clock timer value (z 2 - Zl). In
this second case, when the next token is received at place Pl, the timer for
transition t 1 resets its clock timer to 2" 1, and transition t 2 will continue
counting down from time (z" 2 - Zl). If the remaining time in transition t2's

State
i

g2

B3

g4

gl
v

time

9.4 Timed Petri nets 297

Figure 9.26
Timed Petri net
with immediate

transitions.

timer is less than transition t's timer, then transition t 2 will fire, leaving tran-
sition t 1 with the remaining time (~'1 - (' r2- Vl)). The choice of which pro-
tocol to use will depend on the system one wishes to model.

The timing need not be exclusively based on timers and counting. Some
Petri net models have proposed using state transition timing graphs. In this
case, each possible state, ~t, is enumerated, and a time period is set for each
individual state to traverse from this state to the next state in the sequence
(Figure 9.25). In this figure, state gl will require (a: 2 or a: 1) time units to
move from state ~t 1 to state ~2 and so on for all states defined in our system.
This could also be represented using timed transition sequences, which
depict the order of each transition in relation to all others. Such a descrip-
tion may appear as:

[(Tl,tl);(T2,t 2);...;(Tj,tj) ; . . .] (9.7)

Transitions can also be represented as immediate t ransi t ions~that is,
transitions without any time delays associated with them. To model these in
timed Petri nets, we simply can use a solid bar in the graphical mode or a
timer of 0 if we are using Petri net notation.

In the example shown in Figure 9.26, we use immediate transitions to
capture a resource. These act like semaphores would in a real system. One

Pactive_l Pactive_2

trequest_l trequest_2

Prequesting_l Pidle
Prequesting_2

Paccessing_l Paccessing_2

tend_l

I Chapter 9

active process that is wing for the resource will win it, while the other will
be forced to wait until the resource becomes free once again.

9.5

Figure 9.27
Priority-based Petri

net.

Prior i ty -based Petri nets

The Petri nets defined in the previous section were improvements over the
basic nets defined in the first section of this chapter. To continue this trend
we next look at adding priority to a Petri net. The formal model now needs
some additional elements. The Petri net is described by a nine tuple, M =
(/9, T, I, O, H, H, Par, Pred, la). P represents the set of places of Petri net M.
T is the set of transitions of Petri net M. I represents the set of input func-
tions for the transitions of M. O represents the set of output functions for
the transitions of M. H represents the inhibitor functions defined over the
set of transitions in M. Par represents the parameter set for this Petri net,
and Pred represents the predicates defining how the parameter set can be
distributed. The symbol iLL represents the set of markings for this Petri net,
and H represents the priority function defined over all transitions of Petri
net M. The function H maps the priority for each transition to a set of inte-
ger values representing their importance relative to each other in the net.

Now we will look at the conditions for firing under these new nets.
Transitions in priority Petri nets are enabled just as in basic Petri nets. If the
transitions have their input places with the right amount of tokens, then
they are prepared for enabling. The term used for this is concession. If a

P4

H2=2

]-[1 = 1 P2

]-[3=3

298 9.5 Priority-based Petri nets

= 3

9.5 Priority-based Petri nets 299

Figure 9.28
Timed and priority

net.

transition has concession (is enabled as in basic nets) and there are no addi-
tional transitions in this network that are enabled in the present marking
with priority greater than this transitions priority, then it is enabled. For-
mally this set of conditions is represented as:

t i is enabled if an~Itj ~ ~nly iftj < t~ (9.8)

A transition that meets these criteria can fire. The result of firing is the
same as in nets without priority. In the example depicted in Figure 9.27,
transition t 1 has the lowest priority at 1, transition t 2 has the next lowest at
2, and transitions t 3 and t 4 have the highest priority at 3. If we start with an
initial marking, ~t -- (1,0, 0,1), only transition t 2 is enabled, since it has the
highest priority and has the number of tokens available from its input func-
tions as required for enabling. If you compute the next few possible states,
you would see that transition t 1 will never be enabled, since it does not have
the priority to overcome transition t2's priority.

With the use of priority and timing we can do a more complete job of
defining conditions such as contention, confusion, and concurrency. For
example, the Petri net shown in Figure 9.28 has both timed and priority
features. By combining these features we can now get the system to toggle
between the two events. The inhibitor on transition t 2 causes this immedi-
ate transition to be blocked from enabling until it has completed its service.
In this way it allows transition t 1, with the lower priority, to get service
while place P2 has tokens present.

1

1=0

P2

Pa

4=0
t.

t 3

3=1

I Chapter 9

300 9.6 Colored Petri nets

9 .6 C o l o r e d Pe t r i nets

In this section we will introduce some of the basic concepts of colored Petri
nets. Colored Petri nets also add another dimension to tokens as well as to
selection criteria used in determining firing by the addition of different
token types. Tokens now can represent different functions. For example, we
can use different tokens to represent operating system calls or different
classes of jobs. These different tokens can then be used to determine which
transition of multiple transitions available can operate.

To represent this graphically we use colored tokens. The set of all possi-
ble colors for the tokens represents the cardinality of the token set. Using
this token set we can now redefine the definition of our Petri net, specifi-
cally, to redefine the firing rules (called link algebra) for all transitions
defined in our network. For example, in Figure 9.29, there are only two
token types: black and white. These could represent two different types of
jobs. Transitions can have priority and time associated with them as before
and can also be defined to operate on only a specific token type. As also
shown in Figure 9.29, transition t 1 has a priority and time associated with
it. Arcs also have additional details associated with them. The arc from Pl to
t 1 has a condition choose (n, P1), which selects n of one of the tokens to
release to the transition. Other arcs are used to select only specific types of
tokens. For example, the arcs leading out of transition t 1 leading to places P2
and P3 have filters on them to only allow tokens of type black to traverse to
place P2 and white to traverse to place P3" Conditions on arcs can be as
complex as one wishes. We could use a complex condition that requires n 1
of one type of token, n 2 of some other type, and none of some third type

v

Hgure 9.29
Generalized Petri

net.

counter white

t 2 t3

9.7 Generalized Petri nets 301

before we release just one token down a specified path. Using these complex
methods, we can model just about any condition that may occur in a com-
puter system we are modeling. The reader is directed to [18-20] for details
about colored Petri nets.

9 . 7 Genera l i zed Pet r i nets

Generalized Petri nets are used to provide yet another refinement of the mod-
els discussed up to this point. All of the other models had transitions, which,
when fired, either were performed instantaneously or within some pre-
described time period. The time period for a transitions firing, once set, was
fixed and did not change over the course of the model's lifetime. This is ade-
quate if we have deterministic timing in our modeled system and there is no
variability. In reality we know this does not hold for most realistic systems.
Generalized Petri net models alter this by providing mechanisms for associat-
ing a random, exponentially distributed firing delay with timed transitions.

The addition required to meet these new conditions for firing is a func-
tion defined over transitions in the system. This new function is called rate
or weight transition function. This function, W (t k, ~t), must be defined for
each transition and state in the network. If the function does not need to be
defined for all markings, then we can simply refer to the function as W(tk),
where t k ~ T. The result of this function, W (t k, ~t) or W(tk), is called the
rate of transition t k in marking ~t if t k is timed and the weight of transition t k
in marking ~t if t k is immediate. The value of this result is a random variable
defined by the exponential function defined for the transition around the
selected mean value.

Firing of a transition in a generalized net occurs as in a timed net except
that the time to fire the transition is computed using an exponential func-
tion defined around a mean value. Each transition in the net must have a
rate, r, defined for it. The rate is the mean value for use in computing the
actual time to use in firing the transition. Once a transition is enabled, its
computed timer value is decremented using a system-determined increment
value until it either reaches 0 or it loses its enabling tokens. As in the timed
net, we can use additional information or policies to decide how to use the
state of the transition when it becomes nonenabled. We could use the
remaining time in the computed time, reset the same time, or select another
new time based on the same mean. All have merits based on the type of ele-
ment being modeled.

Another difference in this class of system is the concept of system state.
The state of the system changes from one state to another state based on the

! Chapter 9

L
r

Hgure 9.30

9 . 8

Generalized
Petri Net.

P2

302 9.8 Summary

t2,t 3 = rate r 3

P3

1

firings of all active and ready transitions during this present time interval. In
Figure 9.30, the initial marking is ~t 0 = (2,0,0). If we use the colored net
functions and simply change the transition times into rates, we now have a
generalized Petri net. In the example, transition t 1, once enabled, will com-
pute a transition rate using the mean rate, r 1, as the value fed into the negative
exponential. Using the computed rate the timer would initiate decrements
until it reached the firing point (timer value = 0). We would then use the
selected token to determine which path to choose in leaving the transition. In
the example, if the choice function chose white, then we would take the white
path, resulting in a new system state, ~1 = (1,0,1).

An important concept with these nets is that they would not compute
the same state each time they executed from a given state, due to the ran-
domness of the possible transition firing time. This is a desirable feature for
such models, as it was when we used this same property for the memoryless
property for arrival rates and service rates at queues.

Summary
Petri nets have been available as a modeling tool since the late 1960s. Since
this point in time they have gone through many transitions and improve-
ments. At first they were more of a curiosity than anything else, since there
were no means available to construct and analyze models easily. Since these
early days, many computerized tools have become available, allowing us to
run simulations of a model's structure and to collect performance informa-
tion. Some specialized Petri net analysis tools have also been developed and
are widely available.

9.8 Summary 303

In this chapter we covered a basic introduction to Petri nets, their prop-
erties, and their modeling capabilities. This basic overview was then fol-
lowed up by more refinements on the basic model. First, we added the
concept of transition time to our initial model concepts. We then followed
this up with the concept of priority of transitions. Next, we introduced the
concept of token types and transition firing rules in colored Petri nets.
Finally, we completed our overview of Petri nets with a discussion of gener-
alized Petri nets and their capabilities.

I Chapter 9

This Page Intentionally Left Blank

/O
Hardware Testbeds, Instrumentation,
Measurement, Data Extraction,
andAnalysis

In the previous chapters, we covered modeling from several perspectives,
ranging from simulation to queuing models to Petri nets and to operational
analysis. For those perspectives, only limited amounts of data are actually
measured on an actual system. Often, the simplifying assumptions that are
made so that model results are calculable enable us to obtain only an
approximate analysis of the system's behavior. Also, the load conditions that
are presented to an analytical or simulation model often are not tested in a
real-world situation. These factors have two ramifications. The first is that
more detailed analysis is difficult because of the lack of adequate real-world
data. The second is that, even with a detailed model, validation of the
model and its results must be weak at best. The latter statement is especially
true for general-purpose simulation models such as those discussed
throughout this book. Before a simulation can be used to predict the
performance of any system, the results of its execution must be compared
against a known baseline, and the simulation must be adjusted accordingly.
One method of achieving this is through the instrumentation and collec-
tion of performance data on an actual system. The results of these measure-
ments are compared with the predicted results from a simulation model of
the same system. When the results agree to within some predetermined tol-
erance, the model is considered validated.

This chapter discusses the use of prototype hardware testbeds as a tool
for ascertaining actual measures for some of the performance quantities of
interest, for performing controlled experiments to determine the opera-
tional characteristics of different parts of a network, and for the validation
of software simulation models. In particular, we will describe the imple-
mentation of a hardware testbed, define the measurable quantities that we
are interested in, derive operational relationships for nonmeasured quanti-
ties, and give some results.

305

306 Hardware Testbeds, Instrumentation, Measurement, Data Extraction, and Analysis

The construction of a special-purpose testbed can be costly if done solely
for the purpose of estimating the final system performance. Often, however,
a proof of concept prototype is constructed to test and validate design
assumptions, to gain experience with the system, and to provide a vehicle
for advanced development. Given that a prototype system often exists, it is
advantageous to also consider instrumentation and test provisions in the
prototype design. When performed within the scope of the prototyping
effort, the relative cost of special performance measurement facilities
becomes more acceptable. Some important facilities, which we will describe
for a specific example later in this chapter, could include a system-wide time
base for obtaining synchronous measurements, time-tagging hardware or
software for timestamping events, counters for recording the number of
occurrences of important events, and scenario drivers that can inject a
known load into the system being modeled. Of course, it is desirable to
make these facilities as unintrusive as possible so that their use does not
interfere with the normal operation of the network under question. In some
cases, portions of the final system software configuration may be substituted
by special-purpose measurement facilities. The remainder of this chapter
will discuss a prototype network configuration and will illustrate the tech-
niques employed to measure its performance characteristics.

The network that we will be discussing is situated in a prototype testbed
that is instrumented for data collection and can generate network traffic.
Each testbed node contains a host controller that can emulate a known traf-
fic load or generate any specified pattern of message traffic. Experiments
can be repeated so that different measurements can be taken or so that a
specific communication-related parameter can be varied. Thus, the proto-
type system's loading and recording mechanisms can be controlled in order
to observe different network performance phenomena.

In constructing a prototype testbed such as the one discussed here, it is
desirable to keep hardware development costs at a minimum, to provide a
flexible system so that changes in network design can be accommodated,
and to provide the general-purpose driver capabilities discussed previously.
One method of keeping hardware development costs down is to use off-the-
shelf hardware components as much as possible. All node components that
are not network specific can be implemented using standard board or sys-
tem-level products. For example, the host processor for a node could be
implemented with a single board computer or even with a personal com-
puter.

Flexibility in the design of the network-specific components is essential
for minimizing the impact of the inevitable design changes that occur dur-

Hardware Testbeds, Instrumentation, Measurement, Data Extraction, and Analysis 307

ing the early network design and prototyping phase. One useful method for
achieving a flexible prototype design is to reduce the speed of operation of
the network. This allows some functions of the network to be implemented
with more general-purpose components, such as a programmable micro-
controller or state machine. After the prototype design has been analyzed
and a near-final configuration decided upon, these functions can be transi-
tioned into higher-speed implementations. The assumption here is that a
uniform scaling of the speed of operation across all network-sensitive com-
ponents will yield results that can be scaled back up to reflect the actual sys-
tem's performance. This may not hold true in the strictest sense, such as
where hardware characteristics change at higher speeds, but it will generally
hold if the functionality of the network as a whole does not change.

In order to provide general-purpose network driver and data collection
capabilities, it is almost always necessary to have a detached host, whose
only function is to generate network traffic and collect results. Also, it may
be necessary to design in additional resources, whose only functions are to
assist in traffic generation of data collection. It is important to adhere as
much as possible to a layered network standard such as the International
Organization for Standardizations model for Open Systems Interconnec-
tion reference model (ISO's OSI model). By doing this, changes can be
more or less localized to the level that is most affected, whereas the other
levels can maintain their functionality. Thus, the same standards that pro-
vide a degree of interoperability among networks of different types also pro-
vide us with a useful template for building a flexible prototype system.

The hardware testbed used here, for example, consists of several network
nodes connected with a token bus LAN. Each node contains two single-
board computers: one that implements the simulated host functions (the
host) and provides for network loading and data collection and one that
provides high-level control functions for the network hardware (the input/
output processor, or IOP). Additionally, each node contains a network
adapter, whose function is to implement the network protocol.

In this particular case, the network testbed models a general-purpose
serial communication network. With a stable host and IOP design, a num-
ber of different network types can be implemented by using different net-
work adapters and front-end hardware. The network that we will examine
uses a token access protocol. In this protocol, the node that holds the token
has the option to transmit data, if there is message traffic queued for trans-
mission by the host processor. If the node does have a message to send, it
broadcasts the message over the communication bus. All other nodes listen
for their identifying address in the message header and accept the message if

I Chapter 10

308 Hardware Testbeds, Instrumentation, Measurement, Data Extraction, and Analysis

L

Hgure 10.1
General testbed
configuration.

Data analysis
computer

I I I
Node

0

Network
Adapter

Node
1

Network
Adapter

Node
m

Network
Adapter

Token bus

it is destined for them. After the transmission of a message has been com-
pleted, or if there is no message to send, the token is passed to the next node
on the network in a round-robin manner. The next node may or may not
be physically adjacent to the current node. The overall structure of the net-
work testbed is shown in Figure 10.1.

A number of nodes, each with a network adapter, are attached to a linear
token bus and also to a data analysis computer. During a test run, the net-
work bus is used to transfer the simulated load. At the completion of the
test, each node transmits its collected data to the data analysis computer for
synthesis and analysis. Each node within the network testbed has an archi-
tecture, as shown in Figure 10.2.

The host computer serves two functions in this architecture. The first is
to implement part of the layered protocol and to provide a simulated mes-
sage load to it. The second is to collect the necessary performance data for
subsequent analysis. Figure 10.3 shows the general structure of the host
software that implements these functions.

The IOP controls the flow of message traffic onto and off of the network
through the network adapter. It also controls the DMA channels, provides a
standard interface to the host computer, and collects network-specific per-
formance statistics. Figure 10.4 shows the IOP's functional architecture.

As mentioned earlier, it is advantageous to have the testbed components
conform to a layered protocol standard. The testbed under discussion here
implements levels 1 through 4, and part of level 5, of the OSI model for

Hardware Testbeds, Instrumentation, Measurement, Data Extraction, and Analysis 309

Figure 10.2
Testbed node
architecture.

L
r

Figure 10.3
Host software
architecture.

Node
memory

Node bus

Output
DMA

channel

Output data stream

Host
computer

I Network commands
and results

Input/output
processor

Input DMA
channel

I Control and status

Input data stream
Network
adapter

Network media

layered protocols. Figure 10.5 shows how the various components map to
the standard. In the layered model shown in Figure 10.5, the physical level
implements the electrical and physical functions that are required to link
the nodes. The data link layer provides the mechanisms necessary to reliably

Simulation
driver

Data analysis
interface

Message
definition

Message
transmission

Communication
Control

I To/from lOP

Data
collection

I Chapter 10

310 Hardware Testbeds, Instrumentation, Measurement, Data Extraction, and Analysis

L
r -

Figure 10.4
IOP functional

architecture.

To/from host

Host
Interface

Figure 10.5
Testbed/ISO

correspondence.

DMA
control

Network
control

Monitor
functions

To/from network adapter

transmit data over the physical link. Level 3, the network level, controls the
switching of data through the network. In networks with multiple transmis-
sion paths, the level 3 function controls over which links a message will be
transferred. At the transport level, an error-flee communication facility
between nodes is provided. Session control involves the initiation, mainte-
nance, and termination of a communication session between processes.
Level 6 provides any data translation, compaction, or encoding/decoding
services that may be required by the application. At the top resides the
application, which is any process that uses the communication facilities.

For the example network, levels 1 and 2 provide physical connection via
coaxial cables, the serialization and packing of data, and the synchroniza-
tion and detection of data onto and off of the network. Since the network

ISO/OSI Level Test-bed

Level 7: application

Level 6: transformation/presentation

Level 5: session

Level 4: transport

Level 3: network

Level 2: data link

Level 1" physical

simulation driver

not implemented

partially implemented

lOP

network adapter

10. I Derivation of performance evaluation parameters 31 I

I 0 . 1

discussed here is a global bus, there is no need for the switching functions of
level 3. In cases where this is a factor, however, the function would be
implemented in the IOE Transport control is best implemented in the IOP,
because it relieves the host of performing error detection and retransmission
and of managing individual message packets. Part of level 5 is implemented
in the host so that messages can be assembled and queued for transmission
to other nodes. Mechanisms for establishing interprocess connections are
not implemented.

The network that we will study as an example requires the acknowledg-
ment of each message packet from the receiver. A missing or bad acknowl-
edgment results in the retransmission of the packet in error. Messages are
addressed to logical process identifiers, which are mapped to each node
upon initialization.

In the testbed model, a sequence of messages is treated as a series of
time-ordered events. The event times are generated in the host according to
a probability distribution that is representative of the desired loading char-
acteristics. The time of message generation is recorded and collected for
postrun analysis. As a message is transferred through the protocol layers and
across the network, it is time-tagged, again for later analysis. In the follow-
ing section, we will illustrate the use of these time tags and other collected
data from a run, derive the performance evaluation parameters of interest,
and show some experimental results that exemplify the techniques.

Derivat ion of per formance
evaluat ion parameters

As mentioned earlier, the message traffic for the network under examination
is generated in the host. A queue of messages awaiting transmission is
implemented in the node memory shown in Figure 10.2. A message is,
therefore, said to enter the network from the host processor and to exit
through the same.

After entering the network, the message is broken into a series of pack-
ets, each of which is transmitted serially by the network adapter under the
control of the IOE Only one network adapter may have control of the bus
at any one time (i.e., only one may transmit at a time). This serial access is
controlled by the circulating token. Thus, the network represents a single-
server queuing system, where the service provided is the message transmis-
sion. All messages in the system are of the same priority so that the system
has only one customer class.

I Chapter 10

312 10.1 Derivation of performance evaluation parameters

y

Figure 10.6
Conceptual

network server.

Arrival host 1
arrival host 2

arrival host k
Network queue Network server

Because access to the network is serial by node and because the only
server in the system is the network itself, we can consider all message packet
arrivals to the server as originating from a single queue. Thus, this single
conceptual queue contains the combination of all messages in the individ-
ual message queues, ordered by time. Figure 10.6 illustrates this concept.

For this example, we will assume that messages arrive at the server
according to a Poisson distribution. Thus, the probability that we get n
arrivals at host i in an interval of length t is given as:

P(n arrivals in interval t) - (~it)ne-kit
n!

(10.1)

where ~i is the average interarrival rate at host i. For the Poisson distribu-
tion, the time between arrivals is exponentially distributed, and the interar-
rival time for messages at host i is generated as"

Ai --1/~ i (10.2)

The average interarrival time for the conceptual single network server,
then, can be represented as:

k
Ai -- E l/~i (10.3)

i=1

We can represent the state of the system during the observation period as
the number of messages awaiting transmission through the network.
Because of the property of the Poisson arrival process whereby the probabil-
ity of no more than one arrival or completion in any time period
approaches one as the interval length approaches zero, the state transitions
satisfy the one-step assumption. That is, the system state only transitions to
neighboring states. A state is denoted, n(t), and defines the number of mes-
sage packets awaiting transmission at time t.

We will perform an analysis that is based upon the operational analysis
techniques discussed in Chapter 7. The quantities for this evaluation are as
follows:

10.1 Derivation of performance evaluation parameters 313

W--Waiting time for a message packet measured from arrival into
the network queue until the completion of transmission

B---Busy time for the network defined as the total time that there is at
least one message packet in the system

These quantities are derived from measurements of three basic quantities
measured by instrumentation hardware and software in the testbed. The
basic measured quantities are as follows:

A(n)~Number of arrivals into the system when there are n message
packets in the system

C(n)--Number of completions when there are n message packets in
the system

T(n)~Total amount of time when there are n message packets in the
system

Define the total over all n of each of the previous quantities as follows:

k

A= ~A(i) (arrivals)
i=0

(10.4)

k

C=~C(i) (completions)
i=0

(10.5)

T= ~T(i) (observation period) (10.6)
i=0

In the previous summations, k represents the largest number of message
packets awaiting transmission during the observation interval. If we assume
flow balance, the total number of arrivals will equal the total number of
completions during the observation period. The waiting and busy time
defined earlier can be defined in terms of these quantities as:

W-~iT(i) (10.7)
i=0

k
B-~T(i)=T-T(O)

i=l
(10.8)

Along with these measures, we obtain three additional measures: mes-
sage transmission time (tx), message arrival time (ta), and message reception

I Chapter 10

314 10.1 Derivation of performance evaluation parameters

Figure 10.7
Message

transmission times.

message)

Transmitting
host

lOP

Network
adapter

ta tr

Receiving
host

lOP

Network
adapter

I network I

time (tr). These measures are shown in relation to a message transmission in
Figure 10.7.

As in Chapter 7, we define some performance parameters in terms of the
basic operational quantities. These are summarized as follows:

Mean queue length: N = W~ T (10.9)

Mean response time: R - W / C (10.10)

Utilization: U = B I T (10.11)

Mean job service time: S - B/C (10.12)

Network throughput: X - C/ T (10.13)

Network service time: S - ~ tn/C where t n - t r - t~
All

messages

(10.14)

The first five quantities are standard operational analysis results. The last
relates to the performance of the transmission mechanisms, ignoring the
queue wait time.

10.2 Network performance tests 315

1 0 . 2 N e t w o r k p e r f o r m a n c e t e s t s

An analysis run is performed on the testbed by initializing all network hosts
with a known arrival rate generator and then by using the generated mes-
sage traffic to load the network while collecting the operational measures
defined previously. After the run, the measures are combined and the
desired performance measures are calculated.

The example test performed on the network testbed was formulated to
give an indication of when, for a certain network configuration, the net-
work becomes saturated (i.e., the network utilization approaches 1). For the
example shown here, packet lengths of 200 and 400 bytes were tested with
three nodes generating network traffic. The arrival rates at all three nodes
were set up to be equal, and this rate varied from approximately 600 packets
per second to approximately 15,000 packets per second. A test run was
made for each of several arrival rates in the interval.

The mean queue length of packets awaiting transmission over the net-
work for various arrival rates is shown in Figure 10.8. The values for each
run using the measured values for T(i) and the queue lengths at each arrival
time are found through a combination of equations (10.6), (10.7), and
(10.9). Similarly, the mean response time was calculated using equations
(10.5), (10.7), and (10.11) and is plotted in Figure 10.9.

Figure 10.8
Mean queue

length

Mean queue length (packets)

Packet
length = 200 bytes

Packet S
I =

I I
1,800 8,400 15,000

Mean system arrival rate (packets/sec)

I Chapter 10

316 10.2 Network performance tests

y

Figure 10.9
Mean response

time.

Figure 10.10
Network

utilization.

3 0 -

2 0 -

1 0 -

Response time (msec)

1,800

Packet ~ Packet
length = 200 bytes ,e

I I
8,400 15,000

Mean system arrival rate (packets/sec)

The utilization curve, shown in Figure 10.10, illustrates the percentage
of the available data bandwidth that is being used to transmit message pack-
ets. From this graph, it can be seen that the particular network that we are
analyzing approaches saturation (i.e., 100 percent utilization) rather quickly
for the arrival rates and packet sizes shown.

Network utilization (%)

Packet

1 0 0 % - - ~ - 7

80%- ~ * ' '

6 0 % - "I

40% -

20% --

I

length = 400 bytes

•
Packet
length = 200 bytes

1,800 8,400
Mean system arrival rate (packets/sec)

15,000

10.2 Network performance tests 317

L , i v

Figure 10.11
Mean system
service time.

500 -

400 -

300 -

200 -

100 -

Mean service time (msec)
Packet
length = 400 bytes

Packet
length = 200 bytes

I I
1,800 8,400 15,000

Mean system arrival rate (packets/sec)

Figure 10.11 shows the effect of an increased arrival rate on service time.
In this case, we have defined service time as the system busy time per com-
pletion, where the busy time considers the time a packet spends in the
queue as well as the time it spends in transmission. When the system is sat-
urated, however, there is always a packet ready to transmit, and so the queue
fall-through time is hidden by this fact. Figure 10.12 illustrates this effect,
which is known as pipelining.

y

Figure 10.12 Time

Pipeline effect on 1
queue fall-through

time. 2

Queue positions Transmission

Packet 1

Packet 2

Packet 3

Packet 4

Packet 1

Packet 2

Packet 3

Packet 4

Packet 1

Packet 2

Packet 3

Packet 4

I Chapter 10

318 10.2 Network performance tests

Figure 10.13
Network

throughput.

Figure 10.14
Network service

time.

8,000-

6,000-

4,000

2,000

Network throughput

Packet
length = 200 bytes

I
1,800 8,400

Mean system arrival rate (packets/sec)

Packet
length = 400 bytes

I
15,000

In Figure 10.13, the network throughput is plotted against the system
arrival rate. The results show that after saturation, network throughput for
this type of network remains constant. This is an important property for
some systems, especially since some network protocols cause degraded
throughput under increased system load.

800 -

600 -

400 -

200

Network service time (msec)

f

Packet
length = 400 byte

Packet
length = 200 bytes

/

1,800
I

8,400
Mean system arrival rate (packets/sec)

15,000

10.3 General methods of data extraction 319

10.3

The final graph, shown in Figure 10.14, shows the time for a message to
propagate through the network. This time does not include the queue wait
time. When the system is lightly loaded, this time will include the time for
the token to travel around the network. Under heavy load, the time
includes the delay associated with transmissions of message packets at other
nodes.

This example has served a dual purpose: to illustrate the usefulness of
hardware modeling in certain cases and to show the application of some of
the operational analysis techniques discussed in Chapter 7. For hardware
modeling, assumptions about the network behavior can be validated. Oper-
ational analysis enables us to calculate quantities of interest that either are
not directly measurable or that are too difficult to measure without disturb-
ing the actual operation of the network itself.

Genera l m e t h o d s of d a t a e x t r a c t i o n

In the previous section we examined a system used to test system concepts
before the final target system is constructed. Often we are faced with analyz-
ing an existing system. This requires the computer systems analyst to
develop methods for extracting information from a running system and for
running experiments on an existing system.

There are three methods for extracting information from an existing sys-
tem: hardware monitors, software monitors, and accounting software (e.g.,
the operating system). Measurements for performance analysis are typically
extracted using either hardware or software monitors specifically set up for
the measurements of interest. Depending on what parameters are of inter-
est, we may be able to measure them directly, or we may need to obtain the
measures from intermediate measurements.

Most computer systems, even your PC, provide means to determine
resource utilization and a variety of other useful measurements. If the sys-
tem is a timesharing system, one can typically determine how much CPU
time was used by a process, how much memory it consumed, and possibly
even how much time was spent in I/O processing. Information such as the
number of users logged on to the system, number of I/O accesses per-
formed by a user, page faults in memory, and active time for a process can
be obtained.

A problem with software developed for system accounting purposes is
that it may not provide information concerning the system software com-
ponents, such as the operating system. In many systems, the time spent by

I Chapter 10

320 10.3 General methods of data extraction

the operating system doing its tasks may actually represent the lion's share of
resource utilization. For example, most PCs will spend the majority of their
time in the operating systems idle process. Due to this limitation most sys-
tem accounting packages will not suffice in aiding us in analyzing a system's
performance. Some of the newer operating systems provide users with many
more tools for determining system resource utilization. For example, the
task manager of most of the Microsoft products provides fairly good capa-
bilities to monitor resource use and system performance. This package,
however, is more closely related to software monitoring than to accounting
software.

Software monitors utilize a collection of code fragments embedded in
the operating system, or applications program, to gather performance data.
The monitoring software must be kept to a minimum in order that its
impact on the running system being measured is minimal. The main modes
to construct software monitors use either a sampling or event approach. In
the sampling approach, monitor code fragments are invoked periodically to
determine the status of the system. Each of the monitoring code fragments
has a specific function. One may be examining memory use, and another,
CPU or I/O. Using the retrieved information, the monitor can over time
construct a fairly accurate image of the systems behavior. The problem with
sampling is that some parameters or events of interest may be missed if the
sampling period does not fall into their path. The advantage of this
approach, however, is its simplicity and lower systems impact. By changing
the sampling frequency the load on the system can be increased or reduced
as needed. The main design issue when developing a sampling scheme is to
determine the appropriate sampling frequency and measurement points
within the system.

The event design approach for a software monitor requires that the
designers of the monitor have an understanding of the events within the
system with which they can synchronize monitoring. For example, CPU
task switching is an important event, as is I/O and memory allocation and
deallocation. In order for the events to be monitored, the operating systems
code must be altered. The code must be adjusted so that when the event
occurs, required information can be extracted by the operating system and
recorded to a file. For example, we may wish to record what process was
allocated or deallocated memory, what process is acquiring the CPU, and
the times associated with these events. The event files can then be processed
at some later time to extract the performance measures for the system. If we

can define all events of interest and provide handles into the operating sys-
tems code to extract information about them, then we can construct a fairly

10.3 General methods of data extraction 321

good model of the system under study. Using event traces one can deter-
mine the duration of every CPU service time and the resources consumed
during each of these cycles.

If we do not have access to the operating systems code, then this
approach is not feasible. One could augment applications code and be able
to extract timings for this code. This would provide at least a measure of the
duration of time an application holds a resource and can be used as a means
to assess system performance, if the application is designed appropriately.
The problem with all these approaches is that they will cause their own
impact on systems performance. The sampling software will consume
resources and cause additional delays to be added to the performance mea-
surements, possibly causing them to indicate erroneous values. Studies have
shown that a software monitor can consume as much as 20 percent of the
systems resources, making the performance results questionable. If we
choose the type of events carefully and limit added code to the minimum
required to capture information, the overhead can be dropped to approxi-
mately 5 percent. The tradeoff is fidelity of information versus the overhead
of the measurement software.

Besides the problem with impacting system operations, software moni-
tors have other problems. The trace method of data collection can lead to
large volumes of information to store and process, making it hard to use
effectively. Software monitors also must be configured to fit into a system's
architecture, making them one of a kind implementations. Due to this lim-
itation, there are no commercially available software monitor general archi-
tectures. In addition, implementing software monitors requires significant
expertise in operating systems coding, which is not an everyday capability
for most programmers. Due to this limitation, this technique is not used
very often. We are left to use the monitoring capabilities delivered with an
operating system.

Hardware monitors provide another means to access performance infor-
mation. A hardware monitor is composed of a collection of digital hardware
connected to the system under measurement. For example, an oscilloscope
is a general-purpose hardware monitoring device constructed to allow for
the monitoring of hardware activities. Hardware monitors can be as simple
as a few gates to entire computer systems including all the peripherals.
Hardware monitors are readily available from commercial sources.

Hardware monitors must be connected in some way to our system in
order to collect data, which are in the form of signals. The points we attach
the hardware monitor to represent our test points or probe points. The test
points are places in the computer system under examination accessible for

I Chapter 10

322 10.4 Testbed and model workloads

10.4

measurement. For example, we may wish to probe the interrupt lines of the
CPU, so we can determine when task switches are occurring. We may wish
to examine specific memory locations to test when values cross some point
or are altered. By attaching the monitor's test probes at these points, we can
observer systems behavior over some time flame. We can also use multiple
test points in conjunction with each other to synchronize when to extract
signals based on the measurement or detection of some other test point.
The measurements are typically done without adding any additional over-
head to the measured system, a distinct advantage over the software moni-
toring approach.

A difficulty with hardware monitors is knowing when to use them and
where to place the test points. For example, where do you measure to know
if a CPU is busy? How do we know it is busy with an operating system
function or an application? Most systems vendors have developed their
components and systems with ready-to-use monitoring points to aid in sys-
tem debug and repairs. This makes it relatively easy to determine where to
place our test points. If these test points are not available, then hardware
monitoring will be very difficult to implement.

The monitoring devices must have the capability to collect measured
test point data and store these data for future processing and analysis. This
is necessary so that we can determine the utilization of tested components
within a system: the number of measured units that pass a point over some
time frame--for example, how many jobs are presented to the CPU for
processing over some period of time, and what percentage of this time the
CPU was busy or idle.

The limitation with hardware monitoring is that we can only measure
hardware signals and possibly the contents of registers or memory (if
allowed). We typically will not know what the operating system is specifi-
cally doing at the point we are measuring. Due to this limitation, hardware
monitors are usually used in conjunction with some form of event trace
software in order to allow for later interpretation of hardware operations.

Testbed and m o d e l w o r k l o a d s

The term workload defines the load placed on a real system (typically mea-
sured or observed on a computer system while it runs normal operations),
while the term test or model workload denotes a computer system's load con-
structed and applied to a system for performance studies (typically synthe-
sized using characteristics from a real workload). For most modeling
projects the use of a synthetic workload makes more sense, since we can

10.4 Testbed and model workloads 323

control the load applied to the experiments. By controlling the load applied
to a computer system under analysis, we can possibly predict the outcome
of the experiment or force the experiment to test specific components of the
system. In addition to this reason, synthetic workloads do not possibly con-
tain real information, which may be sensitive or valuable to the system
under study, and its compromise or loss would be significant. Once a valid
synthetic workload has been developed, it can be reused to study additional
systems. An example is the Transaction Processing Consortium (TPC)
workloads developed to study database systems. These TPC workloads have
been used by vendors and customers to study various database systems and
to determine which is better for different applications. Some of these work-
loads have been specialized for data mining or for distributed databases and
other specialized applications.

To study computer architectures, a variety of instruction workloads have
been developed. These are focused on low-level operations and consist of
mixes of loads, stores, comparisons, branches, additions, subtractions, float-
ing-point operations, multiplications, divisions, shift operations, logical
operations, and register operations. These instruction mix workloads have
become standardized for specific architectures such as PCs.

Other workloads do not focus on low-level operations but wish to exam-
ine more coarse-grained architectural concepts. These would be developed
using high-order languages and would be designed to test things such as file
transfer, task switching, memory management policies, and other operating
systems components.

Some popular benchmarks include the TPC benchmarks described pre-
viously for examining database systems, the Sieve benchmark used to exam-
ine PCs and microprocessors, Ackerman's function for testing procedure
call mechanisms in computer systems, Whetstone kernel developed to test
low-level assembly-level operations, the Linpack package to test floating-
point operations, the Drystone benchmark for testing low-level integer
operations, and the Spec benchmark suite for measuring engineering-type
applications (e.g., compilation, electronic design, VLSI circuit simulation,
and complex mathematics manipulations such as matrix multiplications) on
a computer system.

Given that all of these and other workloads exist, modelers must still
determine which to use or which method to use in constructing their own
workload for a given modeling project. There are four main considerations
applicable when selecting a workload for a project. They are the computer
systems services exercised by the workload, the level of detail to be applied,
closeness to realistic load, and timeliness.

I Chapter 10

324 10.4 Testbed and model workloads

The most important component of the workload selection is to deter-
mine the services one wishes to examine. Making this list of services can be
very daunting and time consuming but is time well spent. First, one must
determine the system under test. This represents the complete set of com-
ponents making up a system being studied. Often we may be focusing on
some single component or some small set of components for comparison,
called the components under study. For example, an operating system
design team may be interested in different process scheduling algorithms on
the total operating systems performance. The determination of the system
and its components is a very important step in workload development and
should not be trivialized.

An example will illustrate the service's concept. We are interested in this
example: comparing an off-line backup paging storage system using disk
drive arrays (e.g., such as one would find in a large database log subsystem).
The system consists of several disk data systems, each containing multiple
disk drives. The disk drives have separate read and write subsystems. Each
subsystem uses fixed magnetic heads for these operations. If we specify the
architecture from the highest level and work down to lower levels, the serv-
ices, factors, metrics, and workloads are defined as follows:

1. Backup system

• Services: backup pages, backup changed pages, restore pages,
list backed-up pages

• Factors: page size, batch or background process, incremental
or full backup

• Metrics: backup time, restoration time

• Workload: a database system with log pages to be backed u p ~
vary frequency of logging

2. Disk data system

• Services: read/write to a disk

• Factors: type of disk drive

• Metrics: speed, reliability, time between failures

• Workload: synthetic program generating transaction-like disk
I/O requests

3. Disk drives

• Services: read record, write record, find record

10.4 Testbed and model workloads 325

• Factors: disk drive capacity, number of tracks, number of cyl-
inders, number of read/write heads

• Metrics: time to find record, time to read record, time to write
record, data lost rate, requests per unit time

• Workload: synthetic program generating realistic operations
requests to the disk drives

4. Read/write subsystem

• Services: read data, write data

• Factors: data encoding technique, implementation technology

• Metrics: I/O bandwidth, density of media

• Workload: read/write data streams with varying patterns

5. Read/write heads

• Services: read signal and write signal

• Factors: composition, head spacing, record gap size

• Metrics: magnetic field strength, hysteresis

• Workload: reads and writes of varying power strengths, disks
moving at various rotational speeds

After we have completed the specification of the system and the compo-
nents of interest, we need to determine the level of detail required in pro-
ducing and recording requests for the defined services. A workload
description can be as detailed as providing definitions for all events in the
system or can simply be an aggregate or generalization of this load. Some
possibilities for the detail may be average resource demand, most frequent
request, frequency of request types (e.g., 25 percent reads and 75 percent
writes), a timestamped sequence of specific requests, or some distribution of
resource demands.

Typical modeling projects begin by using a variant of the concept of
most frequently requested service. For example, in a transaction processing
system we may use a simple debit-credit benchmark from the TPC bench-
marks. Such a selection would be valid if a particular service is requested
much more than others. A second alternative is to be more specific and con-
struct a workload by selecting specific services, their characteristics, and fre-
quency. The Linpack package is such a workload. It selects very specific
computer operations in very prescribed patterns to test specific components
of the system. The next alternative is to construct a time stamped record,

I Chapter 10

326 10.5 Experimental design

where each record represents a specific request for a specific service along
with details of the actual access (such a description could be constructed by
taking a trace of all activities of an existing system). In most cases this type
of workload may be too difficult to construct and to validate for use in all
but the most complex modeling projects. The aggregate resource demand
approach is similar to what we would expect to see in an analytical model.
We look to characterize each request for services as averages or distributions.
For example, each request may be characterized as requiring 50 units of one
particular resource and 25 units of some other and making these requests
every 1,000 units of time.

No matter which of these approaches we use, the modeler must deter-
mine if the selected load is representative of the real system load. Typically
we will be interested in determining if the service request's load has similar
arrival characteristics, resource demands, and resource utilization demands
as the real load.

Finally, a developed workload should faithfully model the changes in use
patterns in a timely manner. For example, the TPC benchmarks have con-
tinued to evolve to meet the needs of changing database systems design and
use. The original TPC workloads were designed for the "bankers" database
problem. That is, they simply were looking to provide transaction loads to
well-structured, simple, flat relational database specifications. They were
record oriented and had no dimensions beyond the simple relational model
of the day. These have evolved now to include benchmarks for the new
object relational databases and for data warehouses and data mining sys-
tems. Other important considerations in developing a workload include
repeatability, external components impact, and load leveling. Repeatability
looks at a workload's ability to be reproduced faithfully with little added
overhead. External components impact looks to capture and characterize
impacts on the system under study by nonessential components. Finally,
load leveling may be of interest if our study wishes to examine a system
under best-case or worst-case scenarios.

10.5 Experimental design

Once we have a testbed to study a computer system and a workload to load
the testbed with, we need to design experiments that will help in discover-
ing the performance limitations we as modelers are focused on. A correct
experimental design will provide the maximum analysis information with
the minimal number of experimental runs required. Some terminology
must be introduced to make this discussion meaningful. A performance

10.5 Experimental design 327

variable is a measured outcome for an experiment for a single component,
process, or possibly an entire system. A factor is a variable that may have an
impact on the performance variables and typically represents items that can
be varied during an experiment. The steps are values a factor can take on
during an experimental sequence of runs. For example, a CPU's memory
may be adjusted from a minimum value to a maximum value in some dis-
tinct number of discrete steps. Each of these steps represents a value for the
factor under study. Factors need not all be important. Typically, experi-
ments on computer systems will have multiple factors, some very important
(such as CPU speed) and others only peripherally important (such as termi-
nal speed). Experiments may be repeated and are then referred to as repli-
cants. An entire performance study for a particular system consists of a
number of discrete experiments when taken together this set of experi-
ments constitutes the experimental design. Factors may have a correspon-
dence to each other and must be defined as having a dependency.

Experimental design comes in a variety of ways. Three typical designs
are the simple, fractional factorial, and full factorial designs. In a simple
design, we start with a fixed configuration and vary one factor at a time to
determine how this factor impacts performance. For example, when mea-
suring the performance of a virtual memory management component, we
may wish to study systems design by varying the size of the available pri-
mary memory. By running separate experiments, each with all conditions
held stable except the memory size, we may be able to determine some use-
ful information concerning the virtual memory management systems opera-
tions. The total number of experiments required for a simple design is
simply the sum of the number of experiments for each factor. For example,
if we wish to study the memory management system with three different
memory sizes, using three separate CPUs and three different disk drives
using three workloads, we would need:

N - (3 memory sizes)+ (3 CPU types) (10.15)

+ (3 disk drive models) + (3 workloads) - 12

total experiments to be run. This form of experiment would give us some
information but may not indicate to us how the various elements interact
with each other. To determine how the factors interact we would need to
run either fractional factorial experiments or full factorial experiments. In
the fractional factorial experiments we may wish to examine only a few of
our factor terms actively against each other. In this case we would require
additional numbers of experiments. In our example, if we are interested in
how the CPUs interact with the memory, we would be required to test all

I Chapter I0

328 10.6 Data presentation

10.6

combinations of these against each other. This would require additional
experiments to be run as multiples of each other. For our simple example we
would now require:

N - (3 memory sizes) (3 CPU types) (10.16)

((3 disk drive models) + (3 workloads)) - 54

experiments to be run versus the original 12 for the simple design method.
For a full factorial experimental design we simple vary all of the factors
against each other. In this case we would now require that we perform:

N - (3 memory sizes)(3 CPU types) (10.17)

(3 disk drive models)(3 workloads) = 81

specific experiments to look at how all of these factors affect each other over
their entire range of values.

