
Mehdi Jazayeri is the founding dean of the faculty of informatics and
professor of computer science at the University of Lugano,
Switzerland. He also holds the chair of distributed systems at the
Technical University of Vienna. He spent many years in software
research and development at several Silicon Valley companies,
including ten years at Hewlett-Packard Laboratories in Palo Alto,
California. His recent work has been concerned with component-
based software engineering of distributed systems, particularly Web-
based systems. He is a coauthor of Programming Language
Concepts, (John Wiley, 3rd edition, 1998), Fundamentals of Software
Engineering, (Prentice-Hall, 2nd edition, 2002), and Software
Architecture for Product Families (Addison-Wesley, 2000). He is a
Fellow of the IEEE.

Some Trends in Web Application Development
Mehdi Jazayeri

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

Some Trends in Web Application Development

Mehdi Jazayeri
Faculty of Informatics Faculty of Informatics

University of Lugano (USI) Technical University of Vienna
Lugano, Switzerland Vienna, Austria

www.inf.unisi.ch www.infosys.tuwien.ac.at

Abstract

A Web application is an application that is invoked with
a Web browser over the Internet. Ever since 1994 when
the Internet became available to the public and especially
in 1995 when the World Wide Web put a usable face on
the Internet, the Internet has become a platform of choice
for a large number of ever-more sophisticated and inno-
vative Web applications. In just one decade, the Web has
evolved from being a repository of pages used primarily for
accessing static, mostly scientific, information to a power-
ful platform for application development and deployment.
New Web technologies, languages, and methodologies make
it possible to create dynamic applications that represent a
new model of cooperation and collaboration among large
numbers of users. Web application development has been
quick to adopt software engineering techniques of compo-
nent orientation and standard components. For example,
search, syndication, and tagging have become standard
components of a new generation of collaborative applica-
tions and processes.

Future developments in Web applications will be driven
by advances in browser technology, Web internet infras-
tructure, protocol standards, software engineering methods,
and application trends.

1. Introduction

The World Wide Web was introduced in the early 1990s
with the goal of making it possible to access information
from any source in a consistent and simple way. Developed
at CERN, in Geneva, Switzerland, it was aimed at physi-
cists and other scientists that generate huge amounts of data
and documents and need to share them with other scien-
tists. Hypertext was adopted as a simple way to both give
access to documents and to link them together. The HTTP
protocol was designed to allow one computer—the client
computer—to request data and documents from another
computer—the server computer—so that it could make that
document available to the users on the client computer. In
this way, the World Wide Web was viewed as a vast repos-
itory of information that provided access to a large num-
ber of users. This view of the Web was quite static and it
has changed considerably over time. A first key observa-
tion was that the address that was considered to be a page
of data on the server could in fact refer to a program that
could be executed on the server and its results returned to
the client. Today, the address could indeed refer to a so-
phisticated (Web) application being invoked. Currently, the
Web is a powerful platform offering a vast array of tools and
components to application developers. A new generation of
applications offers users the opportunities to communicate,
collaborate, and even update the capabilities of the applica-
tion. Applications support individuals, small businesses or
communities of users as well as large company businesses.

In a survey that captured the state of the art in Web ap-
plication development in 1999, Fraternali described a Web
application as a hybrid between a hypermedia and an infor-
mation system. As a consequence, he stated the following
requirements for Web applications[9]:

• the necessity of handling both structured (e.g. database
records) and non-structured data (e.g. multimedia
items);

• the support of exploratory access through navigational

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

interfaces;

• a high level of graphical quality;

• the customization and possibly dynamic adaptation of
content structure, navigation primitives, and presenta-
tion styles;

• the support of proactive behavior, i.e., for recommen-
dation and filtering.

Since that survey was written, the Web has continued to
evolve at a rapid pace and new challenges have surfaced.
There are many ideas about what trends will dominate in
the future. One all-encompassing concept, by no means
universally accepted, is to consider the emerging trends
as forming the basis of “Web 2.0”. Compared to tradi-
tional Web applications—those of Web 1.0—Web 2.0 ap-
plications are dynamic, they invite user participation, and
are as responsive to user requests as desktop applications.
The idea of Web 2.0 is formulated comprehensively by Tim
O’Reilley[19].

The metaphor of Web 2.0 is useful as a way of captur-
ing the emerging trends in Web application development.
Some example applications demonstrate the differences be-
tween Web 2.0 and earlier models of applications. For ex-
ample, let us contrast Wikipedia with Encyclopedia Britan-
nica. The former engages the help of users to create data
and the latter draws a sharp distinction between producers
and consumers of the data. As a second example, consider
the old model of publishing Web sites to the current practice
of blogging, in which the readers are invited to participate
in a discussion. As a third example, we can regard the use of
search engines for finding Web sites as opposed to the ear-
lier approaches of remembering, guessing, or bookmarking
Web site addresses. Search engines allow a more dynamic
way to find Web sites.

What is Web 2.0, how did we get there, and what will
come next (Web 3.0)? We provide some answers to these
questions in this paper from a software engineer’s point of
view.

From the developments in software engineering, agile
methods for processes and service orientation for architec-
tures are particularly suited to Web application development
and have been adopted rapidly. In this paper, we draw
the parallels between traditional software engineering and
Web application development. We review the progression
of approaches and technologies for Web application devel-
opment, review current trends, and offer a tentative forecast
of future directions.

2. Foundations of the Web

Despite the enormous developments over the last decade,
the fundamental principles upon which the World Wide

Web was based have remained constant. Structurally, the
World Wide Web is based on client-server computing, in
which servers store documents and clients access docu-
ments. The same computer may act as a client and as a
server at different times. The World Wide Web introduced
three fundamental concepts on top of client-server com-
puting: a method of naming and referring to documents
(URL), a language for writing documents that can contain
data and links to other documents (HTML), and a protocol
for client and server machines to communicate with each
other (HTTP).

URL A naming system is a fundamental component of
computer systems, especially so for distributed sys-
tems. A naming system prescribes the way objects are
named so that the objects can be identified and located.
Depending on the characteristics of the naming sys-
tem, objects may be searched for on the basis of their
exact names only or on the basis of their attributes.
For example, one might want to tell the system to
“fetch the paper written by Alan Turing about intel-
ligence test.” The World Wide Web’s naming scheme
had the goal of uniquely identifying all objects stored
on the computers on the Internet. The naming scheme
is based on Uniform Resource Locators (URLs) which
are composite names identifying the computer (IP ad-
dress), the document in the file system of that com-
puter, and a protocol with which to communicate with
that object. URLs are now defined as a standard in
IETF RFC 1630.

HTML The documents on the Web are written in the Hy-
perText Markup Language. HTML documents con-
tain content to be displayed, formating instructions that
tell the browser how to display the contents of the
document, and links to other documents. HTML has
evolved along with browsers to achieve better visual
presentations and standardization.

