Lecture Handouts

CS501

Advance Computer Architecture

Advance Computer Architecture — CS501

Table of Contents
ADPPEIAIX A oottt ettt ettt h e e bttt st et e s e beebeebesbenten 4
FALSIM. ..ottt e et e et e et e e nas e aaneseseesnesenneeenneeens 4
LeCtUIE INO. 1 oot eeee et e e e e ee e st areeeeeeeeeesaeaeseeeeennaes 17
INEEOAUCTION. ...ttt ettt e et et e et e e ette e eeteeearaeeeaaeeesaeeenneeean 17
| 1008 (< A\ [T RO 30
Instruction Set ArChItECTUIEooviieeiiiecie e e et 30
| 1008 (< A\ [T TSRO 42
Introduction t0 SRC PrOCESSOTeeieviiiiiie ettt et e 42
LeCtUIE INO. 4 oot et e e e e e s eebae e e sesaaeeeeenreesessraeeeeans 48
ISA and Instruction FOIMAtS...........coovviiiiiuiiiiiiiie ettt 48
| 1008 (< A\ [T TR 62
Description of SRC in RTL ...c.cooiiiiiiiiiiii e 62
| 1008 (< A\ [TR TP 71
RTL Using Digital LOgIC CIICUILS ..c.evveruereririeeiiriinieeiieieeiieiteteestetee e 71
| 1008 (< A\ T AT RRRRPRRR 85
Design Process for ISA of FALCON-=Aoooiiiiieieieeeeeeeeee ettt 85
LeCtUIC INO. 8 oot et e et e e e et e e eetraaesenareeeeenseeeennraeeeens 89
ISA 0f the FALCON-A ...ttt et e eaae e eaes 89
LeCtUIC INO. O .o ee e e e e e e e et e e e e e e eeeettrraeeaeeeenans 101
Description of FALCON-A and EAGLE using RTLccccociiiiiiiiiiieiieieciees 101
LeCture INO. 10 c.uevieiiiiieeeeeeee et eee e e e e e eeettar e e e e e e eeeettraeeeaeeeennans 118
The FALCON-E and ISA COMPATISON......ccc.eeruieriieeiieiienieeieesiienreenreesseeeseesseessneans 118
LeCture INO. L1 coeeeeeiiiiiieeeeeee et eee e e e e e e et aa e e e e e e e eeeettrareeaaeeennans 137
CISC and RISC ...t etae e e et e e enaeeeas 137
LeCture INO. 12 .oeeieieiiiieeeeeeeee et e e et e e e e e e et bar e e e e e e eeesttrareeaeeeennans 138
[0 U B 1] ey E SRR 138
Lecture INO. 13 .o e e et e e e e e e e et bareeeeeeeeeettrareeaeeeennnns 144
Structural RTL Description of the FALCON-Acoooiiiiiiiieiieiieieee e 144
LeCture INO. 14 .ot ee e e e e e e e et tar e e e e e e eeeetarareeaeeeennans 150
External FALCON-=A CPU.....oooiiiiiiiieeee et 150
LeCture INO. 15 oot ee et e e e e e et tar e e e e e e eeesttrareeaaeeenans 158
Logic Design and Control Signals Generation in SRC...........cccccoevviiviiniievieeiienenne, 158
LeCtUIC INO. 160 e e et e e e e e e et aar e e e e e e eeeetaraeeeaeeeenans 169
Control Unit D@SIZN.....ueeiiieiieiieeieeiteeeie ettt ete et steeebeeteeseaeebeessaeesseesaessseesseenses 169
LeCtUIC INO. 17 oottt e et e e e e e e et aar e e e e e e eeeettraeeeaeeeenans 178
Machine Reset and Machine EXCEeptionsc.cccevierierieiieeniienieeieseeeese e 178
LeCture INO. I8 oottt e e e e e ee et aar e e e e e e eeeettrareeaeeeennans 183
PIPEIINING oottt ettt ettt e ebe e s aeesbe e saeesseesbaeesseensaens 183
Lecture INO. 19 ..ot e e e e e et e e e e e eeatraaeeee s 190
PIpelined SRCoiiiiiiieiee ettt et 190
Lecture INO. 20 ..ot e et e e e e e e e e et aa e e e e e e e eentraaaeas 196
Hazards in PIPEliNing........c.cccviiiieiiieiiiiiieiieete ettt et eve e e esseereesene e 196
LeCture INO. 21 oo e e e e e e e e e e e e e e ettt reeeeeeeeeenraaeeeas 201
Instruction Level ParalleliSmcooouviiiiuiiiiiiiicceee e 201
LeCtuIe INO. 22 .o e e e e et e e e e e e et ar e e e e e e e eenrraaaeas 205
MICTOPTOZIAMIMINGo.ooveieieiee et 205

Advance Computer Architecture — CS501

LeCtUIe NNO. 23 ..ot 214
J/O SUDSYSLEINS ... 214
LeCtUIE NNO. 24 ...t 224
Designing Parallel Input and Output POITSc.ccoooviiiieieieeeee e 224
LeCtUIE NNO. 25 1ot 232
INPUt OULPUL INEEITACEveveie e 232
LECTUIE NNO. 20 ..ot 241
Programmed I/co.ooviiiieeee e 241
LECHUIE INNO. 27 .ottt 251
Interrupt DIIVEN I/O ... e 251
LeCture NNO. 28 ... 259
Interrupt Hardware and SOfIWATEco.covviiiieieieeeeee e 259
LeCtUIE NNO. 29 ... 270
FALSIIM ... e 270
LeCture NNO. 30 .ot 281
Interrupt Priority and Nested INterTUPLS..........ocovivrveeieieieieee e 281
LeCture NNO. 31 .o 287
Direct Memory AcCeSS (DMA) ..ot 287
LeCtUIe NNO. 32 .ot 293
Magnetic DISK DITVES ..o 293
LeCture NNO. 33 .o 297
EITOT CONIOL.......ooiiioiieeee e 297
LeCture NNO. 34 ... 301
Number Systems and RadiX CONVEISION............cc.coooveieeieieeieeeieieeee e 301
LeCture NNO. 35 .o 307
Multiplication and Division Of INTEZEIS............cocovviviieieieieieee e 307
LeCtUIE NNO. 30 ..ot 312
Floating-Point ATItRMELICco.oviviieieieee e 312
LECHUIE INNO. 37 et 316
Components of MeMOTY SYSEEIMS.coovieieeieeieeieeieceeeeeeee e 316
LeCture NNO. 38 ... 320
MEMOTY MOQUIES ... 320
LeCtUIe NNO. 39 ..ot 322
TRE CACNE ... e 322
LeCtUIE NNO. 40 ...ttt 328
VITTUAL IMIMOTY ..o 328
LeCtUIE NNO. 41 .ottt 334
Numerical Examples of DRAM and Cache............cc.cooovoioioiioirieieicceeee e 334
LeCtUIE NNO. 42 ..o 343
Performance of I/O SUDSYSIEMSo.oviiiiiieieieiee e 343
LeCture NNO. 43 ..ot 348
INETWOTKS ..t bbbt ns s 348
LECHUIE NNO. A4 ..ot 353
Communication Medium and Network Topologies...........ccooovriiiririeinieineeee 353
LECHUIE NNO. 45 ..ottt 359
REVIBW ... bbbt 359

Page 3

Advance Computer Architecture — CS501

Appendix A
Reading Material
Handouts
Summary
1. Introduction to FALSIM
2. Preparing source files for FALSIM
3. Using FALSIM
4. FALCON-A assembly language techniques

FALSIM
1. Introduction to FALSIM:

FALSIM is the name of the software application which consists of the FALCON-A
assembler and the FALCON-A simulator. It runs under Windows XP.

FALCON-A Assembler:

Figure 1 shows a snapshot of the FALCON-A Assembler. This tool loads a
FALCON-A assembly file with a (.asmfa) extension and parses it. It shows the
parse results in an error log, lets the user view the assembled file’s contents in the
file listing and also provides the features of printing the machine code, an
Instruction Table and a Symbol Table to a FALCON-A listing file. It also allows
the user to run the FALCON-A Simulator.

The FALCON-A Assembler has two main modules, the 1st-pass and the 2nd-pass.
The 1st-pass module takes an assembly file with a (.asmfa) extension and
processes the file contents. It then creates a Symbol Table which corresponds to
the storage of all program variables, labels and data values in a data structure at the
implementation level. If the 1st-pass completes successfully a Symbol Table is
produced as an output, which is used by the 2nd-pass module. Failures of the 1st-
pass are handled by the assembler using its exception handling mechanism.

Page 4

Advance Computer Architecture — CS501

The 2nd-pass module sequentially processes the .asmfa file to interpret the
instruction opcodes, register opcodes and constants using the symbol table. It then
produces a list file with a .Istfa extension independent of successful or failed pass.
If the pass is successful a binary file with a .binfa extension is produced which
contains the machine code for the program in the assembly file.

FALCON-A Simulator:

Figure 6 shows a snapshot of the FALCON-A Simulator. This tool loads a
FALCON-A binary file with a (.binfa) extension and presents its contents into
different areas of the simulator. It allows the user to execute the program to a
specific point within a time frame or just executes it, line by line. It also allows the
user to view the registers, I/O port values and memory contents as the instructions
execute.

FALSIM Features:

The FALCON-A Assembler provides its user with the following features:

Select Assembly File: Labeled as “1” in Figure 1, this feature enables the user to
choose a FALCON-A assembly file and open it for processing by the assembler.

Assembler Options: Labeled as “2” in Figure 1.

e Print Symbol Table
This feature if selected writes the Symbol Table (produced after the execution of
the 1st-pass of the assembler) to a FALCON-A list file with an extension of
(.Istfa). The Symbol Table includes data members, data addresses and labels with
their respective values.

o Print Instruction Table

This feature if selected writes the Instruction Table to a FALCON-A list file with
an extension of (.Istfa).

List File: Labeled as “3”, in Figure 1, the List File feature gives a detailed insight
of the FALCON-A listing file, which is produced as a result of the execution of the
Ist and 2nd-pass. It shows the Program Counter value in hexadecimal and decimal
formats along with the machine code generated for every line of assembly code.
These values are printed when the 2nd-pass is completed.

Page 5

Advance Computer Architecture — CS501

Error Log: The Error Log is labeled as “4” in Figure 1. It informs the user about
the errors and their respective details, which occurs in any of the passes of the
assembler.

Search: Search is labeled as “5” in Figure 1 and helps the user to search for a
certain input with the options of searching with “match whole” and “match any”
parts of the string. The search also has the option of checking with/without
considering “case-sensitivity”. It searches the List File area and highlights the
search results using the yellow color. It also indicates the total number of matches
found.

Start Simulator: This feature is labeled as “6” in Figure 1. The FALCON-A
Simulator is run using the FALCON-A Assembler’s Start Simulator option. The
FALCON-A Simulator is invoked by the user from the FALCON-A Assembler. Its
features are detailed as follows:

Load Binary File: The button labeled as “11” in Figure 6, allows the user to choose
and open a FALCON-A binary file with a (.binfa) extension. When a file is being
loaded into the simulator all the register, constants (if any) and memory values are
set.

Registers: The area labeled as “12” in Figure 6. enables, the user to see values
present in different registers before during and after execution.

Instruction: This area is labeled as “13” in Figure 6 and contains the value of PC,
address of an instruction, its representation in Assembly, the Register Transfer
Language, the op-code and the instruction type.

1/0 Ports: 1/0 ports are labeled as “14” in Figure 6. These ports are available for
the user to enter input operation values and visualize output operation values
whenever an I/O operation takes place in the program. The input value for an input
operation is given by the user before an instruction executes. The output values are
visible in the I/O port area once the instruction has successfully executed.

Memory: The memory is divided into 2 areas and is labeled as “15” in Figure 6, to
facilitate the view of data stored at different memory locations before, during and
after program execution.

Processor’s State: Labeled as “16” in Figure 6, this area shows the current values
of the Instruction register and the Program Counter while the program executes.

Page 6

Advance Computer Architecture — CS501

Search: The search option for the FALCON-A simulator is labeled as “17” in
Figure 6. This feature is similar to the way the search feature of the FALCON-A
Assembler works. It offers to highlight the search string which goes as an input,
with the “All “ and “ Part “ option. The results of the search are highlighted in the
color yellow. It also indicates the total number of matches.

The following is a description of the options available on the button panel labeled
as “18” in Figure 6.

Single Step.: “Single Step” lets the user execute the program, one instruction at a
time. The next instruction is not executed unless the user does a “single step”
again. By default, the instruction to be executed will be the one next in the
sequence. It changes if the user specifies a different PC value using the Change PC
option (explained below).

Change PC: This option lets the user change the value of PC (Program Counter).
By changing the PC the user can execute the instruction to which the specified PC
points.

Execute: By choosing this button the user is able to execute the instructions with
the options of execution with/without breakpoint insertion (refer to Fig. 5). In case
of breakpoint insertion, the user has the option to choose from a list of valid
breakpoint values. It also has the option to set a limit on the time for execution.
This “Max Execution Time” option restricts the program execution to a time frame
specified by the user, and helps the simulator in exception handling.

Change Register: Using the Change Register feature, the user can change the value
present in a particular register.

Change Memory Word: This feature enables the user to change values present at a
particular memory location.

Display Memory.: Display Memory shows an updated memory area, after a
particular memory location other than the pre-existing ones is specified by the user.

Change I/O: Allows the user to give an I/O port value if the instruction to be
executed requires an I/O operation. Giving in the input in any one of the 1/0O ports
areas before instruction execution, indicates that a particular I/O operation will be a
part of the program and it will have an input from some source. The value given by
the user indicates the input type and source.

Display I/0: Display I/O works in a manner similar to Display Memory. Here the
user specifies the starting index of an I/O port. This features displays the I/O ports
stating from the index specified.

Page 7

Advance Computer Architecture — CS501

2. Preparing source files for FALSIM:

In order to use the FALCON-A assembler and simulator, FALSIM, the source file
containing assembly language statements and directives should be prepared
according to the following guidelines:

e The source file should contain ASCII text only. Each line should be
terminated by a carriage return. The extension .asmfa should be used with each file
name. After assembly, a list file with the original filename and an extension .Istfa,
and a binary file with an extension .binfa will be generated by FALSIM.

e Comments are indicated by a semicolon (;) and can be placed anywhere in the
source file. The FALSIM assembler ignores any text after the semicolon.

e Names in the source file can be of one of the following types:

e Variables: These are defined using the .equ directive. A value must also be
assigned to variables when they are defined.

e Addresses in the “data and pointer area” within the memory: These can be
defined using the .dw or the .sw directive. The difference between these two
directives is that when .dw is used, it is not possible to store any value in the
memory. The integer after .dw identifies the number of memory words to be
reserved starting at the current address. (The directive .db can be used to reserve
bytes in memory.) Using the .sw directive, it is possible to store a constant or the
value of a name in the memory. It is also possible to use pointers with this directive
to specify addresses larger than 127. Data tables and jump tables can also be set up
in the memory using this directive.

e Labels: An assembly language statement can have a unique label associated
with it. Two assembly language statements cannot have the same name. Every
label should have a colon (:) after it.

e Use the .org 0 directive as the first line in the program. Although the use of
this line is optional, its use will make sure that FALSIM will start simulation by
picking up the first instruction stored at address 0 of the memory. (Address O is
called the reset address of the processor). A jump [first] instruction can be placed
at address 0, so that control is transferred to the first executable statement of the
main program. Thus, the label first serves as the identifier of the “entry point” in
the source file. The .org directive can also be used anywhere in the source file to
force code at a particular address in the memory.

e Address 2 in the memory is reserved for the pointer to the Interrupt Service
Routine (ISR). The .sw directive can be used to store the address of the first
instruction in the ISR at this location.

Page 8

Advance Computer Architecture — CS501

e Address 4 to 125 can be used for addresses of data and pointers'. However,
the main program must start at address 126 or less?, otherwise FALSIM will
generate an error at the jump [first] instruction.

e The main program should be followed by any subprograms or procedures.
Each procedure should be terminated with a ret instruction. The ISR, if any, should
be placed after the procedures and should be terminated with the iret instruction.

e The last line in the source file should be the .end directive.

e The .equ directive can be used anywhere in the source file to assign values to
variables.

e It is the responsibility of the programmer to make sure that code does not
overwrite data when the assembly process is performed, or vice versa. As an
example, this can happen if care is not exercised during the use of the .org directive
in the source file.

3. Using FALSIM:

e To start FALSIM (the FALCON-A assembler and simulator), double click on
the FALSIM icon. This will display the assembler window, as shown in the Figure
1.

e Select one or both assembler options shown on the top right corner of the
assembler window labeled as “2”. If no option is selected, the symbol table and the
instruction table will not be generated in the list (.Istfa) file.

e C(Click on the select assembly file button labeled as “1”. This will open the
dialog box as shown in the Figure 2.

e Select the path and file containing the source program that is to be assembled.

e C(Click on the open button. FALSIM will assemble the program and generate
two files with the same filename, but with different extensions. A list file will be
generated with an extension .Istfa, and a binary (executable) file will be generated
with an extension .binfa. FALSIM will also display the list file and any error
messages in two separate panes, as shown in Figure 3.

' Any address between 4 and 14 can be used in place of the displacement field in load or store
instructions. Recall that the displacement field is just 5 bits in the instruction word.

2 This restriction is because of the face that the immediate operand in the movi instruction must
fit an 8-bit field in the instruction word.

Page 9

Advance Computer Architecture — CS501

e Double clicking on any error message highlights and displays the
corresponding erroneous line in the program listing window pane for the user. This
is shown in Figure 4. The highlight feature can also be used to display any text
string, including statements with errors in them. If the assembler reported any
errors in the source file, then these errors should be corrected and the program
should be assembled again before simulation can be done. Additionally, if the
source file had been assembled correctly at an earlier occasion, and a correct binary
(.binfa) file exists, the simulator can be started directly without performing the
assembly process.

e To start the simulator, click on the start simulation button labeled as “6”. This
will open the dialog box shown in Figure 6.

e Select the binary file to be simulated, and click open as shown in Figure 7.

e This will open the simulation window with the executable program loaded in
it as shown in Figure 8. The details of the different panes in

e this window were given in section 1 earlier. Notice that the first instruction at
address 0 is ready for execution. All registers are initialized to 0. The memory
contains the address of the ISR (i.e., 64h which is 100 decimal) at location 2 and
the address of the printer driver at location 4. These two addresses are determined
at assembly time in our case. In a real situation, these addresses will be determined
at execution time by the operating system, and thus the ISR and the printer driver
will be located in the memory by the operating system (called re-locatable code).
Subsequent memory locations contain constants defined in the program.

e Click single step button labeled as “19”. FALSIM will execute the jump
[main] instruction at address 0 and the PC will change to 20h (32 decimal), which
is the address of the first instruction in the main program (i.e., the value of main).

e Although in a real situation, there will be many instructions in the main
program, those instructions are not present in the dummy calling program. The first
useful instruction is shown next. It loads the address of the printer driver in r6 from
the pointer area in the memory. The registers r5 and r7 are also set up for passing
the starting address of the print buffer and the number of bytes to be printed. In our
dummy program, we bring these values in to these registers from the data area in
the memory, and then pass these values to the printer driver using these two
registers. Clicking on the single step button twice, executes these two instructions.

e The execution of the call instruction simulates the event of a print request by
the user. This transfers control to the printer driver. Thus, when the call r4, r6
instruction is single stepped, the PC changes to 32h (50 decimal) for executing the
first instruction in the printer driver.

Page 10

Advance Computer Architecture — CS501

e Double click on memory location 000A, which is being used for holding the
PB (printer busy) flag. Enter a 1 and click the change memory button. This will
store a 0001 in this location, indicating that a previous print job is in progress. Now
click single step and note that this value is brought from memory location 000E
into register rl. Clicking single step again will cause the jnz rl, [message]
instruction to execute, and control will transfer to the message routine at address
0046h. The nop instruction is used here as a place holder.

e C(Click again on the single step button. Note that when the ret r4 instruction
executes, the value in r4 (i.e., 28h) is brought into the PC. The blue highlight bar is
placed on the next instruction after the call r4, r6 instruction in the main program.
In case of the dummy calling program, this is the halt instruction.

e Double click on the value of the PC labeled as “20”. This will open a dialog
box shown below. Enter a value of the PC (i.e., 26h) corresponding to the call r4,
16 instruction, so that it can be executed again. A “list” of possible PC values can
also be pulled down using, and 0026h can be selected from there as well.

Change PC
Enter Hew Walue for PC Hex]
{0000 -
[ok] Carcel |

e C(lick single step again to enter the printer driver again.

e Change memory location 000A to a 0, and then single step the first instruction
in the printer driver. This will bring a 0 in rl, so that when the next jnz rl,
[message] instruction is executed, the branch will not be taken and control will
transfer to the next instruction after this instruction. This is mivi rl, 1 at address
0036h.

e Continue single stepping.

e Notice that a 1 has been stored in memory location 000A, and r1 contains 11h,
which is then transferred to the output port at address 3Ch (60 decimal) when the
out rl, controlp instruction executes. This can be verified by double clicking on the
top left corner of the I/O port pane, and changing the address to 3Ch. Another way
to display the value of an I/O port is to scroll the I/O window pane to the desired
position.

e Continue single stepping till the int instruction and note the changes in
different panes of the simulation window at each step.

Page 11

Advance Computer Architecture — CS501

e When the int instruction executes, the PC changes to 64h, which is the address
of the first instruction in the ISR. Clicking single step executes this instruction, and
loads the address of temp (i.e., 0010h) which is a temporary memory area for
storing the environment. The five store instructions in the ISR save the CPU
environment (working registers) before the ISR change them.

e Single step through the ISR while noting the effects on various registers,
memory locations, and I/O ports till the iret instruction executes. This will pass
control back to the printer driver by changing the PC to the address of the jump
[finish] instruction, which is the next instruction after the int instruction.

e Double click on the value of the PC. Change it to point to the int instruction
and click single step to execute it again. Continue to single step till the in rl,
statusp instruction is ready for execution.

e Change the I/O port at address 3Ah (which represents the status port at
address 58) to 80 and then single step the in rl, statusp instruction. The value in rl
should be 0080.

e Single step twice and notice that control is transferred to the movi r7, FFFF?
instruction, which stores an error code of —1 in rl.

