Advanced Computer Architecture-CS501

Lecture Handouts

Computer Architecture

Appendix

Reading Material
Handouts

Summary

1. Introduction to FALSIM

2. Preparing source files for FALSIM

3. Using FALSIM

4. FALCON-A assembly language techniques

FALSIM
1. Introduction to FALSIM:

FALSIM is the name of the software application which consists of the
FALCON-A assembler and the FALCON-A simulator. It runs under
Windows XP.

FALCON-A Assembler:

Figure 1 shows a snapshot of the FALCON-A Assembler. This tool loads a
FALCON-A assembly file with a (.asmfa) extension and parses it. It shows
the parse results in an error log, lets the user view the assembled file’s
contents in the file listing and also provides the features of printing the
machine code, an Instruction Table and a Symbol Table to a FALCON-A
listing file. It also allows the user to run the FALCON-A Simulator.

The FALCON-A Assembler has two main modules, the 1st-pass and the
2nd-pass. The 1st-pass module takes an assembly file with a (.asmfa)
extension and processes the file contents. It then creates a Symbol Table

Last Modified: 01-Nov-06 Page 1

Advanced Computer Architecture-CS501

which corresponds to the storage of all program variables, labels and data
values in a data structure at the implementation level. If the 1st-pass
completes successfully a Symbol Table is produced as an output, which is
used by the 2nd-pass module. Failures of the 1st-pass are handled by the
assembler using its exception handling mechanism.

The 2nd-pass module sequentially processes the .asmfa file to interpret the
instruction opcodes, register opcodes and constants using the symbol table.
It then produces a list file with a .Istfa extension independent of successful
or failed pass. If the pass is successful a binary file with a .binfa extension is

produced which contains the machine code for the program in the assembly
file.

FALCON-A Simulator:

Figure 6 shows a snapshot of the FALCON-A Simulator. This tool loads a
FALCON-A binary file with a (.binfa) extension and presents its contents
into different areas of the simulator. It allows the user to execute the
program to a specific point within a time frame or just executes it, line by
line. It also allows the user to view the registers, I/O port values and memory
contents as the instructions execute.

FALSIM Features:
The FALCON-A Assembler provides its user with the following features:

Select Assembly File: Labeled as “1” in Figure 1, this feature enables the
user to choose a FALCON-A assembly file and open it for processing by the
assembler.

Assembler Options: Labeled as “2” in Figure 1.

e Print Symbol Table
This feature if selected writes the Symbol Table (produced after the
execution of the Ist-pass of the assembler) to a FALCON-A list file with an
extension of (.Istfa). The Symbol Table includes data members, data
addresses and labels with their respective values.

o Print Instruction Table
This feature if selected writes the Instruction Table to a FALCON-A list file
with an extension of (.Istfa).

Last Modified: 01-Nov-06 Page 2

Advanced Computer Architecture-CS501

List File: Labeled as “3”, in Figure 1, the List File feature gives a detailed
insight of the FALCON-A listing file, which is produced as a result of the
execution of the 1st and 2nd-pass. It shows the Program Counter value in
hexadecimal and decimal formats along with the machine code generated for
every line of assembly code. These values are printed when the 2nd-pass is
completed.

Error Log: The Error Log is labeled as “4” in Figure 1. It informs the user
about the errors and their respective details, which occurs in any of the
passes of the assembler.

Search: Search is labeled as “5” in Figure 1 and helps the user to search for
a certain input with the options of searching with “match whole” and
“match any” parts of the string. The search also has the option of checking
with/without considering “case-sensitivity”. It searches the List File area
and highlights the search results using the yellow color. It also indicates the
total number of matches found.

