
Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

1

Software Engineering - I

An Introduction to Software Construction Techniques for Industrial
Strength Software

Chapter 7 – Object Oriented Analysis and Design

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

2

1. Object Oriented Design - Why?
Software is primarily used to represent real-life players and processes inside a computer. In the
past, software was considered as a collection of information and procedures to transform that
information from input to the output format. There was no explicit relationship between the
information and the processes which operate on that information. The mapping between
software components and their corresponding real-life objects and processes was hidden in the
implementation details. There was no mechanism for sharing information and procedures among
the objects which have similar properties. There was a need for a technology which could bridge
the gap between the real-life objects and their counter-parts in a computer. Object oriented
technology evolved to bridge the gap. Object-oriented technology helps in software modeling of
real-life objects in a direct and explicit fashion, by encapsulating data and processes related to a
real-life object or process in a single software entity. It also provides a mechanism so that the
object can inherit properties from their ancestors, just like real-life objects.

A complex system that works is invariably found to have evolved from a simple system that
worked. The structure of a system also plays a very important role. It is likely that we
understand only those systems which have hierarchical structure and where intra-component
linkages are generally stronger than inter component linkages. That leads to loose coupling, high
cohesion and ultimately more maintainability which are the basic design considerations. Instead
of being a collection of loosely bound data structures and functions, an object-oriented software
system consists of objects which are, generally, hierarchical, highly cohesive, and loosely coupled.

Some of the key advantages which make the object-oriented technology significantly attractive
than other technologies include:

� Clarity and understandability of the system, as object-oriented approach is closer to the
working of human cognition.

� Reusability of code resulting from low inter-dependence among objects, and provision of
generalization and specialization through inheritance.

� Reduced effort in maintenance and enhancement, resulting from inheritance,
encapsulation, low coupling, and high cohesion.

1.1. Difference between object-oriented and function-oriented design

Before talking about how to derive and object-oriented design, we first need to understand the
basic difference between object-oriented and function oriented (or action oriented) approach.

In the case of action-oriented approach, data is decomposed according to functionality
requirements. That is, decomposition revolves around function. In the OO approach,
decomposition of a problem revolves around data. Action-oriented paradigm focuses only on the
functionality of a system and typically ignores the data until it is required. Object-oriented
paradigm focuses both on the functionality and the data at the same time. The basic difference
between these two is decentralized control mechanism versus centralized control mechanism
respectively. Decentralization gives OO the ability to handle essential complexity better than
action-oriented approach.

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

3

This difference is elaborated with the help of the following diagram:

Functions

Data

In this diagram, the ovals depict the function while rectangles/squares depict data. Since a
function contains dynamic information while data contains only static information, if the function
and data are managed separately, the required data components can be found by scanning a
function but the functions that use a particular data cannot be found by just looking at the data.
That is, the function knows about the data it needs to use but the data do not know about the
functions using it. That means, it is easy to make a change in a function since we would know
which data components would be affected by this change. On the other hand, changing a data
structure would be difficult because it would not be easy to find all the functions that are using
this data and hence also need to be modified.

In the case of OO design since data and function are put together in one class, hence, in case of a
change, the effected components can be identified easily and the effect of change is localized.
Therefore, maintenance becomes relatively easy as compared to function-oriented approach.

2. Object Oriented Design Components - What?

2.1. The Object and the Class
The basic unit of object oriented design is an object. An object can be defined as a tangible entity
that exhibits some well defined behavior. An object represents an individual, identifiable item,
unit, or entity, either real or abstract, with a well defined role in the problem domain. An object
has state, behavior, and identity.

The state of an object encompasses all of the properties of the object and their current values. A
property is an inherent or distinctive characteristic. Properties are usually static. All properties
have some value. The state of an object is encapsulated within the object.

Behavior is how an object acts and reacts in terms of its state changes and message passing. The
behavior of an object is completely defined by its actions. A message is some action that one
object performs upon another in order to elicit a reaction. The operations that clients may
perform upon an object are called methods.