Azsambler Oplans
Saler] [Prindinstraction Takle ’-p
Assemiiy Fie | Prird Symboi Tabis. | FALLCON

g | Her | Der | Maching | LineNo, | Bowce Statement

/

Cave Sensilive
iCh Vhoie Maith Any

Higniignt | TotalMalch | @

— /
7

Figure 1

Stan it Anol Ent

3 The instruction was originally movi r7, -1. Since it was converted to machine language by

the assembler, and then reverse assembled by the simulator, it became movi r7, FFFF. This is
Page 12

Advance Computer Architecture — CS501

because the machine code stores the number in 16-bits after sign-extension. The result will be the
same in both cases.

=/ FALCON-A Assembler
T Assembler Options —— ¢
Select) [~ Print Instruction Table -
pssamhiy Flie]| | I™ Printsymbol Table | EAT CON

Hex | Dec. | Machine | Line No, | Source Statement |

Open
Laok in: ||f:_] My Documents ;J & P

L Example_11-10 9Feb04ISR4FALCONA

£ it |
Flensme [Example_ 11-10_9FebOAISFAFALCONA
Files of type: | Falcon4 &ssembly Files [* asmia) | Cancel |
] ~Optons —
| [Case Sensitive
I
| | Highiight (TotalMatch | 0 | © MatchWhole Match Any swﬂsimmaigr" About " Exit ||

Figure 2
0000 0000
peseciipost D [gFalconA_7Feb04
0000 0000
ooon 0000 6 1 Error(s) During Second Pass
gggg gggg See C:\Documents and
e (e Settings\javaria\Desktop\Example_11-10_7Feb04ISR4FALCONA. Istfa
0000 0000
0000 0000
0000 0000
0002 0002
0004 0004 U032 T EL1xn =W PaTver b |

Error: Line 62: Undefined variable 'r2*

~Options
[~ Case Sensitive

Highiight | |TotalMatch | 0 © MatchWhole (Match Any

stanSimulsnnr" About]| Exit]I

Figure 3

Page 13

Advance Computer Architecture — CS501

FALCOMN-A Assembler

~Assembler Options

Select

Assembly File |

[CiDocuments and

Settings\javariaiDesktopiExample_11-10_7Feh04|SR4FALCOMNA A

™ Print Instruction Table

| Printsymboi Table | EALCON

Hex | Dec. | Machine | Line Mo, | Source Statement | A
onaz 0050 Qooo 52 disable: equ g
onaz 0050 Qooo 53 ;
003z nosn aooon 54 strb H: equ 21 ;or15h
003z nosn aooon 55 strb L equ 20 ;ortdh
onaz 0050 Qooo 56 ;
003z nosn aooon a7 ccheck PB flag first, if set,
003z nosn aooon 58 creturnwith message.
onaz 0050 Qooo 54 ; |
onaz 0050 EQ0A 60 Pdriver: load r1, [PB]
0034 nos2 9112 B jnz rl, [message]
o036 | 0054|9999 B2 | movir] il
0036 nos4 E104 B3 store r1, [PB] ;alinPBindicates Println Progress
no3s n0se6 3911 B4 mavirl, reset cusze rl for data xfer
0034 nnss CHIC Ba out r1, controlp
003G 0o&0 ES06 66 store r§, [Bufp]
003E ooz ETO08 67 store 17, [NOB] Lf

~Optiang ———————————————
[~ Case Sensitive

| Highlight

| Total Mateh | 0

 Match\whole © Match Any

Start Simulator”

mot [e |

Figure 4

- .|'

EC:IDocuments and Settingsijavarialhly --;“lsse.mbler Optl.ons- . |
[DocurmentsiExample_11-10_8Feh04|SR4FALCONA 25mTa pNEinatE el | ;‘%-
| I Print Symbol Tahle | EAT COMN
Hesx] Drec.] Machine I Line Ma,] Source Statermnent] A
noon noon nooo 1 ~filename: Example_11-10.asmfa I
ooon noon noon 2 “This program sends a single character |
0000 0000 000G e e ;
LU DigFalconA_7Feb04
0000 0000 000f
0000 0000 000
0000 0000 000 ,E Following Files are Generated Successfully:
0oop. 0000 000 C:hDocuments and Settings'javariaiy
neop;_loohn_-onaf Docurments\Example_11-10_0FebD41SRAFALCOMNA, |stfa
0000 0000 000 A
S T e CiDocuments and Settings'javariaiMy
ooon oooo oood GocumentsiExample_11-10_9Feb041SR4FALCONA binfa
0000 0000 000
0000 0000 AD2
0004 0004 003 ¥
— "
- Options —
I Case Sensitive
Highlight TotalMateh | 0 © Match Whole ¢ hatch Any stanSimmatorﬂ i n Exit "

Figure 5

Page 14

Advance Computer Architecture — CS501

FALCON-A Simulator

Load | Totalmatch | Highlight | Return To
Binary File 1 0 | Math r- Case r Al Par Assembler
R - Memoty (00h-800h)
. Reg#| vawe | vawe | vawe | vawe | [memary| 0-1 | |
Figure 6
~Instruction .
Address | Instruction | | Leokin | 3 My Documents =] = B ckEv
dExample_11-10 9Feb04ISR4FALCONA
“I printerDriver
& %
5 iy — = | [I |
Fie name: [Example_11-10_9Feb04ISRAFALCONA Open
10 Ports (00h-FFh) | (]
Port#| 0-1 [2-3 Filesoftype: |Falcon-A Bin Files [*binta) - Cancel »
L

—Prucessur's State ‘ J Chanoe Reqister J.I Diisplay Memony Il Change Memary Wards u Help J

IR ' R I EG ' HE |I|] Execuie " Slngle Step " Change PO |[Changedio " Display G |
Loas | Tow Match Highight ruum'r. ;@
12 Doy Fi 0 [Man [Casa 7 Al [Pan
Reg#| vale | Valve | value | value | : ;
\ ‘ =
13 =
o Adoress | instruchon | Assembly | FL

- 15

Q & ¥ | |[Memony] 0-1 | 2-3 | 45 | s-1 |
WO Ports (00n-FFh)
Poto] 0. | 2.3 [4.5 [8.7 [
16 @
”“""""" | Il Tl | ! |)
1 [==l=wer] T |

N,

Figure 7
000A 0000 ADD RO, RO, R0 R|0] < R[O] 0050 nO0D noed 0000 [l -
000C 0000 ADD RO,RO, R0 RI0| =R(D) < »
000E 0000 ADOROD,RO,R0 R|0]=R[D] *
< > wemory] 0-1 | 2-3 | 4-5 | &-7 |
; o000 0032 0409
U0 Ports @O0N-FFH) 0008 0800 0000
Poe| 0.1 | 2-3 | 4.5 | &7 |4l |oor0 000 0000
0 0000 0000 0000 [0018 (1] 0009
3 0000 0000 0000 0000 0020 EFg8 B4CO
10 (000 0000 0000 0000 o028 oo 0000
18 0000 0000 0000 000! 030 9112 90
20 0000 0000 0000 000 1 9 038 CHIC ESOC
e e [T ' o L=
Figure 8

Page 15

Advance Computer Architecture — CS501

4. FALCON-A assembly language programming techniques:

e [fasigned value, x, cannot fit in 5 bits (i.e., it is outside the range -16 to +15),
FALSIM will report an error with a load rl, [x] or a store rl, [x] instruction. To
overcome this problem, use movi r2, x followed by load r1, [r2].

e [f a signed value, x, cannot fit in 8 bits (i.e., it is outside the range - 128 to
+127), even the previous scheme will not work. FALSIM will report an error with
the movi r2, x instruction. The following instruction sequence should be used to
overcome this limitation of the FALCON-A. First store the 16-bit address in the
memory using the .sw directive. Then use two load instructions as shown below:

.sw X load r2, [a] load r1, [r2]

e This is essentially a “memory-register-indirect” addressing. It has been made
possible by the .sw directive. The value of a should be less than 15.

e A similar technique can be used with immediate ALU instructions for large
values of the immediate data, and with the transfer of control (call and jump)
instructions for large values of the target address.

e Large values (16-bit values) can also be stored in registers using the mul
instruction combined with the addi instruction. The following instructions bring a
201 in register rl.

movi r2, 10

movi r3, 20

mul r1, r2, r3 ; r1 contains 200 after this instruction
addirl, rl, 1 ; r1 now contains 201

e Moving from one register to another can be done by using the instruction addi
r2, rl, 0.

e Bit setting and clearing can be done using the logical (and, or, not, etc)
instructions.

o Using shift instructions (shiftl, asr, etc.) is faster that mul and div, if the
multiplier or divisor is a power of 2.

Page 16

Advance Computer Architecture — CS501

Lecture No. 1

Introduction
Reading Material
Vincent P. Heuring & Harry F. Jordan Chapter 1
Computer Systems Design and Architecture 1.1,1.2,13,1.4,1.5
Summary

e Distinction between computer architecture, organization and design
Levels of abstraction in digital design

Introduction to the course topics

Perspectives of different people about computers

General operation of a stored program digital computer

The Fetch-Execute process

Concept of an ISA(Instruction Set Architecture)

Introduction

This course is about Computer Architecture. We start by explaining a few key terms.

The General Purpose Digital Computer

How can we define a ‘computer’? There are several kinds of devices that can be termed
“computers”: from desktop machines to the microcontrollers used in appliances such as a
microwave oven, from the Abacus to the cluster of tiny chips used in parallel processors, etc. For
the purpose of this course, we will use the following definition of a computer:

“An electronic device, operating
under the control of instructions stored in
its own memory unit, that can accept data
(input), process data arithmetically and
logically, produce output from the
processing, and store the results for
future use.” [1]

Thus, when we use the term computer, we
actually mean a digital computer. There
are many digital computers, which have
dedicated purposes, for example, a
computer is used in an automobile that
controls the spark timing for the engine. Notion of a System

This means that when we use the term

computer, we actually mean a general-purpose digital computer that can perform a variety of
arithmetic and logic tasks.

Electrical
Systems

General Purpose
Digital Computers

Systems

The Computer as a System

Now we examine the notion of a system, and the place of digital computers in the general
universal set of systems. A “system” is a collection of elements, or components, working

Page 17

Advance Computer Architecture — CS501

together on one or more inputs to produce one or more desired outputs. There are many types of
systems in the world. Examples include:

. Chemical systems

. Optical systems

. Biological systems

. Electrical systems

. Mechanical systems, etc.

These are all subsets of the general universal set of “systems”. One particular subset of interest is
an “electrical system”. In case of electrical systems, the inputs as well as the outputs are
electrical quantities, namely voltage and current. “Digital systems™ are a subset of electrical
systems. The inputs and outputs are digital quantities in this case. General-purpose digital
computers are a subset of digital systems. We will focus on general-purpose digital computers in
this course.

Essential Elements of a General Purpose Digital Computer

The figure shows the block diagram of a
modern general-purpose digital computer. O
We observe from the diagram that a general- ﬁ
purpose computer has three main %
components: a memory subsystem, an input/ Memory Ll 4 CPU
output subsystem, and a central processing pubsyiert ¥ | g | (nP)
unit. Programs are stored in the memory, the
execution of the program instructions takes
place in the CPU, and the communication 10
with the external world is achieved through Subsystem

the 1/O subsystem (including the Feriplerald) |
peripherals).

v--‘“’m‘
vv Address Bus

Architecture

Now that we understand the term Block Diagram of a Computer System
“computer” in our context, let us focus on

the term architecture. The word architecture, as defined in standard dictionaries, is “the art or
science of building”, or “a method or style of building”.|2]

Computer Architecture

This term was first used in 1964 by Amdahl, Blaauw, and Brooks at IBM [3]. They defined it as
“The structure of a computer that a machine language programmer must understand to write
a correct (time independent) program for that machine.”

By architecture, they meant the programmer visible portion of the instruction set. Thus, a family
of machines of the same architecture should be able to run the same software (instructions). This
concept is now so common that it is taken for granted. The x86 architecture is a well-known
example.

The study of computer architecture includes

e astudy of the structure of a computer
e astudy of the instruction set of a computer
e astudy of the process of designing a computer

Page 18

Advance Computer Architecture — CS501

Computer Organization versus Computer Architecture

It is difficult to make a sharp distinction between these two. However, architecture refers to the
attributes of a computer that are visible to a programmer, including

The instruction set

The number of bits used to represent various data types
I/O mechanisms

Memory addressing modes, etc.

On the other hand, organization refers to the operational units of a computer and their
interconnections that realize the architectural specifications. These include

e The control signals
e Interfaces between the computer and its peripherals
e Memory technology used, etc.

It is an architectural issue whether a computer will have a specific instruction or not, while it is
an organizational issue how that instruction will be implemented.

Computer Architect

We can conclude from the discussion above that a computer architect is a person who designs
computers.

Design
Design is defined as
“The process of devising a system, component, or process to meet desired needs.”

Most people think of design as a “sketch”. This is the usage of the term as a noun. However, the
standard engineering usage of the term, as is quite evident from the above definition, is as a verb,
i.e., “design is a process”. A designer works with a set of stated requirements under a number of
constraints to produce the best solution for a given problem. Best may mean a “cost-effective”
solution, but not always. Additional or alternate requirements, like efficiency, the client or the
designer may impose robustness, etc.. Therefore, design is a decision-making process (often
iterative in nature), in which the basic sciences, mathematical concepts and engineering sciences
are applied to convert a given set of resources optimally to meet a stated objective.

Knowledge base of a computer architect

There are many people in the world who know how to drive a car; these are the “users” of cars
who are familiar with the behavior of a car and how to operate it. In the same way, there are
people who can use computers. There are also a number of people in the world who know how to
repair a car; these are “automobile technicians”. In the same way, we have computer technicians.
However, there are a very few people who know how to design a car; these are “automobile
designers”. In the same way, there are only very few experts in the world who can design
computers. In this course, you will learn how to design computers!

These computer design experts are familiar with

e The structure of a computer
e The instruction set of a computer

e The process of designing a computer as well as few other related things.

Page 19

Advance Computer Architecture — CS501

At this point, we need to realize that it is not the job of a single person to design a computer from
scratch. There are a number of levels of computer design. Domain experts of that particular level
carry out the design activity for each level. These levels of abstraction of a digital computer’s
design are explained below.

Digital Design: Levels of Abstraction
Processor-Memory-Switch level (PMS level)

The highest is the processor-memory-switch level. This is the level at which an architect views
the system. It is simply a description of the system components and their interconnections. The
components are specified in the form of a block diagram.

Instruction Set Level

The next level is instruction set level. It defines the function of each instruction. The emphasis is
on the behavior of the system rather than the hardware structure of the system.

Register Transfer Level

Next to the ISA (instruction set architecture) level is the register transfer level. Hardware
structure is visible at this level. In addition to registers, the basic elements at this level are
multiplexers, decoders, buses, buffers etc.

The above three levels relate to “system design”.

Logic Design Level

The logic design level is also called the gate level. The basic elements at this level are gates and
flip-flops. The behavior is less visible, while the hardware structure predominates.

The above level relates to “logic design™.

Circuit Level

The key elements at this level are resistors, transistors, capacitors, diodes etc.

Mask Level

The lowest level is mask level dealing with the silicon structures and their layout that implement
the system as an integrated circuit.

The above two levels relate to “circuit design”.

The focus of this course will be the register transfer level and the instruction set level, although
we will also deal with the PMS level and the Logic Design Level.

Objectives of the course

This course will provide the students with an understanding of the various levels of studying
computer architecture, with emphasis on instruction set level and register transfer level. They
will be able to use basic combinational and sequential building blocks to design larger structures
like ALUs (Arithmetic Logic Units), memory subsystems, I/O subsystems etc. It will help them
understand the various approaches used to design computer CPUs (Central Processing Units) of
the RISC (Reduced Instruction Set Computers) and the CISC (Complex Instruction Set
Computers) type, as well as the principles of cache memories.

Important topics to be covered

. Review of computer organization

. Classification of computers and their instructions
. Machine characteristics and performance

. Design of a Simple RISC Computer: the SRC

. Advanced topics in processor design

. Input-output (I/O) subsystems

. Arithmetic Logic Unit implementation

. Memory subsystems

Page 20

Advance Computer Architecture — CS501

Course Outline Introduction:
¢ Distinction between Computer Architecture, Organization and design
e Levels of abstraction in digital design
e Introduction to the course topics

Brief review of computer organization:

e Perspectives of different people about computers
General operation of a stored program digital computer
The Fetch — Execute process
Concept of an ISA

Foundations of Computer Architecture:

A taxonomy of computers and their instructions
Instruction set features

Addressing Modes

RISC and CISC architectures

Measures of performance

An example processor: The SRC:
Introduction to the ISA and instruction formats
Coding examples and Hand assembly
Using Behavioral RTL to describe the SRC

e Implementing Register Transfers using Digital Logic Circuits

e 6 o (6 o o o o

ISA: Design and Development
e Outline of the thinking process for ISA design
e Introduction to the ISA of the FALCON — A
e Solved examples for FALCON-A
e Learning Aids for the FALCON-A

Other example processors:
e FALCON-E
e EAGLE and Modified EAGLE

e Comparison of the four [ISAs

CPU Design:

e The Design Process
A Uni-Bus implementation for the SRC
Structural RTL for the SRC instructions
Logic Design for the 1-Bus SRC
The Control Unit
The 2-and 3-Bus Processor Designs
The Machine Reset
e Machine Exceptions

Term Exam — [

Advanced topics in processor design:
e Pipelining
e Instruction-Level Parallelism
e Microprogramming

Page 21

Advance Computer Architecture — CS501

Input-output (I/0):

I/O interface design

e Programmed I/O

e Interrupt driven I/O

e Direct memory access (DMA) Term Exam — I1

Arithmetic Logic Shift Unit (ALSU) implementation:
e Addition, subtraction, multiplication & division for integer unit
¢ Floating point unit

Memory subsystems:
e Memory organization and design
e Memory hierarchy
e Cache memories
e Virtual memory

References

[1] Shelly G.B., Cashman T.J., Waggoner G.A., Waggoner W.C., Complete Computer
Concepts: Microcomputer and Applications. Ferncroft Village Danvers, Massachusetts: Boyd &
Fraser, 1992.

[2] Merriam-Webster Online; The Language Centre, May 12, 2003 (http:/www.m-
w.com/home.htm).

[3] Patterson, D.A. and Hennessy, J.L., Computer Architecture- A Quantitative Approach,
ond ed., San Francisco, CA: Morgan Kauffman Publishers Inc., 1996.

[4] Heuring V.P. and Jordan H.F., Computer Systems Design and Architecture. Melano Park,
CA: Addison Wesley, 1997.

A brief review of Computer Organization Perceptions of Different People about Computers
There are various perspectives that a computer can take depending on the person viewing it. For
example, the way a child perceives a computer is quite different from how a computer
programmer or a designer views it. There are a number of perceptions of the computer, however,
for the purpose of understanding the machine, generally the following four views are considered.

The User’s View

A user is the person for whom the machine is designed, and who employs it to perform some
useful work through application software. This useful work may be composing some reports in
word processing software, maintaining credit history in a spreadsheet, or even developing some
application software using high-level languages such as C or Java. The list of “useful work™ is
not all-inclusive. Children playing games on a computer may argue that playing games is also
“useful work”, maybe more so than preparing an internal office memo.

At the user’s level, one is only concerned with things like speed of the computer, the storage
capacity available, and the behavior of the peripheral devices. Besides performance, the user is
not involved in the implementation details of the computer, as the internal structure of the
machine is made obscure by the operating system interface.

Page 22

Advance Computer Architecture — CS501

The Programmer’s View

By “programmer” we imply machine or assembly language programmer. The machine or the
assembly language programmer is responsible for the implementation of software required to
execute various commands or sequences of commands (programs) on the computer.
Understanding some key terms first will help us better understand this view, the associated tasks,
responsibilities and tools of the trade.

Machine Language

Machine language consists of all the primitive instructions that a computer understands and is
able to execute. These are strings of 1s and 0s.Machine language is the computer’s native
language. Commands in the machine language are expressed as strings of 1s and 0s. It is the
lowest level language of a computer, and requires no further interpretation.

Instruction Set

A collection of all possible machine language commands that a computer can understand and
execute is called its instruction set. Every processor has its own unique instruction set. Therefore,
programs written for one processor will generally not run on another processor. This is quite
unlike programs written in higher-level languages, which may be portable. Assembly/machine
languages are generally unique to the processors on which they are run, because of the
differences in computer architecture. Three ways to list instructions in an instruction set of a
computer:

. by function categories

. by an alphabetic ordering of mnemonics
. by an ascending order of op-codes
Assembly Language

Since it is extremely tiring as well as error-prone to work with strings of 1s and Os for writing
entire programs, assembly language is used as a substitute symbolic representation using
“English like” key words called mnemonics. A pure assembly language is a language in which
each statement produces exactly one machine instruction, i.e. there is a one-to-one
correspondence between machine instructions and statements in the assembly language.
However, there are a few exceptions to this rule, the

Pentium jump instruction shown in the table below serves as an example.

Example Machine
Th 1 rovi with m mbl Assembly Mac hine Language Language | Instruction
e table provides us with some assembly 2 By P ph

statement and the machine language

. add cx, dx 0000 0001 11010001 01D1 Arithmetic
equivalents of the Intel x 86 processor “’
families' mov alx, 34h | 1011 1000 00110100 0000 0000 |B83400 | Datatransfer
Alpha is a label, and its value will be [xeraxbx |0011000111011000 DL | Lk
determined by the position of the jmp [Gmeapra |1110 1011 NITTI00 EBFC | Conirol

instruction in the program and the position of
the instruction whose address is alpha. So the second byte in the last instruction can be different
for different programs.

Hence there is a one-to-many correspondence of the assembly to machine language in this
instruction.

Users of Assembly Language
e The machine designer

The designer of a new machine needs to be familiar with the instruction sets of other machines in
order to be able to understand the trade-offs implicit in the design of those instruction sets.