Start Simulator: This feature 1s labeled as “6” in Figure 1. The FALCON-A
Simulator is run using the FALCON-A Assembler’s Start Simulator option.
The FALCON-A Simulator is invoked by the user from the FALCON-A
Assembler. Its features are detailed as follows:

Load Binary File: The button labeled as “11” in Figure 6, allows the user to
choose and open a FALCON-A binary file with a (.binfa) extension. When a
file is being loaded into the simulator all the register, constants (if any) and
memory values are set.

Registers: The area labeled as “12” in Figure 6. enables, the user to see
values present in different registers before during and after execution.

Instruction: This area is labeled as “13” in Figure 6 and contains the value of
PC, address of an instruction, its representation in Assembly, the Register
Transfer Language, the op-code and the instruction type.

1/0 Ports: 1/0 ports are labeled as “14” in Figure 6. These ports are available
for the user to enter input operation values and visualize output operation
values whenever an I/O operation takes place in the program. The input
value for an input operation is given by the user before an instruction
executes. The output values are visible in the I/O port area once the
instruction has successfully executed.

Last Modified: 01-Nov-06 Page 3

Advanced Computer Architecture-CS501

Memory: The memory is divided into 2 areas and is labeled as “15” in
Figure 6, to facilitate the view of data stored at different memory locations
before, during and after program execution.

Processor’s State: Labeled as “16” in Figure 6, this area shows the current
values of the Instruction register and the Program Counter while the program
executes.

Search: The search option for the FALCON-A simulator is labeled as “17”
in Figure 6. This feature is similar to the way the search feature of the
FALCON-A Assembler works. It offers to highlight the search string which
goes as an input, with the “All “ and “ Part ““ option. The results of the search
are highlighted in the color yellow. It also indicates the total number of
matches.

The following is a description of the options available on the button panel
labeled as “18” in Figure 6.

Single Step.: “Single Step” lets the user execute the program, one instruction
at a time. The next instruction is not executed unless the user does a “single
step” again. By default, the instruction to be executed will be the one next in
the sequence. It changes if the user specifies a different PC value using the
Change PC option (explained below).

Change PC: This option lets the user change the value of PC
(Program Counter). By changing the PC the user can execute the
instruction to which the specified PC points.

Execute: By choosing this button the user is able to execute the
instructions with the options of execution with/without breakpoint
insertion (refer to Fig. 5). In case of breakpoint insertion, the user has
the option to choose from a list of valid breakpoint values. It also has
the option to set a limit on the time for execution. This “Max
Execution Time” option restricts the program execution to a time
frame specified by the user, and helps the simulator in exception
handling.

Change Register: Using the Change Register feature, the user can
change the value present in a particular register.

Last Modified: 01-Nov-06 Page 4

Advanced Computer Architecture-CS501

Change Memory Word: This feature enables the user to change values
present at a particular memory location.

Display Memory: Display Memory shows an updated memory area,
after a particular memory location other than the pre-existing ones is
specified by the user.

Change I/O: Allows the user to give an I/O port value if the
instruction to be executed requires an I/O operation. Giving in the
input in any one of the I/O ports areas before instruction execution,
indicates that a particular I/O operation will be a part of the program
and it will have an input from some source. The value given by the
user indicates the input type and source.

Display I/O: Display /O works in a manner similar to Display
Memory. Here the user specifies the starting index of an 1/O port. This
features displays the I/O ports stating from the index specified.

2. Preparing source files for FALSIM:

In order to use the FALCON-A assembler and simulator, FALSIM,
the source file containing assembly language statements and directives
should be prepared according to the following guidelines:

e The source file should contain ASCII text only. Each line should be
terminated by a carriage return. The extension .asmfa should be used
with each file name. After assembly, a list file with the original
filename and an extension .Istfa, and a binary file with an extension
.binfa will be generated by FALSIM.

e Comments are indicated by a semicolon (;) and can be placed anywhere
in the source file. The FALSIM assembler ignores any text after the
semicolon.

e Names in the source file can be of one of the following types:

e Variables: These are defined using the .equ directive. A value must
also be assigned to variables when they are defined.