Initially, HTML was viewed as a language for instruct-
ing browsers what to display for humans. But as the
number of documents written in HTML has grown,
and as many applications started to generate HTML
documents, computer processing of HTML documents
became important. The extended markup language
XML was created to standardize the definition of other
specialized markup languages. XHTML is an XML
compliant HTML which has become the dominant
variant of HTML.

Currently, the Web Hypertext Application Technol-
ogy Working Group (www.whatwg.org) is working on
defining an evolutionary path for HTML and recon-
ciling the discrepancies between XHTML and HTML.
Other groups such as W3C are working on XHTML as
a standard.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

HTTP The communication protocol for the Web is the
HTTP (See IETF RFC 2616) protocol. HTTP is a
simple request-reply protocol. It defines eight ba-
sic operations: OPTIONS, GET, HEAD, POST, PUT,
DELETE, TRACE, and CONNECT. The most used of
these operations or methods are GET and POST. The
method GET retrieves from a given URL the data as-
sociated with the requested URL. The method POST
sends data to the program listening at the specified
URL.

These simple concepts have proven to be surprisingly
powerful. Application developers have found ingenious
ways of using URLs to name a variety of things and not
only documents. For example, one of the early ideas was
to use the URL to name a program to execute on the server
which would then produce output that would be returned to
the client. Likewise, documents are used not only to contain
information to be displayed by the browser but to contain
code scripts to be executed (either in the browser or on the
server). A whole array of languages have been created to
write code to be executed by the browser (e.g. JavaScript) or
on the server (e.g. PHP). Web applications take advantage
of a variety of languages and design patterns to combine the
capabilities of clients and servers.

3. Software Engineering and Web Applications

Software engineering was born in 1968 as a vision of
taming the software development difficulties encountered in
the 1960s. The early large software development projects
were running into trouble, overspending their budgets and
overextending their development schedules. Many projects
were being abandoned because regardless of the amount of
added resources, they were not making progress. It was
becoming clear that large monolithic software, which was
the only kind of software being built, had many limita-
tions. Such software could not be extended beyond a cer-
tain size, could not be maintained, and therefore rarely met
customer expectations, assuming it could be delivered in the
first place. Software engineering promised a systematic ap-
proach to software construction based on modular designs,
standard software components, and defined processes. This
vision of software engineering is becoming more real as the
years go by.

Web application development followed a history simi-
lar to software engineering but at a much more rapid pace.
Early Web applications consisted of many scripts scattered
over many files and lacked a systematic structure. Content,
formatting instructions, processing instructions (referred to
as application or business logic) were mixed together in
the same file. Perhaps because Web applications are nat-
urally distributed, however, they accepted and incorporated

the concept of individual components that can be composed
to build applications much more easily. Web applications
commonly use standard components such as payment or
registration modules. In this section, we look at several as-
pects of Web applications that are closely related to soft-
ware engineering issues.

3.1. Static to dynamic

The early Web consisted of a set of documents which
could freely link to each other. These were simple text
files, which had static content and static links connecting
to pages. Very early on, software engineers realized that the
client-server architecture of the Web provided a powerful
platform in which the browser could be a universal user-
interface to applications that may run locally or remotely
on a server. To maintain the browser-sever relationships,
the server always returns a Web page to the browser, but
this Web page could be generated programmatically as the
result of processing on the server. For example, the server
could retrieve data from a database, format them into an
HTML page, and send the page to the client.

The idea of processing on the server and dynamically
generated pages led to CGI (common gateway interface) ap-
plications, where the URL provided by the client referred
to a “script” on the server. The script could be written in
some specialized interpretive language such as PERL or
even large compiled programs that would be run on the
server to dynamically generate Web pages. This became
cumbersome for many applications, because putting all of
the content and formatting for a Web site into the code of
an application, as software engineers know well, can be-
come tedious and hard to manage. This realization led to a
sort of hybrid model, where the language PHP was an early
influence. With PHP, the typical structure is to create Web
pages that have small bits of code directly in the text of the
pages. At the time of a request, the code would be executed
and its results inserted into the current document. This led
to much more flexibility and easier reuse of page compo-
nents, but over time people realized that it was often hard
to make changes to code when it was spread out over all of
the pages in a Web site. This led to a further refinement of
the model, into what is typical in today’s Web applications,
where a central component in the application manages ac-
cess to data, while the code which is dispersed in the HTML
pages is limited to just what is displayed to the user (See
next subsection).

The typical structure of a Web application consists of
HTML data displayed to the user, client-side scripts that
run on the client and may interact with the user, and server-
side scripts that perform processing on the server and typi-
cally interact with databases. ECMAScript is the standards
specification of an object-based scripting language intended

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

for client-side scripting (ECMA-262 and the equivalent
ISO/IEC 16262). JavaScript (from Netscape) and JScript
(from Microsoft) are implementations of ECMAScript.
There are many languages for server-side scripts, includ-
ing PERL, PHP, Python, and Ruby. Client-side Web scripts
are embedded in HTML pages, run in the browser envi-
ronment, and may provide interaction with the user. The
objects in the script refer to user-interface entities such as
windows and menus, or cookies. Scripts also react to user
events such as mouse movements and clicks. Server-side
scripts deal with other types of objects such as clients and
files. The combination of client and server scripts provides a
distributed computation that helps to build customised user
interfaces for Web applications.

There are a number of frameworks for generating Web
applications based on Web-based languages. We will dis-
cuss these in the next subsection.

3.2. Design and development of Web appli-
cations

From the software engineering point of view, the con-
cerns of many Web applications are similar: they have a
user interface, based in the browser, that interacts with the
user, and they manage a possibly large amount of data,
stored on the server, on behalf of the clients. It took a num-
ber of years before Web developers realized that the stan-
dard MVC pattern, well-known in software engineering, ap-
plies just as well to such Web applications. Once this real-
ization was made, a number of frameworks have been de-
veloped to support the design and development of Web ap-
plications on the basis of the Model-View-Controller [20].
In the context of Web applications, the model is typically a
set of object oriented classes to interact with the data store
(usually a database), the controller contains the logic of the
application or processes, and the view is a script which gen-
erates an editor (in our case, HTML pages). The controller
is also responsible for preparing the data from the model for
the view to be created. The controller creates the views and
responds to queries made from the views.

A plethora of component-based Web engineering
methodologies are now available [11, 18], supporting
object-oriented composition [10], exploring aspect orienta-
tion and context-dependency [3], and searching for patterns
using UML [1, 2]. Recently, more robust and agile frame-
works have appeared in different programming languages,
many of them based on the Model View Controller design
pattern.

Ruby is a dynamic object-oriented programming lan-
guage [23] that has become popular for writing Web appli-
cations. It supports the writing of complete programs and
scripts that can be embedded in HTML files. It has an ac-
tive community that has created many lightweight solutions.