Page 23

Advance Computer Architecture — CS501

e The compiler writer

A compiler is a program that converts programs written in high-level languages to machine
language. It is quite evident that a compiler writer must be familiar with the machine language of
the processor for which the compiler is being designed. This understanding is crucial for the
design of a compiler that produces correct and optimized code.

e The writer of time or space critical code
A complier may not always produce optimal code. Performance goals may force program-
specific optimizations in the assembly language.

e Special purpose or embedded processor programmer

Higher-level languages may not be appropriate for programming special purpose or embedded
processors that are now in common use in various appliances. This is because the functionality
required in such applications is highly specialized. In such a case, assembly language
programming is required to implement the required functionality.
Useful tools for assembly language programmers

e The assembler:

Programs written in assembly language require translation to the machine language, and an
assembler performs this translation. This conversion process is termed as the assembly process.
The assembly process can be done manually as well, but it is very tedious and error-prone.

An “assembler” that runs on one processor and translates an assembly language program written
for another processor into the machine language of the other processor is called a “cross
assembler”.

e The linker:
When developing large programs, different people working at the same time can develop
separate modules of functionality. These modules can then be ‘linked’ to form a single module
that can be loaded and executed. The modularity of programs, that the linking step in assembly
language makes possible, provides the same convenience as it does in higher-level languages;
namely abstraction and separation of concerns. Once the functionality of a module has been
verified for correctness, it can be re-used in any number of other modules. The programmer can
focus on other parts of the program. This is the so-called “modular” approach, or the “top-down”
approach.

e The debugger or monitor:

Assembly language programs are very lengthy and non-intuitive, hence quite tedious and error-
prone. There is also the disadvantage of the absence of an operating system to handle run-time
errors that can often crash a system, as opposed to the higher-level language programming,
where control is smoothly returned to the operating system. In addition to run-time errors (such
as a divide-by-zero error), there are syntax or logical errors.

A “debugger”, also called a “monitor”, is a computer program used to aid in detecting these
errors in a program. Commonly, debuggers provide functionality such as

o The display and altering of the contents of memory, CPU registers and flags

o Disassembly of machine code (translating the machine code back to assembly
language)

o Single stepping and breakpoints that allow the examination of the status of the

program and registers at desired points during execution.

While syntax errors and many logical errors can be detected by using debuggers, the best
debugger in the world can catch not every logical error.

e The development system
The development system is a complete set of (hardware and software) tools available to the
system developer. It includes

o Assemblers

o Linkers and loaders

Page 24

Advance Computer Architecture — CS501

Debuggers

Compilers

Emulators
Hardware-level debuggers
o Logic analyzers, etc.

O O O O

Difference between Higher-Level Languages and Assembly Language Higher-level
languages are generally used to develop application software. These high-level programs are
then converted to assembly language programs using compilers. So it is the task of a compiler
writer to determine the mapping between the high-level-language constructs and assembly
language constructs. Generally, there is a “many-to-many” mapping between high-level
languages and assembly language constructs. This means that a given HLL construct can
generally be represented by many different equivalent assembly language constructs. Alternately,
a given assembly language construct can be represented by many different equivalent HLL
constructs.

High-level languages provide various primitive data types, such as integer, Boolean and a string,
that a programmer can use. Type checking provides for the verification of proper usage of these
data types. It allows the compiler to determine memory requirements for variables and helping in
the detection of bad programming practices.

On the other hand, there is generally no provision for type checking at the machine level, and
hence, no provision for type checking in assembly language. The machine only sees strings of
bits. Instructions interpret the strings as a type, and it is usually limited to signed or unsigned
integers and floating point numbers. A given 32-bit word might be an instruction, an integer, a
floating-point number, or 4 ASCII characters. It is the task of the compiler writer to determine
how high-level language data types will be implemented using the data types available at the
machine level, and how type checking will be implemented.

The Stored Program Concept

This concept is fundamental to all the general-purpose computers today. It states that the
program is stored with data in computer’s memory, and the computer is able to manipulate it as
data. For example, the computer can load the program from disk, move it around in memory, and
store it back to the disk.

Even though all computers have unique machine language instruction sets, the ‘stored program’
concept and the existence of a ‘program counter’ is common to all machines. The sequence of
instructions to perform some useful task is called a program. All of the digital computers (the
general purpose machine defined above) are able to store these sequences of instructions as
stored programs. Relevant data is also stored on the computer’s secondary memory. These stored
programs are treated as data and the computer is able to manipulate them, for example, these can
be loaded into the memory for execution and then saved back onto the storage.

General Operation of a Stored Program Computer

The machine language programs are brought into the memory and then executed instruction by
instruction. Unless a branch instruction is encountered, the program is executed in sequence. The
instruction that is to be executed is fetched from the memory and temporarily stored in a CPU
register, called the instruction register (IR). The instruction register holds the instruction while it
is decoded and executed by the central processing unit (CPU) of the computer. However, before
loading an instruction into the instruction register for execution, the computer needs to know
which instruction to load. The program counter (PC), also called the instruction pointer in some
texts, is the register that holds the address of the next instruction in memory that is to be
executed.

When the execution of an instruction is completed, the contents of the program counter (which is
the address of the next instruction) are placed on the address bus. The memory places the
instruction on the corresponding address on the data bus. The CPU puts this instruction onto the
IR (instruction register) to decode and execute. While this instruction is decoded, its length in

Page 25

Advance Computer Architecture — CS501

bytes is determined, and the PC (program counter) is incremented by the length, so that the PC
will point to the next instruction in the memory.

Note that the length of the instruction is not determined in the case of RISC machines, as the
instruction length is fixed in these architectures, and so the program counter is always
incremented by a fixed number. In case of branch instructions, the contents of the PC are
replaced by the address of the next instruction contained in the present branch instruction, and
the current status of the processor is stored in a register called the Processor Status Word
(PSW). Another name for the PSW is the flag register. It contains the status bits, and control bits
corresponding to the state of the processor. Examples of status bits include the sign bit, overflow
bit, etc. Examples of control bits include interrupt enable flag, etc. When the execution of this
instruction is completed, the contents of the program counter are placed on the address bus, and
the entire cycle is repeated. This entire process of reading memory, incrementing the PC, and
decoding the instruction is known as the Fetch and Execute principle of the stored program
computer. This is actually an oversimplified situation. In case of the advanced processors of this
age, a lot more is going on than just the simple “fetch and execute” operation, such as pipelining
etc. The details of some of these more involved techniques will be studied later on during the
course.

The Concept of Instruction Set Architecture (ISA)

Now that we have an understanding of some of the relevant key terms, we revert to the assembly
language programmer’s perception of the computer. The programmer’s view is limited to the set
of all the assembly instructions or commands that can the particular computer at hand execute
understood/, in addition to the resources that these instructions may help manage. These
resources include the memory space and the entire programmer accessible registers. Note that we
use the term ‘memory space’ instead of memory, because not all the memory space has to be
filled with memory chips for a particular implementation, but it is still a resource available to the
programmer.

This set of instructions or operations and the resources together form the instruction set
architecture (ISA). It is the ISA, which serves as an interface between the program and the
functional units of a computer, i.e., through which, the computer’s resources, are accessed and
controlled.

The Computer Architect’s View

The computer architect’s view is concerned with the design of the entire system as well as
ensuring its optimum performance. The optimality is measured against some quantifiable
objectives that are set out before the design process begins. These objectives are set on the basis
of the functionality required from the machine to be designed. The computer architect

e Designs the ISA for optimum programming utility as well as for optimum performance of
implementation

e Designs the hardware for best implementation of instructions that are made available in
the ISA to the programmer

e Uses performance measurement tools, such as benchmark programs, to verify that the
performance objectives are met by the machine designed

° Balances performance of building blocks such as CPU, memory, I/O devices, and
Interconnections

Strives to meet performance goals at the lowest possible cost

Software models, simulators and emulators

Performance benchmark programs

Specialized measurement programs

Data flow and bottleneck analysis

Subsystem balance analysis

Page 26

Advance Computer Architecture — CS501

e Parts, manufacturing, and testing cost analysis

The Logic Designer’s View

The logic designer is responsible for the design of the machine at the logic gate level. It is the
design process at this level that determines whether the computer architect meets cost and
performance goals. The computer architect and the logic designer have to work in collaboration
to meet the cost and performance objectives of a machine. This is the reason why a single person
or a single team may be performing the tasks of system’s architectural design as well as the logic

design.

Useful Tools for the Logic Designer
Some of the tools available that aid the logic designer in the logic design process are

CAD tools

Logic design and simulation packages Printed circuit layout tools
IC (integrated circuit) design and layout tools

Logic analyzers and oscilloscopes
Hardware development systems

The Concept of the Implementation Domain
The collection of hardware devices, with which the logic designer works for the digital logic gate
implementation and interconnection of the machine, is termed as the implementation domain.
The logic gate implementation domain may be

VLSI (very large scale integration) on silicon

TTL (transistor-transistor logic) or ECL (emitter-coupled logic) chips
Gallium arsenide chips

PLAs (programmable-logic arrays) or sea-of-gates arrays

Fluidic logic or optical switches

Similarly, the implementation domains used for gate, board and module interconnections are

Poly-silicon lines in ICs
Conductive traces on a printed circuit

board 0<1[5

Electrical cable o — (o]
Optical fiber, etc. = ’

At the lower levels of logic design, the designer
is concerned mainly with the functional details (a) Abstract view of Boolean logic
represented in a symbolic form. The

implementation details are not considered at 15
these lower levels. They only become an issue at EN " 1
higher levels of logic design. An example of a SEL[-S 7
gher levels of logic g p b
two-to-one multiplexer in various Hva ﬁ’? 5
implementation domains will illustrate this point. - Bo B
Figure (a) is the generic logic gate (abstract e Bl -
domain) representation of a 2-to-1 multiplexer. Slye co %
. . . 53 I
Figure (b) shows the 2-to-1 multiplexer logic 257 h4
gate implementation in the domain of TTL (VLSI 0%yp B? 13 ||10
on Silicon) logic using part number ‘257, with
interconnections in the domain of printed circuit
board traces. (b) TTL implementation domain

Page 27

Advance Computer Architecture — CS501

Figure (c) is the implementation of the 2-to-1 multiplexer with a fiber optic directional coupler
switch, which has an interconnection domain of optical fiber.

Classical logic design versus computer logic design
We have already studied the sequential circuit design
concepts in the course on Digital Logic Design, and thus O ——— —10
are familiar with the techniques used. However, these — —I1

traditional techniques for a finite state machine are not
very practical when it comes to the design of a _’_‘

computer, in spite of the fact that a computer is a finite S

state machine. The reason is that employing these (¢) Optical switch implementation
techniques is much too complex as the computer can

assume hundreds of states.

Sequential Logic Circuit Design

When designing a sequential logic circuit, the problem is first coded in the form of a state
diagram. The redundant states may be eliminated, and then the state diagram is translated into
the next state table. The minimum number of flip-flops needed to implement the design is
calculated by making “state assignments” in terms of the flip-flop “states”. A “transition table” is
made using the state assignments and the next state table. The flip-flop control characteristics are
used to complete a set of “excitation tables”. The excitation equations are determined through
minimization. The logic circuit can then be drawn to implement the design. A detailed discussion
of these steps can be found in most books on Logic Design.

Computer Logic Design

Traditional Finite State Machine (FSM) design techniques are not suitable for the design of
computer logic. Since there is a natural separation between the data path and the control path in
case of a digital computer, a modular approach can be used in this case.

The data path consists of the storage cells, the arithmetic and logic components and their
interconnections. Control path is the circuitry that manages the data path information flow. So
considering the behavior first can carry out the design. Then the structure can be considered and
dealt with. For this purpose, well-defined logic blocks such as multiplexers, decoders, adders etc.
can be used repeatedly.

Two Views of the CPU Program Counter Register

The view of a logic designer is more detailed than that of a programmer. Details of the
mechanism used to control the machine are unimportant to the programmer, but of vital
importance to the logic designer. This can be illustrated through the following two views of the
program counter of a machine.

As shown in figure (a), to a programmer the program counter is just a register, and in this case,
of length 32 bits or 4 bytes.

31 0

PC |

(a) Program Counter: Programmer’s view

Page 28

Advance Computer Architecture — CS501

Figure (b) illustrates the logic designer’s view of a 32-bit program counter, implemented as an
array of 32 D flip-flops. It shows the contents of the program counter being gated out on ‘A bus’

(the address bus) by applying a control signal PCoyt. The contents of the ‘B bus’ (also the

address bus), can be stored in the program counter by asserting the signal PCiy on the leading
edge of the clock signal CK, thus storing the address of the next instruction in the program
counter.

M 32 32
A Bus > Q D+B Bus
PC
PCout
<7
CK PCin

(b) Program Counter: Logic Designer’s View

Page 29

Advance Computer Architecture — CS501

Lecture No. 2
Instruction Set Architecture

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 2,Chapter3
Computer Systems Design and Architecture 2.1,2.2,32

Summary

A taxonomy of computers and their instructions
Instruction set features

Addressing modes

RISC and CISC architectures

Foundations of Computer Architecture

Taxonomy of computers and their instructions

Processors can be classified on the basis of their instruction set architectures. The instruction set
architecture, described in the previous module gives us a ‘programmer’s view’ of the machine.
This module discussed a number of topics related to the classifications of computers and their
instructions.

CLASSES OF INSTRUCTION SET ARCHITECTURE:

The mechanism used by the CPU to store instructions and data can be used to classify the ISA
(Instruction Set Architecture). There are three types of machines based on this classification.

. Accumulator based machines

. Stack based machines

. General purpose register (GPR) machines

ACCUMULATOR BASED MACHINES

Accumulator based machines use special registers called the accumulators to hold one source
operand and also the result of the arithmetic or logic operations performed. Thus the accumulator
registers collect (or ‘accumulate’) data. Since the accumulator holds one of the operands, one
more register may be required to hold the address of another operand. The accumulator is not
used to hold an address. So accumulator based machines are also called 1-address machines.
Accumulator machines employ a very small number of accumulator registers, generally only
one. These machines were useful at the time when memory was quite expensive; as they used
one register to hold the source operand as well as the result of the operation. However, now that
the memory is relatively inexpensive, these are not considered very useful, and their use is
severely limited for the computation of expressions with many operands.

STACK BASED MACHINES

A stack is a group of registers organized as a last-in-first-out (LIFO) structure. In such a
structure, the operands stored first, through the push operation, can only be accessed last, through

Page 30

Advance Computer Architecture — CS501

a pop operation; the order of access to the operands is reverse of the storage operation. An
analogy of the stack is a “plate-dispenser” found in several self-service cafeterias. Arithmetic and
logic operations successively pick operands from the top-of-the-stack (TOS), and push the
results on the TOS at the end of the operation. In stack based machines, operand addresses need
not be specified during the arithmetic or logical operations. Therefore, these machines are also
called 0-address machines.

GENERAL-PURPOSE-REGISTER MACHINES

In general purpose register machines, a number of registers are available within the CPU. These
registers do not have dedicated functions, and can be employed for a variety of purposes. To
identify the register within an instruction, a small number of bits are required in an instruction
word. For example, to identify one of the 64 registers of the CPU, a 6-bit field is required in the
instruction.

CPU registers are faster than cache memory. Registers are also easily and more effectively used
by the compiler compared to other forms of internal storage. Registers can also be used to hold
variables, thereby reducing memory traffic. This increases the execution speed and reduces code
size (fewer bits required to code register names compared to memory) .In addition to data,
registers can also hold addresses and pointers (i.e., the address of an address). This increases the
flexibility available to the programmer.

A number of dedicated, or special purpose registers are also available in general-purpose
machines, but many of them are not available to the programmer. Examples of transparent
registers include the stack pointer, the program counter, memory address register, memory data
register and condition codes (or flags) register, etc.

We should understand that in reality, most machines are a combination of these machine types.
Accumulator machines have the advantage of being more efficient as these can store
intermediate results of an operation within the CPU.

INSTRUCTION SET

An instruction set is a collection of all possible machine language commands that are understood
and can be executed by a processor.

ESSENTIAL ELEMENTS OF COMPUTER INSTRUCTIONS:

There are four essential elements of an instruction; the type of operation to be performed, the
place to find the source operand(s), the place to store the result(s) and the source of the next
instruction to be executed by the processor.

Type of operation

In module 1, we described three ways to list the instruction set of a machine; one way of
enlisting the instruction set is by grouping the instructions in accordance with the functions they
perform. The type of operation that is to be performed can be encoded in the op-code (or the
operation code) field of the machine language instruction. Examples of operations are mov, jmp,
add; these are the assembly mnemonics, and should not be confused with op-codes. Op-codes are
simply bit-patterns in the machine language format of an instruction.

Place to find source operands

An instruction needs to specify the place from where the source operands will be retrieved and
used. Possible locations of the source operands are CPU registers, memory cells and /O
locations. The source operands can also be part of an instruction itself; such operands are called
immediate operands.

Place to store the results

An instruction also specifies the location in which the result of the operation, specified by the
instruction, is to be stored. Possible locations are CPU registers, memory cells and I/O locations.

Page 31

Advance Computer Architecture — CS501

Source of the next instruction

By default, in a program the next instruction in sequence is executed. So in cases where the next-
in-sequence instruction execution is desired, the place of next instruction need not be encoded
within the instruction, as it is implicit. However, in case of a branch, this information needs to be
encoded in the instruction. A branch may be conditional or unconditional, a subroutine call, as

well as a call to an interrupt service routine.

Example Mac hine
. Assembly Mac hine Language Language | Instruction

The table provides examples. of assembly e (Binary) o Pk
language commands and their machine

. . . add cx, dx 0000 0001 1101 0001 01D1 Arithmetic
language equivalents. In the instruction
add cx, dx, the contents of the location dx mov al,34h | 1011 1000 0011 0100 00000000 | B83400 | Data transfer
are added to the contents of the location ~orax,bx | 0011 0001 1101 1000 3ID8 |Loge
CX, and j[he resul't is gtored in cx. The e TR T e KT
instruction type is arithmetic, and the op-

code for the add instruction is 0000, as
shown in this example.

CLASSIFICATIONS OF INSTRUCTIONS:

We can classify instructions according to the format shown below.

. 4-address instructions
. 3-address instructions
. 2-address instructions
. 1-address instructions
. 0-address instructions

The distinction is based on the fact that some operands are accessed from memory, and therefore
require a memory address, while others may be in the registers within the CPU or they are
specified implicitly.

4-address instructions
The four address
instructions specify the
addresses of two source
operands, the address of the destination operand and the next instruction address.

4-address instructions are not very common because the next instruction to be executed is
sequentially stored next to the current instruction in the memory. Therefore, specifying its
address is redundant. These instructions are used in the micro-coded control unit, which will be
studied later.

op code destination source 1 source 2 next address

op code destination source 1 source 2

3-address instruction

A 3-address instruction specifies the addresses of two operands and the address of the destination
operand.

2-address instruction

A 2-address instruction has three fields; one for
the op-code, the second field specifies the address
of one of the source operands as well as the destination operand, and the last field is used for
holding the address of the second source operand. So one of the fields serves two purposes;
specifying a source operand address and a destination operand address.

destination source 2

source 1

op code

1-address instruction
Page 32

Advance Computer Architecture — CS501

A 1-address instruction has a dedicated CPU register, called
the accumulator, to hold one operand and to store the result.
There is no need of encoding the address of the accumulator
register to access the operand or to store the result, as its usage is implicit. There are two fields in
the instruction, one for specifying a source operand address and a destination operand address.

op code source 2

0-address instruction

A 0-address instruction uses a stack to hold both the operands and the result. op code
Operations are performed on the operands stored on the top of the stack and the
second value on the stack. The result is stored on the top of the stack. Just like
the use of an accumulator register, the addresses of the stack registers need not be specified, their
usage is implicit. Therefore, only one field is required in 0-address instruction; it specifies the
op-code.

COMPARISON OF INSTRUCTION FORMATS:
Basis for comparison

Two parameters are used as the basis for comparison of the instruction sets discussed above.
These are

e (Code size

Code size has an effect on the storage requirements for the instructions; the greater the code size,
the larger the memory required.

e Number of memory accesses
The number of memory accesses has an effect on the execution time of instructions; the greater
the numbers of memory accesses, the larger the time required for the execution cycle, as memory
accesses are generally slow.

Assumptions
We make a few assumptions, which are
e A single byte is used for the op code, so 256 instructions can be encoded using these 8
bits, as 28 =256
The size of the memory address space is 16 Mbytes
A single addressable memory unit is a byte

e Size of operands is 24 bits. As the memory size is 16Mbytes, with byte-addressable
memory, 24 bits are required to encode the address of the operands.

e The size of the address bus is 24 bits
Data bus size is 8 bits

Discussion

4-address instruction

e The code size is 13 op code destination | source 1 source 2 next address
bytes (1+3+3+3+3 = 13

bytes)

e Number of bytes 1 byte 3 bytes 3 bytes 3 bytes 3 bytes

accessed from memory is
22 (13 bytes for instruction
fetch + 6 bytes for source operand fetch + 3 bytes for storing destination operand = 22 bytes)

Note that there is no need for an additional memory access for the operand corresponding to the
next instruction, as it has already been brought into the CPU during instruction fetch.

3-address instruction

Page 33

Advance Computer Architecture — CS501

e The code size is 10 bytes op code destination source 1 source 2
(1+3+3+3 =10 bytes)

e Number of bytes accessed from

memory is 19 (10 bytes for Vhe Ahtes dhvies Sihytes

instruction fetch 6 bytes for source
operand fetch + 3 bytes for storing destination operand = 19 bytes)

2-address instruction

e The code size is 7 bytes (14343 = 7 bytes) Bpicode destlnat1|on amirce.
e Number of bytes accessed from memory is il
16(7 bytes for instruction fetch + 6 bytes for
source operand fetch + 3 bytes for storing fikuyte Jbmes dlivias
destination operand = 16 bytes)
1-address instruction

op code source 2

e The code size is 4 bytes (1+3= 4 bytes)

e Number of bytes accessed from memory is 7 (4 bytes for
instruction fetch + 3 bytes for source operand fetch + 0 bytes 1 byte 3 bytes
for storing destination operand = 7 bytes)

0-address instruction op code

e The code size is 1 byte
e Number of bytes accessed from memory is 10 (1 byte for instruction 1 byte
fetch + 6 bytes for source operand fetch + 3 bytes for storing destination
operand = 10 bytes)

The following table summarizes this information

Instruction Format Code Number of
size memory bytes
4-address instruction 13 22
3-address instruction 10 19
2-address instruction 7 16
1-address instruction 4 7
D-address instruction 1 10
HALF ADDRESSES

In the preceding discussion we have talked about memory addresses. This discussion also applies
to CPU registers. However, to specify/ encode a CPU register, less number of bits is required as
compared to the memory addresses. Therefore, these addresses are also called “half-addresses™.
An instruction that specifies one memory address and one CPU register can be called as a 1%%-
address instruction

Example
mov al, [34h]

THE PRACTICAL SITUATION

Real machines are not as simple as the classifications presented above. In fact, these machines
have a mixture of 3, 2, 1, 0, and 1%-address instructions. For example, the VAX 11 includes
instructions from all classes.

