
CS-184: Computer Graphics

Lecture #2: Scan Conversion

Prof. James O’Brien

University of California, Berkeley

V2005-02-1.3

2

Today

2D Scan Conversion

Drawing Lines

Drawing Curves

Filled Polygons

Filling Algorithms

3

Drawing a Line

Basically, its easy... but for the details

Lines are a basic primitive that needs to be
done well...

4

Drawing a Line

Basically, its easy... but for the details

Lines are a basic primitive that needs to be
done well...

From “A Procedural Approach to Style for NPR Line Drawing from 3D models,”
by Grabli,!Durand, Turquin, Sillion

5

Drawing a Line

6

Drawing a Line

7

Drawing a Line

Some things to consider

How thick are lines?

How should they join up?

Which pixels are the right ones?

For example:

8

Drawing a Line

Inclusive
Endpoints

9

Drawing a Line

y= m · x+b,x ∈ [x1,x2]

m=
y2− y1
x2− x1

b= y1−m · x1

10

Drawing a Line

!x= 1

!y= m ·!x

x=x1

y=y1

while(x<=x2)

 plot(x,y)

 x++

 y+=Dy

11

Drawing a Line

!x= 1

!y= m ·!x
After rounding

12

Drawing a Line

!x= 1

!y= m ·!x

Accumulation of
roundoff errors

How slow is float-
to-int conversion?

y+= !y

13

Drawing a Line

|m|≤ 1 |m| > 1

14

Drawing a Line
void drawLine-Error1(int x1,x2, int y1,y2)

!

 float m = float(y2-y1)/(x2-x1)

 int x = x1

 float y = y1

 while (x <= x2)

 setPixel(x,round(y),PIXEL_ON)

 x += 1

 y += m

Not exact math

Accumulates errors

15

No more rounding

Drawing a Line
void drawLine-Error2(int x1,x2, int y1,y2)

!

 float m = float(y2-y1)/(x2-x1)

 int x = x1

 int y = y1

 float e = 0.0

 while (x <= x2)

 setPixel(x,y,PIXEL_ON)

 x += 1

 e += m

 if (e >= 0.5)

 y+=1

 e-=1.0
16

Drawing a Line
void drawLine-Error3(int x1,x2, int y1,y2)

!

 int x = x1

 int y = y1

 float e = -0.5

 while (x <= x2)

 setPixel(x,y,PIXEL_ON)

 x += 1

 e += float(y2-y1)/(x2-x1)

 if (e >= 0.0)

 y+=1

 e-=1.0

17

Drawing a Line
void drawLine-Error4(int x1,x2, int y1,y2)

!

 int x = x1

 int y = y1

 float e = -0.5*(x2-x1) // was -0.5

 while (x <= x2)

 setPixel(x,y,PIXEL_ON)

 x += 1

 e += y2-y1 // was /(x2-x1)

 if (e >= 0.0) // no change

 y+=1

 e-=(x2-x1) // was 1.0

18

Drawing a Line
void drawLine-Error5(int x1,x2, int y1,y2)

!

 int x = x1

 int y = y1

 int e = -(x2-x1) // removed *0.5

 while (x <= x2)

 setPixel(x,y,PIXEL_ON)

 x += 1

 e += 2*(y2-y1) // added 2*

 if (e >= 0.0) // no change

 y+=1

 e-=2*(x2-x1) // added 2*

19

Drawing a Line
void drawLine-Bresenham(int x1,x2, int y1,y2)

!

 int x = x1

 int y = y1

 int e = -(x2-x1)

 while (x <= x2)

 setPixel(x,y,PIXEL_ON)

 x += 1

 e += 2*(y2-y1)

 if (e >= 0.0)

 y+=1

 e-=2*(x2-x1)

Faster
Not wrong

|m|≤ 1
x1≤ x2

20

Drawing a Line

How thick?

Ends?
Butt

Round

Square

21

Drawing a Line

Joining?

Ugly Bevel Round Miter

22

Drawing Curves

y= f (x)

Only one value of y for each value of x...

23

Drawing Curves

Parametric curves

Both x and y are a function of some third parameter

y= f (u)
x= f (u)

x= f(u)

u ∈ [u0 . . .u1]
24

Drawing Curves

x= f(u) u ∈ [u0 . . .u1]

25

Draw curves by drawing line segments

Must take care in computing end points for lines

How long should each line segment be?

Drawing Curves

x= f(u) u ∈ [u0 . . .u1] 26

Draw curves by drawing line segments

Must take care in computing end points for lines

How long should each line segment be?

Variable spaced points

Drawing Curves

x= f(u) u ∈ [u0 . . .u1]

27

Drawing Curves

Midpoint-test subdivision

|f(umid)− l(0.5)|
28

Drawing Curves

Midpoint-test subdivision

|f(umid)− l(0.5)|

29

Drawing Curves

Midpoint-test subdivision

|f(umid)− l(0.5)|
30

Drawing Curves

Midpoint-test subdivision

Not perfect

We need more information for a guarantee...

|f(umid)− l(0.5)|

31

Filled Polygons

32

Filled Polygons

33

Filled Polygons

34

Filled Polygons

35

Filled Polygons

36

Filled Polygons

37

Filled Polygons

38

Filled Polygons

Treat (scan y = vertex y) as (scan y > vertex y)

39

Filled Polygons

Horizontal edges

40

Filled Polygons

Horizontal edges

41

“Equality Removal” applies to all vertices

Both x and y coordinates

Filled Polygons

42

Final result:

Filled Polygons

43

Who does this pixel belong to?

Filled Polygons

1

2

3

4

5

6

44

Inside/Outside Testing

The Polygon Non-exterior

Non-zero winding Parity

45

Flood Fill

46

Flood Fill