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

4

The structure and behavior of similar objects are defined in their common class. A class
represents an abstraction - the essence or the template of an object. A class specifies an interface (
the outside view - the public part) and defines an implementation (the inside view - the private
part). The interface primarily consists of the declaration of all the operations applicable to
instances of this class. The implementation of a class primarily consists of the implementation of
all the operations defined in the interface of the class

2.2. Classification
The most important and critical stage in the OOA and OOD is the appropriate classification of
objects into groups and classes. Proper classification requires looking at the problem from
different angles and with an open mind. When looked at from different perspectives and
analyzed with different set of characteristics, same object can be classified into different
categories. Let us try to understand this with the help of an example.

Here, we can take a data-driven, behaviour driven, or responsibility driven perspective and will
categorize the horse accordingly.

2.3. The Object Model
The elements of object oriented design collectively are called the Object Model. The object model
encompasses the principles of abstraction, encapsulation, and hierarchy or inheritance.

Abstraction is an extremely powerful technique for dealing with complexity. Unable to master
the entirety of a complex object, we ignore its essential details, dealing instead with generalized,
idealized model of the object. An abstraction focuses on the outside view of an object, and hence
serves to separate an objects external behavior from its implementation. Deciding upon the right
set of abstractions for a given domain is the central problem in object oriented design.

Abstraction and encapsulation are complementary concepts. Abstraction provides the outside
view to the client and encapsulation prevents clients from seeing its inside view. For abstraction
to work, implementation must be encapsulated. Encapsulation hides the details of the
implementation of an object. Intelligent encapsulation localizes design decisions that are likely to
change. The ability to change the representation of an object without disturbing any of its clients
is the essential benefit of encapsulation.

Data-Driven
head, tail, body, leg

Behavior-Driven
walk, run, eat

Responsibility-Driven
carry things, communicate,
maintain its living system

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

5

2.3.1. Relationship Among Objects
The object model presents a static view of the system and illustrates how different objects
collaborate with one another through patterns of interaction. Inheritance, association and
aggregation are the three inter-object relationships specified by the object model.

Inheritance defines a “kind of” hierarchy among classes. By inheritance, we specify
generalization/specialization relationship among objects. In this relationship, a class (called the
subclass) shares the structure and behavior defined in another class (called the superclass). A
subclass augments or redefines the existing structure and behavior of its superclass. By
classifying objects into groups of related abstractions, we come to explicitly distinguish the
common and distinct properties of different objects, which further help us to master their
inherent complexity. Identifying the hierarchy within a complex system requires the discovery of
patterns among many objects.

In an association relationship, when object A “uses” object B, then A may send messages to B.
The relationship defines visibility among objects.

The aggregation relationship defines part-of structure among objects. When object A is part of the
state of object B, A is said to be contained by B. There are some tradeoffs between aggregation
and association relationships. Aggregation reduces the number of objects that must be visible at
the level of enclosing objects and may lead to undesirable tighter coupling among objects.

2.3.2. Aggregation and Association - Conceptual and Implementation Issues and
Differences

2.3.2.1. Association and Aggregation - Some basic differences
Objects do not exist in isolation. They rather collaborate with one another in many different ways
to achieve an overall goal. The different types of relationships in which these objects are involved
include association, aggregation, and inheritance. Briefly, inheritance denotes a “kind of”
relationship, aggregation denotes a “part of” relationship, and association denotes some semantic
connection among otherwise unrelated classes. Any further elaboration on inheritance
relationship is beyond the scope of this discussion and therefore we shall concentrate on
agrregation and association relationships only.

As mentioned earlier, aggregation is the “part-whole” or “a-part-of” relationship in which objects
representing the components of something are encapsulated within an object representing the
entire assembly. In other words, the whole is meaningless without its parts and the part cannot
exist without its container or assembly. Some properties of the assembly propagate to the
components as well, possibly with some local modifications. Unless there are common properties
of components that can be attached to the assembly as a whole, there is little point in using
aggregation. Therefore, as compared to association, aggregation implies a tighter coupling
between the two objects which are involved in this relationship. Therefore, one way to
differentiate between aggregation and association is that if the two objects are tightly coupled,
that is, if they cannot exist independently, it is an aggregation, and if they are usually considered
as independent, it is an association.