When doing experiments using factorial designs it is also important to
determine how necessary the various factors are in relation to each other.
This is typically determined using allocation of variation. In this method
the importance of a factor is measured by the portion of the total variation
in the performance variable explained by this factor. For example, if two
factors explain 90 percent and 5 percent of the performance variation,
respectively, then the second term can be considered to have little effect on
the performance variable. The sample variance for a measure is found as:

#exp

Sample variance-s 2 - ~ (f / - f) 2 / (# e x p - 1) (10.18)
i=1

where f i s the mean response time for all of the experiments combined for
our measured performance variable. Many more such correlations between
information must be examined and understood if we are to make sense of
the performance information being returned by our models. More details
on how to interpret such information can be found in the references.

Data presentation

If one cannot prepare and present the results of a performance study clearly
and simply, then the study would be deemed a failure, no matter how much
effort was put into the work. The aim of every performance study is to aid
the analyst and associated client in making a decision regarding the com-
puter system being studied. To aid in this analysis the modeler must possess

10.6 Data presentation 329

the ability to determine what medium is best to use in making specific
information available~for example, words, graphs, pictures, charts, anima-
tion, or some other means amenable to the domain being studied.

The old saying that a picture is worth a thousand words is one the mod-
eler must take to heart and strive to realize. Graphics are one of the best
means to convey differences between studied components or systems. It is
relatively easy to see that one CPU performs better than another when they
are shown clearly in graphical form and the graph clearly depicts the relative
performance differences. There are many kinds of graphics available to
depict such comparisons~for example, line graphs, bar charts, pie charts,
histograms, and Gantt charts. In all cases it is critical that we understand
what is being plotted and why, in order that we select the correct variables
and styles in which to represent them.

One such value that impacts the choice of which chart to use is the type
of variable displayed. Is the variable being plotted quantitative or qualita-
tive, is it ordered or unordered, is it discrete, or is the value continuous?
Qualitative variables are those where there is no specific measure present,
merely a category. For example, microprocessors, servers, and mainframe
computers are all classes of computers, but there is no measured value when
we use these terms alone. Quantitative values are those that we can measure
explicitly~for example, the number of instructions per second or the num-
ber of I/O requests per period. We would probably use a line graph to show
the time-based relationship between a continuous set of variables. On the
other hand, if we had discrete value variables, we may decide to use a histo-
gram or bar chart to depict these.

When deciding what form to use it is important that the modeler keep a
few important concepts in mind. First, choose a reporting mechanism that
will require minimum effort from the reader. The differences you wish to
depict should be clearly defined and displayed so that the client will have no
problem coming to the same conclusion that the modeler did after the
experiments were run. Make sure that all pertinent information is provided
on the graph so the reader need not look elsewhere to fill in the blanks.
Keep it simple. Even though the second item indicated to put all pertinent
information on the graph, one also must make sure that no nonuseful infor-
mation finds its way onto the graph. Try to use standard methods of
describing and displaying information. For example, the origin of the graph
is expected by most people to be labeled as the zero point in both dimen-
sions. Finally, try to avoid ambiguity. For example, make sure all axes are
labeled clearly (e.g., use names, not symbols), show the scales used clearly
(e.g., log scales, decimal, etc.), and use clear differences to depict different

I Chapter 10

330 10.7 Summary

10.7

values of variables (e.g., CPU type 1 is red, CPU type 2 is black, etc.). The
scales being used should be set so they clearly depict the differences. This
last important concept should not be overlooked. Choosing an inappropri-
ate scale may make a claim look better or worse than it really is. The inter-
ested reader is pointed to texts on statistics that focus on data representation
for more complete discussions and examples of some of these concepts.

Summary

In this chapter we introduced many new concepts. The first was the use of
testbed systems to allow the modeler to construct subsets or even entire sys-
tems to be used as environments in which to iron out the performance
issues with new or existing designs before they are built or before an existing
system is altered. This presentation was then followed by an example of a
network testbed used to analyze protocols. This example helped the reader
to understand the ways in which a testbed can be effectively used as part of
a larger modeling effort.

This discussion was then followed by a general discussion of measure-
ment techniques applied within testbed and existing systems. The primary
techniques described are hardware monitors and software monitors. The
benefits and shortfalls of each technique were discussed along with exam-
ples of how they may be applied within a modeling project.

The discussion then changes to looking at the development of work-
loads to drive testbed environments. We focus on the types of workloads
and how the modeler decides on which level of detail to focus the workload,
how to determine the system and components the workload is to stress, and
what types of services are to be mimicked. This is then followed by a pres-
entation dealing with structuring the workload as either an average load, a
real load, or something in between. We follow this up with a discussion of
testbed result presentation and some concepts concerning good practice in
presenting performance study outputs to the client.

/ /

System Performance Evaluation Tool
Selection and Use

Once we have decided to perform an assessment of performance for some
target computer system, we still must decide which of the techniques we
have discussed is the most appropriate for the proposed performance study.
Many different considerations must be taken into account before we make
such a decision.

I1 .1 Tool se lec t ion

The four techniques for computer systems performance evaluation include
analytical modeling, Petri net modeling, simulation modeling, and empiri-
cal or testbed analysis. Depending on the criteria placed on the computer
systems analysis, some rough selection metrics can be determined. The
most important criterion deals with the stage of the computer systems life
cycle. For example, measurements are only available as a modeling possibil-
ity if the system already exists, or something similar exists. On the other
hand, if it is a new computer system, which has not been built, then analyt-
ical modeling, Petri nets, or simulation modeling makes more sense. If we
are in the earliest phases of the life cycle, when we are examining tradeoffs
on many components, we may wish to use analytical modeling, since it can
provide relatively quick answers to tradeoff questions, allowing us to deter-
mine early on if a subset of n alternatives is best for more detailed modeling.
Once we have completed this rough analysis, and narrowed our choices of
alternatives to some smaller subset, we would probably wish to apply Petri
nets to further refine our choices. Petri nets add the ability to model and
trade off concurrency, conflict, and synchronization, something impossible
to accomplish with analytical modeling. Once we have completed our anal-
ysis using Petri nets and have further narrowed our choices to only a few
components, we could next look toward simulation. Simulation provides
the ability to produce very detailed models of a target system or just some

331

332 I I.I Tool selection

specific contentious component. The goal at each of these early stages of a
computer system's design and development is to narrow the number of
choices to allow us to optimally choose the best architecture and compo-
nents for a given computer system's applications requirements. Finally, once
the system is constructed, we would apply empirical modeling. This would
allow us to verify that our early modeling was correct and to possibly iden-
tify areas where our new system could be further refined and improved
before delivery to a customer.

The next criterion for consideration when deciding on which modeling
tool to use is the time we have to do the modeling task. In most situations
a model is requested because some problem has occurred, and an answer to
it was needed last week. There is a saying that time is money, and in com-
puter systems modeling it is no different. If we have all the time in the
world to perform our evaluations, then we probably would walk through
each model, refining our analysis as was defined under the criterion of the
time stage. The problem is that we typically do not have such a luxury. If
time is short, then we typically can only use analytical or Petri net model-
ing, with analytical modeling winning out if time is very short. If time is
important, but not critical, then we would look at Petri nets and simula-
tion as being the next models of choice. Petri nets take less time to develop
than simulations but would also provide us with possibly less detailed anal-
ysis information. If the system exists, then measurements may be appropri-
ate over simulation modeling, if the number of alternatives we are looking
at is small. If the number of alternatives is significant, then simulation
would win out, even though it typically would take more time than mea-
surements.

The third modeling tool selection criterion is referred to as tool avail-
ability. When we say availability we mean many different aspects. The first
to come to mind is availability of a computer-based tool. For example, if we
had a tool allowing us to simply define queuing models and to vary model-
ing factors and system component characteristics, then analytical modeling
would be much easier to apply. On the other hand, if no such tool exists
that can support the kind of model we are proposing, then by availability
we imply that the modelers have the capability and knowledge to construct
an analytical model and perform the tradeoff analysis using this model.
Likewise, if we are looking to use Petri nets, we first would check if existing
computer-based tools exist. Second, do we have modelers who have knowl-
edge of the tools, and, third, if no tools exist, does our modeling staff have
the knowledge to construct a Petri net model of the target computer sys-
tem? If we are looking toward constructing a simulation model, we would

I I. I Tool selection 333

first look to see if a simulation tool exists off the shelf that provides the class
of model we require. For example, one can readily purchase a number of
simulation tools aimed at network analysis, possibly some for architectures
and probably none for operating systems. If a specific model exists, we must
determine if it meets the needs of the modeling task, and, if not, can it be
tailored to meet the demands. If existing tools do not suffice for the model-
ing task, we must select a general-purpose simulation language, or general-
purpose programming language, and construct our simulation model from
scratch. This is a time-consuming and laborious task, requiring perform-
ance modelers with the requisite simulation design and programming skills.

The selected modeling tool's ability to deliver accurate information con-
cerning the system under analysis is also very important. Regarding accu-
racy, we want to know if the model delivers information that would closely
map to the target system. Analytical models require the modeler to make
many tradeoffs and assumptions to simplify the development of the model
and to make it tractable. Such simplifications make the results also suspect.
Petri nets suffer from similar problems, but they are not as severe as in the
analytical model case. Simulations allow the modeler to incorporate more
details from the target computer system and may require less assumptions,
thereby mapping closer to the target system. Measuring the target system
may provide the best results but is also subject to possible problems caused
by the measurement technique applied. If we use software monitoring, the
monitor load on the system may be significant enough to throw off the
accuracy of the results significantly. This criterion must not be overlooked
and must be fully understood when making a decision on selecting a mod-
eling tool to use.

The fourth criterion applicable when deciding on which modeling tool
to use is that of the model's ability to compare different alternatives simply
and completely. If a model does not provide the capability to alter parame-
ters and check alternatives, then it is not providing the capability required
of a performance tradeoff study. The least flexible tool is the testbed and
empirical models. These are very difficult to change, since we would require
possibly multiple components being integrated into the environment to test
alternative components or, if we are comparing entire systems, having these
entire systems available. Analytical models can be quickly altered to exam-
ine different configurations or components and, therefore, make an attrac-
tive tool for analysis requiring numerous tradeoff studies. Petri nets are also
similar to analytical models and lend themselves to fairly easy alteration.
Simulation models can be constructed so that they also provide the ability
to trade off various components against each other. For example, if we are

I Chapter I I

334 I 1.2 Validation of results

I 1 .2

trading off memory-management protocols, we could implement them all
in one module, and keep all of the remaining components of the simulation
model unchanged. Such an approach would readily allow us to focus on the
differences each of these protocols would provide in the given system.

A selection criterion often overlooked by the modeling team is that of
cost. Most modeling projects focus on the goal at hand and don't always
treat this project like any other engineering project, where both perform-
ance and cost must be considered. The cost can include the system under
study, the tool to be used in performing tradeoff studies, and the modeling
staff. Intuitively, one can see that if we use empirical or testbed systems as
our tools, the cost will consist of the cost of the actual system, plus the cost
of setting up these systems for measurements and the cost of the perform-
ance assessment staff doing the assessment. These costs can far exceed the
budget for most but the largest system development projects. In addition,
the cost of altering systems between analysis runs may be prohibitive and
may not even be possible. Because of this, simulations are typically used in
large systems analysis projects, where many tradeoff studies are required.
The simulation is much easier to alter and run than the real system or even
a testbed. Finally, analytical and Petri net models may be the least expensive
to produce, since they do not typically require large software developments
or implementations. The major cost in these types of studies would be the
analyst's salary and time.

V a l i d a t i o n o f r e s u l t s

The tool selected must produce results that are correct and consistent and,
therefore, convincing to our client. If the results and assumptions used to
get to them are too far from the expected systems result, the analysis may be
very suspect and will not be used. Analytical results readily fall into this
venue, since most people are skeptical when it comes to the assumptions
and simplifications required to make these models workable. Simulations
also suffer from this at times, due to the nature of simulation model con-
struction. Simulations also typically require the modeler to make tradeoffs
when it comes to specific details. Some of these tradeoffs may make the
model's results less realistic to the client. Also, many simulation developers
suffer from one major flaw. They often do not fully validate the correctness
of their models before they apply them to the problem being studied.

Once we determine which modeling tool to use and have constructed
our model, we still cannot simply begin running our experiments. The
selected tool and model must be validated so we believe the results they pro-

I 1.2 Validation of results 335

duce. The validation of one tool starts by selecting another tool or tools,
and collecting information from the other tools. Using this collected infor-
mation the modeler runs the new tool for the same configuration and com-
pares the results provided by the multiple tools. The results collected from
all the tools should lead the modeler to the same conclusions. There are no
hard and fast rules as to how a validated tool's results should compare point
to point with the tool used for validation. Many simulation studies have
used a measure that looks for aggregate results not to differ by more than 5
percent, give or take a few percentage points.

The validation requires the modeler to look at a variety of components
of the model. First, does the model have a correspondence to the real system
under study? That is, is it a faithful representation of the real system? For
example, if the model has two processors and the real system has one, it is
not a faithful representation. Second, are the assumptions used by the mod-
eler realistic in terms of the real-world system being modeled? Third, does
the model's input parameters and distributions track that of the real system
values, if available? If they are not available, do they track those of some
other model constructed for a similar project that was validated? Finally, do
the results and conclusions from the model map favorably to those of the
measured system or other tools? In addition, do the conclusions from the
model being validated follow those of the real system or other model consis-
tently and correctly?

Each of these questions can be answered in a variety of ways. They can
be determined using expert intuition, by measuring the system and compar-
ing the results, or through analytical results. Expert intuition comes from an
individual modeler who has performed many tests in the past. Using this
wealth of knowledge, the modeler may be able to examine the results and
model and determine if they appear~"in his or her opinion"~to be repre-
sentative of a faithful and correct rendition of the system under study.
These experts are drawn from designers, architects, implementers, analysts,
maintainers, operators, and even users of the systems being studied. What
we do not want is the validation expert coming from the team used to
design the model being validated.

Real system measurement is the most reliable means of model valida-
tion, but it also can be the hardest to come by. This is because the real sys-
tem may not exist yet, or collected information may not exist. Possibly the
measurements for an existing system, if they are available, may not represent
the full spectrum of information needed to corroborate the model's data.
The last method for obtaining the required validation information is by
using analytical results. As long as the model we are trying to validate is not

I Chapter II

336 11.3 Conducting experiments

11.3

an analytical model, this is an available and acceptable means of validating
information. By setting the parameters for a simulation to those of an ana-
lytical model, we should in theory be able to faithfully determine the same
results as those generated by the analytical model.

Conducting experiments

Given that we have selected a tool, constructed our model, and validated
the model, we must next develop our experiments to perform the initially
intended function for the performance study. To develop our experiments
we must have an idea as to what the performance metrics will be (perfor-
mance variables) for the study. We saw previously, in Chapter 8, that to
develop a set of performance variables we must begin by developing a list
of services to be offered by the system under study. Given that we have
done this selection and definition of services, we next must determine all
possible outcomes for the service. For example, each service can have a
request for service pending, be in service, be completing service, or reject-
ing a service request. The results of the service request are to accept the
request for future service, perform the service either correctly or incor-
rectly, or simply reject the request as not being possible. For example, the
lock manager for a database system can accept a request for a lock and
either grant it, delay it, perform the request erroneously, or refuse the lock
request altogether.

If the system performs the request correctly, the performance is mea-
sured as the time taken to perform the service, the rate the service is per-
formed at, and the resources consumed while performing the requested
service. These three metrics relate to the measures of responsiveness, pro-
ductivity, and utilization~all important components of any computer sys-
tem's performance study. These measures have also been altered to show
speed, reliability, and availability. For example, the responsiveness of a trans-
action processing system is measured by its response time. This consists of
the time between a transaction's request for service and the response to the
transaction from the server. The transaction processing systems productivity
is measured by its throughput. The throughput consists of the number of
transactions performed completely during some prescribed unit of time
(e.g., per minute or second). The third measure, utilization, provides a mea-
sure of a resource's business. In the transaction processing example, we
could see what percentage of time the server is busy serving transactions ver-
sus the time it is idle during the same interval of time as the throughput
measure. Using such information we can begin to isolate problems within

11.4 Performance metrics 337

I 1 .4

our system. For example, the service that is the most highly utilized may
represent the system's bottleneck.

If a service is done erroneously, we also wish to capture this information.
Error detection and measurement are important in determining a service's
resiliency and tolerance to errors. For example, in the transaction processing
system, we may want to know what caused the errors and the failure of
transactions being processed. It may be important to know that an error
occurred due to a hardware failure or a software failure, or was caused by
contention or a poor transaction design. Each will tell us something about
the product we are evaluating. If a resource cannot perform the service
function at all, it may imply it is down, or 100 percent utilized. Once again,
knowing what state the resource is in will aid in the determination of its
overall performance.

P e r f o r m a n c e m e t r i c s

In studies involving computer systems we will typically be interested in
many such measures, not simply one for the system. The computer systems
we will model are composed of systems, components, and users. All will
have their own measures reflected, and each provides a different lens into
the performance of the systems as a whole. Some metrics will be systemwide
or global, while others will be localized or individual. There are cases where
optimizing an individual metric will impact the global metric and other
times when it will have little or no effect. Also, the different levels may have
different primary goals. We may be looking for high utilization at one level
and low utilization at another, depending on the goals for the system and
the individual components making it up. This indicates that the metrics for
modeling must be chosen at differing levels so that an appropriate analysis
of the true system performance can be determined. The modeler must
determine the full set of metrics available for some study. Then these met-
rics must be examined in relation to their variability, redundancy, and com-
pleteness. If a metric has low variability, it may be assumed to be static,
removing it from our list of services and measures to consider. If one vari-
able provides the same information another provides, one of them should
be dropped. For example, the queue length is equal to the number in service
plus those waiting for service, so we need not keep track of them all. Com-
pleteness deals with making sure the set of variables provides as reflective a
set as that from the real system.

When modeling computer systems, there are many commonly encoun-
tered performance metrics. The most common are response time (sometimes

I Chapter I I

338 11.4 Performance metrics

I 1.4.1

Figure 11.1
Typical response

time measurement.

called speed, turnaround time, reaction time), throughput (sometimes called
capacity or bandwidth), utilization (sometimes referred to as efficiency or
business), reliability, and cost/performance ratio.

Response t i m e

Response time is broadly defined as the time interval between a user's
request for service and the services return of results, as shown in Figure
11.1. In reality this is overly simplistic and not what occurs. There are many
more components on both sides of the request/response making up the true
measure. If we think about the same transaction processing system we have
used in our previous example, we begin with the user inputting the transac-
tion. We assume this is a single step, but it can be much longer if the user is
using an interactive interface to the transactional service. The database sys-
tem must set up the appropriate data structures and provide resources for
the transaction to execute. The transaction then is executed by the database
engine. The transaction then completes processing and prepares the trans-
action results and sends them off, as shown in Figure 11.2. Each of these
steps, while a bit more complete than the simplistic model, is still only a
partial representation of the full transaction processing cycle in a commer-
cial database system.

Each of these components of the transaction response time is a response
time component. These components are the subparts of the total transac-
tion response time, just as queue wait time and server time represent the job
time in a queuing model.

The response time for a computer system will typically increase as the
load increases. Many measures have been developed to provide rules of
thumb for such scenarios. One, called the stretch factor, is computed as the
expected response time over the expected service time, or:

Stretch factor - E[W]/E[S] (11.1)
This measure is depicted in Figure 11.3. In most real systems we wish to

see this stretch factor to have a computed value of approximately 5. If the

User service Result of service
request request

1 ',
i !

L ~
| - , q , ' - I

, i

! Response time !,

11.4 Performance metrics 339

Figure 11.2
Transaction

processing response
partitioning.

I 1 .4 .2

E[W]

User issues System begins System completes Response
transaction execution execution sent to user

l
i

I

= Execution "q
Setup time time " Completion &

answer packaging

Total response time

factor rises above this approximation, this implies longer waiting times in
relation to service times and, therefore, lower availability of the resource and
higher utilization.

T h r o u g h p u t

The throughput is a measure of the number of items being measured (e.g.,
transactions) that receive service (e.g., complete transaction execution) over
some predefined period of time. For the transaction system we have been
discussing, this would be measured as transactions per second, or TPS. In
computer systems' CPUs, the measure is MIPS, or million instructions per
second. In communications systems it may be MPS for messages per second
or BPS for bits per second. Throughput, as with response time, will grow as
additional load is placed on a system. However, unlike response time, there
will be a point where the throughput will maximize and possibly begin to
degrade, as shown in Figure 11.4. In this figure you will note that the
throughput seems to increase over a wide range of load and then slows as we
reach a saturation point. In the throughput case, the throughput increases
to some maximal level and then levels off. At a critical point in the load,

E[S] response time Hgure 11.3
Stretch factor

compared with
utilization.

• 1 .2 .3 .4 .5 .6 .7 .8 .9

I Chapter II

340 11.4 Performance metrics

Figure 11.4
Throughput curves

V#rSU$ response

curves.

I 1 .4.3

Throughput
70% 90%

Saturation
capacity

range

Usable capacity

Load

where the response time has begun to increase exponentially, the through-
put begins to degrade below the maximum. Such curves are typical of com-
puter systems where there is inadequate service capacity for the presented
load. We always want to keep throughput near its peak, but not too far into
the saturation region, in order that resources stay available for spikes in
load.

Eff ic iency

Another important measure is efficiency. This measure is related to utiliza-
tion and throughput. The relationships look at a ratio of the maximum
achievable throughput compared with the actual throughput:

Efficiency =real throughput/theoretical throughput (11.2)

If we have a processor rated at 100 megaflops (floating-point operations)
and, when run in a testbed we measure 90 megaflops, the processor's effi-
ciency is 90 percent. Efficiency can also be measured for multiple resource
systems. One common use is when looking at the performance speedup of
having one processor versus n processors. Efficiency in this class of environ-
ment is calculated as the ratio of the theoretical throughput times the num-
ber of devices divided by the speed of a single device.

In Figure 11.5 we see that the theoretical efficiency of adding more proc-
essors is a linear curve with an efficiency equal to the number of devices
applied. The real measured curve shows a much different story. The effi-
ciency is not linear and continues to degrade as more devices are added.
This is due to the added overhead involved in keeping the processors effec-
tively utilized in performing tasks.

I 1.4 Performance metrics 341

Figure 11 .5
M u l t i p ro cesso r

efficiency curve.

Efficiency

i eoretical Efficiency

4 : Actual Efficiency

!
0 -"

0] 2 a 4 5 6 7 8 9

Number of Processors

I 1.4.4 Ut i l i za t ion , rel iabil i ty, and avai labi l i ty

The utilization of a resource is a measure of how busy the resource is. It is
computed as the fraction of time the resource is busy servicing clients
divided by the entire time period:

Utilization - time busy/(time busy + time idle) (11.3)

The goal in most systems is not to saturate resources (i.e., keep them
100 percent busy) but to balance the utilization so that no device is more
heavily utilized than another. In principle this is the goal, but in reality this
is very difficult to achieve. Utilization is an important measure when exam-
ining systems. Different devices in the system have different average utiliza-
tion values. For example, processors typically will be highly utilized, while
memory, disks, and other peripheral devices will all have smaller fractional
use time.

Other important measures in analyzing computer systems include sys-
tems reliability and systems availability. Reliability is a measure of the prob-
ability of errors or a measure of the typical time between errors. Most
computer systems are fairly reliable, with hardware being more reliable than
software. The availability of a system is measured in relation to reliability. If
a system is highly reliable, it will be available more likely than not. But if a
system is unreliable, then it will have periods of downtime, where the sys-
tem is not running or is running erroneously. In the case of failures, another
important metric is the mean time to repair, or MTTR. The M T T R will
indicate on average how long the system will be unavailable after an error. If

I Chapter I I

342 II .5 Evaluation

errors can be quantified and predicted, we can also develop metrics such as
mean time to failure, or MTTE

A final measure used by systems analysts when comparing systems or
components is the cost versus performance ratio. This measure is useful in
determining which of multiple systems, having the same relative perform-
ance, is a better buy. The cost in this case includes, minimally, the hardware
and software but also may include licensing, installation, maintenance, and
even operations.

11.5 Eva luat ion

All these performance measurements mean nothing unless there is some
relationship associated with the measure. For example, how do we know if
for some given metric it is important to maximize its value or minimize its
value? To make sound judgments we must understand the measures we are
taking and what their relationship is to system values, as shown in Figure
11.6. For example, for a CPU do we wish to have a high number of instruc-
tions per second or a low number? Are we looking for medians or modes? It
makes a difference in how the results get interpreted. To make sound deci-
sions about how to interpret the measurements requires that we understand
how they are related to each other. For example, high disk utilization may
map to low system throughput. Or high CPU utilization may map to high
throughput. It is important to know which is which in order to make sound
decisions.

Figure 11.6
Metrics versus

usefulness.

Throughput
utilization
response

Best?

Metric

11.6 Summary 343

I 1.6

How do we know what is adequate or good performance~especially if
the system for which we are considering this question does not exist as yet.
The problem is that of setting performance requirements for an as yet non-
existing system. Typically we specify requirements in a nonquantitative way.
We may make statements such as: The system should have low overhead,
the memory and processor speeds should be synchronized, there should be a
low probability of failure, and so on. In all of these cases we have stated
qualitative requirements, which may be very hard to measure and realize.
They are nonspecific, nonmeasurable, and, therefore, unacceptable. To
change this the analyst should look at what the system will be required to
do, and what capacity would be needed for a typical system with the same
loads. We may also wish to add in some growth factor, say 100 percent.
Therefore, we would specify a system that will meet our processing require-
ments and still have growth capacity equal to that being used in the present
system.

S u m m a r y

In this chapter we introduced some simple rules to consider when selecting
a modeling tool for a specific modeling project. We indicated that if time
and money were not a factor we would use all methods. First, we would
apply analytical modeling to quickly eliminate alternative designs that
would not meet the needs of the target system. Second, we would apply
Petri net models to further compare and remove alternatives from consider-
ation. Third, we would use simulation to study a few alternative compo-
nents or systems. Simulation provides for very detailed modeling of
components or operations if so desired. The fourth tool to apply would be
testbeds. These are much more complex, and we would use this alternative
when we are down to only a few alternatives, possibly only one, that need to
be validated.

Since it is not a perfect world, time and money do count; therefore, our
modeling tool selection would be driven by these considerations. If cost is
of paramount importance, we may look to analytical modeling, since it is
relatively cheap if we happen to have queuing analysts on our staff. If cost is
not a problem, then building testbeds would be the way to go. If cost falls
somewhere between this, we would choose simulation or Petri nets. If time
is of the essence, we would also recommend queuing theory over the others,
since a model can be developed and analyzed. If time is available, then sim-
ulation or testbeds would be appropriate choices.

I Chapter I I

344 II .6 Summary

After this discussion, the chapter moved on to examining some of the
components of a modeling project that also assist us in deciding on which
modeling tool to apply. The metrics we need and their fidelity or accuracy
will also push us toward specific tools. If we need very accurate information,
we may wish to use testbeds and empirical models, since we are measuring
the real system or a prototype of it. If we are less concerned with accuracy,
we may wish to use analytical models, since they can be easily constructed
and provide coarse-grained analysis.

The chapter then goes on to discuss some of the implications of model-
ing a system~for example, how to determine if the model's data are correct,
or if the results are good or bad. Interpretation of results is dependent on
knowing the measurements being taken and their relationship to important
systems metrics, such as throughput, utilization, and response time.

/ 2
Analysis of Computer Architectures

Analytical modeling and Petri net modeling were introduced in previous
chapters. In these discussions, we addressed basic concepts of queuing sys-
tems and Petri net theories, their application to computer systems model-
ing, and an introduction to computer systems modeling. This chapter will
address the use of analytical and Petri net models, specifically for their use as
performance evaluation tools applied to the modeling of computer architec-
tures.

12.1

12.2

I n t r o d u c t i o n

In the past several years, the use of analytical and Petri net performance
models instead of the more widely used and familiar simulation methods
has become increasingly popular because of their relative simplicity of
implementation and robustness of application results. These analytical and
Petri net models have been successful in estimating such performance mea-
sures as processor throughput, average queue length, mean response times,
resource contention, and synchronization for some real systems. This chap-
ter is an introduction to queuing and Petri net modeling techniques applied
to computer architectures and is not meant as an in-depth study.

Of interest to most modelers is the classic central server model of a com-
puter system, such as a single PC or workstation, and the multiprocessor
model one would typically find in a server. For this reason, we will examine
these two models as an initial example of how to apply analytical modeling
techniques to the solution of a system's performance assessment.

Case I: Cen t ra l server c o m p u t e r system

The central server model, shown in Figure 12.1, is typical of most desktop
computers and single processor servers in service today. The main elements

345

346 12.2 Case I' Central server computer system

y

Figure 12.1
Central server

model.
~! CPU .I ,/oi
I "I I

of this model are the CPU, memory, and I/O devices (disks, network con-
nections, etc.). In addition to these major components, the model must also
depict how these components are connected to each other, forming the
architecture of the central server computer system. The interconnection
would consist of paths for new program initiation and for active programs
to circulate through the system. The assumption here is that the number of
jobs (programs) circulating in the system is steady and fixed. Each of the
fixed number of jobs performs some CPU activity, followed by some I/O
activity, and back to the CPU for additional service.

The modeled system would be typical of computers one would find on a
person's desk in a high-capacity business office. Such a computer system
would consist of a single CPU (such as a Pentium IV with onboard cache),
matched speed main memory (128 MB to 1 GB), at least one disk drive,
and numerous other peripheral devices. The machine would also be con-
nected to the Internet and may service remote service calls. The operating
system is one of the industry standards (Microsoft XP, LINUX).

The processing capacity of the CPU and each of the I/O devices is
denoted by la i = 1/Ts(i), where Ts(i) is the average service time for the spec-
ified device. The flow of control for a job in the system is directed by the
branching probabilities, Pl,P2,P3 Pn" On leaving the CPU a job may
loop back to the CPU for more service, with probabilitypl. The interpreta-
tion of this can be that the program is going back for more service, or it is
completing and being replaced by another new program.

The remaining values are easier to interpret. The probabilities
P2,P3 ,pndetermine what percentage of I/O requests go to which device.
From earlier chapters you will recall that:

n

Z P i -1 (12.1)
i=1

The value ~t i, i = 1,2 n, represents the service rates for each defined
server in the model. The service rate is the number of instructions per-

12.2 Case I: Central server computer system 347

formed divided by the raw speed of the device. For example, the CPU serv-
ice rate is defined as:

CPU instructions per job
~1 --CPU service rate- (12.2)

CPU speed in instructions per second

In most analyses we make the assumption that the service discipline is
FCFS and that the arrival rate and service rates are exponentially distributed
and the queuing discipline is FCFS. The key metrics we are interested in
discovering are throughput and utilization.

The typical method to compute this is to use Buzeffs algorithm. This
algorithm determines the probability of having different numbers of jobs in
different servers at a point in time. The number of jobs at any particular
node is not independent of the remainder of the systems nodes, since the
total number in the system must be kept steady. This algorithm proves that
the probability of the jobs being spread around the servers in a particular
distribution is:

),i Prob(kl,k2, . . ., km) = (1/G (K)) i~=2 (t.tl (811xi) (12.3)

Using this property and Little's Law we can compute some of the met-
rics of interest as:

Pl = CPU utilization

P i - I / O device utilizations

= Pi~ti (Pi/[-ti) for i= 2,3 M

= system throughput (12.4)

= PlPI~I jobs per unit time

E(k i) = average jobs at node i

K G (k - n) for i - 1 , 2 M -- E ('1 (Pi/~i))n G(A)
n=l

One of the most important components of Buzen's algorithm is the
function G(k) for k= 1,2,3 M. To perform this computation a partial
function g(k,m) is defined. The details of this function were provided in
Chapter 7. Repeating some of the important aspects of computing G(k)"

I Chapter 12

348 12.2 Case I' Central server computer system

g(k,1) = 1 for k - 0,1,2 K

g(O,m) = 1 for m - 1,2, M

g(k,m) = g(k,m-1)+ (Pl (Pm/~m)g(k - 1,m)) (12.5)

G(k) -g (k ,M) fork=0,1 K

Details of the solution can be found in [9].

As an example of the operation of this algorithm we can set some of the
values for a test system. If we assume we have a system with a CPU and
three I/O devices, M - 4. We can set the service rate for the I/O devices as
all the same P2 - P3 - P4 - 10 I/Os per second. The CPU is set at P l =
18.33 quantum slices per job. If we set K - 8 tasks circulating through the
system and run it through Buzen's algorithm we would find the results
shown in the following chart.

CPU Time Disk I/0 CPU D i s k Throughput
per Request Ra te Utilization Utilization Requests/sec
0.6 10 0.96 0.53 1.6
0.3 10 0.67 0.74 2.23
0.6 15 1.00 0.37 1.66
0.3 15 0.88 0.65 2.92

A similar analysis could be developed using a Petri net instead of the
queuing model. Figure 12.2 depicts a Petri net example for the single I/O
device system shown in Figure 12.1.

In the depicted model, jobs get submitted through a set of terminals rep-
resented by the think place and the term transition. Once a job is requesting
service, it is moved into the wait CPU place to wait for the CPU to become
available. Once it is available, the waiting job acquires the CPU and models
using it by moving into the use CPU place, followed by the CPU transition,
which models the execution cycle of the CPU. After a job has completed its
use of the CPU, it moves to the choose place. In this place a decision must be
made to check if the job is complete or if more I/O is needed. If completed,
the token representing a job moves back to the think place to become a new
job later. If I/O is needed, the token moves to the disk wait place to busy
wait for the disk resource. Once the resource is freed, the job acquires the
disk and models using the disk by moving into the use disk place followed by
enabling of the disk transition. Upon completion of disk use, the token (job)
goes back into the wait CPU place to reacquire the CPU. If we wish to
model more disk drives, we simply make more branches from the choose
place and replicate the loop for the disk drive (Figure 12.3).

12.2 Case I: Central server computer system 349

Figure 12.2
Central server Petri CPUidle

net.

Wait CPU

I " v ~-

Get CPU Usecp u CPU

k UseOisk Get I/0]

Think Term

Job
complete

Choose

I/O

I/O
wait

DiSkidle

Figure 12.3
Multiple disk

example Petri net.
Wait CPU

CPUidle

Job
complete

Think Term Get CPU

Disk1

Diskn

USecPu

USeDisk

CPU

Get I/O

Get I/O

USeDisk

Choose

I/O

I/O
wait

I/O

I/O
wait

I Chapter 12

350 12.3 Case I1' Multiple server computer system

If we set the timed transitions as follows: Term 0.1, CPU 1.0, and Disk at
0.8, and the places initially loaded with tokens as: t h ink - 6, CPU_idle - 1,
and Disk_idle- 1, we can proceed with the analysis. The first analysis must
be to determine if the model is bounded and live. That is to say, there are
no deadlock states and the net is configured so it can initiate firings. By
examining this net we can also see that there are four major place flows
through the net. Flow 1 - th ink , waitCPU, Use CPU, and Choose. Flow
2 - If we s e t - think, waitCPU, Use CPU, Choose, diskwait, and use disk.
Flow 3 - CPUidle, useCPU. Flow 4 - diskidle, use disk. The first flow cor-
responds to jobs using the CPU and completing with no need for I/O. The
second flow also represents jobs using the CPU but also requiring and using
I/O devices. The third flow loop represents the CPU cycle of busy and idle,
and the final flow loop represents the disk cycle of busy and idle time. Since
all of the places of the Petri net are covered by these flows, the net is
bounded. This also implies that this network has a finite reachability graph,
and, therefore, the underlying Markov chain has a finite state space.

Using these flows we can compute the average time for jobs to flow
through each loop by running this model. If we ran the model with the
same data as in the queuing model, the same results would follow. More
details about this model and others can be found in [10].

12.3 Case I1: M u l t i p l e s e r v e r c o m p u t e r s y s t e m

Another classic analysis is that of the multiprocessor. In this case, we can
replace the central server model with multiple examples of the same model
cascaded together (Figure 12.4), or we could examine more elaborate imple-

t ~

Figure 12.4
Multiprocessor

model using central
processor ;I c Pu "I I/O I I

;I c,u I i I
I

12.3 Case I1: Multiple server computer system 351

Figure 12.5a
Shared memory

model.

mentations~for example, the shared memory model (Figure 12.5a) or the
multiple bank shared memory model (Figure 12.5b).

The analysis of any one of these architectures would follow methodology
similar to that of the single CPU case described previously. The system we
choose to model here is the multiprocessor case. This is more indicative of

Figure 12.5b
Multibank shared

memory model.

f

cI

I Chapter 12

352 12.3 Case I1: Multiple server computer system

realistic systems, where multiple servers are interconnected to serve several
users.

If we decide to model the system shown in Figure 12.5b, we have essen-
tially the problem of memory allocation to processors. A processor can have
all of the memory or none of the memory or anything in between. Alloca-
tions are done using the entire memory module. That is, a CPU cannot
share a memory module with another CPU during a cycle.

On each CPU cycle, each processor makes a memory request. If there is
a free memory meeting the CPU's request, it gets filled; otherwise, the CPU
must wait until the next cycle. Each memory module for which there is a
memory access request can fill only one request. When several processors
make memory module requests to the same memory module, only one is
served (chosen at random from those requesting). The other processors will
make the same memory module request on the next cycle. New memory
requests for each processor are chosen randomly from the M memory mod-
ules using a uniform distribution.

Let the system state be the number of memory requests for each mem-
ory module:

K-(kl,k2,k3,... ,km) (12.6)

where k i represents the memory request by processors for memory bank i.

At the start of a cycle the sum of all requests cannot exceed the number
of processors in the system, N."

km + kz + k3 +... + km = N (12.7)

The total number of possible states is related to the number of ways N
processor requests can be distributed to M memory modules:

[M + N - 1] _ (M + N - 1) _ N [M - 1 (M+N-1)!(M_ 1)!N! (12.8)

or, in other terms, how to allocate N balls to M cells.

For N = 2 and M = 4 (see Figure 12.6) the possible way to allocate the
four memory modules to processors (indistinguishable from each other) is
shown in Table 12.1.

12.3 Case I1: Multiple server computer system 353

lv

Figure 12 .6
Multiprocessor

system with N = 2
a n d M = 4.

Switch

and is found by:

(M + N - 1) ! 5! 5*4
- ~ - - ~ - 1 0 (12.9)

(M - 1) ! N ! 3!2! 2

We can see that if the number of processors requesting memory modules
and the number of memory modules are increased, the number of possible
states grows very quickly, making this analysis difficult for even relatively
small problems, as shown inTable 12.2.

Table 12.1 Possible Ways to Allocate Memory

Memory

1 2 3 4

1 0 0 0 2

2 0 0 1 1

3 0 0 2 0

4 0 1 0 1

5 0 1 1 0

6 0 2 0 0

7 1 o o 1

10

1 0 1 0

1 1 0 0

2 0 0 0

I Chapter 12

354 12.3 Case I1: Multiple server computer system

Y

Table 12.2 Number of States for Selected Number
of Processors and Memory Modules

N M # States

2 4 10

3 5 35

4 7 210

Let H = (hl,h 2 h m) represent the intermediate state, when the mem-
ory access requested on a cycle has been filled and the new requests have not
yet been made:

{~i - 1 i fk i >O, Vi

h i - i f k i - 0

Let G represent a new (feasible) system state:

(12.10)

G=(gl ,gz ,g3 ,gm)

First, let's define:

(12.11)

d i - g i - h i
x= di

that is, number of new request
(12.12)

Note: The state G can be reached from state Kin one cycle if, and only if, d i
_> 0 for each i.

12.3.1 Properties

If G is reachable from Kin one cycle, the probability it will in fact
be the next state is given by:

0

x! [1 I x (12.13)
P (K, a) = dl ! d2 i [. . dm ! -m

where x represents the number of new requests.

The system can be described by a Markov chain, since the next
state probabilities at any time depend only on the current state.

12.3 Case I1: Multiple server computer system 355

3. The system is aperiodic, since a one-step transition from a state to
itself is possible at any time.

4. The system is irreducible, since it can reach any other in a finite
number of steps.

Hence, since it is a finite state process, it is also an ergotic Markov proc-
ess. Also, since these conditions hold, there is an equilibrium state probabil-
ity distribution, H, so that:

H - H P (12.14)

where P is the state transition matrix (described in Chapters 6 and 7)"

H - (H , , H 2 , H 3 , H 4 Hj) (12.15)

A performance assessment typically made in such system configura-
tions to determine what the effective processor power of the N processors
with M memory system is:

EP (N, M) - the expected number of instructions
excuted per second compared with an
N - 1, M - 1 system

(12.16)

Let Proc(i) represent the number of memory requests serviced (instruc-
tions executed) when the system is in state i:

J .'. EP(N,M) = E Proc (i)Hi
i=1

(12.17)

For the simple case where N = 2 and M = 2, we have the system illus-
trated in Figure 12.7.

Figure 12.7 P1 P2
Multiprocessor

systemwithN=2 I I andM= 2.
Switch

I I
ml m 2

I Chapter 12

356 12.3 Case I1: Multiple server computer system

Figure 12.8
Probability state

transition diagram.

P21 = 1/4

P22 =

P33 = 1/2

.~ 3

/ P32--1 /2

/

1/2

The possible states this model could be in, representing the requested
memory requested by the two processors, is described as (see Figure 12.8)"

States (klk2) •

1(2,0)

1] 3
2(1,1) j - - = - - ' - - - 3

N 2!1!

3(0,2)

(12.18)

Using the general formula:

~ , ~ ~ , x, /~) x
dl!d2!.. .dm! (12.19)

1 ,12 20, P((2,0),(1,1)) - ~.-~l.V - 2

which represents the probability of being in state (2,0) and transitioning to
state (1,1). Similarly, the probability of being in state (1,1) and traversing to
state (2,0) would be found as:

/ 1
P((1,1),(2,0)) - 2.~. - -4 (12.21)

and so on.

12.3 Case I1: Multiple server computer system 357

The balance equations for this Markov chain can be found using the
relationship:

Flow In - Flow Out (12.22)

State 1: 1 /2H 1+ 1 /4H 2 = H I

Flow In - Flow Out (12.23)

State 2: 1 /2H 3 + 1 /4H 2 = H 3

Solving these simultaneous equations yields:

2H 1 + H 2 = 4H 1

2H 3 + H 2 = 4H 3

.'. H 2 = 2H x (12.24)

H 2 = 2H 3

H 1 = H 3 = l / 2 H 2

and since:

H 1 + H 2 + H 3 = 1 (12.25)

then:

H 1 = .25

H 2 = .50 (12.26)

H 3 = .25

The discovered effective processor power is computed using the relation-
ship:

E P (2 , 2) - ~[[H i Proc(i) (12.27)
i

where

i Proc(i) number of instructions executed in state i:

1 1

2 2

3 1

EP (2 , 2) - 1H 1 + 21-12 + 11-13 = . 2 5 + 1 . 0 + . 2 5 - 1 . 5
(12.28)

I Chapter 12

358 12.4 Case II1: Petri net example

Table 12.3 Summary of Speed Up for M Memory and N Processors

M N Processors

Memory Modules 2 3 4 5

2 1.5 m ~

3 1.667 2.048

4 1.750 2.269 2.62 m

5 1.800 2.409 2 .863 3.199

6 1.833 2.505 3 .036 3.453

7 1.857 2.575 3 .166 3.648

8 1.875 2 .627 3.265 3.801

9 1.889 2.668 3 .344 3.925

10 1.900 2.701 3 .407 4.025

Results for M memory modules (2 < M < 10) and N processors (2 < N <
5) are summarized in Table 12.3.