Page 34

Advance Computer Architecture — CS501

CLASSIFICATION OF MACHINES ON THE BASIS OF OPERAND AND
RESULT LOCATION:

A distinction between machines can be made on the basis of the ALU instructions; whether these
instructions use data from the memory or not. If the ALU instructions use only the CPU registers
for the operands and result, the machine type is called “load-store”. Other machines may have a
mixture of register-memory, or memory-memory instructions.

The number of memory operands supported by a typical ALU instruction may vary from 0 to 3.

Example
The SPARC, MIPS, Power PC, ALPHA: 0 memory addresses, max operands allowed = 3
X86, 68x series: 1 memory address, max operands allowed =2

LOAD- STORE MACHINES

These machines are also called the register-to-register machines. They typically use the 1%
address instruction format. Only the load and store instructions can access the memory. The load
instruction fetches the required data from the memory and temporarily stores it in the CPU
registers. Other instructions may use this data from the CPU registers. Then later, the results can
be stored back into the memory by the store instruction. Most RISC computers fall under this
category of machines.
Advantages (of register-register instructions)
Register-register instructions use 0 memory operands out of a total of 3 operands. The
advantages of such a scheme is:

e The instructions are simple and fixed in length

e The corresponding code generation model is simple

e All instructions take similar number of clock cycles for execution

Disadvantages (register-register instructions)

e The instruction count is higher; the number of instructions required to complete a
particular task is more as separate instructions will be required for load and store
operations of the memory

® Since the instruction size is fixed, the instructions that do not require all fields waste
memory bits

Register-memory machines

In register-memory machines, some operands are in the memory and some are in registers. These
machines typically employ 1 or 1'% address instruction format, in which one of the operands is an
accumulator or a general-purpose CPU registers.

Advantages
Register-memory operations use one memory operand out of a total of two operands. The
advantages of this instruction format are

e Operands in the memory can be accessed without having to load these first through a
separate load instruction

e Encoding is easy due to the elimination of the need of loading operands into registers first

o Instruction bit usage is relatively better, as more instructions are provided per fixed
number of bits

Disadvantages

e Operands are not equivalent since one operand may have two functions (both source
operand and destination operand), and the source operand may be destroyed

o Different size encoding for memory and registers may restrict the number of registers

Page 35

Advance Computer Architecture — CS501

e The number of clock cycles per instruction execution vary, depending on the operand
location operand fetch from memory is slow as compared to operands in CPU registers

Memory-Memory Machines

In memory-memory machines, all three of the operands (2 source operands and a destination
operand) are in the memory. If one of the operands is being used both as a source and a
destination, then the 2-address format is used. Otherwise, memory-memory machines use 3-
address formats of instructions.

Advantages

e The memory-memory instructions are the most compact instruction where encoding
wastage is minimal.

e As operands are fetched from and stored in the memory directly, no CPU registers are
wasted for temporary storage

Disadvantages
o The instruction size is not fixed; the large variation in instruction sizes makes decoding
complex

e The cycles per instruction execution also vary from instruction to instruction

e Memory accesses are generally slow, so too many references cause performance
degradation

Example 1

The expression a = (b+c)*d — e is evaluated with the 3, 2, 1, and 0-address machines to provide a
comparison of their advantages and disadvantages discussed above.

3 Address 2-Address 1-Address 0-Address
adda,b,c |loada,b Idab push b
mpya,a,d |adda,c add c push c
suba,a,e |[mpya,d mpy d add

suba, e sub e push d
staa mpy
push e
sub
pop a

The instructions shown in the table are the minimal instructions required to evaluate the given
expression. Note that these are not machine language instructions, rather the pseudo-code.

Example 2
The instruction z = 4(a +b) — 16(c+58) is with the 3, 2, 1, and 0-address machines in the table.
Functional classification of instruction

sets: 3-Address | 2-Address 1-Address C-Address
Instructions can be classified into the
1 3 : addx, o b load ¥, & . crder chaanged Lo rechacs cods sze pus s
following four categories based on their |* Rl A i
functionality. widzc, 58 |muly,4 |eddase sdd
. Data processing mule,r, 16 |loadsc |mulsld P”’l’l‘
. bz, add ¢, 58 stag i
. Data storage (main memory) R | s ke push ¢
. Data movement (I/O) by [sddab addbiosce push 58
° slore 7, ¥ mvula 4 wid
Program flow control subs g ;oubleecl ace From & push 16
BRAT emsl
. Data processing i
popz

Data processing instructions are the ones
that perform some mathematical or logical operation on some operands. The Arithmetic Logic

Page 36

Advance Computer Architecture — CS501

Unit performs these operations; therefore the data processing instructions can also be called ALU
instructions.

. Data storage (main memory)

The primary storage for the operands is the main memory. When an operation needs to be
performed on these operands, these can be temporarily brought into the CPU registers, and after
completion, these can be stored back to the memory. The instructions for data access and storage
between the memory and the CPU can be categorized as the data storage instructions.

. Data movement (I/0)

The ultimate sources of the data are input devices e.g. keyboard. The destination of the data is an
output device, for example, a monitor, etc. The instructions that enable such operations are called
data movement instructions.

. Program flow control

A CPU executes instructions sequentially, unless a program flow-change instruction is
encountered. This flow change, also called a branch, may be conditional or unconditional. In
case of a conditional branch, if the branch condition is met, the target address is loaded into the
program counter.

ADDRESSING MODES:

Addressing modes are the different ways in which the CPU generates the address of operands. In
other words, they provide access paths to memory locations and CPU registers.

Effective address

An “effective address”™ is the address (binary
bit pattern) issued by the CPU to the memory. ¢ [Gp code | e | Memory :
The CPU may use various ways to compute -
the effective address. The memory may
interpret the effective address differently
under different situations.

data
AccC | 123 |

No memory access needed

COMMONLY USED
ADDRESSING MODES

Some commonly used addressing modes are explained below.

Immediate addressing mode

In this addressing mode, data is the part of the instruction itself, and so there is no need of
address calculation. However, immediate addressing mode is used to hold source operands only;
cannot be used for storing results. The range of the operands is limited by the number of bits
available for encoding the operands in the instruction; for n bit fields, the range is 21 ¢4

+™D.y),

hermor
Example: 1da 123 i
In this example, the immediate operand, 123, R [Opcode | 122 |
1s loaded onto the accumulator. No address <ML—. 38 |12
calculation is required. J
Direct Addressing Mode el 0 |-
The address of the operand is specified as a

constant, and this constant is coded as part of
the instruction. The address space that can be

accessed is limited address space by the operand field size (2Operand field size locations).
Page 37

Advance Computer Architecture — CS501

Example: 1da [123]

As shown in the figure, the address of the operand is stored in the instruction. The operand is
then fetched from that memory address.

Indirect Addressing Mode

The address of the location where the address Memapy

of the data is to be found is stored in the oo T

instruction as the operand. "B T M

Thus, the operand is the address of a k_//\ 156 123
memory location, which holds the address Address@ 4

of the operand. Indirect addressing mode ace — T 789 |ass
can access a large address space (2™ H‘N

word size locations).

To fetch the operand in this addressing mode, two memory accesses are required. Since memory
accesses are slow, this is not efficient for frequent memory accesses. The indirect addressing
mode may be used to implement pointers.

Example: 1da [[123]]

As shown in the figure, the address of the memory location that holds the address of the data in
the memory is part of the instruction.

Register (Direct) Addressing Mode IR [Opsode] AscressofRt | MERIDFY

The operand is contained in a CPU register, the instruction points o a CPUyregister [28E1eT

and the address of this register is encoded in ey

the instruction. As no memory access is “R1 123 456 {123
needed, operand fetch is efficient. However, £

there are only a limited number of CPU R4

registers available, and this imposes a CPU Registers o

limitation on the use of this addressing Acc 456

mode.

Example: 1da R2

This load instruction specifies the address of the register and the operand is fetched from this
register. As is clear from the diagram, no memory access is involved in this addressing mode.

REGISTER INDIRECT :
ADDRESSING MODE IR Op code| address of R2 Mernory =
In the register indirect mode, the address of Address of data
memory location that contains the operand is R2 1234 A
in a CPU register. The address of this CPU R3
register is encoded in the instruction. A large ™ data
address space can be accessed using this . 1234
addressing mode (278" $I¢ |ocations). It
No memory access needed

involves fewer memory accesses compared
to indirect addressing.

Example: 1da [R1]

The address of the register that contains the address of memory location holding the operand is
encoded in the instruction. There is one memory access involved.

Page 38

Advance Computer Architecture — CS501

Displacement addressing mode

The displacement-addressing mode is also called based or indexed addressing mode. Effective
memory address is calculated by adding a constant (which is usually a part of the instruction) to
the value in a CPU register. This addressing mode is useful for accessing arrays. The addressing
mode may be called ‘indexed’ in the situation when the constant refers to the first element of the
array (base) and the register contains the ‘index’. Similarly, ‘based’ refers to the situation when
the constant refers to the offset (displacement) of an array element with respect to the first
element. The address of the first element is stored in a register.

Example: 1da [Rl + 8] Memory

In this example, R1 is the address of the IR [Oncode] Address orRi e |
register that holds a memory address,

Memary
it mrajd-"ﬁ‘:‘ address
which is to be used to calculate the Index 456|128

effective address of the operand. The §]™7 = l|

constant (8) is added to this address held CPUregisters
by the register and this effective address is acc | 458
used to retrieve the operand.

data

Relative addressing mode

The relative addressing mode is similar to the indexed addressing mode with the exception that
the PC holds the base address. This allows the storage of memory operands at a fixed offset from
the current instruction and is useful for ‘short’ jumps.

Memory
. IR | Opcode | 4 |
Example: Jump 4 l Address ofthe next
The constant offset (4) is a part of the () instruction . .
instruction, and it is added to the address NE“"”S."“C"D” 124
held by the Program Counter. [:

F'C| 120 |

RISC and CISC architectures:

Generally, computers can be classified as being RISC machines or CISC machines. These
concepts are explained in the following discussion.

RISC (Reduced instruction set computers)

RISC is more of a philosophy of computer design than a set of architectural features. The
underlying idea is to reduce the number and complexity of instructions. However, new RISC
machines have some instructions that may be quite complex and the number of instructions may
also be large. The common features of RISC machines are

. One instruction per clock period

This is the most important feature of the RISC machines. Since the program execution depends
on throughput and not on individual execution time, this feature is achievable by using pipelining
and other techniques. In such a case, the goal is issuing an average of one instruction per cycle
without increasing the cycle time.

. Fixed size instructions

Generally, the size of the instructions is 32 bits.

. CPU accesses memory only for Load and Store operations

This means that all the operands are in the CPU registers at the time these are used in an
instruction. For this purpose, they are first brought into the CPU registers from the memory and
later stored back through the load and store operation respectively.

. Simple and few addressing modes
Page 39

Advance Computer Architecture — CS501

The disadvantage associated with using complex addressing modes is that complex decoding is
required to calculate these addresses, which reduces the processor performance as it takes
significant time. Therefore, in RISC machines, few simple addressing modes are used.

. Less work per instruction

As the instructions are simple, less work is done per instruction, and hence the clock period T
can be reduced.

. Improved usage of delay slots

A ‘delay slot’ is the waiting time for a load or store operation to access memory or for a branch
instruction to access the target instruction. RISC designs allow the execution of the next
instruction after these instructions are issued. If the program or compiler places an instruction in
the delay slot that does not depend on the result of the previous instruction, the delay slot can be
used efficiently. For the implementation of this feature, improved compilers are required that can
check the dependencies of instructions before issuing them to utilize the delay slots.

. Efficient usage of Pre-fetching and Speculative Execution Techniques

Pre-fetching and speculative execution techniques are used with a pipelined architecture.
Instruction pipelining means having multiple instructions in different stages of execution as
instructions are issued before the previous instruction has completed its execution; pipelining
will be studied in detail later. The RISC machines examine the instructions to check if operand
fetches or branch instructions are involved. In such a case, the operands or the branch target
instructions can be ‘pre-fetched’. As instructions are issued before the preceding instructions
have completed execution, the processor will not know in case of a conditional branch
instruction, whether the condition will be met and the branch will be taken or not. But instead of
waiting for this information to be available, the branch can be “speculated” as taken or not taken,
and the instructions can be issued. Later if the speculation is found to be wrong, the results can
be discarded and actual target instructions can be issued. These techniques help improve the
performance of processors.

CISC (Complex Instruction Set Computers)

The complex instruction set computers does not have an underlying philosophy. The CISC
machines have resulted from the efforts of computer designers to efficiently utilize memory and
minimize execution time, yet add in more instruction formats and addressing modes. The
common attributes of CISC machines are discussed below.

. More work per instruction

This feature was very useful at the time when memory was expensive as well as slow; it allows
the execution of compact programs with more functionality per instruction.

. Wide variety of addressing modes

CISC machines support a number of addressing modes, which helps reduce the program
instruction count. There are 14 addressing modes in MC68000 and 25 in MC68020.

. Variable instruction lengths and execution times per instruction
The instruction size is not fixed and so the execution times vary from instruction to instruction.
. CISC machines attempt to reduce the “semantic gap”

‘Semantic gap’ is the gap between machine level instruction sets and high-level language
constructs. CISC designers believed that narrowing this gap by providing complicated
instructions and complex-addressing modes would improve performance. The concept did not
work because compiler writes did not find these “improvements™ useful. The following are some
of the disadvantages of CISC machines.

. Clock period T, cannot be reduced beyond a certain limit

When more capabilities are added to an instruction the CPU circuits required for the execution of
these instructions become complex. This results in more stages of logic circuitry and adds
propagation delays in signal paths.

This in turn places a limit on the smallest possible value of T and hence, the maximum value of
clock frequency.

Page 40

Advance Computer Architecture — CS501

. Complex addressing modes delay operand fetch from memory
The operand fetch is delayed because more time is required to decode complex instructions.
. Difficult to make efficient use of speedup techniques

These speedup techniques include
e Pipelining
e Pre-fetching (Intel 8086 has a 6 byte queue)
e Super scalar operation
e Speculative execution

Page 41

Advance Computer Architecture — CS501

Lecture No. 3
Introduction to SRC Processor

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter2, Chapter 3
Computer Systems Design and Architecture 2.3,2.4,3.1
Summary

e Measures of performance

e Introduction to an example processor SRC
e SRC Notation

e SRC features and instruction formats

Measures of performance:
Performance testing

To test or compare the performance of machines, programs can be run and their execution times
can be measured. However, the execution speed may depend on the particular program being
run, and matching it exactly to the actual needs of the customer can be quite complex. To
overcome this problem, standard programs called “benchmark programs™ have been devised.
These programs are intended to approximate the real workload that the user will want to run on
the machine. Actual execution time can be measured by running the program on the machines.
Commonly used measures of performance

The basic measure of performance of a machine is time. Some commonly used measures of this
time, used for comparison of the performance of various machines, are

. Execution time
. MIPS

. MFLOPS

. Whetstones

. Dhrystones

. SPEC

Execution time

Execution time is simply the time it takes a processor to execute a given program. The time it
takes for a particular program depends on a number of factors other than the performance of the
CPU, most of which are ignored in this measure. These factors include waits for I/O, instruction
fetch times, pipeline delays, etc.
The execution time of a program with respect to the processor, is defined as
Execution Time=IC x CPI x T
Where,

IC = instruction count

CPI = average number of system clock periods to execute an instruction T = clock period
Strictly speaking, (ICXCPI) should be the sum of the clock periods needed to execute each

instruction. The manufacturers for each instruction in the instruction set usually provide such
information. Using the average is a simplification.

Page 42

Advance Computer Architecture — CS501

MIPS (Millions of Instructions per Second)
Another measure of performance is the millions of instructions that are executed by the processor
per second. It is defined as

MIPS = IC/ (ET x 10%)
This measure is not a very accurate basis for comparison of different processors. This is because
of the architectural differences of the machines; some machines will require more instructions to
perform the same job as compared to other machines. For example, RISC machines have simpler
instructions, so the same job will require more instructions. This measure of performance was
popular in the late 70s and early 80s when the VAX 11/780 was treated as a reference.

MFLOPS (Millions of Floating Point Instructions per Second)
For computation intensive applications, the floating-point instruction execution is a better

measure than the simple instructions. The measure MFLOPS was devised with this in mind. This
measure has two advantages over MIPS:

¢ Floating point operations are complex, and therefore, provide a better picture of the
hardware capabilities on which they are run

e Overheads (operand fetch from memory, result storage to the memory, etc.) are
effectively lumped with the floating point operations they support

Whetstones

Whetstone is the first benchmark program developed specifically as a benchmark program for
performance measurement. Named after the Whetstone Algol compiler, this benchmark program
was developed by using the statistics collected during the compiler development. It was
originally an Algol program, but it has been ported to FORTRAN, Pascal and C. This benchmark
has been specifically designed to test floating point instructions. The performance is stated in
MWIPS (millions of Whetstone instructions per second).

Dhrystones

Developed in 1984, this is a small benchmark program to measure the integer instruction
performance of processors, as opposed to the Whetstone’s emphasis on floating point
instructions. It is a very small program, about a hundred high-level-language statements, and
compiles to about 1~ 1% kilobytes of code.

Disadvantages of using Whetstones and Dhrystones
Both Whetstones and Dhrystones are now considered obsolete because of the following reasons.
. Small, fit in cache

. Obsolete instruction mix

. Prone to compiler tricks

. Difficult to reproduce results
. Uncontrolled source code

We should note that both the Whetstone and Dhrystone benchmarks are small programs, which
encourage ‘over-optimization’, and can be used with optimizing compilers to distort results.

SPEC

SPEC, System Performance Evaluation Cooperative, is an association of a number of computer
companies to define standard benchmarks for fair evaluation and comparison of different
processors. The standard SPEC benchmark suite includes:

e A compiler
e A Boolean minimization program
e A spreadsheet program

Page 43

Advance Computer Architecture — CS501

e A number of other programs that stress arithmetic processing speed the latest version of
these benchmarks is SPEC CPU2000.

Advantages
e It provides for ease of publication.
Each benchmark carries the same weight.
SPEC ratio is dimensionless.
It is not unduly influenced by long running programs.
It is relatively immune to performance variation on individual benchmarks.
It provides a consistent and fair metric.

An example computer: the SRC: “simple RISC computer”

An example machine is introduced here to facilitate our understanding of various design steps
and concepts in computer architecture. This example machine is quite simple, and leaves out a
lot of details of a real machine, yet it is complex enough to illustrate the fundamentals.

SRC Introduction
Attributes of the SRC i‘"%? ““““ 0 "1: ; :

e The SRC contains 32 General Purpose | E[: ! 0
Registers: RO, R1, ..., R31; each | : | 1
register is of size 32-bits. | |:| | 2

e Two special purpose registers are } Register file :
included: Program Counter (PC) and | !

Instruction Register (IR) ! !

e Memory word size is 32 bits R[]

e Memory space size is 2°2 bytes |] I 224
Memory organization is 2> x 8 bits, e i
this means that the memory is byte CPU Main memory

aligned
e Memory is accessed in 32 bit words (i.e., 4 byte chunks)

Big-endian byte storage is used

Programmer’s View of the SRC

two additional CPU registers (PC & IR), and the
main memory which is 232 1-byte cells.

) % 5 W One memory “word”
The figure shows the attributes of the SRC; the £ .4 wm % X . 7 5
32, 32-bit registers that are a part of the CPU, the ' mﬂ 1”} [M@ [M@ [wool [MAT |
&
X

us’aie/' LS Byte
SRC Notation

We examine the notation used for the SRC with the help of some examples.

e RJ[3] means contents of register

e 3 (R for register)

e M][8] means contents of memory location 8 (M for memory)

e A memory word at address 8 is defined as the 32 bits at address 8,9,10 and 11 in the
memory. This is shown in the figure.

e A special notation for 32-bit memory words is M[8]<31...0>:=M[8] M[9] M[10] M[11]
is used for concatenation.

Page 44

Advance Computer Architecture — CS501

Some more SRC Attributes

e All instructions are 32 bits long (i.e., instruction size is 1 word)

e All ALU instructions have three operands

e The only way to access memory is through load and store operations

e Only a few addressing modes are supported

31 27 26 0
SRC: Instruction Formats Type A Op-code unused
Four types of instructions are supported by a1 s s ;
the SRC. Their representation is given in .. g op-code a &
the figure shown.
Before discussing these instruction types in 2 2726 2221 1718 0
detail, we take a look at the encoding of Tye c SRR | 62
general purpose registers (the ra, rb and rc
fields). 1 2726 2221 1716 1211 0
Type D Op-code ra th re c3

Encoding of the General Purpose Registers
The encoding for the general purpose —F ="+ T =T+ 7 = —
registers is shown in the table; it will be used R e e Sy S e 5
in place of ra, rb and rc in the instruction TR T R : =
formats shown above. Note that this is a B | wm | me | ooe | CI
simple 5 bit encoding. ra, rb and rc are B | C
names of fields used as “place-holders”, and o[o]
can represent any one of these 32 registers. oo uall| e 5
An exception is tb = 0; it does not mean the | | " _ _
register RO, rather it means no operand. This i : _ :
will be explained in the following discussion.
Type A 31 2726 0
Type A is used for only two instructions: Op-code unused

e No operation or nop, for which the
op-code = 0. This is useful in pipelining
e Stop operation stop, the op-code is 31 for this instruction.
Both of these instructions do not need an operand (are 0-operand instructions).

