
Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

1

Creating a Use Case Model

Creating a use case model is an iterative activity. The iteration starts with the
identification of actors. In the next step, use cases for each actor are determined which
define the system. After that, relationships among use cases are defined. It must be
understood that these are not strictly sequential steps and it is not necessary that all actors
must be identified before defining their use cases. These activities are sort of parallel and
concurrent and a use case model will evolve slowly from these activities. This activity
stops when no new use cases or actors are discovered. At the end, the model is validated.

Relationship among Use Cases

The UML allows us to extend and reuse already defined use cases by defining the
relationship among them. Use cases can be reused and extended in two different fashions:
extends and uses. In the cases of “uses” relationship, we define that one use case invokes
the steps defined in another use case during the course of its own execution. Hence this
defines a relationship that is similar to a relationship between two functions where one
makes a call to the other function. The “extends” relationship is kind of a generalization-
specialization relationship. In this case a special instance of an already existing use case
is created. The new use case inherits all the properties of the existing use case, including
its actors.

Let is try to understand these two concepts with the help of the following diagrams. In the
case of the first diagram, the Delete Information use case is using two already existing
use cases namely Record Transaction and Cancel Transaction. The direction of the arrow
determines which one is the user and which use case is being used.

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

2

The second diagram demonstrates the concept of reuse by extending already existing use
cases. In this case Place Conference Call use case is a specialization of Place Phone Call
use case. Similarly, Receive Additional Call is defined by extending Receive Phone Call.
It may be noted here that, in this case, the arrow goes from the new use case that is being
created (derived use case) towards the use case that is being extended (the base use case).

This diagram also demonstrates that many different actors can use one use case.
Additionally, the actors defined for the base use case are also defined by default for the
derived use case.

The concept of reusability can also be used in the case of actors. In this case, new classes
of actors may be created by inheriting from the old classes of actors.

CustomerCustomer

Individual
Customer
Individual
Customer

Corporate
Customer
Corporate
Customer

Perform Card
Transaction

Credit Card
Validation System

Retail
Institution

Retail
Institution

Sponsoring
Financial
Institution

Process
Customer Bill

Reconcile
Transactions

Manage
Customer Acct

Extended User

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

3

In this case two new classes, Individual Customer and Corporate Customer, are being
created by extending Customer. In this case, all the use cases available to Customer
would also be available to these two new actors.

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

4

Elaborated Use Cases

After the derivation of the use case model, each use is elaborated by adding detail of
interaction between the user and the software system. An elaborated use case has the
following components:

• Use Case Name
• Implementation Priority: the relative implementation priority of the use case.
• Actors: names of the actors that use this use case.
• Summary: a brief description of the use case.
• Precondition: the condition that must be met before the use case can be invoked.
• Post-Condition: the state of the system after completion of the use case.
• Extend: the use case it extends, if any.
• Uses: the use case it uses, if any.
• Normal Course of Events: sequence of actions in the case of normal use.
• Alternative Path: deviations from the normal course.
• Exception: course of action in the case of some exceptional condition.
• Assumption: all the assumptions that have been taken for this use case.

As an example, the Delete Information use case is elaborated as follows:

Use Case Name: Delete Information

Priority: 3

Actors: User

Summary: Deleting information allows the user to permanently remove information from
the system. Deleting information is only possible when the information has not been used
in the system.

Preconditions: Information was previously saved to the system and a user needs to
permanently delete the information.

Delete
Information

UserUser

Record
Transaction

Cancel
Transaction

<< uses >>

<< uses >>

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

5

Post-Conditions: The information is no longer available anywhere in the system.

Uses: Record Transactions, Cancel Action

Extends: None

Normal Course of Events:
1. The use case starts when the user wants to delete an entire set of information such as

a user, commission plan, or group.
2. The user selects the set of information that he/she would like to delete and directs the

system to delete the information. - Exception 1, 2
3. The system responds by asking the user to confirm deleting the information.
4. The user confirms deletion.
5. Alternative Path: Cancel Action
6. A system responds by deleting the information and notifying the user that the

information was deleted from the system.
7. Uses: Record Transaction
8. This use case ends.

Alternative Path - The user does not confirm Deletion
1. If the user does not confirm deletion, the information does not delete.
2. Uses: Cancel Action

Exceptions:
1. The system will not allow a user to delete information that is being used in the

system.
2. The system will not allow a user to delete another user that has subordinates.

Assumptions:
1. Deleting information covers a permanent deletion of an entire set of data such as a

commission plan, user, group etc. Deleting a portion of an entire set constitutes
modifying the set of data.