e Addresses in the “data and pointer area” within the memory: These
can be defined using the .dw or the .sw directive. The difference
between these two directives 1s that when .dw is used, it is not
possible to store any value in the memory. The integer after .dw
identifies the number of memory words to be reserved starting at the
current address. (The directive .db can be used to reserve bytes in

Last Modified: 01-Nov-06 Page 5

Advanced Computer Architecture-CS501

memory.) Using the .sw directive, it is possible to store a constant or
the value of a name in the memory. It is also possible to use pointers
with this directive to specify addresses larger than 127. Data tables
and jump tables can also be set up in the memory using this directive.

e Labels: An assembly language statement can have a unique label
associated with it. Two assembly language statements cannot have the
same name. Every label should have a colon (:) after it.

e Use the .org 0 directive as the first line in the program. Although the use
of this line is optional, its use will make sure that FALSIM will start
simulation by picking up the first instruction stored at address O of the
memory. (Address 0 is called the reset address of the processor). A jump
[first] instruction can be placed at address 0, so that control is transferred
to the first executable statement of the main program. Thus, the label
first serves as the identifier of the “entry point” in the source file. The
.org directive can also be used anywhere in the source file to force code
at a particular address in the memory.

e Address 2 in the memory is reserved for the pointer to the Interrupt
Service Routine (ISR). The .sw directive can be used to store the address
of the first instruction in the ISR at this location.

e Address 4 to 125 can be used for addresses of data and pointers'.
However, the main program must start at address 126 or less’, otherwise
FALSIM will generate an error at the jump [first] instruction.

e The main program should be followed by any subprograms or
procedures. Each procedure should be terminated with a ret instruction.
The ISR, if any, should be placed after the procedures and should be
terminated with the iret instruction.

e The last line in the source file should be the .end directive.

e The .equ directive can be used anywhere in the source file to assign
values to variables.

e It is the responsibility of the programmer to make sure that code does not
overwrite data when the assembly process i1s performed, or vice versa. As
an example, this can happen if care is not exercised during the use of the
.org directive in the source file.

w

. Using FALSIM:

" Any address between 4 and 14 can be used in place of the displacement field in load or
store instructions. Recall that the displacement field is just 5 bits in the instruction word.
? This restriction is because of the face that the immediate operand in the movi
instruction must fit an 8-bit field in the instruction word.

Last Modified: 01-Nov-06 Page 6

Advanced Computer Architecture-CS501

e To start FALSIM (the FALCON-A assembler and simulator), double
click on the FALSIM icon. This will display the assembler window,
as shown in the Figure 1.

e Select one or both assembler options shown on the top right corner of
the assembler window labeled as *“2”. If no option is selected, the

symbol table and the instruction table will not be generated in the list
(.Istfa) file.

e Click on the select assembly file button labeled as “1”. This will open
the dialog box as shown in the Figure 2.

e Sclect the path and file containing the source program that is to be
assembled.

e C(lick on the open button. FALSIM will assemble the program and
generate two files with the same filename, but with different
extensions. A list file will be generated with an extension .Istfa, and a
binary (executable) file will be generated with an extension .binfa.
FALSIM will also display the list file and any error messages in two
separate panes, as shown in Figure 3.

e Double clicking on any error message highlights and displays the
corresponding erroneous line in the program listing window pane for
the user. This is shown in Figure 4. The highlight feature can also be
used to display any text string, including statements with errors in
them. If the assembler reported any errors in the source file, then these
errors should be corrected and the program should be assembled again
before simulation can be done. Additionally, if the source file had
been assembled correctly at an earlier occasion, and a correct binary
(.binfa) file exists, the simulator can be started directly without
performing the assembly process.

e To start the simulator, click on the start simulation button labeled as
“6”. This will open the dialog box shown in Figure 6.

e Select the binary file to be simulated, and click open as shown in
Figure 7.