2.3.2.2. Object Creation and Life Time
From the object creation and life time point of view, when an object is instantiated, all of its parts
must also be instantiated at the same time before any useful work can be done and all of its part
die with it. While in the case of association, the life time of two associated object is independent

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

6

of one another. The only limitation is that an object must be alive or has to be instantiated before
a message can be sent to it.

2.3.2.3. Coupling and Linkages
As mentioned earlier, aggregation implies a much tighter coupling than association. In case of
aggregation, the links between the whole and its part are permanent while in case of association
the links may be maintained only just for the period an object requires the services of its
associated object and may be disconnected afterwards.

2.3.2.4. Ownership and visibility
Another way of differentiating among the two is to look at them from the ownership and sharing
point of view. In case of aggregation, since the whole contains the part, the part is encapsulated
or hidden within the whole and is not accessible from outside while in case of association, the
associated object may be used directly by other objects also. That is, in case of aggregation, only
the whole is supposed to send a message to its parts while in case of association, anyone who
holds a reference to it can communicate with it directly. In other words, in case of aggregation,
the whole owns its parts and the part becomes a private property of the whole. For all practical
purposes, any other object does not even need to know about its existence. On the other hand, an
associated object may be shared among many different objects. That is, many different object may
hold reference to the same object simultaneously.

2.3.2.5. Database persistence
From a database perspective, when an object is persisted or stored in the database, all of its
components (all parts of the whole) must also be persisted in their entirety along with the
“whole” for future reference while only a reference to the associated object may be stored in the
database. Note that a normalized database would also enforce the above restriction.

3. Object Oriented Analysis
The intent of OOA is to define all classes, their relationships, and their behavior. A number of
tasks must occur:
1) Static Model

a) Identify classes (i.e. attributes and methods are defined)
b) Specify class hierarchy
c) Identify object-to-object relationships
d) Model the object behavior

2) Dynamic Model
a) Scenario Diagrams

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

7

4. Object Oriented Design
OOD transforms the analysis model into design model that serves as a blueprint for software
construction. OOD results in a design that achieves a number of different levels of modularity.
The four layers of the OO design pyramid are:

1) The subsystem layer. Contains a representation of each of the subsystems that enable the

software to achieve its customers defined requirements and to implement the technical
infrastructure that supports customer requirements.

2) The class and object layer. Contains the class hierarchies that enable the system to be created
using generalization and increasingly more targeted specializations. The layer also contains
design representations for each object.

3) The message layer. Contains the details that enable each object to communicate with its
collaborators. This layer establishes the external and internal interfaces for the system.

4) The responsibility layer. Contains the data structures and algorithmic design for all
attributes and operations for each object.

Analysis Model

Classes

attributes

methods

relationships

behavior

Design Model

Objects

data structures

algorithms

messaging

control

Translating the analysis model into a design model during object design

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

8

5. Object-Oriented Analysis using Abbot’s Textual Analysis
The first object-orientation technique that we will study is one of the oldest techniques to identify
objects and their relationships. This technique is called Textual Analysis. It was initially developed
by Abbot and then extended by Graham and others. In this technique different parts of speech
are identified within the text of the specification and these parts are modeled using different
components. The following table shows this scheme.

Part of speech Model component Example
proper noun
improper noun
doing verb
being verb
having verb
adjective
adjective phrase

instance
class/type/role
operation
classification
composition
attribute value or class
association
operation

Mehdi Hassan
student, teacher
buy
is a horse, is a book
fan has wings
this ball is green
the customer with children
the customer who bought the kite

Once all the model components have been identified, we will eliminate the redundant or
irrelevant components by again analyzing the text and the context of the problem.
Let’s now try to understand this with the help of an example:

Problem Statement:
A simple cash register has a display, an electronic wire with a plug, and a numeric keypad, which
has keys for subtotal, tax, and total. This cash storage device has a total key, which triggers the
release on the drawer. The numeric buttons simply place a number on the display screen, the
subtotal displays the current total, the tax key computes the tax, and the total key adds the
subtotal to the tax.