One of the best-known of these is Ruby On Rails[24], a
framework for Web application development based on the
model view controller pattern. To this, it adds a set of pow-
erful functionalities such as scaffolding, active record, mi-
grations, routing, environments, and many helper functions.

The scaffolding is a Ruby on Rails facility through which
the developer uses scripts to generate the first version of
an application. The scaffolding generates models, views
and controllers as needed based on user-defined database
schema. The framework supports an agile development
methodology[4]. With the help of scaffolding, you start
your application with a basic set of files which give you
the essential operations on your model, namely: show, edit,
create, update, and delete. These are colloquially referred
to as CRUD (create, read, update, delete).

ActiveRecord is a library which allows the developer to
interact with the backend database by managing only Ruby
objects, making the development easier as the developer op-
erates completely in the Ruby environment, without explic-
itly using the SQL(Structured Query Language) language.
ActiveRecord is Ruby’s way of providing object-relation
mapping to the developer. Object-relational mapping is sup-
ported by many frameworks.

Migration is a way of managing the database schema by
a set of Ruby classes. Changes in the database schema dur-
ing software maintenance are automatically supported by
migration.

The routing facilities of Rails maps a URL query to the
desired controller and action to handle the query.

Rails provides three environments by default: develop-
ment, testing, and production. These different working en-
vironments simplify the work on the same code at different
stages of implementation in parallel. Further, deployment
on different servers, with different databases and operating
systems are specified once and handled automatically by the
framework. Rails thus separates the application develop-
ment and deployment processes explicitly.

Popular programming languages are now supported by
their own Web application frameworks. J2EE is the Java
Web application framework which evolved into a Model
View Controller with the introduction of Struts. Struts is
an open-source framework of the Apache Foundation. Its
views system is implemented by Java Server Pages (JSP),
controllers and models are typically Java Beans or Java
Servlets.

Seaside is a powerful framework that extends the power,
flexibility, and simplicity of Smalltalk to Web application
development. Django is based on Python.

The common characteristic of these frameworks is that
they support the model-view-controller, object-relational
mapping to map databases to programming language ob-
jects, and generators for creating routine parts of the appli-
cation.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

The current generation of Web languages and frame-
works reflects the frenetic pace of technological develop-
ment in the area. New languages and frameworks are cre-
ated and enhanced with new features to match newly avail-
able technologies or user requirements. In the traditional
programming language world, there was a period of con-
solidation once every decade or so during which a new lan-
guage would emerge that reflected the results of experience
with different earlier languages. No such consolidation has
occurred yet in the Web area.

3.3. Releasing a Web application

One of the reasons for the popularity of Web applications
among developers is the ability to release a version without
having to distribute and install the new version on client
computers. The browser acts as a universal client and the
application exists only in one copy on the server. Managing
releases is a laborious and expensive part of traditional soft-
ware engineering. The situation is dramatically different for
Web applications.

In a desktop application, adding features and fixing bugs
requires either a new version to be installed or a patch to
be applied. This upgrade process is cumbersome and ex-
pensive. Users have to be notified of the availability of the
update; they must apply the update; the update may inter-
fere with other applications on the client, for example by
installing an incompatible version of a shared library; the
provider of the application never knows if all the clients
have applied the update: at any given time, different clients
may be running many different versions of the application.
With Web applications, where the application exists in one
copy only, all of these problems disappear. Features and bug
fixes can be added to a running application by the developer
as soon as they are ready, and instantly all users will have
access to the upgrade. This allows developers to focus on
improving the application rather than dealing with complex
maintenance and upgrade issues, and it benefits application
users because they get immediate access to the latest version
of the software.

Web application development is therefore more open to
agile methods because even small units of functionality may
be made available to users instantly rather than having to
be bundled with other functionality subject to an arbitrary
release schedule. As opposed to desktop applications that
may have release cycles of several months or even years, it
is not unusual for Web applications to be updated several
times a day. This move to centralized applications reverses
the trend towards distributed computing that was motivated
by the spread of personal computers in the 1980s. Clearly,
some applications are better suited to being centrally pro-
vided as a service rather than being installed on every desk-
top computer on the planet. For example, as personal com-

puter applications such as word processing have become
more and more complex, for many users it is more pro-
ductive to access a central server for these services. Today,
you can manage your calendar, mail, to-do lists, photo al-
bums, word processing, spreadsheets, and bookmarks with
the help of Web applications. Once your data is stored on a
central sever, sharing and collaboration becomes much eas-
ier to do. Another major problem of distributed processing,
backing up of dispersed user data also becomes much sim-
pler when the data is centrally located.

3.4. Deployment

Where do Web applications run? The server environment
can be proprietary or open source. Web application devel-
opment has been driven by a move towards open source
and standardized components. This trend has spread also
to the server environment where Web servers run. Consid-
ering that there are many small organizations, small com-
panies and non-profit organizations, that run their own Web
servers, there is both business reasons and technical reasons
for the move to open source. The standard, bare-bones, Web
server environment is commonly referred to as LAMP. Each
of the four letters in LAMP stands for one component of the
environment. The components are:

• Linux for the operating system;

• Apache as the Web server;

• MySQL as the database server;

• Perl or Python or PHP as the language.

More generally, LAMP is deployed in a three-tier ar-
chitecture. The client is represented by a standard Web
browser. The middle tier is an application server that it-
self contains several levels of software: operating system,
which is usually Linux or FreeBSD; a Web server, which
is usually Apache or Lightttpd; an interface software that
implements a CGI, which is now usually FastCGI; and fi-
nally languages for implementing applications, which are
now commonly PHP, PERL, Python, or Ruby. The database
layer may host an open source database manager such as
MySQL, PostgressSQL, or SQLLite.

This standard environment can be put together relatively
easily and cheaply. It is sufficient for many types of Web ap-
plications. More sophisticated applications, however, rely
on proprietary software platforms. In the Java world, much
software is available including JDBC, EJB, Java Beans, and
especially, J2EE, which is a sophisticated framework for de-
veloping transaction-oriented database applications.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

4. Modern Web applications: examples

Early Web applications offered mostly textual user in-
terfaces and limited interactivity. Today’s Web applications
offer rich interfaces, are interactive, and support collabo-
ration among users. Here we examine several applications
that represent the current generation of Web applications,
sometimes collectively called Web 2.0.

4.1. Google docs

Google docs and spreadsheets is a recent service offered
by Google that provides the traditional word processing and
spreadsheet functionalities as a Web application. They are
streamlined services that support the most often-used fea-
tures and do not support many features that are offered
by commercial word processors. The interface looks very
much like a typical desktop application. The user does not
have to press a submit button after every change (a hallmark
of the first generation Web applications). The user’s data is
automatically saved in the background. You can even drag
a piece of text in the window.

