
 107

Modern Programming Languages

Lecture 27-30

 Java Programming Language

An Introduction

 108

Java was developed at Sun in the early 1990s and is based on C++. It looks very similar
to C++ but it is significantly simplified as compared to C++. That is why Professor
Feldman says that Java is C++--. It supports only OOP and has eliminated multiple
inheritance, pointers, structs, enum types, operator overloading, goto statement from
C++. It includes support for applets and a form of concurrency.

The First Program

Here is the famous Hello World program in Java.

class HelloWorld {
 public static void main(String [] args)
 {
 System.out.println("Hello world!");
 }
}

It may be noted that as Java supports only OOP, in Java, every variable, constant, and
function (including main) must be inside some class. Therefore, there are no global
variables or functions in Java. In addition, the following may be noted:

• Function main is member of the class.
• Every class may have a main function; there may be more than one main function

in a Java program.
• The main must be public static void.
• The main may have one argument: an array of String. This array contains the

command-line arguments.
• There is no final semi-colon at the end of the class definition.

Java Files

In Java the source code is written in the .java file. The following restrictions apply:
(1) Each source file can contain at most one public class.
(2) If there is a public class, then the class name and file name must match.

Furthermore, every function must be part of a class and every class is part of a package.
A public class can be used in any package and a non-public class can only be used in its
own package.

The Java Bytecode is created by the Java compiler and is stored in .class file. This file
contains ready to be exected Java bytecode which is executed by the Java Virtual
Machine. For each class in a source file (both public and non-public classes), the
compiler creates one ".class" file, where the file name is the same as the class name.
When compiling a program, you type the full file name, including the ".java" extension;

 109

When running a program, you just type the name of the class whose main function you
want to run.
Java Types

Java has two "categories" of types: primitive types and reference types.

Primitive Types
All the primitive types have specified sizes that are machine independent for portability.
This includes:

boolean same as bool in C++
char holds one 16 bit unicode character
byte 8-bit signed integer
short 16-bit signed integer
int 32-bit signed integer
long 64-bit signed integer
float floating-point number
double double precision floating-point number

Reference Types
arrays classes

There are no struct, union, enum, unsigned, typedef, or pointers types in Java.

C++ Arrays vs Java Arrays

In C++, when you declare an array, storage for the array is allocated. In Java, when you
declare an array, you are really only declaring a pointer to an array; storage for the array
itself is not allocated until you use "new". This difference is elaborated as shown below:

C++

int A[10]; // A is an array of length 10
A[0] = 5; // set the 1st element of array A

JAVA
 int [] A; // A is a reference to an array
 A = new int [10]; // now A points to an array of length 10
 A[0] = 5; // set the 1st element of the array pointed to by A

In both C++ and Java you can initialize an array using values in curly braces. Here's
example Java code:

 int [] myArray = {13, 12, 11};
 // myArray points to an array of length 3
 // containing the values 13, 12, and 11

 110

In Java, a default initial value is assigned to each element of a newly allocated array if no
initial value is specified. The default value depends on the type of the array element as
shown below:

 Type Value
 boolean false
 char '\u0000'
 byte, int, short, long, float, double 0
 any reference null

In Java, array bounds are checked and an out-of-bounds array index always causes a
runtime error.

In Java, you can also determine the current length of an array (at runtime) using ".length"
operator as shown below:

 int [] A = new int[10];
 ...
 A.length ... // this expression evaluates to 10
 A = new int[20];
 ...
 A.length ... // now it evaluates to 20

In Java, you can copy an array using the arraycopy function. Like the output function
println, arraycopy is provided in java.lang.System, so you must use the name
System.arraycopy. The function has five parameters:

src: the source array (the array from which to copy)
srcPos: the starting position in the source array
dst: the destination array (the array into which to copy)
dstPos: the starting position in the destination array
count: how many values to copy

Here is an example:

int [] A, B;
 A = new int[10];