Our task now is to:

� Identify all the classes in this problem statement.
� Eliminate the unnecessary classes.

We are now going to use nouns to find classes.

Nouns (initial)

Register Display Wire
Plug Keypad Keys
Devices Release Drawer
Buttons Screen Number
Total Tax

Nouns (General Knowledge)

0-9 keys Money Subtotal Key
Tax Key Total Key

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

9

Eliminating Irrelevant/Redundant Nouns

We now analyze the identified nouns and try to establish whether they would be stand-alone
classes in our domain or not. Outcome of this analysis is shown below.

Register
Display
Wire � Irrelevant
Plug � Irrelevant
Keypad
Keys
Devices � Vague
Release � Irrelevant
Drawer
Buttons � Redundant
Screen � Redundant
Number � Attribute
Total � Attribute
Tax � Attribute
0-9 Key
Value � Attribute
Money
Subtotal Key
Tax Key
Total Key

We will continue with technique to identify all the constituent components of the model and
derive our object-oriented design.

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

10

6. The Notation
Many different notations are used for documenting the object oriented design. Most popular of
these include, Rumbaugh, Booch, and Coad, and UML(Unified Modeling Language). We will be
using UML to document our design. Although the notation is very comprehensive and detailed,
but the key features of this notation are presented in the following diagram.

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

11

7. Derivation of the Object Model – The Coad Methodology
An object model of a system captures the static structure of a system by showing the objects in
the systems, their relationships, their attributes, and their services. To stream line the derivation
of the object model, Peter Coad has divided the process into 5 activities, each being further
subdivided into a number of steps. Following is the description of these activities.

7.1. Select Objects – who am I?
We have used an approach that divides the objects into different categories to make it easier to
find them and establish their attributes, services, and collaborations. This activity, consisting of 6
steps, can help you find objects and categorize them. These steps are:

7.1.1. Select actors
Actors are people and organizations that take part in the system under consideration. Examples
of actors are: person, organization (agency, company, corporation, foundation). Note that we are
talking about actors and not their “roles”. e.g. a customer is a role that a person plays, so if we
have a customer in our problem domain, we will also add a person as actor in the model.

7.1.2. Select Participants
A participant is a role that each actor plays in the system under consideration. Examples of
participants are: agent, applicant, buyer, cashier, clerk, customer, dealer, distributor, donor,
employee, investor, member, officer, owner, policy holder, recipient, student, supervisor,
supplier, teacher, worker. It may be noted that the same person may play different roles at
different times in the system. That means that if we model this behavior using Generalization-
Specialization instead of Actor-Participant, we may end up with multiple inheritance.

7.1.3. Select Places
Places are where things come to rest or places that contain other objects. Examples of places are:
airport, assembly-line, bank, city, clinic, country, depot, garage, hanger, hospital, plant, region,
sales outlet, service center, shelf, station, store, warehouse, zone.

7.1.4. Select Transactions
Transactions are the “events” that must be remembered through time. These are entries that must
be maintained in a historical record or log which may be used to answer questions or perform
assessments. These transactions usually come from a window (GUI), some object which monitors
for significant event and logs that information, or a another system that interacts with the system
under consideration and logs some information. Examples of transactions are: agreement,
assignment, authorization, contract, delivery, deposit, incident, inquiry, order, payment, problem
report, purchase, refund, registration, rental, reservation, sale, shift, shipment, subscription,
withdrawal. Note that nearly all transactions consist of a number of transaction line items.

7.1.5. Select Container Objects
Containers are objects that hold other objects. Note the similarity of definition between container
and places. The difference is that a place is a place in the literal sense while a container is a any
object that can hold other objects, e.g. bin, box, cabinet, folder, locker, safe, shelf, etc. Therefore a
place is also a container but every container need not be a place.

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

12

7.1.6. Select Tangible things
Take a “walk” through the system and select “tangible” things around you used in the problem
domain. These may be characterized as all the remaining (not yet selected) “nouns” that make up
the problem domain. Examples are: account, book, calendar, cash box, cash drawer, item, plan,
procedure, product, schedule, skill, tool, etc.