In addition to the usual word processing features, Google
docs offers features that are associated with Web 2.0. A
document may be shared with other users so that different
people may collaborate on editing it. Naturally, the docu-
ment may be searched using keywords. Additionally, doc-
uments may be tagged with terms the user chooses so that
documents may also be searched for based on tags. Docu-
ments may be saved in a variety of formats (on the Google
servers) and mailed to other users. Other users may be given
read-only or read-write access to the document.

Tagging and collaboration are two features common to
modern Web applications. (On-line word processing was
initially offered by Writely, a company that Google ac-
quired.)

4.2. Del.icio.us

Del.icio.us is a Web application that helps users manage
and share their bookmarks. As the amount of information
on the Web has grown, it has become more and more dif-
ficult to keep track of the information you find and want
to remember for future reference. The bookmark feature in
browsers was intended for this purpose but it has limited
functionality. Del.icio.us lets users store bookmarks and
tag those bookmarks with user-defined terms. The tags are
therefore available to the user from anywhere on the Internet
and they make it easier to search for bookmarks. Further, by
sharing bookmarks and tags, users can help each other find
related Web pages. The system can also suggest tags that
other users have applied to the same document, thus giving
the user ideas on how to classify a document.

Bookmarking sites such as Del.icio.us attempt to ad-
dress the fundamental problem of the user’s needs to mas-
ter the enormous amount of unstructured data available on
the Web. Bookmarks, hierarchically organized bookmarks,
bookmarking sites, search engines, ant tagging are all dif-
ferent solutions to this problem.

4.3. Wikipedia

Wikipedia has become one of the most popular sites
on the Internet. It is used by many as an authoritative
source of information, from finding definitions of techni-
cal terms to explanations of current events. The key feature
of Wikipedia is that its content is produced by users. Any-
one can add or edit the information on Wikipedia. In con-
trast to a traditional printed or on-line encyclopedia that em-
ploys professional editors and writers to produce and struc-
ture and authenticate its content, Wikipedia relies on social
structures to ensure the creation and correction of its con-
tent. The vast numbers of users of the Internet form a large
pool of potential volunteers. The Wikipedia is updated con-
stantly rather than following the multi-year release cycle of
a traditional encyclopedia.

An innovative aspect of the Wikipedia application, con-
sidered a characteristic of Web 2.0 applications, is that it
provides a platform for users to collaborate to create a valu-
able product. What makes Wikipedia valuable, its content,
is indeed produced by the users themselves. This aspect cre-
ates what is called the network effect: The more users there
are, the more useful the product becomes. Amazon already
introduced early forms of user collaboration to enhance the
product by encouraging users to provide book reviews.

Wikipedia is based on the conept of a wiki, described
later.

4.4. Flickr

Flickr is a photo sharing site where users store their pho-
tos and tag them for future retrieval. Further, users may
tag any of the photos on the site that are available publicly.
Similar to Wikipedia, Flickr is a site that would have noth-
ing without its users. As more and more users participate,
the volume of content grows and tags allow photos to be
found easily.

4.5. MySpace

MySpace is a site for social networking. A user registers
and creates a profile detailing his or her or its characteristics
(Profiles exist for animals and companies and products, pre-
sumably created by real humans). Each user’s space is open
to be visited by other users. Users seem to enjoy sharing

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

all kinds of information about themselves and to commu-
nicate and interact with other users. The basic thesis that
makes MySpace work is that people like to interact with
other people. MySpace provides a platform for social inter-
action, albeit in virtual space. Users have populated MyS-
pace with a variety of multimedia documents including im-
ages and videos. The site constantly changes its appearance
to maintain the interest of its users.

4.6. Blog Systems

According to Wikipedia, “A blog is a Web site where en-
tries are made in journal style and displayed in a reverse
chronological order.” A fundamental feature of blogs is that
it creates the ability of readers to interactively leave com-
ments for others to see and comment on. Blogs (Web logs)
first appeared on the Blogger.com system. A blog is a Web
site managed by the user; content is added by “posting.”
These posts are often organized in categories and can be
commented on by other users. The traffic on blogs is in-
tense and bloggers often cite other blogs within their posts.
Blogs therefore have very high link density. As of 2006,
there exist over 60 million blogs on the Web.

Closely related to blogs is the concept of dynamic data
feeds. Recently, the very primitive syndication scheme of
RSS, which requires polling Web sites for updated XML
content, has taken off among consumers. Many blogs use
RSS to notify their readers of changes in the blog. Aggrega-
tor applications merge different RSS feeds to produce sites
with richer content. One area of society that has been af-
fected by blogs is news publishing. Blogs as a phenomenon
has changed the traditional form of news delivery. Blogs
offer a different paradigm than the traditional printed news-
papers. They enable a new model for society to access up to
date information about what is going on in the world, albeit
without the newspaper’s editorial process.

4.7. Wiki Systems

Wiki systems are a form of content management system
that enable a repository of information that may be updated
easily by its users. Wiki systems such as wikipedia.org are
similar to blogs in principle as they are based on user partic-
ipation to add content. The fundamental element of wikis is
pages as in typical Web sites, as opposed to blogs in which
basic elements are posts (which can be displayed together
within the same pages). Wikis allow users not only to read
but also to update the content of the pages. The underlying
assumption is that over time the wiki will represent the con-
sensus knowledge (or at least the opinions) of all the users.
As blogs, wikis exhibit high link density. In addition, wikis
have high linking within the same wiki as they provide a
simple syntax for the user to link to pages, both to exist-

ing pages and to those yet to be created. Many wikis also
provide authentication and versioning to restrict editing by
users and to be able to recover the history.

4.8. Key components of modern Web appli-
cations

Studying these emerging applications, some features
stand out as key common principles.

• Search

• Tagging

• User participation

• User interaction and collaboration

Indeed, these features have become standard compo-
nents in modern Web applications. Searching and tagging
are mechanisms to help users find their way through the
mountain of information on the Web. Tagging helps struc-
ture the data so that searching can become more person-
alized and customized. User participation is used both to
create and to structure the data. Finally, enabling user inter-
action and collaboration is the final goal of many tools. An-
other common component that supports collaboration and
interaction is a buddy system which alerts users when their
social contacts are on-line in real-time. This feature first ap-
peared in instant-messaging systems and is now present in
such applications as Google Mail and Skype.

We expect to see these features to become the abstrac-
tions provided by a new kind of Web-oriented middleware.
The common thread in all these applications is the impor-
tance of content/data. A Web 2.0 motto is that the distin-
guishing characteristic of an application is no longer the
computer processor or the operating system or the database
but the content of the data store. As a result, there is a need
for tools and policies to produce valuable data, provide ac-
cess to the data, and mechanisms for data-interoperability.