Limitations: The model does not take into account memory interference
caused by I /O operations. It also assumes the processors and memory are
synchronized, as are memory access/cycle.

12.4 Case II1: Pe t r i ne t e x a m p l e

We could look at the same problem from a Petri net perspective. In this case
we make some of the same assumptions: There are np processors, n m shared
memory modules, and n b data buses. In the previous theoretical analysis we
ignored the data buses. Each of the processors has local memory, which gets
used until a page miss. At this point an access to an external memory mod-
ule is required, resulting in a new page being loaded into the local processor
memory. The miss rate is exponentially distributed and set at 1/)~. The
access time to the shared memory is also assumed to be exponentially dis-
tributed with mean 1/~. If we originally set np= 5, n m = 3, and n b = 2, we
have the initial configuration seen in Figure 12.9. The model depicted con-
tains two places per memory module (one place for processor tokens and
one place for bus tokens) and one timed transition (for memory allocation
and use). There are also two immediate transitions associated with synchro-
nizing and controlling the memory access. For the size model we postulated

12.4 Case II1: Petri net example 359

Figure 12.9

P2
Memory 1 ~ 0 . ~ MemoryN

t2 i • • •

P4

P3

Petri net model for multiprocessor system.

we would have nine total places, four timed transitions, and six immediate
transitions. Tokens in place P2 represent data buses available for use. Tokens
in place P1 represent processors executing on their local memory. An impor-
tant assumption in this model is that every processor and memory module
act in an identical manner.

When a processor completes its local memory access (has a page miss
resulting in firing transition tl) and requires more shared memory
resources, a token is moved from place P1 to place P3" A processor deter-
mines which memory it needs by firing the immediate transition, t 2, on the
memory module it has chosen using a probabilistic branch. Once t 2 fires, a
token is moved from place 3 to place 4. Once a token is in place 4, the proc-
essor is requesting access to a data bus. The bus is used to connect the proc-
essor to the memory module. The processor acquires the memory desired,
and then acquires a data bus to retrieve the needed information. Once a
processor has the bus, signaled by the firing of transition t 3, and has
acquired the memory (indicated by the token in place, P5), it begins to
model using the memory module by initiating the timer on transition t 4.
Upon completion of using the bus, the token representing the processor
and the bus are routed back to their initial places, P2 and P1.

I Chapter 12

360 12.5 Summary

If we run this model with inputs similar to what were applied to the
queuing model discussed previously, we would find results that very closely
match the queuing model case. That is, we would find out that the effec-
tive processor power would be proportional to about 2.05 with the config-
uration as specified. We could improve on this if we made the access
balanced, implying that no single processor could hold more than one
memory at a time. This would increase our effective processor capacity to
approximately 3.2.

12.5 Summary

In this chapter, we applied the analytical tools developed in Chapters 1
through 11 to the analysis of various computer architecture. We first looked
at a simple central-server computer system typical of most desktop com-
puter systems and then we looked a multiple-server computer system. We
performed these analyses first analytically and then using Petri nets. This
chapter is presented as a guide to the reader in analyzing computer architec-
tures and not as a comparison of various architectures or components.

/ 3
Analysis of Operating System Components

13.1

m
m

This chapter is divided into the following sections. Section 13.1 covers an
introduction to the specific performance evaluation conducted, its basic
concepts, the types of workloads being used, the experimental design for the
performance analysis, and an introduction to the simulation toolkit used
for the evaluation. Section 13.2 includes the architecture of the four operat-
ing systems being used. We have tried to keep the architectures very specific
to the experiments being carried out. Section 13.3 is focused on statistics,
analysis of the results obtained from experiments, sensitivity analysis, cost/
performance issues, and presentation in the form of graphs and charts. Sec-
tion 13.4 discusses experimental design and simulation. Section 13.5 covers
conclusions about the performance analysis. 1

I n t r o d u c t i o n

Computer systems users, administrators, and designers are all interested in
performance evaluations, since their goal is to obtain or provide the highest
performance at lowest cost. Performance evaluation is essential at every step
in the life cycle of a computer system. This includes design, manufacturing,
use, upgrade, and so on. We need to perform this evaluation in order to pre-
dict the adequacy of the system. In order to do this performance evaluation
we must define the system correctly; define its components; state the envi-
ronment in which the system resides; and define parameters, which we mea-
sure and on which the system is built. Computer systems are a backbone of
an organization, which might have its clients scattered around the globe. If
the system doesn't perform the way it is intended to, it results in loss of
infrastructure, efficiency, and credibility of the organization. So a sound

Contributed by R Abdelmalek S. Bapat, K. Challapalli, I. Chen, A. Chennamraju, R Furey, J. Joseph, I~ Madiraju, S. Chowdary,
A. Pisharody, V. Rajan, W. Rosa, B. Sarangarajan, S. Sharma, R Singhal, X. Tao, K. Vangapally, T. Zhou, and Q. Yu.
University of Massachusetts Dartmouth, Department of Electrical and Computer Engineering.

361

362 13.2 System architectures

evaluation of the computer system is of prime importance. This encom-
passes not only the hardware/software performance but also a cost versus,
performance measure. For any computer system performance measures
such as responsiveness, missionability, dependability, and productivity are of
immense importance. There are different techniques of performance evalu-
ation. We can identify them as two major classes. One includes designing
an experiment (HW/SW/Stimulus), and the second includes modeling,
which might be analytical (queuing, Petri nets) or by simulation (discrete,
continuous, combined). This study utilizes both of these techniques to per-
form a comparison among the four operating systems.

This chapter evaluates the performance of four operating systems:
Microsoft's Windows XP, Windows ME, Windows NT, and LINUX 7.2.
These operating system performance assessments were completed by a grad-
uate computer systems performance evaluation class at UMass Dartmouth
during the spring semester of 2002. The performance evaluation of these
operating systems was performed on an x86 architecture. The operating sys-
tems' performance was examined using three specific types of workloads.
The evaluation is based on the currently available major releases of these
operating systems "as-is" without performance tuning. Each team was asked
to design "high-level" models and convert these models into a simulation by
using the AWESIM simulation toolkit. Teams came up with a common
experimental design and performed specific types of performance tests to
measure the response of the four operating systems pertaining to specific
factors. Each team performed a comparative analysis.

1 3 .2 Sys tem a r c h i t e c t u r e s

For the performance evaluation analysis of the operating systems, the com-
puter systems architecture plays a prime role. This section includes the
operating system architectures for LINUX 7.2, Windows ME, Windows
XP, and Windows NT.

1 3 . 2 . I L I N U X a r c h i t e c t u r e

Red Hat LINUX 7.2
As part of the larger effort to evaluate the relative performance of LINUX
versus several other operating systems, we considered key components of
LINUX in order to lay the foundation for this comparison. Here we exam-
ine the LINUX policies and parameters used in the last stable version of
kernel 2.4. The distribution used for our evaluation is Red Hat LINUX 7.2.

13.2 System architectures 363

LINUX supports multitasking, which is the ability to have many pro-
grams running simultaneously. For example, it is possible to format a disk,
download a file from a BBS, and edit in a word processor--all simulta-
neously.

Task structure and process table

LINUX manages the processes in the system; each process is represented
by a t a s k _ s t r u c t data structure. The task vector is an array of pointers to
every t a s k _ s t r u c t data structure in the system. As processes are created, a
new t a s k _ s t r u c t is allocated from system memory and added into t a s k _
vec to r . The t a s k _ s t r u c t structures are linked in two ways: as a hash
table, hashed by pid, and as a circular, doubly linked list using p->next
_ t a s k and p - > p r e v _ t a s k pointers. The tasks are hashed by their p id
value. The hash table is used to quickly find a task by given pid, which uses
f £nd_task_.pid (). The circular doubly linked list that uses p - > n e x t _ t a s k
and p->prev__task is maintained so that one could go through all tasks on
the system easily.

Task flags contain information about the process states, which are not
mutually exclusive. The scheduler needs the information in order to decide
which process in the system deserves to run. Every process in the system has
an identifier. The process identifier is not an index into t a s k _ v e c t o r ; it is
simply a number. Each process also has user and group identifiers; these are
used to control this process's access to its files and devices in the system.

Links
In a LINUX system no process is independent of any other process. Every
process in the system except the initial process, called i n i t , has a parent
process. New processes are not created; they are copied, or rather cloned,
from previous processes. Every t a s k _ s t r u c t representing a process keeps
pointers to its parents and to its siblings (those processes with the same par-
ent process), as well as to its own child processes. Additionally, all of the
processes in the system are held in a doubly linked list, whose root is the
i n i t process's t a s k _ s t r u c t data structure. This list allows the LINUX
kernel to look at every process in the system. It needs to do this to provide
support for commands such as ps or k i l l .

Times and timers

The kernel keeps track of each process's creation time as well as the CPU
time that it consumes during its lifetime. For each clock tick, the kernel
updates the amount of time in jiffies that the current process has spent in

I Chapter 13

364 13.2 System architectures

system and in user mode. LINUX also supports process-specific interval
timers; processes can use system calls to set up timers and to send signals to
themselves when the timers expire. These timers can be single-shot or peri-
odic timers.

File system
Processes can open and close files as they wish and the process's
t a s k _ s t r u c t contains pointers to descriptors for each open file as well as
pointers to two VFS i-nodes. Each VFS i-node uniquely describes a file or
directory within a file system and also provides a uniform interface to the
underlying file systems. The field p->fs contains file system information,
which, under LINUX, means three pieces of information: root directory's
d_entry and mountpoint, alternate root directory's d_entry and mount-
point, and current working directory's d_entry and mountpoint.

Virtual memory
Most processes have some virtual memory (kernel threads and daemons do
not), and the LINUX kernel must track how that virtual memory is
mapped onto the system's physical memory. The fields p->mm and
p->active_mm point, respectively, to the process's address space described
by the mm_struct structure and to the active address space if the process
doesn't have a real one (e.g., kernel threads).

Paging
To approximate a least recently used (LRU) algorithm for page replacement,
LINUX finds a process with the most NRU (not recently used) pages to
swap pages from. Unlike a standard clock algorithm, which tends to take a
few pages from all processes, this will result in taking a large number of
pages from a few processes. Sometimes LINUX will deal with this situation
by temporarily removing the most victimized process from the pool of con-
currently running processes. Different kernels of LINUX handle these
details differently.

Kernel 2.4
Kernel 2.4 finds a compromise between kernel 2.0's aging and 2.2's lack of
aging. It does so by changing the method of decreasing the age. Age is
decreased exponentially as opposed to linearly. This helps prevent one proc-
ess with a high page-fault rate from getting more than its share of pages and
thereby hurting other processes, and it prevents a page that is only referenced
once from being given the same wait as a page that is referenced 20 times.

13.2 System architectures 365

13 .2 .2

To have memory more efficiently utilized, kernel 2.4 reintroduces the
method used in kernel 2.0 for selecting processes to contribute NRU pages.
Going through a process list each time, it checks only about 6 percent of the
address space in each process to search for NRU pages before it goes to the
next process. Similar to kernel 2.0, this method increases the possibility of
thrashing.

W i n d o w s X P a r c h i t e c t u r e

Windows XP Professional is built on the proven code base of Windows NT
and Windows 2000, which features a 32-bit computing architecture, as well
as a fully protected memory model. Windows XP Professional is designed
to allow multiple applications to run simultaneously, while ensuring great
system response and stability.

Disk management
Microsoft Windows XP offers two types of disk storage: basic and dynamic.

Basic disk storage

A disk initialized for basic storage is called a basic disk. A basic disk contains
basic volumes, such as primary partitions, extended partitions, and logical
drives. Additionally, basic volumes include multidisk volumes, which are
created by using Windows NT 4.0 or earlier, such as volume sets, stripe sets,
mirror sets, and stripe sets with parity. Windows XP does not support this
multidisk basic volume.

Dynamic disk storage
A disk initialized for dynamic storage is called a dynamic disk. A dynamic
disk contains dynamic volumes, such as simple volumes, spanned volumes,
striped volumes, mirrored volumes, and RAID-5 volumes. With dynamic
storage, disk and volume management can be performed without the need
to restart Windows. Mirrored volumes or RAID-5 volumes cannot be cre-
ated on Windows XP Professional-based computers. However, a Windows
XP Professional-based computer can be used to create a mirrored or RAID-
5 volume on remote computers that are running Windows 2000 Server,
Windows 2000 Advanced Server, or Windows 2000 Data Center Server.

Storage types are separate from the file system type. A basic or dynamic
disk can contain any combination of FAT16, FAT32, or NTFS partitions
or volumes.

I Chapter 13

366 13.2 System architectures

File systems
Windows XP supports three different file systems: File Allocation Table
(FAT); FAT16, FAT32, and NTFS (NT file system); NTFS is the recom-
mended file system. NTFS provides advanced file system features such as
security, transacted operations, large volumes, and better performance on
large volumes. Such capabilities are not available on either FAT16 or
FAT32. Windows XP provides native support for NTFS volumes on such
large sizes, while a FAT32 volume is supported only for sizes up to 32 GB.
Under Windows XP, NTFS supports a maximum file size of up to the disk
size. Windows XP delivers new features (such as support for acquiring and
editing video files) that frequently result in creation of files that exceed
4 GB in size. NTFS is a journaling file system. NTFS writes a log of
changes being made, which offers significant benefit in cases where a system
loses power, experiences an unexpected reset, or crashes. NTFS can quickly
return the disk to a consistent state without running CHKDSK. This yields
a better user experience and results in fewer support calls.

Memory management
Windows XP, like most modern operating systems, uses virtual memory.
Windows XP regularly checks that the memory assigned to a particular
application is actually in use and maintains an estimate for each application
indicating the amount of memory that could reasonably be taken away
without affecting performance. A reserve of memory is kept on hand to be
used as needed. When this reserve sinks too low, it is replenished by trim-
ming working sets. These estimates are used as a guideline to determine
where memory should be taken from.

Virtual memory is divided among the space taken by the applications,
driver code, allocated and mapped data used by the system, and the space
used by the system. In Windows, physical memory has page-pooled and
non-page-pooled allocations. Non-page-pooled memory is for code that is
time critical, such as the Virtual Memory Manager (VMM). Page-pooled
memory is mapped to disk files and allows the OS to swap the memory
pages out to disk if additional physical memory is needed elsewhere. Pool
memory is managed by a system of descriptors, called page table entries
(PTE), that incorporates memory page frame numbers which point to
physical memory pages. In addition to memory page frame numbers, the
PTE contains bits on the use status of the page~in use, dirty, clean, and
unused. The memory manager keeps track of page status with page table
lists for fetching and reuse.

13.2 System architectures 367

13.2.3

In the fight between drivers or processes for memory under low-memory
conditions, the user often loses. Generally, these conditions are temporary
and are relieved when a driver or process flees up its blocks. When a driver
or application process needs memory, it asks the system for a memory allo-
cation. The allocation is either provided or denied. In past versions of Win-
dows, allocation routines that must succeed were allowed to force the
system to give the driver some memory. Unfortunately, during lean memory
times, it could crash the system. To help get past these low times, Windows
XP no longer permits drivers to allocate must-succeed requests. If an appli-
cation or driver uses a must-succeed request, it is denied. All internal Win-
dows XP drivers have been rewritten to avoid the use of must-succeed
requests. Third-party drivers will also have to comply to earn signed driver
status.

Another step taken by Windows XP for more robust memory handling
is I /0 throttling. For performance reasons, Windows tries to do as much
processing in parallel as possible. However, if memory use gets to the point
where there is none left to allocate, Windows will throttle down its process-
ing of memory to one page a time, using the resources it can. While this
slows the system, it doesn't crash.

Windows N T a r c h i t e c t u r e

The Executive
NT's Executive subsystems make up the most important layer in kernel
mode, and they perform most of the functions traditionally associated with
operating systems. The subsystems have separate responsibilities and names.
NT doesn't assign Executive subsystems to different processes; NT doesn't
place the Executive subsystems in different image files.

Object Manager
The Object Manager is one of the NT's Executive subsystems. Other Exec-
utive subsystems use the Object Manager to define and manage objects that
represent resources. The Object Manager performs object-management
duties that include identification and reference counting.

Virtual Memory Manager
The Virtual Memory Manager has two main duties: to create and manage
address maps for processes and to control physical memory allocation. NT
4.0 implements a 32-bit (4-GB) address space; however, applications can

I Chapter 13

368 13.2 System architectures

directly access only the first 2 GB. The 2-GB to 4-GB portion of the
address space is for the kernel-mode portions of NT, and it doesn't change.
The Virtual Memory Manager implements demand-paged virtual memory,
which means it manages memory in individual segments, or pages. In x86
systems, a page is 4,096 bytes. The Virtual Memory Manager has advanced
capabilities that implement file memory mapping, memory sharing, and
copy-on-write page protection. NT uses file memory mapping to load exe-
cutable images and DLLs efficiently. Copy-on-write is an optimization
related to memory sharing in which several programs share common data
that each program can modify individually. When one program writes to a
copy-on-write page that it shares with another program, the program that
makes the modification gets its own version of the copy-on-write page to
scribble on. The other program then becomes the original page's sole owner.
NT uses copy-on-write optimization when several applications share the
writeable portions of system DLLs.

I/0 Manager
The I/O Manager is responsible for integrating add-on device drivers with
NT. Device drivers, which are dynamically loaded kernel-mode compo-
nents, provide hardware support. A device driver controls a specific type of
hardware device by translating the commands that NT directs to the device
into device-specific commands that manipulate the hardware to carry out
the commands. The I/O Manager supports asynchronous, packet-based
I/O. The I/O Manager supports 64-bit file offsets and layered device driv-
ers. Using 64-bit offsets lets NT's file systems address extremely large files
and lets disk device drivers address extremely large disks. Layering lets
device drivers divide their labor.

Cache Manager
The Cache Manager works closely with the Virtual Memory Manager and
file system drivers. The Cache Manager maintains NT's global (shared by
all file systems) file system cache. The working-set tuner assigns physical
memory to the file system cache. The NT cache is file oriented rather than
disk-block oriented.

Process Manager
The Process Manager in NT wraps the kernel's process object and adds to it
a process identifier (PID), the access token, an address map, and a handle
table. The Process Manager performs a similar operation on the kernel's
thread object, adding to it a thread identifier (TID) and statistics. These

13.2 System architectures 369

statistics include process and thread start and exit times and various virtual-
memory counters.

The kernel
NT's kernel operates more closely with hardware than the Executive does,
and it contains CPU-specific code. NT's thread scheduler, called the dis-
patcher by NT's developers, resides in the kernel. The dispatcher imple-
ments 32 priority levels: 0-31. The dispatcher reserves priority level 0 for a
system thread that zeros memory pages as a background task. Priority levels
1 through 15 are variable (with some fixed priority levels) and are where
programs execute; priority levels 16 through 31 are fixed priority levels that
only administrators can access. The NT dispatcher is a preemptive sched-
uler. The CPU's time is divided into slices called quanta. When a thread
runs to the end of its quantum and doesn't yield the CPU, the dispatcher
will step in and preempt it or schedule another thread of equal priority that
is waiting to run. NT implements most synchronization primitives in the
kernel. The kernel implements and manages its own object types, and ker-
nel objects represent NT's synchronization primitives.

1 3 . 2 . 4 W i n d o w s M E a r c h i t e c t u r e

The team documented the architecture based on Windows 98, because
lennium is based on the architecture of Windows 98 and sufficient data are
unavailable on Windows Millennium.

Memory management
In Windows 98, memory is accessed using a 32-bit linear addressing
scheme. A 32-bit addressing system can access up to 4 GB of memory.
Thus, in Windows 98, when an application attempts to access memory, it
simply specifies a 32-bit memory address. (The minimum allocation of vir-
tual memory is one 4-KB page.)

Windows 98's Virtual Memory Manager (VMM) controls allocating
physical and logical memory. When you launch a new application, the Vir-
tual Memory Manager initializes the virtual address space. Windows 98's
VMM can address up to 4 GB, including space on your system's hard
drives, so now programmers can write programs to exploit large amounts of
memory without worrying about the type of memory or the amount of
memory available.

I Chapter 13

370 13.2 System architectures

Windows 98's Virtual Memory Manager provides this large, virtual
memory space to applications via two memory management processes: pag-
ing and mapped file I/O.

Paging
Every page of memory falls into one of three categories: page directories,
page tables, or page flames. For time-sensitive applications and those with
other special memory performance requirements, the VMM enables a user
subsystem or process with special privileges to lock selected virtual pages
into its working set to ensure that a critical page is not paged out of mem-
ory during the application.

In implementing the virtual memory process, Windows 98 creates a
hard disk swap file to which it writes information that will not fit into phys-
ical (RAM) memory. Windows 98's swap file is dynamic and can shrink or
grow based on the operations performed on the system. (The Windows 98
swap file still has to be created during system startup if it doesn't already
exist, slowing startup time.)

Happed file I/O

If an application attempts to load a file larger than both the system RAM
and the paging file (swap file) combined, Virtual Memory Manager's
mapped file I/O services are used. Mapped file I/O enables the Virtual
Memory Manager to map virtual memory addresses to a large file, inform
the application that the file is available, and then load only the pieces of the
file that the application actually intends to use. Because only portions of the
large file are loaded into memory (RAM or page file), this greatly decreases
file load time and system resource drainage. It's a very useful service for
database applications that often require access to huge files.

Protection
In Windows 98, each type of application~16 bit, 32 bit, or MS-DOS~is
protected from the other. The Windows 98 memory system also helps segre-
gate applications from other applications and from their own memory seg-
ments. Due to improved protection in Windows 98, a rebellious 16-bit-
based application cannot easily bring down the system as a whole, nor can it
bring down other MS-DOS applications or 32-bit applications. However,
crashing 16-bit applications still can affect other running 16-bit-based appli-
cations. Each type of application~l 6 bit, 32 bit, or MS-DOS--has a corre-
sponding Virtual Machine Manager. Protection improvements also include
the use of separate message queues for each running 32-bit application.

13.2 System architectures 371

Disk and file system overview

Clusters

Windows 98, as with DOS before it, allocates disk space in clusters. A clus-
ter is a group of sectors on a disk. The number of sectors in a cluster varies
according to the drive type and partition size. When Windows 98 stores a
file on disk, it doesn't store the file on a sector-by-sector basis. Rather, Win-
dows 98 allocates enough clusters to contain the file.

The FAT

With so many clusters on a disk, Windows 98 needs some way to keep track
of where each file and directory reside. Essentially, Windows 98 needs to
know the starting and ending cluster for each file. The file allocation table,
or FAT, provides that information. The FAT contains an entry for every
cluster on the disk, and Windows 98 uses the FAT to keep track of which
clusters are allocated to which files and directories. The FAT is the key that
enables Windows 98 to locate, read, and write files on the disk.

VFAT, CDFS, and VCACHE

Windows for Workgroups introduced VFAT, a virtual installable file system
driver that provided a 32-bit interface between applications and the file sys-
tem. VFAT operates in protected mode, enabling Windows 98 and applica-
tions, 16 bit or 32 bit, to access the file system without switching the
processor from protected mode to real mode, which significantly improves
performance. Working in conjunction with VFAT is a virtual cache called
VCACHE, a 32-bit protected-mode disk cache. A disk cache improves file
I/O performance by caching recently used data and reading these data from
memory rather than disk on subsequent requests for the data. Windows 98
includes a 32-bit protected-mode CD-ROM file system driver, called
CDFS. CDFS improves file I/O by enabling applications to read from the
CD-ROM drive in protected mode rather than requiring the system to
switch to real mode to read the CD.

FAT32

FAT32 gets its name by using a 32-bit addressing scheme instead of a 16-bit
one. FAT32 enables the root directory to live anywhere on the disk and be
as long as it needs to be. FAT32 also keeps redundant backups of more crit-
ical disk information, making FAT32 partitions less susceptible to failure or
data corruption. FAT32 uses space more efficiently than FAT16. Its cluster

I Chapter 13

372 13.3 Workloads

sizes are smaller, because its 32-bit addressing scheme can directly address
more of them.

FAT32 has many drawbacks as well as advantages. The first downside of
FAT32 as opposed to FAT16 is speed. FAT32 is slightly slower in perform-
ing many common file operations. The second downside is backward com-
patibility. A whole host of applications and procedures will not work with
FAT32 partitions. Also, compressed drives cannot be formatted as FAT32,
and removable drives should not be formatted as FAT32. Laptops will not
be able to perform any suspend-to-disk functions on FAT32 drives, and if
the reader's PC supports power management hibernation, it will be turned
off if the drive is formatted to FAT32. Finally, a drive using FAT32 cannot
have Windows 98 uninstalled.

1 3 . 3 W o r k l o a d s

Workloads are the most crucial part of any performance evaluation project.
There are some important considerations when we select workloads for the
evaluation, such as services rendered by the workloads, level of details, effec-
tive representation, and timeliness.

13.3.1 Workloads description

Workloads can be described as follows:

1. Processes: To test the OS's ability to handle multiple processes.
This includes creating, scheduling, allocating resources, and kill-
ing the process. This can be implemented by running a C or Java
program that will create a large number of processes and threads.
This program will run without termination~that is, infinitely.
Using this method the system is bound to crash after a certain
number of processes. The program will record in a file the proc-
esses and at what time they were created. In this way we will have
a good feel for what the OS can handle.

2. Computation: To test the computational ability of each OS,
assuming the hardware is the same for all the configurations. The
OS handling of the ALU can be tested by forcing it to execute a
large number of difficult mathematical functions.

The following sections include the detailed description of the three
workloads considered for the performance evaluation of the operating sys-
tems, which are as follows:

13.3 Workloads 373

°

,

,

A MATLAB program, which does operations on a matrix, such as
adding, multiplying, calculating the determinant, and inverse
matrices.

An I/O intensive C program.

A C program that creates multiple processes.

Workload programs used by Windows ME~Windows XP/Windows
NT/LINUX operating systems
The programs that were used by the three Microsoft groups and one
LINUX group are as follows. The first, workload1, is a C program, which
opens a number of files and writes a number of bytes to them. It runs nine
different experiments three times each. The second is similar to the first
except that it opens up a number of processes with different sleep times
between the processes to see how many the OS can handle. It runs nine
experiments three times each. The third workload is a MATLAB program,
which runs a number of matrix operations with different matrix sizes and
number of matrices. It runs nine experiments three times each. The three
programs have been written to automatically run the experiments and
record the data in appropriate files.

Along with these three programs, there is a fourth program called perfor-
mance monitor, which will record CPU utilization and memory utilization
every 500 milliseconds. Then the CPU and memory utilization will be
compared with the beginning and ending times of the experiments, and the
response time of those experiments are recorded in Excel files.

The first program runs by choosing among 500, 750, and 1,000 bytes to
write to a file and among 100, 500, and 1,000 files to write in. This gives a
total of nine experiments. Each experiment is run three times. The response
time of each of the 27 experiments is recorded in a file. This is done by
opening the file, appending to it, and closing it every time a new experi-
ment is run. The program writes the number of bytes, number of files,
beginning time of experiment, ending time of experiment, and response
time of the experiment in one line in the file, called work1, tx t . This file
need not be created when the program is run.

The second program is similar to the first. It chooses among 10, 100,
and 1,000 processes and sleep times of 0, 100, and 1,000 milliseconds
between the processes. As in workload1, it is written to the file with the
same format as in work1, t x t . It records the number of processes instead of
number of bytes and process rate (sleep time) instead of number of files.
This is written in work2, tx t .

I Chapter 13

374 13.3 Workloads

The third program is a MATLAB program. It is composed of two files.
The first is matr ix .m, which is a program that takes in the number of
matrices and the size of the matrix and runs a number of operations on
these matrices. The mat r ix .m file is run by the workload3 .m file. This file
chooses among matrices or size 10 × 10, 50 × 50, or 100 × 100 elements
and uses either 10, 100, or 1,000 matrices. The mat r ix .m file writes to a
file called work3, t x t in the same format as w o r k l o a d 2 but with matrix
size instead of number of processes and matrix number instead of process
rate.

The fourth program is the performance monitor program. This program
reads the CPU utilization and memory utilization of the system and writes-
them to a file specified by the experimenter. The time and the CPU and
memory utilization are recorded every 500 milliseconds.

In order to derive information, we had to use the beginning and ending
times of an experiment in any of the workloads and then find a timestamp
immediately before the beginning time and immediately after the experi-
ment ending time. This would give us a number of readings between the
beginning and ending times. We would then take the average of the read-
ings we are concerned with and that would complete the required informa-
tion for that experiment.

Running these programs on Windows ME

Running these programs on ME proved to be a little difficult at times. Ini-
tially, the three workloads were identical for the three OSs with the excep-
tion that ME does not have the Process cmd.exe, which is used in
w o r k l o a d 2 to test the number of processes that the system can handle.
Instead, we use the option of mem. exe. It is a similar console application.
Also, in order to use the performance monitor program, we had to use our
own system calls.

While running the workload2 program, ME was not able to use the
mem. exe program after executing a number of processes. It would run some
of them and then it would run out of memory. An error message would
appear indicating that mem. exe could not be found even though it had just
run with the number of processes or lower. This occured at about 100 pro-
cesses with 100 milliseconds sleep time between processes.

MATLAB program workload for LINUX 7.2

The purpose of this MATLAB program is to determine the memory per-
centage utilization and the CPU percentage utilization that occur during

13.3 Workloads 375

selected matrix operations written in MATLAB code. These operations
were multiplication of matrices, addition of matrices, and inverse and deter-
minant operations. To conduct these experiments, we varied the matrix size
from 10 × 10 to 50 × 50 to 100 x 100 and the number of matrices from 10
to 100 to 1,000. According to the project specifications, we classified these
parameters as small, medium, and large. The program was run by giving a
UNIX command at the command prompt. It was of the form m a t f i n a l
(experiment number, matrix size, number of matrices).

To calculate the percentage of CPU utilization, we used the MATLAB
commands of t i c , toe, and CPU time. These commands were called
before and after the matrix operations previously mentioned; their results
were stored and used to calculate the percentage of CPU utilization. The
t i c command starts the stopwatch timer, and the toc command stops the
stopwatch timer. The toe command returns the time elapsed between its
calling, and the call to t i c ; therefore toc measures the elapsed time for the
matrix operations. The CPU time command gives the CPU time that has
passed since MATLAB started. This value of CPU time was divided by the
toe value to give the CPU utilization.

To calculate the percentage of memory utilization, we used a C program
(amitfinal. c), which was called from the MATLAB program before and
after the matrix operations. This C program was called from within the
MATLAB program by creating a MATLAB executable (mex) format--that
is, extending MATLAB with C. The C program made use of UNIX system
commands to acquire system information regarding memory--the amount
of RAM, available memory, cached memory, and so on. In order to capture
these memory values, we wrote the output of the C program into a text file
called mem. t x t . The contents of this file were read by the MATLAB pro-
gram by using f i d () and fopen () commands.

Taking a look at the before and after values and by using simple mathe-
matical formulas we calculate the memory used by the system in perform-
ing the matrix operations. Knowing the total memory used by other
processes in the system, we could determine what percentage of memory
our MATLAB program used. We could also verify these results by using the
top command at the command prompt. The top-command returned the
amount of memory used by the MATLAB software (including the memory
used to set up the MATLAB software during initialization and the memory
taken up by the operations of the MATLAB program), while the MATLAB
program code we used returned the memory required for the matrix opera-
tions only. It's up to the user to decide which one to use for making appro-
priate conclusions. In order to run the C program from the MATLAB

I Chapter 13

376 13.4 Experimental design and simulation

program, we had to include MATLAB executable commands to compile
and run the C program. Finally, the required values, such as size of matrix,
number of matrices, percentage of CPU utilization, and percentage of
memory utilization, were printed. Since there was no way of verifying the
percentage of memory use printed by the MATLAB program, we preferred
to use the system monitor.

1 3.4 Exper imenta l design and simulat ion

1 3.4.1 H a r d w a r e speci f icat ions f o r t h e systems used

To ensure that all the operating systems were tested on a level playing field,
the four PCs that were used had identical hardware. The hardware for each
of the machines was as shown in Table 13.1.

To ensure that all of the machines were indeed equal in the sense of
performance capabilities, an independent group ran a PC performance
benchmark to validate. The results are discussed in the next section.

1 3 .4 .2 PC b e n c h m a r k

Passmarlc" the performance test
The performance test comprises 22 individual benchmark tests, which are
available in six test suites. The six different test suites are as follows:

• Integer and floating-point mathematical operations

• Tests of standard two-dimensional graphical functions

• Reading, writing, and seeking within disk files

• Memory allocation and access

• Tests of the MMX (multimedia extensions) within newer CPUs

• A test of the DirectX 3D graphics system

The test results reported are shown as relative values. The larger the
number the faster the computer. For example, a computer with a result of

Iw.

Table 13.1 Tested Configuration

CPU Pentium III @ 500 MHz

Total RAM 256 MB

13.4 Experimental design and simulation 377

r

Table 13.2

40 can process roughly twice as much data as a computer with a result of
20. The Passmark rating is a weighted average of all the other test results
and gives a single overall indication of the computer's performance. The
bigger the number the faster the computer. The results we observed are
shown in Table 13.2.

Observed Test Results for the Passmark Pe~ornance Suites*

S. No. Parameter Tested Win NT Win XP LINUX 7.2 Win ME

1 Math--Addition 96.6 96.2 94.6 97.0

2 Math~Subtraction 96.4 97.1 96.2 97.6

3 MathmMultiplication 101.1 101.4 101.4 103.1

4 Math--Division 12.9 12.8 12.9 13.0

Math--Floating-Point Addition 87.7 87.8 87.6 88.7

Math--Floating-Point Subtraction 89.4 89.5 88.6 90.1

MathmFloating-Point Multiplication 91.7 91.7 90.9 92.3

Math--Floating-Point Division 14.8 14.8 14.8 14.9

Math--Maximum Mega FLOPS 171.2 172.2 170.7 177.6

10 Graphics 2D--Lines 17.5 17.6 17.5 17.8

11 Graphics 2D--Bitmaps 12.9 12.9 12.8 12.9

12 Graphics 2D--Shapes 4.7 4.7 4.7 4.7

13 Graphics 3D--Many Worlds 22.9 23.0 22.9 22.9

14 Memory--Allocated Small Blocks 86.6 87.6 87.0 87.6

15 MemorymRead Cached 67.9 68.4 68.0 68.5

16 Memory--Read Uncached 48.7 48.8 50 49.1

17 Memory--Write 40.8 41.1 40.9 41.4

18 Disk--Sequential Read 3.2 3.8 3.7 3.1

19 Disk--Sequential Write 2.9 3.4 3.4 2.9

20 Disk--Random Seek 1.2 2.3 3.6 2.1

21 MMX Addition 97.7 94.5 97.8 99.4

*The bold text indicates the highest values for each category.

I Chapter 13

378 13.4 Experimental design and simulation

I w

Table 13.2 Observed Test Results for the Passmark pe~Cornance Suites* (continued)

S. No. Parameter Tested Win NT Win XP LINUX 7.2 Win ME

22 MMXmSubtraction 92.3 98.2 93.3 96.0

23 MMX--Multiplication 97.8 97.5 96.9 99.1

24 Math Mark 75.6 75.8 75.2 76.8

25 2D Mark 46.7 46.9 46.7 47.1

26 Memory Mark 58.7 59.2 59.2 59.4

27 Disk Mark 19.3 25.1 28.4 21.5

28 3D Graphics Mark 15.5 15.7 15.5 15.6

29 MMX Mark 48.8 49.2 48.9 50

30 Passmark Rating 45.7 47.2 47.8 46.7

*The bold text indicates the highest values for each category.

1 3 .4 .3 B u r n - i n t e s t

What the burn-in test does is a thorough exercise of the hardware in a PC in
a short period of time, in the same way as normal applications use a PC over
a long period of time. It tests the following items:

1. CPU

2. Hard drives

3. CD-ROMs

4. Sound cards

5. 2D graphics

6. 3D graphics

7. RAM

8. Network connections and printers

The results we observed are shown in Table 13.3.

1 3 .4 .4 E x p e r i m e n t a l design

Operating system performance depends on several factors. In order to con-
duct a proper analysis, the effects of each factor must be isolated from those

13.4 Experimental design and simulation 379

l w

Table 13.3 Observed Test Results for the Burn-in Test

S. No. System Information Win XP Win NT Win ME LINUX 7.2

2 Number of CPU 1 1 1 1

3 CPU manufacturer Intel Intel Intel Intel

4 CPU type Celeron Celeron Celeron Celeron

5 CPU features MMX MMX MMX MMX

6 CPU Serial # N/A or disabled N/A or disabled N/A or disabled N/A or disabled

7 CPU1 speed 501.3 MHz 501.3 MHz 501.3 MHz 501.2 MHz

8 CPU Level 2 Cache 128 KB 128 KB 128 KB 128 KB

9 RAM 267,821,056 Bytes 267,821,056 Bytes 267,821,056 Bytes
(256 MB) (256 MB) (256 MB)

267,821,056 Bytes
(256 MB)

10 Color depth 24 24 24 24

of others so that meaningful estimates of their positive or negative contribu-
tions to performance can be made. For this evaluation, we created the three
workloads previously mentioned to exercise the process's management,
memory management, and I/O management subsystems of the operating
systems under study. All three workloads exercise these subsystems,
although each workload was designed to stress particular subsystems. The
first workload, which performs the matrix operations, is computationally
extensive and requires large memory allocations. Therefore, this workload is
primarily focusing on exercising the memory management subsystem. The
second workload, which creates, writes to, and deletes an array of varying
sized files, focuses on exercising the file management or I/O management
subsystem. The last workload, which forks UNIX and DOS shell processes,
was designed to stress the process management subsystem.

The experimental design for this study is summarized in Table 13.4.

We use a full factorial design to utilize every possible combination at all
levels of all factors. By limiting the number of factors and their correspond-
ing level, we can take advantage of this design to examine all possible com-
binations of configuration and workload. The measures chosen for
comparison are response time, CPU utilization, disk utilization, memory
allocation, and stability. Table 13.4 shows the factors and their levels. To
increase statistical significance while keeping the number of experiments at
a reasonable level, experiments were repeated three times for every combina-
tion of factors and levels. The resulting number of experiments for this

I Chapter 13

380 13.4 Experimental design and simulation

r

Table 13.4 A 3 4 Experimental Design*

Workload Factors and Factor Values Replications

A MATLAB program performing matrix opera-
tions on an array of varying sized matrices. This
program also records response times.

Size of Matrix--SmaU, Medium, Large (defined
in program)

Number of Matrices--10, 100, 1000

A C program that creates, writes to, and deletes a
number of varying sized files and records
response times.

Size of File--Small (1 KB), Medium (10 KB),
Large (100 KB)

Number of Files--10, 100, 1000

A C program that forks several UNIX/DOS
shell processes. This program also records
response times.

Number of Processes-- 10, 100, 1000

Process Arrival Rate--Slow (100 p/s), Medium
(1,000 p/s), Fast (all at once)

*[(3 Workloads) x (3 Levels for factorl) x (3 Levels for factor2) x (3 Replications)] = 81 Experiments

design is 81, calculated as follows: (3 workloads) × (3 levels for factor l) x (3
levels for factor2) × (3 replications).

1 3 . 4 . 5 S i m u l a t i o n

A simulation involves many activities, including data collection, building
models, executing the simulation, generating alternatives, analyzing out-
puts, and presenting results. Simulation systems provide software support
for all the activities. AWESIM is a simulation system that supports model
building, analysis of models using simulation, and the presentation of simu-
lation results. The AWESIM user interface is built on a see-point-select phi-
losophy employing multiple windows, a series of menus within each
window, and a mouse to select menu items. Each team was assigned to pre-
pare a high-level model before using the AWESIM simulation toolkit. The
following section includes the high-level model for each group, the corre-
sponding AWESIM model, and the reports.

AWESIM model for LINUX 7.2
In designing the AWESIM model, the LINUX team worked closely with
the NT team. The NT team focused mainly on process scheduling, whereas
the LINUX team focused mainly on memory management. There was, of
course, overlap in the design of both sections, and some differences emerged
on the final model for each team due to differences of the operating systems
and to differences of opinion over which design was best.

13.4 Experimental design and simulation 381

Before looking at the diagram it is essential to first know what resources
are being modeled and what attributes the entities have. The only resources
modeled were memory and CPU. CPU has an allocation unit of one, since
for any point in time only one process has the CPU; memory has as many
allocation units as the system being modeled has pages. The attributes are as
follows: ATRIB[1] - total CPU time needed, ATPdB[2] - timestamp (used
for the LRU approximation), ATRIB[3] = remaining time needed before
process terminates, LTRIB[1] = priority, LTRIB[2] = total number of pages
the process will ever need, LTPdB[3] - total number of reads remaining,
LTPdB[4] - total number of writes remaining, LTPdB[5] - total number of
pages currently held, and LT1LIB[6] indicates if the entity represents the
MATLAB program or the C forking program. As a note, ATRIBs are reals
whereas the LTRIBs are integers. ATRIB[2] deserves more explanation. The
way the LRU was approximated was by using timestamps every time a
memory reference was made.

However, instead of using a timestamp for every page held (which
admittedly would have been much better), a single timestamp was used for
each process. The logic is that whatever process least recently referenced
memory also has the least recently used page. Once this algorithm was
determined acceptable, another problem came up: swapping pages. If proc-
ess A has a page miss, and process B has the LRU (least recently used page),
process A can take a page from process B with a preempt node using
ATRIB[2] to indicate priority. The problem occurs, however, when the
process itself has the LRU, since a process can clearly not preempt itself.
This was solved with the combination of the node HaveLRU and a user-
defined function.

At the HavenRU node, if process A has the LRU, it will go onto the
swapwself node; otherwise, the entity will be routed to the preempt node.
The user-defined function merely examines the timestamp of all entities
possessing at least one page of memory. It then returns the value of the
LRU's timestamp. A branch can then be used to see if the entity's timestamp
equals the LRU's timestamp. Whenever an entity does preempt another
entity in this manner, it becomes necessary to increment LTRIB[5] (since it
now holds more than one page). Once the preceding concepts are under-
stood, the rest of the model becomes simple to understand.

Model

Processes are created at the create node, create_proc, but they are not told
whether they are to simulate the MATI~B program or the C forking pro-

I Chapter 13

382 13.4 Experimental design and simulation

gram until the goon-node, Initialize, randomly chooses to forward the
entity to the assign-node forking or the assign-node MATLAB. Once the
correct attributes have been set, the process must obtain a page of memory
by entering the await node, mem_wai t. After the page of memory has been
obtained, the fact is recorded by incrementing the value of LTRIB[5] via the
assign-node Getvrstvg. Once the page has been obtained, the process
waits in the ready queue. From the ready queue the process goes to the pre-
empt-node, cpu_wait, where it will either preempt the current process
(provided ATRIB[3] gives it a higher priority than the current process) and
send the preempted process back to the ready queue, or it will simply wait
until the current running process releases the CPU. Once the entity has
control of the CPU, the next sequence of steps is determined by which
process the entity is to simulate.

Forking
The entity modeling the forking program will first go to the goon-node,
fork, from where it will release the CPU at the flee-node, cpu_free2, and
its memory at the flee-node, mem_free2. Once both resources have been
freed, the entity will split, sending one copy of itself (the parent) to the ter-
minate-node end and the other copy of itself (the child) to the assign-node
child, where it will record its number of pages as being zero. The ch i ld
then attempts to get its first page of memory by going to the await-node,
mem wait.

MATLAB

The entity modeling the MATLAB program will first go to the goon-node,
processmatlab, from where it will branch, depending on whether or not it
has any reads or writes to perform. If there are no reads or writes to per-
form, the entity will be routed to the assign-node Ionotreq, where
ATRIB[1] will be decremented by the duration of the time slice. Next, the
CPU is released through the release-node cpu_free. If there is any process-
ing remaining to be done, the entity will be routed back to the ready queue;
otherwise, it will release its memory via the flee-node mere_free and termi-
nate by going to the terminate-node end.

If, however, there are any reads or writes that must be performed, the
entity will first be routed to the assign-node Ioreq, where the value for
ATRIB[1] will be decremented between zero and the value of the time
slice~depending on when the I/O is requested. It will then release the
CPU via the flee-node cpuio_free, from where it will be routed to the
goon-node requestpage.