While selecting objects, the following considerations should be kept in mind for a simpler (and
better) object model.

1. Every object that you put in your object model should have some responsibility or role to

play in the problem domain. You need to know each object, its attributes, and services. If
there is no way to know about the object, remove it from the object model.

2. Avoid having controller objects because controllers usually end up with functionality that’s
better done by other objects themselves, making the message passing more complicated, and
resulting in higher coupling. Use delegation instead. Note the difference between controlling
and delegation; a controller wants to do every thing by himself (doesn’t trust anyone), while
a good manager delegates responsibility (and takes credit).

3. In large systems several objects are likely to have similar or even identical responsibilities.
Look for such objects and seek a common name to simplify the object model.

4. Use meaningful class names, names that describe objects in that class. Try to use names from
the domain vocabulary to avoid confusion.

7.2. Identify Structures
A structure is a manner of organization which expresses a semantically strong organization
within the problem domain. There are two type of structures: Generalization-Specialization (Gen-
Spec) and whole-part. This activity covers the identification of these structures in the following 2
steps:

7.2.1. Identify Gen-Spec Structures (Hierarchy)
Consider each class that you have identified as a specialization and then look for its
generalization and vice versa.

7.2.2. Identify Whole-Part structures (Aggregations) - What are my components?
For each object that you have identified, consider it as a whole and then try to find out its parts -
objects that make up this object.

7.3. Define Attributes - What I Know?
The first two activities would identify most of the objects (classes) in the problem domain. Now is
the time to think about the role and responsibilities of these objects. The first thing to consider is
their attributes, i.e., what it knows.

For each object include the attributes that come to mind when you first think about the object.
The criteria for the inclusion of an attribute is that it should be included if the system needs to
know its value and it cannot get it any other way. Don not add an attribute for an association or
aggregation. Examples of attributes are: number, name, address, date, time, operational state,
phone, status, threshold, type, etc. In particular, consider the following attributes for different
types of objects.

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

13

1. For actors consider name, address, phone.
2. for participants consider number, date and time, password, authorization level.
3. for place/location consider number, name, address (perhaps latitude, longitude, altitude).
4. for transaction consider number, date, time, status.
5. for line item consider quantity, status.
6. for item consider name, description, dimension, size, UPC, weight.

Like object selection, there are a number of issues that every designer must be aware of while
defining attributes of an object. These are:

1. An attribute that varies over time, e.g., price of an item, should be replaced by an additional

class with an effective date and value.
2. An attribute that may have a number of values should be replaced by a new class and an

object connection.
3. Replace “yes/no” type attributes with “status” type attributes for flexibility.
4. If there are classes with common attributes and generalization-specialization makes good

sense, then add a generalization class and factor out the commonality.

7.4. Show Collaborations (associations and aggregations) - Who I know?
The second step in establishing each object’s responsibility is to identify and show how this object
collaborates with other objects, i.e., who it knows. These collaborations can be identified with the
help of the following 8 steps:

1. For an actor, include an object connect to its participants (association).
2. For a participant, include an object connection to its actor (already established) and its

transactions (association).
3. For a location, include object connections to objects that it can hold (association), to its part

objects (aggregation), and to the transactions that are taking place at that location
(association).

4. For transactions, include object connections to its participants (already established), its line
items (aggregation), and its immediate subsequent transaction (aggregation).

5. For a transaction line item, include object connections to its transaction (already established),
its item (association), a companion “item description” object (association), and a subsequent
line item (association).

6. For an item, include object connections to transaction line item (already established), a
companion “item description” object (association).

7. For a composite object, include object connections to its “part” object (aggregation).
8. For all objects (including all of the above) select connecting objects to which the object under

consideration sends a message (within one or more scenarios) to get some information or to
answer a query about objects directly related to it (association).

7.5. Define Services - What I do?
The third and last step in establishing each object’s responsibility is to define what services does
each object in the problem domain provide, i.e., what it does. Putting the right service with the
right object is also very important since any mistake in judgment will increase coupling and
reduce cohesion. The verbs in your problem domain usually indicate some of the services
required of the associated object.