// code to put values into A
 B = new int[5];
 System.arraycopy(A, 0, B, 0, 5) // copies first 5 values from A to B
 System.arraycopy(A, 9, B, 4, 1) // copies last value from A into last

// element of B

Note that the destination array must already exist (i.e., new must already have been used
to allocate space for that array), and it must be large enough to hold all copied values

 111

(otherwise you get a runtime error). Furthermore, the source array must have enough
values to copy (i.e., the length of the source array must be at least srcPos+count). Also,
for arrays of primitive types, the types of the source and destination arrays must be the
same. For arrays of non-primitive types, System.arraycopy(A, j, B, k, n) is OK if the
assignment B[0] = A[0] would be OK.

The arraycopy function also works when the source and destination arrays are the same
array; so for example, you can use it to "shift" the values in an array:

 int [] A = {0, 1, 2, 3, 4};
 System.arraycopy(A, 0, A, 1, 4);

After executing this code, A has the values: [0, 0, 1, 2, 3].

As in C++, Java arrays can be multidimensional. For example, a 2-dimensional array is
an array of arrays. However, a two-dimensional arrays need not be rectangular. Each row
can be a different length. Here's an example:

 int [][] A; // A is a two-dimensional array
 A = new int[5][]; // A now has 5 rows, but no columns yet
 A[0] = new int [1]; // A's first row has 1 column
 A[1] = new int [2]; // A's second row has 2 columns
 A[2] = new int [3]; // A's third row has 3 columns
 A[3] = new int [5]; // A's fourth row has 5 columns
 A[4] = new int [5]; // A's fifth row also has 5 columns

C++ Classes vs Java Classes

In C++, when you declare a variable whose type is a class, storage is allocated for an
object of that class, and the class's constructor function is called to initialize that instance
of the class. In Java, you are really declaring a pointer to a class object; no storage is
allocated for the class object, and no constructor function is called until you use "new".

This is elaborated with the help of the following example:

Let us assume that we have the following class:

class MyClass {
 ...
 }

Let us first look at C++

 MyClass m; // m is an object of type MyClass;
 // the constructor function is called to initialize M.

 112

 MyClass *pm;
 // pm is a pointer to an object of type MyClass
 // no object exists yet, no constructor function
 // has been called

 pm = new MyClass;

// now storage for an object of MyClass has been
// allocated and the constructor function has been
// called

Now the same thing in Java

 MyClass m; // pm is a pointer to an object of type MyClass
 // no object exists yet, no constructor function
 // has been called

 m = new MyClass();
 // now storage for an object of MyClass has been allocated
 // and the constructor function has been called. Note
 // that you must use parentheses even when you are not
 // passing any arguments to the constructor function

 // Also note that there is a simple ‘.’ (dot) operator used to
 // access members or send message. Java does not use
 // -> operator.

Whereas, as opposed to Java, in C++ use have the following:

 MyClass m; // m is an object of type MyClass;
 // the constructor function is called to initialize M.

 MyClass *pm; // pm is a pointer to an object of type MyClass
 // no object exists yet, no constructor function has

// been called

 pm = new MyClass; // now storage for an object of MyClass has been
 // allocated and the constructor function has been
 // called

 113

Aliasing Problems in Java

The fact that arrays and classes are really pointers in Java can lead to some problems.
Here is a simple assignment that causes aliasing:

int [] A = new int [4];
Int [] B = new int [2];

This is depicted as below:

Now, when we say:

A[0] = 5;

We get the following:

Now when we say:
 B = A;

B points to the same array as A and creates an alias. This is shown below:

Now if we make a simple assignment in B, we will also change A as shown below:

 B[0] = 10;

 114

This obviously creates problems. Therefore, as a programmer you have to be very careful
when writing programs in Java.

In Java, all parameters are passed by value, but for arrays and classes the actual
parameter is really a pointer, so changing an array element, or a class field inside the
function does change the actual parameter's element or field.