5. Future Web developments

Semantic processing is the holy grail of computing. A
main goal of computing is automation and to automate a
process, we need to first understand it and then to specify it
precisely. In programming language processing, the defini-
tion of syntax and its processing was attacked successfully
relatively early on (1960s) but semantic definition of lan-
guages has continued to challenge researchers. Natural lan-
guage processing and speech understanding have similarly
been facing challenges in semantic processing. The Web
in general, and Web applications in particular, also face the
challenge of assigning meaning to the vast amount of data
stored on the Web and its processing.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

Currently, we consider the Web to contain a collection
of documents in different formats. For example, the most
successful application on the Web, Google search, does a
“simple” textual search without any attention to the context
or meaning of the text being searched. The task of semantic
processing is left to the human user. But as the amount of
information on the Web increases, we will need more and
more to rely on computer processing of the information and
this will require assigning semantics to the content on the
Web. The semantic Web is one of the major efforts in this
area. Just as XML has standardized the structural defini-
tion of data, the goal of the semantic Web is to standard-
ize the semantic definition of the data. If the data on the
Web is semantically defined, we may expect to see a whole
semantically-oriented generation of Web applications such
as semantic search and semantic Wikis.

5.1. Ontologies and folksonomies

Assigning semantics to the enormous amount of data
on the Web is a daunting task. Even if we optimistically
assume that once we have a standard semantic definition
method all the newly defined data will adhere to it, there
is still the problem of managing the semantics of the data
already existing on the Web. This is the legacy problem of
the Web. There are two types of approaches to the semantic
definition of the Web data. The ontological approach relies
on a top down (imposed) approach of defining ontologies
that are used to classify data. For example, a tourism ontol-
ogy may define classes such as lodging, price, season, tour,
package, etc., each of which may further be defined in terms
of subclasses. Thus, a program looking for a tour package in
low-season in Paris may automatically search for and query
the data. This approach requires the definition of standard
ontologies which begs the question of who defines the on-
tologies and how is agreement reached on the “correctness”
of these ontologies.

Another approach to semantic definition of Web data is
based on so-called folksonomies. This approach is bottom-
up and driven by users of the data who may tag the data
according to what they view to be the semantics of the data.
As many users continue to tag the data, a structure emerges
that reflects the consensus of the users about the relation-
ships of the data items and their relevance. This structure
in general will be neither consistent nor hierarchical as an
ontology and it may not necessarily reflect the wishes of
the owners of the data. But it may be a more accurate de-
scription of the unpredictable and unstructured information
on the Web. This approach requires suport for tagging of
information. Collaborative tagging[12, 15] (as opposed to
personal tagging) refers to the process of many users tag-
ging the same data and using the combination of the tags
for interpreting the meaning of the data. One consumer of

the tagging data is other users. But we can imagine that
eventually computer programs may also be able to use these
tags. The work in [16] attempts to define the semantics of
collaborative tagging as an example of how such processes
may be specified to enable, among other things, automated
processing of Web data.

The task of tagging all the available data is non-trivial.
Some of the popular sites that have many visitors may be
able to rely on the visitors to tag their data. The less popular
sites, however, cannot count on the random user to tag the
data. Even in the popular sites, the amount and kind of
tagging will be uneven and unbalanced, depending on the
whims of the visitors. If tags are to be relied upon seriously,
a more systematic process of tagging is necessary. One way
of doing this is to provide incentives to users to actively tag
the data. An interesting approach used by von Ahn [25]
is to involve the user in a game in which, to win, the user
must tag as much data as possible. Engaging the millions of
users of the Web to all work on this task helps to make the
problem more manageable.

Even though in many discussions the two approaches of
ontologies and folksonomies are contrasted as alternative
approaches, we can clearly combine the two approaches in
fruitful ways. One way would be to use tagging initially
as a way to collect user input for constructing an ontology.
Another is to consider tags as user requests for enhancing
and evolving an ontology.

5.2. Technical trends in Web applications

The client-server paradigm has served the Web well. Ini-
tially, the idea was that the browser is a “thin” client and all
the processing is done on the server. The server responds
to the browser requests and each time that it computes what
the client requested, it sends the results back to the client to
be displayed. The task of the browser was only to interpret
and display HTML content. But as Web applications started
to perform more functions than simply retrieving data to be
displayed, the total reliance of the browser on the server be-
came a problem, leading to unresponsive applications. For
example, if the user fills in a form, hits the submit button,
and waits for the browser to send the form to the server to
validate the information in the form, the user pays the price
of network latency and the server has to spend processing
power on something that in many cases could be done bet-
ter by the client computer. Such observations led to adding
more capabilities on the browser side. One of the first steps
was JavaScript which supports sophisticated client-side pro-
cessing by the browser. JavaScript has grown into a rela-
tively large language that allows the client to perform many
of the functions that were earlier done by the server and to
provide a high degree of interactivity to the application.

Regardless of how much work is off-loaded to the

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

browser, the latency problem still exists when the browser
has to wait for large amounts of data to be delivered by the
server. Caching was the obvious first solution to this prob-
lem. Even early browsers had the possibility to cache some
data. Caches were also used for local area networks to serve
all the users on that network. But with the growth of mul-
timedia data, the network latency and bandwidth problems
called for other solutions. Content delivery systems were
pioneered by Akamai Technologies to reduce the network
costs of multimedia delivery. Akamai servers are located
around the world and store multimedia content for their
(company) clients. For example, CNN’s images or videos
would be stored on Akamai servers. When a (user) client
accesses the CNN site, the multimedia URLs are converted
to refer to the data at a location closer to the client.

One technique that has allowed browsers to provide more
responsive operations to the user is to push some of the
client-server communication to the background while the
browser still provides interactivity to the user. AJAX (Asyn-
chronous JavaScript and XML) refers to a set of techniques
that do exactly this. As opposed to the synchronous commu-
nication of the original HTTP, AJAX uses an asynchronous
protocol for client-server communication. The browser reg-
isters a set of call-backs for the server to use for updating
the browser’s data in the background. This technique has
allowed applications to provide highly interactive services.

We expect to see continuing trends in browser sophisti-
cation and network delivery mechanisms. In the next two
subsections, we review likely future developments.

5.2.1 Browser trends

Programming languages used for building Web applications
encode the accumulated wisdom of the community about
the best ways to build such applications. Over time, ap-
plication trends and features influence new generations of
programming languages that ease the development of more
advanced features. Early Web languages, such as PERL,
PHP, or JavaScript were aimed at supporting primarily the
browser or the server. More recent languages such as Ruby
are general purpose and cover the whole range of browser,
application logic, and server functionalities.

Recently, untyped, dynamic languages (such as Ruby)
have become more popular for Web development. This
trend will probably continue as processor speeds increase
and language implementations become more advanced.
Such languages free the programmer from dealing with ma-
chine and operating system specific details so that the logic
of the application becomes the focus of development.

The programming language or languages which enable
next generation Web applications are important. Equally
important is the environment in which they operate, the Web
browser. The browser provides an execution environment

on the client for Web applications to run. What was once
a simple interpreter of simple text files with small bits of
markup has now become a sophisticated rendering engine
and application platform. Web browsers have become the
primary operating environment for (Web) applications, pos-
sibly portending a paradigm shift in software deployment.
For such a shift to occur, however, the following challenges
must be overcome.