e This will open the simulation window with the executable program
loaded in it as shown in Figure 8. The details of the different panes in
Last Modified: 01-Nov-06 Page 7

Advanced Computer Architecture-CS501

this window were given in section 1 earlier. Notice that the first
instruction at address 0 is ready for execution. All registers are
initialized to 0. The memory contains the address of the ISR (i.e., 64h
which is 100 decimal) at location 2 and the address of the printer
driver at location 4. These two addresses are determined at assembly
time in our case. In a real situation, these addresses will be
determined at execution time by the operating system, and thus the
ISR and the printer driver will be located in the memory by the
operating system (called re-locatable code). Subsequent memory
locations contain constants defined in the program.

e Click single step button labeled as “19”. FALSIM will execute the
jump [main] instruction at address 0 and the PC will change to 20h
(32 decimal), which is the address of the first instruction in the main
program (1.e., the value of main).

o Although in a real situation, there will be many instructions in the
main program, those instructions are not present in the dummy calling
program. The first useful instruction is shown next. It loads the
address of the printer driver in r6 from the pointer area in the memory.
The registers r5 and r7 are also set up for passing the starting address
of the print buffer and the number of bytes to be printed. In our
dummy program, we bring these values in to these registers from the
data area in the memory, and then pass these values to the printer

driver using these two registers. Clicking on the single step button twice,
executes these two instructions.

e The execution of the call instruction simulates the event of a print
request by the user. This transfers control to the printer driver. Thus,
when the call r4, r6 instruction is single stepped, the PC changes to
32h (50 decimal) for executing the first instruction in the printer
driver.

e Double click on memory location 000A, which is being used for
holding the PB (printer busy) flag. Enter a 1 and click the change
memory button. This will store a 0001 in this location, indicating that
a previous print job is in progress. Now click single step and note that
this value is brought from memory location 000E into register rl.
Clicking single step again will cause the jnz r1, [message] instruction
to execute, and control will transfer to the message routine at address
0046h. The nop instruction is used here as a place holder.

Last Modified: 01-Nov-06 Page 8

Advanced Computer Architecture-CS501

e Click again on the single step button. Note that when the ret r4
instruction executes, the value in 4 (i.e., 28h) is brought into the PC.
The blue highlight bar is placed on the next instruction after the call
r4, r6 instruction in the main program. In case of the dummy calling
program, this is the halt instruction.

e Double click on the value of the PC labeled as “20. This will open a
dialog box shown below. Enter a
value of the PC (ie, 26h) EeUELIRGe

corresponding to the call r4, ré Enter New alus for PC (Hexl
instruction, S0 tha.t it can . be 5500 =
executed again. A “list” of possible

PC values can also be pulled down x| Corcel_|

using, and 0026h can be selected
from there as well.

Click single step again to enter the printer driver again.

Change memory location 000A to a 0, and then single step the first
instruction in the printer driver. This will bring a 0 in r1, so that when
the next jnz r1, [message]| instruction is executed, the branch will not
be taken and control will transfer to the next instruction after this
instruction. This 1s mivi r1, 1 at address 0036h.

e Continue single stepping.

e Notice that a 1 has been stored in memory location 000A, and rl
contains 11h, which is then transferred to the output port at address
3Ch (60 decimal) when the out rl1, controlp instruction executes.
This can be verified by double clicking on the top left corner of the
I/O port pane, and changing the address to 3Ch. Another way to
display the value of an I/O port is to scroll the /O window pane to
the desired position.

e Continue single stepping till the int instruction and note the changes
in different panes of the simulation window at each step.

e When the int instruction executes, the PC changes to 64h, which is the
address of the first instruction in the ISR. Clicking single step executes
this instruction, and loads the address of temp (i.e., 0010h) which is a

Last Modified: 01-Nov-06 Page 9

Advanced Computer Architecture-CS501

temporary memory area for storing the environment. The five store
instructions in the ISR save the CPU environment (working registers)
before the ISR change them.