Type B

Type B format includes three instructions;
all three use relative addressing mode. Op-code ra ¢l
These are

31 2726 22 21 0

e The Idr instruction, used to load register from memory using a relative address.
(op-code = 2).
» Example:
1dr R3, 56
This instruction will load the register R3 with the contents of the memory location M
[PC+56]

e The lar instruction, for loading a register with relative address (op-code = 6)

Page 45

Advance Computer Architecture — CS501

= Example: lar R3, 56
This instruction will load the register R3 with the relative address itself (PC+56).

e The str is used to store register to memory using relative address (op-code = 4)
" Example: str R8, 34
This instruction will store the register R8 contents to the memory location
M [PC+34]
The effective address is computed at run-time by adding a constant to the PC. This makes the
instructions ‘re-locatable’.
31 2726 2221 1716 0

Type C Op-code ra rh c2
Type C format has three load/store
instructions, plus three ALU instructions. These load/ store instructions are

e 1d, the load register from memory instruction (op-code = 1)

= Example 1:
1d R3, 56
This instruction will load the register R3 with the contents of the memory location M
[56]; the rb field is O in this instruction, i.e., it is not used. This is an example of direct
addressing mode.

= Example 2:
Id R3, 56(R5)
The contents of the memory location M [56+R [5]] are loaded to the register R3; the rb
field # 0. This is an instance of indexed addressing mode.

e lais the instruction to load a register with an immediate data value (which can be an
address) (op-code =5)

= Examplel:
la R3, 56
The register R3 is loaded with the immediate value 56. This is an instance of immediate
addressing mode.

= Example 2:
la R3, 56(R5)
The register R3 is loaded with the indexed address 56+R [5]. This is an example of
indexed addressing mode.

e The st instruction is used to store register contents to memory (op-code = 3)

= Example 1: st RS, 34
This is the direct addressing mode; the contents of register R8 (R [8]) are stored to the
memory location M [34]

= Example 2: st R8, 34(R6)
An instance of indexed addressing mode, M [34+R [6]] stores the contents of R8(R [8])

The ALU instructions are

e addi, immediate 2’s complement addition (op-code = 13)
= Example:

addi R3, R4, 56
R[3] «— R[4]+56 (rb field = R4)
Page 46

Advance Computer Architecture — CS501

e andi, the instruction to obtain immediate logical AND, (op-code =42)

= Example:
andi R3, R4, 56

e R3 isloaded with the immediate logical AND of the contents of register R4 and 56

(constant value)

e ori, the instruction to obtain immediate logical OR (op-code =23)

= Example: ori R3, R4, 56

e R3isloaded with the immediate logical OR of the contents of register R4 and

56(constant value)

Note:

1. Since the constant ¢2 field is 17 bits,

= For direct addressing mode, only the first 216 bytes of memory can be accessed (or the

last 21 bytes if c2 is negative)

* [n case of the la instruction, only constants with magnitudes less than 421 can be

loaded

* During address calculation using c2, sign extension to 32 bits must be performed

before the addition

2. Type C instructions, with some
modifications, may also be used for shift
instructions. Note the modification in the
following figure.

The four shift instructions are

31

2726 22 21

1716

4 0

Op-code

ra

th

unused

count

e shris the instruction used to shift the bits right by using value in (5-bit) c3 field(shift

count) (op-code = 26)
o Example: shr R3, R4, 7

shift R4 right 7 times in to R3. Immediate addressing mode is used.

e shra, arithmetic shift right by using value in ¢3 field (op-code = 27)

o [Example: shra R3, R4, 7

This instruction has the effect of shift R4 right 7 times in to R3. Immediate

addressing mode is used.

e The shl instruction is for shift left by using value in (5-bit) c3 field (op-code = 28)

o Example: shl R8, RS, 6

shift RS left 6 times in to R8. Immediate addressing mode is used.

e shc, shift left circular by using value in ¢3 field (op-code = 29)

o Example: shc R3, R4, 3

shift R4 circular 3 times in to R3. Immediate addressing mode is used.

Page 47

Advance Computer Architecture — CS501

Lecture No. 4
ISA and Instruction Formats

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 2
Computer Systems Design and Architecture 2.3, 2.4, slides
Summary

e Introduction to ISA and instruction formats
e Coding examples and Hand assembly

An example computer: the SRC: “simple RISC computer”

An example machine is introduced here to facilitate our understanding of various design steps
and concepts in computer architecture. This example machine is quite simple, and leaves out a
lot of details of a real machine, yet it is complex enough to illustrate the fundamentals.

SRC Introduction

Attributes of the SRC

. The SRC contains 32 General Purpose Registers: RO, R1... R31; each register is of
size 32-bits.

. Two special purpose registers are included: Program Counter (PC) and Instruction
Register (IR)

. Memory word size is 32 bits

. Memory space size is 232 biftes

. Memory organization is 27k 8 e R

bits, this means that the memory is byte - 7 0
aligned o 0

. Memory is accessed in 32 bit - 1
words (i.e., 4 byte chunks) a4 |:| 2

. Big-endian byte storage is used

Programmer’s View of the SRC
The figure below shows the attributes of

I |
| I
I |
| I
| |
I I
I I
' :
I

: Register file :
| I
I |
I I
I |
| I
| |
I I
I I
I I

s U Y —

the SRC; the 32, 32-bit registers that are a 0924

part of the CPU, the two additional CPU S i

registers (PC & IR), and the main memory | ———— |

which is 232 1-byte cells. CPU Main memory

SRC Notation

We examine the notation used for the g .

SRC with the help of some examples. £ o [wE One memory “word”

. R[3] means contents of Bl o M M3 161587 0

register 3 (R for register) S a3 [ME [W@ | w0] L;ﬂg;l |
e MS Byt]

. M[8] means contents of 1 L’f/'

memory location 8 (M for memory)

Page 48

Advance Computer Architecture — CS501

. A memory word at address 8 is defined as the 32 bits at address 8,9,10 and 11 in the
memory. This is shown in the figure below.
. A special notation for 32-bit memory words is M[8]<31...0>:=M[8] M[9] M[10]

M]11] is used for concatenation.

Some more SRC Attributes

. All instructions are 32 bits long (i.e., instruction size is 1 word)
. All ALU instructions have three operands
. The only way to access memory is through load and store operations
. Only a few addressing modes are supported
31 27 26 0
Type A Op-code unused
SRC: Instruction Formats
. . il 2726 22 1 0
Four types of instructions are supported by
. ype B Op-code ra c1
the SRC. Their representation is given in
the fqllowmg figure. 'Before. discussing . - 5
these instruction types in detail, we take a
: ype C Op-code ra th c2
look at the encoding of general-purpose
registers (the ra, rb and rc fields).
il 2726 2221 1716 1211 0
. Type D Op-code ra rh rc c3
Encoding of the General Purpose
Registers
The encoding for the general purpose
registers is shown in the following table; it | "= | % | W | o | Rasmer] 0 | M | 0
will be used in place of ra, rb and rc in the il) cop ™ -
instruction formats shown above. Note that | | | | _
this is a simple 5 bit encoding. ra, rb and rc . _ _
are names of fields used as “place-holders”, R T S S -
and can represent any one of these 32 —— — —
registers. An exception is tb = 0; it does not = TR e T
mean the register R0, rather it means no : e :

operand. This will be explained in the
following discussion.

Type A

Type A is used for only two instructions:

e No operation or nop, for which the op-code = 0. This is useful in pipelining
e Stop operation stop, the op-code is 31 2726 0
31 for this instruction.

Op-code unused

Both of these instructions do not need an operand (are 0-operand instructions).

Type B

Type B format includes three instructions; 31 2726 2221 0
all three use relative addressing mode. Op-code ra 1

Page 49

Advance Computer Architecture — CS501

These are

e The Idr instruction, used to load register from memory using a relative address.
(op-code = 2).
o Example: 1dr R3, 56
This instruction will load the register R3 with the contents of the memory location
M [PC+56]
e The lar instruction, for loading a register with relative address (op-code = 6)
o Example: lar R3, 56
This instruction will load the register R3 with the relative address itself (PC+56).
e The str is used to store register to memory using relative address (op-code = 4)
o Example: str R8, 34
This instruction will store the register R8 contents to the memory location M
[PC+34]

e The effective address is computed at run-time by adding a constant to the PC. This makes
the instructions ‘re-locatable’.

Type C 31 2726 2221 1716 0

Type C format has three load/store Op-code ra b c2
instructions, plus three ALU instructions.
These load/ store instructions are

e 1d, the load register from memory instruction (op-code = 1)
o Example 1:
1d R3, 56
This instruction will load the register R3 with the contents of the memory location M
[56]; the rb field is O in this instruction, i.e., it is not used. This is an example of direct
addressing mode.

o Example 2: Id R3, 56(RY)
The contents of the memory location M [56+R [5]] are loaded to the register R3; the
rb field # 0. This is an instance of indexed addressing mode.

e lais the instruction to load a register with an immediate data value (which can be an
address) (op-code =5)
o Examplel: laR3, 56
The register R3 is loaded with the immediate value 56. This is an instance of
immediate addressing mode.
o Example 2: la R3, 56(RS5)
The register R3 is loaded with the indexed address 56+R [5]. This is an example of

indexed addressing mode.

e The st instruction is used to store register contents to memory (op-code = 3)
o Example 1: st R8, 34

This is the direct addressing mode; the contents of register R8 (R [8]) are stored to the
memory location M [34]
o Example 2: st RS, 34(R6)

An instance of indexed addressing mode, M [34+R [6]] stores the contents of R§ (R
[81)

The ALU instructions are

e addi, immediate 2’s complement addition (op-code = 13)
o Example: addi R3, R4, 56

R[3] < R[4]+56 (b field = R4)

Page 50

Advance Computer Architecture — CS501

¢ andi, the instruction to obtain immediate logical AND, (op-code =21)
o Example: andi R3, R4, 56

R3 is loaded with the immediate logical AND of the contents of register R4 and
56(constant value)

e ori, the instruction to obtain immediate logical OR (op-code =23)
o Example: ori R3, R4, 56

R3 is loaded with the immediate logical OR of the contents of register R4 and
56(constant value)

Note:
1. Since the constant c2 field is 17 bits,
e For direct addressmg mode, only the first o6 bytes of memory can be accessed
(or the last 2! bytes if ¢2 is negative)

e In case of the la instruction, only constants with magnitudes less than +216 can be
loaded

e During address calculation using c¢2, sign extension to 32 bits must be performed
before the addition

2. Type C instructions, with some modifications, may also be used for shift
instructions. Note the modification in the following figure.
31 2726 2221 1716 4 0
Op-code ra rh unused [count

The four shift instructions are
e shr is the instruction used to shift the bits right by using value in (5-bit) c3 field(shift
count) (op-code = 26)
o Example: shr R3, R4, 7
Shift R4 right 7 times in to R3 and shifts zeros in from the left as the value is shifted
right. Immediate addressing mode is used.

e shra, arithmetic shift right by using value in c3 field (op-code = 27)
o Example: shra R3, R4, 7
This instruction has the effect of shift R4 right 7 times in to R3 and copies the msb into
the word on left as contents are shifted right. Inmediate addressing mode is used.

e The shl instruction is for shift left by using value in (5-bit) c3 field (op-code = 28)
o Example: shl R8, RS, 6
Shift RS left 6 times in to R8 and shifts zeros in from the right as the value is shifted left.
Immediate addressing mode is used.

e shc, shift left circular by using value in ¢3 field (op-code = 29)

o Example: she R3, R4, 3
Shift R4 circular 3 times in to R3 and copies the value shifted out of the register on the
left is placed back into the register on the right. Inmediate addressing mode is used.

Type D

Type D includes four ALU instructions, four register based shift instructions, two logical
instructions and two branch instructions.

31 2726 2221 1716 1211 0
Op-code ra rh rc unused

Page 51

Advance Computer Architecture — CS501

The four ALU instructions are given below

add, the instruction for 2’°s complement register addition (op-code = 12)

o Example:

add R3, R5, R6

Result of 2°s complement addition R[5] + R[6] is stored in R3. Register addressing mode
is used.

sub , the instruction for 2’s complement register subtraction (op-code = 14)

o Example:

sub R3, R5, R6

R3 will store the 2°s complement subtraction, R[5] - R[6]. Register addressing mode is
used.

and, the instruction for logical AND operation between registers (op-code = 20)

o Example:

and R8, R3, R4

R8 will store the logical AND of registers R3 and R4. Register addressing

mode is used.

or, the instruction for logical OR operation between registers (op-code = 22)
o Example:

or R8, R3, R4

R8 is loaded with the value R[3] v R[4], the logical OR of registers R3 and
R4. Register addressing mode is used.

The four register based shift instructions

use register addressing mode. These usea 31 2726 2221 1716 1211 54 0O
modified form of type D, as shown in Op-code ra b rc |unused (00000
figure

shr, shift right by using value in register rc (op-code = 26)

o Example: shr R3, R4, RS

This instruction will shift R4 right in to R3 using number in RS
shra, the arithmetic shift right by using register rc (op-code =27)
o Example:

shra R3, R4, RS

A shift of R4 right using RS, and the result is stored in R3

shl is shift left by using register rc (op-code = 28)

o Example:

shl R8, R5, R6

The instruction shifts RS left in to R8 using number in R6

shc, shifts left circular by using register rc (op-code = 29)
o Example:
shc R3, R4, R6

This instruction will shift R4 circular in to R3 using value in R6

The two logical instructions also use a modified form of the Type D, and are the following.

neg stores the 2’s complement of 31 2726 2221 1716 1211 0

register rc in ra (op-code = 15) Op-code ra |unused| rc unused

o Example: neg R3, R4
Negates (obtains 2°s complement) of R4 and stores in R3. 2-address format and
register addressing mode is used.

Page 52

Advance Computer Architecture — CS501

e not stores the 1°s complement of register rc in ra (op-code = 24)

o Example:
not R3, R4

Logically inverts R4 and stores in R3. 2-address format with register addressing mode

1s used.

Type D has two-branch instruction,
modified forms of type D.

K

27 26 22 21

1716 1211 52 0

Op-code

unused

1] re unused

cand

e br, the instruction to branch to address in rb depending on the condition in rc. There are
five possible conditions, explained through examples. (op-code = 8). All branch
instructions use register-addressing mode.

o Example 1:
brzr R3, R4

Branch to address in R3 (if R4 == 0)

O

Example 2:
brnz R3, R4

Branch to address in R3 (if R4 # 0)

O

Example 3:
brpl R3, R4

Branch to address in R3 (if R4 > 0)

Example 4:
brmi R3, R4

O

Branch to address in R3 (if R4 < 0)

O

Example 5:
br R3, R4

Branch to address in R3 (unconditional)

e Brl the instruction to branch to address in rb depending on condition in rc. Additionally,
it copies the PC in to ra before branching (op-code = 9)

o Example 1:
brlzr R1,R3, R4

R1 will store the contents of PC, then branch to address in R3 (if R4 == 0)

o Example 2:
brlnz R1,R3, R4

R1 stores the contents of PC, then a branch is taken, to address in R3 (if

R4 £0)

o Example 3:
brlpl R1,R3, R4
R1 will store PC, then
branch to address in R3 (if
R4>0)

o Example 4:
brlmi R1,R3, R4
R1 will store PC and then
branch to address in R3 (if
R4 <0)

Mnemonic e3<2..0> Branch Condition
hrlnv 000 Link hut never hranch*
br, brl 001 Unconditional hranch
brzr, hrlzr o10 Branch if rc is zero
hrnz, hrinz 011 Branch ifrc is not zero
hrpl, hrlpl 100 Branch if rc is positive
brmi, hrlmi 101 Branch if rc is negative

Page 53

Advance Computer Architecture — CS501

o Example 5:

brl R1,R3, R4

R1 will store PC, then it will ALWAY'S branch to address in R3
o Example 6:

brlnv R1,R3, R4

R1 just stores the contents of PC but a branch is not taken (NEVER BRANCH)

In the modified type D instructions for branch, the bits <2...0> are used for specifying the
condition; these condition codes are shown in the table.

The SRC Instruction Summary
The instructions implemented by the SRC are listed, grouped on functionality basis.

Functional Groups of Instructions =i [] d[[
opcode
No operation nop gjojojo|0O
Halt Machine stop 11111111
Logic Opcode
Shift right by count ohr T 0] 1] 0| |23k Transter L
= ry r ry code
Shift right by count in a register shr 110l 1] Ol hoag e T M EGE
AShift right by count shra 10 11 0] 1] 1 Load relati ist ol of ol 1T o
AShift right by count in a register ohra | 1] 1] 0] 1] 1] je2ad refative register ddc
- Store register at of 0] 0] 1] 1
Shift left by count shl 11 11 1/ 0 O - —
_ _ . Store relative register str ol of 1] 0/ 0
S hift left by countin a register shl 11 1) 1| 0] O
- Load address la of 0] 1] 0f 1
& MFHIET My NSO she LU 10 Y T oad relative addiess ol ol 1] 1] 0
Shift circ. by count in a register ahe 1] 1] 1] 0] 1 1a¥

Alphabetical Listing based on SRC
Mnemonics

Notice that the op code field for all br instructions is the same. The difference is in the condition
code field, which is in effect, an op code extension.

IMreronic | sif s]2e[as] 20| la oloj1jof1 Examples o ‘ _

lar | 0] 0] 1] 1] 0] Some examples are studied in this section to

19 10000l enhance the student’s understanding of the SRC.

1dr olojojl 1o
add o)1 1{0] O IEIEIEIE
2ddi ol 1] 1| o] 1 ey sToTololo
and 1|l ol 1] ol o0 Top T Tol ol o Branching instructions [T 11

R 1ol 110l 1 Dot Branch when ... FE

— e Lo L0 newer b o[1ol of o
br ol 1|of0] O : 1100 11 11 1 rnv

2E atways br o[of o[o
brl 0p 11ojol1 she IRIRINE ZErD brzr O[] 0] 0] 0
brlmi | 1] 0|0 1 she 1{ 11 10 1 non Zern Eons ol ol ol o
brinv | O] 1] O] O] 1 shl 1j1j14ojo postive {including zen) nepl 0] [0[0] 0
brinz | 0| 1] 0] 0] 1 shl 111111 0/0 negative wewi O] 1] 0[0] O
bripl | 0] 1] o] o] 1 shr 1j1joj1jo Branch and link when ...
brlzr ol 10| D] 1 shx : : g : ? never hr 1w of 1 o 0] 1
brmi_ | 0] 1] 0| 0] O sbra abways brl | 0] 1] 0] 0 1
b o [0l o[o] |—k=eHUHOUI zerg prize | o[l o] o1
LU st 0l 0jO] 1|1 non Zero hrlnz ol 1] ol af 1
brnz 0| 1]0j0j O Fan NIEEEE postive (ncluding zer bripl | ol qf of o] 1
brpl o) 1{of0] D stx olol 1l ol o negative brimi | 0{1{ 0] 01
brar ol 1|0 0] O sub ol 1] 11 1| D

Page 54

Advance Computer Architecture — CS501

Example 1: Expression Evaluation

Write an SRC assembly language program to evaluate the expression:
z =4(a +b) — 16(c+58)
Your code should not change the source operands.

Solution A: Notice that the SRC does not have a multiply instruction. We will make use of the
fact that multiplication with powers of 2 can be achieved by repeated shift left operations. A
possible solution is give below:

Id R1, ¢ ; ¢ is a label used for a memory location
addi R3, R1, 58 ; R3 contains (c+58)

shl R7, R3, 4 ; R7 contains 16(c+58)

IdR4, a

IdR5, b

add R6, R4, R5 ; R6 contains (a+b)

shl R8, R6, 2 ; R8 contains 4(a+b)

sub R9, R8, R7 ; the result is in R9

stR9, z ; store the result in memory location z
Note:

The memory labels a, b, ¢ and z can be defined by using assembler directives like .dw or
.db, etc. in the source file.
A semicolon ‘;’ is used for comments in assembly language.

Solution B:

We may solve the problem by assuming that a multiply instruction, similar to the add instruction,
exists in the instruction set of the SRC. The shl instruction will be replaced by the mul
instruction as given below.

IdR1, ¢ ; ¢ is a label used for a memory location
addi R3, R1, 58 ; R3 contains (c+58)

mul R7, R3, 4 : R7 contains 16(c+58)

Id R4, a

IdR5, b

add R6, R4, R5 ; R6 contains (a+b)

mul R8, R6, 2 ; R8 contains 4(a+b)

sub R9, R8, R7 ; the result is in R9

stR9, z

; store the result in memory location z
Note:
The memory labels a, b, ¢ and z can be defined by using assembler directives like .dw or
.db, etc. in the source file.

Solution C:

We can perform multiplication with a multiplier that is not a power of 2 by doing addition in a
loop. The number of times the loop will execute will be equal to the multiplier.

Example 2: Hand Assembly

Convert the given SRC assembly language program in to an equivalent SRC machine language
program.

IdR1, ¢ ; ¢ is a label used for a memory location

Page 55

Advance Computer Architecture — CS501

addi R3, R1, 58 ; R3 contains (c+58)

shl R7, R3, 4 ; R7 contains 16(c+58)

Id R4, a

IdR5,b

add R6, R4, R5 ; R6 contains (atb)

shl R8, R6, 2 ; R8 contains 4(a+b)

sub R9, R8, R7 ; The result is in R9

st R9, z ; store the result in memory location z
Note:

This program uses memory labels a,b,c and z. We need to define them for the assembler by using
assembler directives like .dw or .equ etc. in the source file.

Assembler Directives

Assembler directives, also called pseudo op-codes, are commands to the assembler to direct the
assembly process. The directives may be slightly different for different assemblers. All the
necessary directives are available with most assemblers. We explain the directives as we
encounter them. More information on assemblers can be looked up in the assembler user
manuals.

Source program with directives
.ORG 200 ; start the next line at address 200

a: .DW 1 ; reserve one word for the label a in the memory
b: .DW 1 ; reserve a word for b, this will be at address 204
c: DW 1 ; reserve a word for ¢, will be at address 208

z: .DW 1 ; reserve one word for the result

.ORG 400 ; start the code at address 400 ; all numbers are in decimal unless otherwise stated

IdR1, ¢ ; ¢ is a label used for a memory location
addi R3, R1, 58 ; R3 contains (c+58)

shl R7, R3, 4 ; R7 contains 16(c+58)

Id R4, a

Id R5, b

add R6, R4, R5 ; R6 contains (a+b)

shl R8, R6, 2 ; R8 contains 4(a+b)

sub R9, R8, R7 ; the result is in R9

stR9, z ; store the result in memory location z

This is the way an assembly program will appear in the source file. Most assemblers require that
the file be saved with an .asm extension.