The browser has been the focus of much development in
the Web community. The long term functionality included
in the browser environment will most likely be driven by the
most common applications run in the upcoming generation
of dynamic Web applications. We can, however, already
envision a number of basic developments.

For many reasons, including security, Web browsers
have traditionally been given limited access to the local re-
sources on the client computer. As we have said previously,
the idea was that the main functionality of the application
was on the server and the browser only had to provide a sim-
ple GUI interface to the user for accessing the functionality
on the server. The inability of the browser to take advantage
of local resources, however, is a hindrance to many Web
applications. Cookies, which have been the only mecha-
nism to store information within the standard browser en-
vironment, are a very limited form of key-value storage.
Starting with the Flash plugin and then implemented na-
tively in Internet Explorer, in the latest browser cookies
have been augmented to allow for the storage model pre-
sented in WHATWG [26]. In this model, applications can
store structured data with a key-value interface, but unlike
cookies, the data is not sent to the server on every page re-
quest. In the new storage model, this session data or global
data always resides locally with the browser, and scripts
running within the client can explicitly access the data. This
is expected to ease many of the subtle difficulties with ses-
sion management in Web applications, and it will allow a
number of new application models to surface.

Another aspect of browser technology that will con-
tinue to improve the capabilities of Web applications is the
graphics sub-system now included in many browsers. The
canvas tag, first introduced by Apple in the Safari browser,
is now a WHATWG standard that has been included in Fire-
fox [7] and Opera. This block level HTML element pro-
vides client side scripts with a vector based 2-dimensional
drawing context similar to the typical postscript or pdf
model. This in-browser graphics environment gives Web
applications flexibility in creating content that was once
limited to server side generation. Spreadsheet charts and
graphs, for example, can now be generated in the browser
environment for greater interactivity as well as offline dis-
play and manipulation. This canvas is the beginning of
moving what were once system level libraries into the
browser environment.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

We can foresee two obvious extensions of this trend.
The first is a 3-dimensional graphics context and the sec-
ond is canvas item-based event handling. Including support
for a hardware accelerated 3-dimensional rendering context,
which is hinted at in both the WHATWG specification and
the Firefox roadmap, would turn the Web into a true 3D
environment. Currently, the canvas widget produces an ele-
ment that is equivalent to an image in the page, but more fine
grain event handling would allow for the creation of more
dynamic content such as custom interface components and
interactive games.

5.2.2 Network infrastructure

As we have seen, there is a trend to move some desktop
applications to the Web. If the desktop-to-Web trend is to
continue, a major challenge will be the need for a perma-
nent Internet connection or the ability of the application to
deal with intermittent connectivity to the server. In order to
address this issue, the WHATWG has also been standardiz-
ing on a set of events which can notify running applications
of the network status. This would allow a spreadsheet, for
example, to store the most recent data locally so that once
connectivity is restored, it can ensure that no data will be
lost. Furthermore, by notifying an application that it will
be taken offline, both data and application logic could be
stored locally so that at least some aspects of a Web applica-
tion might be continued without access to a network. In this
model, the Web becomes an application deployment mech-
anism and browsers an execution environment, as opposed
to just a data surfing application.

The increasing use of RSS has gone hand in hand with
the rapid growth of decentralized media production over the
Internet. As we have seen earlier, blogs have created a new
paradigm of news delivery. But the current method of first
posting data to a Web site, and then having users poll for up-
dates to the data, is really the only feasible way to distribute
content to a large number of people. To address the scalabil-
ity problems of this method of data distribution, an obvious
approach is to exploit a peer-to-peer distribution scheme.
BitTorrent is probably the most popular peer-to-peer file
distribution protocol and it can be used for this purpose.
BitTorrent allows any number of clients to simultaneously
download a piece of content by creating a large, amorphous
sharing tree. Both the Opera and Firefox [17] browsers are
working on integrating this peer-to-peer download protocol
so that torrents can be seamlessly downloaded from within
the browser. This is the beginning for peer-to-peer (P2P)
integration in the browser. In future browsers or browser
plugins many other types of P2P services will be integrated.
Data that was once published at a single, centralized Web
server will move onto distributed P2P networks that allow
for fast data access and better scalability.

Besides fast access to Web data, Web applications also
need large amounts of storage. We expect to see public
storage servers that are available to Web applications. One
example of a recent service which acts as an example of 3rd
party data source is the Amazon Simple Storage Service, or
S3. In S3 Amazon provides its global storage network as
a general purpose tool for any Web developer with scalable
storage needs. With a simple Web services interface, which
can be accessed by either a server application or a browser
script, data can be stored and retrieved from the S3 service.
Other such storage services are becoming available on the
Web with simple Web service APIs. Some cost nominal
amounts and others are even offered free of charge.

5.2.3 Fat clients versus device independence

We have discussed the trend towards supporting fat clients.
The motivation is to enable the client to appear to provide
as much functionality as possible to the user without having
to communicate with the server. This trend is supported by
the introduction of ever-more powerful personal computers.
However, a countervailing trend is the ubiquity of the Web
as an application and operating platform. This trend implies
that more and more devices, from cell-phones to navigators
may act as Web clients. Such clients are more suited to
being thin clients than fully equipped personal computers.
It is likely that the trend for the Web to reach out to a wider
variety of devices will be a stronger trend, implying that
Web applications will have to deal with a range of client
capabilities.

Client capabilities will span ranges in the processing
and storage capacities, (battery) power, in network trans-
mission speeds, and even network connectivity characteris-
tics. Some clients may be expected to be connected contin-
uously, others only intermittently, and yet others may move
from network to network. For a Web application to be able
to handle all ranges of client devices is a significant design
challenge. In addition, some devices of limited processing
capability may bring their own unique features that may be
exploited by the application. For example, personal devices
such as cell-phones make it easier for the application to de-
termine the user’s location and context and thus to provide
personal and customized services. Personalization, in gen-
eral, is a goal and major challenge for Web applications that
serve millions of users.

Early work on device independence (e.g. [14, 13]) for
Web applications only considered the client’s display capa-
bilities. The situation has become considerably more com-
plicated with the increasing capabilities of Web applica-
tions. The current idea of “Internet of Things” will stim-
ulate developments in device independence.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

5.3. Social Semantic Desktop

An interesting current approach is to combine the se-
mantic Web with peer to peer communication. This is the
case of the social semantic desktop [8] of which Gnowsis
is an implementation [22, 21]. The social semantic desk-
top is an extension of typical operating systems which aims
to bring to the desktop a “semantic” view of the file sys-
tem and a collaborative infrastructure for different desktops
to inter-communicate. Such an infrastructure is intended to
support new applications in social networking, knowledge
work, community management and discovery, file sharing,
information discovery, knowledge articulation and visual-
ization. Such a social semantic desktop is supported by on-
tologies that define the structure and relationships of infor-
mation on the desktop, semantic-oriented wikis for main-
taining and sharing information and a P2P infrastructure for
communication among the desktops.