This is elaborated with the help of the following example:

void f(int [] A) {
 A[0] = 10; // change an element of parameter A
 A = null; // change A itself
 }

 void g() {
 int [] B = new int [3];
 B[0] = 5;
 f(B);
 // B is not null here, because B itself was passed by value
 // however, B[0] is now 10, because function f changed the
 // first element of the array
 }

Note that, in C++, similar problems can arise when a class that has pointer data members
is passed by value. This problem is addressed by the use of copy constructors, which can
be defined to make copies of the values pointed to, rather than just making copies of the
pointers. In Java, the solution is to use the arraycopy operation, or to use a class's clone
operation. Cloning will be discussed later.

 115

Type Conversion

Java is much stronger than C++ in the type conversions that are allowed.
Here we discuss conversions among primitive types. Conversions among class objects
will be discussed later.

Booleans cannot be converted to other types. For the other primitive types (char, byte,
short, int, long, float, and double), there are two kinds of conversion: implicit and explicit.

Implicit conversions:

An implicit conversion means that a value of one type is changed to a value of another
type without any special directive from the programmer. A char can be implicitly
converted to an int, a long, a float, or a double. For example, the following will compile
without error:

 char c = 'a';
 int k = c;
 long x = c;
 float y = c;
 double d = c;

For the other (numeric) primitive types, the basic rule is that implicit conversions can be
done from one type to another if the range of values of the first type is a subset of the
range of values of the second type. For example, a byte can be converted to a short, int,
long or float; a short can be converted to an int, long, float, or double, etc.

Explicit conversions:

Explicit conversions are done via casting: the name of the type to which you want a value
converted is given, in parentheses, in front of the value. For example, the following code
uses casts to convert a value of type double to a value of type int, and to convert a value
of type double to a value of type short:

 double d = 5.6; int k = (int)d; short s = (short)(d * 2.0);

Casting can be used to convert among any of the primitive types except boolean. Note,
however, that casting can lose information; for example, floating-point values are
truncated when they are cast to integers (e.g., the value of k in the code fragment given
above is 5), and casting among integer types can produce wildly different values (because
upper bits, possibly including the sign bit, are lost).

 116

JAVA CLASSES

Java classes contain fields and methods. A field is like a C++ data member, and a method
is like a C++ member function. Each field and method has an access level:

• private: accessible only in this class
• (package): accessible only in this package
• protected: accessible only in this package and in all subclasses of this class
• public: accessible everywhere this class is available

Similarly, each class has one of two possible access levels:

• (package): class objects can only be declared and manipulated by code in this
package

• public: class objects can be declared and manipulated by code in any package

Note: for both fields and classes, package access is the default, and is used when no
access is specified.

A Simple Example Class

In the following example, a List is defined to be an ordered collection of items of any
type:

 class List {
 // fields
 private Object [] items; // store the items in an array
 private int numItems; // the current # of items in the list

// methods

 // constructor function
 public List()
 {
 items = new Object[10];
 numItems = 0;
 }

 // AddToEnd: add a given item to the end of the list
 public void AddToEnd(Object ob)
 {
 ...
 }
 }

 117

In Java, all classes (built-in or user-defined) are (implicitly) subclasses of the class
Object. Using an array of Object in the List class allows any kind of Object (an instance
of any class) to be stored in the list. However, primitive types (int, char, etc) cannot be
stored in the list as they are not inherited from Object.

Constructor function:

As in C++, constructor functions in Java are used to initialize each instance of a class.
They have no return type (not even void) and can be overloaded; you can have multiple
constructor functions, each with different numbers and/or types of arguments. If you
don't write any constructor functions, a default (no-argument) constructor (that doesn't do
anything) will be supplied.