Single step through the ISR while noting the effects on various registers,
memory locations, and I/O ports till the iret instruction executes. This will
pass control back to the printer driver by changing the PC to the address of
the jump [finish] instruction, which is the next instruction after the int
instruction.

Double click on the value of the PC. Change it to point to the int
instruction and click single step to execute it again. Continue to single step
till the in r1, statusp instruction is ready for execution.

Change the I/O port at address 3Ah (which represents the status port at
address 58) to 80 and then single step the in r1, statusp instruction. The
value in r1 should be 0080.

Single step twice and notice that control is transferred to the movi r7,
FFFF’ instruction, which stores an error code of —1 in rl.

* The instruction was originally movi r7, -1. Since it was converted to machine language
by the assembler, and then reverse assembled by the simulator, it became movi r7,
FFFF. This is because the machine code stores the number in 16-bits after sign-
extension. The result will be the same in both cases.

Last Modified: 01-Nov-06 Page 10

Advanced Computer Architecture-CS501

2/FALCON-A Assembler e X
™ seient ::T:;n?:nu:nmn ‘ﬁ
Assambly File / I~ Prirt ymbol Table | AT COMN
r' Hax J Der.] Marhing | LLine Mo, | Sowre _./ J

A
Q/

Case Sensitve
Higniignt Total Makn Winole Matth Any shﬂsmml Moot Exit ||

V

A -

Figure 1

i/ FALCON-A Assembler

Select
Assembly File

Hex | Dec. | Machine | Line Mo, | Source Statement

Open @@

Look it |[E3 My Documents ;I & £ Ev

Assembler Optians
™ PrintInstruction Table
™ Print Symbol Table | EAT CON

L Example_11-10 9Feb04ISR4FALCONA

= e

File: name: |Example_11-1 0_SFeb04ISR4FALCOMNA Open I
Files of type: IFaIcon-A Aszzembly Files [*.asmfa) ;I Cancel |

Options—————————————————
[~ Case Sensitive
" Matchihole © Match Any stanSimmator“ About || Exit ||

Highlight Total Mateh |

Figure 2

Last Modified: 01-Nov-06 Page 11

Advanced Computer Architecture-CS501

FALCON-A Assembler
= lcaDocuments and i-lisse.mbleromi.ons |

nssorits File || SetingsyavaniaDesklopiExample_11-10_7FebD4ISRAFALCONA as | Print Instruction Table| | -

sl]| | T Print Symbol Table I EALCON

Hex l Dec. I iachine | Line Mo, | Source Statement | ~
ooon nooo ooon 1 filename: Example_11-10 N
oo ooo ooon 2 This program sends a single character .
ooon aooo noon 3 10 a FALCOMN-A parallel printer

0000 0000 gefoon - Lo st deivan Lo into

ooon aooo

pecodmpedt D [2FalconA_7Feb04

ooon aooo

0ooo - 0000 6 1 Error(s) During Second Pass

gggg gggg See C\Documents and

Q000 0000 Settings\javariaiDesktop\Example_11-10_7Feb04ISRAFALCONA. Istfa

oooo oooo

ooon aooo

oooz ooz

ooo4 ooo4 = oms L] RSN S s |
Errar: Line B2: Undefined variable "r2'

 Options
[Case Sensitive

Highlight Total Match | 0 € MatchWhale O Match Any | g Simulamr“ Aot " Exit "

Figure 3

FALCON-A Assembler
Assembler Options
Select e e [~ Print Instrupctiun Tahle -
Assembly File SettingsjavarialDesktopiExample_11-10_TFeb04|SR4FALCOMNA asH i
™ Print Symbol Table | EALCON