13.4 Experimental design and simulation 383

Once a page is requested, it must first be determined whether or not the
process already owns that page. The model deals with this by assuming that
the probability a page is already owned is equal to the current number of
pages held, divided by the total number of pages needed. The value of this
probability is used for the branches. If it is determined that the process does
in fact have the necessary page, the entity will be routed to the goon-node
GetPageFrame, which simulates finding the page flame, and is then routed
to the goon-node addoffse t , which indicates that the offset is being added
to the page flame. After addoffse t , if there are any writes to perform, the
entity is routed to the goon-node wr i te and then to the assign-node
necWrite, where the timestamp is obtained and the number of writes
remaining to be performed is decremented. After the write, the entity
returns to the ready queue. If no writes remain, then a read needs to be per-
formed (since we wouldn't be here in the first place if there were neither
reads nor writes). The entity will first be routed to the goon-node read,
from where it will be routed to the assign-node DecReed, which is similar to
the DecWrite node. After changing the attributes, the entity is routed to
the ready queue.

If the process does not have the page being requested, it needs to find
the LRU and exchange it with the needed page. First, it must be determined
if the process itself contains the LRU, so the entity is first routed to the
goon-node HaveLRU, where it uses the user-defined function to determine
whether or not it has the LRU and then branches accordingly. If it does
have the LRU, the entity only needs to swap out its LRU and swap in the
new page; this is handled through the goon-node swapWzelf, after which
the entity can be routed to the goon-node GetPageFrame. If the entity does
not have the LRU, it goes to a preempt node to try to take a page away from
the process with the LRU (done by using timestamp ATRIB[2]--as the
priority) and use it for itself. Once it gets a page, the number of currently
held pages is incremented with the assign node, and the entity is then
routed to the goon-node GetPageFrame. Figure 15.1 illustrates the model
for INUX 7.2.

AWESIM model for Windows XP

Modeling of the system

We have modeled CPU scheduling based on the Windows NT architecture.
We have provided a high-level model and implemented the AWESIM
model based on this high-level model. The following text describes how the
CPU is scheduled in the operating system.

I Chapter 13

384 13.4 Experimental design and simulation

5

~01 ~
"-I"-I ,,haitialize,, I

~p~,l I ~ ~ 0 ~ , ~ B t ~ 1 end"

121c,o11131
Illoo 1 o1111 131 o 11oo11,1

I ~ ~ ' I I ~ ~ Itnb[5] = Itnl°[5]+1 ' I') , OetFrstPg I E] ~ ' ~ l - ~ "cpu'wait'' 1 _

, It~ [6"]--=I

/ °
~ m B t l] = AT~UBrl] - ~-0 I 1 ~

_ ~ / , (ltnlo [3] <- ltnlo N <=0)

atnbB] = 1).0 " X

~ ~ I AT~B~= 0
~ ' ~ ITRIB[I] = UNFRM(0,1)

"Mathb" t~NFRM(2O,~)
l t ~ [3] = 10

lt~[4] = 10
ltr~[~ =o
ltnlo [~ =0

I Matlab

Figure 13.1 Modd~r LINUX 7.2.

CPU scheduling

This operating system uses a preemptive muhithreading system. That is, it
lets several processes execute simultaneously and switches among them rap-
idly to create the illusion that each process is the only process running on
the machine. This scenario assumes a uniprocessor environment.

13.4 Experimental design and simulation 385

IL_

Hg~e 13.1 (Continued)

The basic scheduling unit is a thread. The system assigns each thread a
priority number from 1 to 31, where higher numbers signal higher priori-
ties. It reserves priorities 16 through 31 (real-time priorities) for use by
time-critical operations. A process priority class is a priority level around
which the process's threads get executed. New processes inherit the priority
class of their parent. Process threads start at the priority level associated with
their process's priority class.

The relative priorities that can change a thread's priority from its process
class priority are highest, above normal, normal, below normal, and lowest.
Threads must take turns running on the CPU so that one thread doesn't
prevent other threads from performing work. One of the scheduler's jobs is
to assign units of CPU time (quantum) to threads. A quantum is typically
very short in duration, but threads receive quantum so frequently that the
system appears to run smoothly~even when many threads are performing
work. The scheduler must make a CPU scheduling decision every time one
of the following three situations occurs:

1. A thread's quantum on the CPU expires.

2. A thread waits for an event to occur.

5. A thread becomes ready to execute.

The scheduler executes the FindReadyThread algorithm to decide
whether another thread needs to take over the CPU. If a higher-priority
thread is ready to execute, it replaces (or preempts) the thread that was run-
ning. VindReadyThread and ReadyThread are the key algorithms the
scheduler uses to determine how threads take turns on the CPU. Find-

I Chapter 13

386 13.4 Experimental design and simulation

ReadyThread locates the highest-priority thread that is ready to execute. The
scheduler keeps track of all ready-to-execute threads in the Dispatcher
Ready List. The VindReadyThread algorithm scans the Dispatcher Ready
List and picks the front thread in the highest-priority nonempty queue.
ReadyThread is the algorithm that places threads in the Dispatcher Ready
List. When ReadyTlaread receives a ready-to-execute thread, it checks to see
whether the thread has a higher priority than the executing thread. If the
new thread has a higher priority, it preempts the current thread and the cur-
rent thread goes to the Dispatcher Ready List. Otherwise, ReadyThread
places the ready-to-execute thread in the appropriate Dispatcher Ready List.
At the front of the queue, ReadyThread places threads that the scheduler
pulls off the CPU before they complete at least one quantum; all other
threads (including blocked threads) go to the end of the queue.

High-level model
Figure 13.2 illustrates the high-level model of the CPU scheduler that we
implemented in AWESIM.

Assumptions
We have made a number of assumptions while implementing the network
model. These are:

1. Processes that have I/O are given a fixed time for those operations
t o o c c u r .

2. A fixed quantum size.

3. Preempted processes return to the end of the queue instead of
going to the head.

4. The model will only consider I/O operations. Interrupts and
forking operations will not be considered.

AWESIM model
The AWESIM model is the implementation of the high-level model
described previously. The following are the working details of the model:

1. Each created process has the following attributes: total process
time, priority I/O, and whether or not the process will perform an
I/O operation.

2. If a process has an I/O operation, then the time of occurrence and
the total time for the I/O are allocated.

3. Processes with different priorities go to the different queues.

13.4 Experimental design and simulation 387

...--

11111

I I I I I

[~ I I I I I

I ~ I I I I I

I I I I I

I I I I I

I i Time slice expires

T e r m i n a t e

y

Figure 13.2 High-level model of CPU scheduler implemented in AWESIM.

.

,

1

.

0

e

10.

11.

Since CPU is allocated to a process for a quantum, calculations
are done to calculate the remaining time of the process after the
quantum has expired.

Preemption is done based on priority using the preempt-node,
and, again, the remaining time for the process to complete is cal-
culated.

The preempted processes are sent to a queue, which goes back to
the different priority queues.

All the processes go to the await-node, where they wait for the
CPU. When the CPU becomes available, they use it for either the
full length of the quantum or until a preemption or an I/O
request occurs.

When an I/O request occurs, the process waits in the I/O await-
node where it will be assigned one unit of the I/O resource. The
processes that have finished I/O go back to the ready queue.

After a resource (I/O or the CPU) is used, it is freed to be allo-
cated to the next entity (process).

After a process completes an I/O operation, its status is changed
to reflect that it does not require more I/O operations.

A process is terminated upon completion of the total time allo-
cated to it.

I Chapter 13

388 13.4 Experimental design and simulation

12. Collect-nodes were implemented to collect statistics such as the
number of processes being preempted, the number of processes
with different priorities, and the number of processes performing
I/O.

Figure 13.3 illustrates the AWESIM model for CPU scheduling.

The design description of the AWESIM model is as follows. The high-
level model concentrates on CPU scheduling; therefore the two resources in
the AWESIM model are CPU and I/O. The create-node creates 100 entities
(processes), which are assigned with different attributes (with each attribute
defining a specific function). LTRIB[0] gives the total time of execution of
the process, including the time taken for executing the I/O operation.
Whether a process has I/O or not is defined by LTRIB[1]. The time at
which the I/O occurs within the total execution time is indicated by
LTRIB[2]. Each process is assigned a priority, which is given by LTRIB[4].

In our model, a process departing the create-node will have either a pri-
ority 1, 2, or 3. Depending on the priority value, the entities are sent to
their respective queues. Here the entities branch, depending on the value of
LTRIB[1]. The time required by the process for execution is compared with
the time slice available on the CPU and, accordingly, the resource is made
available to execute the process.

If a process with a low priority is currently being serviced by the CPU
and a process with high priority comes in, then the preempt-node preempts
the low-priority process and sends it to queue 4 for future service. Also, any
process with I/O requirements after being serviced by the CPU will be sent
to the I/O await-node, and subsequently serviced by the I/O resource. Any
process with leftover execution time is sent back to the initial queues to
complete its execution. The two resources are freed by using a free-node
after the service.

AWESIM model results

The summary of the output is given in a report, from which we are able to
find the utilization rate of the different queues, queue lengths, utilization of
service activities, and the parameters related to the other nodes. From this
evaluation we have been able to find the percentages of CPU utilization and
I/O utilization. The inclusion of the collect-nodes at every stage of the
AWESIM model yields results, which give details about the different prior-
ities that are attributed to the processes, the number of processes that are
preempted, and whether a process has an I/O or not.

13.4
Experim

ental design and sim
ulation

389

U

kee~
e~

I
Chapter 13

390 13.4 Experimental design and simulation

lb.
V

Figure 13.4
High-level network

model.

AWESIM model for Windows ME

High-level model

In the basic high-level model for Windows 98, every incoming process is
directed to the operating system. The OS, depending on the type of service
requested, directs the process either to the I/O or memory. If it is a memory
request, then the operating system checks to see whether the requested data
are present in the cache. If not, it checks for the data in the main memory
and transfers the block of data into the cache. If it is not a memory request,
then it is an I/O request. Eventually, after an I/O request or memory access,
it finally goes to the CPU. Once the processing in the CPU is complete, it
can get into the I/O or memory chain or terminate. Figure 13.4 illustrates
the high-level network model.

The simulation model for Windows ME focuses on the basic function-
ing of two aspects: memory access and I/O. The model deals with them in
the simplest way and with the level of detail necessary to simulate the con-
ditions realistically. The simulation model for Windows focuses on basic
functioning of the two main modes as closely as possible. There is one
entity creation node. The entities emanating from this are fed into three
assign-nodes, which assign a set of attributes to these entities to differentiate
their behavior in the system. These are as follows:

1. ATRIB[1] corresponds to the type of service needed: I/O or sim-
ple memory access.

2. ATRIB[2] is for priority that ranges from 5 to 15.

3. ATRIB[3] corresponds to the number of reinstalls or the number
of times the entity needs to be serviced.

These entities pass through the assign-node queue in the input queue
waiting to acquire their respective resources (cache, main memory, and I/O)

I0001
Incoming

Processes

Operating
System

Cache I-. Miss ~1 Main
I"" Transfer I Memory

~np PU

. I l
I Terminate

13.4 Experimental design and simulation 391

at the await-nodes. The resources are assigned based on a process's priority.
After acquiring the resources, they all queue at the await-node for the CPU
resource (CPU clock pulses). After getting serviced by the CPU, the entities
move on and free their respective resources at the flee-node and terminate.
Entities that need multiple services go back to the input queue. This is done
by checking ATRIB3 and changing ATRIB1 to create a realistic behavior.
The model also tries to incorporate forking by creating some entities within
the process. This is visible in the entity count on the activities.

Figure 13.5 illustrates the AWESIM model for Windows ME.

AWESIM model for Windows NT

Figure 13.6 illustrates the AWESIM model for Windows NT.

In developing the AWESIM model (virtual memory part), the NT team
worked closely with the LINUX team. The NT team focused mainly on
CPU process scheduling, I/O scheduling, and virtual memory. We could
not get into details such as file management and object manager, because
the internals of the operating system were not available.

Before getting into the actual model, it is essential to look at what kind
of resources are being modeled and what attributes they have.

The resources are memory, CPU, and I/O manager. Out of these, the
memory and CPU are modeled as a single source of resource, whereas the
I/O manager (which manages various I/O devices) is modeled as a group
resource, meaning it has an n number of resources instead of having only
one. The CPU has an allocation unit of one, since, for any one point in
time, only one process acquires the CPU; memory has as many allocation
units as the system being modeled has pages.

The attributes are as follows:

ATRIB[1] = The total CPU time required by a process.

ATRIB[2] = Defines the priority of a process. This value is assigned
using a probability function. If this value is 1, then it is assumed that
the process belongs to a higher priority than the rest of the processes,
and a zero indicates a lower priority. There was a probablity of 0.1
that a process would have a priority of one.

LTRIB[1] = The total number of pages a process needs. Again, to
assign the number of pages, we used a random function, UNFRM,
which generates values from 1 to 5.

LTRIB[2] = The probability that the processes might require an I/O
operation such as printing, waiting on a subroutine, and so on.

I Chapter 13

392
13.4

Experim
ental design and sim

ulation

JL L

13.4 Experimental design and simulation 393

LTRIB[3] = Number of pages requested from the memory, initially
bearing a value of 0.

LTRIB[4] -- The total number of pages currently held in memory.

LTRIB[5] = The timestamp, used to compute the LRU.

The way the LRU works is as follows. Every time a memory reference is
made, the timestamp is updated. However, instead of using a timestamp for
every page held, a single timestamp was used for each process. The logic is

ATR~B[~ = 1

~ .~-u . ,~ .~ ~ i ~ i ,~ ii ~ I ~]

.o.o :,, ~ ' > ~

ATRIB[1] = 12[?
ATRIB[2] = 0
"low...pri" ~ UNFRI~(1,5)
LTRIB[2] = UNFRM(1,10,1)
LTRIB[3] = o

l l°w-pri I

I ready_queue[J~ 1 I time_bet_art

" t i m e g a p "
10,1~$5 "cPu-wait" I

, ~ "i°~q" l

HIOH(ATRIS[g]) I ~ ~ ~ I I011055 I

p ~ "nv req"] = ATRJB[I]-UNFRIvI(I 10) 1 ~ - ~ - - ~ ClOU, or

0.3. ~ r ~ I~- 'q I ® I°P ~ ° I I ~
I LTmS[~ ,. LT~SC~jLT~S[1] 1 ~ " I f

I p~° -~ I • ~o~l~c~>

I ~ - ~ t - ~ I

I °,~,°:~-.,~, I /

I ~ - ' ~ - I ® -

~morjr, LTRIB[1] I 1~---------jeb~50 ~

Figure 13.6 AWESIM model for Windows NT.

I Chapter 13

394 13.4 Exper imenta l design and simulat ion

"-f f ! I 1.--/ k

/ ' 1 ~-~t~: ~ow I ,) - ~ l ~ q ",~_,,~ "1
, ~ I°' ~' 11 raft

I 1 .,oo 1,11,1 I 1..o .o1,11,1 I01 r-'..l'll'l

I:lo,,io_f,',, I ~ "" - I i°''~it I ~ I ret-que I

Figure 13.6 (Continued)

that whatever process least recently referenced memory also has the least
recently used page.

Suppose X and Y are two processes: X has a page miss and Y has the
LRU. Process X can take a page from process Y with a preempt-node using
LTRIB[5] to indicate priority. But this logic has a problem whenever proc-
ess X has the LRU, since it cannot preempt itself. This is solved by using a
rtaveLRO-node and a user-defined function, which simply examine the
timestamp of all entries possessing at least one page of memory and return-
ing the value of LRU's timestamp. A branch can then be used to see if the
entity's timestamp equals the LRU's timestamp. At the HaveLRU-node, the
processes then check for themselves whether they have the LRU. If so, they
will go on to swapself-node, where they simply swap themselves; other-
wise, they will be routed to the preempt-node. Whenever an entity does
preempt another entity in this manner, it becomes necessary to increment
LTRIB[3] (since it holds more than one page).

N e t w o r k model
Processes are created at the create-node, create_proc. Once the correct
attributes have been set, the processes must obtain a page of memory by
waiting for an await-node, mem_wait. Initially all the processes are allocated
a single page of memory. After acquiring the page, this fact is recorded by

13.4 Experimental design and simulation 395

incrementing the value of LTRIB[3] via the assign-node GetFrstPage.
Once the page has been obtained, the processes wait in the ready queue for
the CPU. Thereafter, they go to a preempt-node, cpu_wai t, where they will
either preempt the current process (provided the CPU encounters a higher-
priority process than the current process) and send the preempted process
back to the ready queue, or they will simply wait until the current running
process releases the CPU. Once the entity has control of the CPU, the next
sequence of steps is determined by the node io_reqmnt, which determines
whether it requires I/O or not depending on the value of LTRIB[2]. Here
two issues arise. What if an entity requires I/O and what if it doesn't?

What if the entities do not require I/O? They proceed from the node
io_reqmnt toward node pages_mem, which assigns the value of LTRIB[3]/
LTRIB[1] to LTRIB[4]. The logic behind doing this is to check whether or
not the corresponding process has the required number of pages depending
on the value of LTRIB[4]. Here two issues arise. What if a page fault occurs
and what if it does not?

If there isn't a page fault, then the processes get processed and go to an
assign-node, where we update ATRIB[1] and the timestamp in LTRIB[5],
thereafter fleeing the CPU and sending the processes back to the ready
queue.

If there is a page fault, then we free the CPU from that process, since it is
waiting for another page. After doing this, we need to update ATRIB[1],
since we need to take into account the time that the process already spent in
CPU executing up to that moment--that is, before the page fault occured.
After updating ATRIB[1], the process goes to node mem_full_or_not,
which checks whether the memory is full or not.

If the memory is not full, then the process gets the required number of
pages by updating LTRIB[3] in an assign-node, page_al loc, and thereafter
it waits for memory at the await-node, mev__wai t.

If the memory is full, the entity is routed through a check_lru node,
which computes the LRU using the user-defined function discussed previ-
ously and branches accordingly.

If the entity does have the LRU, the entity only needs to swap out its
LRU page and swap in the new page. This is handled through the go-on
node SwapSelf, after which the entity can be routed through the go-on
node oetvagevrave, which simulates finding the page flame and adding
the offset to it. After adding offset, the required read/write operation is per-
formed by routing the entity through the go-on node perform_rw. After
doing this, the entities are routed through an assign node, upd_time, which

I Chapter 13

396 13.4 Experimental design and simulation

updates the timestamp of the entities that accessed the memory. After
updating the timestamp, the entities are sent back to the ready queue, since
they are done with their operation.

If the entity does not have the LRU, it goes to a preempt-node,
mem_greempt, to try to take a page away from the process with the LRU
(done by timestamp LTRIB[3]) and use it for itself. After preempting the
LRU, the timestamp, LTRIB[5], is again updated and gets the requested
page by waiting for the await-node, mem_wai t, for memory resource.

What if the entities do require I/O? Entities requiring I/O are freed from
the CPU and routed through an assign-node, ioreq, which updates the
total execution time already spent by the entity in the CPU. After this, enti-
ties wait at an await-node, iowai t, on the group resource I/O block, which
has various standard I/O resources, such as monitor, mouse, keyboard, and
printer. After the entities are serviced by the resource, the attribute
LTRIB[2] is set to zero, assuming that the entity no longer requires assi-
tional I/O. After this the entities are routed through a flee-node, free_io,
where all the resources allocated to that entity are freed. Finally, the entities
are routed back to the ready queue, since they are done with their execu-
tion.

Why isn't the A WESIM model validated by experimental results?
The results of AWESIM were so obviously wrong (e.g., CPU utilization
equals 100 percent), that without any validation it was instantly known the
model was invalid. Considering that parts of the model were actually left
out, this is not a surprise. Without these parts a valid model is impossible,
so rather than trying to force the data to fit into a validation scheme, we will
instead explain why the results were so poor, and why that cannot be
changed.

The first obviously incorrect piece of data is that CPU is 100 percent
utilized. This is because we do not simulate any I/O, so the only thing to
make a process give up CPU is termination or end of time slice. In either
case another process instantly replaces it, yielding an unrealistically high uti-
lization rate.

All other problems run into the same general problem~we could not
obtain appropriate values for attributes. An example of this is that we would
like to know the number of reads or writes the MATLAB program per-
forms, but all we are given is particular operations. These operations could
represent any number of reads and writes. This forced us to use an arbitrary
number for reads and writes. Also, the total number of pages a process will

13.5 Experimental analysis and conclusion 397

ever request was unknown to the simulator, forcing an arbitrary number for
that as well. Other arbitrarily chosen numbers were as follows: duration of
time slice, time to perform a single read, time to perform a single write, and
total length of CPU time (not counting I/O times) to complete the process.

Obviously, even if the model nodes and activities are perfect, with so
many arbitrary numbers the results cannot possibly be expected to be valid.
The model is useful for explaining, from a high-level point of view, how the
LINUX operating system works, and was also a useful educational experi-
ence to design, but as far as determining real-world behavior goes, the
model is useless.

13.5 Experimental analysis and conclusion

This section includes the intermediate analysis of the experimental results.
These results compare each workload in individual scenarios. Based on
these results the final conclusion regarding the tradeoff between the operat-
ing systems concludes this chapter.

1 3 . 5 . I F i le t r a n s f e r w o r k l o a d

For the file transfer workload, when the file size is constant and the number
of files is increased, the response time and CPU utilization increase linearly,
whereas memory utilization remains almost constant for XP, NT, and ME.
But in the case of LINUX, the response time increases, but the CPU utiliza-
tion decreases and the memory utilization remains constant.

Tables 13.5 through 13.7 show the ranges of CPU use and memory uti-
lization, depending on the number of files for each OS.

Observations for Table 13.5: Windows ME, NT, and XP all increased
their CPU use ranges, while LINUX decreased its range. LINUX perform-

Table 13.5 CPU Use and Memory Utilization for File Size = 500

Operating System CPU Range Memory Utilization

ME 56.5-88.8 10

NT 87.37-98.08 10

LINUX 13.0-99.9 0.3

XP 13.92-26.7 18

I Chapter 13

398 13.5 Experimental analysis and conclusion

v

Table 13.6

r

Table 13.7

CPU Use and Memory Utilization For File Size = 750

Operating System CPU Range Memory Utilization

ME 62.0-87.8 10

NT 6.35-98.49 10

LINUX 13.7-99.9 0.4

XP 16.16-32.77 17.99

ance fell within the range of 75.6-99.9 for 100 files. For file numbers of
500 and 1,000 the CPU use was between 13 and 16.8 with a varying trend.

Observations for Table 13.6: Windows ME, NT, and XP all increased
their CPU utilization ranges, while LINUX decreased its utilization range;
overall measurements varied greatly in the case of 100 files. CPU utilization
measurements varied from 98.3 for the first experiment, 24.4 for the second
experiment, and 99.9 for the third experiment. However, for 500 and 1,000
files it ranged from 13.7 to 15.9, showing less variability. Some of this vari-
ability could be smoothed out by performing more experiments at each
level and averaging their results. The time allotted to our experiment did
not allow us to do this, however.

Observations for Table 13.7: Windows ME, NT, and XP all increased in
their CPU utilization ranges over the full spectrum of measurements, while
LINUX decreased overall, staying at about 98 percent for the three experi-
mental runs. However, for 500 and 1,000 files its CPU utilization ranged
from 12.9 to 15.6.

CPU Use andMemory Utilization for File Size = 1,000

Operating System CPU Range Memory Utilization

ME 60.0-87.8. 10

NT 96.11-97.68 10-11

LINUX: 12.9-98.2 0.5

XP 18.156-30.91 17.98

13.5 Experimental analysis and conclusion 399

L
w -

Table 13.8 CPU Use and Memory Utilization for Process Rate = 0

Operating System CPU Range Memory Utilization

ME 61.67-91.2 10-12

NT: 3.38-85.625 11-26

LINUX 25-75 0.1

XP 47-86 17.23-18

13 .5 .2

v

Table 13.9

Process c r e a t i o n w o r k l o a d

For the process creation workload, we realize that the CPU utilization is
approximately linear for XP and LINUX with an increasing slope, while
NT and ME vary widely in their CPU utilization. Also, for XP, the response
time decreases when the number of processes rate increases. For each num-
ber of processes the performance range is higher than the previous number,
but it decreases as the processes rate increases.

Tables 13.8 through 13.10 show the ranges of CPU utilization and
memory utilization depending on the process rates for each OS.

Observations for Table 13.8: The Windows NT CPU utilization is
approximately 22 percent for ten processes but increases to between 77 per-
cent and 85 percent for 100 processes and drops down to about 50 percent
for 1,000 processes. Also, for 1,000 processes, the memory utilization
increases even though the CPU utilization decreases.

Observations for Table 3.9: For the case of a process rate of 100, NT
generally increases linearly with the exception of some values where it hap-

CPU Use and Memory Utilization for Process Rate = 1 O0

Operating System CPU Range Memory Utilization

ME 60.05-73.25: 10-14.56

NT 12.33-31.59 11-15

LINUX 37.1-73.3 0.1

XP 77.3-85.27 17.98-18.99

I Chapter 13

400 13.5 Experimental analysis and conclusion

Table 13.10

13 .5 .3

Table 13.11

CPU Use and Memory Utilization for Process Rate = 1,000

Operating System CPU Range Memory Utilization

ME 56.13-58.85 1.322-11

NT 3.42-4.62 11-20.98

LINUX 41.6-74.1 0.1

XP 18.156-30.91 17.97-17.99

pens to use a little less CPU utilization. However, the memory utilization
seems to increase linearly. For LINUX the process rate stays in the range of
37 to 41 for a number of processes equaling 10 and 100, but for 1,000 the
utilization jumps to between 50 percent and 70 percent.

Observations for Table 3.10: NT and XP remained almost constant in
their CPU, with a fluctuation of about 3 percent to 4 percent. The only OS
showing a variation in the percentage of CPU utilization was LINUX, rang-
ing from 41.6 to 74.1. On the contrary, ME showed a decrease in CPU uti-
lization with the increase in the number of processes. As the number of
processes increased, the memory utilization also increased considerably
(maximum of 8 percent in NT).

M A T L A B w o r k l o a d

For the matrix operations for the MATLAB workload, with constant matrix
size and varying number of matrices, the response time and CPU utilization
in the case of Windows ME, NT, and XP increase, whereas the memory uti-
lization remains almost constant. (See Tables 13.11 through 13.14.)

Observations for Table 13.11: Windows NT and XP performed simi-
larly, with CPU utilization exponentially increasing when the number of

CPU Use and Memory Utilization for Matrix Size = 10 × 10

Operating System CPU Range Memory Utilization

ME 51.5-76.66 2-2.5

NT 2-74 16

LINUX N/A N/A

XP 4.5-56.67 17.97-17.99

13.5 Experimental analysis and conclusion 401

Table 13.12

r

Table 13.13

CPU Use and Memory Utilization for Matrix Size = 50 × 50

Operating System CPU Range Memory Utilization

ME 55-99.78 4-11.97

NT 14-99.62 16-18

LINUX 46-48.37 4.2

XP 7.66-99.17 28-30.97

matrices was increased from 10 to 1,000. The variation was a bit less in
ME, ranging from 51 percent to 77 percent. Even for ten matrices it con-
sumed a lot of computational power. For the LINUX OS, the experiment
was conducted with different parameters. The matrix size started at 50 and
went up to 1,000, while for the Windows-based OS it started at 10 and
went up to 100. The amount of memory consumed was considerably less in
the ME system (2.5 percent) as compared with the other Windows-based
operating systems. On the other hand, the percentage of variation was fairly
constant in all three of them.

Observations for Table 13.12: Percentage utilization of CPU for N T
and XP increased exponentially when the number of matrices was increased
from 10 to 1,000. The variation was a bit less in ME, ranging from 55 per-
cent to 100 percent. Considerably, ME consumed more CPU even for a
lesser number of matrices. For the LINUX OS, the CPU consumption
didn't vary much but still consumed a lot of computational power for a
lesser number of matrices, similar to ME. The amount of memory con-
sumed was considerably less in the LINUX operating system (4.2 percent)
as compared with the Windows-based operating systems. On the other
hand, the percentage of variation in performance was fairly constant in all
four of them.

CPU Use and Memory Utilization for Matrix Size = 1 O0 × 100

Operating System CPU Range Memory Utilization

ME 59-99.98 0.30-4.25

NT 39.50-100 16-24.98

LINUX 81.22-81.97 4.2

XP 7.3-100 28-41

I Chapter 13

402 13.5 Experimental analysis and conclusion

Table 13.14 CPU Use and Memory Utilization for Matrix Size = 1,000 x 1,000

Operating System CPU Range Memory Utilization

LINUX 96.76 - 96.95 17.95-19.5

1 3 . 5 . 4

Table 13.15

Observations for Table 13.13: All three of the Windows-based machines
saturated their CPU utilization when the number of matrices was about
1,000. In this scenario too, Windows ME consumed more CPU resources
even for small numbers of matrices. For the LINUX operating system, the
CPU consumption didn't vary much but still consumed a significant
amount of computational power for small numbers of matrices, similar to
ME. The amount of memory consumed was considerably less in the
LINUX operating system (4.2 percent) as compared with the other Win-
dows-based OSs.

Observations for Table 13.14: Only the LINUX team tested a matrix of
this size. In this case the CPU utilization was almost pushed to the limit.
The memory utilization was still less compared with the Windows-based
machines.

Fina l c o n c l u s i o n

The following tables were deduced by calculating the average statistical
measured values for the actual tables collected in the study for the different
operating systems. The measure used is a ratio of the CPU utilization
divided by the product of the memory use and overall response time for
each experiment.

Table 13.15 gives the results for the process experiments.

Results for the Process Experiments

Operating System Response Time (ms) % CPU Utilization % Memory Utilization CPU/(Mem*res)

XP 35,290.95 82.34 19.43 12E-05

ME 150,110.33 68.98 8.96 5.13E-05

NT 148,956.52 27.03 13.91 1.3E-05

LINUX 7,400.5 49.83 0.1 6733.3E-05

13.5 Experimental analysis and conclusion 403

T -

Table 13.16 Results for the MATLAB Experiments

Operating System Response Time (ms) % CPU Utilization % Memory Utilization CPU/(Mem*res)

XP 218.66 99.56 35.975 0.012657

ME 224.555 99.715 26.45 0.016789

NT 222.345 98.7 21.46 0.020685

LINUX - - 65.17 4.2 0.069941"

* In order to get a value for this table it was necessary to have a response time for LINUX. The response time for the other oper-
ating systems was averaged; this way the LINUX response time essentially doesn't come into play.

iw-

Table 13.17

Table 13.16 gives the results for the MATLAB experiments.

Table 13.17 gives the results for the file experiments.

No operating system dominates in performance for all the workloads
that were used in this study. Each of the operating systems outperforms
other operating systems in its own way. To determine which system per-
forms best for each workload, we used the formula in the final columns,
which is equal to the CPU utilization divided by the product of the mem-
ory utilization and the response time.

LINUX performs well in forking new processes. This can be deduced
from the table values for process experiments, where it utilizes the least
memory, average CPU utilization, and minimum response time as com-
pared with other operating systems, giving it the best value in the aggregate
measure for performance. The second best system based on this measure is
the XP operating system, which has a value worse than LINUX's by a factor
of 561. Next comes NT, which has a value worse than XP's by a factor of
9.2. Finally, ME is the worst, with a value that is offby a factor of 3.9 when
compared with NT.

Results for the File Experiments

Operating System Response time (ms) % CPU Utilization % Memory Utilization CPU/(Mem*res)

XP 164,194 67.74 17.95 2.29839E-05

ME 965.36 74.05 10 767.0714E-05

NT 129,030 96.06 10.29 7.23497E-05

LINUX 42,625.88 89.28 22.6 9.26771E-05

I Chapter 13

404 13.5 Experimental analysis and conclusion

13 .5 .5

For the experiments involving matrix operations in MATLAB, LINUX
out performs the other operating systems, since it utilizes the least amount
of memory and has an average CPU utilization with an aggregate perform-
ance measure of 0.069941, making it better than NT by a factor of 3.38.
NT is better than ME by a factor of 1.23, and ME is better than XP by a
factor of 1.33.

Windows ME manages files efficiently compared with the other operat-
ing systems, with an aggregate performance measure of 7.67E-03. This
measure is then followed by LINUX, which is found to perform worse by a
factor of 82.7. NT in turn performs worse than LINUX by a factor of 1.28,
and XP is found to be worse than NT by a factor of 3.14.

T a b u l a r resul ts

Tables 13.18 through 13.20 show results for the various workloads.

13.5
Experim

ental analysis and conclusion
405

L~ !

z~

u~
°~

e~
e~

0
^

e~

e~

0

e~

e~

0

e~

e~

e~
e~

e~

0 0

e~

e~

0 0 e~

e~

e~

e~

e~

0 0

I
Chapter 13

406
13.5

Experim
ental analysis and conclusion

e~ i

°~

13.5
Experim

ental analysis and conclusion
407

e~
 i

-~o

x~

e~

0 e~
e~

e~

X

e~

e~

ec~

e~

x~

e~

e~

0 e~

X

I
Chapter 13

408 13.6 Summary

13.6 Summary

This chapter represents the results of a graduate course in computer system
performance evaluation conducted at the University of Massachusetts Dart-
mouth. It is presented to show the difficulties associated with evaluating the
performance of real-world computer systems, particularly their operating
systems.

This study attempted to perform an evaluation of four operating sys-
tems. The experiments developed appeared to provide the tests we wished
to perform, but our ability to adequately collect reliable measurements led
to our inability to do the study with any degree of reliability. If this study
were to be done again, the teams would need to use hardware-monitoring
concepts in order to get at low-level system parameters to more fully under-
stand how the systems performed. The teams also lacked experience in per-
forming such tests and analyzing results, leading to other problems, as one
can deduce from these results. We included such a study in this book to
highlight many of the problems encountered when performing such tests.

14
Database Systems Performance Analysis

14.1

14.2

In t roduct ion

The previous chapter addressed the issue of operating systems evaluation. It
focused on the use of testbeds and commercial-grade software to assess the
relative performance of four operating systems. This chapter follows a simi-
lar path; we will be evaluating industrial-grade software products used in
many applications. We will discuss database on-line transaction processing
as the overall application domain. The main focus, however, is the assess-
ment of four commercial-grade database systems running on a fixed set of
testbed hardware and systems software (the operating system).

Four database systems currently compete for the top position in the
database market, each claiming to be the fastest in the world. These data-
bases are IBM DB2, Informix UDB, Microsoft SQ_L Server, and Oracle 8i.
This chapter demonstrates which of these four database systems is the
"best" not only in terms of speed but also cost.

This chapter is divided into three main sections. First, a description of
the four systems that were used to test the databases is given. In the next
section the results of a PC performance benchmark are shown to prove that
all the PC hardware configurations were the same. The second portion
details the procedures taken by each database evaluation team to run a stan-
dard benchmark on its test database. Finally, the results of the standard
benchmark and a cost analysis show which database is the "best."

The tes tbed systems

To ensure that all the databases were tested on a level playing field, the four
PCs used were configured with identical hardware. The hardware for each
of the machines is defined in Table 14.1.

409

410 14.2 Thetestbed systems

L
r

Table 14.1

14.2.1

Testbed Configuration

CPU: Pentium III @ 500 MHz

Total RAM: 256 MB

Operating System: Windows NT 4.0 Service Pack 5

To ensure that all of the machines were equal in the sense of perform-
ance capabilities, an independent performance assessment group ran a PC
performance benchmark to validate each machine's performance specifica-
tions before the actual database benchmark tests were performed. The
results are discussed in the next section.

PC p e r f o r m a n c e assessment b e n c h m a r k

The PC computer architecture performance test utilized is comprised of 22
individual benchmark tests that are available in six test suites. The six differ-
ent test suites test for the following:

• Integer and floating-point mathematical operations

• Tests of standard two-dimensional graphical functions

• Reading, writing, and seeking within disk files

• Memory allocation and access

• Tests of the MMX (multimedia extensions) in newer CPUs

• A test of the DirectX 3D graphics system

The test results reported are shown as relative values. The larger the
number the faster the computer. For example, a computer with a result of
40 can process roughly twice as much data as a computer with a result of
20. The Passmark rating is a weighted average of all the other test results
and gives a single overall indication of the computer's performance. The
bigger the number the faster the computer. The results we observed are
shown in Table 14.2.

Assessment of results
The performance assessment test found that the computer system configured
for the DB2 servers appeared to have better performance than the other sys-
tems in most of the tests. However, the Passmark rating (weighted average of
all test results giving a single overall indication of performance) of the com-
puter system configured for the SQL Server 2000 was the highest.

14.2 Thetestbed systems 41 I

Table 14.2 Testbed Architecture Performance Results

Parameter Tested Oracle System Informix System SQL System DB2 System

Math--Addition 96.6 96.2 94.6 97.0

Math~Subtraction 96.4 97.1 96.2 97.6

Math--Multiplication 101.1 101.4 101.4 103.1

Math--Division 12.9 12.8 12.9 13.0

Math--Floating-Point Addition 87.7 87.8 87.6 88.7

Math--Floating-Point Subtraction 89.4 89.5 88.6 90.1

Math-Floating-Point Multiplication 91.7 91.7 90.9 92.3

Math--Floating-Point Division 14.8 14.8 14.8 14.9

Math--Maximum Mega FLOPS 171.2 172.2 170.7 177.6

Graphics 2D--Lines 17.5 17.6 17.5 17.8

Graphics 2D--Bitmaps 12.9 12.9 12.8 12.9

Graphics 2D--Shapes 4.7 4.7 4.7 4.7

Graphics 3D--Many Worlds 22.9 23.0 22.9 22.9

Memory--Allocated Small Blocks 86.6 87.6 87.0 87.6

Memory--Read Cached 67.9 68.4 68.0 68.5

Memory--Read Uncached 48.7 48.8 50.0 49.1

Memory--Write 40.8 41.1 40.9 41.4

Disk--Sequential Read 3.2 3.8 3.7 3.1

Disk--Sequential Write 2.9 3.4 3.4 2.9

Disk--Random Seek 1.2 2.3 3.6 2.1

MMX--Addition 97.7 94.5 97.8 99.4

MMX--Subtraction 92.3 98.2 93.3 96.0

MMXmMultiplication 97.8 97.5 96.9 99.1

Math Mark 75.6 75.8 75.2 76.8

2D Mark 46.7 46.9 46.7 47.1

Memory Mark 58.7 59.2 59.2 59.4

Disk Mark 19.3 25.1 28.4 21.5

3D Graphics Mark 15.5 15.7 15.5 15.6

MMX Mark 48.8 49.2 48.9 50.0

Passmark Rating 45.7 47.2 47.8 46.7

I Chapter 14

412 14.2 Thetestbed systems

1 4 . 2 . 2

Table 14.3

B u r n - i n t e s t

The computer system hardware burn-in test is a thorough exercise of the
hardware in a PC performed over a short period of time, in the same way as
normal applications use a PC over a long period of time. The burn-in test
assesses the following items:

• CPU

• Hard drives

• CD-ROMs

• Sound cards

• 2D graphics

• 3D graphics

• RAM

• Network connections and printers

Burn-in test assessment

From the results shown in Table 14.3, we can see that the SQL Server
2000's CPU speed is 0.1 MHz less than the other machines. This difference

Burn-In Test Results

System Information: Informix Oracle DB2 SQL Server

Operating System: Win NT4 Win NT4 Win NT4 Win NT4

Number of CPUs: 1 1 1 1

CPU Manufacturer: Intel Intel Intel Intel

CPU Type: Celeron Celeron Celeron Celeron

CPU Features: MMX MMX MMX MMX

CPU Serial #: N/A or disabled N/A or disabled N/A or disabled N/A or disabled

CPU1 Speed: 501.3 MHz 501.3 MHz 501.3 MHz 501.2 MHz

CPU Level 2 Cache: 128 KB 128 KB 128 KB 128 KB

RAM:

267,821,056 Bytes 267,821,056 Bytes 267,821,056 Bytes 267,821,056 Bytes
(256 MB) (256 MB) (256 MB) (256 MB)

Color Depth: 24 24 24 24

14.3 The database systems 413

is not significant, unless the duration of performance assessment tests spans
a long period of time. All other measurements indicated the four testbed
machines were equivalent.

14.3 The database systems

1 4 . 3 . I D a t a b a s e I - - O r a c l e a r c h i t e c t u r a l s t r u c t u r e

The components comprising the Oracle database system are executed using
virtual memory structures and basic application processes. Processes are jobs
or tasks that work in the memory of these computers. Oracle has always
placed great emphasis on portability: providing uniform features and facili-
ties across the greatest possible range of operating environments. Oracle
implements a common architecture, which includes the following compo-
nents:

• An area of memory available to all Oracle sessions, known as the sys-
tem global area (SGA). This area of memory includes recently
accessed data blocks (the buffer cache), SQL and PL/SQL objects
(the library cache), and transaction information (the redo log buffer).
The SGA may also contain session information.

• Several tasks that perform dedicated database activities, including the
database writer (DBWR), redo log writer (LGWR), system monitor
(SMON), process monitor (PMON), and log archiver (ARCH).
Other tasks may be configured if required to support Oracle options,
such as parallel query, distributed database, or multithreaded servers.
We will refer to these tasks as background tasks (although they are
also often referred to as background processes).

• Oracle data files, which contain the tables, indexes, and other seg-
ments that form the Oracle instance.

• Redo logs, which record critical transaction information required for
roll-forward in the event of instance failure.

• A separate task created to perform database operations on behalf of
each Oracle session, referred to as a dedicated server. If the multi-
threaded server option is implemented, many sessions can be sup-
ported by a smaller number of shared servers.

• A SQL*Net listener task, which establishes connections from external
systems.

I Chapter 14

414 14.3 The database systems

Database and redo log files are generally implemented using the operat-
ing system's native file system or raw disk partitions, and port-specific dif-
ferences at the file level are relatively minor. However, the memory and
process structure of an Oracle instance will vary significantly, depending on
how the operating system implements process and memory management.

The architecture of Oracle in a Windows NT environment is somewhat
different from UNIX. Oracle takes advantage of NT's strong support for
threads. In almost all operating systems, a process is prevented from access-
ing memory belonging to another process. Threads belonging to the same
process, however, share a common memory address space and are able to
share memory easily.

On NT, the Oracle instance is implemented as a single NT process (Fig-
ure 14.1). This process includes threads that implement each of the tasks
required for the Oracle instance. Therefore, there is a thread for each of the
background and server tasks plus a two-thread overhead per client connec-
tion. Because each thread shares the same memory space, there is no need to
implement the SGA in shared memory; if you implement the SGA within
the instance's process memory, it is available to all threads within the process.

Oracle's architecture suits the NT process/thread model. However, the
single-process model restricts the total memory available to threads belong-

Figure 14.1 Oracle process and thread structure on NT.

14.3 The database systems 415

ing to the Oracle instance on NT. Prior to NT version 3.51, the memory
limit for a single process was only 256 M B ~ a severe limitation for even
moderately sized Oracle instances. In NT version 4.0, a process may address
up to 4 GB of virtual memory. However, 2 GB of this memory is reserved
for system overhead, allowing only 2 GB for Oracle. At first glance, 2 GB
might sound like a generous memory allocation for an Oracle instance. But
remember that this area of memory must be sufficient to store the SGA and
data segments for all Oracle sessions. Furthermore, the 2 GB is a virtual
memory limit; it's possible that 2 GB of virtual memory will be expended
when physical memory use is actually far lower. There are currently two
options for extending the 2-GB limit: In Windows NT Server Enterprise
Edition, you can reduce the system component of process memory to 1 GB,
allowing up to 3 GB of memory for the Oracle instance. On Alpha NT
platforms, the very large memory (VLM) option allows up to 8 GB of
memory to be made available to the Oracle instance.

Oracle's multithreaded server option allows multiple client processes to
share a smaller number of Oracle server processes. This approach can
reduce memory requirements and process overhead. Multithreaded server is
also available on NT, but only from Oracle 8 onward. Using multithreaded
server under Windows NT can reduce the number of threads in the Oracle
process as well as overall memory requirements. One may also be able to use
the Oracle 8 connection pooling and concentrating facilities to further
reduce thread and memory overhead.