If you write a constructor that takes one or more arguments, no default constructor will be
supplied (so an attempt to create a new object without passing any arguments will cause a
compile-time error). It is often useful to have one constructor call another (for example, a
constructor with no arguments might call a constructor with one argument, passing a
default value). The call must be the first statement in the constructor. It is performed
using this as if it were the name of the method. For example:

 this(10);

is a call to a constructor that expects one integer argument.

Initialization of fields:

If you don't initialize a field (i.e., either you don't write any constructor function, or your
constructor function just doesn't assign a value to that field), the field will be given a
default value, depending on its type. The values are the same as those used to initialize
newly created arrays (see the "Java vs C++" notes).

Access Control:

Note that the access control must be specified for every field and every method; there is
no grouping as in C++. For example, given these declarations:

public
int x;
int y;

only x is public; y gets the default, package access.

 118

Static Fields and Methods

Fields and methods can be declared static. If a field is static, there is only one copy for
the entire class, rather than one copy for each instance of the class. (In fact, there is a
copy of the field even if there are no instances of the class.) A method should be made
static when it does not access any of the non-static fields of the class, and does not call
any non-static methods. (In fact, a static method cannot access non-static fields or call
non-static methods.) Methods that would be "free" functions in C++ (i.e., not members of
any class) should be static methods in Java. A public static field or method can be
accessed from outside the class.

Final Fields and Methods

Fields and methods can also be declared final. A final method cannot be overridden in a
subclass. A final field is like a constant: once it has been given a value, it cannot be
assigned to again.

Some Useful Built-in Classes

Following is a list of some useful classes in Java. These classes are not really part of the
language; they are provided in the package java.lang

1. String

String Creation:

String S1 = "hello", // initialize from a string literal
S2 = new String("bye"), // use new and the String constructor
S3 = new String(S1); // use new and a different constructor

String concatenation

String S1 = “hello ” + “world”;
String S2 = S1 + “!”;
String S3 = S1 + 10;

2. Object

Object is the Base class for all Java Classes.

3. Classes for primitive types

In Java, we have classes also for primitive types. These are: Boolean, Integer, Double,
etc. Note that variable of bool, int, etc types are not objects whereas variable of type
Boolean, Integer, etc are objects.

 119

Packages

Every class in Java is part of some package. All classes in a file are part of the same
package. You can specify the package using a package declaration:

 package name ;

as the first (non-comment) line in the file. Multiple files can specify the same package
name. If no package is specified, the classes in the file go into a special unnamed package
(the same unnamed package for all files). If package name is specified, the file must be in
a subdirectory called name (i.e., the directory name must match the package name).

You can access public classes in another (named) package using:

 package-name.class-name

You can access the public fields and methods of such classes using:

 package-name.class-name.field-or-method-name

You can avoid having to include the package-name using import package-name.* or
import package-name.class-name at the beginning of the file (after the package
declaration). The former imports all of the classes in the package, and the second imports
just the named class.

You must still use the class-name to access the classes in the packages, and
class-name.field-or-method-name to access the fields and methods of the class; the only
thing you can leave off is the package name.

Inheritance

Java directly supports single inheritance. To support concept of a interface class is used.
Inheritance is achieved as shown below:

 class SuperClass {
 …
 }

 class SubClass extends SuperClass {
 …
 }

When a class is inherited, all fields and methods are inherited. When the final reserved
word is specified on a class specification, it means that class cannot be the parent of any
class. Private fields are inherited, but cannot be accessed by the methods of the subclass.
fields can be defined to be protected, which means that subclass methods can access them

 120

Each superclass method (except its constructors) can be inherited, overloaded, or
overridden. These are elaborated in the following paragraphs:

inherited: If no method with the same name is (re)defined in the subclass, then the
subclass has that method with the same implementation as in the superclass.

overloaded: If the subclass defines a method with the same name, but with a different
number of arguments or different argument types, then the subclass has two methods with
that name: the old one defined by the superclass, and the new one it defined.

overridden: If the subclass defines a method with the same name, and the same number
and types of arguments, then the subclass has only one method with that name: the new
one it defined. A method cannot be overridden if it is defined as final in the superclass

Dynamic Binding

In C++, a method must be defined to be virtual to allow dynamic binding. In Java all
method calls are dynamically bound unless the called method has been defined to be
final, in which case it cannot be overridden and all bindings are static.

