
Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

1

Business Requirements

Business requirements collected from multiple sources might conflict. For example,
consider a kiosk product with embedded software that will be sold to retail stores and
used by the store’s customers. The kiosk developer’s business objectives include the
following:

• leasing or selling the kiosk to the retailers
• selling consumables through the kiosk to the customer
• attracting customer to the brand
• modifying the nature of the historical developer-customer relationship

The retailer’s business interest could include:

• making money from customer use of kiosk
• attracting more customers to the store
• saving money if the kiosk replaces manual operations

The developer might want to establish a high-tech and exciting new direction for
customers, while the retailer wants a simple solution and the customer wants convenience
and features. The tension among these three parties with their different goals, constraints,
and cost factors can lead to conflicting business requirements, which must be resolved
before the kiosk’s software requirements are detailed.

You can also use the business requirements to set implementation priorities for use cases
and their associated functional requirements. For example, a business requirement to
generate maximum revenue from the kiosk would imply the early implementation of
features directly associated with selling more products or services to the customer, rather
than glitzy features that appeal to only a subset of customers.

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

2

The Vision Statement

The vision statement should reflect a balanced view that will satisfy the need of diverse
customers. It can be somewhat idealistic but should be grounded in the realities of
existing or anticipated customer markets, enterprise architectures, organizational strategic
directions, and resource limitations.

Chemical Tracking System

The chemical tracking system will allow scientists to request containers of chemicals to
be supplied by chemical stockroom or by vendors. The location of every chemical
container within the company, the quantity of the material remaining in it, and the
complete history of each container’s location and usage will be known by the system at
all times. The company will save 25% on chemical costs by fully exploiting chemicals
already available within the company, by disposing of fewer partially used or expired
containers, and by using a standard chemical purchasing process. The chemical tracking
system will also generate all reports required to comply with federal and state
government regulations that require the reporting of chemical usage, storage, and
disposal.

Assumptions and Dependencies

All assumptions that were made when conceiving the project have to be recorded. For
example, the management sponsor for the chemical tracking system assumed that it
would replace the existing chemical stockroom inventory system and that it would
interface to the appropriate purchasing department applications

Scope

Project scope defines the concept and range of the proposed solution, and limitations
identify certain capabilities that the product will not include. Clarifying the scope and
limitations helps to establish realistic stakeholder’s expectations. Sometimes customers
request features that are too expansive or do not lie within the intended project scope.
Propose requirements that are out of scope must be rejected, unless they are so beneficial
that the scope should be enlarged to accommodate them (with accompanying changes in
budget, schedule, and staff). Keep a record of these requirements and why they were
rejected, as they have a way of reappearing.

Scope and Initial Release

The major features that will be included in the initial release of the project should be
summarized. Describe the quality characteristics that will enable the product to provide
the intended benefits to its various customer communities.
Requirements need to be prioritized and a release schedule should be made.

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

3

The Context Diagram

The scope description establishes the boundary between the system we are developing
and everything else in the universe. The context diagram graphically illustrates this
boundary by showing the connections between the system being developed or the
problem being addressed, and the outside world. The context diagram identifies the
entities outside the system that interface to it in some way (called terminators or external
entities), as well as the flow of data and material between each external entity and the
system. The context diagram is used as the top level abstraction in a dataflow diagram
developed according to principles of structured analysis. The context diagram can be
included in the vision and scope document, in the SRS, or as part of a dataflow model of
the system.

Following is a context diagram of the chemical tracking system.

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

4

Use Cases and Customer-Developer Relationship

It has been mentioned earlier on, excellent software products are the result of a well-
executed design based on excellent requirements and high quality requirements result
from effective communication and coordination between developers and customers. That
is, good customer-developer relationship and effective communication between these two
entities is a must for a successful software project. In order to build this relationship and
capture the requirements properly, it is essential for the requirement engineer to learn
about the business that is to be automated.

It is important to recognize that a software engineer is typically not hired to solve a
computer science problem – most often than not, the problem lies in a different domain
than computer science and the software engineer must understand it before it can be
solved. In order to improve the communication level between the vendor and the client,
the software engineer should learn the domain related terminology and use that
terminology in documenting the requirements. Document should be structured and
written in a way that the customer finds it easy to read and understand so that there are no
ambiguities and false assumption.

One tool used to organize and structure the requirements is such a fashion is called use
case modeling.

It is modeling technique developed by Ivar Jacobson to describe what a new system
should do or what an existing system already does. It is now part of a standard software
modeling language known as the Unified Modeling Language (UML). It captures a
discussion process between the system developer and the customer. It is widely used
because it is comparatively easy to understand intuitively – even without knowing the
notation. Because of its intuitive nature, it can be easily discussed with the customer who
may not be familiar with UML, resulting in a requirement specification on which all
agree.

Use Case Model Components

A use case model has two components, use cases and actors.

In a use case model, boundaries of the system are defined by functionality that is handled
by the system. Each use case specifies a complete functionality from its initiation by an
actor until it has performed the requested functionality. An actor is an entity that has an
interest in interacting with the system. An actor can be a human or some other device or
system.

A use case model represents a use case view of the system – how the system is going to
be used. In this case system is treated as a black box and it only depicts the external
interface of the system. From an end-user’s perspective it and describes the functional
requirements of the system. To a developer, it gives a clear and consistent description of
what the system should do. This model is used and elaborated throughout the

Software Engineering-I (CS504)

© Copy Rights Virtual University of Pakistan

5

development process. As an aid to the tester, it provides a basis for performing system
tests to verify the system. It also provides the ability to trace functional requirements into
actual classes and operations in the system and hence helps in identifying any gaps.

Use Diagram for a Library System

As an example, consider the following use case diagram for a library management
system. In this diagram, there are four actors namely Book Borrower, Librarian, Browser,
and Journal Borrower. In addition to these actors, there are 8 use cases. These use cases
are represented by ovals and are enclosed within the system boundary, which is
represented by a rectangle. It is important to note that every use case must always deliver
some value to the actor.

With the help of this diagram, it can be clearly seen that a Book Borrower can reserve a
book, borrow a book, return a book, or extend loan of a book. Similarly, functions
performed by other users can also be examined easily.