Hex | Dec. | Machine | Line Mo, | Source Staterment | ~
o032z o050 oooo 52 disahle: .equ g
o032z o050 oooo 53 ;
o3z nosn oo a4 strh_H: equ 21 ;ar1sh
o3z nosn oo a4 strh_L. equ 20 ;ar14h
o032z o050 oooo 56 ;
o3z nosn oo ar ccheck PB flag first, if set,
o3z nosn oo ag s return with message.
o032z o050 oooo 59 ; i |
o032z o050 E90A 0 Pdriver: oad r1, [PB]
0034 nosz 9112 61 jnz rl, [message]
(0036 | 0054 movi 11, 12
0036 0054 E104 63 store r1, [PB] ;a1inPBindicates PrintIn Progress
no3s 0056 34811 64 mavi i1, reset cuse r1 for data xfer
003A nosa CH3C [i14] out r1, controlp
003C 0060 ES0A a3 stare ra, [Bufp]
003E 0062 E708 67 stare r7, [MOB] |
Erraor: Line 62: Undefinec

Options
[~ Case Sensitive

Highiight Total Match | 0 (r‘ MatchWhals ¢ Match Any Stawimmamr" pr— ||
Figure 4

Last Modified: 01-Nov-06 Page 12

Advanced Computer Architecture-CS501

FALCON-A Assembler

Select CaDocuments and Settingsyjavariaihly Asse.mblerOpn.ons [
nesomets File | DOCUMENtsiExample_11-10_8FehD4ISR4FALCONA asmfa I PrintInstruction Tahle ;‘%—
SRR I~ PrintSymhol Table | EATCON
Hex | Dec. | hachine | Line Mo, | Source Statement | ~ |
Qoo aooon ufululi} 1 i filename: Example_11-10.asmfa ?|
Qoo aooon ooon 2 This program sends a sinale character il |
0000 0000 000g = T .
LI DigFalconA_7Feb04
0000 0000 oo
0000 0000 000
0000 0000 000 f: Following Files are Generated Successfully:
0booD 0000 00Oq & C:A\Documents and Settings\javarialMy
neom: | |nomg_onof DocurnentsiExample_11-10_0Feb04ISRAFALCONA. |stfa
0000 0000 oo ; o
0000 0000 o00d ChDocuments and Settings'iavariaiMy
gooo oono oood DocumentsiExample_11-10_9Feb04ISR4FALCONA binfa
ooon oooo oo
0oon 0000 A0
0004 0004 003 el
Options
[Case Sensitive
Highlight TotalMatch | 0 © Match'Whole © Matth Any | i Simulamr" T || B ||
Figure 5
(l FALCON-A Simulator A X
S TotalMakh Highlghl | RewmTo 17
1 2 Binary Fila D [Makch [Case T Wl [~ Pan _ASS
Feqisters ernorg (ODF-800H)
Reg®| Valbe | Value value | valse | - - .
i -
1 3 Instruction
[adoress [nstuction [Assemby | RTL a

FALCON-A Simulator

Load | Total Match | Highlight | Return To
AT [0 [Wateh [Case|” Al [~ pan _fesembler
~Reaisters Mermory {10h-200h)
14 Reg#| wvawe | wvawe | walue | wvawe | ‘ | memory| 0-1 (I | 4-5 | B-7
~Instruction = :
1 6 Address | Instruction | Lookin: | (L) My Documents &l e cf Ev
E)(ample_l1-10_9Feb04ISR4FALCONA
EjprinterDri\e‘er
Flgllr 72 ||!|| el
e 6 £l i = — || 4-s -7
File name: IExampIe_1 1-10_9Feb04ISRAFALCONA Open I
D Ports (00h-FFh)
Part#| 0-1 | 2_3| Fiesoftype: [Falconst Bin Files [binfa) | ﬂlﬂ
Last Modifie
Floresentslale | Chanoe Register || Display Memony || Chanoe Mermany Wards || Help |
I3 | G | ¥ | ¢ Exgcute || Sinale Step || Change PG || Change 110 || Display o |