Constructors

A subclass's constructors always call a super class constructor, either explicitly or
implicitly. If there is no explicit call (and no call to another of the subclass constructors),
then the no-argument version of the superclass constructor is called before executing any
statements.

Abstract Classes

An abstract method is a method that is declared in a class, but not defined. In order to be
instantiated, a subclass must provide the definition. An abstract class is any class that
includes an abstract method. It is similar to Pure virtual in C++.

If a class includes an abstract method, the class must be declared abstract, too. For
example:

 abstract class AbstractClass {
 abstract public void Print();
 // no body, just the function header
 }
 class MyConcreteClass extends AbstractClass {
 public void Print() { // actual code goes here } }

An abstract class cannot be instantiated. A subclass of an abstract class that does not
provide bodies for all abstract methods must also be declared abstract. A subclass of a

 121

non-abstract class can override a (non-abstract) method of its superclass, and declare it
abstract. In that case, the subclass must be declared abstract.

Interface

As mentioned earlier, multiple inheritance is achieved through Interface in Java.
Inheritance implements the "is-a" relationship whereas an interface is similar to a class,
but can only contain public, static, final fields (i.e., constants) and public, abstract
methods (i.e., just method headers, no bodies).

An interface is declared as shown below:

public interface Employee {
 void RaiseSalary(double d);
 double GetSalary();
 }

Note that both methods are implicitly public and abstract (those keywords can be
provided, but are not necessary).

A class can implement one or more interfaces (in addition to extending one class). It must
provide bodies for all of the methods declared in the interface, or else it must be abstract.
For example:

 public class TA implements Employee {
 void RaiseSalary(double d) {
 // actual code here
 }
 double GetSalary() {
 // actual code here
 }
 }

Public interfaces (like public classes) must be in a file with the same name. Many classes
can implement the same interface thus achieving multiple inheritance. An interface can
be a "marker" with no fields or methods, is used only to "mark" a class as having a
property, and is testable via the instanceof operator.

Exception Handling in Java

Exception handling in Java is based on C++ but is designed to be more in line with OOP.
It includes a collection of predefined exceptions that are implicitly raised by the JVM. All
java exceptions are objects of classes that are descendents of Throwable class. There are
two predefined subclasses of Throwable: Error and Exception.

 122

Error and its descendents are related to errors thrown by JVM. Examples include out of
heap memory. Such an exception is never thrown by the user programs and should not be
handled by the user.

User programs can define their own exception classes. Convention in Java is that such
classes are subclasses of Exception. There are two predefined descendents of Exception:
IOException and RuntimeException. IOException deals with errors in I/O operation.
In the case of RuntimeException there are some predefined exceptions which are, in
many cases, thrown by JVM for errors such as out of bounds, and Null pointer.

The following diagram shows the exception hierarchy in Java.

Checked and Unchecked Exceptions

Exceptions of class Error and RuntimeException are called unchecked exceptions. They
are never a concern of the compiler. A program can catch unchecked exceptions but it is
not required. All other are checked exceptions. Compiler ensures that all the checked
exceptions a method can throw are either listed in its throws clause or are handled in the
method.