Solution:

Observe the first line of the program

.ORG 200 ; start the next line at address 200

This is a directive to let the following code/ variables ‘originate’ at the specified address of the
memory, 200 in this case.

Variable statements and another .ORG directive follow the .ORG directive.

a: .DW 1; reserve one word for the label a in the memory
b: .DW 1; reserve a word for b, this will be at address 204
c: DW 1; reserve a word for ¢, will be at address 208
z .DW 1; reserve one word for the result

.ORG 400 ; start the code at address 400

Page 56

Advance Computer Architecture — CS501

We conclude the following from the above statements: The code starts at address 400 and each
instruction takes 32 bits in the memory. The memory map for the program is shown in given

table.

Memory Map for the SRC example program

Memwonr Memonr
Address Conternts
200 mibremm Label | Address Value
204 wibremm a 200 unknown
03 oo b 204 unknown
212 oW c 208 unknowi
= z 212 unknown
+00 WERLc
404 addi K3, R1, 58
403 shlR7,E3,4
412 14R4,a
416 1LES,b
420 2dd 6, R4, E5 o T e
424 Wl RS, B6, 2 Address Conterts Mooy Corterds
428 sub B9, R7, R
432 SRY,1 e bt
204 e —
203 b
212 baomTL
We have to convert these instructions to machine language.
Let us start with the first instruction: 40 MRLe (2400000 L
404 addi B3, R1, 58
dRl,e o - =
Notice that this is a type C instruction with the rb field T
missing. 420 wld R, B4, RS
1. We pick the op-code for this load instruction 24 |slELEG2
from the SRC instruction tables given in the SRC | ab R ELES
instruction summary section. The op-code for the load W |4k
register ‘1d” instruction is 00001.
2. Next we pick the register code corresponding to register R1 from the register table
(given in the section ‘encoding of general purpose registers’). The register code for R1 is 00001.
3. The rb field is missing, so we place zeros in the field: _ _ —
OOOOO Amz c:::z Mer:rycmms
4. The value of ¢ is provided by the assembler, and
should be converted to 17 bits. As ¢ has been assigned the o i
memory address 208, the binary value to be encoded is 00000 1| mizem
0000 1101 0000. B i
5. So the instruction 1d R1, ¢ is 00001 00001 00000 o0 |amlc 1B4M0T0 T
00000 0000 1101 0000 in the machme language. W s il
6. The hexadecimal representation of this instruction is :32 f;f;m“
084000DO0h. s
We can update the memory map with these values. o
We consider the next instruction, N

addi R3, R1, 58.

Page 57

Advance Computer Architecture — CS501

Notice that this is a type C instruction.

f— Memony Hexadecimal
1. We pick the op-code for the instruction addi from o] A
the SRC instruction table. It is 01101 T

2. We pick the register codes for the registers R3 and R i

R1, these codes are 00011 and 00001 respectively

3. For the immediate data, 58, we use the binary value, M b S -
00000 0000 0011 1010 e TmwEs Ercemoin
4. So the complete instruction becomes: 01101 00011 el i

00001 00000 0000 0011 1010 B .

5. The hexadecimal representation of the instruction is EEEEEE
68C2003Ah [EMLITE

We update the memory map, as shown in table. ‘

The next instruction is shl R7,R3, 4, at address 408.

Again, this is a type C instruction.

1. The op-code for the instruction shl is picked from the SRC instruction table. It is
11100

2. The register codes for the registers R7 and R3 from | Gy | oo | S
the register table are 00111 and 00011 respectively

3. For the immediate data, 4, the corresponding binary o e

value 00000 0000 0000 0100 is used. R i

4. We can place these codes in accordance with the type
C instruction format to obtain the complete instruction: 11100 Ml o R
00111 00011 00000 0000 0000 0100 e s
5. The hexadecimal representation of the instruction is 0 |uma 05000008 &
E1C60004 HEm

The memory map is updated, as shown in table. T PR T

The next instruction, 1d R4, a, is also a type C instruction. Rb field R

is missing in this instruction. To obtain the machine equivalent, we ‘

follow the steps given below.

1. The op-code of the load instruction ‘1d” is 00001

2. The register code corresponding to the register R4 is obtained from the register table,
and it is 00100

3. As the 5 bit rb field is missing, we can encode zeros in its place: 00000

4. The value of a is provided by the assembler, and is —g— e e
converted to 17 bits. It has been assigned the memory address | Addes Contats Memoay Contarts
200, the binary equivalent of which is: 00000 0000 1100 1000

5. The complete instruction becomes: 00001 00100 223 m

00000 00000 0000 1100 1000 06| winom

6. The hexadecimal equivalent of the instruction is 0 9 il i

O O O 0 C 8 h 400 R« N24000T0 ko
Memory map can be updated with this value. o st
The next instruction is also a load type C instruction, with the T T i
I'b ﬁeld missing. 416 ARLH 094000CC h
1d R5, b “n

The machine language conversion steps are TR

1. The op-code of the load instruction is obtained from R

the SRC instruction table; it is 00001

2. The register code for RS, obtained from the register table, is 00101

3. Again, the 5 bit rb field is missing. We encode zeros in its place: 00000

Page 58

Advance Computer Architecture — CS501

4. The value of label b is provided by the assembler, and should be converted to 17 bits.

It has been assigned the memory address 204, so the binary

value is: 00000 0000 1100 1100 W | comm | Moy e
5. The complete instruction is: 00001 00101 00000

00000 0000 1100 1100 S i

6. The hexadecimal value of this instruction is 0 9 4 ST v

000CCh LB

Memory map is then updated with this value. TR TR
The next instruction is a type D-add instruction, with the A e e
constant field missing: 412 R4 DU000NCE ke
add R6,R4,R5 416 WESE 340000k
The steps followed to obtain the assembly code for this e — -
instruction are R

1. The op-code of the instruction is obtained from the B

SRC instruction table; it is 01100

2. The register codes for the registers R6, R4 and RS are obtained from the register
table; these are 00110, 00100 and 00101 respectively.

3. The 12 bit constant field is unused in this T T rm——
instruction, therefore we encode zeros in its place: 0000 0000 Address Contents Maazy Carterts
0000

4. The complete instruction becomes: 01100 00110 i ki

00100 00101 0000 0000 0000 FTR e

5. The hexadecimal value of the instructionis 6 1 8 8 M

5 O O O h 400 WEL« US4U‘J‘U‘D0}1
Memory map is then updated with this value. W [eneiEls SoEpAN
The instruction shl R8,R6, 2 is a type C instruction with the rc = m—
field missing. The steps taken to obtain the machine code of phed Wdaeey
the instruction are = —
1. The op-code of the shift left instruction ‘shl’, | RS

obtained from the SRC instruction table, is 11100 B Ebe

2. The register codes of R8 and R6 are 01000 and 00110 respectively

3. Binary code is used for the immediate data 2: 00000 0000 0000 0010

4. The complete instruction becomes: 11100 01000 00110 00000 0000 0000 0010
5. The hexadecimal equivalent of the instructionis E20C 000 2

Memory map is then updated with this value. T — - =
The instruction at the memory address 428 is sub R9, R7, RS. e R |t
This is a type D instruction. P

We decode it into the machine language, as follows: e Teeie

1. The op-code of the subtract instruction ‘sub’ is e

01110

2. The register codes of R9, R7 and R8, obtained from :Ej izll;;jm ;::izii
the register table, are 01001, 00111 and 01000 respectively e AR ELCa0en
3. The 12 bit immediate data field is not used, zeros R S e
are encoded in its place: 0000 0000 0000 TR T T Siags0n
4. The complete instruction becomes: 01110 01001 oo s
00111 01000 0000 0000 0000 e

5. The hexadecimal equivalentis 724 E 8000 h We

again update the memory map

The last instruction is is a type C instruction with the rb field missing:

Page 59

Advance Computer Architecture — CS501

st R9, z

The machine equivalent of this instruction is obtained through the following steps:

1. The op-code of the store instruction ‘st’, obtained from the SRC instruction table, is
00011

2. The register code of R9 is 01001 My g | —
3. Notice that there is no register coded in the 5 bit rb

field, therefore, we encode zeros: 00000The value of the label z is
provided by the assembler, and should be converted to 17 bits.
Notice that the memory address assigned to z is 212. The 17 bit
binary equivalent is: 00000 0000 1101 0100

4. The complete instruction becomes: 00011 01001
00000 00000 0000 1101 0100

5. The hexadecimal form of this instructionis 1 A4 0 0
0D4h

The memory map, after the conversion of all the instructions, is
We have shown the memory map as an array of 4 byte cells in the
above solution. However, since the memory of the SRC is

200

mbrow

204

ko

i

imbrowr

a1z

oz

400

WEL«

D400k

404

addi B3, R1, 58

GRCI003AT

405

<hlRT. B34

E1CG0004 T

412

1iR4.2

02000008 h

416

MRS

024000CCH

420

2dd Bé, B4 RS

G1EE5000 R

424

sh1RE RE.2

E20C0002 1

425

sub B9, BT RE

T4ES0M T

432

LR,z

1A4000D4 b

arranged in 8 bit cells (i.e. memory is byte aligned), the real representation of the memory map

1s:

Page 60

Example 3: SRC instruction analysis
Identify the formats of following SRC instructions and specify the values in the fields

Advance Computer Architecture — CS501

Instruction

format

1a

b

1c

cl

c2

c3

negrl, 12

add 10,02,13

nop

1d12,6

shi,11,3

Solution:

Instruction

format

cl

c2

c3

negrl, 12

add 10,12,13

nop

1d12,6

shi,11,3

1l

Page 61

Advance Computer Architecture — CS501

Lecture No. 5
Description of SRC in RTL

Reading Material
Handouts Slides

Summary
e Reverse Assembly
e Description of SRC in the form of RTL
e Behavioral and Structural description in terms of RTL

Reverse Assembly

Typical Problem:

Given a machine language instruction for the SRC, it may be required to find the equivalent SRC
assembly language instruction

Example:

Reverse assemble the following SRC machine language instructions:

68C2003A h

E1C60004 h

61885000 h

724E8000 h

1A4000D4 h

084000D0 h

Solution:

1. Write the given hexadecimal instruction in binary form 68C2003A h — 0110 1000 1100
0010 0000 0000 0011 1010 b

2. Examine the first five bits of the instruction, and pick the corresponding mnemonic

from the SRC instruction set listing arranged according to ascending order of op-codes 01101 b
— 13 d — addi — add immediate

3. Now we know that this instruction uses the type C format, the two 5-bit fields after the op-
code field represent the destination and the source registers respectively, and that the remaining
17-bits in the instruction represent a constant

01101(00011 FOOOI 0000 0000 0011 1010 b
op-code [ra field | rb field | 17-bit cl field

! ! ! l
addi R3 R1 3Ah=58d

4. Therefore, the assembly language instruction is
addi R3, R1, 58

Page 62

Advance Computer Architecture — CS501

Summary

Given machine language instnaction Equivalent assembly language instraction

68C2003Ah addi R3,R1, 58
E1C60004 1
61885000 h
724E8000 h
1A4000D4 h
084000D0 h

We can do it a bit faster now! Step1: Here is stepl for all instructions

Giu-en (. - . . - .
At Equivalent instruction in binary
hexadecimal

E1C60004 b 1110 0001 1100 0110 0000 0000 0000 0100 b
61825000 k 0110 0001 1000 1000 0101 D000 0000 0000 b
724E2000 b 0111 0010 01001110 1000 D000 0000 0000 b

14400004 h 0001 1010 0100 0000 0000 0000 1101 0100 b

03400000 h 0000 1000 0100 0000 0000 0000 1101 0000 b

Step 2: Pick up the op code for each instruction

Giveninstructionin | Op-code field raneraonic
hexadecimal
E1C60004 h 11100 b shl
61335000 h 01100 b add
724E8000 h 0111 0b sub
144000D4 h 0001 1k st
084000D0 h 0000 1 b d

Step 3: Determine the instruction type for each instruction

Given instraction in nnemonic Instruction type
hexadecimal

E1C60004 h shl

61385000 h add

724E3000 h sub

144000D4 h st

084000D0 h 1d

The meaning of the remaining fields will depend on the instruction type (i.e., the instruction
format)

Page 63

Advance Computer Architecture — CS501

Summary

Given machine language instnaction Equivalent assembly language instnction

68C2003Ah addiR3,R1, 58
E1C60004 h
61885000 h
724E8000 h
1A4000D4 h
084000D0 h

Note: rest of the fields of above given tables are left as an exercise for students. Using RTL to
describe the SRC

RTL stands for Register Transfer Language. The Register Transfer Language provides a formal
way for the description of the behavior and structure of a computer. The RTL facilitates the
design process of the computer as it provides a precise, mathematical representation of its
functionality. In this section, a Register Transfer Language is presented and introduced, for the
SRC (Simple ‘RISC’ Computer), described in the previous discussion.

Behavioral RTL

Behavioral RTL is used to describe the ‘functionality’ of the machine only, i.e. what the machine
does.

Structural RTL

Structural RTL describes the ‘hardware implementation’ of the machine, i.e. how the
functionality made available by the machine is implemented.

Behavioral versus Structural RTL:

In computer design, a top-down approach is adopted. The computer design process typically
starts with defining the behavior of the overall system. This is then broken down into the
behavior of the different modules. The process continues, till we are able to define, design and
implement the structure of the individual modules. Behavioral RTL is used for describing the
behavior of machine whereas structural RTL is used to define the structure of machine, which
brings us to the some more hardware features.

Using RTL to describe the static properties of the SRC

In this section we introduce the RTL by using it to describe the various static properties of the
SRC.

Specifying Registers

The format used to specify registers is

Register Name<register bits>

For example, IR<31..0> means bits numbered 31 to 0 of a 32-bit register named “IR”
(Instruction Register).

“Naming” using the := naming operator:

The := operator is used to ‘name’ registers, or part of registers, in the Register Transfer
Language. It does not create a new register; it just generates another name, or “alias” for an
already existing register or part of a register. For example,

Op<4..0>: = IR<31..27> means that the five most significant bits of the register IR will be called
op, with bits 4..0.

Fields in the SRC instruction

In this section, we examine the various fields of an SRC instruction, using the RTL.

Page 64

Advance Computer Architecture — CS501

op<4..0>: =1R<31..27>; operation code field

The five most significant bits of an SRC instruction, (stored in the instruction register in this
example), are named op, and this field is used for specifying the operation. ra<4..0>: =
[R<26..22>; target register field

The next five bits of the SRC instruction, bits 26 through 22, are used to hold the address of the
target register field, i.e., the result of the operation performed by the instruction is stored in the
register specified by this field.

rb<4..0>: = [R<21..17>; operand, address index, or branch target register

The bits 21 through 17 of the instruction are used for the rb field. rb field is used to hold an
operand, an address index, or a branch target register.

rc<4..0>: = IR<16..12>; second operand, conditional test, or shift count register

The bits 16 through 12, are the rc field. This field may hold the second operand, conditional test,
or a shift count.

c1<21..0>: = [R<21..0>; long displacement field

In some instructions, the bits 21 through 0 may be used as long displacement field. Notice that

there is an overlap of fields. The fields are distinguished in a particular instruction depending on
the operation.

¢2<16..0>: = IR<16..0>; short displacement or immediate field
The bits 16 through 0 may be used as short displacement or to specify an immediate operand.
¢3<11..0>: =IR<11..0>; count or modifier field

The bits 11 through 0 of the SRC instruction may be used for count or modifier field.
Describing the processor state using RTL

The Register Transfer Language can be used to describe the processor state. The following
registers and bits together form the processor state set.

PC<31..0>; program counter (it holds the memory address of next
instruction to be executed)

IR<31..0>; instruction register, used to hold the current instruction

Run; one bit run/halt indicator

Strt; start signal

R [0..31]<31..0>; 32, 32 bit general purpose registers

SRC in a Black Box

Connectors at
the back {o be
added later on)

Indicators
{include the RUN
indicator)

Other switches
may be added
later on

Page 65

Advance Computer Architecture — CS501

Difference between our notation and notation used by the text (H&J)

. Our Meaning S_ymbols Cur Symbaol or Meaning Symbol used
Symbols in text terminology by H&J
- Conditional transfer 2> RTL Register Transfer Language RTN
Secuential statements : Behavioral RTL Abstract RTN
Concurrent statements . Structural RTL Conerete RTN
_ rE——— — impleraentation mmtig:tjure
— A t +— .
551.8"’“'3’1 MAR Meraory Address Register MA
& Logical AND n MBR IWerory Buffer Register MD
Logical OR v
\ Logical NOT -
@ Concatenation #
a Replication @
%% Remainder after division (moculo) none

Difference between “,” and “;” in RTL

(193]

Statements separated by a “,” take place during the same clock pulse. In other words, the order of
execution of statements separated by “,” does not matter.

On the other hand, statements separated by a “;” take place on successive clock pulses. In other
words, if statements are separated by “;” the one on the left must complete before the one on the
right starts. However, some things written with one RTL statement can take several clocks to
complete.

So in the instruction interpretation, fetch-execute cycle, we can see that the first statement. ! Run
& Strt : Run <« 1, executes first. After this statement has executed and set run to 1, the
statements IR «— M [PC] and PC < PC + 4 are executed concurrently.

(1944

Note that in statements separated by “,”, all right hand sides of Register Transfers are evaluated
before any left hand side is modified (generally though assignment).

Using RTL to describe the dynamic properties of the SRC The RTL can be used to describe the
dynamic properties.

Conditional expressions can be specified through the use of RTL. The following example will
illustrate this

(op=14) : R [ra] < R [rb] - R]rc];

The « operator is the RTL assignment operator. ‘;’ is the termination operator. This conditional
expression implies that “IF the op field is equal to 14, THEN calculate the difference of the value
in the register specified by the rb field and the value in the register specified by the rc field, and
store the result in the register specified by the ra field.”

Effective address calculations in RTL (performed at runtime)

In some instructions, the address of an operand or the destination register may not be specified
directly. Instead, the effective address may have to be calculated at runtime.

These effective address calculations can be represented in RTL, as illustrated through the
examples below.

Displacement address
disp<31..0> := ((rb=0) : ¢2<16..0> {sign extend},

(rb#£0) : R [rb] + ¢2<16..0> {sign extend}),

Y32

The displacement (or the direct) address is being calculated in this example. The “,” operator
separates statements in a single instruction, and indicates that these statements are to be executed

Page 66

Advance Computer Architecture — CS501

simultaneously. However, since in this example these are two disjoint conditions, therefore, only
one action will be performed at one time.
Note that register RO cannot be added to displacement. rb = 0 just implies we do not need to use
the R [rb] field.
Relative address
rel<31..0> := PC<31..0> + ¢1<21..0> {sign extend},
In the above example, a relative address is being calculated by adding the displacement after sign
extension to the contents of the program counter register (that holds the next instruction to be
executed in a program execution sequence).
Range of memory addresses
The range of memory addresses that can be accessed using the displacement (or the direct)
addressing and the relative addressing is given.
e Direct addressing (displacement with rb=0)
o If c2<16>=0 (positive displacement) absolute addresses range from 00000000h to
0000FFFFh
o Ifc2<16>=1 (negative displacement) absolute addresses range from FFFF0000h
to FFFFFFFFh

e Relative addressing
o The largest positive value of C1<21..0> is 22!-1 and its most negative value is -
22!, so addresses up to 2%'-1 forward and 22! backward from the current PC value
can be specified
Instruction Interpretation
(Describing the Fetch operation using RTL)
The action performed for all the instructions before they are decoded is called ‘instruction
interpretation’. Here, an example is that of starting the machine. If the machine is not already
running (—Run, or ‘not’ running), AND (&) it the condition start (Strt) becomes true, then Run
bit (of the processor state) is set to 1 (i.e. true).
instruction_Fetch := (
! Run & Strt: Run <1 ; instruction_Fetch

Run : (IR < M [PC], PC < PC + 4; instruction_Execution));

The := is the naming operator. The ; operator is used to add comments in RTL. The , operator,
specifies that the statements are to be executed simultaneously, (i.e. in a single clock pulse). The
; operator is used to separate sequential statements. «— is an assignment operator. & is a logical
AND, ~ is a logical OR, and ! is the logical NOT. In the instruction interpretation phase of the
fetch-execute cycle, if the machine is running (Run is true), the instruction register is loaded with
the instruction at the location M [PC] (the program counter specifies the address of the memory
at which the instruction to be executed is located). Simultaneously, the program counter is
incremented by 4, so as to point to the next instruction, as shown in the example above. This
completes the instruction interpretation.
Instruction Execution
(Describing the Execute operation using RTL)
Once the instruction is fetched and the PC is incremented, execution of the instruction starts. In
the following, we denote instruction Fetch by “iF” and instruction execution by “iE”.
iE:=(

(op<4..0>=1) : R [ra] < M [disp],

(op<4..0>=2) : R [ra] < M [rel],

(op<4..0>=31) : Run < 0,); iF);

Page 67

Advance Computer Architecture — CS501

As shown above, Instruction Execution can be described by using a long list of conditional
operations, which are inherently “disjoint”.

One of these statements is executed, depending on the condition met, and then the instruction
fetch statement (iF) is invoked again at the end of the list of concurrent statements. Thus,
instruction fetch (iF) and instruction execution statements invoke each other in a loop. This is the
fetch-execute cycle of the SRC.

Concurrent Statements

The long list of concurrent, disjoint instructions of the instruction execution (iE) is basically the
complete instruction set of the processor. A brief overview of these instructions is given below.

Load-Store Instructions

(op<4..0>=1) : R [ra] < M [disp], load register (I1d)

This instruction is to load a register using a displacement address specified by the instruction, i.e.
the contents of the memory at the address ‘disp’ are placed in the register R [ra].