Advanced Computer Architecture-CS501

Figure 7
FALCON-A Simulator s X
CDacurmers and Beflingslavarn sy Totaimaich | Highiight | Rt
H.I":'F,. DocumenlsiExample_11-10_IF ebD8ISRAFALCONA binfa ' mﬁ;r:.
Realsters ‘Mermory (00h-B00h)
reg#| vawe | vawe | vale | vawe | memary] 0.1 | 3-3 [4.5 | 87 (&
[0000 apan ooan onoo A0I0 [T 0032 400 =
&7 DOOD a0 oooo] 0ooe Do 1] 0o]
oo [alii] juelii} el el
Ingtruction oma 0aog 0ona 000a 0a0g
Address | instruction | Assambly | ATl & op20 EED4 EDDE EFO& BaCa
0o0a A0z JunF | 207 PCe-PCe 0pze Fecd oara b oo
0002 00EL ADDRORI,R1 R[D]=R[2] 0030 000D Eana 132 Fam
oood miz ADD RO, A1, R R0 = R[1] ooag E10a 1|1 CRIC EsOC
0o0% 40 ADDRA RO RO R|4]=R{0] 0040 ETOE Dooo AQR A0
pops poxa ADD RO, A1, R2 R0 =R[1] onas Beoa naoa popa 000D
OO0A] ADDROD A0, RO R|O0]=R[O] 0050 Dapa oaoa o oo -
nonc 0o ADD RO, RO, R0 RI0]=R[O] € ¥
00DE a0 ADDRO,RO, R0 R|0)=R{O]*
L3 ¥ wamary| 0-1 | 2-3 | a-§ | &7 |
- e oo g [T
10 Pfta (OD4-FF i o0oa P gona
Pot#| 0.4 | 2-3 | 46 | &7 |4 |oow il el 0]
a noop nana aluli e} onap el uali}
8 nooon 0000 oooo ooon EFOR Baca
mn ooon Uil anoo opan] el uali}
18 nooon 0000 oooo 000 0112 190
20 noon 0000 L] 0ng 1 9 _ CA3C ES0C
Processor's Btale 3 o I Hean J
R | oo |Pc| o | TR

Figure 8

4. FALCON-A assembly language programming techniques:

Last Modified: 01-Nov-06

Page 14

Advanced Computer Architecture-CS501

o [f a signed value, x, cannot fit in 5 bits (i.e., it is outside the range -16 to
+15), FALSIM will report an error with a load r1, [x] or a store r1, [x]
instruction. To overcome this problem, use movi r2, x followed by load
rl, [r2].

e If a signed value, x, cannot fit in 8 bits (i.e., it is outside the range -
128 to +127), even the previous scheme will not work. FALSIM will
report an error with the movi r2, x instruction. The following instruction
sequence should be used to overcome this limitation of the FALCON-A.
First store the 16-bit address in the memory using the .sw directive. Then
use two load instructions as shown below:

a: SW X
load r2, [a]
load r1, [r2]

This 1s essentially a “memory-register-indirect” addressing. It has been
made possible by the .sw directive. The value of a should be less than 15.

e A similar technique can be used with immediate ALU instructions for
large values of the immediate data, and with the transfer of control (call
and jump) instructions for large values of the target address.

e Large values (16-bit values) can also be stored in registers using the mul
instruction combined with the addi instruction. The following
instructions bring a 201 in register r1.

movi r2, 10

movi r3, 20

mul r1, r2, r3 ; r1 contains 200 after this instruction
addirl, r1, 1 ; r1 now contains 201

e Moving from one register to another can be done by using the instruction
addir2, r1, 0.

e Bit setting and clearing can be done using the logical (and, or, not, etc)
instructions.

e Using shift instructions (shiftl, asr, etc.) is faster that mul and div, if the
multiplier or divisor is a power of 2.

Last Modified: 01-Nov-06 Page 15