Exception Handlers

Exception handler in Java is similar to C++ except that the parameter of every catch must
be present and its class must be descendent of Thrwoable. The syntax of try is exactly
same as C++ except that there is finally clause as well. For example:

 class MyException extends Exception {

 123

 public MyException() { }
 public MyException(String message) {
 super (message);
 }
 }

This exception can be thrown with

throw new MyException();

Or
 MyException myExceptionObject = new MyException();
 …
 throw myExceptionObject;

Binding of exception is also similar to C++. If an exception is thrown in the compound
statement of try construct, it is bound to the first handler (catch function) immediately
following the try clause whose parameter is the same class as the thrown object or an
ancestor of it. Exceptions can be handled and then re-thrown by including a throw
statement without an operand at the end of the handler. To ensure that exceptions that can
be thrown in a try clause are always handled in a method, a special handler can be written
that matches all exceptions. For example:

 catch (Exception anyException) {
 …
 }

Other Design Choices

The exception handler parameter in C++ has a limited purpose. During program
execution, the Java runtime system stores the class name of every object. getClass can be
used to get an object that stores the class name. It has a getName method. The name of
the class of the actual parameter of the throw statement can be retrieved in the handler as
shown below.

anyException.getClass().getName();

In the case of a user defined exception, the thrown object could include any number of
data fields that might be useful in the handler.
throws Clause

throws clause is overloaded in C++ and conveys two different meanings: one as
specification and the other as command. Java is similar in syntax but different in
semantics. The appearance of an exception class name in the throws clause of Java
method specifies that the exception class or any of its descendents can be thrown by the
method.

 124

A C++ program unit that does not include a throw clause can throw any exceptions. A
Java method that does not include a throws cannot throw any checked exception it does
not handle. A method cannot declare more exceptions in its throws clause than the
methods it overrides, though it may declare fewer. A method that does not throw a
particular exception, but calls another method that could throw the exception, must list
the exception in its throws clause.

The finally clause

A Java exception handler may have a finally clause. A finally clause always executes
when its try block executes (whether or not there is an exception). The finally clause is
written as shown below:

 try {
 …
 }
 catch (…) {
 …
 }
 …
 finally {
 …
 }

A finally clause is usually included to make sure that some clean-up (e.g., closing opened
files) is done. If the finally clause includes a transfer of control statement (return, break,
continue, throw) then that statement overrides any transfer of control initiated in the try
or in a catch clause.

First, let's assume that the finally clause does not include any transfer of control. Here are
the situations that can arise:

• No exception occurs during execution of the try, and no transfer of control is
executed in the try. In this case the finally clause executes, then the statement
following the try block.

• No exception occurs during execution of the try, but it does execute a transfer of
control. In this case the finally clause executes, then the transfer of control takes
place.

• An exception does occur during execution of the try, and there is no catch clause
for that exception. Now the finally clause executes, then the uncaught exception is
"passed up" to the next enclosing try block, possibly in a calling function.

• An exception does occur during execution of the try, and there is a catch clause
for that exception. The catch clause does not execute a transfer of control. In this
case the catch clause executes, then the finally clause, then the statement
following the try block.

 125

• An exception does occur during execution of the try, there is a catch clause for
that exception, and the catch clause does execute a transfer of control. Here, the
catch clause executes, then the finally clause, then the transfer of control takes
place.

If the finally block does include a transfer of control, then that takes precedence over any
transfer of control executed in the try or in an executed catch clause. So for all of the
cases listed above, the finally clause would execute, then its transfer of control would
take place. Here's one example:

 try {
 return 0;
 } finally {
 return 2;
 }

The result of executing this code is that 2 is returned. Note that this is rather confusing!
The moral is that you probably do not want to include transfer-of-control statements in
both the try statements and the finally clause, or in both a catch clause and the finally
clause.

Java Threads

Java supports concurrency through threads which are lightweight processes. A thread is
similar to a real process in that a thread and a running program are threads of execution.
A thread takes advantage of the resources allocated for that program instead of having to
allocate those resources again. A thread has its own stack and program counter. The code
running within the thread works only within the context implied by the stack and PC so
also called an execution context.