(op<4..0>=2) : R [ra] < M [rel], load register relative (Idr)

If the operation field ‘op’ of the instruction decoded is 2, the instruction that is executed is
loading a register (target address of this register is specified by the field ra) with memory
contents at a relative address, ‘rel’. The relative address calculation has been explained in this
section earlier.

(op<4..0>=3) : M [disp] < R [ra], store register (st)

If the op-code is 3, the contents of the register specified by address ra, are stored back to the
memory, at a displacement location “disp’.

(op<4..0>=4) : M]rel] < R|ra], store register relative (str)

If the op-code is 4, the contents of the register specified by the target register address ra, are
stored back to the memory, at a relative address location ‘rel’.

(op<4..0>=15) : R [ra] < disp, load displacement address (la)

For op-code 5, the displacement address disp is loaded to the register R (specified by the

target register address ra).

(op<4..0>=6) : R [ra] < rel, load relative address (lar)

For op-code 6, the relative address rel is loaded to the register R (specified by the target register
address ra).

Branch Instructions

(op<4..0>=8) : (cond : PC < R [rb]), conditional branch (br)

If the op-code is 8, a conditional branch is taken, that is, the program counter is set to the target
instruction address specified by rb, if the condition ‘cond’ is true.

(op<4..0>=9) : (R [ra] < PC,

cond : (PC < R [rb])), branch and link (brl)

If the op field is 9, branch and link instruction is executed, i.e. the contents of the program
counter are stored in a register specified by ra field, (so control can be returned to it later), and
then the conditional branch is taken to a branch target address specified by rb. The branch and
link instruction is useful for returning control to the calling program after a procedure call
returns.

The conditions that these ‘conditional’ branches depend on are specified by the field c¢3 that has

3 bits. This simply means that when c3<2..0> is equal to one of these six values. We substitute
the expression on the right hand side of the : in place of cond These conditions are explained
here briefly.

cond :=(
¢3<2..0>=0: 0, never
If the ¢3 field is 0, the branch is never taken.
c3<2..0>=1:1, always

If the field is 1, branch is taken
Page 68

Advance Computer Architecture — CS501

¢3<2..0>=2 : R [rc]=0, if register is zero

If ¢3 = 2, a branch is taken if the register rc = 0.

¢3<2..0>=3 : R [rc] #0, if register is nonzero

If ¢3 = 3, a branch is taken if the register rc is not equal to 0.

¢3<2..0>=4 : R [rc]<31>=0 if positive or zero

If c3 is 4, a branch is taken if the register value in the register specified by rc is
greater than or equal to 0.

€3<2..0>=5 : R [rc]<31>=1), if negative

If ¢3 =5, a branch is taken if the value stored in the register specified by rc is
negative.

Arithmetic and Logical instructions

(op<4..0>=12) : R [ra] < R [rb] + R [rc],

If the op-code is 12, the contents of the registers rb and rc are added and the result is stored in the
register ra.

(op<4..0>=13) : R [ra] < R [rb] + ¢2<16..0> {sign extend},

If the op-code is 13, the content of the register rb is added with the immediate data in the field
c2, and the result is stored in the register ra.

(op<4..0>=14) : R [ra] < R [rb] - R [r¢],

If the op-code is 14, the content of the register rc is subtracted from that of rb, and the result is
stored in ra.

(op<4..0>=15) : R [ra] < -R [rc],

If the op-code is 15, the content of the register rc is negated, and the result is stored in ra.
(op<4..0>=20) : R [ra] < R [rb] & R [r¢],

If the op field equals 20, logical AND of the contents of the registers rb and rc is obtained and
the result is stored in register ra.

(op<4..0>=21) : R [ra] < R [rb] & ¢2<16..0> {sign extend},

If the op field equals 21, logical AND of the content of the registers rb and the immediate data in
the field c2 is obtained and the result is stored in register ra.

(op<4..0>=22) : R [ra] < R [rb] ~R [r¢],

If the op field equals 22, logical OR of the contents of the registers rb and rc is obtained and the
result is stored in register ra.

(op<4..0>=23) : R [ra] < R [rb] ~ ¢2<16..0> {sign extend},

If the op field equals 23, logical OR of the content of the registers rb and the immediate data in
the field c2 is obtained and the result is stored in register ra.

(op<4..0>=24) : R [ra] < —R [re],

If the op-code equals 24, the content of the logical NOT of the register rc is obtained, and the
result is stored in ra.

Shift instructions

(op<4..0>=26): R [ra]<31..0 > < (n a 0) © R [rb] <31..n>,

If the op-code is 26, the contents of the register rb are shifted right n bits times. The bits that are
shifted out of the register are discarded. Os are added in their place, i.e. n number of Os is added
(or concatenated) with the register contents. The result is copied to the register ra.

(0p<4..0>=27) : R [ra]<31..0 > < (n @ R [rb] <31>) © R [rb] <31..n>,

For op-code 27, shift arithmetic operation is carried out. In this operation, the contents of the
register rb are shifted right n times, with the most significant bit, bit 31, of the register rb added
in their place. The result is copied to the register ra.

(0p<4..0>=28) : R [ra]<31..0 > < R [rb] <31-n..0> © (n a 0),

For op-code 28, the contents of the register b are shifted left n bits times, similar to the shift
right instruction. The result is copied to the register ra.

Page 69

Advance Computer Architecture — CS501

(0p<4..0>=29) : R [ra]<31..0 > < R [rb] <31-n..0> © R [rb]<31..32-n >,

The instruction corresponding to op-code 29 is the shift circular instruction. The contents of the
register rb are shifted left n times, however, the bits that move out of the register in the shift
process are not discarded; instead, these are shifted in from the other end (a circular shifting).
The result is stored in register ra.

where
n:=(
(¢3<4..0>=0) : R [rc],
(¢3<4..0>!=0) : ¢3 <4..0>),
Notation:

o means replication
© Means concatenation

Miscellaneous instructions

(op<4..0>=0), No operation (nop)

If the op-code is 0, no operation is carried out for that clock period. This instruction is used as a
stall in pipelining.

(op<4..0>=31) : Run < 0, Halt the processor (Stop)

); iF);

If the op-code is 31, run is set to 0, that is, the processor is halted.

After one of these disjoint instructions is executed, iF, i.e. instruction Fetch is carried out once
again, and so the fetch-execute cycle continues.

Flow diagram

Flow diagram is the symbolic representation
of Fetch-Execute cycle. Its top block Instruction Fetch
indicates instruction fetch and then next
block shows the instruction decode by
looking at the first 5-bits of the fetched
instruction which would represent op-code

Instruction Decode

which may be from 0 to 31.Depending upon Op-code = 31 o B

the contents of this op-code the appropriate Op‘wde_oa —
processing would take place. After the Op-code =30 Op-code =1 p’r]gcegsing
appropriate processing, we would move back goos it
to top block, next instruction is fetched and l | moaen | 1

the

same process is repeated until the instruction with op-code 31 would reach and halt the system.

Note:For SRC Assembler and Simulator consult Appendix.

Page 70

Advance Computer Architecture — CS501

Lecture No. 6
RTL Using Digital Logic Circuits

Reading Material

Handouts Slides

Summary

» Using Behavioral RTL to Describe the SRC (continued)
» Implementing Register Transfer using Digital Logic Circuits

Using behavioral RTL to Describe the SRC (continued)

Once the instruction is fetched and the PC is incremented, execution of the instruction starts. In
the following discussion, we denote instruction fetch by “iF” and instruction execution by “iE”.

iE:= (
(op<4..0>=1) : R [ra] < M [disp],
(op<4..0>=2) : R [ra] < M [rel],

(op<4..0>=31) : Run < 0,); iF);

As shown above, instruction execution can be described by using a long list of conditional
operations, which are inherently “disjoint”. Only one of these statements is executed, depending
on the condition met, and then the instruction fetch statement (iF) is invoked again at the end of
the list of concurrent statements. Thus, instruction fetch (iF) and instruction execution statements
invoke each other in a loop. This is the fetch-execute cycle of the SRC.

Concurrent Statements

The long list of concurrent, disjoint instructions of the instruction execution (iE) is basically the
complete instruction set of the processor. A brief overview of these instructions is given below:

Load-Store Instructions

(op<4..0>=1) : R [ra] < M [disp], load register (Id)

This instruction is to load a register using a displacement address specified by the instruction,
i.e., the contents of the memory at the address ‘disp’ are placed in the register R [ra].

(op<4..0>=2) : R [ra] < M [rel], load register relative (1dr)

If the operation field ‘op’ of the instruction decoded is 2, the instruction that is executed is
loading a register (target address of this register is specified by the field ra) with memory
contents at a relative address, ‘rel’. The relative address calculation has been explained in this
section earlier.

(op<4..0>=3) : M [disp] < R [ra], store register (st)

Page 71

Advance Computer Architecture — CS501

If the op-code is 3, the contents of the register specified by address ra, are stored back to the
memory, at a displacement location ‘disp’.

(op<4..0>=4) : M|rel] < R|ra], store register relative (str)

If the op-code is 4, the contents of the register specified by the target register address ra, are
stored back to the memory, at a relative address location ‘rel’.

(op<4..0>=15) : R [ra] < disp, load displacement address (la)

For op-code 5, the displacement address disp is loaded to the register R (specified by the

target register address ra).

(op<4..0>=6) : R [ra] < rel, load relative address (lar)

For op-code 6, the relative address rel is loaded to the register R (specified by the target register
address ra).

Branch Instructions

(op<4..0>=8) : (cond : PC — R [rb]), conditional branch (br)

If the op-code is 8, a conditional branch is taken, that is, the program counter is set to the target
instruction address specified by rb, if the condition ‘cond’ is true.

(op<4..0>=9) : (R [ra] < PC,

cond : (PC < R [rb])), branch and link (brl)

If the op field is 9, branch and link instruction is executed, i.e. the contents of the program
counter are stored in a register specified by ra field, (so control can be returned to it later), and
then the conditional branch is taken to a branch target address specified by rb. The branch and
link instruction is useful for returning control to the calling program after a procedure call
returns.

The conditions that these ‘conditional’ branches depend on, are specified by the field c3 that has
3 bits. This simply means that when ¢3<2..0> is equal to one of these six values, we substitute
the expression on the right hand side of the : in place of cond. These conditions are explained
here briefly.

cond :=(
¢3<2..0>=0:0, never
If the ¢3 field is 0, the branch is never taken.
c3<2..0>=1:1, always
If the field is 1, branch is taken
¢3<2..0>=2 : R [rc]=0, if register is zero
If ¢3 = 2, a branch is taken if the register rc = 0.
¢3<2..0>=3 : R [rc] # 0, if register is nonzero
If ¢3 = 3, a branch is taken if the register rc is not equal to 0.
¢3<2..0>=4 : R [rc]<31>=0 if positive or zero

If ¢3 is 4, a branch is taken if the register value in the register specified
by rc is greater than or equal to 0.

¢3<2..0>=5: R [rc]<31>=1), if negative

If ¢3 =5, a branch is taken if the value stored in the register specified by
rc is negative.

Arithmetic and Logical instructions
(op<4..0>=12) : R [ra] <— R [rb] + R [rc],

If the op-code is 12, the contents of the registers rb and rc are added and the result is stored in the
register ra.

(op<4..0>=13) : R [ra] < R [rb] + ¢2<16..0> {sign extended},

Page 72

Advance Computer Architecture — CS501

If the op-code is 13, the content of the register rb is added with the immediate data in the field
c2, and the result is stored in the register ra.

(op<4..0>=14) : R [ra] < R [rb] = R [r¢],

If the op-code is 14, the content of the register rc is subtracted from that of rb, and the result is
stored in ra.

(op<4..0>=15) : R [ra] < -R [rc],

If the op-code is 15, the content of the register rc is negated, and the result is stored in ra.
(op<4..0>=20) : R [ra] <— R [rb] & R [r¢],

If the op field equals 20, logical AND of the contents of the registers rb and rc is obtained and
the result is stored in register ra.

(op<4..0>=21) : R [ra] < R [rb] & ¢2<16..0> {sign extended},

If the op field equals 21, logical AND of the content of the registers rb and the immediate data in
the field c2 is obtained and the result is stored in register ra.

(op<4..0>=22) : R [ra] < R [rb] ~ R [r¢],

If the op field equals 22, logical OR of the contents of the registers rb and rc is obtained and the
result is stored in register ra.

(op<4..0>=23) : R [ra] < R [rb] ~ ¢2<16..0> {sign extended},

If the op field equals 23, logical OR of the content of the registers rb and the immediate data in
the field c2 is obtained and the result is stored in register ra.

(op<4..0>=24) : R [ra] < !R [rc],

If the op-code equals 24, the content of the logical NOT of the register rc is obtained, and the
result is stored in ra.

Shift instructions
(op<4..0>=26): R [ra]<31..0 > < (n a 0) © R [rb] <31..n>,
If the op-code is 26, the contents of the register rb are shifted right n bits times. The bits that are
shifted out of the register are discarded. Os are added in their place, i.e. n number of Os is added
(or concatenated) with the register contents. The result is copied to the register ra.
(0p<4..0>=27) : R [ra]<31..0 > < (n @ R [rb] <31>) © R [rb] <31..n>,
For op-code 27, shift arithmetic operation is carried out. In this operation, the contents of the
register rb are shifted right n times, with the most significant bit, i.e., bit 31, of the register rb
added in their place. The result is copied to the register ra.
(op<4..0>=28) : R [ra]<31..0 > «— R [rb] <31-n..0> © (n « 0),
For op-code 28, the contents of the register b are shifted left n bits times, similar to the shift
right instruction. The result is copied to the register ra.
(0p<4..0>=29) : R [ra]<31..0 > < R [rb] <31-n..0> © R [rb]<31..32-n >,
The instruction corresponding to op-code 29 is the shift circular instruction. The contents of the
register rb are shifted left n times, however, the bits that move out of the register in the shift
process are not discarded; instead, these are shifted in from the other end (a circular shifting).
The result is stored in register ra.
where
n :=(

(c3<4..0>=0) : R [rc],

(c3<4..0>!=0) : c3 <4..0>),

Notation:
a means replication

© means concatenation

Miscellaneous instructions
(op<4..0>=0), No operation (nop)

Page 73

Advance Computer Architecture — CS501

If the op-code is 0, no operation is carried out for that clock period. This instruction is used as a
stall in pipelining.

(op<4..0>=31) : Run < 0, Halt the processor (Stop)

); iF);

If the op-code is 31, run is set to 0, that is, the processor stops execution.

After one of these disjoint instructions is executed, iF, i.e. instruction Fetch is carried out once
again, and so the fetch-execute cycle continues.

Implementing Register Transfers using Digital Logic Circuits

We have studied the register transfers in the previous sections, and how they help in
implementing assembly language. In this section we will review how the basic digital logic
circuits are used to implement instructions register transfers. The topics we will cover in this
section include:

1. A brief (and necessary) review of logic circuits

Implementing simple register transfers

Register file implementation using a bus

Implementing register transfers with mathematical operations

The Barrel Shifter

Implementing shift operations

AN

Review of logic circuits

Before we study the implementation of register transfers using logic circuits, a brief overview of
some of the important logic circuits will prove helpful. The topics we review in this section
include

1. The basic D flip flop
2. The n-bit register

3. The n-to-1 multiplexer
4. Tri-state buffers

The basic D flip flop

A flip-flop is a bi-stable device, capable of storing one bit of Information. Therefore, flip-flops
are used as the building blocks of a computer’s memory as well as CPU registers.

Data Input Q Output
—D Qr—
Enable Input
EN
Clock Input
—C
R

Active Low Clear Input
D flip flop

There are various types of flip-flops; most common type, the D flip-flop is shown in the figure
given. The given truth table for this positive-edge triggered D flip-flop shows that the flip-flop is
set (i.e. stores a 1) when the data input is high on the leading (also called the positive) edge of the

Page 74

Advance Computer Architecture — CS501

clock; it is reset (i.e., the flip-flop stores a 0) when the data input is 0 on the leading edge of the
clock. The clear input will reset the flip-flop on a low input.

EN D |Q
O X | X

O O
1 1 1

Truth table: D Flip Flop

The n-bit register

An n-bit register can be formed by grouping n flip-flops together. So a register is a device in
which a group of flip-flops operate synchronously.

A register is useful for storing binary data, as each flip-flop can store one bit. The clock input of
the flip-flops is grouped

together, as is the enable In0l 55— O fom
input. As shown in the E""R
figure, using the input lines a i
binary number can be stored o
in the register by applying I (75— D _ ES0ut!
the corresponding logic level EN
to each of the flip-flops :
simultaneously ~ at the 02 T_»
positive edge of the clock. In2 5z D FOoue
The next figure shows the ENR
symbol of a 4-bit register I I | |
used for an integrated circuit. |
In0 through In3 are the four mN— 0
input lines, Out0 through W v ki
Out3 are the four output — Clk 4-hit red Rd
lines, Clk is the clock input, — En 0oy — O
i i = b
and En is the enable line. To ':I' CI) Cl) '::lr'

get a better understanding of
this register, consider the
situation where we want to
store the binary number 1000
in the register. We will apply
the number to the input lines, as shown in the figure given.

4-bit Register Symbol

On the leading edge of the clock, the number will be stored in the register. The enable input has
to be high if the number is to be stored into the register.

Page 75

Advance Computer Architecture — CS501

Inz = — ~ fnd
L -
|r-|3 |:|_ "-\.\._Dlnn
clack CHEE
_r|_r|_i Clk 4-BR reg R4
En L 04—
1o Enalle ZEEE
o-— IH I
1 aiffffofio

Oy ot Dt 2t
test circuit for 4-bit register

Waveform/Timing diagram

Inputs

e i Mo
Il
w AR N Ny R R A g EaRa RN R
I=—— 1
: r .
—
= 1

The n-to-1 multiplexer

A multiplexer is a device, constructed through combinational logic, which takes n inputs and
transfers one of them as the output at a time. The input that is selected as the output depends on
the selection lines, also called the control input lines. For an n-to-1 multiplexer, there are n input
lines, logon control lines, and 1 output line. The given figure shows a 4-to-1 multiplexer. There
are 4 input lines; we number these lines as line 0 through line 3. Subsequently, there are 2 select
lines (as logp4 = 2).

For a better understanding, let us consider a case where we want to transfer the input of line 3 to
the output of the multiplexer. We will need to apply the binary number 11 on the select lines (as

the binary number 11 represents the decimal number 3). By doing so, the output of the
multiplexer will be the input on line 3, as shown in the test circuit given.

Page 76

Advance Computer Architecture — CS501

s I3
Selection 51 D-\;I =
LineS SO o] AR o 4
L =0
o-— ut
output
A 4-to-1 MUX test circuit for 4-to-1 MUX

Timing waveform

F 100
-
I} 11] Ty LIUUULL
i | 0 U
I n i M
i UL UUL |
ol n ML i) = RAnn
5 | S - i L 2

Timing Waveform for MUX

Tri-state buffers

The tri-state buffer, also called the three-state buffer, is another important component in the
digital logic domain. It has a single input, a single output, and an enable line. The input is
concatenated to the output only if it is enabled through the enable line, otherwise it gives a high
impedance output, i.e. it is tri-stated, or electrically

disconnected from the input These buffers are available both C a .y

c(control) 0 0|Z

ENB [y(output 0 1|z

a(input) | 1 0f0

in the inverting and the non-.invening fpnn. The inverting tri- 1 1 1
state buffers output the ‘inverted’ input when they are

enabled, as opposed to their non-inverting counterparts that —
simply output the input when enabled. The circuit symbol of Truth table “Tri-state buffer
the tri-state buffers is shown.

Page 77

Advance Computer Architecture — CS501

The truth table further clarifies the working of a non-inverting tri-state buffer.

We can see that when the enable input (or the control input) ¢ is low (0), the output is high
impedance Z. The symbol of a 4-bit tri-state buffer unit is shown in the figure. There are four
input lines, an equal number of output lines, and an enable line in this unit. If we apply a high on
the input 3 and 2, and a low on input 1 and 0, we get the output 1100, only when the enable input
is high, as shown in the given figure.

— Al Dol A —
— In1 Dutl }—
— 2 OutZ |—
v — |3 Duts —

o-"] =

<0y In0 OutD LI

AR Inf Out1

1- —— In2 Out2 |

0- Ih3 Out3

1 _pir & Tri-state buffer symbol

o L) (Lo Lo {Lo]|
j [l

0=

Test circuit for Tri-state buffer

Implementing simple register transfers
We now build on our knowledge of the primitive logic circuits to understand how register
transfers are implemented. In this section we will study the implementation of the following
e Simple conditional transfer
Concept of control signals
Two-way transfers
Connecting multiple registers
Buses
Bus implementations

Simple conditional transfer

In a simple conditional transfer, a condition is checked, and if it is true, the register transfer takes
place. Formally, a conditional transfer is represented as
Cond: RD < RS

Page 78

Advance Computer Architecture — CS501

Impui valuee to S

clock

= e
-

| [

Conditional Trasnfer

This means that if the condition ‘Cond’ is true, the contents of the register named RS (the source
register) are copied to the register RD (the destination register). The following figure shows how
the registers may be interconnected to achieve a conditional transfer. In this circuit, the output of
the source register RS is connected to the input of the destination registers RD. However, notice
that the transfer will not take place unless the enable input of the destination register is activated.
We may say that the ‘transfer’ is being controlled by the enable line (or the control signal). Now,
we are able to control the transfer by selectively enabling the control signal, through the use of
other combinational logic that may be the equivalent of our condition.

The condition is, in general, a Boolean expression, and in this example, the condition is
equivalent to LRD =1.

Two-way transfers

In the above example, only one-way transfer was possible, i.e., we could only copy the contents
of RS to RD if the condition was met. In order to be able to achieve two-way transfers, we must
also provide a path from the output of the register RD to input of register RS. This will enable us
to implement

Condl: RD < RS

Cond2: RS < RD

Connecting multiple registers

We have seen how two registers can be connected. However, in a computer we need to connect
more than just two registers. In order to connect these registers, one may argue that a connection
between the input and output of each be provided. This solution is shown for a scenario where
there are 5 registers that need to be interconnected.

We can see that in this solution, an m-bit register requires two connections of m-wires each.
Hence five m-bit registers in a “point-to-point” scheme require 20 connections; each with m
wires. In general, n registers in a point to point scheme require n (n-1) connections. It is quite
obvious that this solution is not going to scale well for a large number of registers, as is the case
in real machines. The solution to this problem is the use of a bus architecture, which is explained
in the following sections.