2. Deleted information is not retained in the system.
3. A user can only delete information that has not been used in the system.

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

6

Alternative Ways of Documenting the Use Case

Many people and organizations prefer to document the steps of interaction between the
use and the system in two separate columns as shown below.

User Action System Reaction
1. The use case starts when the user wants

to delete an entire set of information
such as a user, commission plan, or
group.

2. The user selects the set of information
that he/she would like to delete and
directs the system to delete the
information. - Exception 1, 2

3. The system responds by asking the user
to confirm deleting the information.

4. The user confirms deletion. 5. A system responds by deleting the
information and notifying the user that
the information was deleted from the
system.

It is a matter of personal and organizational preference. The important thing is to write
the use case in proper detail.

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

7

Activity Diagrams

Activity diagrams give a pictorial description of the use case. It is similar to a flow chart
and shows a flow from activity to activity. It expresses the dynamic aspect of the system.
Following is the activity diagram for the Delete Information use case.

Choose Object to Delete

Initiate Deletion

Object MaintainedRecord Action

Delete Information

See Activity Diagram
for Canceling Actions

Object Deleted
See Activity Diagram

for Recording
Transactions

[Delete Not Allowed]

[Delete Allowed]
[Cancel Delete]

[Confirm Delete]

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

8

Limitations of Use Cases

Use cases alone are not sufficient. There are kinds of requirements (mostly non-
functional) that need to be understood. Since use cases provide a user’s perspective, they
describe the system as a black box and hide the internal details from the users. Hence, in
a use case, domain (business) rules as well as legal issues are not documented.

The non-functional requirements are also not documented in the use cases. As examples
of those, consider the following requirements.

• Usability

o Color blind people should not have any difficulty in using the system – color
coding should take care of common forms of color blindness.

• Reliability
o The system needs to support 7 x 24 operation

• Performance
o Authorization should be completed within 1 minute 90% of the time.
o Average authorization confirmation time should not exceed 30 seconds.

• Portability
o The system should run on Windows 98 and above as well as Sun Solaris 7.0

and above.
• Access

o System should be accessible over the internet – hidden requirement – security

Because of this shortcoming, use cases must be augmented by additional information.

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

9

Source and sink analysis

Once requirements are documented using any of these analysis models, an independent
verification is needed to verify completeness and consistency of requirements captured
through these models. The process of verifying requirements involves careful analysis of
sources as well as the sinks of information.

Source
A stakeholder describes requirements (needs, constraints) to be included as system
functionality. These can be processes that generate certain information that the system
may have to process or maintain. Sources of requirements are the origins from where the
corresponding business process is initiated. By this concept, one has to trace from a
requirement back to its origins to see who is involved in its initiation. Be it a person, an
organization or an external entity that initiate some action and system responds back by
completing that action.

Sink
Sink is the consumer of certain information. It is that entity which provides a logical end
to a business process. Thus, ‘sinks of requirements’ is a concept that helps in identifying
persons, organizations or external systems that gets certain functionality from the system.
These are logical ends of requirements, or where all the requirements are consumed. For
example, we may consider a user of a software application that retrieves a report from the
system. In this case, user when reviews the report, becomes the sink of that report. Thus
when analyzing the sink of the requirement of implementing a report, the analyst would
naturally point towards the user who would get that report.

In source and sink analysis the analyst determines all the sources of requirements and
where do these requirements consume (sinks). Now evaluate a report which displays
certain information, the source of this report is the data (and who enters it) that is input to
be retrieved later in the form of the report. Similarly, whoever needs this report become
the sink of the report.
In a similar manner, at times we gather data in our application that is not used anywhere.
So the question really is what to do with that kind of unused data or the missing
requirement. Is it really redundant or is something really missing from these
requirements? How to figure it out?

For example, we are having certain inputs (sources) to a process against which we do not
know about the corresponding outputs (sinks). Such inputs are redundant if there is found
no corresponding outputs. Thus these inputs can be removed as redundant. If we probe
out corresponding outputs, which could not be recorded initially, that mean these inputs
were not redundant rather a few (output related) requirements were missing that we
discovered during the sink analysis.

A stakeholder may have required the development team to develop certain report for his
use. It means we are sure of its use (sink) but not about its sources, from where the

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

10

required information will be provided? Who will input that information and using what
mechanism?

A requirement statement that describe the report but do not list down its sources, will be
an incomplete statement and the software engineer, who is involved in validating such
requirements, should identify all the sources against sinks or vice versa to determine
complete end-to-end requirements.

