
CS 543: Computer Graphics
Lecture 5 (part II): Illumination and Shading

Emmanuel Agu

Illumination and Shading

n Problem: Model light/surface points interaction to
determine final color and brightness

n Apply the lighting model at a set of points across the
entire surface

Shading

lighting

Illumination Model

n The governing principles for computing the illumination
n A illumination model usually considers:

n Light attributes (intensity, color, position, direction, shape)
n Object surface attributes (color, reflectivity, transparency,

etc)
n Interaction among lights and objects

Basic Light Sources

Point light Directional light

Area lightSpot light

Light intensity can be
independent or
dependent of the
distance between object
and the light source

Local Illumination

n Local illumination: only consider the light, the observer
position, and the object material properties

n OpenGL does this

θ

Global Illumination

n Global illumination: take into account the interaction of
light from all the surfaces in the scene

n Example: Ray tracing

object 1

object 2object 3

object 4

Simple Local Illumination

n The model used by OpenGL
n Consider three types of light contribution to compute the

final illumination of an object
n Ambient
n Diffuse
n Specular

n Final illumination of a point (vertex) =
ambient + diffuse + specular

n Materials reflect each component differently
n Use different material reflection coefficients, Ka, Kd, Ks

Ambient Light Contribution

n Ambient light = background light
n Light that is scattered by the environment
n Frequently assumed to be constant
n Very simple approximation of global illumination
n No direction: independent of light position, object

orientation, observer’s position or orientation

object 1

object 2object 3

object 4

Ambient = I x Ka

constant

Ambient Light Example

Diffuse Light Contribution

n Diffuse light: The illumination that a surface receives from
a light source and reflects equally in all direction

It does not matter where
the eye is

Diffuse Lighting Example

Diffuse Light Calculation

n Need to decide how much light the object point receive
from the light source – based on Lambert’s Law

Receive more light Receive less light

Diffuse Light Calculation

n Lambert’s law: the radiant energy D that a small surface
patch receives from a light source is:

D = I x cos (θ)
I: light intensity
θ: angle between the light vector and the surface normal

N : surface normal

light vector (vector from object to light)

θ

Specular light contribution

n The bright spot on the object
n The result of total reflection of

the incident light in a concentrate
region

See no specular

See lots specular

Specular light example

Specular light calculation

n How much reflection you can see depends on where you
are

Only position the eye can see specular from P
if object has an ideal reflection surface

But for non-perfect surface you will
still see specular highlight when you move
a little bit away from the ideal reflection
direction
Φ is deviation of view angle from mirror

direction
When φ is small, you see more specular
highlight

θ

p

φ

specular = Ks x I x cos(φ)
n

Specular light calculation

n Phong lighting model

n The effect of ‘n’ in the phong model

n = 10

n = 30

n = 90

n = 270

specular = Ks x I x cos(φ)
n

Put it all together

n Illumination from a light:
Illum = ambient + diffuse + specular

= Ka x I + Kd x I x (cos θ) + Ks x I x cos(φ)

n If there are N lights
Total illumination for a point P = Σ (Illum)

n Some more terms to be added (in OpenGL):
n Self emission
n Global ambient
n Light distance attenuation and spot light effect

n

Adding Color

n Sometimes light or surfaces are colored
n Treat R,G and B components separately
n i.e. can specify different RGB values for either light or material
n Illumination equation goes from:

Illum = ambient + diffuse + specular

= Ka x I + Kd x I x (cos θ) + Ks x I x cos(φ)
To:

Illum_r = Kar x Ir + Kdr x Ir x (cos θ) + Ksr x Ir x cos(φ)

Illum_g = Kag x Ig + Kdg x Ig x (cos θ) + Ksg x Ig x cos(φ)