Software objects do things that the system is responsible to do with regard to that object. By
putting the services with the attributes they work on results in lower coupling and stronger

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

14

cohesion, and increased likelihood of reuse. The basic principle is to keep data and action
together for lower coupling and better cohesion. The basic services, done by all (such as get, set,
create, initialize), are not shown in the object model. While establishing the services for an object,
the following fundamental questions should be asked:

1. Why does the system need this object any way?
2. What useful questions can it answer?
3. What useful action can it perform?
4. What this object can do, based upon what it knows?
5. What this object can do, based upon whom it knows?
6. What calculations can it do?
7. What ongoing monitoring could it do?
8. What calculations across a collection could it make (letting each worker do its part)?
9. What selections across a collection could it make (letting each worker do its part)?

While establishing services of certain specific types of objects, the following should be
considered:

1. For an actor, consider: calculate for me, rate me, is <value>, rank participants, calculate over

participants.
2. For a participant, consider: calculate for me, rate me, is <value>, rank transactions, calculate

over transactions.
3. For a place, consider: calculate for me, rate me, is <value>, rank transactions, calculate over

contents, calculate over container line items.
4. For a Transaction, consider: calculate for me, rate me, is <value>, how many, how much,

rank transaction line items, rank subsequent transactions, calculate over transaction line
items, calculate over subsequent transactions.

5. For a line item, consider: calculate for me, rate me.
6. For an item, consider: calculate for me, rate me, is <value>, how many, how much, rank,

calculate over specific items.

8. CASE STUDY: Connie’s Convenience Store - A point of Sale System

8.1. The System

8.1.1. Identify the purpose of the system
� develop an overall purpose statement in 25 words or less. Why this system? Why

now?
� Keep the overall goal, the critical success factor, always before you.
� “To support, to help, to facilitate, ...”

8.1.1.1. Connie’s Wish List
� scan items and automatically price them
� know whether an item is on sale
� automatically total the sale and calculate tax
� handle purcahses and returns
� handle payments with cash, check, or charge
� authorize checks and cards
� calculate change when working with cash or checks
� record all of the information about a customer transaction

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

15

� balance the cash in the drawer with the amount recorded by the point-of-sale system.

8.1.1.2. Why ?
� speed up checkout time
� reduce the number of pricing errors
� reduce the labour required to ticket the item with a price, originally and when prices

change.

8.1.1.3. Summary
to help each cashier work more effectively during checkout, to keep good records of each sale, and to
store more efficient store operations.

8.1.2. Identify system features
Be certain to include features that cover the following

1. log important information
2. conduct business
3. analyze business results
4. interact with other systems

8.1.2.1. Identify features for logging important information
� to maintain prices based upon UPC
� to maintain tax categories (categories, rates, and effective dates)
� to maintain the authorized cashiers
� to maintain what items we sell in a store
� to log the results of each sale in a store

8.1.2.2. Identify features for conducting business
� to price each item, based upon its UPC
� to subtotal, calculate tax, and total
� to accept payment by cash, check, or charge

8.1.2.3. Identify features for analyzing business results
� to count how many of each item sold
� to count how much we received in cash, check, or credit card sales
� to assess how each cashier is performing
� to assess how each store is performing

8.1.2.4. Identify features for working with interacting systems
� to obtain authorization from one or more credit (or check) authorization system

8.2. SELECTING OBJECTS

8.2.1. Select Actors
the actor is:

� person

8.2.2. Select Participants
the Participants are:

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

16

� cashier
� head cashier
� customer

Cashier and Head Cashier

Is there a difference between head cashier and cashier in terms of their behavior and
knowledge?. If no then we don not need a separate class for head cashier.

Customer
customer. You must have a way to know about customer objects; otherwise it should not
be put in the domain model.

8.2.3. Select Places
The places are:

� store
� shelf

Shelf

The system does not keep track of the shelves.

8.2.4. Select Transactions
Significant Transactions are:

� sale
� every sale is a collection of sale line items
� return
� payment
� session

8.2.5. Select Container Classes
The store is a container class.
a store contains

� cashiers
� registers
� items

8.2.6. Select Tangible Things
Tangible things in store:

� item
� register
� cash drawer
� Tax Category (Descriptive things)

Session

Is it important? It is important in order to evaluate a cashier’s performance.