Transactions

Oracle supports many types of transactions, including read-only, read/write,
and discrete transactions. Depending on the transaction type set for the
transaction, the Oracle database will provide different data consistency
guarantees. If no transaction type is set for a transaction, it defaults to read/
write. For each transaction, Oracle must keep track of the transaction and
the effect it has on the database. This is done to ensure that if the transac-
tion does not finish, it can be rolled back and the effects of the transaction
"undone" from the database. This will ensure database consistency. Oracle
uses a special type of segment to record the specifics of the transaction.

Note: The queries run for the TPC-H experiment did not have any transac-
tion type set, so they ran as read/write transactions.

I Chapter 14

416 14.3 The database systems

Query optimization
Oracle provides an internal system feature called the optimizer. The opti-
mizer will determine one or more execution plans that it can use to execute
the SQL statement. Oracle 8i has three choices: cost, rule, and choose. The
cost-based optimizer will execute the SQL statement using the plan that has
the lowest cost. The rule-based optimizer will execute the SQL statement
according to user-defined rules set up in the database. The choose optimizer
will choose the lowest-cost optimization (cost or rule) that can execute the
SQL statement. In order to determine the best execution plans for SQL
statements, Oracle uses statistics that are stored in the database. These sta-
tistics must be updated periodically on the database tables, indexes, and
other database objects. If the database is modified after the statistics are gen-
erated (after analyzing the tables), the optimizer might not execute with the
least cost; therefore, it is crucial to regularly generate statistics on the data-
base tables.

One of the most costly execution plans is the full table scan. Full table
scans require Oracle to read every row in the table. Another execution plan
to find rows of a table is by searching an index of a table. Optimizers can be
passed hints to allow them to choose the best execution paths for a SQL
statement. One of these hints could be to use indexes. Other optimizer
hints include first rows, all rows, full table scan, nested loop, merge join, use
hash join, and so on. Hints can be added to SQL statements to ensure the
optimizer executes the SQL statement using the specific execution plan.

Note: The TPC-H queries were run with the Oracle database optimizer set
to Choose. No indexes were implemented; all of the tables were analyzed
prior to running the queries. No hints were added to the TPC-H queries,
since doing so would violate the comparison guidelines.

Concurrency control and Iock/ng
Oracle uses locking mechanisms to protect data from being destroyed by
concurrent transactions. Oracle provides both automatic and explicit lock-
ing capabilities. By default, Oracle provides locking for database resources
for transactions in the database. The system will automatically set locks on
tables and rows; the levels of the locks will depend on the transaction func-
tion (reads, inserts, updates, and deletes). Oracle can set locks in two lock
modes: shared or exclusive. Shared locks are set on database resources so
that many transactions can access the resource. Exclusive locks are set on

14.3 The database systems 417

14.3.2

Hgure 14.2
Configurable pool

database server

resources that ensure one transaction has exclusive access to the database
resource. Exclusive locks ensure transaction serialization. DML locks are
Oracle locks that are automatically set on tables and indexes for transactions
using DML operations (update, insert, delete). Oracle also automatically
sets DDL locks on Oracle resources when DDL operations are used (create,
alter, and drop).

Database 2 - - I n f o r m i x Dynamic Server
a rch i tec tura l s t ruc tu re

Informix Dynamic Server is a multithreaded object-relational database
server that manages data stored in rows and columns in a table. It employs a
single processor or symmetric multiprocessing (SMP) systems and dynamic
scalable architecture to deliver database scalability, manageability, and per-
formance. Dynamic Server can be used for on-line transaction processing
(OLTP), packaging applications, data-warehousing applications, and Web
solutions.

Dynamic scalable architecture

The foundation of Informix Dynamic Server's superior performance, scal-
ability, and reliability is its parallel database architecture, dynamic scalable
architecture (DSA), built to fully exploit the inherent processing power of
any hardware (Figure 14.2). DSA enables all major database operations,

.

s j I I

• • -

.... ~:~:~::~,,,~,7~. ::,:~,,~::~:,'/"~:: :~'~': '::ii~!!!,::,:. :

I Chapter 14

418 14.3 The database systems

such as I/O, complex queries, index builds, log recovery, and backups and
restores, to execute in parallel across all available system resources. Informix
Dynamic Server's core architecture was designed from the ground up to
provide built-in multithreading and parallel processing capabilities. Parallel
processing is achieved through dividing large user tasks into subtasks, thus
enabling processing to be distributed across all available resources.

The key advantages of Informix Dynamic Server are as follows;

• Maximum performance and scalability through a superior multi-
threaded parallel processing architecture

• Reduced operating system overhead through bypassing operating sys-
tem limits

• Local table partitioning for superior parallel I/O operations and high-
availability database administration

• Parallel SQL functionality increases performance and lets all database
operations execute in parallel, thereby eliminating potential bottle-
necks

• High database availability for supporting a wide range of business-
critical applications on open systems platforms

• Dynamic, distributed on-line system administration for monitoring
tasks and distributing workloads

• Full feature parity on Windows NT and UNIX operating systems

• Full RDBMS functionality across all hardware architectures (uniproc-
essor, symmetric multiprocessing, and cluster systems) and database
models (relational and object relational) enables seamless migration
of applications, data, and skills

Locking~ data consistency, isolation, and recovery
While high availability ensures integrity at the system level, data consistency
ensures consistency at the transaction level. Informix Dynamic Server main-
tains data consistency via transaction logging and internal consistency
checking and by establishing and enforcing locking procedures, isolation
levels, and business rules.

When an operation is unable to be completed, the partially completed
transaction must be removed from the database to maintain data consis-
tency. To remove any partially completed transaction, Informix Dynamic
Server maintains a historical record of all transactions in the logical logs and

14.3 The database systems 419

automatically uses these transaction records as a reference to restore the
database to the state prior to the transaction.

Internal consistency checking is designed to alert the Informix Dynamic
Server administrator to data and system inconsistencies. Informix Dynamic
Server contains a data-level layer of checks, which can detect data inconsis-
tencies that might be caused by hardware or operating system errors. If
inconsistencies are detected, this internal mechanism automatically writes
messages to the Informix Dynamic Server message log.

Other important features for maintaining data consistency are locking
procedures and process isolation. These security measures prevent other
users from changing data that are currently being read or modified and also
helps the system detect when conflicting locks are held. Row- and page-
level locking are specified when the table is created or altered. Table- and
database-level locking are specified in the user's application.

The isolation level is the degree to which your read operation is isolated
from concurrent actions of other database server processes: what modifica-
tions other processes can make to the records you are reading and what
records you can read while other processes are reading or modifying them.
Informix Dynamic Server has four isolation levels: dirty read, committed
read, cursor stability, and repeatable read.

Join methods
When Informix must join tables, it chooses any of three algorithms. All
joins are minimally two-table joins; multitable joins are resolved by joining
initial resultant sets to subsequent tables in turn. The optimizer chooses
which join method to use based on costs, except when you override this
decision by setting OPTCOMPIND. Joins are described as follows:

Nested Loop Join: When the join columns on both tables are
indexed, this method is usually the most efficient. The first table is
scanned in any order. The join columns are matched via the indexes
to form a resultant row. A row from the second table is then looked
up via the index. Occasionally, Informix will construct a dynamic
index on the second table to enable this join. These joins are often the
most efficient for OLTP applications.

Sort Merge Join: After filters are applied, the database engine scans
both tables in the order of the join filter. Both tables might need to be
sorted first. If an index exists on the join column, no sort is necessary.
This method is usually chosen when either or both join columns do

i Chapter 14

420 14.3 The database systems

not have an index. After the tables are sorted, joining is a simple mat-
ter of merging the sorted values.

• Hash Join: Available starting in version 7, the hash merge join first
scans one table and puts its hashed key values in a hash table. The sec-
ond table is then scanned once, and its join values are looked up in
the hash table. Hash joins are often faster than sort merge joins
because no sort is required. Even though creating the hash table
requires some overhead, with most DSS applications in which the
tables involved are very large, this method is usually preferred.

Cost-based query optimizer
Informix Dynamic Server's cost-based optimizer will automatically deter-
mine the fastest way to retrieve data from a database table based on detailed
information about the distribution of those data within the table's columns.
The optimizer collects and calculates statistics about this data distribution
and will pick the return path that has the least impact on system
resources~in some cases this will be a parallelized return path, but in others
it might be a sequential process. All that is needed to control the degree of
parallelism is the memory grant manager.

To provide users with a degree of control, Informix Dynamic Server
offers optimizer directives that let users bypass the optimizer. Areas that
users can control include the following:

• Access methods: This lets users specify how to access a table. For
example, a user can direct the optimizer to use a specific index.

• Join methods: This lets users specify how to join a table to the other
tables in the query. For example, users can specify that the optimizer
use a hash join.

• Join order: This lets users direct the optimizer to join tables in a spe-
cific order.

• Optimization goal: This lets users specify whether a query is to be
optimized by response time (which returns the first set of rows) or by
total time (which returns all rows).

Memory handling by Informix
All memory used by the Informix Dynamic Server is shared among the pool
of virtual processors. In this way, Informix Dynamic Server can be config-
ured to automatically add more memory to its shared memory pool in order
to process client requests expeditiously. Data from the read-only data

14.3 The database systems 421

1 4 . 3 . 3

dictionary (system catalog) and stored procedures are shared among users
rather than copied, resulting in optimized memory utilization and fast
execution of heavily used procedures. This feature can provide substantial
benefit in many applications, particularly those accessing many tables with
a large number of columns and/or many stored procedures. Informix
Dynamic Server also allocates an area, called the thread stack, in the virtual
portion of shared memory to store nonshared data for the functions that a
thread executes. The thread's stack tracks the state of a user session and
enables a virtual processor to protect a thread's nonshared data from being
overwritten by other threads concurrently executing the same code. Infor-
mix Dynamic Server dynamically grows the stack for certain operations
such as recursive stored procedures. Informix Dynamic Server's shared
memory minimizes fragmentation so that memory utilization does not
degrade over time. Beyond the initial allocation, shared memory segments
are automatically added in large chunks as needed but can also be added by
the administrator while the database is running. The memory management
system will also attempt to automatically grow the memory segment when
it runs out of memory. When a user session terminates, the memory it used
is freed and reused by another session. Memory can be reclaimed by the
operating system by fleeing the memory allocated to the database. User
threads can, therefore, easily migrate among the virtual processors, contrib-
uting to Informix Dynamic Server's scalability as the number of users
increases.

D a t a b a s e 3 - - I B M D B 2 a r c h i t e c t u r a l s t r u c t u r e

Conceptually, DB2 is a relational database management system. Physically,
DB2 is an amalgamation of address spaces and intersystem communication
links, which, when adequately tied together, provides the services of a rela-
tional database management system.

Beginning with DB2 version 3, each DB2 subsystem consists of three or
four tasks started from the operator console 1. Each task runs in a portion
of the CPU called an address space. Version 4 of DB2 provides an addi-
tional address space for stored procedures. A description of these five
address spaces (Figure 14.3) follows.

• The DBAS, or Database Services Address Space, provides the facility
for manipulating DB2 data structures. The default name for this
address space is DSNDBM1, but each individual shop may rename
any of the DB2 address spaces. The DBAS is responsible for running
SQL statements and managing data buffers. It contains the core logic

I Chapter 14

422 14.3 The database systems

y

Figure 14.3

!~ ~ ~ i i ii!~ ~ili~!~ ~
iii

i iii!ii~i~ i iiiiii~ i~i!iiiiiii~!~iiiiiill i i~iii!il i iiii!i~iiiii!i!ii~!iiiiiiiiii!i!71!i! ~'~ if ill i i i!, i~ii~iiiii,,~, i~ili

ii~il ii! ~ ii~i!

Components o f the database services address space.

of the database management system. Three individual components
make up the DBAS: the Relational Data System, the Data Manager,
and the Buffer Manager. Each of these components performs specific
tasks.

• The SSAS, or System Services Address Space, coordinates the attach-
ment of DB2 to other subsystems (CICS, IMS/DC, or TSO). SSAS
is also responsible for all logging activities (physical logging, log archi-
val, and BSDS). DSNMSTR is the default name for this address
space.

• The third address space required by DB2 is the IRLM, or Intersystem
Resource Lock Manager. The IRLM is responsible for managing DB2
locks (including deadlock detection). The default name of this
address space is IRLMPROC.

• The fourth DB2 version 3 address space, DDF, or Distributed Data
Facility, is the only optional one. The DDF is required only if distrib-
uted database functionality is needed.

14.3 The database systems 423

• The newest address space, SPAS, or Stored Procedure Address Space,
has been added to DB2 version 4 to support stored procedures and
remote procedure calls (RPCs). The SPAS runs as an allied address
space providing an independent environment for stored procedures
to execute. This effectively isolates the user-written stored procedure
code in its own little world so that it cannot interfere with the system
code of DB2 itself.

These five address spaces contain the logic to effectively handle all DB2
functionality.

The functionality of the DBAS
Recall that the DBAS is responsible for executing SQL and is composed of
three distinct components: the relational system, the data manager, and the
buffer manager. Each component passes a SQL statement to the next com-
ponent, and, when results are returned, each component passes the results
back.

The Relational Data System (RDS) is the component that gives DB2 its
set orientation. When a SQL statement requesting a set of columns and
rows is passed to the RDS, it determines the best mechanism for satisfying
the request. Note that the RDS can parse a SQL statement and determine
its needs. These needs may include any of the features supported by a rela-
tional database (such as selection, projection, or join). When a SQL state-
ment is received by the RDS, it checks authorization; translates the data
element names being accessed into internal identifiers; checks the syntax of
the SQL; and optimizes the SQL, creating an access path.

The RDS then passes the optimized SQL statement to the Data Man-
ager (DM) component. The DM delves deeper into the data being
accessed. In other words, the DM is the component of DB2 that analyzes
rows (either table rows or index rows) of data. The DM analyzes the request
for data and then calls the Buffer Manager to satisfy the request.

The Buffer Manager (BM) accesses data for other DB2 components. A
data buffer is often referred to as a cache in other DBMSs. The BM uses
pools of memory set aside for the storage of frequently accessed data in
order to create an efficient data access environment. When a request is
passed to the BM, it must determine whether the data are in the appropriate
buffer pool. If they are, the BM accesses these data and sends them to the
DM. If these data are not in the buffer pool, the BM calls the VSAM Media
Manager to read the data and send them back to the BM, which in turn

I Chapter 14

424 14.3 The database systems

sends these data back to the DM. The DM receives the data passed to it by
the BM and applies as many predicates as possible to reduce the answer set.
Only Stage 1 predicates are applied in the DM. Finally, the RDS receives
the data from the DM. All Stage 2 predicates are applied, the necessary sort-
ing is performed, and the results are returned to the requester.

An understanding of the internal components of DB2 can be helpful
when developing a DB2 application. For example, consider Stage 1 and
Stage 2 predictates. It is easier to understand that Stage 1 predicates are
more efficient than Stage 2 predicates, because you know they are evaluated
earlier in the process (in the DM instead of the RDS). Therefore, they avoid
the overhead associated with the passing of additional data from one com-
ponent to another.

DB2 memory management
The Database Manager Shared Memory is allocated when the database
manager is started using the c tb2s~re command, and remains allocated
until the database manager is stopped using the ctb2ueop. This memory is
used to manage activity across all database connections. From the Database
Manager Shared Memory, all other memory is attached and/or allocated.
The Database Global Memory (also called Database Shared Memory) is
allocated for each database when the database is activated using the ACTI-

~ p Buffer

Restore e ~ r
(rest~utsz)

P ~ ~
¢ ~ m z)

Buffer P ~

Exten~d Men~ry ~ e

~r t H ~ for ~

Log ~ r

Ca~ Ca~

i [i ii i il i i ̧ i i!!!i (~ ~ ~ ~ I i i̧̧ (:i~ i i!iiiii ̧ ~̧I i[il ̧II!!I!I!~I ¸

Figure 14.4 Database Manager Shared Memory overview.

14.3 The database systems 425

VATE DATABASE command or when the first application connects to the
database. The Database Global Memory remains allocated until the data-
base is deactivated using the DEACTIVATE DATABASE command or when
the last application disconnects from the database. The Database Global
Memory contains memory areas such as buffer pools, lock list, database
heap, and utility heap. The database manager configuration parameter,
NUMDB, defines the maximum number of concurrent active databases. If
the value of this parameter increases, the number of Database Global Mem-
ory segments may grow, depending on the number of active databases.

Figure 14.4 shows how memory is used to support applications. In the
previous section we introduced some configuration parameters that may
affect the number of memory segments. We now introduce the configura-
tion parameters, which allow you to control the size of each memory by
limiting its size.

The Database Manager Shared Memory is required for the Database
Manager to run. The size of this memory is affected by the following con-
figuration parameters:

• Database System Monitor Heap Size (MON_HEAP_SZ)

• Audit Buffer Size (AUDIT_BUF_SZ)

• FCM Buffers (FCM_NUM_BUFFERS)

• FCM Message Anchors (FCM_NUM_ANCHORS)

• FCM Connection Entries (FCM_NUM_CONNECT)

• FCM Request Blocks (FCM_NUM_RQB)

The Database Manager uses the fast communication manager (FCM)
component to transfer data between DB2 agents when intrapartition paral-
lelism is enabled. Thus, if you do not enable intrapartition parallelism,
memory areas required for FCM buffers, message anchors, connection
entries, and request blocks are not allocated. The maximum size of the
Database Global Memory segment is determined by the following configu-
ration parameters:

Buffer pool size explicitly specified when the buffer pools were cre-
ated or altered (the value of BUFFPAGE database configuration
parameter is taken if 1 is specified)

• Maximum storage for lock list (LOCKLIST)

• Database heap (DBHEAP)

• Utility heap size (UTIL_HEAP_SZ)

I Chapter 14

426 14.3 The database systems

• Extended storage memory segment size (ESTORE_SEG_SZ)

• Number of extended storage memory segments
(NUM_ESTORE_SEGS)

• Package cache size (PCKCACHESZ)

• Application global memory is determined by the following configura-
tion parameter: application control heap size (APP_CTL_HF_akP_SZ)

Query optimization
Query optimization is the part of the query process in which the database
system compares different query strategies and chooses the one with the
least expected cost. The query optimizer, which carries out this function, is
a key part of the relational database and determines the most efficient way
to access data. It makes it possible for the user to request the data without
specifying how these data should be retrieved.

The cost of accessing a query is a weighted combination of the I/O and
processing costs. The I/O cost is the cost of accessing index and data pages
from disk. Processing cost is estimated by assigning an instruction count to
each step in computing the result of the query. There are two approaches to
optimization. They are as follows:

• Cost based: This was developed by IBM. The optimizer estimates the
cost of each processing method of the query and chooses the one with
the lowest estimate. Presently, most systems use this.

• Heuristic: Rules are based on the form of the query. Oracle used this
at one point. Presently, no system uses this.

The query optimizer has the job of selecting the appropriate indexes for
acquiring data, classifying predicates used in a query, performing simple
data reductions, selecting access paths, determining the order of a join, per-
forming predicate transformations, performing Boolean logic transforma-
tions, and performing subquery transformations~all in the name of
making query processing more efficient.

Concurrency control and Iock/ng in DB2
The granularity of locking within a database management system represents
a definite tradeoff between concurrency and CPU overhead. Whenever a
finer granularity of locking is desired, an increase in the use of available
CPU resources may be required, because locking in general increases CPU
path length. No I/O operations are done, but each lock request requires
two-way communication between DB2 and the internal resource lock man-

14.3 The database systems 427

14.3 .4

ager (IRLM). However, it is also possible there may or may not be an
increase in the number of potential lock requests. For example, for read-
only SQL with highly effective lock avoidance you may not see any increase
in the number of DB2 lock requests to the IRLM.

A DB2 thread makes lock requests through IRLM services. Transaction
locks are owned by the work unit or thread and managed by the IRLM.
DB2 objects that are candidates for transaction locking are as follows:

• Table space

• Partition

• Table

m Page

• Row

The locking mechanisms must also perform many other operations in
the name of locking~for example, manage the lock hierarchy, lock dura-
tion, the modes of locks, lock escalation, lock suspension, and deadlock
detection and recovery.

Join methods
When multiple tables are requested within a single SQL statement, DB2
must perform a join. When joining tables, the access type (tablespace scan
or index scan) defines how each single table will be accessed; understanding
the join method defines how the result sets from multiple tables will be
combined to deliver a unified result set back to the requester. While more
than two tables can be joined together in a single SQL statement, DB2 will
always perform the join operation in a series of steps. Each step joins only
two tables together, and a composite table is passed to the next step in the
series. The plan tables will describe how these tables are joined together and
the order in which each table is accessed.

Database 4 - - M i c r o s o f t SQL Server
a rch i tec tura l s t ruc tu re

Microsoft SQL Server 2000 persistently stores data in database-controlled
tables organized as relations managed in physical files (Figure 14.5). When
using a database, work is performed primarily with the logical components,
such as tables, views, procedures, and user space. The physical implementa-
tion of relations and their realization as files is largely transparent.

I Chapter 14

428 14.3 The database systems

Figure 14.5
Logical venus

physical view of the
database.

Database XYZ
;" U s e [. v i e q ~ -m

able:de

,~,~i ~i~.~;~ i~: ̧ ,,:~ ~ , ~ ~ 7~ ~,~,~L~ ~i ~?~,,'~ ~',~:~!~ m . iiiii~J~i~i~i ~i~i~iii~

nmmmmmmmm ~mmmmmmm m m m m m mm m m m m m m m
m m m m m mm m m m m m m m
m m m m m mm m m m m m m m
m m m m m m m ~?~ m m m m m m m m
mm m mmmm mm mmm ~:,. ~.~ mmmmmm mmmmmm m

L . 7

Phgsical implementation

Datal.mdf Data2.ndf

. L.°?!-~_d! .

Each instance of a SQL Server has four system databases (master, model,
tempdb, and msdb) and one or more user databases (Figure 14.6). Some
organizations have only one user database, containing all the data for their
organization. Some organizations have different databases for each group in
their organization and sometimes a database used by a single application.

It is not necessary to run multiple copies of the SQL Server database
engine to allow multiple users to access the databases on a server. An instance
of the SQL Server Standard or Enterprise Edition is capable of handling thou-
sands of users working in multiple databases at the same time. Each instance
of SQL Server makes all databases in the instance available to all users who
connect to t 'he instance, subject to the defined security permissions.

Server compute[

SQL Server

! i

User databases | |

r
System databases

master tempdb msdb model ’,i payroll
. i ,

~ales employees

r -

Figm'e 14.6 Logical tablespace structures.

14.3 The database systems 429

When connecting to an instance of SQL Server, your connection is asso-
ciated with a particular database on the server. This database is called the
current database. You are usually connected to a database defined as your
default database by the system administrator, although you can use connec-
tion options in the database APIs to specify another database. You can
switch from one database to another using either the Transact-SQL USE
database_name statement or an API function that changes your current
database context.

SQL Server 2000 allows you to detach databases from an instance of
SQL Server and then reattach them to another instance, or even attach the
database back to the same instance. If you have a SQL Server database file,
you can tell SQL Server when you connect to attach that database file with
a specific database name.

The memory algorithms and use of memory by SQL Server objects are
major changes in SQL Server 7.0 over SQL Server 6.5 that improve the per-
formance of the database and also minimize the work the database adminis-
trator must do to configure memory for good performance.

Microsoft SQL Server 7.0 has dramatically improved the way memory is
allocated and accessed. Unlike SQL Server 6.5, in which memory is man-
aged by the database administrator with configuration settings, SQL Server
7.0 has a memory manager to eliminate manual memory management.

SQL Server 6.5 has a memory configuration option, which allocates a
fixed amount of memory on startup--that is, memory is segmented and
manually managed. If the parameter is set too high, SQL Server cannot
start. The database administrator must first determine how much memory
SQL Server should use versus the operating system. For example, with 256
MB of memory, SQL Server may get 200 MB and leave 56 MB for the
operating system. This in itself is an art, not a science. It is very difficult to
plan how much the database alone needs, much less plan what the operat-
ing system and other applications, such as Web servers running on the same
computer, might need. Use of memory is not stagnant; it is possible that
SQL Server may need more memory from 8:00 A.M. to 5:00 P.M., and the
operating system may need more memory from 5:00 P.M. to 8 :00 A.M. to

run nightly batch work. Changing the memory configuration requires a
shutdown and startup of SQL Server 6.5.

When SQL Server 7.0 starts, its dynamic memory allocation determines
how much memory to allocate based on how much memory the Windows
NT operating system and applications for Windows NT are using. For

I Chapter 14

430 14.3 The database systems

example, assume that Windows NT has a total of 512 MB of memory.
When SQL Server starts up, Windows NT and the applications running on
Windows NT are using 72 MB of memory. SQL Server uses available mem-
ory, leaving 5 MB flee. Therefore, SQL Server uses 435 MB of memory--
512 MB total- 72 MB for active Windows N T - 5 MB of free memory. If
another Windows NT-based application is started and uses the 5 MB of
free space, SQL Server proactively releases memory to ensure that 5 MB of
free space always remains flee. Conversely, if Windows NT releases memory
so that the free memory is more than 5 MB, SQL Server uses that memory
for database operations.

This dynamic memory algorithm has many advantages. You no longer
need to guess the correct memory percentages for Windows NT, Windows
NT-based applications, and SQL Server. You can also avoid Windows NT
paging during times of heavy Windows NT use, and you can use Windows
NT free memory during times of light Windows NT use. The memory
algorithm for SQL Server 7.0 Desktop Edition works differently. Rather
than taking memory when it is flee, it gives memory back to the operating
system when it is not needed. This is because it is more likely that the Desk-
top Edition is running other applications.

Lock/ng architecture
Microsoft SQL Server 2000 uses locks to implement pessimistic concur-
rency control among multiple users performing modifications in a database
at the same time. By default, SQL Server manages both transactions and
locks on a per connection basis. For example, if an application opens two
SQL Server connections, locks acquired by one connection cannot be
shared with the other connection. Neither connection can acquire locks
that would conflict with locks held by the other connection. Only bound
connections are not affected by this rule.

SQL Server locks are applied at various levels of granularity in the data-
base. Locks can be acquired on rows, pages, keys, ranges of keys, indexes,
tables, or databases. SQL Server dynamically determines the appropriate level
at which to place locks for each Transact-SQL statement. The level at which
locks are acquired can vary for different objects referenced by the same
query~for example, one table may be very small and have a table lock
applied, while another, larger table may have row locks applied. The level at
which locks are applied does not have to be specified by users and needs no
configuration by administrators. Each instance of SQL Server ensures that
locks granted at one level of granularity respect locks granted at another level.
There are several lock modes: shared, update, exclusive, intent, and schema.

14.4 Testbed performance analysis testing 431

14.4

If several connections become blocked waiting for conflicting locks on a
single resource, the locks are granted on a first come, first served basis as the
preceding connections free their locks. In support of concurrent operations,
SQL Server has an algorithm to detect deadlocks. If an instance of SQL
Server detects a deadlock, it will terminate one transaction, allowing the
other to continue.

SQL Server can dynamically escalate or de-escalate the granularity or
type of locks. For example, if an update acquires a large number of row
locks and has locked a significant percentage of a table, the row locks are
escalated to a table lock. If a table lock is acquired, the row locks are
released. SQL Server 2000 rarely needs to escalate locks; the query opti-
mizer usually chooses the correct lock granularity at the time the execution
plan is compiled.

Structured Query Language
To work with data in a database, you have to use a set of commands and
statements (language) defined by the DBMS software. Several different lan-
guages can be used with relational databases; the most common is SQL.
The American National Standards Institute (ANSI) and the International
Organization for Standardization (ISO) define software standards, includ-
ing standards for the SQL language. SQL Server 2000 supports the entry
level of SQL-92, the SQL standard published by ANSI and ISO in 1992.
The dialect of SQL supported by Microsoft SQL Server is called Transact-
SQL (T-SQL). T-SQL is the primary language used by Microsoft SQL
Server applications.

Summary of special features
Microsoft SQL Server 2000 gives users an excellent streamlined database
platform for large-scale, on-line transactional processing (OLTP), data
warehousing, and e-commerce applications. The improvements made to
SQL Server version 7.0 provide a fully integrated XML environment, add a
new data mining feature in analysis services, and enhance repository tech-
nology with metadata services. SQL Server 2000 enhances the performance,
reliability, quality, and ease of use of SQL Server 7.0.

Testbed performance analysis testing

A true comparison of the four databases requires a plain benchmark that
does not take advantage of any of the special features within any of the data-
bases. In order to do this our team researched the latest benchmarks pro-

I Chapter 14

432 14.4 Testbed performance analysis testing

14.4.1

vided by the Transaction Processing Council (TPC~www.tpc.org). Three
benchmarks were found that would allow us to test OLTP. These were
TPC-C, TPC-H, and TPC-R. Of the three, TCP-C version 5 is designed as
the latest OLTP benchmark. However, the TPC has not yet made the
benchmark available for public use. As such, TPC-H and TPC-R were
looked at. Both of these benchmarks are for decision-support databases in
data warehousing. It was discovered that TPC-H is a revised version of
TPC-R. The only difference between the two benchmarks is the implemen-
tation rules.

It was the decision of the performance evaluation team, due to the lim-
ited amount of time the group would have to learn the benchmarks, learn
the databases, and do any real analysis, that it would be best to use TPC-H.
This decision was made, since we would have less options to worry about
during the implementation of the benchmark. This benchmark consists of a
suite of business-oriented ad hoc queries and concurrent data modifica-
tions. Its main purpose is to help examine large volumes of data and execute
queries with a high degree of complexity.

The next task was to determine what type of workloads the databases
would run and how these loads would be run.

Workloads

The key concern in the benchmarking of a system is the specification of the
workload. The workload of a computer is defined as the set of all inputs the
system receives from its environment. The groups used the queries defined
in the TPC-H benchmark (Table 14.4) as the basic workload.

14.4.2 Preparing for the testing

In order to ensure that the testing was standard, one of the performance
tests in the TPC-H benchmark was chosen and modified. The planned
modifications were the insertion of refreshes, as required by the TPC-H
specifications, and the use of indexing. Thus, two runs would be done: one
with no indexing and refreshes, and one with indexing and refreshes.
Refreshes are required by the TPC-H specification, but the locations of
these refreshes in the queries are left to the tester. To ensure that all data-
bases ran the queries in the same order, performance test #1 (Appendix A of
TPC-H Benchmark) was used with three predetermined refreshes.

14.4 Testbed performance analysis testing 433

L

Table 14.4 TPC-HBenchmark

Query l~Pricing
Summary Report

This query will select a pricing summary report for all line items shipped as of a given
date (substitution variable). The date is within 6 to 120 days of the greatest ship date
contained in the database. A count of the number of line items is included in each
group.

Query 2~Minimum
Cost Supplier

This query will find, in a given region for each part of a certain type and size, the sup-
plier that can supply it at the lowest cost. If multiple suppliers in that region offer the
same lowest price for the part, the query will list the parts from the suppliers with the
100 highest account balances.

Query 3~Shipping
Priority

This query will determine the shipping priority and potential revenue, defined as the
sum of the extended price of the orders having the largest revenue among those that
had not been shipped as of a given date. If more than ten unshipped orders exist, only
the ten orders with the largest revenue are listed.

Query 4--Order
Priority Checking

This query will count the number of orders that were ordered in a given quarter of a
given year in which at least one line item was received later than its committed date.

Query 5~Local
Supplier Volume

This query will list, for each country in a region, the revenue volume that resulted
from line item transactions in which the customer ordering parts and the supplier fill-
ing them were both in the same country. The query only considers parts ordered in a
certain year.

Query 6--Forecasting
Revenue Change

This query will quantify the amount of revenue increase that would have resulted
from eliminating certain company-wide discounts in a given percentage range in a
given year.

Query 7~Volume
Shipping

This query will determine the value of goods shipped between certain countries to
help in the renegotiation of shipping contracts.

Query 8~National
Market Share

This query will determine how the market share of a given country within a given
region has changed over two years for a given part type.

Query 9mProduct
Type Profit Measure

This query determines how much profit is made on a given line of parts, broken out
by supplier country and year.

Query 10~Returned
Item Reporting

This query identifies customers who might be having problems with the parts that are
shipped to them.

Query 1 ln lmpor tan t
Stock Identification

This query finds the most important subset of suppliers' stock in a given country.

Query 12mShipping
Modes and Order
Priority

This query determines whether selecting less expensive modes of shipping is nega-
tively affecting the critical-priority orders by causing more parts to be received by cus-
tomers after the committed date.

Query 13nCustomer
Distribution

This query will determine the relationships between customers and the size of their
orders.

I Chapter 14

434 14.4 Testbed performance analysis testing

Table 14.4 TPC-H Benchmark (continued)

Query 14---Promotion
Effect

This query will find the percentage of revenue in a year from promotional parts (the
time period is a substitution parameter selected when creating the query with the
QGEN application using the Seed variable).

Query 15 Top
Supplier

This query will find the supplier that contributed the most revenue for all parts
shipped during a specific time period (the time period is a substitution parameter
selected when creating the query with the QGEN application using the Seed variable).

Query 16--Parts/
Supplier Relationship

This query will find the count of suppliers that can supply parts that meet particular
customer requirements. The brand, type, and product sizes are substitution parameters
selected when creating the query with the QGEN application using the Seed variable.

Query 17~Small
Quantity/Order Revenue

This query will find line item and part for a given brand and type and determine the
average quantity of the parts ordered if the quantity is 20 percent less of the average
for a seven-year period (the brand and container are substitution parameters selected
when creating the query with the QGEN application using the Seed variable).

Query 18--Large-
Volume Customer

This query will find the top 100 customers who have ever placed a large-quantity
order (the quantity is the substitution parameter selected when creating the query
with the QGEN application using the Seed variable).

Query 19wDiscounted
Revenue

This query will find the gross discounted revenue for all orders for three different
types of parts (the part type, container, quantity, ship mode, and shipping instruc-
tions are substitution parameters selected when creating the query with the QGEN
application using the Seed variable).

Query 20~Potential
Part Promotion

This query will find the suppliers that have an excess of a given part available for a
specific year (the part name and date are the substitution parameters selected when
creating the query with the QGEN application using the Seed variable).

Query 21--Suppliers
That Kept Orders
Waiting

This query will find the suppliers, for a given country, whose product was part of a
multiple supplier order where they failed to meet the committed delivery date (the
country is a substitution parameter selected when creating the query with the QGEN
application using the Seed variable).

Query 22--Global
Sales Opportunity

This query will find the customers within a specific set of country codes who have not
placed orders for seven years but still have a positive balance (the country codes are
substitution parameters selected when creating the query with the QGEN application
using the Seed variable).

No indexing
T h e nonindexing run was used as a baseline with which to compare an

indexing run. T h e group knew that indexing would greatly decrease the

t ime taken to complete the performance test but desired a quanti tat ive

result. At the t ime of this writing, no team had successfully comple ted a

nonindexing run on any of the database systems. T h e procedures a t t empted

14.4 Testbed performance analysis testing 435

i w

Table 14.5

are discussed later in the chapter. The primary reason for not completing a
nonindexed test was lack of time. It was possible to complete an individual
test of each of the queries in the performance test with no refreshes. These
results are defined in greater detail in section 14.5.

Indexing
As can be deduced from the previous section, if nonindexing was not com-
pleted neither was indexing. Representatives from each of the teams got
together, however, to determine what should have been indexed. Their
work is presented in Table 14.5 to provide future testers a hint as to what
can be done next.

Running all queries together
A Persistent Stored Modules (PSM) Committee was tasked to create a file
that would run all queries using the TPC-H order, defined in the standard

Proposed lndexes for Benchmark Tests

Foreign Keys

CREATE INDEX tpch.c_nk ON tpch.customer(c_nationkey ASC)

CREATE INDEX tpch.s_nk ON tpch.supplier(s_nationkey ASC)

CREATE INDEX tpch.ps_pk ON tpch.partsupp(ps_suppkey ASC)

CREATE INDEX tpch.ps_sk ON tpch.partsupp(ps_suppkey ASC)

CREATE INDEX tpch. l_ok ON tpch.lineitem(l_orderkey ASC)

Primary Keys

CREATE UNIQUE INDEX tpch.c_ck ON tpch.customer(c_custkey ASC)

CREATE UNIQUE INDEX tpch.p_pk ON tpch.part(p_partkey ASC)

CREATE UNIQUE INDEX tpch.s_sk ON tpch.supplier(s_suppkey ASC)

CREATE UNIQUE INDEX tpch.o_ok ON tpch.orderd(o_orderkey ASC)

CREATE UNIQUE INDEX tpch.ps_pk_sk ON tpch.partsupp(ps_partkey ASC, ps_suppkey ASC)

CERATE UNIQUE INDEX tpch.ps_sk_pk ON tpch.partsupp(ps_suppkey ASC, ps_partkey ASC)

Useful Date Fields

CREATE INDEX tpch.o_od ON tpch.orders(o_orderdate ASC)

CREATE INDEX tpch. l_sd ON tpch.lineitem(l_shipdate ASC)

I Chapter 14

436 14.5 The results

in Appendix A, for all the teams. This committee needed to determine how
to keep track of the time each query ran, the total time, and how the
refreshes would be handled. Unfortunately, the only team that was able to
use the file was the Microsoft SQL Server team. The other teams would
have had to modify the file tremendously in order for it to work on their
databases. Due to a lack of time, the decision was made not to do this and
instead run the queries individually.

14.4.3 Testbed procedures for each configuration

Four basic procedures were needed to run the benchmark on each separate
configuration. First, the creation of the database and the database tables for
the databases was needed. Second, the newly created tables were populated
with the benchmark test data. Third, several sample runs on the individual
queries were done to ensure that the systems were running properly and
providing each team a way of optimizing the system prior to the test.
Finally, the performance tests were run on each system.

14.5 T h e resu l ts

Table 14.6 shows the results of completed experiments by each of the teams
for the four databases studied.

Note that the time for each query is measured in seconds. As can be seen
from the table, a side-by-side comparison of the databases is not entirely
possible. This is due to many factors, as will be discussed shortly. The major
reason appears to be the memory use by each database. Only Microsoft and
DB2 were able to acquire and use 100 percent of their available memory,
while Oracle and Informix were able to use only one-third of the available
memory. To compare all the database systems together some assumptions
have been made. First, it is clearly visible by a cursory review that Microsoft
SQL beats DB2 in performance from the results depicted in Table 14.6.
Upon a more comprehensive review of the data presented in Table 14.6, we
find that DB2 runs between 1.03 times faster than SQL Server down to
0.01 times the performance of SQL Server. Also note that DB2 only per-
forms better than SQL Server for one test, test 18, which looks at large-vol-
ume customers. In all other cases SQL Server outperforms DB2 on average
by 53 percent. Given these results, we can now focus on comparing
Microsoft SQL against Informix and Oracle.

The assumption is to decrease the amount of memory that Microsoft
SQL uses to the same level as Informix and Oracle. In doing this we use a

14.5 The results 437

Table 14.6 Results of the Testbed TPC-H Experiments

Query # Informix DB2 SQL Oracle

1 510 510 431 335

2 21,600 3,180 44 81,840

3 3,180 842 465 532

4 1,530 Error: unknown 300 1,818

5 Error: memory Error: unknown 314 20,040

6 250 388 245 269

7 Error: unknown Error: unknown 311 466

8 Error: syntax 27,157 309 Error: syntax

9 Error: syntax 1,286 409 Error: syntax

10 2,760 30,672 316 529

11 95 144 41 199

12 480 453 298 464

13 Not run 126 89 Error: syntax

14 660 460 253 331

15 600 338 247 600

16 240 915 54 2,848

17 Not run 797 504 2,700

18 12,660 1,127 1,169 8,100

19 240 354 250 1,091

20 Not run 467 288 Not run

21 Error: unknown 1,569 809 1,560

22 Error: unknown 594 61 Error: syntax

CPU Use 100% 100% 100% 100%

Mem. Use 30% 100% 100% 38%

linear approach to find the new times. The theory is that if you cut the

amoun t of memory by 50 percent, it will take twice as long. In these tests,

since Informix and Oracle used one-third the memory of SQL Server, we

I Chapter 14

438 14.5 The results

i v

Table 14.7

assume that the time would be proportional to 3.33 times that of a system
with one-third the memory. It should be noted that this has not been tested.
Also, since not all queries could be run on Informix or Oracle, only those
queries that ran on these systems have been taken into account. All other
queries have been dropped. Keeping this in mind we have two new tables,
Table 14.7 and Table 14.8, for Informix and Oracle.

Informix versus Reweighted SQL Server

Query # Informix SQL

1 510 1,437

2 m 147

3 3,180 1,550

4 1,530 1,000

5 m 1,047

6 250 817

7 ~ 1,037

8 ~ 1,030

9 ~ 1,363

10 2,760 1,053

11 95 137

12 480 993

13 ~ 297

14 660 843

15 600 823

16 240 180

17 1,680

18 12,660 3,897

19 240 833

20 m 960

21 2,697

22 m 203

Mem. Use 30% 30%

14.5 The results 439

Table 14.8 Oracle venus Scaled SQL Server

Query# Oracle SQL

1 335 1,437

2 81,840 147

3 532 1,550

4 1,818 1,000

5 20,040 1,047

6 269 817

7 466 1,037

8 - - 1,030

9 1,363

10 529 1,053

11 199 137

12 464 993

13 m 297

14 331 843

15 600 823

16 2,848 180

17 2,700 1,680

18 8,100 3,897

19 1,091 833

20 m 960

21 1,560 2,697

22 ~ 203

Mem. Use 38% 38%

Comparing Informix against Microsoft SQL Server using the recom-

puted performance values, we see that 7 of the 12 queries ran faster on

Informix than on Microsoft SQL Server. As can be seen in Figure 14.7,

Informix is 67 percent faster. If we look more closely at these data, we can

see that the Informix database performs between 3.4 times faster down to

0.3 times the speed of the scaled SQL Server. The overall weighted differ-

I Chapter 14

440 14.5 The results

t v

Figure 14.7
Informix versus
Microsoft SQL

Server

Figure 14.8
Oracle venus

Microsoft SQL
Server.

Informix vs. Microsoft

33%

67%

B Informixll MS-SQL]

ence places Informix's performance at 1.48 times that of the SQL Server's
scaled performance.

Comparing Oracle against Microsoft SQL Server using the recomputed
performance values, we see that 9 of the 17 queries run faster on Oracle
than on Microsoft SQL Server. As can be seen in Figure 14.8, Oracle is
computed to be 57 percent faster on average. If we look more closely at
these data, we can see that the Oracle database system performs between 4.2
times faster down to 0.001 times the speed of the scaled SQL Server. The

Oracle vs. Microsoft

43%

57%

• Oracle • MS-SQL I

14.5 The results 441

overall weighted difference places Oracle's performance at 1.76 times that of
the SQL Server's scaled performance.

Thus, under our assumptions utilized to perform this weighted analysis,
both Informix and Oracle perform better than SQL Server under most con-
ditions. We still need to determine whether Informix's database is superior
to Oracle's database given the same comparisons. To do this analysis we
have normalized both databases' data to run at 100 percent memory use.
Table 14.9 shows the new weighted results.

Comparing Informix against Oracle using the recomputed performance
values, we see that 9 of the 12 queries ran faster on Oracle than on Infor-

Table 14.9 Informix versus Oracle

Query # Informix Oracle

1 1,700 882

3 10,600 1,400

4 5,100 4,784

6 833 708

10 9,200 1,392

11 317 524

12 1,600 1,221

13

14 2,200 871

15 2,000 1,579

16 800 7,495

17

18 42,200 21,316

I Chapter 14

442 14.5 The results

k
Y

Table 14.9

r

Hgure 14.9

Informix versus
Oracle.

Informix versus Oracle (continued)

Query # Informix Oracle

19 800 2,871

20

21

22

Mem. Use 100% 100%

mix. As can be seen in Figure 14.9, Oracle is 75 percent faster on average
than Informix. If we look more closely at these data, we can see that the
Oracle database performs between 7.7 times faster down to 1.07 times the
speed of the scaled Informix Server for all but two queries. For query 16
(parts/supplier) and for query 18 (large-volume customer) the Informix
database ran significantly faster than Oracle: from 3.5 to 9.36 times faster
to be exact. However, since these seem to be outlier queries, we computed
the overall performance measures by removing the effect of these two and
Oracle's two best performing queries. The overall weighted difference places
Oracle's performance at 1.38 times that of Informix's Dynamic Server
scaled performance. Thus, Oracle is the winner in terms of performance
using these assumptions and tests.