Creating Java Threads

There are two ways to create our own Thread object:

1. Subclassing the Thread class and instantiating a new object of that class
2. Implementing the Runnable interface

In both cases the run() method should be implemented. This is elaborated with the help
of following examples:

Example of Extending Thread

public class ThreadExample extends Thread {
 public void run () {
 for (int i = 1; i <= 100; i++) {

 126

 System.out.println(“Thread: ” + i);
 }
 }
}

Example of Implementing Runnable

public class RunnableExample implements Runnable {
 public void run () {
 for (int i = 1; i <= 100; i++) {
 System.out.println (“Runnable: ” + i);
 }
 }
}

It may be noted that both of these are very similar to each other with minor syntactic and
semantic differences.

Starting the Threads

A thread is started by simply sending the start message to the thread. This is shown in
the following example:

public class ThreadsStartExample {
 public static void main (String argv[]) {
 new ThreadExample ().start ();
 new Thread(new RunnableExample ()).start ();
 }
}

Thread Methods

Some of the common thread methods are listed below:

• start()
• sleep()
• yield()
• run()
• wait()
• notify()
• notifyAll()
• setPriority()

 127

Thread Synchronization - Wait and Notify

Threads are based upon the concept of a Monitor. The wait and notify methods are used
just like wait and signal in a Monitor. They allow two threads to cooperate and based
on a single shared lock object. The following example of a producer-consumer problem
elaborates this concept.

class Buffer {
 private int [] buf;
 private int head, tail, max, size;

 public Buffer (int buf_size) {

 buf = new int [buf_size];
 head =0; tail = 0; size = 0;
 max = buf_size;
 }

 public synchronized void deposit (int item) {
 try {
 while (size ==max) wait();
 buf [tail] = item;
 tail = (tail + 1) % max;
 size++;
 notify();
 }
 catch
 (interruptedException e) {
 // exception handler
 }

}

public synchronized int fetch() {
 int item = 0;
 try {
 while (size == 0) wait();
 item = buf [head] ;
 head = (head + 1) % max;
 size--;
 notify();
 }
 catch
 (interruptedException e) {
 // exception handler
 }
 return item;
}

 128

class Producer extends Thread {
 private Buffer buffer;

 public Producer (Buffer buf) {
 buffer = buf;
 }

 public void run () {
 int item;
 while (true) {
 // create a new item
 buffer.deposit(item);
 }
 }
}

class Consumer implements Runnable {
 private Buffer buffer;

 public Consumer (Buffer buf) {
 buffer = buf;
 }

 public void run () {
 int item;
 while (true) {
 item = buffer.fetch();
 // consume item
 }
 }
}

We can now instantiate these threads as shown below:

Buffer buffer = new Buffer(100);
Producer producer1 = new Producer(buffer);
Consumer comsumer = new Consumer(buffer);
Thread consumer1 = new Thread(consumer);
producer1.start();
consumer1.start();

 129

In this case the buffer is a shared variable used by both producer and consumer.

notify and notifyAll

There is a slight difference between notify and notifyAll. As the name suggest, notify()
wakes up a single thread which is waiting on the object's lock. If there is more than one
thread waiting, the choice is arbitrary i.e. there is no way to specify which waiting thread
should be re-awakened. On the other hand, notifyAll() wakes up ALL waiting threads;
the scheduler decides which one will run.

Applet

Java also has support for web applications through Applets. An applet is a stand alone
Java application. Java applet runs in a Java-enabled Web browser.

Java versus C++

Generally, Java is more robust than C++. Some of the reasons are:
• Object handles are initialized to null (a keyword)
• Handles are always checked and exceptions are thrown for failures
• All array accesses are checked for bounds violations
• Automatic garbage collection prevents memory leaks and dangling pointers
• Type conversion is safer
• Clean, relatively fool-proof exception handling
• Simple language support for multithreading
• Bytecode verification of network applets

	Modern Programming Languages��Lecture 27-30�� Java Programming Language
	An Introduction