Illum_b = Kab x Ib + Kdb x Ib x (cos θ) + Ksb x Ib x cos(φ)

n

n

n

n

Adding Color

89.60.773911
0.773911
0.773911

0.2775
0.2775
0.2775

0.23125
0.23125
0.23125

Polished
Silver

27.89740.992157
0.941176
0.807843

0.780392
0.568627
0.113725

0.329412
0.223529
0.027451

Brass

320.5
0.5
0.5

0.01
0.01
0.01

0.0
0.0
0.0

Black
plastic

Exponent, nSpecular
Ksr, Ksg,ksb

Diffuse
Kdr, Kdg,kdb

Ambient
Kar, Kag,kab

Material

Figure 8.17, Hill, courtesy of McReynolds and Blythe

Lighting in OpenGL

n Adopt Phong lighting model
n specular + diffuse + ambient lights
n Lighting is computed at vertices

• Interpolate across surface (Gouraud/smooth shading)

n Setting up OpenGL Lighting:
n Light Properties
n Enable/Disable lighting
n Surface material properties
n Provide correct surface normals
n Light model properties

Light Properties

n Properties:
n Colors / Position and type / attenuation

glLightfv(light, property, value)

(1) constant: specify which light you want to set the property
E.g: GL_LIGHT0, GL_LIGHT1, GL_LIGHT2 … you can
create multiple lights (OpenGL allows at least 8 lights)

(2) constant: specify which light property you want to set the value
E.g: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_POSITION

(check the red book for more)
(3) The value you want to set to the property

1 2 3

Property Example

n Define colors and position a light

GLfloat light_ambient[] = {0.0, 0.0, 0.0, 1.0};
GLfloat light_diffuse[] = {1.0, 1.0, 1.0, 1.0};
GLfloat light_specular[] = {1.0, 1.0, 1.0, 1.0};
GLfloat light_position[] = {0.0, 0.0, 1.0, 1.0};

glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

colors

Position

What if I set
Position to
(0,0,1,0)?

Types of lights

n OpenGL supports two types of lights
n Local light (point light)
n Infinite light (directional light)

n Determined by the light positions you provide
n w = 0: infinite light source
n w != 0: point light – position = (x/w, y/w, z/w)

GLfloat light_position[] = {x,y,z,w};

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

Turning on the lights

n Turn on the power (for all the lights)
n glEnable(GL_LIGHTING);
n glDisable(GL_LIGHTING);

n Flip each light’s switch
n glEnable(GL_LIGHTn) (n = 0,1,2,…)

Controlling light position

n Modelview matrix affects a light’s position
n Two options:
n Option a:

n Treat light like vertex
n Do pushMatrix, translate, rotate, .. glLightfv position,

popmatrix
n Then call gluLookat
n Light moves independently of camera

n Option b:
n Load identity matrix in modelview matrix
n Call glLightfv then call gluLookat
n Light appears at the eye (like a miner’s lamp)

Material Properties

n The color and surface properties of a material (dull,
shiny, etc)

n How much the surface reflects the incident lights
(ambient/diffuse/specular reflection coefficients)

glMaterialfv(face, property, value)

Face: material property for which face (e.g. GL_FRONT, GL_BACK,
GL_FRONT_AND_BACK)
Property: what material property you want to set (e.g. GL_AMBIENT,
GL_DIFFUSE,GL_SPECULAR, GL_SHININESS, GL_EMISSION, etc)
Value: the value you can to assign to the property

Material Example

n Define ambient/diffuse/specular reflection and shininess

GLfloat mat_amb_diff[] = {1.0, 0.5, 0.8, 1.0};
GLfloat mat_specular[] = {1.0, 1.0, 1.0, 1.0};
GLfloat shininess[] = {5.0}; (range: dull 0 – very shiny 128)

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE,
mat_amb_diff);

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, shininess);

refl. coeff.

Surface Normals

n Correct normals are essential for correct lighting
n Associate a normal to each vertex

glBegin(…)
glNormal3f(x,y,z)
glVertex3f(x,y,z)
…
glEnd()

n The normals you provide need to have a unit length
n You can use glEnable(GL_NORMALIZE) to have

OpenGL normalize all the normals

What about SDL?

n Assignment: read how to do following in SDL
n control light sources
n Specify material properties
n Ambient, diffuse specular, etc

n Ref: section 5.6.4, appendix 5

References

n Hill, chapter 8