Informix vs. Oracle

I m Oracle • Inf ormix I

14.5 The results 443

14.5.1 Cost versus p e r f o r m a n c e

O f course, performance is not everything. Cost must be taken into account.
To consider cost we obtained a rough value for the purchase cost per data-

base system and then computed a cost per second for performance.

To provide a rough comparison on cost we have averaged the amount of

time it takes each database to run all of the queries used in the models and

then used that value to divide the purchase cost (Table 14.10).

Table 14.10 Cost/PeCormance Comparison

Query # Informix DB2 SQL Oracle

1 510 1,700 1,437 424

2 21,600 10,600 147 103,664

3 3,180 2,807 1,550 674

4 1,530 0 1,000 2,303

5 0 0 1,407 25,384

6 250 1,293 817 341

7 0 0 1,037 590

8 0 90,523 1,030 0

9 0 4,287 1,363 0

10 2,760 102,240 1,053 670

11 95 480 137 252

12 480 1,510 993 588

13 0 420 297 0

14 660 1,553 843 419

15 600 1,127 823 760

16 240 3,050 180 3,607

17 0 2,657 1,680 3,420

18 12,660 3,757 3,897 10,260

19 240 1,180 833 1,382

20 0 1,557 960 0

I Chapter 14

444 14.6 Summary

In,,
I V

Table 14.10 Cost/Pe~ormance Comparison (continued)

Query # Informix DB2 SQL Oracle

21 0 5,230 2,697 1,976

22 0 1,980 203 0

Total Time: 44,805 237,930 24,023 156,715

Avg. Time: 3,447 12,523 1,092 9,219

Cost of DB: 128,000 105,000 86,000 105,000

$/Sec: $37.14 $8.38 $78.76 $11.30

Note that when taking the average time for each database, those queries
that had 0 value were not taken into account. Table 14.10 shows that the
cheapest DB in terms of cost and performance is DB2, followed by Oracle,
Informix, and then Microsoft.

14.6 Summary

Based on the assumptions we made to compare IBM DB2 and Microsoft
SQL Server 2000 with Informix UDB and Oracle 8i, it is clear that on a
performance and cost level IBM's DB2 is the best choice. Of course, this is
subject to interpretation. If you are not concerned with memory use on
your system or do not care about configuring your system, then Microsoft
SQL Server can be very appealing, since you can plug and play and be ready
to go with it. Using IBM's DB2 requires more administration before the
performance shown in this chapter is achieved. Ultimately, it depends on
what one plans to do with the database that becomes the decision factor.

/ 5
Analysis of Computer
Networks Components

Earlier chapters introduced the basic concepts and theories embodied in
analytical modeling. Addressed were basic concepts in queuing systems the-
ory, its application to computer systems modeling, and an introduction to
network modeling. This chapter will address the use of analytical and simu-
lation models specifically from the viewpoint of use as performance evalua-
tion tools.

15.1 I n t r o d u c t i o n

In the past several years, the use of analytical performance models instead of
the more widely used and familiar methods has become increasingly popu-
lar because of their relative simplicity of implementation and robustness of
applications. These analytical models have been successful in estimation of
such performance measures as throughputs, average queue lengths, and
mean response times for a real system. This chapter is an introduction to
queuing techniques for the modeling of computer communication net-
works, not an in-depth study.

The use of modeling to describe and imitate a real system has been with
us since the beginning of the information revolution. These models are used
not only to measure the performance of existing systems but also as part of
the design and development of new systems. This latter goal is best attained
through the use of analytical queuing models, as we will see in the following
discussion of methods of performance evaluation.

The major performance evaluation tools (see Figure 15.1) other than
queuing models are rules of thumb, linear projection, simulation, and
benchmarking. These methods are listed in order of increasing complexity
and implementation difficulty. The rules of thumb have been defined by
the observation of operational systems and can be generally applied to local

445

446 15. I Introduction

r -

Figure 15.1
Spectrum of

computer system
modeling

techniques.
Rules of
thumb

complexity, cost of development effort

Linear
projection

Analytical
queuing
models

Simulation Bench-
marking

systems and extrapolated to distributed systems and networks. These rules
take the following form:

1. Generally, channel use in direct access storage devices (DASD)
should not exceed 35 percent for on-line and 40 percent for batch
applications.

2. Individual DASD devices used should not exceed 35 percent.

3. Average arm seek time on a DASD device should not exceed 50
cylinders.

4. No block size for auxiliary storage should exceed 4 Kbytes.

These rules are useful in that they are easy to apply, economical to use,
and can be applied to day-to-day operations. They are limited in the sense
that they cannot be used to predict the usefulness of hardware or software
upgrades.

The linear projection method has been used to pick up on the rules of
thumb at the prediction limitation point. Although results can be obtained,
the accuracy of the results is limited by the fact that a linear projection is
used to predict the behavior of inherently nonlinear systems. This method
also requires the availability of an existing system to measure the pertinent
performance criteria to be used as a base for the projection and estimation
of future resource requirements.

For simulation and benchmarking, there is no absolute distinction
between development and implementation costs. Simulation allows the
model to contain much more detail than the other methods, but this may
not be an advantage when compared with queuing methods, where it has
been found that too much information just serves to cloud the issue. Some
simulation models are as large and cumbersome as the system they are mod-
eling. The benchmarking method is the oldest and most used, but it is usu-
ally only helpful in the selection of the best hardware to process a known

15. I Introduction 447

load. This is to say that the method requires existing hardware and, there-
fore, is not useful in the evaluation of hardware updates.

With the previous comments on other existing performance evaluation
tools, we can assess the placement of queuing models and their overall use-
fulness. Queuing models reside between linear projection and simulation in
terms of cost and complexity of implementation. Queuing models may be
much simpler than the system they are modeling, because only the most
pertinent performance parameters need to be accounted for. Not only do
queuing models have a place in the evaluation of existing systems, but they
also may be used in the design and development phase of new systems to
help in the selection of hardware and hardware-software interaction to
avoid system bottlenecks.

Recent advances in analytical modeling techniques are making analyti-
cal models increasingly capable of representing more and more aspects of
the modeled system. Consequently, these techniques have been growing in
popularity.

One method commonly used in system design is queuing analysis.
Queuing models are more precise than other analytical techniques that pre-
dict performance based on average values [21]. One reason is that queuing
models allow greater detail to be used in describing systems, and, hence,
they capture the more important features of the system. Often, several sub-
models are required, as follows:

1. Workload model. Specifies the characteristics of the resource
demands on various equipment found in the system.

Configuration or system structure model. Specifies the hardware
characteristics of the system.

Scheduling model. Specifies the scheduling algorithms whereby
resources are allocated.

Queuing models can be categorized as either deterministic or stochastic
in nature. If the design parameters to the model are known from prior expe-
rience or measurements, a deterministic analysis of the system may be car-
ried out. Conversely, if the design parameters are not known, a stochastic
analysis using various probability distributions is normally required.

Typical design parameters would include such items as:

1. Interarrival rate of events

0

,

0

,

Service times of these events

Number of servers being modeled

I Chapter 15

448 15.2 Analytical modeling examples

4. System capacity (i.e., number of events currently being processed
and in queues)

5. Queuing discipline employed (i.e., FIFO, LIFO, etc.)

Normally, queuing models provide some of the following performance
attributes:

1. Average queue lengths

2. Average waiting time in queues

3. Use statistics

4. Average response times

Although queuing models have one overriding advantage in that they are
cheap to use, there are a number of significant limitations to this method, as
follows:

1. Because these models assume the system has reached a steady state
or equilibrium, peak or transient conditions are not modeled.

2. These models are limited as to the complexity of the problems
that can be solved. As problems become more complex or addi-
tional details are required, other methods must be used to model
the systems.

3. Without actually measuring various design parameters, it is diffi-
cult to determine whether the characteristics of the data used will
represent the system under investigation.

1 5.2 Analytical modeling examples

To better understand how these techniques can be used to model and ana-
lyze a system, we will undertake two studies: one for the early well-known
Honeywell Experimental Distributed Processing system (HXDP) and the
other for the token bus. In both cases, similar quantities are sought~
namely, average scan time (time for control to sequence around once) versus
message size. The intent is to analyze the efficiency of the control protocol
and network characteristics.

1 5 . 2 . I H X D P m o d e l

Introduction
The HXDP system consists of processors connected to interface units that
are joined by a bit-serial global bus. Bus allocation is governed by the v e c -

15.2 Analytical modeling examples 449

r

Figure 15.2
Scan blocks.

tor-driven proportional access mechanism. Prior to system initialization,
the 256-bit vectors are set for each processor so that for each time slice one,
and only one, interface unit has a 1 in its index. The number of different
schedules (possible combinations of l s and 0s) for a system containing N
interface units is, therefore, theoretically equal to N × N 256, which is exor-
bitant even when N = 2. This scheme, however, cycles through the same
pattern over and over again. Nonetheless, rather than develop a model
allowing for any of the possible schedules, it was decided to constrain the
allowable schedules to ease the computation.

It is assumed, consequently, that the schedule mechanism is as follows:
Every interface unit is assigned a 1 only once in the index, after which the
initial pattern repeats itself until the 256th index for processor N is set; this
pattern is termed a scan block. The interface units, in turn, are sequentially
logically numbered and are given a logical unit number.

One illustration of such a schedule with the corresponding scan blocks
would be for four IUs (see Figure 15.2). One schedule would contain 256•4
= 64 scan blocks. Another schedule might be as shown in Figure 15.3. The
sequence of events in the constrained system is then as follows: The reallo-
cation signal arrives at logical unit 1 (the IU with the first 1 bit); if there is a
message waiting service, the interface unit is granted the bus and the mes-
sage is serviced. Once the message arrives at the destination, an acknowledg-
ment is sent back to the source, after which a reallocation signal is sent out,
the index is updated, and the next logical IU gets bus access. The sequence
proceeds until IU N is serviced, after which (because of the assumptions)
logical unit 1 is serviced. This continues ad infinitum.

Scan block

Scan block

Logical
Unit #

I
1

I

I
3
I

I Chapter 15

450 15.2 Analytical modeling examples

i,=
r

Figure 15.3

Another scan block.

Logical
Unit #

I
1
I

I I I
3 4 2
I I I

Scan block

Scan block

The scan time is, then, the time it takes to scan through the logical
sequence of IUs once--that is, through the scan block. Table 15.1 lists the
terms and their definitions.

lb.
y

Table 15.1 Symbols and Their Definitions

Symbol Definition

N Number of interface units in the system

Tsi Time requirement to service a message at interface unit i

Tr/ Time delay associated with the reallocation signal passing from interface unit with logical sequence i to i + 1

~i Average message arrival rate at interface unit i

I: Time to scan through entire sequence of IUs

Average or expected scan

~i Set equal to 1 or 0 depending on whether IU has message awaiting transmittal or not

The time it takes to send the message of predetermined constant size from IUi to IUi+I separated by dis-
tance d

Tac k The time it takes to send the acknowledgment from IUi to IUi+ 1 separated by distance d

T R The time it takes to send the reaUocation signal from IUi to IUi+ 1 separated by distance d

P The probability of an arbitrary interface unit requiring service during one scan

15.2 Analytical modeling examples 451

Analytical modeling of the HXDP bus
It is assumed that the messages are arriving at an exponential rate. The
probability that an arbitrary interface unit will require service during one
scan is:

o o

P - S (1 - e -zt) f~ (t)d t (15.1)

where f~(t)is the probability density function of the scan time. For)~t small,
we use the approximation that e -~'t ~ 1 -)~t. Thus:

o o

P - S (1 - e -kt) f~ (t)d t -)~-~ (15.2)

For varying message arrival rates =)~i, this evaluation becomes:

o o

Pi -- S)~itfx (t)d t -- ~i ~ (15.3)
~ o o

V'C i, which is the segment of the scan time that can be attributed to IUi, is:

V'[i -- ~i (Tsi -[- Tack)+ Tr (15.4)

where Tac k is the time it takes for acknowledgment (ack) to be sent back to
i, if there was a message received, and T r is the time it takes for the realloca-
tion signal to go from IU logical number i to IU logical i + 1. But ~i can
only take on values 0 or 1, and we assume that a uniform destination distri-
bution and an IU in the HXDP system communicates with itself via the
bus:

1 N
E(~i (Tsi + Tack)) - - ~ Z(li- kl(Ts + Tack))P/

k=l
(15.5)

This implies that:

N N N x-1/NZZ(li-kl(Ts + Tack))P/+Zli-(i+X)lTR
i=1 k-1 i=1

(15.6)

where] i - k] represents the number of interface units away from the source
interface unit i where interface unit k is located.

I Chapter 15

452 15.2 Analytical modeling examples

Substituting)~i~- ~. we get:

~ =
N

~(Ts + Tack) E (i2 + (1 + N) (- i + (1/2)N))~ i
N i=1

N

+ Z l i - (i + l)lTR
i=1

Thus:

(15.7)

N

Z l i - (i + l)lTR
'I~-- /=1 (15 .8)

where index i denotes the logical number of the interface unit.

The main constraint on the model is:

((Ts + Tac k) /N)[~k=l (k2+(l+N)(-k+ (1/2)N))])~k <<1 (15.9)

The effect on the average scan time, x, can now be determined by vary-
ing any combination of the following parameters:

1. The number of interface units, N

2. The arrival rates, kk

3. The logical numbering of the interface units

4. The distances between neighboring interface units

5. The average size of the arriving messages

Graphic outputs
Figures 15.4 through 15.7 show the resultant computations for the scan
time versus the message size for various changes in arrival rate, processor
location, and quantity. These results will be compared with those of the
simulator described later in this chapter.

15.2 Analytical modeling examples 453

Figure 15.4
Scan time versus

message size,
configuration 1

In o ®=o
I -
o o

10.0 -

9 . 0 -

8.0-

7.0-

6 . 0 -

5.0-

4.0-

3.0-

2.0-

1.0-

C o n f i g u r a t i o n 1: 16 p r o c e s s o r s
x = l O / s e c = °

x = l / s e c = *
x = 1 / 1 0 s e c = A

____________--------1
-

A A

100 200 300 400 500 600 700 800
of bits in arriving messages

IUIogical ~ [~] ~ ~ ~-I ~ I ~ ~ ~ [~
Numbers

Figure 15.5
Scan time versus

message size,
configuration 2.

10.0

9.0

8.0

7.0
In t -
~ 6.0 o . ,8

~ 5.0
o o
>' - 4.0-

3.0

2.0 i
1.0

C o n f i g u r a t i o n 1 : 1 6 p r o c e s s o r s
x = 1 0 / s e c = •
x = l / s e c = *
x = l / l O s e c = A

A A
I I

100 200

A_

I I I I
300 400 500 600

of bits in arriving messages

I I
700 800

,u,o~ic,, 5-1 IY1 i~ Ffl ~ El IY! IT1 M D Numbers

I Chapter 15

454 15.2 Analytical modeling examples

r ~

Figure 15.6
Scan time versus

message size,
configuration lb.

o ~

0")

> v -

10.0

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

Con f igu ra t i on 1 : 6 4 p r o c e s s o r s
x = 1 /sec = *
x = 1110sec = A

100 200 300 400

A A
I I I I

500 600 700 800

of bits in arriving messages

IUIogical ~ ~-~ ~-~ ~ ~-~ ~ ~ ~-] ~
Numbers

L
r

Figure 15.7
Scan time versus

message size,
configuration 2b.

= - 8

O

O O > ~ - .

< x

10.0 -

9.0-

8 , 0 - -

7.0--

6.0--

5.0--

4.0-

3.0--

2.0--

1.0--

Con f igu ra t i on 1 : 6 4 p r o c e s s o r s
x = 1 /sec = *
x = 1110sec = A

..________--*---~ ___________-----~

I I
100 200

I I I I I I
300 400 500 600 700 800

of bits in arriving messages

,U,ogica, l-el M I~ I-fl M I-~ M M M I~1 Numbers

15.2 Analytical modeling examples 455

15.2.2 Token bus d is t r ibu ted system

Introduction
The token bus distributed processing system (a local computer network)
consists of processors connected to interface units, which, in turn, are con-
nected by a common communications medium: the global bus. The alloca-
tion of the bus is controlled by the cyclic passing of tokens in a sequential
manner from lowest numbered interface unit (IU) to the next highest until
all numbered IUs have been interrogated and serviced. The sequential num-
bering is determined during power-up, and once steady state has been
reached may be assumed to remain constant for modeling purposes. If an
IU requires no service, control is passed to the next IU with an associated
delay. The time it takes for the control to pass through the sequence com-
pletely is termed the scan time (as previously discussed).

Rather than investigating the entire token bus system, per se, emphasis
will be on the bus, or the IU and bus layer, for modeling purposes. The
main body of the example documents the development of the analytical
models~in particular, the solution of the models for the value of the aver-
age scan time. The analytical computation of the scan time allows one to
further determine such interesting and practical bus parameters as average
message waiting time, average queue length, and bus use. From the derived
formulas, one can readily ascertain the effect on bus parameters of increas-
ing the number of processors, altering the sequential placement of proces-
sors, or varying the message arrival rates.

Preliminary formulations and definitions
The message arriving at the processor is assumed to follow a Poisson distri-
but ion~in other words:

P (r , t) - ()~t)Re-)~t (R-0 ,1 ,2 ) (15.10)
R~

where P(r,t) is the probability that r messages arrive in time t, with each
message being of the same size.

Service is required if there are one or more message arrivals in time t or:

p(1 or more arrivals, t) - 1 - P(O,t),

which, in t u rn , - l - ((~ t) ° /O!) e -~t - l - e -~t
(15.11)

I Chapter 15

456 15.2 Analytical modeling examples

Since the assumption is that steady state has been reached, we can let
fL(t) denote the probability density function of the scan time x. The corre-
sponding cumulative distribution is then equal to:

A
(15.12)

t

I A(u)du
U~---OO

Let P denote the probability of an arbitrary processor requiring service
during one scan:

o o

P - I (1-e-kt) f~(t)dt (15.13)
. - - o o

If more than one arrival occurs at any processor in any scan, that arrival
can be considered blocked. This message will then have to wait at least one
scan time before it can be placed on the bus. This implies that:

P (blocking)- P (more than one arrival in scan time) (15.14)

(mor.e.than one m. essage)= 1 - [P (0 , t) + P(1,t)]
P \requmng service m nme t

= 1 - [e -~.t + Xte -gt]

To enable the evaluation of 19, for e -zt= 1-~t, implies that:

(15.15)

o o o o

P - I (1-e-Xt)A (t)d t - ~ ~ (t)dt (15.16)

which is equal to k~, by definition of expected value.

The relationship of P-- k~ will be used for all the models for simplifica-
tion purposes. For clarity and convenience, Table 15.2 contains the symbols
and their corresponding definitions, which will be used in the development
of the analytical models.

Anal~ical modeling of the token bus
The analytical models developed for the token bus will be presented in an
order reflecting an increasing degree of complexity and, consequently, a
relaxation of the corresponding mathematical assumptions. In each of the

15.2 Analytical modeling examples 457

Table 15.2 Symbols and Their Definitions

Symbol Definition

N Number of processors and consequently number of interface units due to a one-to-one correspondence
in the system

The time required to service a message at an interface unit

Tsi The time required to service a message at an interface unit i

Time delay associated with control (token) passing from an interface unit to its physically nearest neigh-
bor interface unit

Time delay associated with control (token) passing from an interface unit with logical sequence number
i to its neighbor interface unit i + 1

Average message arrival rate at interface unit

Average message arrival rate at interface unit i

Time to scan through entire sequence of IUs

Average or expected scan

/3i Set equal to 1 or 0 depending upon whether IU has message awaiting transmittal or not

Distance between interface units i and i + 1

The time it takes to send the message of predetermined constant size from IUi to IU/+I separated by
distance d

UF Bus use factor

The probability of an arbitrary interface unit requiring service during one scan

models, a steady state, constant message size, and equal spacing between
processors will be assumed. In addition, once the IU has been given control
of the bus, it will be assumed that the message buffer for the interface unit
will be emptied instantaneously onto the bus. The underlying specific
assumptions in each case will be clearly outlined.

Case l

In the basic analytical model, it will be assumed that the arrival rate of mes-
sages at each of the N interface units is equivalent and is represented by k.
In addition, it is assumed that once steady state has been reached, the
sequential (logical) numbering of the interface units is identical to the phys-
ical numbering (spatial numbering from left to right)~that is, it follows
the representation shown in Figure 15.8.

I Chapter 15

458 15.2 Analytical modeling examples

Figure 15.8
Physical and logical

numbering of
interface units.

Interface unit
physical number

Interface unit
logical sequence
number

N - 1

N 1

If we let T c denote the time delay associated with the token (control)
passing from one interface unit to another, the Tci for each interface unit
may be considered the same, since it has been assumed that the processors
are equidistant from one another, and, consequently, the control will need
to traverse the same distance from a processor to its next (with next highest
sequence number) neighbor.

Another essential time parameter is the time it takes to service a message
for any interface unit. In a ring topology with a token-passing scheme one
could consider T s, which is the time required to service a processor, to aver-
age out to the same value over time for all processors. Reference [22] shows
that the same conclusion cannot be reached for the bus topology. Time to
service a message is a function to the destination IU. Therefore, the place-
ment of the source IU within the bus topology will affect the average time it
takes to service one of its messages. For example, if N = 3, we have the con-
figuration shown in Figure 15.9.

For interface unit 1 to transmit a message to processor 2, the message
will have to traverse the distance from I to 2; for interface unit 1 to transmit
a message to 3, it will have to traverse the distance from 1 to 3. If we repre-
sent the equal distance between two neighboring interface units as d, and
we let each of the other IUs be potential similar message destinations (e.g., a
uniform distribution for message destinations is assumed):

E(T~lsource- 1)

= 1//2 ((d /ve loc i t y estimate) + 1/2 (2d/velocity estimate))
(15.17)

where d/velocity estimate = t s - time to send the message of the chosen size
from i to i + 1"

= /gzts + ts - 3 / 2 t s (15.18)

For processor 2, as the source processor, the corresponding equation
becomes:

E(T,I source- 2) - ~ t s + ~2ts - t, (15.19)

15.2 Analytical modeling examples 459

v

Figure 15.9
Token bus with Interface
three interface unit number

units.

Let Tsi denote the time it takes to service a message at interface unit i.
The time it takes for the token to pass from the ith IU to the i + 1st inter-
face unit may then be expressed as:

Vx i -- ~iTsi + T c where

_ ~1, if IU has a message awaiting transmittal;

/ O, otherwise

(15.20)

The total scan time becomes:

N N
x - E V x i orx-E(~iTs i + r c) (15.21)

i-1 i-1

Now, taking expectations of both sides of equation (15.21) we get the
average value of scan time ~ as:

N N N
-~- EE(~iTsi)+~E(T~)=EE(~iTsi)+NT~

i=1 i=1 i=1

Next, by definition of the expected value of product:

(15.22)

E (~iTsi) - E E ~iTsiP (~iTsi) (15.23)

Since it was mentioned previously that Tsi is a function of the distance
that the message has to travel, and since ~i can only take on the value 0 to 1-

N
1 i_ kl t,P (15.24) E (~iTsi) - N---~X k=l

where i - k represents the number of interface units away from the source
interface unit i, the destination interface unit k is located, and any interface
unit other than i has an equally likely probability of being a destination
interface unit. That is, a probability 1 /N- 1.

I Chapter 15

460 15.2 Analytical modeling examples

P is the probability derived in the preliminary formulation. In summary:

1 N N - ZZli-kltsP+NTc
N - 1 i=1 k=l

N N

_ tsp Z Z l i - k l N T c
- N - 1 i=1 k=l

= + N T c
N - 1 3

- ~ , P (N (N + 1))/3+ Xr~

Substituting P = ~g into (15.25):

(15.25)

-g= t s ~ (N (N + 1))/3+ NT c

-g = (i - (ts~ (N (N + 1/)/3))+ NTc

-~= (NT c) / (1 - ~ , (N (N + i) t s)/3)

(15.26)

This equation is valid, based upon the assumption and approximations
if, and only if:

(X (N (N + 1)t s)/3)<< 1 (15.27)

C a s e II

In this model, we relax the assumptions that all the interface units have
identical message arrival rates equal to k, by allowing for message arrival
rates of ki for interface unit i. However, we retain the assumption of the
hypothetical, logical, or physical configuration, which, in turn, will be elim-
inated in the subsequent case. The relaxation of the assumptions is being
done in a gradual manner to emphasize the evolutionary nature of the
development of the analytical models. The relaxation of the equivalent mes-
sage arrival rates will allow for a greater realm of applicability and conse-
quently, of testing but will, naturally, complicate the ultimate formula for x.

Since each interface unit now has a characteristic message arrival rate, ki
for interface unit i, P now becomes:

o o

Pi = I (1- e-;~ t) f~ (t)dt
- - o o

Pi = ~i -~

(15.28)

15.2 Analytical modeling examples 461

Equation (15.21) is still applicable~that is"

N N

~= E V g i - E(~iTsi + Tc)
i=2 i=1

Furthermore, x is still:

(15.29)

N "g = E E (~iTsi) + NTc
i=1

where:

(15.30)

(1 E (~iTsi)- N-1 k=l (15.31)

1
(15.32)

~--(ts) i=1

Substituting £i~ = &

-X-(N-l'r")~(i2+(I+N)(_i+((1/i)N))£i)+NT
Thus,

(15.33)

(15.34)

m "C-- NTc
1-(ts)[~(i2+(l+N)(-i+((1/2)N)£i)) I N - 1 i:1

(15.35)

Case III
This model incorporates major modifications, which should permit the
model to better reflect the actual system. In particular, it is assumed that
once steady state has been reached, the logical numbering does not have to
reflect the physical location, but, in fact, the steady-state configuration
could be as shown in Figure 15.10.

The logical sequence numbering of the token bus system may assume
any out of the N! possible, different choices of the steady state with an

I Chapter 15

462 15.2 Analytical modeling examples

I L

Figure 15.10
Mapping logical to

physical location.

Interface unit
physical number

Interface unit
logical sequence
number

- 1 r

)

N .

£

equal probability. Therefore, it is of the utmost importance to develop a
model that can reflect all N! of the possible combinations.

Consequently, T c, now, is not a constant but must in some sense reflect
the time it takes for the token to travel the distance from interface unit i to
interface unit i + 1.

Let i represent the logical sequence number of the interface unit; then Vg i
= ~iTsi + Tci; where Tci = the time for a token to traverse the distance from
the IU with logical sequence i to the IU with logical sequence i + 1 (N + 1
becomes IU 1).

In the previous models, the logical sequence number and the physical
number of the interface units were identical; therefore, it was not necessary
to state explicitly the correspondence of the index i.

The total scan time is now expressed by:

N N

-- E Vgi or a: = ~ ~iTsi + T s (15.36)
i=1 i--1

The average value of scan time equals:

N N

-~ -- E E (~iTsi)+ E E(Td) (15.37)
i=1 i=1

which, for a known configuration, is equal to:

N N

-g= EE(~ iTs i)+ E l i - (i + 1)It c (15.38)
i=1 i=1

N + 1 denotes 1, due to cycling, where t c is the time it takes for the con-
trol to pass from any interface unit k to physical unit k + 1.

We have previously evaluated:

N

g=EE(~irsi) (15.39)
i=1

15.3 Simulation modeling of local area networks 463

and, in order to take advantage of the results, the index k will denote the
physical number of the interface unit, while the index i will denote the log-
ical number of it.

Combining the results and making the substitution:

)~k-~ = Pk (15.40)

we get:

N
£1i-(i+l)ltc

-~_ i=1 (15.41)

1- E(k2 + (1 + N) (-k +
k=l

From equation (15.41), the effect on the average scan time can be deter-
mined by varying any combination of the following variables:

1. The number of interface units, N

The arrival rates, £k, of the messages at the interface units with
logical numbers, k

Varying the logical sequential numbering of the interface units

Varying the distances between neighboring interface units

5. Varying the average size of the messages arriving at the interface
units

The main constraint of the model is:

0

,

4.

(15.42)

1 5.3 S i m u l a t i o n m o d e l i n g of local a r e a n e t w o r k s

15.3.1 Computer networks (the model)

A computer network can be considered to be any interconnection of an
assembly of computing elements (systems, terminals, etc.) together with
communications facilities that provide intra- and internetwork communica-
tions.

These networks range in organization from two processors sharing a
memory to large numbers of relatively independent computers connected

I Chapter 15

464 15.3 Simulation modeling of local area networks

over geographically long distances. (The computing elements themselves
may be networks, in which case it is possible to have recursive systems of
networks ad infinitum.) The basic attributes of a network that distinguish
its architecture include its topology or overall organization, composition,
size, channel type and utilization strategy, and control mechanism.

Using the nomenclature and taxonomy discussed for computer inter-
connection structures, a particular system can be characterized by its trans-
fer strategy (direct or indirect), transfer control mechanism (centralized or
decentralized), and its transfer path structure (dedicated or shared). Various
network topologies, such as ring, bus, and star, are seen as embodiments of
unique combinations of these characteristics (see Figure 15.11).

Network composition can be either heterogeneous or homogeneous,
depending on either the similarity of the nodes or the attached computing
elements. Network size generally refers to the number of nodes or comput-
ing elements. With respect to its communications channels, a network may
be homogeneous or it may employ a variety of media. Overall network con-
trol or management is usually either highly centralized or completely dis-
tributed. If the hardware used for passing line control from one device to

Interconnection for communication

. t t .
Transfer Direct Indilrect strategy

. 1 1 . Transfer I I
control (none) centralized centralized

routing routing
_._n? .e !bo~ . 4 [. I { . 4 r

Transfer path [i i i [i dedicated shared dedicated shared dedicated shared
structure path path path path path path

. t 4 t t t t t
/ (DDC) (DSM) 0CDS) / (ICS) [(IDDI) (IDS)
| complete common star | common [irregular bus
|interconnect memory | centrally [network window

System t / c°ntr°lled bus [
architecture

(DDL) (DSB) (ICDL) (IDDR)
distributed distributed centrally regular

control control controlled network
loop loop bus

v

Figure 15.11 Taxonomy of computer interconnection structures.

15.3 Simulation modeling of local area networks 465

another is largely concentrated in one location, it is referred to as centralized
control. The location of the hardware could be within one of the devices
that is connected to the network, or it could be a separate hardware unit. If
the control logic is largely distributed throughout the different devices con-
nected to the network, it is called decentralized control.

Implementation-independent issues that are dependent on system
attributes are modularity, connection flexibility, failure effect, failure recon-
figuration, bottleneck, and logical complexity. A subset of all possible com-
puter systems is that of local computer networks (LCNs). Although no
standard definition of the term exists, an LCN is generally regarded as being
a network so structured as to combine the resource sharing of remote net-
working and the parallelism of multiprocessing. A usually valid criterion for
establishing a network as an LCN is that its internodal distances are in the
range of 0.1 to 10 km with a transfer rate of I to 100 Mbps.

Bus-structured LCN
The range of systems to be studied will be confined to what is known in the
LCN taxonomy as category 3 bus-structured systems (Figure 15.12). As
opposed to such point-to-point media technologies as circuit and message

Evolution context

LCN taxonomy and systems

I
I

New system/subsystem
concepts

I
Existing system improvement

I
Reason Distributed processing

Subnet
communication
technology

Figure 15.12

I
Packet
switch
(Cat. 1)

I
CM*
ICS
ItS

Spider
Datakit

Micronet
Fibemet
Mininet

I
Circuit Bus I/O
switch structure channels
(Cat. 2) (Cat. 3) (Cat. 4)

I I I
DDN DCS MISS

C.mmp DLCN IRCN
AN/USQ-67 HXDP DCN

DDLCN Mitrenet
Batnet

Epic-DPS
Technet
Shinpads

Local computer networks taxonomy.

Communication
bound

Packet
switch
(Cat. 5)

I
ALOHA
ISUnet

KUIPnet
Pluribus
Argonne
Cybernet
Ethernet
NBS net

I/O or memory
bound

I
I

Bus I/O
structure channels
(Cat. 6) (Cat. 7)

I I
Prime Rig

Hyperchannel LASL
UD net CERN
UM net Labolink

Octopus

I Chapter 15

466 15.3 Simulation modeling of local area networks

I v

Figure 15.13
Generalized
distributed

computer network.

switching, a bus-structured system consists of a set of shared lines that can
be used by only one unit at a time. This implies the need for bus-control
schemes to avoid inevitable bus-use conflicts.

Network components
As a first step in developing a general LCN simulation, the network model
illustrated in Figure 15.13 is established. A network consists of an arbitrary
number of interconnected network nodes. Each node consists of one or
more host computing elements or processors connected to an independent
front-end processor termed an interface unit (IU).

The hosts are the producers and consumers of all messages, and they
represent independent systems, terminals, gateways to other networks, and
other such instances of computing elements. The IUs handle all nodal and
network communication functions, such as message handling, flow control,
and system reconfiguration. The lines represent the physical transmission
media that interconnect the nodes. The IUs, together with the line inter-
connection structure, comprise the communication subnetwork.

The model in Figure 15.13 isolates the major hardware units involved in
the transfer of information between processes in different hosts. At this level
no distinction is made between instances of messages such as data blocks
and acknowledgments. In order to develop and refine the model, the major
elements, structures, and activities must be further defined.

,," "',
/ ~l I

P2/I P, I
I I i I i

/' ,//,/'""//"

'" n Legend:
P: host computer
I: interface unit
I: line
IQ: input queue
OQ: output queue

15.3 Simulation modeling of local area networks 467

Host processors
Host or processor components generally include computation and control
elements, various levels of memory, and input and output peripherals. As
far as the system is concerned, each processor's behavior can be considered
to be reflected in appropriate distribution functions that describe the rate at
which the processor produces and consumes interprocessor messages. These
functions reflect a given processor's inherent processing power and loading
based on processor parameters, exogenous communication levels, and inter-
network communications.

Queues
Queues are shared memory buffer structures through which information
transfer between a processor and its IU takes place. For each node there will
be an output (line) queue for messages awaiting transmission as well as one
or more input (message) queues containing unprocessed receptions. The
queue memory area may be located in the processor or in the IU depending
on the implementation. Functionally, both are equivalent.

Associated with queues are control variables, which are maintained and
monitored by both the processors and IUs to provide for the simultaneous
and asynchronous access of the queues. The most common types are linear,
circular, and linked queues. Linear queues (buffers) are used when the
extent of a message is known and the buffer structure can be allocated in
advance. The use of circular buffers is appropriate if several messages of
undetermined length are to be buffered before one of them is processed. A
pool of chained queues is used if the message sizes and arrival times vary
over wide ranges that cannot be predicted in advance and the messages are
not removed in order of their arrival.

Messages are deposited (written) into and withdrawn (read) from queues
using various strategies such as FIFO (first-in, first-out), LIFO (last-in,
first-out), and longest message first.

Queue access is controlled in order to prevent writing into a full queue,
reading from an empty queue, and reading information as it is being written.

Interface units
Insofar as its role in the network is concerned, the interface unit is the most
complex unit with respect to both hardware and software. The basic func-
tion of the IU is to enable its processor to communicate with others in the
network as well as to contribute to overall network functioning. This

I Chapter 15

468 15.3 Simulation modeling of local area networks

involves system (re)initialization, flow control, error detection, and manage-
ment.

When the IU detects that its processor has a message to send, it formats
the message for transmission and becomes a contender for exclusive use of
the communications channels. Upon allocation of control, the controller
transmits the message and, depending on the implementation, may await a
response from the destination processor.

Upon completion of resource (bus) utilization, the IU must be able to
pass control to the next candidate according to the allocation scheme. If
there is an IU failure, the other IUs must be able to substitute for it insofar
as its network control responsibilities are concerned.

Communication lines
The lines are the physical connections between network nodes over which
control and data transmissions travel. Common equivalent terms are chan-
nel and circuit. A particular circuit is either uni- or bi-directional (by nature
and/or use) and supports continuous transmissions provided by analog or
digital techniques.

Circuits are supported using a variety of media, such as coaxial cables,
twisted pairs, fiber optics, microwave links, laser links, and so on. For the
purposes of the simulation it is not necessary to be concerned about these
low-level characteristics except as they are represented by a set of channel
characteristics: the maximum data rate, delay and error parameters, and
directional limitations.

It is also useful to consider setup characteristics if a point-to-point cir-
cuit is not always dedicated to a network. These setup characteristics may
include the signaling mechanism and delay, circuit setup delay, and the
delay for breaking the circuit. In the systems that will be examined later in
the chapter, setup characteristics will not be a factor.

Maximum data rates vary from 50 Kbps (twisted pair) up to 150 Mbps
(optical cables). This rate represents the raw transmission capability of the
line and is not the same as the net rate at which information is transferred.
There is always an overhead. Various factors, such as logic failures, elec-
tronic interference, and physical damage, give rise to transmission degrada-
tions ranging from single-bit errors to total line failure. Depending on the
type of line used, typical error rates vary from 1 in 10,000 to 1 in
10,000,000 bits transmitted.

15.3 Simulation modeling of local area networks 469

Interconnection structures

Various network aspects, such as scheduling, message routing, and reconfig-
uration, are fundamentally related to a networks physical interconnection
structure. For example, eligibility for bus control may be dependent on
position, the time for a message transfer may be dependent on the location
of the processors involved, or a networks continued functioning may be
contingent upon the existence of a redundant link. This structure may be
represented by a topological organization of the three hardware arche-
types~nodes, paths, and switches~that are involved in the transfer of
information between processes at different nodes.

These transfers are called message transmissions and do not distinguish
between instances of messages, such as data blocks, service requests, sema-
phores, and so on. Likewise, in restricting consideration to structural issues
it is unnecessary to distinguish between a computing element and its inter-
face. They are lumped together as the entity node. The switching elements
affect the routing or the destination in some way.

Figure 15.14 shows a general model of an interconnected system. For
simplicity, the class of systems with only one switch is represented.

Node 1 ..

)
""-....,

.. -"

N o d e 2 ..
..... .-" . -..

• " ~".-~.. '

...

Node n ..
...... •

..............
/ / / ,.,..

['n)
/ . /

..... ,...,.,.,

........ ,. /"

v

Figure 15.14 General interconnection model

Interconnection
structure

I Chapter 15

470 15.3 Simulation modeling of local area networks

-1
I

I

Figure 15.15

Loop Total interconnect Star

Examples of interconnection structures.

Associated with each node and switch are a number of paths or links.
Each node can connect to the rest of the network through one, two, or mul-
tiple links corresponding, respectively, to a bus system, a ring or loop struc-
ture, or a fully interconnected network with direct links between each pair
of nodes. Figure 15.15 shows specific examples of interconnection struc-
tures.

These diagrams suggest that the interconnection structure can be repre-
sented by or implied in tables and/or algorithms that will enable the deter-
mination of such things as the next eligible node for resource utilization,
internodal lengths, reconfiguration parameters, and optimal paths. A com-
plete representation might be underutilized in the present simulation effort
but would provide for increased sophistication in the future.

If the node is resolved into its components (i.e., the computing element
and IU), it can be seen that the model can represent the interconnection
aspects of the various control schemes possible for distributed networks.
Since no assumption is made about the nature of the components of a node
or of its communications with the rest of the network, it is possible for a
particular node to represent a centralized controller dedicated solely to net-
work management instead of a host processor in the usual sense.

15.3 Simulation modeling of local area networks 471

1 5 . 3 . 2 P r o t o c o l s

Network activities occur in a potentially hostile environment because of
such factors as nonhomogeneous components, limited bandwidth, delay,
unreliable transmissions, and competition for resources. In order to provide
for the orderly coordination and control of activities, formal communica-
tion conventions or protocols have been developed that encompass the elec-
trical, mechanical, and functional characteristics of networks.

These protocols are almost always complex, multilayered structures cor-
responding to the layered physical and functional structure of networks.
Each lower layer is functionally independent and entirely transparent to all
higher-level layers. However, in order to function, all higher-level layers
depend on the correct operation of the lower levels.

Every time one protocol communicates by means of a protocol at a
lower level, the lower-level protocol accepts all the data and control infor-
mation of the higher-level protocol and then performs a number of func-
tions upon it. In most cases, the lower-level protocol takes all the data and
control information, treats it uniformly as data, and adds on its own enve-
lope of control information. It is in the format of messages flowing through
a network that the concept of a protocol hierarchy is most evident. The for-
mat of transmitted messages shows clearly the layering of functions, just as a
nesting of parentheses in a mathematical expression or in a programming
language statement does.

Among the functions provided by protocols are circuit establishment
and maintenance, resource management, message control, and error detec-
tion and correction. Performance of these functions provided by protocols
are circuit establishment and maintenance, resource management, message
control, and error detection and correction.

Performance of these functions introduces delays in data transmission
and requires adding headers and other housekeeping data fields to messages
as well as requiring acknowledgment of correct reception or retransmission
in case of errors. This reduces the useful data rate of a network. These over-
head aspects of message transfer transmission are taken into account in a
measure of the efficiency of the protocols. In general, a protocol is simply
the set of mutually agreed upon conventions for handling the exchange of
information between computing elements. Although these elements could
be circuits, modems, terminals, concentrators, hosts, processors, or people,
the view taken in this section is restricted to hosts and processors embedded
within other equipment.

I Chapter 15

472 15.3 Simulation modeling of local area networks

Figure 15.16

The crux of maintaining a viable distributed environment lies in accept-
ing the inherent unreliability of the message mechanism and to design proc-
esses to cope with it. In earlier systems, protocols were designed in ad hoc
fashion. Typically, these protocols were application specific and imple-
mented as such. All recent protocol work has been moving in the direction
of a hierarchical, multilayered structure, with the implementation details of
each layer transparent to all other layers and hierarchies.

Although there is no universal agreement on the names and numbers of
protocol layers, a widely accepted standard is the International Organiza-
tion for Standardization, (ISO), Open System Interconnect (OSI) model,
which is shown in Figure 15.16. Using this organization, level 1 (physical
layer) protocols include RS-232 and X.21 line-control standards, Manches-
ter II encoding, encryption, link utilization time monitoring and control,
transmission rate control, and synchronization.

Level 2 (data link) provides for the reliable interchange of data between
nodes connected by a physical data link. Functions include provision of
data transparency (i.e., providing means to distinguish between data and
control bits in a transmission); contention monitoring and resolution; the
establishment, maintenance, and termination of interactions (transactions);
error detection and correction; and nodal failure recovery.

Layer Exchange
7 Application 1 ... APP!!ca!i°n-pr°t°C°!S ... ~ Application Ii Message

Interface ~
I Presentation protocols I 6 Presentation ... Presentation i Message

Interface ~ ~

I Packet

Session t .. Sess!°nPr°!°c°!s ... ~ Session I Message

I T r a n s P ° ~ P r O ! O C O ! s ...
Transport I Communication subnet bounda~ / Transport [Message

Ne~,ork H Network ~ Network Network

Data link

Physical

Frame
i

I g't

Data link

Physical

H Data link H Data link

H H P ica'
.................................... _~.t; ~

ISO OSI modeL

15.3 Simulation modeling of local area networks 473

A description of the operational aspects of the general network is best
presented in the context of the previously defined protocol structure, since
all possible network events and activities, intentional and otherwise, must
be managed under this structure. The protocol structure also implies the
underlying structures and functional mechanisms that support network
operation.

Before any control or data communications can be conducted, the actual
means of signaling and bit transmission across a physical medium must be
provided. Physical links must be established in accordance with the speci-
fied network topology and line parameters.

Frequently, an encoding scheme such as Manchester II is used on this
level to provide for synchronization and error detection. In the Manchester
II scheme each of the original data bits is transformed into two transmission
bits in such a way that it is impossible to get three consecutive identical bits
in the encoded message. This implies that the message receiver can detect
errors by watching for this occurrence. Also, this encoding can be selectively
disabled to provide unique, invalid waveforms that can be used as synchro-
nization signals.