5.4. Sites to services

Another trend that is changing the way Web applications
are built is the exploitation of Web services. A web ser-
vice is a piece of functionality accessible over the Inter-
net with a standard interface. The message format is en-
coded with XML and services are invoked with a remote
procedure call style (RPC). The service is viewed as an ob-
ject that provides interfaces to access its methods remotely.
Many Web sites now offer not only their own application
services to human users but also offer them as web services
so that programs (e.g. other Web applications) can access
the services automatically. Web services make it possible
to build applications by composing services from many dif-
ferent Web sites. For example, Google search facilities or
Amazon book databases may be accessed through Web ser-
vices and thus be offered as components or basic features of
Web applications.

The use of Web services to construct Web applications
holds the promise of fulfilling many software engineering
goals such as component-orientation and reuse. In the con-
text of Web applications, component-orientation is indeed
a powerful notion since components can provide services
ranging from highly specialized to very generic. For exam-
ple, the search service offered by Google is rather generic
but the Google maps services offer access to data that was
expensive to collect and required the use of satellites not
available to every Web developer.

Google and many other data intensive sites, such as
Amazon and the photo sharing site Flickr, are also provid-
ing Web developers with API’s which allow for remote ac-
cess to data and images. This allows 3rd parties to create
new applications on top of this data, and it gives immense
flexibility to users because their data is easily accessed from

anywhere in the world with a browser and an Internet con-
nection.

The combination of the semantic Web and Web services
can indeed go a long way towards automated processing of
Web data.

5.5. Protocols for accessing services

The HTTP protocol supports the accessing of an object
on a server identified by a URL. As the level of sophis-
tication of the object is increased to be a service, do we
need a more sophisticated protocol for accessing it? This
is currently an issue that faces Web application developers.
There are two current alternatives being debated commonly
referred to as REST and SOAP.

REST [5, 6] (Representational State Transfer) suggests a
modest addition on top of HTTP. It uses HTTP as the proto-
col and URL as the naming mechanism. The only addition
is to use XML for packaging messages. REST was first in-
troduced at ICSE 2000. The idea of REST is to rely on the
existing Web infrastructure.

SOAP (Simple Object Access Protocol), on the other
hand, is an elaborate set of standards being developed to
address all aspects of applications including security and
transactions. SOAP, which was initially offered as a sim-
ple XML-based RPC mechanism, has grown to refer to the
whole set of Web Services standards being developed by
W3C. It attempts to be general and all-encompassing. For
example, it does not prescribe a particular protocol such
as HTTP. It leaves the choice of the protocol to be used
to the application, based on the argument that the applica-
tion knows best. It also provides a separate security service
as opposed to REST which simply relies on the standard
HTTPS. In general, REST relies on existing standards and
is thus more supportive of inter-operability.

At the heart of the debate is whether relying on open
standards is enough (REST) or application developers need
the option to step outside the standards when necessary
(SOAP). The former approach favors inter-operability and
the latter favors flexibility. On the basis of this argument,
it appears that SOAP might be more suited for Intranet ap-
plications in which one (in principle) has control over the
environment. In the open environment of the Internet where
inter-operability is essential, REST seems to be more suited.
The debate will probably go on for a number years. The
current status is that REST is simpler and available and thus
used by most applications.

On the other end of the spectrum of inter-operability,
OSGi (Open Services Gateway initiative) is defining open
standards for a service layer on top of Java JVM. It pro-
vides for inter-node and intra-node communication among
services.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

6. Open issues

The World Wide Web has been not only a technological
invention but also a cultural phenomenon. The open avail-
ability of the Internet means that Web applications have a
potential user base that is large and varied in all aspects such
as age, nationality, technical literacy, and so on. Thus, un-
like desktop applications, Web applications can have socio-
logical impact. Unlike in traditional software engineering,
the users are engaged and feedback to the developer may be
immediate. On the other hand, early requirements engineer-
ing for emerging applications is not really possible as many
of these applications create an idea and grow along with
their users’ requests. From a software engineering view, the
user can help in evolving the requirements in very signif-
icant ways. The agility of Web application development,
combined with the fact that all user interaction with the ap-
plication can be monitored, means that applications can be
frequently released, both to improve the user experience and
to keep the user engaged.

The heavy involvement of the user has other implica-
tions. First, the applications can have significant impact
on the users’ life. Second, the application and the users
can work in a symbiotic relationship to produce value for
society. We will discuss examples of both of these in this
section.

6.1. Automation and humans

Advances in computing make it possible to increasingly
automate processes that were once carried out by humans.
For example, with the increasing use of software agents
many tasks can be automated, leading to efficiencies of op-
erations and productivity improvements. With the close in-
teractions between users and Web applications, humans of-
ten become participants in these automated processes. The
pervasiveness of the Web means that successful Web appli-
cations can have tremendous, sometimes unintended, social
implications. For example, when humans are part of the
process, we face natural limits of human performance. We
can increase computer efficiency, requiring more and more
interactions with humans. Indeed, as more tasks are auto-
mated, we can view the human-computer interaction as the
computer generating tasks for humans. Here is a personal
example.

On Jan. 1, 2007, I received an email requesting me to
write a reference letter for a colleague who had applied for a
faculty position at a university. The email was automatically
generated by the university’s recruitment Web application. I
assume that once the candidate’s application was complete,
the application generated the email requests to the candi-
date’s references. Computers are capable of generating lots
of such tasks for us. The trend is towards overloading the

human users with more and more tasks. While we have
tools to detect thrashing of computer processes, we have no
such tools to detect human loss of efficiency.

This situation is perhaps not unique to Web applica-
tions. Any kind of automation that involves previously hu-
man processes increases the pressure on humans to perform
at machine speeds. Factory automation, as caricatured in
Charlie Chaplin movies, certainly had this effect. What
makes the situation more serious in this case is that the Web
application contacts you by email. In earlier days you could
escape the machine by leaving the office. Today, the ma-
chine follows you when you log on to the Web from home
or when you are on vacation. With more advances, your
email will seamlessly follow you through your cell phone.

We need to find and establish social policies and conven-
tions as well as technical solutions to address this problem.
But first, we must recognize that a problem exists and give
priority to its solution.

6.2. Collective intelligence

The Web is the largest collection of data ever assembled.
Some argue that the contents of the Web represent all of
human knowledge.Whether this is true or is a goal, it is cer-
tainly true that the Web contains a lot of useful information,
much more than any single human being could know. We
need tools to collect, authenticate, and validate the informa-
tion on the Web and then tools for processing that knowl-
edge. Considering the sheer amount of data on the Web,
it may be possible to have tools that will help us process
that information and solve problems that are important to
society, or at least use the data in highly informed decision
making.