8.3. Identify Structures

8.3.1. Identify Gen-Spec Structures
Kinds of stores:

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

17

A store is a kind of sales outlet. Perhaps over time, Connie will expand to other kinds of
sales outlets. Stores might be specialized into kinds of stores. For now on leave store as it
is.

Kinds of sales:

- sales, returns
- only different is that the amount is positive or negative. Is there any other difference?

Prices:

- regular price, and promotional (sales) price

Payment:

- cash, check, and charge are kind of payments

8.3.2. Identify Whole-Part Structures
� A store as a whole is made up of cashiers, registers, and items.
� A register contains a cash drawer.
� A sale is constituted of sale line items.

Price

Promotional Price

Payment

ChargeCheque Cash Payment

Object Hierarchy

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

18

Sale

Sales Line Item

Stote

Register

Cash Drawer

ItemCashier

Whole-Part Structures

8.4. Establishing Responsibilities

8.4.1. Who I Know - Rules of Thumb
� an actor knows about its participants

person knows about cashier
� a transaction knows about its participants

a session knows about its register and cashier
� A transaction contains its transaction line items

sale contains its sales line items
� A transaction knows its sub transactions

session knows about its sales
sale knows about its payments

� A place knows about its transactions
store knows about its sessions

� A place knows about its descriptive objects
store knows about its tax categories

� A container knows about its contents
a store knows about its cashiers, items, and registers

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

19

Tax Category

Register

Store

SalesPayment

SessionCashier

Person

Association Relationships

8.4.2. Define Attributes, Services, and Links - What I know, What I do, and Who
I know?
Actors:
 person

Attributes: name, address, phone
Services:

Participants:
 cashier

Attributes: number, password, authorization level, current session
Services: isAuthorized, assess Performance

Places:

store
Attributes: name
Services: get item for UPC, get cashier for number

Tangible things:

item
Attributes: number, description, UPCs, prices, taxable

 attributes with repeating names - create new objects
 UPC, Price (specialization - promotional price)
Services: get price for a date, how much for quantity
Who I Know? UPC, Price, tax category, sale line item

register

Attributes: number
Services: how much over interval, how many over interval
Who I know? store, session, cash drawer (part of register)

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

20

cash drawer
Attributes: balance, position (open, close), operational state
Services: open
Who I know? register

Tax Category

Attributes: category, rate, effective date
Services: just the basic services - get, add, set - don’t show
Who I know? items?

Transactions:

sale
Attributes: date and time
Services: calculate subtotal, calculate total, calculate discount, calculate
 tax, commit
Who I Know? session, payment, SLIs

sale line item

Attributes: date and time ?, quantity, tax status (regular, resale, tax-exempt)
Services: calculate sub total
Who I Know? item, sale

 sale line item - how do you handle returns and sales

sale - you have control
return - more difficult

- return to a different store
- purchased for a different price
- returns an item no longer in the inventory

return

Attributes: return price, reason code, sale date, sale price
Services:
Who I Know?

is it a case for gen-spec, what’s same, what’s different

payment - we have types of payments

Attributes:
each payment knows about its

amount paid, cash tendered
a check object knows its

bank, account number, amount tendered, authorization code
a credit object knows about its

card type, card number, expiration date, authorization code
common attributes among check and credit - use gen-spec
hierarchy becomes:

payment
cash payment
authorized payment

check
card

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

21

Services:
who I know: sale

Payment

ChargeCheque

Cash PaymentAuthorized
Payment

Sales Line Item

Return Line Item

session
Attributes: start date, end date, start time, end time
Services: how much money collected over interval, how many sales
Who I know? register, cashier, store, sales

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

22

Payment

ChargeCheque

Cash PaymentAuthorized
Payment

Sales Line Item

Return Line Item

Session

Store

RegisterCashier

SalePerson

Item

Tax Category

Cash Drawer

UPCs

Price

Promotional Price

Object Model Diagram for Connie’s Convenience Store