Given the physical layer service capability to exchange signals across the
physical medium, the data link layer is implemented to provide the capabil-
ity of reliably exchanging a logical sequence of messages across the physical
link. The fundamental functions of the layer include the provision of data
transparency, message handling, line management, and error control. Since,
in the original case, data and control information pass along the same line
during a transmission, certain techniques must be provided to distinguish
between the two. This is done by assigning control meanings to certain bit
patterns that are prevented from occurring in the data stream through the
use of such techniques as bit and byte stuffing and the previously described
Manchester scheme. In this way, control sequences can be used to delimit
the beginning and end of asynchronously transmitted, variable-length mes-
sages. Common expressions for such sequences include BOM, EOM, and
flag.

The elementary unit of data transmission is usually the word. The num-
ber of data words in a message is generally variable up to some maximum
message length (MML), and a parity bit is usually appended to data and
control words. Each message must include addressing information when-
ever the sender and receiver are not directly connected. Addresses may be
physical, in which case each node has a unique address, or they may be log-
ical, in which case each node has associated with it one or more coded

I Chapter 15

474 15.3 Simulation modeling of local area networks

sequences representing functional entities. A particular logical address may
be associated with an arbitrary number of physical nodes, thus providing for
single, multiple, or broadcast addressing. Address information may be con-
tained in the data portion of a message or it may be part of the control
information.

Each transaction may be considered to be either a bilateral or a unilateral
process, depending upon whether or not the sending process requires a
response from the destination concerning the success of the transmission. In
the systems in which a choice can be made between these alternatives, the
message must contain information about this choice. Response types
include but are not limited to the following:

• NO REPLY R E Q U E S T E D ~ I n the case of a message being sent to a
process where multiple copies exist, the issuance of an acknowledg-
ment is undesirable because collisions would result.

• STATUS REQUESTED~Informat ion regarding the success or fail-
ure of the transmission is requested.

• LOOPBACK REQUESTED~Loopback is the situation in which a
destination node is also the source node.

15 .3 .3 T ransmiss ion e r r o r d e t e c t i o n

In order to ensure that a transmission is occurring without error, it is neces-
sary for the link control level to include a set of conventions between the
sender and receiver for detecting and correcting errors.

There are many possible methods for error control over a transmission
link. Two general types of error control are forward error control and feed-
back error control. The most practical and prevalent method is feedback
control.

The simplest form of detection is a parity check on each transmitted
character. This is often called a vertical redundancy check, and it is used to
provide protection against single bit errors within characters. A horizontal
or longitudinal redundancy check (LRC) provides for a check across an
entire message. This is done by computing a parity bit for each bit position
of all the characters in the message. The most powerful form of check is the
cyclic redundancy code check (CRC), which is a more comprehensive alge-
braic process capable of detecting large numbers of bits with errors.

There is a possibility that a message or response does not even arrive at
its destination, irrespective of whether the information is good or bad. This

15.3 Simulation modeling of local area networks 475

can result from either a physical failure, such as the failure of the link or of
the destination node, or a logical failure, such as the use of an incorrect des-
tination name.

These possibilities can be detected by providing a time-out mechanism,
which will cause a message to be retransmitted if, after an agreed upon delay
(the response time-out), an acknowledgment has not been received. Many
systems rely solely on the positive acknowledgment and time-out conven-
tion and do not employ a negative acknowledgment.

When multiple devices are sharing a bus, there must be some method by
which a particular unit requests and obtains control of the bus and is
allowed to transmit data over it. The major problem in this area is the reso-
lution of inevitable bus request conflicts through the use of arbitration and
scheduling schemes so that only one unit obtains the bus at a given time.
Mechanisms must also be provided for system reinitialization and adjust-
ment in the cases of system startup, nodal addition and removal, line fail-
ures, and spurious transmissions in the system.

In all systems collisions can occur when more than one control or data
transmission simultaneously occurs. This may be caused by the use of ran-
dom number techniques to generate allocation sequence numbers upon a
node entering the system at startup or some later time, or it may be caused
by a message with multiple destinations improperly asking for acknowledg-
ment. Collisions are usually handled by the temporary or permanent
removal of involved nodes or the retransmission of legitimate messages.

A limit is often imposed on line use time to prevent a node from
monopolizing the bus, either intentionally or because of nodal failure. This
condition may be prevented by placing a limit on the maximum message
size and/or monitoring line use to determine when a node is maintaining an
active transmission state beyond that required to send the largest allowed
message.

This monitoring capability is achieved through the use of a loud-mouth
timer, which is activated upon nodal allocation and provides an interrupt
signal (or Causes a collision) if allowed to run out. The usual outcome is the
removal of power from the transmitter circuitry, either temporarily or per-
manently, and the informing of the host processor, when possible, of this
condition.

When talking about control, it is important to keep in mind that this is
not usually associated with a specific physical device or location but is rather
a functional entity distributed (replicated) throughout the network.

I Chapter 15

476 15.3 Simulation modeling of local area networks

1 5 . 3 . 4 E v e n t s

In order to precisely simulate the operational behavior of networks a more
formal and quantitative analytical approach must be taken. In order to do
this, the following concepts must be introduced. All actions and activities,
intentional and otherwise, that can occur in system operation can be classi-
fied as events. An event is defined as any occurrence, regardless of its dura-
tion. Events have a number of characteristics, including the following:

• An event has a beginning, an end, and a duration.

• An event can be simple or complex. A simple event is one that cannot
or, for the purposes of the simulation, need not be reduced into a
simpler sequence of occurrences. Conversely, a complex event is one
that consists of simpler events.

• An event may be a random occurrence or of a stochastic nature, or it
may be the deterministic result (effect) of an identifiable cause.

• An event has a certain pattern of occurrence (e.g., periodic, aperiodic,
synchronous, asynchronous, etc.).

• Events belong to classes. The significance of an event class is that each
member has the same effect as each other in a particular context. For
example, in certain systems the corruption of a message by noise is
equivalent in effect to the incorrect specification of a destination
name~bo th will result in a response time-out and a retransmission.
Thus, these two events would be of the same class.

• Events may be concurrent or disjointed (sequential). Events that
coincide or overlap in time are concurrent; otherwise, they are dis-
jointed. The concept of effective concurrency is introduced here.
Sequential program structures are considered effectively concurrent if
they can successfully represent or model events that are actually con-
current.

An example would be the action of processors requesting services. While
this is an asynchronous, unpredictable event(s) concurrent with channel
utilization by a particular node, these two aspects of system behavior utiliza-
tion and contention can be effectively separated, since (except in the case of
interrupts) the request will not be acted upon until utilization is complete.
As long as a record of the duration of utilization is available, an effective his-
tory of nodal requests can be generated just prior to contention resolution
by the control module of the simulation program.

15.3 Simulation modeling of local area networks 477

Following is a list of basic events that may be found to occur in the oper-
ation of various LCNs. All system behavior can be ultimately reduced to
sequences of these simple events. Events are listed under the component in
which they occur.

Processor
• Production. This is the generation of a message by a host computing

element. Parameters associated with this event are production time,
message size, destination(s).

• Queue inquiry. The determination by the processor of the state of an
input or output queue before reading from or writing to it, respec-
tively.

• Output message disposition. Depending upon the buffer availability
strategy, a generated message may be queued normally, it may be
written over exiting queued data, it may be held by the processor
until it can be queued, or it may be dumped.

• Consumption (read message). This is the reading of a message in the
input queue by the host computing element. Assuming a message is
available in the input queue, it can be immediately consumed. Con-
sumption with respect to a queue is similar to production.

• Node. It is convenient to associate the following events with the
entity node rather than either the computing element or the IU.

• Addition. A node is considered added to the circuit when it informs
the network that it wishes to be integrated into the system. This may
occur upon initial power-up of the node or upon failure recovery.

• Integration. This is when the node actually becomes a functional part
of the network.

• Failure. This is the failure of a node as a functional member of the
network.

Interface unit
• Queue inquiry. This is analogous to the processor event.

• Read message. The IU obtains message from an output queue.

• Preprocess message. This is the formatting or packing of a message for
transmission. It is to be distinguished from the formatting that is
done by the processor.

I Chapter 15

478 15.3 Simulation modeling of local area networks

• Request. The IU notifies the network that it wishes to use the bus.
This may or may not involve the transmission of a control signal.

• Connection. This is the actual acquisition of the channel for utiliza-
tion.

• (Re)transmission. This is the moment when the first word of a mes-
sage is placed on the bus or, in the event of a message train, as in a
ring structure, the first word of the first message.

• Response time-out activation. In systems in which a response to a
message transmission is required within a certain amount of time, a
response timer is activated at some point during transmission.

• Detection (identification). This is the detection by an IU of a mes-
sage addressed to it.

• Reception. This is the moment when the complete message has been
received, processing on it has been completed, and it is ready to be
queued. This may also be considered queue inquiry time as well as
response transmission time.

• Write message. This is when a received message is placed in the input
queue.

• Response reception. This is when the message source receives infor-
mation from the destination regarding the transmission.

• Delete message. This is the deletion of a message from an output
queue following a successful transmission.

• Relinquish. Upon completion of utilization, the IU signals that real-
location is to occur.

Using these concepts, overall system activity or flow can be represented
by the following sequence of complex events:

NODAL ACTIVITY --5 CONTROL/ARBITRATION --5
UTILIZATION

This simple structure is possible because the concept of effective concur-
rency is valid in the case of global bus systems.

Nodal Activity
Nodal activity simulates the behavior of all nodes and interface units during
the utilization period of a particular node. During this period nodal activity
includes the following:

[] The production and consumption of messages

15.3 Simulation modeling of local area networks 479

1 5 . 3 . 5

• Queue activity

• IU background processing

• Addition and removal of nodes from the network

Control
Control may be a number of possible sequences depending on circum-
stances in which control is activated.

Utilization
The utilization event encompasses all activity associated with a node's utili-
zation of the bus for the transmission of a message. Utilization begins with
being connected to the bus and it terminates either gracefully, in the case of
a successful transaction followed by a control output, or unintentionally, as
the result of intervention by control because of a protocol violation (mes-
sage too long, no reaUocation signal transmitted, etc.).

T h e L A N s i m u l a t o r m o d e l s t r u c t u r e

Based on the previous discussion of LAN structure and events, we can typ-
ify a LAN as consisting of three major hardware classes: host machines,
interface units, and communications links. Additionally, these hardware
classes possess varying levels of software and functionality.

The link level is concerned with the management and performance of
bit-level physical transfers. This includes timing and control as well as
mechanical and electrical interface. The interface units provide the main
services to bring the simple communications media and protocols up to a
true network. This component and its services must provide for node-to-
node, host-to-node, and end-to-end protocols. This includes error detec-
tion and correction, media acquisition and control, routing, flow control,
message formatting, network transparency, maintenance of connections,
and other services. The host class of device provides the LAN with end-user
sites that require remote services from other hosts. The services provided at
this level are host-to-node interface, host-to-host protocols, and resource-
sharing protocols. Implemented at this level of a I_AN would be user-visible
services, such as a distributed operating system, a distributed database man-
agement system, mail services, and many others. A model of this structure
implies a minimum of a component for each of these items. Therefore, the
simulator must have components of sufficient generality and flexibility to
model these components and provide for analysis. Figure 15.17 depicts
these basic components and the necessary simulation components to mea-

I Chapter 15

480 15.3 Simulation modeling of local area networks

Simulation
controller

control

Logical/physical
attributes of systems

Ring, Bus, Star

Number of processors,
number of lOPs

Characteristics of
lOPs

Characteristics of
communications link

Processor
#1

,i, data
lOP
#1

T data

Processor
#2

I data
lOP
#2

I Oata

Processor
#N- 1

data I
lOP

#N- 1

data I

Communication link

Processor I
#N r

data I
lOP
#N

data I

Data
collector

l

Figure 15.17 Basic components of a simulation model.

sure the performance and operations of a simulation. Using this structure, it
can be seen that the simulator consists of a modular structure with compo-
nents that can be turned to the modeling of specific LAN nuances. The
physical and logical characteristics peculiar to each system design are con-
tained in independent software routines and/or data tables. The high-level
design of the LAN model shows the need for the following functions:

• A simulation controller, which will be responsible for the coordina-
tion and timely operation of the remaining software modules. This
function will initialize the system architecture and distributed com-
puting techniques in accordance with user input data, schedule
events, calculate system state, maintain the common timetables, and
initiate the processing of the other software routines as dictated by the
particular logical and physical configuration.

• A system processor routine, which will be capable of simulating the
time-dependent activity (data in, data out, processing time) of each
proposed computing mode.

• An interface processing routine, which will be capable of simulating
the activity (time delays, message handling, priority determination,
addressing technique, resource allocation, etc.) of each proposed

15.3 Simulation modeling of local area networks 481

front-end processor as required by the particular logical and physical
characteristics.

• A communications link routine, which will be capable of simulating
the timing delays and the data and control transfer characteristics of
the proposed transmission medium.

• A data collection routine, which will be responsible for collecting,
formatting, and collating the requisite system evaluation parameters.

Data items collected will include, but will not be limited to, a mini-
mum, maximum, and average of the following:

• Time to transmit message from A to B

• Message wait time

• Number of messages in the queue or system

• Message size

• Bus utilization

• Interface unit timing (as previously presented)

It will also include a postprocessing routine, which will be responsible
for presenting the data in human-readable forms (graphs, plots, tables, etc.).

1 5 . 3 . 6 L A N s i m u l a t o r o v e r v i e w

This simulator was developed to provide a flexible research, development,
and analysis tool for local area network architectures. The tool has been
used to aid in the selection, development, and evaluation of local area net-
work architectures that support large, distributed, real-time command con-
trol and communications (C3) environments.

The simulator was designed with the intention of comparing a wide
range of possible distributed C3 configurations. This capability was
achieved by providing the following:

1. A modular structure, which allows the model to be adapted to
suit a variety of system specifications

2. A standard driving routine, which mimics the communications
within a C3 system

3. A standard routine, which analyzes the distributed system on the
basis of detailed evaluation criteria

Such a design allows for the implementation, testing, and evaluation of
new strategies for improving system performance with little effort.

I Chapter 15

482 15.3 Simulation modeling of local area networks

1 5 . 3 . 7

1 5 . 3 . 8

N e x t even t s i m u l a t i o n

The modeling technique used in the LAN software simulation is called next
event simulation. Next event simulation views the world as a sequence of
events rather than a continuum. If a department store checkout line is sim-
ulated in next event simulation, the process of checking out would be
viewed as the following sequence: (1) a customer enters the checkout line,
(2) the customer starts checkout, (3) the customer completes checkout.
Between these events the customer is performing other activities, but these
are unimportant if we are simply interested in the length of the waiting
time.

The view of time taken by next event simulation is important in under-
standing the design and implementation of the LAN simulation. Time in
next event simulation is viewed as a means of sequencing events and calcu-
lating time-related statistics. Events one hour or one second in the future
are treated identically. Simulation is achieved by creating a file that contains
future events along with the time of their occurrence. A simple loop pro-
gram scans this file and selects the event with the lowest time. At that time,
an internal memory location, which contains the simulated time, is updated
to the occurrence time of the event. After the event occurs, mathematical
calculations or logical operations can be performed to schedule other
dependent events. In the checkout line example, this means that when
checkout begins, the end of the checkout event is scheduled. In this way,
the simulation proceeds from event to event and time constantly progresses.

The random or stochastic nature of scheduled events gives the simulation
the characteristics of a real system. In the checkout line example, the time
taken to serve a customer is not a constant; it may be one minute or ten min-
utes. The service time is also randomly distributed. That is to say, the service
time of previous customers does not have any effect on future customers.
The service times usually fall into a pattern; that is, it may be highly likely
that a service time is 5 minutes but relatively unlikely to be 20 minutes. The
likelihood of certain service times can be described by theoretical patterns
called distributions. These distributions can be used to generate service times
or arrival patterns that resemble those occurring in real systems.

L A N m o d e l i m p l e m e n t a t i o n

The LAN simulator is a general-purpose simulation package used for mod-
eling a wide range of local area network architectures. Its basic structure is
shown in Figure 15.18 and consists of the following five major components:

15.3 Simulation modeling of local area networks 483

.

0

0

0

Arrival module. The arrival module is concerned with generating
the messages to be communicated and places them in an interface
unit queue. It must also handle the queue overflow problem and
the possibility of a processor being unavailable.

Arbitrator module. The arbitrator module is concerned with the
determination of which interface unit will communicate over the
link next, based on the policy of the communications link control
in place.

Use module. The use module is concerned with the modeling of
the passage of messages from source to sink nodes over the com-
munications link.

Analysis module. The analysis module performs statistical analysis
on the messages within the system.

Interface module. The interface module handles overall control of
the characteristics of the simulation.

Arrival module
Random seeds

i Arbitrator module Interface module

~ a c t e r i s t i c s ittor active ~ ~ ' "

Simulate message
arrivals and queuing

System
data lost

messa! ...

Entry
data

j f

Final
repof

Analyze messages

Arbitrate

3ueue status

Next imessage

Lost
messages /

Simulate use of the
i /\ communications svste

messages

Busy

User
con, r i,,,e

User control interface

Use characteristics

/ i
Analysis characteristics

V

Figure 15.18

Spent
Analysis module messages

Basic structure of LAN simulator.

Use module

I Chapter 15

484 15.3 Simulation modeling of local area networks

One of the critical modules of MALAN in terms of general characteris-
tics modeling is the use module. Its major components are as follows:

1. ADD NEXT MESSAGE TO THE FILE. This process takes the
next message from the processor that has the right to send and
stores it in a file until it arrives at its destination.

2. SIMULATE TOPOLOGY. This routes the message through the
simulation topology.

3. SIMULATE TRANSACTION DELAY. It simulates the passage
of a message over a physical transmission line (link), including
messages retransmitted.

4. SIMULATE MESSAGE ERRORS. This determines the number
of retransmits and lost messages from information on the physical
transmission line.

5. UNFILE MESSAGE. This process removes messages from the
message file upon completion of message transmission.

6. SIMULATE STATUS CHANGE. This simulates the loss of a
link or node.

Table 15.3 describes the composition of entities represented in this
model. Each of the items in the table is an attribute of the model's entities.
Attribute 1 is the event time; it contains the time at which the message will
arrive. Attribute 2 is the event type, which distinguishes this event as an
arrival, since there are other events that occur in the system. Attribute 3 is
the source IU number or the designated IU that generated the message.
Attribute 4 is the destination IU number and describes the ultimate desti-
nation of the message. Attribute 7 is the message size expressed in words.
Attributes 17 and 18 are used when a message is too large to be sent in one
packet. In this case, the message must be divided into a number of smaller
messages, each with the same source, destination, and generation time.
Attribute 17 is used to identify the sequence number of any multipacket
message. Attribute 18 is used to identify the total number of packets in the
entire message. With attributes 17 and 18, it can be determined when the
complete message is received.

As with interarrival times, message size and message destination must be
generated by the system. Here again, the data could be generated by mea-
surements within the real system or by using theoretical distributions. Thus,
part of the arrival module is devoted to drawing from distributions of mes-
sage size and message destination and initializing the appropriate attributes.
The only remaining function performed by this submode is to divide mes-

15.3 Simulation modeling of local area networks 485

Table 15.3 Entries in the LAN Simulator Model

Attribute Data Name Data Type Abbreviation

1 Event time real ETIM

2 Event type real ETYP

3 Source interface unit (IU) number integer SP

4 Destination interface unit (IU) number integer DP

5 Present interface unit (IU) number integer PP

6 Generation time real GT

7 Message size (words) integer MS

8 Message overhead length (bits) integer MO

9 Message wait time At 1 (in processor queue) real WT1

10 Message wait time At 2 (transit from queue to IU) real WT2

11 Message wait time At 3 (within IU) real WT3

12 Message transfer time real TT

13 Message transfer time real XFER

14 Number of stops integer NS

15 Number of retransmits integer RT

16 Messages lost integer ML

17 Sequence number of multipacketed messages integer NMES

18 Number of parts to a packetized message integer PARTS

19 Message time to complete integer MTTC

20 Message priority integer MP

21 Message identification (ID) number integer MI

sages that exceed the max imum message size into a sequence of smaller mes-

sages. The total number of messages generated is placed in attribute 18 of

each message. Each message receives a sequence number, attribute 17.

Once messages enter the system, they must be held in a waiting line or

queue until the IU can transmit them. To facilitate this, a FIFO queue is

formed to contain the waiting messages. In a real system, this queue would

consume some real memory, which normally would be limited. In the sim-

I Chapter 15

486 15.3 Simulation modeling of local area networks

15.3.9

ulated system, this limit must be taken into consideration. When queue
memory is exceeded, appropriate action should be taken.

Appropriate action consists of: (1) waiting until sufficient memory is
free to accommodate the message, (2) throwing away the message, and (3)
overwriting an older message. Any of these can be selected in this submode.

Topology module description
The topology module consists mainly of a group of subroutines that facili-
tate the retrieval and modification of the data that physically describe the
local computer network. These routines reside within the body of the simu-
lation program with the exception of the initialization program, which is a
separate entity.

Analysis module

The goal of the analysis module is to provide quantitative measures, which
establish the effectiveness of distributed processing systems, and to provide
statistical measures, which can be used to compare distributed processing
systems having divergent design philosophies. To meet these goals, it is nec-
essary to identify constant factors that unify distributed processing systems
and derive statistical measures by which these factors can be compared.
That is to say, a common language of analysis must be established by which
a wide range of distributed systems can be described.

Establishing analysis criteria
In order to develop wide-ranging analysis criteria, it is necessary to identify
those characteristics that are common among distributed processing sys-
tems. These common characteristics will be developed into statistical mea-
sures that analyze the relative merits of the underlying system. In
developing common characteristics, three areas will be explored: (1) the
basic physical structure of distributed processing networks, (2) the basic
sequence of events, and (3) the overall function of distributed processing
networks.

To provide flexibility and simplicity, most distributed processing systems
have adopted a modular design philosophy. Modularity has resulted in a
common physical structure, which allows the distributed processing systems
to be divided into several functional components. These component parts
can be examined and evaluated separately. Dividing the evaluation of a sys-
tem into functional components allows more accurate analysis of the inter-
mediate factors that contribute to the strengths and weaknesses of a system.

15.3 Simulation modeling of local area networks 487

IUs

P1

P2

Queues Processors

Pn

lUl

lU2

lUn

Communications
network

Figure 15.19 Functional components of a distributed processing system.

The basic functional components that form the physical structure of a
typical distributed processing system are shown in Figure 15.19. This figure
illustrates each distributed processing system in terms of the following com-
ponents: (1) a number of processors that generate and consume messages,
(2) a waiting line or queue containing messages that cannot be serviced
immediately, (3) an interface unit that prepares messages for transmission,
and (4) a communications network that performs the actual physical trans-
mission of data. The physical implementation of these component parts
differs widely from system to system. The outline presented in Figure 15.19
represents an accurate, generalized picture of distributed processing systems.
The physical mapping presented in Figure 15.19 allows the identification of
certain common features and checkpoints, which are discussed in subse-
quent paragraphs.

The primary structural feature of quantitative interest in Figure 15.19 is
the queue, or waiting line. The length of these queues gives some quantita-
tive information concerning the effectiveness of the underlying communi-
cations system. Exceptionally long or unbalanced queues could indicate the
presence of system bottlenecks. Queues that grow and retreat wildly could
suggest poor responsiveness to peak loads.

I Chapter 15

488 15.3 Simulation modeling of local area networks

y

Figure 15.20
LAN evaluation

metr tcs . Processor #1

BIU system

Processor

Wait
tii'ne

WT2

#N

I Iiiiiiiiiiiiiiiiill
............ l transfertransmittime time "; ..

BIU

............................. l
Overhead

time

...

The basic components, which form the functional event structure in the
typical distributed processing network, are shown in Figure 15.20. This fig-
ure reproduces the same general physical layout presented in Figure 15.19
but divides the passage of messages through the physical system into specific
steps, or phases. The major events of interest along the message path of Fig-
ure 15.20 are: (1) a message arrives, (2) a message enters the queue, (3) a
message leaves the queue, (4) a message becomes available to the interface
unit, (5) a message starts transmission, (6) a message ends transmission, and
(7) a message becomes available to the receiving processor.

These common checkpoints are significant, because they allow time
measurements that chart the passage of the message through the system. As
long as a particular system accurately implements communication, timing
becomes a most critical factor. That is, the speed at which accurately trans-
mitted messages are completed is of primary interest. This series of check-
points allows analysis of overall as well as intermediate delays imposed on
the communications process.

The time between basic checkpoints and combinations of checkpoints
gives rise to specific descriptive quantities, shown by the arrows in Figure
15.20. These quantities will be compiled for each simulation run on spe-
cific distributed processing networks. These are described in more detail, as
follows:

° System time is the time between message generation at the source
processor and message reception by the sink processor. System

15.3 Simulation modeling of local area networks 489

time quantifies the total delay the distributed processing system
imposes on a message.

2. Transfer time is the time that elapses between a message leaving
the queue and its reception at the sink. Transfer time indicates the
time required for the system to effect communications, disregard-
ing the time spent waiting to commence the transfer process.

3. Transmit time is the time a message spends in the process of phys-
ical information transmission. This quantity indicates the actual
timeliness of the low-level protocol and the speed of the physical
transmission.

4. Wait time is the time that must be expended before a message
begins transmission. This quantity is divided into four smaller
quantities: wtl, wt2, wt3, and wt4, described as follows:

• wtl is the time a message spends in the queue.

• wt2 is the interval between removing the message from the
queue to the point at which the IU begins preparing the mes-
sage for transmission.

• wt3 accounts for the time required to prepare a message for
transmission.

• wt4 includes the time required to make the message available
to the sink processor once the transmission is complete.

5. Overhead time equals the sum of wt2, wt3, and wt4. The over-
head time is considered the time that must be yielded to the IU as
the price of message transmission.

Analysis criteria can also be approached from a functional point of view.
Functional criteria allow evaluation and comparison of the performance of
distributed processing systems. These criteria fall into the following catego-
ries: (1) the amount of information carried by the communications system
in unit time (i.e., throughput), (2) the amount of useful information trans-
ferred in unit time excluding overhead (i.e., information throughput), (3)
the information lost in the communications process, (4) the amount of
information overhead, and (5) the proportion of data that arrives late.

The throughput statistics quantify the total volume of information car-
ried by a distributed processing system in unit time. This value is an overall
indicator of the capacity and utilization of a distributed processing system.
Unfortunately, the volume of real information transferred is reduced by the

I Chapter 15

490 15.3 Simulation modeling of local area networks

portion of overhead appended to the message. The overhead information is
the part of a message that is attached by the distributed processing system to
facilitate communication. The measurement of throughput that disregards
overhead is called information throughput.

In addition to the overall flow of information through the system, we are
interested in the loss of information. This loss can be the result of three con-
ditions: (1) message loss because of a full queue, (2) message loss because of
a bit(s) in error during transmission, and (3) message loss because of the
casualty of a system component. These quantities will be computed as a
percent of the total number of messages transmitted. A statistic relating
total messages lost will also be computed.

Also of interest is the amount of overhead that is attached to each mes-
sage. This quantity allows analysis of the degradation of system perform-
ance caused by overhead. This statistic expresses overhead as a percentage of
the total information transferred.

A more sophisticated functional evaluation criterion is the data late sta-
tistics. This statistic evaluates the proportion of messages that arrives past
the time of expiration. In a very practical sense, this measure is one that is of
ultimate concern in real-time environments. If all messages arrive in their
allotted time, the system is working within capacity and responds to the
peak requirements demanded of it.

In summary, the criteria used for analysis are generated by three charac-
teristics of distributed processing systems, as follows:

1. Basic physical structure. This characteristic yields criteria such as
queue length, which results from the physical link between the
processor and interface unit.

2. The event structure. This characteristic yields analysis criteria
such as transmit time, which is the result of the requirement to
physically transmit the data during some point in the communi-
cations cycle.

3. The overall function. This characteristic yields analysis criteria
such as throughput, which results from the overall function of the
system (i.e., to communicate).

Analysis criteria and simulation
From the point of view of statistical analysis, Figure 15.21 illustrates the
essential nature of the model. The block on the left shows simulation mes-
sages arriving to the communications network from the real-time system.

15.3 Simulation modeling of local area networks 491

Communications Network

Simulate
message

arrival

Arriving
message Simulate

message
communication

Complete(~ 1
message

"1
Figure 15.21 Simulated message flow graph.

Analyze
messages

Final
report

Messages in the simulation are not real system messages but are buffers of
computer memory that contain information regarding the nature and his-
tory of the message. The central block shows simulation of messages passing
through the communications network. During this passage, data, which
capture the history of the message, are added to the simulated message.
When the message is either complete (reaches its destination) or lost (failed
to reach its destination), the message is analyzed by the analysis module
shown as the block on the right.

During a simulation, many messages will take the path illustrated in Fig-
ure 15.22. A large number of messages are required in order to build up
what is called statistical significance. This refers to the fact that a large sam-
ple of occurrences must be taken into consideration in order to eliminate
any bias that may be produced by taking too small a random sample.

The structure of the software for collecting statistics and formatting the
final report is also shown in Figure 15.22. During a simulation run, infor-
mation from large numbers of completed messages will be accumulated and
stored, and the memory occupied by these messages will be released. At the
end of a simulation run, these accumulated data will be used in statistical
calculations, which will be formatted and presented in the form of a final
report.

Figure 15.22

Completed
messages Accumulate

statistics

Accumulated
statistics

Analysis module functional diagram.

Calculate
statistics and
format final

report

I Chapter 15

492 15.3 Simulation modeling of local area networks

10.0

Example
performance

evaluation plots.

Statistical output
The statistics generated by the system can be divided into three main
groups: (1) time independent, (2) time persistent, and (3) periodic.

The time-independent statistics are from independent observations. The
traditional mean and standard deviation can be calculated for this group.
These data, which are accumulated during the simulation run, are as fol-
lows: (1) the sum of each observed piece of data, (2) the sum of each piece
of data squared, (3) the number of observations, and (4) the maximum
value observed. From the accumulated data, the mean, standard deviation,
and maximum observed value will be calculated and formatted for the final
report. These statistics will be provided for all the time-independent data
points.

Time-persistent statistics are important when the time over which a
parameter retains its value becomes critical. An example of this is a waiting
line. If the line has ten members in it for 20 minutes and one member for 1
minute, the average is not (1 + 10)/2, or 5.5. This quantity would indicate
that there were approximately five members present in the line for a 21-
minute period. The true average is more like 20/21 × 10 + 1/20 × 1, or
9.57, or approximately 10. This is the time-persistent average. As can be

9.0

8.0

7.0

3.0

o 8 6.0
o

~ 5.0
o o

4.0

2.0

1.0 A ~ A h

I I I I I

Con f i gu ra t i on 1" 16 p rocesso rs

x = 10 / sec = •

x = 1 / sec = *
x = 1 /10sec = A

I
100 200

v

Figure 15.23

300 400 500 600 700 800

of bits in arriving messages

Numbers

15.4 Summary 493

1 5 .4

seen in this case, the average is weighted by the time period over which the
value persisted. There is a similar argument that can be made for the time-
persistent standard deviation. These data, which are accumulated during a
simulation for the time-persistent case, are as follows: (1) the sum of the
observed value times the period over which it retained that value, (2) the
sum of the observed value squared times the period over which it retained
its value, (3) the maximum observed value, and (4) the total period of
observation. From these accumulated data, the time-persistent mean, the
time-persistent standard deviation, and the maximum observed value will
be calculated and formatted for the final report. These statistics will be pro-
vided for all the time-persistent data points.

Periodic statistics are designed to yield a plot of observations as a func-
tion of time. This group of statistics affords a view of the system as it oper-
ates in time. Data are accumulated as in the previous two examples, except,
rather than sums of statistics, an individual data point graph of time versus
the value of the data points will be plotted. These plots will be produced for
all groups of periodic statistics. Some example plots for evaluations per-
formed on the HXDP and token ring networks are shown in Figure 15.23.

S u m m a r y

This chapter illustrated the usefulness of analytical and simulation model-
ing for studying a component of a local area network, in this case the con-
trol scan time for the queuing model and throughput for the simulation.
These models provide a fairly easy means to extract such information. They
have been applied to a variety of other LAN problems. The reader inter-
ested in more details of such modeling is directed to the references cited in
this chapter.

I Chapter 15

This Page Intentionally Left Blank

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

P. J. Fortier, ed. Database Systems Handbook (New York: McGraw-
Hill, 1997).

K. Trivedi, Probability and Statistics with Reliability, Queuing, and
Computer Science Applications (Englewood Cliffs, NJ: Prentice Hall,
1982).

A. D. Allen, Probabi&y, Statistics, and Queuing Theory with Computer
Science Applications, 2d ed. (New York: Academic Press, 1990).

A. Papoulis, Probability, Random Variables, and Stochastic Processes
(New York: McGraw-Hill, 1984).

R. E. Walpole, Probability and Statistics for Engineers and Scientists
(New York: Macmillan, 1978).

L. Kleinrock, Theory, vol.1 of Queuing Systems (New York: John
Wiley & Sons, 1975).

L. Kleinrock, Computer Applications, vol. 2 of Queuing Systems (New
York: John Wiley & Sons, 1975).

J. R. Jackson "Networks of Waiting Lines," Operations Research
(August 1957).

J. E Buzen, "Computational Algorithms for Closed Queuing Net-
works with Exponential Servers," Communications of the ACM (Sep-
tember 1973).

J. E Buzen and E J. Denning, "The Operational Analysis of Queuing
Network Models," ACM Computing Surveys (September 1978).

M. Reiser and S. S. Lavenberg, "Mean-Value Analysis of Closed Mul-
tichain Queuing Networks," Journal of the ACM (April 1980).

495

496 References

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[191

[20]

[21]

[22]

J. E Buzen, "Fundamental Operational Laws of Computer System
Performance," Acta Infarmatica 7 (1976).
S. S. Lavenberg, ed., Computer Performance Modeling Handbook
(New York: Academic Press, 1983).

A. Pritsker, The Gasp IV Simulation Language (New York: John Wiley
& Sons, 1974).

A. Schriber, Simulation Using GPSS (New York: John Wiley & Sons,
1974).

j. Krivait, Simscript II Programming Language (Englewood Cliffs, NJ"
Prentice Hall, 1969).

A. Pritsker et al., Slam II: Network Models for Decision Support (New
York: John Wiley & Sons, 1989).

K. Jensen, Coloured Petri Nets. Basic Concepts, Analysis Methods, and
Practical Use. Vol. 1, Basic Concepts. Monographs in Theoretical
Computer Science (Springer-Verlag, 1997).

K. Jensen, Coloured Petri Nets. Basic Concepts, Analysis Methods, and
Practical Use. Vol. 2, Analysis Methods. Monographs in Theoretical
Computer Science (Springer-Verlag, 1997).

K. Jensen, Coloured Petri Nets. Basic Concepts, Analysis Methods, and
Practical Use. Vol. 3, Practical Use. Monographs in Theroetical Com-
puter Science (Springer-Verlag, 1997).

G. Nutt. "A Case Study of Simulation as a Computer Design Tool,"
IEEE Computer (October 1978): 31-36.

M. Yuen, "Traffic Flow in a Distributed Loop Switching System," in
Proceedings of Symposium on Computer Communications Networks and
Teletraffic (Brooklyn, NY: Polytechnic Institute of Brooklyn, April 4-
6, 1972).

Additional reading

Abiteboul, S., R. Hull, and V. Vianu. Foundations of Databases. Reading,
MA: Addison-Wesley, 1995.

Balakrishnan, V. '~i Framework for Performance Evaluation of Parallel Dis-
crete Event Simulators." Master's thesis, University of Cincinnati, Cincin-
nati, OH, 1997.

References 497

Bancilhon, E, C. Delobel, and E Kanellakis. Building an Object-Oriented
Database System: The Story of 02. San Mateo, CA: Morgan Kaufmann,
1992.

Banks, J., and J. S. Carson. Discrete Event System Simulation. Englewood
Cliffs, NJ: Prentice Hall, 1984.

Banks, J., ed., J. Carson, B. Nelson, and D. Nicoles. Discrete Event System
Simulation. 3d ed. Englewood Cliffs, NJ: Prentice Hall, 2000.

Barquin, R., and H. Edelstein. Building, Using, and Managing the Data
Warehouse. Englewood Cliffs, NJ: Prentice Hall, 1997.

Bause, E, and E Kritzinger. Stochastic Petri Nets~An Introduction to the
Theory. Wiesbaden, Germany: Advanced Studies in Computer Science,
1996.

Berenson, H., E Bernstein, J. Gray, J. Melton, E. O'Neil, and E O'Neil. "A
Critique of ANSI Isolation Levels." In Proceedings ofACM SIGMOD Inter-
national Conference on Management of Data (1995).

Bernstein, E, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. New York: Addison-Wesley, 1987.

Bertino, E., and L. Martino. Object-Oriented Database Systems: Concepts and
Architectures. Reading, MA: Addison-Wesley, 1993.

Bhuyan, L., and X. Zhang. Multiprocessor Pe~Cormance Measurement and
Evaluation. IEEE Computer Society Press, 1995.

Blaha, M., and W. Premerlani. Object-Oriented Modeling and Design for
Database Applications. Englewood Cliffs, NJ: Prentice Hall, 1998.

Blau, R. "Performance Evaluation for Computer Image Synthesis Systems."
Ph.D. diss., Department of Computer Science, University of California,
Berkeley, 1992.

Bobrowski, S. Oracle 8 Architecture. Berkley, CA: Osborne/McGraw-Hill,
1998.

Bolch, G., S. Greiner, H. de Meer, and K. S. Trivedi. Queuing Networks and
Markov Chains. New York: John Wiley & Sons, 1998.

Boyse, J. W., and D. R. Warn. '~ Straightforward Model for Computer Per-
formance Prediction." ACM Computing Surveys (June 1975): 73-93.

Bowman, J., S. Emerson, and M. Darnovsky. The Practical SQL Handbook.
3rd ed. Reading, MA: Addison-Wesley, 1996.

I References

498 References

Brown, A., and M. Seltzer. "Operating System Benchmarking in the Wake
of Lmbench: A Case Study of the Performance of NetBSD on the Intel x86
Architecture." In Proceedings of the 1997ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems. Seattle, WA. (June 1997):
214-224.

Buzen, J. P. "Computational Algorithms for Closed Networks with Expo-
nential Servers." Communications oftheACM 16 (1978): 527-531.

Cattell, R., ed. The Object Database Standard: ODMG-93, Release 1.2. San
Mateo, CA: Morgan Kaufmann, 1996.

Celko, J. SQLfor Smarties. San Mateo, CA: Morgan Kaufmann, 1995.

• Instant SQL Programming. WROX Press, 1995.

Chamberlin, D. Understanding the New DB2, IDM's Object-Relational
Database System. San Mateo, CA: Morgan Kaufmann, 1996.

Chichester, E. Muhiprocessor pe~Cormance. West Sussex, England, and New
York: John Wiley & Sons, 1989.

Codd, E. E "A Relational Model of Data for Large Shared Data Banks." In
Readings in Database Systems. 2d ed. San Mateo, CA: Morgan Kaufmann,
1994.

~ . "Extending the Database Relational Model to Capture More
Meaning." ACM Transactions on Database Systems. (December 1979).

~ . The Relational Model for Database Management. Reading, MA:
Addison-Wesley, 1990.

Coronel, R. Database Systems Design, Implementation, and Management. 3d
ed. International Thompson Publishing, 1997.

Date, C. An Introduction to Database Systems. 5th ed. Reading, MA: Addi-
son-Wesley, 1990.

Date, C., and H. Darwin. A Guide to the SQL Standard. Reading, MA:
Addison-Wesley, 1993.

Delis, A., and N. Roussopoulos. "Performance Comparison of Three Mod-
ern DBMS Architectures." IEEE Transactions on Software Engineering 19
(February 1993): 120-138.

Eisenberg, A. A Brief Description of the SQL3 Data Model. Redwood City,
CA: Oracle Corporation, 1995.

Elmasri, R., and S. Navathe. Fundamentals of Database Systems. Menlo Park,
CA: Benjamin/Cummings, 1994.

References 499

Farber, D. J. "A Ring Network." Datamation (February 1975): 44-46.

Feverstein, S., and B. Pribyl. Oracle PL/SQL Programming. 2d ed. Sebasto-
pol, CA: O'Reilly and Associates, 1997.

Finkelstein, S., N. Mattos, I. Mumick, and H. Pirahesh. "Expressing Recur-
sire Queries in SQL." ISO WG3 Report X3H2-96-075 (March 1996).

Fishwick, E Simulation Model Design and Execution. Englewood Cliffs, NJ:
Prentice Hall, 1995.

Fortier, E J. Handbook of LAN Technology. 2d ed. New York: McGraw-Hill,
1991.

~ . "A Communications Environment for Real-Time Distributed
Control Systems." In Proceedings of ACM Northeast Regional Conference
(1984).

~ . Design and Analysis of Distributed Real-Time Systems. New York:
McGraw-Hill, 1986.

~ . Design of Distributed Operating Systems. New York: McGraw-Hill,
1986.

~ . Handbook of LAN Technology. New York: McGraw-Hill, 1989.

Fortier, E J., and E Turner. "A Simulation Program for Analysis of Distrib-
uted Database Processing Concept." Nineteenth Annual Simulation Sym-
posium (1986).

Gallagher, L. "Object SQL: Language Extentions for Object Data Manage-
ment." International Society for Mini, and Microcomputers CIKM-92
(1992).

German, R. Performance Analysis of Communication Systems: Modeling with
Non-Markovian Stochastic Petri Nets. New York: John Wiley & Sons, 2000.

Gray, J., and A. Reuter. Transaction Processing: Concepts and Techniques. San
Mateo, CA: Morgan Kaufmann, 1993.

Gross, D., and C. M. Harris. Fundamentals of Queuing Theory. 3d ed. Wiley
Series in Probability and Mathematical Statistics. New York: Wiley-Inter-
science, 1997.

Groth, R. Hands on SQL. Englewood Cliffs, NJ: Prentice Hall, 1997.

Haring, G., C. Lindemann, and M. Reiser, eds. Performance Evaluation:
Origins and Directions, Lecture Notes in Computer Science. Springer-Verlag,
2000.

I References

500 References

Hoover, S., and R. E Perry. Simulation~A Problem Solving Approach. Read-
ing, MA: Addison-Wesley, 1989.

Jain, R. The Art of Computer Systems Performance Analysis. New York: John
Wiley & Sons, 1991.

Kant, K. Introduction to Computer System Peueormance Evaluation. New
York: McGraw-Hill, 1992.

Karian, Z. Modern Statistical, Systems, and GPSS Simulation. 2d ed. Boca
Raton, FL: CRC Press, 1998.

Kim, W. "UniSQL/X Unified Relational and Object-Oriented Database
System." In Proceedings of the A CM-SIGMOD International Conference on
Management of Data. SIGMOD Record 23 (June 1994).

, ed. Modern Database Systems, The Object Model Interoperability and
Beyond. New York: ACM Press, 1994.

Kreutzer, W. System Simulation~Programming Styles and Languages. Read-
ing, MA: Addison-Wesley, 1986.

Kulkarni, K. "Object-Orientation and the SQL Standard." Journal of Com-
puter Standards and Interfaces 15 (1993).

Kulkarni, K., M. Carey, L. DeMichiel, N. Mattos, W. Hong, and M. Ubell.
"Introducing Reference Types and Cleaning up SQL3's Object Model."
ISO WG3 Report X3H2-95-456 (November 1995).

Law, A., and W. D. Kelton. Simulation Modeling and Analysis. New York:
McGraw-Hill, 1982.

~ . Simulation Modeling and Analysis. 3d ed. New York: McGraw-Hill
1999.

Lazowska, E. D., J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quantitative
System Performance. Englewood Cliffs, NJ" Prentice Hall, 1984.

Lilja, D. Measuring Computer Performance: A Practitioner's Guide. New
York: Cambridge University Press, 2000.

Lindemann, C. Performance Modeling with Deterministic and Stochastic Petri
Nets. New York: John Wiley & Sons, 1998.

Little, J. D. "A Proof of the Queuing Formula: L = I[W]." Operations
Research 9 (1961).

Marsan, M., G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-
eling with Generalized Stochastic Petri Nets. Wiley Series in Parallel Comput-
ing. New York: John Wiley & Sons, 1994.