A pre-requisite step in this process is to define precisely
the data on the Web and the processes that apply to that data.
The semantic Web takes a step in this direction. Another
step in this direction is presented in [16], which attempts to
specify the semantics of collaborative tagging formally.

7. Conclusions

The paper has discussed the area of Web application
development from a software engineering point of view.
The Web is an attractive playground for software engineers
where you can quickly release an application to millions
of users and receive instant feedback. Web application de-
velopment requires agility, the use of standard components,
inter-operability, and close attention to user needs. Indeed,
one of the important features of popular Web applications is
to support user participation to add value to the application
and collaborate with other users. Due to the wide reach of
the Internet, Web applications reach users that are varied in

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

age, culture, language, education, interest, needs, etc. Pro-
viding for interaction and collaboration among such varied
users poses many interesting challenges.

Recent Web applications have brought new emphasis to
the role of (unstructured) data in applications. There are
interesting questions regarding how to generate, interpret,
structure, disambiguate, validate, search, and otherwise ma-
nipulate huge amounts of data. The value of many applica-
tions increases as the volume of their data grows. With the
help of scalable data-interoperability, applications and their
users can collaborate. There are many efforts currently un-
der way to address these problems.

8. Acknowledgments

I would like to thank Cédric Mesnage and Jeffrey Rose at
Università della Svizzera italiana who helped me appreciate
the new world of Web application development and helped
teach a course on the subject in 2006. Thanks also go to
the students who put so much energy into that course. I also
would like to thank the different generations of students and
colleagues who worked on Web applications at the Tech-
nische Universität Wien, especially Robert Barta, Manfred
Hauswirth, Markus Schranz, Engin Kirda, and Gerald Reif.
I have learned a lot from each of them.

This work was performed in part in the context of
Project Nepomuk, Number 027705, supported by the Euro-
pean Commission in Action Line IST-2004-2.4.7 Semantic-
based Knowledge and Content Systems, in the 6th Frame-
work.

References

[1] C. Atkinson, C. Bunse, H.-G. Gross;, and T. Kühne. To-
wards a general component model for web-based applica-
tions. Ann. Softw. Eng., 13(1-4):35–69, 2002.

[2] D. Bonura, R. Culmone, and E. Merelli. Patterns for web
applications. In SEKE ’02: Proceedings of the 14th interna-
tional conference on Software engineering and knowledge
engineering, pages 739–746, New York, NY, USA, 2002.
ACM Press.

[3] S. Casteleyn, Z. Fiala, G.-J. Houben, and K. van der Sluijs.
From adaptation engineering to aspect-oriented context-
dependency. In WWW ’06: Proceedings of the 15th interna-
tional conference on World Wide Web, pages 897–898, New
York, NY, USA, 2006. ACM Press.

[4] A. Cockburn. Agile software development. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[5] R. T. Fielding and R. N. Taylor. Principled design of the
modern web architecture. In ICSE ’00: Proceedings of
the 22nd international conference on Software engineering,
pages 407–416, New York, NY, USA, 2000. ACM Press.

[6] R. T. Fielding and R. N. Taylor. Principled design of
the modern web architecture. ACM Trans. Inter. Tech.,
2(2):115–150, 2002.

[7] Firefox Feature Brainstorming, 2006.
[8] M. Frank and S. Decker. The networked semantic desktop.

In International Semantic Web Conference, 2002.
[9] P. Fraternali. Tools and approaches for developing data-

intensive web applications: a survey. ACM Comput. Surv.,
31(3):227–263, 1999.

[10] M. Gaedke and J. Rehse. Supporting compositional reuse in
component-based web engineering. In SAC ’00: Proceed-
ings of the 2000 ACM symposium on Applied computing,
pages 927–933, New York, NY, USA, 2000. ACM Press.

[11] M. Gaedke, C. Segor, and H.-W. Gellersen. Wcml: paving
the way for reuse in object-oriented web engineering. In
SAC ’00: Proceedings of the 2000 ACM symposium on
Applied computing, pages 748–755, New York, NY, USA,
2000. ACM Press.

[12] S. Golder and B. A. Huberman. The structure of collab-
orative tagging systems. Journal of Information Science,
32(2):198–208, April 2006.

[13] E. Kirda. Engineering Device-Independent Web Services.
PhD thesis, Technical University of Vienna, 2002.

[14] E. Kirda and C. Kerer. Diwe: A framework for construct-
ing device-independent web applications. In L. Baresi,
S. Dustdar, H. Gall, and M. Matera, editors, UMICS, volume
3272 of Lecture Notes in Computer Science, pages 96–110.
Springer, 2004.

[15] C. Marlow, M. Naaman, D. Boyd, and M. Davis. Posi-
tion Paper, Tagging, Taxonomy, Flickr, Article, ToRead. In
Collaborative Web Tagging Workshop at WWW2006, Edin-
burgh, Scotland, May 2006.

[16] C. Mesnage and M. Jazayeri. Specifying the collaborative
tagging system. In SAAW’06, Semantic Authoring and An-
notation Workshop, 2006.

[17] MozTorrent Plugin, 2006.
[18] T. N. Nguyen. Model-based version and configuration man-

agement for a web engineering lifecycle. In WWW ’06: Pro-
ceedings of the 15th international conference on World Wide
Web, pages 437–446, New York, NY, USA, 2006. ACM
Press.

[19] T. O’Reilley. What is Web 2.0—Design Patterns and
Business Models for the Next Generation of Software, 2005.

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-
is-web-20.html.

[20] T. Reenskaug. Models - views - controllers. Technical re-
port, Technical Note, Xerox Parc, 1979.

[21] L. Sauermann, A. Bernardi, and A. Dengel. Overview and
outlook on the semantic desktop. In Proceedings of the 1st
Workshop on The Semantic Desktop at the ISWC 2005 Con-
ference, 2005.

[22] L. Sauermann, G. A. Grimnes, M. Kiesel, C. Fluit, H. Maus,
D. Heim, D. Nadeem, B. Horak, and A. Dengel. Semantic
desktop 2.0: The gnowsis experience. In The Semantic Web
- ISWC 2006, volume 4273/2006, pages 887–900. Springer
Berlin / Heidelberg, 2006.

[23] D. Thomas, C. Fowler, and A. Hunt. Ruby: The Pragmatic
Programmer’s Guide, Second Edition. The Pragmatic Pro-
grammers, 2006.

[24] D. Thomas, D. H. Hansson, A. Schwarz, T. Fuchs, L. Breedt,
and M. Clark. Agile Web Development with Rails: A Prag-
matic Guide, Second Edition. The Pragmatic Programmers,
2006.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

[25] L. von Ahn. Human Computation. PhD thesis, School of
Computer Science, Carnegie Mellon University, 2005.

[26] Web Hypertext Application Technology Working Group,
2006.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