References 501

Marti, J. Object-Oriented Modeling and Simulation with MODSIM III.
CACI Products Company, 1999.

Melton, J., and A. Simon. Understanding the New SQL: A Complete Guide.
San Mateo, CA: Morgan Kaufmann, 1992.

Melton, J., J. Baur, and K. Kulkarni. "Object ADTs (with Improvements
for Value ADTs)." ISO WG3 Report X3H2-91-083 (April 1991).

Melton, J., ed. ISO-ANSI Working Draft. Framework for SQL (SQL/
Framework). X3H2-98-518. American National Standards Institute, Tech-
nical Committee X3H2 Database (September 1998).

~ , ed. ISO-ANSI Working Draft. Database Language SQL~Part 2:
Foundation (SQL/Foundation). X3H2-98-519. American National Stan-
dards Institute, Technical Committee X3H2 Database (September 1998).

~ , ed. ISO-ANSI Working Draft. Call-Level Interface (SQL/CLI).
X3H2-98-515. American National Standards Institute, Technical Commit-
tee X3H2 Database (September 1998).

~ , ed. ISO-ANSI Working Draft. Persistent Stored Modules (SQL/
PSM). X3H2-98-520. American National Standards Institute, Technical
Committee X3H2 Database (September 1998).

~ , ed. ISO-ANSI Working Draft. SQL Host Language Bindings.
(SQL/Bindings). X3H2-98-521. American National Standards Institute,
Technical Committee X3H2 Database (September 1998).

~ , ed. ISO-ANSI Working Draft. SQL Global Transactions Interface
(SQL/Transaction). X3H2-98-529. American National Standards Institute,
Technical Committee X3H2 Database (September 1998).

~ , ed. ISO-ANSI Working Draft. SQL Temporal (SQL/Temporal).
X3H2-98-530. American National Standards Institute, Technical Commit-
tee X3H2 Database (September 1998).

, ed. ISO-ANSI Working Draft. SQL Object (SQL/MED). X3H2-
98-523. American National Standards Institute, Technical Committee
X3H2 Database (September 1998).

, ed. ISO-ANSI Working Draft. SQL Object Language Bindings
(SQL/OLB). X3H2-98-522. American National Standards Institute, Tech-
nical Committee X3H2 Database (September 1998).

, ed. ISO-ANSI Working Draft. SQL Multimedia (SQL/MM)
X3H2-98-535. American National Standards Institute, Technical Commit-
tee X3H2 Database (September 1998).

I References

502 References

, ed. Accomodating SQL3 and ODMG. X3H2-95-161. American
National Standards Institute, Technical Committee X3H2 Database (April
15, 1995).

Menasce, D., and V. Almeida. Capacity Planning for Web Pe~fiormance.
Englewood Cliffs, NJ: Prentice Hall, 1998.

• Capacity Planning for Web Services~Metrics, Models, and Methods.
Englewood Cliffs, NJ: Prentice Hall, 2001.

Nutt, G. "Operating Systems: A Modern Perspective." 2d ed. Lab Update.
Department of Computer Science, University of Colorado, 2002.

O'Neil, P. Database Principles--Programming and Performance. San Mateo,
CA: Morgan Kaufmann, 1995.

Payne, J. A. Introduction to Simulation. New York: McGraw-Hill, 1982.

Peterson, J. Petri Net Theory and the Modeling of Systems. Englewood Cliffs,
NJ: Prentice Hall, 1981.

Pooch, U. W., and J. A. Wall. Discrete Event Simulation~A Practical
Approach. Boca Raton, FL: CRC Press, 1993.

Pradhan, D. Fault-Tolerant Computer Systems Design. Englewood Cliffs, NJ:
Prentice Hall, 1996.

Pritsker, A., and J. O'Reilly. Simulation with Visual Slam andAwesim. New
York: John Wiley & Sons, 1999.

Ramakrishnan, R. Database Management Systems. New York: WCB/
McGraw-Hill, 1998.

Richey, J. "Condition Handling in SQL Persistent Stored Modules." SIG-
MOD Record 24 (September 1995).

Robertazzi, T. Computer Networks and Systems: Queuing Theory and
Performance Evaluation. Springer-Verlag, 1994.

Russell, E. C. "Building Simulation Models with SIMSCRIPT II.5." CACI
(1983).

Sahner, R., K. Trivedi, and A. Puliafito. Performance and Reliability Analysis
of Computer Systems. Boston: Kluwer Academic Publishers, 1996.

Schwartz, M. Computer Communication Network Design and Analysis.
Englewood Cliffs, NJ: Prentice Hall, 1977.

Sessions, R. Object Persistence: Beyond Object-Oriented Databases. Engle-
wood Cliffs, NJ: Prentice Hall, 1996.

References 503

Sheldon, R. A First Course in Probability. Englewood Cliffs, NJ: Prentice
Hall, 1998.

Silberschatz, A., E Galvin, and G. Gagne. Operating System Concepts. 6th
ed. New York: John Wiley & Sons, 2001.

Stallings, W. Operating Systems: Internals and Design Principles. 4th ed.
Englewood Cliffs, NJ: Prentice Hall, 2001.

Stone, H. S. Introduction to Computer Architecture. SRA, 1980.

Stonebraker, M., ed. Readings in Database Systems. 2d ed. San Mateo, CA:
Morgan Kaufmann, 1994.

Tanenbaum, A. Modern Operating Systems. 2d ed. Englewood Cliffs, NJ:
Prentice Hall, 2000.

Trivedi, K. Probability and Statistics with Reliability, Queuing, and Computer
Science Applications. 2d ed. New York: John Wiley & Sons, 2001.

Ullman, J., and J. Widom. A First Course in Database Systems. Englewood
Cliffs, NJ: Prentice Hall, 1997.

Wang, J. Timed Petri Nets, Theory and Application. Boston: Kluwer Aca-
demic Publishers, 1998.

Watson, H. J., and J. H. Blackstone. Computer Simulation. New York: John
Wiley & Sons, 1989.

Widom, J., and S. Ceri. Active Database Systems. San Mateo, CA: Morgan
Kaufmann, 1996.

Zeigler, B., H. Praehofer, and T. Kim. Theory of Modeling and Simulation:
Integrating Discrete Event and Continuous Complex Dynamic Systems. 2d ed.
New York: Academic Press, 2000.

I References

This Page Intentionally Left Blank

Index

Access control, 78, 80
ACID transactions, 98-100

atomic, 98
consistent, 98-99
durable, 99-100
guaranteeing, 101
illustrated, 99
independent, 99
See also Transactions

Addressing, 80
Analysis module, 486-93

criteria and simulation, 490-91
criteria establishment, 486-90
defined, 483
functional diagram, 491
simulated message flow graph, 491
statistical output, 492-93
See also LAN simulator

Analytical modeling, 202
examples, 448-63
flexibility and, 333
HXDP model, 448-54
process, 202
token bus distribution system, 455-63

Analytical modeling tools, 30-32
defined, 30
queuing analysis, 30-31

Architectures, 2-10, 39-106
building blocks, 41
central I/O controller, 60

central I/O controller architectures, 60
common bus, 10, 61
computer, 9-10, 59-62
computer system support software,

62-92
construction of, 5
CPU, 5-6, 42-49
dual bus, 10, 61-62
evolution of, 2-10
instruction, 6-7, 47
I/O, 7, 49-50
memory, 7
memory-mapped, 60-61
network, 8-9, 54-57
Neumann, 59
operating systems, 64-79
research, 23
secondary storage, 8, 50-54
summary, 105-7
system, 362-72

Archival storage devices, 53-54
Arithmetic logic unit (ALU), 4, 41

defined, 5, 42
operation status, 5
See also CPU

ARPANET, 2O
Asynchronous timing, 255
Authentication, 77
Authorization, 77
Availability, 341

505

506 Index

AWESIM models, 380-97
experimental results and, 396-97
LINUX 7.2, 380-83
Windows ME, 390-91
Windows NT, 391-96
Windows XP, 383-89
See also Operating systems simulation

AWESIM simulation toolkit, 380

Balance equations, 190-92, 220-21
flow, 220-21
for Markov chain, 357

Base addressing, 48
Bayes's theorem, 148
Benchmarks, 323

PC performance assessment, 376-78,
410-11

TPC-H, 433-34
types of, 323

Bernoulli process, 182-83
Bernoulli trials, 164, 165
Binominal distribution, 164-66
Birth-death process, 187-92

as continuous parameter discrete state
space, 187

defined, 187
example, 187
general case, 190
graphical representation, 191
M/M/I queuing system, 207
properties, 187-88
state transition diagram, 189
transition rate diagram, 191
See also Stochastic processes

Branching probabilities, 235
Bridges, 56-57

defined, 56-57
illustrated, 57
See also Network architecture; Networks

Bus-structured LCN, 465-66
Bus topology, 57-58

Busy time, 313
Buzen's algorithm, 347

Cache Manager, Windows NT, 368
Catalog manager, 93
CD-ROM drives, 41
Central moments, 132, 158-59
Central processing unit. See CPU
Central server model, 234-40

adaptation, 235
analysis, 345-50
defined, 234-35
exponential service time distributions, 235
illustrated, 234, 346
See also Computational methods

Chebyshev's Theorem, 161-63
Checkpoints, 488
Chi-square distribution, 232
Chi-square test, 231,232
Client/server policies, 81
Closed networks, 219-24

arbitrary, 222
state transition rate diagram, 221
three-stage, 219, 220
See also Queuing networks

CODASYL database language, 13
Colored Petri nets, 300-301

colored tokens, 300
defined, 300
See also Petri nets

Combinations, 144
Combined simulation modeling, 260-61
Common bus architecture, 10, 61
Communication lines, 468
Communications manager, 97
Compaction, 75-76
Complex instruction set computer (CISC), 7
Computational methods, 233-49

central server model, 234-40
mean value analysis, 234
operational analysis, 233

Index 507

types of, 233-34
See also Queuing networks

Computer architectures, 9-10, 59-62
analysis of, 345-60
central I/O controller, 60
common bus, 10, 61
defined, 9
dual bus, 10, 61-62
illustrated, 9
memory-mapped, 60-61
Neumann, 59
See also Architectures

Computer systems
architectures. See Architectures
building blocks, 4, 41
with communications subsystem, 56
defined, 2-3
design, 23-24
illustrated, 3
interconnection, 38
multiprocessor, 55-56
multiuser, 11
research, 23

Computer system support software
architecture, 62-92

database management system, 83-92
fault detection/recovery, 82-83
network control software, 79-82
operating systems, 64-79

Concurrency, 292
control manager, 95
Petri net modeling, 292

Conditional probability, 146-48
defined, 142
densities, 154, 155
space Venn diagram, 147
See also Probability

Confidence intervals, 230
defining, 230
percent, 231
for --~ance, 231

Configuration model, 447
Continuous random variables, 150
Continuous simulation modeling, 258-60
Control events, 479
Control unit, 42, 43
Cost, modeling, 334
Counting process, 180
CPU, 4, 62

ALU, 5
architectures, 5-6, 42-49
cycle of busy and idle, 350
cycles, 352
defined, 5, 41
interrupts, 50
memory access, 7, 40
processing capacity, 346
registers, 42-43, 63
scheduling, 384-86
service rate, 347
speed, 110
utilization, 375

Cyclic redundancy check (CRC), 474

Data
presentation, 328-30
qualitative, 38
quantitative, 38
simulation, 254

Database management systems, 83-92
database control language, 90-92
database definition language, 84-86
database manipulation language, 86-90
elements, 83
performance, 83
See also Operating systems architecture

Databases
control language, 90-92
defined, 84
definition language, 84-86
design language, 85-86
manipulation language, 86-90

I Index

508 Index

Database Services Address Space (DBAS),
421-22

BM, 423
components, 422
defined, 421
DM, 423
functionality, 423-24
RDS, 423
See also IBM DB2

Database systems, 10-15
catalog manager, 93
communications manager, 97
components, 92-105
concurrency control manager, 95
deadlock manager, 95-96
evolution of, 10-15
initial repositories, 10-11
integrity manager, 93-94
lock manager, 95
log manager, 97-103
network, 13-14
object-oriented, 15
operating system mismatch, 103-5
query processing support manager, 97
recovery manager, 96
relational, 14-15
security manager, 96
support architecture, 92
transaction manger, 94

Database systems performance analysis,
409-44

burn-in test, 412-13
burn-in test results, 412
cost/performance comparison,

443-44
IBM DB2, 421-27
indexing run, 435
Informix Dynamic Server, 417-21
introduction, 409
Microsoft SQL Server, 427-31
nonindexing run, 434-35

Oracle architectural structure, 413-17
PC performance assessment benchmark,

410-11
results, 436--44
results assessment, 410
running all queries together, 435-36
summary, 444
testbed architecture performance results,

411
testbed configuration, 410
testbed procedures, 436
testbed systems, 409-13
testbed testing, 431-36
testing preparation, 432-36
workloads, 432

Data control language, 90-92
Data extraction, 254

accounting software, 319-20
hardware monitors, 321-22
methods of, 319-22
software monitors, 320-21

Data manipulation language, 86-90
defined, 86
forms, 87-88
functional evaluation, 88-89
QBE, 88
visual, 86-87
See also Database management systems

Deadlock detection, 71-72
Deadlocked Petri nets, 294
Deadlock manager, 95-96
Design

experimental, 326-28
experimental, operating system, 378-80
flexibility, 306-7
fractional factorial, 327, 328
full factorial, 327, 328
simple, 327

Direct addressing, 47-48
Direct memory access (DMA) devices, 50
Discrete random variables, 149-50

Index 509

Discrete simulation models, 256-58
building, 258
defined, 256
descriptions, 257-58
entities/events definition, 257
triggering, 257
See also Simulation modeling

Disk management, Windows XP,
365

Distributed architectures.
See Network architectures

Distributed processing systems
checkpoints, 488
functional components, 487
information loss, 490
overhead time, 489
statistical output, 492-93
system time, 488-89
transfer time, 489
transmit time, 489
wait time, 489

Distributed processors, 19
Distributions

chi-square, 232
estimating, 227-33
exponential service time, 235
parameters, 230, 232
sample, 231
See also Probability distributions

Dual bus architecture, 10, 61

Effective processor power, 357
Efficiency, 340-41

defined, 340
measurement, 340
multiprocessor curve, 341

ENIAC computer system, 2
Erlang distribution, 176-77

defined, 176
See also Probability distributions

Evaluation parameters, 311-14

Events, 110-12
characteristics, 476
control, 479
defined, 110
hierarchy of relationships, 112
independence of, 147
interface unit, 477-78
LAN simulation, 476-79
nodal activity, 478-79
partial orderings, 111
processor, 477
utilization, 479
values, 112-13
See also Performance measures

Event timing, 256
Executable models, 29
Executive subsystems (NT), 367
Expectation, 155-63

for continuous random variable, 156
defined, 155
for discrete random variable, 155-56
for function of random variable, 156
nth moment, 158
See also Random variables

Expected delay, 240
Expected waiting time, 210
Experimental design, 326-28

fractional factorial, 327, 328
full factorial, 327, 328
simple, 327

Exponential distribution, 130, 173-76
defined, 173
illustrated, 175
Markovian property, 173, 181
random variable variance, 176
service, 207
See also Probability distributions

Fault detection/recovery, 82-83
File Allocation Table (FAT), 366, 371-72

defined, 371

I Index

5 I0 Index

File Allocation Table (FAT) (cont'd.)
FAT32, 371-72
VFAT, 371

File directories, 77
File management, 76-77

applications, 76
defined, 76
services, 77
See also Operating systems architecture

File systems
LINUX, 364
Windows ME, 371-72
Windows XP, 366

File transfer workload, 397-98
constant file size, 397
CPU use and memory utilization, 397, 398
experiment results, 403
observations, 397-98
See also Operating systems analysis

First-come first-served (FCFS), 133, 135
First-in first-out (FIFO), 31,206
Forking, 382
Functional evaluation, 88-89

Gamma function, 176
GASP IV, 262-66

basic model, 263
defined, 262
discrete event models, 262
entity representation, 262-63
example, 264-66
main FORTRAN program, 263
use/structure example, 262
See also Simulation languages

Gaussian distribution, 168-73
defined, 168
normal curve values, 172
variance, 170
See also Probability distributions

Generalized Petri nets, 301-2
defined, 301

illustrated, 300
See also Petri nets

General-Purpose Simulation System (GPSS),
266-69

code for back teller problem, 268
defined, 266
example, 266-69
model for bank teller problem, 268
modeling component blocks, 267
See also Simulation languages

Geometric distribution, 130
G/M/I queuing system, 219
Graphics, 329

Hardware
development costs, 306
management, 17-18
timers, 17

Hardware monitors, 114, 321-22
availability, 321
connection, 321-22
limitations, 322
simplicity, 321
See also Data extraction

Host processors, 467
Host software architecture, 309
HXDP model, 448-54

analytical modeling of bus, 451-54
average scan time effect, 452
defined, 448-49
graphic outputs, 452-54
introduction, 448-50
scan blocks, 449, 450
scan time vs. message size, 453-54
schedule mechanism, 449
symbols/definitions, 450
See also Analytical modeling

Hybrid monitoring, 115
Hybrid simulation modeling, 261
Hypothesis test, 227-28

defined, 227

Index 51 I

performing, 228
steps, 228

IBM DB2, 421-27
address spaces, 421-23
concurrency control, 426-27
cost/performance comparison, 443-44
Database Global Memory segment,

425-26
Database Manager Shared Memory,

424-25
DBAS, 421-22
DBAS functionality, 423-24
DDF, 422
defined, 421
IRLM, 422
join methods, 427
locking, 426-27
memory management, 424-26
query optimization, 426
results, 437
SPAS, 423
SSAS, 422
See also Database systems performance

analysis
Immediate addressing, 47
Independence, 117-18

of events, 147
probability and, 141

Index addressing, 48
Indirect addressing, 48
Information sharing, 11-12
Informix Dynamic Server, 417-21

advantages, 418
cost-based query optimizer, 420
cost/performance comparison, 443-44
data consistency, 419
defined, 417
dynamic scalable architecture (DSA),

417-18
isolation, 419

join methods, 419-20
locking, 418-19
memory handling, 420-21
optimizer directives, 420
Oracle vs., 441-42
recovery, 419
results, 437
SQL Server vs., 438, 440
thread stack, 421
See also Database systems performance

analysis
Input/output processor (IOP), 307

design, 307
functional architecture, 308
transport control implementation, 311

Instruction architectures, 6-7, 47
Instruction execution

cycle, 6, 43
sequence, 44

Instruction register, 44
Instructions

0-address, 45
1-address, 45-46
1-and- 1/2-address, 46
2-address, 46
2-and- 1/2-address, 46
3-address, 46-47
types of, 44-47

Instrumentation, 305
Integrity manager, 93-94

defined, 93
referential integrity check, 93-94
See also Database systems

Interface units
events, 477-78
LAN simulation modeling, 467-68
network (NIUs), 54
token bus distribution system, 459

Interrupts
management, 65-66
types of, 50

I Index

512 Index

Intervals, 115-16
I/O architectures, 7, 49-50
I/O Manager, Windows NT, 368

Jackson's theorem, 227
Jointly distributed random variables, 150

defined, 150
example, 150
variance, 161
See also Random variables

Kendall notation, 31,205-6
illustrated, 205
symbol definitions, 206
symbols, 206

Kolmogorov-Smirnov test, 233

LAN simulation modeling, 463-93
analysis criteria, 489-91
analysis module, 486-93
bus-structured LCN, 465-66
communication lines, 468
communication link routine, 481
components, 480
computer networks, 463-70
data collection routine, 481
data items, 481
evaluation metrics, 488
events, 476-79
host processors, 467
interconnection structures, 469-70
interface processing routine, 480-81
interface units, 467-68
model implementation, 482-86
network components, 466-67
next event simulation, 482
protocols, 471-74
queues, 467
simulation controller, 480
simulator model structure, 479-81
simulator overview, 481

system processor routine, 480
transmission error detection, 474-75
See also Local area networks (LANs)

LAN simulator
analysis module, 483, 486-93
arbitrator module, 483
arrival module, 483
components, 482-83
defined, 481
design, 481
entries, 485
interface module, 483
overview, 481
structure illustration, 483
topology module, 486
use module, 483, 484

Last-come first-served (LCFS), 133
Last-in first-out (LIFO), 31,206
LINUX, 362-65

file system, 364
kernel 2.4, 364-65
links, 363
MATLAB program workload for,

374-76
multitasking support, 363
paging, 364
Red Hat 7.2, 362-63
task structure and process table, 363
times and timers, 363-64
virtual memory, 364
See also System architectures

LINUX AWESIM model, 380-83
forking, 382
illustrated, 384-85
MATLAB, 382-83
process creation, 381-82
See also Operating systems simulation

Little's Law, 136, 347
Little's result, 210-11, 241

in mean value analysis, 242
operational analysis and, 246, 248

Index 513

Load leveling, 326
Local area networks (LANs), 21-22

defined, 21
evaluation metrics, 488
simulation modeling, 463-93
testbeds and, 34
use o f, 21-22
See also Networks

Lock manager, 95
Log manager, 97-103

defined, 97
transaction basics, 100-102
transaction formalization, 102-3
transaction management, 97-100
See also Database systems

Longitudinal redundancy check (LRC), 474

Magnetic storage devices, 52-53
Manchester II, 473
Marginal distribution, 152, 155
Markov chains

balance equations for, 357
communication system example,

199-200
definitions, 197-200
discrete time, 193
ergotic, 198, 199
stationary, 197, 298

Markov processes, 179, 192-200, 355
defined, 192
discrete-state, 193
mapping, 192
state transition diagram, 194
transition probabilities, 194, 195-96
transition probability matrix, 194
See also Processes

MATLAB program, 373
defined, 374
LINUX AWESIM model, 382-83
purpose, 374
workload for LINUX 7.2, 374-76

MATLAB workload, 400-402
CPU use and memory utilization, 400,

401,402
experiment results, 403
matrix operations for, 400
observations, 400-402
See also Operating systems analysis

Maximum likelihood estimation, 229, 230
Mean queue length

defined, 314
illustrated, 315

Mean response time
defined, 314
illustrated, 316

Mean service time
defined, 314
illustrated, 317

Mean value analysis, 241-43
defined, 234, 241
general algorithm, 241
Little's result in, 242
network for, 243
theorem, 241
See also Computational methods

Measurement(s), 107-26, 112-15
efficiency, 340
hardware monitoring, 114
hybrid monitoring, 115
intervals, 115-16
principles, 127-38
probability density, 130
probability distribution, 128-30
real system, 335
response time, 338
software monitoring, 114-15
special facilities, 306
summary, 138
types of, 113
See also Performance measures

Memory
access mechanism, 49

I Index

514 Index

Memory (cont'd.)
after garbage collection, 75
allocation, 71
allocation methods, 353
architectures, 7, 48-49
compaction, 75-76
deallocation, 74
fragmented, 74
hierarchy, 8, 51, 63, 64
main, 62
management, 72-76
map, 73
marking free blocks in, 75
modules, 353
with paging and segmentation, 76
private local, 55
Simms, 55
speed up for, 358
storage, 48, 50
utilization, 375
virtual, 364

Memory addressing schemes, 7, 47-48
base, 48
direct, 47-48
immediate, 47
index, 48
indirect, 48
two-operand addressing, 48
types of, 47

Memory management, 72-76
IBM DB2, 424-26
Windows ME, 369-70
Windows XP, 366-67

Memory-mapped architectures, 60-61
Message transmissions, 314, 469
Method of moments, 229-30
M/G/I queuing system, 218
Microsoft SQL Server, 427-31

cost/performance comparison, 443-44
defined, 427
dynamic memory allocation, 429-30

Informix vs., 438, 440
instances, 428
locking structure, 430-31
logical tablespace structures, 428
memory allocation/access, 429
memory configuration, 429
Oracle vs., 439, 440
results, 437
special features, 431
SQL, 431
system databases, 428
See also Database systems performance

analysis
Mission-oriented systems, 121
M/M/C queuing system, 215-18

defined, 215
illustrated, 215
loss system, 218
state transition diagram, 216
steady-state probabilities, 218
See also Queuing systems

M/M/I/K queuing system, 213-15
defined, 213
state diagram, 213
wait time distribution, 215
See also Queuing systems

M/M/I queuing system, 206-12
arrival rate, 211
birth-death process, 207
defined, 206
in isolation, 227

Little's result, 210-11
model, 206
state transition diagram, 209
steady-state equations, 206-8
See also Queuing systems

Modeling tools, 28, 30-36
analytical, 30-32
availability, 332-33
comparison criteria, 333-34
conducting experiments and, 336-37

Index 515

cost criteria, 334
evaluation, 342-43
operational analysis as, 35-36
performance metrics, 337-42
Petri nets, 331
selecting, 331-34
selection criteria, 331-34
simulation, 28-29, 32-33
testbeds as, 29, 33-34
time criteria, 332
types of, 331
validation of results, 334-36

Models, 25-26
analytical, 30
configuration, 447
constructing, 26-30
defined, 24
development process, 28
executable, 29
"faithful," 25
inputs, 26
methodology, 26, 27, 28
network, 203-4
Petri net, 282
process illustration, 25
queuing, 202, 203, 447
realizing, 24-25
requirements, 24
scheduling, 447
sensitivity, 28
simulation, 33, 256-61
success, 29-30
system abstraction, 26
validating, 29
verifying, 29
workloads, 322-26, 447
See also Performance evaluation

Modularity, 486
Moments, 158

central, 132, 158-59
nth, 158

Multibank shared memory model, 351
Multiple server computer system, 350-58

multibank shared memory model, 351
multiprocessor model, 350
properties, 354-58
shared memory model, 351

Multiprocessor systems
with central processor, 350
with N=2/M=2, 355
with N=2/M=4, 353
number of states, 354
Petri net model for, 359
See also Processors

Mutual exclusion, 294

Naming, 80
Network architectures, 8-9, 54-57

bridges, 56-57
interface elements, 54-56

Network component analysis, 445-93
analytical modeling examples, 448-63
introduction, 445--48
I_AN simulation modeling, 463-93
summary, 493

Network interface units (NIUs), 54
Network management software, 79-82

access control, 80
addressing, 80
client/server policies, 81
defined, 79
naming, 80
protection, 80-81
remote procedure call policies, 81-82
routing, 80

Network performance tests, 315-19
Networks, 19-22

ARPANET, 20
bus-structured LCN, 465-66
bus topology, 57-58
closed, 219-24
communication lines, 468

I Index

516 Index

Networks (cont'd.)
components, 466
composition, 464
database model, 13-14
defined, 19-20, 463
evolution of, 19-23
formation, 54
generalized distributed, 466
host processors, 467
interconnection structures, 464, 469-70
interface units, 467-68
IANs, 121-22
message transmissions, 469
queues, 467
ring topology, 58-59
size, 463-64
star topology, 59
topologies, 57-59
WANs, 22
wireless, 22

Network servers, 312
Network service time

defined, 314
illustrated, 318

Networks of queues, 219-27
closed networks, 219-24
computational methods, 233-39
open networks, 224-27
three-stage, 219, 220

Network throughput
defined, 314
illustrated, 318

Neumann architecture, 59
Next event simulation, 482
Nodal activity events, 478-79
Normal distribution, 130
NT file system (NTFS), 366
Null hypothesis, 227, 231,232

Object Manager, Windows NT, 367
Object-oriented database systems, 15

Object Query Language (OQL), 89
Open networks, 224-27

model, 225
steady-state probabilities, 226
throughput terms, 226
See also Queuing networks

Operating systems, 15-19
accomplishments, 118
architectures, 362-72
component analysis, 361-408
database system mismatch, 103-5
defined, 15
early, 16
evolution of, 15-19
experimental analysis, 397-407
experimental design and simulation,

376-97
hardware management, 17-18
interprocess communication mechanisms,

105
locking mechanism, 104
multiuser, 11
new concepts, 19
scheduling, 105
services, 17, 64-65
as software, 15-16
workloads, 372-76

Operating systems analysis, 397-407
conclusion, 402-4
file transfer workload, 397-98
intermediate data (workload 1), 407
intermediate data (workload 2), 405
intermediate data (workload 3), 406
MATLAB workload, 400-402
process creation workload, 399-400
tabular results, 404-7

Operating systems architecture, 64-79
file management, 76-77
interrupt management and semaphores,

65-67
memory management, 72-76

Index 517

peripheral device management, 78-79
process management, 67-72
protection, 77-78
resource management, 72

Operating systems simulation, 380-97
LINUX 7.2, 380-83
Windows ME, 390-91
Windows NT, 391-96
Windows XP, 383-89

Operating systems testing, 376-80
burn-in test, 378
burn-in test results, 379
configuration, 376
experimental design, 378-80
experimental design summary, 379-80
hardware specifications, 376
Passmark, 376-78
Passmark test results, 377-78
PC benchmark, 376-78
simulation, 380-97

Operational analysis, 35-36, 244-49
advantages, 245
basis, 244
defined, 35, 233
hardware/software monitors, 36
Little's result and, 246, 248
logic-sensing subsystem, 35
measurements/computations, 36
operational quantities, 245
operational theorem, 245
operational variables, 244
performance quantities, 246
See also Computational methods; Modeling

tools
Optical disk storage devices, 52-53
Oracle database system, 413-17

component execution, 413
concurrency control/locking, 416-17
cost/performance comparison, 443-44
data files, 413
DML locks, 417

Informix vs., 441-42
instance implementation, 414
multithreaded server option, 415
process and thread structure, 414
query optimization, 416
redo logs, 413, 414
results, 437
server processes, 415
SQL Server vs., 439, 440
system global area (SGA), 413
tasks, 413
transactions, 415
See also Database systems performance

analysis

Page table entries (PTEs), 366
Paging

LINUX, 364
Windows ME, 370

Performance
evaluation, 342-43
evaluation parameters, 311-14
network, tests, 315-19
scheduling algorithm relationship to,

135-37
variables, 327

Performance evaluation, 22-38
criteria, 36-38
methods, 24-36
need for, 22-23
role, in computer engineering, 23-24

Performance measures, 107-26
analysis questions, 122-23
case study, 124-25
events, 110-12
independence, 117-18
intervals, 115-16
missionability, 121
model development, 119-23
predictability, 121
problems, 119-23

I Index

518 Index

Performance measures (cont'd.)
productivity, 121
randomness, 118
responsiveness, 116-17, 121
sampling, 112-15
summary, 125-26
system-oriented, 107, 108
time, 109-10
use level, 121
user-oriented, 107
workloads, 119, 124

Performance metrics, 124, 337-42
availability, 341
cost vs. performance ratio, 342
criteria, 36-38
efficiency, 340-41
reliability, 341
response time, 337-38, 338-39
throughput, 338, 339-40
types of, 337-38
usefulness vs., 342
utilization, 338, 341--42

Peripheral device management, 78-79
defined, 78
device, 78, 79
file management integration, 79
I/O, 78, 79

Peripheral devices, 8, 50-54
Permutations, 143, 144
Petri nets (PNs), 279-303

allocated resource, 287
analysis, 358-60
arcs, 280
central server, 349
classical, 284-94
colored, 300-301
components, 280
component to test conditions, 290, 291,

292
deadlocked, 294
defined, 279

describing, 281
enabled transitions, 285
example illustration, 281
firing, 286
firing cycle, 285, 291
flexibility and, 333
generalized, 300, 301-2
graph, 281
indicating reachability/reversibility, 293
with inhibitor, 288, 291
introduction, 279
inverse, 283
k-place bounded, 294
marked, 284
model for multiprocessor system, 359
modeling concurrency, 292
modeling conflict, 291
modeling confusion, 293
models, 282
moving from state to state, 284
as multigraphs, 283
multipath arcs, 283
multiple disk example, 349
mutual exclusion, 294
new state, 286
notation, 279-84
perpetual motion example, 280
places, 280
places, marking of, 280
priority-based, 298-99
reachability graphs, 289-90
reachability set, 288-89
reachable state, 288
resource sharing, 287
state, 283
summary, 302-3
timed, 294-98
tokens, 280
tokens, placement of, 280
transitions, 280, 282

Pipelining, 317

Index 519

Poisson distribution, 166-68
arrival, 254-55
defined, 166
mean, 166
for time between arrivals, 312
variance, 167-68
See also Probability distributions

Poisson process, 184-86
defined, 184
fundamental properties, 186
memoryless property support, 186
modeling, 190
property processing, 184
See also Stochastic processes

Priority-based Petri nets, 298-99
defined, 298
illustrated, 298
timed and, 299
See also Petri nets

Probability, 139-77
axioms of, 146
combinations, 144
computing, 142-43
conditional, 142, 146-48
fundamental tenet of, 140
independence and, 141
measures, 143
permutations, 143, 144
state transition diagram, 356
state transition matrix, 193
theory, 139, 141,145
transition, 194, 195-96
value of, 140
weighting factors, 145

Probability densities, 130, 152-55
conditional, 154, 155
defined, 152
for discrete functions, 153
distributed, 154
Erlang, 176
exponential, 174

joint, 154
marginal, 155
Poisson, 166

Probability distributions, 128-30, 150-52
binominal, 164-66
continuous, 151
defined, 128
discrete, 151
Erlang, 176-77
example, 151, 163-77
exponential, 130, 173-76
Gaussian, 168-73
illustrated, 128
joint, 152
marginal, 152
Poisson, 166-68
for random selection, 143
representation, 150
uniform, 130, 163-64
variance, 129, 131, 159
See also Distributions

Process creation workload, 399-400
CPU use and memory utilization, 399, 400
experiment results, 402
observations, 399-400
response time, 399
See also Operating systems analysis

Processes
Bernoulli, 182-83
birth-death, 187-92
counting, 180
defined, 67
flow, 70
Markov, 179, 192-200
movement, 69
Poisson, 184-86
ready state, 68
running state, 69
scheduling, 70-71
states, 68-69
stochastic, 179-200

I Index

520 Index

Processes (cont'd.)
termination state, 69
waiting state, 69

Process management, 67-72
deadlock detection, 71-72
memory allocation service, 71
scheduling, 70-71
tasks, 67-68
See also Operating systems architecture

Process Manager, Windows NT, 368-69
Processors

distributed, 19
events, 477
host, 467
See also Multiprocessor systems

Product form, 236
Protection, 77-78

access control, 78
authentication, 77
authorization, 77
defined, 77, 80
Windows ME, 370

Protocols, 471-74
defined, 471
function performance, 471
functions, 471
implementation, 472
ISO standard, 472
See also Local area networks (LANs);

Networks
Prototype testbeds, 305,306

Query by example (QBE), 88
Query processing support manager, 97
Queue fall-through time, 317
Queues, 467, 487
Queuing

analysis, 30-31, 201
theory, 201-49
time, 136
waiting time, 210, 211

Queuing models, 202-4
advantages, 447
cascading, 203
cost/complexity, 447
design parameters, 447--48
deterministic, 447
for distributed database system, 274
jobs and, 203
network, 203-4
performance attributes, 448
premise, 202-3
single-server, 203
stochastic, 447
sub-models, 447

Queuing networks, 219-27
closed, 219-24
computational methods,

233-49
open, 224-27
three-stage, 219, 220

Queuing simulation modeling, 260
Queuing systems, 201-19

arrival rate, 204
G/M/I, 219
M/G/I, 218
M/M/C, 215-18
M/M/I, 206-12
MIMIIIK, 213-15
service rate parameter, 204

Randomness, 118
Random variables, 149-50

binominal, 165
continuous, 150
covariance of, 160
defined, 149
discrete, 149-50
expectation, 155-63
exponential, 176
jointly distributed, 150, 161
marginal distributions of, 152

Index 521

percentile of, 212
standard deviation, 159
uncorrelated, 160
variance, 159

Reachability graphs, 289-90
Reachability sets, 288-89

determining, 289
with initial marking, 289
null marking and, 288
See also Petri nets

Recovery manager, 96
Reduced instruction set computer (RISC),

6,47
Registers, 42-43, 63

defined, 42
illustrated, 43
instruction, 44
See also CPU

Relational database systems, 14-15
ACID properties, 14
defined, 14
See also Database systems

Relative frequency definition, 145
Reliability, 341
Remote procedure call policies,

81-82
Resources

in equilibrium, 135
management, 72
throughput, 136
utilization, 341

Response time, 116-17, 337-39
defined, 116, 338
load and, 338
measurements, 338
system load vs., 117
See also Performance measures

Reversibility, 293
Ring topology, 58-59
Round-robin scheduling, 133-34, 135
Routing, 80

Sampling theorem, 229
Saturated devices, 248
Scheduling, 70-71,105

CPU, 384-86
distributions and, 134-35
goal, 105
model, 447
multilevel timeslice, 71
process, 133
See also Process management

Scheduling algorithms, 133-37
FCFS, 133, 135
LCFS, 133
relationship to computer systems

performance, 135-37
round robin, 133-34, 135
SRTF, 134
value-driven, 134

Secondary storage
architectures and, 8, 50-54
archival devices, 53-54
magnetic devices, 52-53
optical devices, 52-53
peripheral devices and, 50-54
tape devices, 51-52

Security manager, 96
Semaphores, 66-67
Shared memory model, 351
Shortest remaining time first (SRTF),

134
Simscript, 269-70

bank teller pension code, 270
defined, 269
features, 269
simulation pieces, 269
See also Simulation languages

Simulation languages, 261-73
development, 261-62
early, 262
GASP IV, 262-66
GPSS, 266-69

I Index

522 Index

Simulation languages (cont'd.)
Simscript, 269-70
SLAM II, 27O-73

Simulation modeling, 256-61
combined, 260-61
continuous, 258-60
discrete, 256-58
hybrid, 261
queuing, 260

Simulation(s), 28-29, 32-33
analysis, 251-78
applications, 273-77
continuous, 258
data input/extraction and, 254
discrete, 32
drawbacks, 32
flexibility and, 333-34
LAN, 463-93
models, 33, 256-61
next event, 482
operating system test, 380-97
process, 253-55
programs, 253, 276-77
queue-based, 32
reasons for using, 251
summary, 278
systems and, 252-53
systems and modeling, 256-61
time control, 255-56
trace-driven data and, 255
uses, 252
See also Modeling tools

SIAM II, 270-73
advantages, 270-71
bank teller problem code, 273
bank teller problem network model, 272
defined, 270
FORTRAN coding, 271
network model code, 277
network model for assembly line problem,

274

network model for distributed database
system, 275-76

symbols/statements, 271-72
See also Simulation languages

Software monitors, 114-15, 320-21
code fragments, 320
drawbacks, 321
event design approach, 320
operating systems code access and, 321
system resource use, 321
See also Data extraction

Star topology, 59
State transition diagrams

birth-death process, 189
for closed system, 221
Markov process, 194
M/M/C queuing system, 216
M/M/I queuing system, 209
probability, 356

State transition timing graph, 296
Stochastic processes, 179-200, 205

Bernoulli, 182-83
continuous, 180
counting process, 180
defined, 179
discrete, 180
independent, 182
Markov, 179, 192-200
order of functions and, 180-81
Poisson, 184-86
representation, 179-80
stationary, illustrated, 183
stationary increment, 182
See also Processes

Structured Query Language (SQL), 84, 85,
89, 431

Synchronous timing, 255
System architectures, 362-72

LINUX, 362-65
Windows ME, 369-72
Windows NT, 367-69

Index 523

Windows XP, 365-67
See also Operating systems

System-oriented performance measures, 107,
108

Tape storage devices, 51-52
defined, 51
performance, 52
schematic diagram, 51
See also Secondary storage

Testbeds, 29, 33-34
components, 34
database performance analysis testing,

431-36
defined, 33
flexibility and, 333
general configuration, 308
ISO correspondence, 310
LANs and, 34
network models, 307
node architecture, 309
prototype, 305, 306
sequence of messages and, 311
special-purpose, 306
use decision, 34
workloads, 322-26
See also Modeling tools

Throughput
curves, 340
defined, 136, 339
degraded, under system load, 318
device, 239
input, 247
Little's result with, 222
network, 314, 318
as performance metric, 339-40
relative, 223
server, 247
system, maximum, 249

Time, 109-10
as quantity, 109

in real-world system, 109
See also Performance measures

Timed Petri nets, 294-98
with conflict, 296
defined, 295
illustrated, 295
with immediate transitions, 297
priority and, 299
state transition timing graph, 296
transitions, 295
See also Petri nets

Token bus distribution system, 455-63
analytical modeling of bus, 456-63
average scan time, 459, 462, 463
case I, 457-60
case II, 460-61
case III, 461-63
defined, 455
introduction, 455
logical sequence numbering, 461
mapping logical to physical locations, 462
message service time, 458
physical/logical numbering, 458
preliminary formulations, 455-56
symbols/definitions, 457
with three interface units, 459
time delay, 458
total scan time, 462
See also Analytical modeling

Total probability theorem, 148
TPC-H benchmark, 433-34
Tradeoff analysis, 202, 332
Transaction manager, 94, 97-98
Transaction processing, response partitioning,

339
Transaction Processing Consortium (TPC),

323
benchmarks, 323, 326
workloads, 323

Transactions, 97-103
ACID, 98-100

I Index

524 Index

Transactions (cont'd.)
basics, 100-102
defined, 100
elements, 137-38
execution of, 98
formalizing, 102-3
generating, 101
modeled, 102
processing, 103

Transition probabilities, 195-96
for communications system, 196
matrix, 194, 197
stationary, 195

Transition rate diagram, 191
Transitions, 282

defined, 280
enabled, 301
firing of, 301
immediate, 297
timed Petri net, 295
See also Petri nets (PNs)

Transmission error detection, 474-75
Triggers, 257

comparative, 259
self, 259

Two-operand addressing, 48

Unibus architecture, 61
Uniform distribution, 130, 163-64

defined, 163
illustrated, 164
mean, 163
standard deviation, 164
See also Probability distributions

User-oriented performance measures, 107
Utilization, 238, 248

CPU, calculation, 375
curve, 316
defined, 314, 341
events, 479
illustrated, 316

memory, calculation, 375
ratios, 249
relative, 248
stretch factor compared with, 339

Validation, 29
information, obtaining, 335-36
of results, 334-36

Value-driven algorithm, 134
Variance, 129, 131

central moment, 132, 158
confidence intervals, 231
exponential distribution, 176
Gaussian distribution, 170
jointly distributed random variables, 161
Poisson distribution, 167-68
properties, 160
sample, 228-29

Verification, 29
Very large scale integration (VLSI) devices,

112
Virtual Memory Manager (VMM)

Windows 98, 369-70
Windows NT, 367-68
Windows XP, 366

Wait time, 241
distribution, 241
expected, 210
mean, 241
for message packet, 313

Weighting factors, 145
Windows ME, 369-72

clusters, 371
FAT, 371
FAT32, 371-72
file system, 371-72
mapped file I/O, 370
memory management, 369-70
paging, 370
protection, 370

Index 525

VFAT, 371
workload programs, 374-76
See also System architectures

Windows ME AWESIM model, 390-91
high-level, 390-91
high-level illustration, 390
illustrated, 392
See also Operating systems simulation

Windows NT, 367-69
Cache Manager, 368
dispatcher, 369
Executive subsystem, 367
I/O Manager, 368
kernel, 369
Object Manager, 367
Oracle process/thread structure, 414
Process Manager, 368-69
Virtual Memory Manager, 367-68
workload programs, 374
See also System architectures

Windows NT AWESIM model, 391-96
attributes, 391-93
development, 391
illustrated, 393-94
network model, 394-96
process creation, 394-95
See also Operating systems simulation

Windows XP, 365-67
basic storage, 365
CPU scheduling, 384-86
disk management, 365
dynamic storage, 365
file systems, 366
memory management, 366-67
workload programs, 374-76
See also System architectures

Windows XP AWESIM model, 383-89
assumptions, 386
CPU scheduling, 384-86
high-level model, 386
high-level model illustration, 387
illustrated, 389
modeling, 383
results, 388
working details, 386-88
See also Operating systems simulation

Workloads, 119, 124, 137-38, 372-76
computation, 372
defined, 322
description, 372-76
development, 137
file transfer, 397-98
importance, 372
MATLAB, 400-402
model, 322-26, 447
process creation, 399-400
processes, 372
programs, 373-76
testbed, 322-26
TPC, 323
transactional units, 137

I Index

This Page Intentionally Left Blank