Page 79

Advance Computer Architecture — CS501

Buses

A bus is a device that provides a shared data path
to a number of devices that are connected to it, ,
via a ‘set of wires’ or a ‘set of conductors’. The R@—F——\—— R
modern computer systems extensively employ ' \ j
the bus architecture. Control signals are needed ' f
to decide which two entities communicate using '
the shared medium, i.e. the bus, at any given

By
o

time. This control signals can be open collector

gate based, tri-state buffer based, or they can be

implemented using multiplexers. Multiple register connections
Register file implementation using the bus

architecture

A number of registers can be inter-connected to [A T4
form a register file, through the use of a bus. The = o

il 9]
= Ia: i

"
=9 |] -

given diagram shows eight 4-bit registers (RO, - ,_'45.,' 4uit r:;a;
R1, ..., R7) interconnected through a 4-bit bus ' a3 ”—__ | B
using 4-bit tri-state buffer wunits (labeled 1= ’—— ~
AA TS4). The contents of a particular register '-,_J
can be transferred onto the bus by applying a
logical high input on the enable of the
corresponding tri-state buffer. For instance, abit

e Ot
1 L ARl
Rlout can be used to enable the tri-state buffers 1. 3 ’ e e m
of the register R1, and in turn transfer the l ” &

00 T4

-
S

7%

J | J]
A g | ¥

3 e
e

contents of the register on the bus. —— -J
Once the contents of a particular register are on R
the bus, the contents may be transferred, or read
into any other register. More than one register
may be written in this manner; however, only
one register can write its value on the bus at a
given time.

[a0 T84
Implementing register transfers with . Ues amtrog | e 1 Bt
mathematical operations il 3333 |—F— vl o |
We have studied the implementation of simple L= ’_ -
register transfers; however, we frequently . “J
encounter register transfers with mathematical = el
cl){%e;ratlons. An example is (opc=1): R4« R3 + Register File

These mathematical operations may be achieved

by introducing appropriate combinational logic;

the above operation can be implemented in hardware by including a 4-bit adder with the register
files connected through the bus. There are two more registers in this configuration, one for
holding one of the operands, and the other for holding the result before it is transferred to the
destination register. This is shown in the figure below.

Page 80

Advance Computer Architecture — CS501

HEHA
Lo
| | | 00 TH4
| Zanx [y

ck dhitreg e LR =111
Y i ‘ v Ou
SRl -I 3 E“ PRy .
=
1

00 THS

iz T
i c+ dhitreg - Wi Cun
i ety L Sy Fi o ——
FEEE Pl o [
| &
1

Rl =TI
| | L] Ao THA
. o4
s T SR gt
i = Dl:.;'h.;'
[= TN VI
] :
' =Ry : ',_l
-
We now take a look at the
steps taken for the Time step | Operation to be performed | Control signalsto be
(conditional, mathematical) (structural RTL) actoried
transfer (opc=1): R4« R3 + 1 A«R3 LA, R3out
R2. First of all, if
the condition opc = 1 is met, 2 CeA+R2 LC, R2out
the contents of the first
operand register, R3, are 3 R4« C LR4, Cout
transferred to the
temporary registerA ; :
through the bus. This is done Structural RTL: add operation
by activating R3out.

It lets the contents of the register R3 to be loaded on the bus. At the same time, applying a logical
high input to LA enables the load for the register A. This lets the binary number on the bus (the
contents of register R3) to be loaded into the register A. The next step is to enable R2out to load
the contents of the register R2 onto the bus. As can be observed from the figure, the output of the
register A is one of the inputs to the 4-bit adder; the other input to the adder is the bus itself.
Therefore, as the contents of register R2 are loaded onto the bus, both the operands are available

Page 81

Advance Computer Architecture — CS501

to the adder. The output can then be stored to the register RC by enabling its write. So a high
input is applied to LC to store the result in register RC.

The third and final step is to store (transfer) the resultant number in the destination register R4.
This is done by enabling Cout, which writes the number onto the bus, and then enabling the read
of the register R4 by activating the control signal to LR4. These steps are summarized in the
given table.

The barrel shifter

Shift operations are frequently used operations, as shifts can be used for the implementation of
multiplication and division etc. A bi-directional shift register with a parallel load capability can
be used to perform shift operations. However, the delays in such structures are dependent on the
number of shifts that are to be performed, e.g., a 9 bit shift requires nine clock periods, as one
shift is performed per clock cycle. This is not an optimal solution. The barrel shifter is an
alternative, with any number of shifts accomplished during a single clock period. Barrel shifters
are constructed by using multiplexers. An n-bit barrel shifter is a combinational circuit
implemented using n multiplexers. The barrel provides a shifted copy of the input data at its
output. Control inputs are provided to specify the number of times the input data is to be shifted.
The shift process can be a simple one with Os used as fillers, or it can be a rotation of the input
data. The corresponding figure shows a barrel shifter that shifts right the input data; the number
of shifts depends on the bit pattern applied on the control inputs SO, S1.

The function table for the barrel shifter is given. We see from the table that in order to apply
single shift to the input number, the control signal is 01 on (S1, S0), which is the binary
equivalent of the decimal number 1. Similarly, to apply 2 shifts, control signal 10 (on S1, S0) is
applied; 10 is the binary equivalent of the decimal number 2. A control input of 11 shifts the
number 3 places to the right.

Now we take a look at an example of the shift operation being implemented through the use of
the barrel shifter: R4« ror R3 (2 times);

The shift functionality can be incorporated into the register file circuit with the bus architecture
we have been building, by introducing the barrel shifter, as shown in the given figure.

|r|'::Eﬁ " -
Inz [s !
Ind E,‘, + : —
InD[E - = +— T

= 2
E 3

o
Chet3
"~—|_

Ot}

)

L

Barrel Shifter

Page 82

Advance Computer Architecture — CS501

1
L

e
Babdbard
e - - R
b 252
4-lM req F
= 8 L ::I._I_E" nu.—E
RATSE
0 Outll i
= i Tt n
g rd
Ou3dnd
(i
1= |

Coud

Shift operation using Barrel Shifter

| | E I 51 S0 Quiput in texrms of the
0 o = O -
-y - . 0 0 In3 In Iai Il
Bshifterd
oL | e | S | I} 1 In0 InS Ind Inl
—inl 5 5 5 5
o O O O
r 1 0 Inl Ind InS Ind
1 1
Barrel Shifter Symbol Lo In2 Inl Ind In3

Function table: Barrel shifter

Page 83

Advance Computer Architecture — CS501

To perform the operation, R4« ror R3 (2 times),

The first step is to activate R3out, nbl and LC. Activating R3out will load the contents of the
register R3 onto the bus. Since the bus is directly connected to the input of the barrel shifter, this
number is applied to the input side. nb1 and nb0 are the barrel shifter’s control lines for
specifying the number of shifts to be applied. Applying a high input to nb1 and a low input to
nb0 will shift the number two places to the right. Activating LC will load the shifted output of
the barrel shifter into the register C. The second step is to transfer the contents of the register C
to the register R4. This is done by activating the control Cout, which will load the contents of
register C onto the data bus, and by activating the control LR4, which will let the contents of the
bus be written to the register R4. This will complete the conditional shift-and-store operation.
These steps are summarized in the table shown below.

Time step Operation to be performed Control signalsto be
(structural RTL) activated
1 C « R3 (after rotating right twice) R3out, nbl, LC
2 R4 C LR4, Cout

Structural RTL: Shift operation

Page 84

Advance Computer Architecture — CS501

Lecture No. 7

Design Process for ISA of FALCON-A

Reading Material
Handouts Slides

Summary
e OQutline of the thinking process for ISA Design
e Introduction to the ISA of FALCON-A

Instruction Set Architecture (ISA) Design: Qutline of the thinking process

In this module we will learn to appreciate, understand and apply the approach adopted in
designing an instruction set architecture. We do this by designing an ISA for a new processor.
We have named our processor FALCON-A, which is an acronym for First Architecture for
Learning Computer Organization and Networks (version A). The term Organization is intended
to include Architecture and Design in this acronym.

Elements of the ISA

Before we go onto designing the instruction set architecture for our processor FALCON-A, we
need to take a closer look at the defining components of an ISA. The following three key
components define any instruction set architecture.

1. The operations the processor can execute

2. Data access mode for use as operands in the operations defined

3. Representation of the operations in memory
We take a look at all three of the components in more detail, and wherever appropriate, apply
these steps to the design of our sample processor, the FALCON-A. This will help us better
understand the approach to be adopted for the ISA design of a processor. A more detailed
introduction to the FALCON-A will be presented later.

The operations the processor can execute

All processors need to support at least three categories (or functional groups) of instructions
— Arithmetic, Logic, Shift

— Data Transfer

— Control

ISA Design Steps — Step 1

We need to think of all the instructions of each type that ought to be supported by our processor,
the FALCON-A. The following are the instructions that we will include in the ISA for our
processor.

Arithmetic:

add, addi (and with an immediate operand), subtract, subtract-immediate, multiply, divide
Logic:

and, and-immediate, or, or-immediate, not

Shift:

shift left, shift right, arithmetic shift right

Data Transfer:

Data transfer between registers, moving constants to registers, load operands from memory to
registers, store from registers to memory and the movement of data between registers and
input/output devices

Page 85

Advance Computer Architecture — CS501

Control:

Jump instructions with various conditions, call and return from subroutines, instructions for
handling interrupts

Miscellaneous instructions:

Instructions to clear all registers, the capability to stop the processor, ability to “do nothing”, etc.
ISA Design Steps — Step 2

Once we have decided on the instructions that we want to add support for in our processor, the
second step of the ISA design process is to select suitable mnemonics for these instructions. The
following mnemonics have been selected to represent these operations.

Arithmetic:

add, addi, sub ,subi ,mul ,div

Logic:

and, andi, or, ori, not

Shift:

shiftl, shiftr, asr

Data Transfer:

load, store, in, out, mov, movi

Control:

jpl, jmi, jnz, jz, jump, call, ret, int.iret

Miscellaneous instructions:

nop, reset, halt

ISA Design Steps — Step 3

The next step of the ISA design is to decide upon the number of bits to be reserved for the op-
code part of the instructions. Since we have 32 instructions in the instruction set, 5 bits will
suffice (as 2 =32) to encode these op-codes.

ISA Design Steps — Step 4

The fourth step is to assign op-codes to these instructions. The assigned op-codes are shown
below.

Arithmetic:

add (0), addi (1), sub (2), subi (3), mul (4),div (5)

Logic:

and (8), andi (9), or (10), ori (11), not (14)

Shift:
shiftl (12), shiftr (13), asr (15)
Data Transfer:

load (29)., store (28), in (24), out (25), mov 0000 | add || 01000 | and || 10000 | gt || w000 | i
(6), movi (7)
Control: onoo1 addi 01001 atudi 10001 jmi 11001 ot
Jpl (16)’ Jml (17)’ an (18)"12 (19.)’Jump oooin sub 01010 or 10010 jnz 11010 int
(20), call (22), ret (23), int (26), iret (27)
oot subi 01011 ot 10011 jz 11011 iret

Mlscellaneous lnStru(:tIOHS: oo1a0 il 01100 ghiftl 10100 juttip 11100 gtore
nop (21), reset (30), halt (31)

X . . . X 00101 div 0101 | ewiftr || 10101 | a 1101 | load
Now we list these instructions with their op- ”
codes in the binary form, as they would o | mev || 01110 | set || 0010 | cat || 11010 | reset
appear in the machine instructions of the
FALCON-A. 01 | mowi || OUILT | asr || 10011 | et UL | hatt

Data access mode for operations
As mentioned earlier, the instruction set architecture of a processor defines a number of things
besides the instructions implemented; the resources each instruction can access,

Page 86

Advance Computer Architecture — CS501

the number of registers available to the processor, the number of registers each instruction can
access, the instructions that are allowed to access memory, any special registers, constants and
any alternatives to the general-purpose registers. With this in mind, we go on to the next steps of
our ISA design.

ISA Design Steps — Step 5

We now need to select the number and types of operands for various instructions that we have
selected for the FALCON-A ISA.

ALU instructions may have 2 to 3 registers as operands. In case of 2 operands, a constant (an
immediate operand) may be included in the instruction.

For the load/store type instructions, we require a register to hold the data that is to be loaded
from the memory, or stored back to the memory. Another register is required to hold the base
address for the memory access. In addition to these two registers, a field is required in the
instruction to specify the constant that is the

displacement to the base address. Registers Exceling
In jump instructions; we require a field for & o
specifying the register that holds the value that is Rl 001
to be compared as the condition for the branch, as o 010
well as a destination address, which is specified as = =

a constant.

Once we have decided on the number and types of B 100
operands that will be required in each of the RS 101
instruction types, we need to address the issue of RS 110

assigning specific bit-fields in the instruction for &7 111
each of these operands. The number of bits
required to represent each of these operands will eventually determine the instruction word size.
In our example processor, the FALCON-A, we reserve eight general-purpose registers. To

encode a register in the instructions, 3 bits are required (as 23 =8). The registers are encoded in
the binary as shown in the given table.

Therefore, the instructions that we will add support for FALCON-A processor will have the
given general format. The instructions in the 15 1110 8 7 54 21 0
FALCON:-A processor are going to be Op-code ra th e |unused
variations of this format, with four different
formats in all. The exact format is dependent on the actual number of operands in a particular
instruction.

ISA Design Steps — Step 6

The next step towards completely defining the instruction set architecture of our processor is the
design of memory and its organization. The number of the memory cells that we may have in the
organization depends on the size of the Program Counter register (PC), and the size of the
address bus. This is because the size of the program counter and the size of the address bus put a
limitation on the number of memory cells that can be referred to for loading an instruction for
execution. Additionally, the size of the data bus puts a limitation on the size of the memory word
that can be referred to in a single clock cycle.

ISA Design Steps — Step 7 Addressing Mde Format Example

Now we need to specify which instructions
will be allowed to access the memory. Since
the FALCON-A is intended to be a RISC-like | ®teent b Ef‘;:j] i
machine; only the load/ store instructions will

be allowed to access the memory.

ISA Design Steps — Step 8

Next we need to select the memory-addressing modes. The given table lists the types of
addressing modes that will be supported for the load/store instructions.

direct [constant or lahel] [10] ot [a]

tegister indirect [tegister] R3]

Page 87

Advance Computer Architecture — CS501

FALCON-A: Introduction

FALCON stands for First Architecture for Learning Computer Organization and Networks. It is a
‘RISC-like’ general-purpose processor that will be used as a teaching aid for this course. Although
the FALCON-A is a simple machine, it is powerful enough to explain a variety of fundamental
concepts in the field of Computer Architecture.

Programmer’s view of the FALCON-A

FALCON-A, an example of a GPR (General Purpose Register) computer, is the first version of the
FALCON processor. The programmer’s view
of the FALCON-A is given in the figure ™75 o |

shown. As it is clear from the figure, the CPU : = | | : 0 L gt 2 0
contains a register file of 8 registers, named RO | : | 1
through R7. Each of these registers is 16 bits [I T 2
in length. Aside from these registers, there are l Registernle : -
two special-purpose registers, the Program | |

Counter (PC), and the Instruction Register | ®"L—— 11 InputiOutput
(IR). The main memory is organized as 216 : PC :

8 bits, i.e. 216 cells of 1 byte each. The T T ey - Hiaicumemory

memory word size is 2 bytes (or 16 bits).
The input/output space is 256 bytes (8 bit I/O ports). The storage in these registers and memory
is in the big-endian format.

Page 88

Advance Computer Architecture — CS501

Lecture No. 8
ISA of the FALCON-A

Reading Material
Handouts Slides

Summary
e Introduction to the ISA of the FALCON-A
o Examples for the FALCON-A

Introduction to the ISA of the FALCON-A

We take a look at the notation that we are
going to employ when studying the

FALCON-A. We will refer to the contents of ! 0 One memory “word”
a register by enclosing in square brackets the Mg] | £ 57)
name of the register, for instance, R [3] refers MR |

. M8 M9

to the contents of the register 3. Memory T
contents are to be referred to in a similar

fashion; for instance, M [8] refers to the

_—/' MSByte LS Byte
contents of memory at location 8§ (or the gth

memory cell). Fig. Big- Endian Notation

Since memory is organized into cells of 1

byte, whereas the memory word size is 2 bytes, two adjacent memory cells together make up a
memory word. So, memory word at the memory address 8 would be defined as 1 byte at address
8 and 1 byte at address 9. To refer to 16-bit memory words, we make use of a special notation,
the concatenation of two memory locations. Therefore, to refer to the 16-bit memory word at
location 8, we would write M[8]OM][9]. As we employ the big-endian format,

M [8]<15...0>:=M[8]CM[9]

So in our notation © is used to represent concatenation.

€= Memaory addresses

Little endian puts the smallest numbered byte at the least-significant position in a word, whereas
in big endian, we place the largest numbered byte at the most significant position. Note that in
our case, we use the big-endian convention of ordering bytes. However, within each byte itself,
the ordering of the bits is little endian.

FALCON-A Features

The FALCON-A processor has fixed-length instructions, each 16 bits (2 bytes) long. Addressing
modes supported are limited, and memory is accessed through the load/store instructions only.

FALCON-A Instruction Formats

Three categories of instructions are going to be supported by the FALCON-A processor;
arithmetic, control, and data transfer instructions. Arithmetic instructions enable mathematical
computations. Control instructions help change the flow of the program as and when required.
Data transfer operations move data between the processor and memory. The arithmetic category
also includes the logical instructions. Four different types of instruction formats are used to
specify these instructions. A brief overview of the various fields in these instructions formats
follows.

Page 89

Advance Computer Architecture — CS501

Type I instruction format is shown in the
given figure. In it, 5 bits are reserved for the
op-code (bits 11 through 15). The rest of the
bits are unused in this instruction type, which
means they are not considered.

15 1110 0

Op-code unused

Type Il instruction shown in the given
figure, has a 5-bit op-code field, a 3-bit 15 1110 8 7 0

register field, and an 8-bit constant (or Giceads - 2

immediate operand) field.

Type III instructions contain the 5-bit op-

code field, two 3-bit register fields for source 15 1110 8 7 54 21 0
and destination registers, and an immediate Op-code i b re unused

operand field of length 5 bits.

Type IV instructions contain the op-code field, two 3-bit register fields, a constant filed on
length 3 bits as well as two unused bits. This

: . . 15 1110 8 7 5 4 0

format is shown in the given figure.
Op-code ra rb cl

Encoding of registers
We have a register file comprising of eight
general-purpose registers in the CPU. To Registers Encoding
encode these registers in the binary, so they RO 000
can be referred to in various instructions, we = =

require log> (8) = 3 bits. Therefore, we have
already allocated three bits per register in R2 010
the instructions, as seen in the various

instruction formats. The encoding of = AL
registers in the binary format is shown in R4 100
thc? g%ven table. ' T ™
It is important to note here that the register 6 110
RO has special usage in some cases. For

R7 111

instance, in load/ store operations, if register
RO is used as a second operand, its value is
considered to be zero. RO has special usage Fig. Register Encodings
in the multiply and divide (mul & div)

instructions as well.

Instructions and instruction formats
We return to our discussion of instruction formats in this section. We will now classify which
instructions belong to what instruction format types.
Typel
Five of the instructions included in the instruction set of FALCON-A belong to type I instruction
format. These are
l.nop (op-code =21)
This instruction is to instruct the processor to ‘do nothing’, or, in other words, do
‘no operation’. This instruction is generally useful in pipelining. We will study
pipelining later in the course.
2.reset (op-code = 30)
3.halt (op-code=31)
4.int (opcode= 26)

Page 90

Advance Computer Architecture — CS501

S.iret (op-code=27)

All of these instructions take no operands, therefore, besides the 5 bits used for the op-code, the
rest of the bits are unused.

Type 11

There are nine FALCON-A instructions that belong to this type. These are listed below.

1.

movi (op-code =7)

The movi instruction loads a register with the constant (or the immediate value)
specified as the second operand. An example is

movi R3, 56 R[3] < 56

This means that the register R3 will have the value 56 stored in it as this instruction is
executed.

in (op-code = 24)

This instruction is to load the specified register from input device. An example and its
interpretation in register transfer language are

in R3, 57 R [3] « IO [57]

out (op-code = 25)

The ‘out’ instruction will move data from the register to the output device specified in
the instruction, as the example demonstrates:

out R7, 34 10 [34] <R [7]

ret (op-code=23)

This instruction is to return control from a subroutine. This is done using a register,
where the return address is stored. As shown in the example, to return control, the
program counter is assigned the contents of the register.

ret R3 PC «— R [3]

jz (op-code= 19)

When this instruction is executed, the value of the register specified in the field ra is
checked, and if it is equal to zero, the Program Counter is advanced by the
jump(value) specified in the instruction.

jz 13, [4] (R[3]=0): PC« PC+ 4;

In this example, register r3’s value is checked, and if found to be zero, PC is
advanced by 4.

jnz (op-code= 18) This instruction is the reverse of the jz instruction, i.e., the jump (or
the branch) is taken, if the contents of the register specified are not equal to zero.jnz
r4, [variable] (R[4]#0): PC«— PC+ variable;

jpl (op-code= 16) In this instruction, the value contained in the register specified in
the field ra is checked, and if it is positive, the jump is taken.
jpl r3, [label] (R[3]20): PC «— PC+ (label-PC);

jmi (op-code= 17) In this case, PC is advanced (jump/branch is taken) if the register
value is negative
jmi r7, [address] (R[7]<0): PC«— PC+ address;

Note that, in all the instructions for jump, the jump can be specified by a constant, a variable, a
label or an address (that holds the value by which the PC is to be advanced). A variable can be
defined through the use of the ‘.equ’ directive. An address (of data) can be specified using the
directive °.db’ or “.dw’. A label can be specified with any instruction. In its usage, we follow the
label by a colon ‘:* before the instruction itself. For example, the following is an instruction that
has a label ‘alfa’ attached to it alfa: movi 13 r4

Page 91

Advance Computer Architecture — CS501

Labels implement relative jumps, 128 locations backwards or 127 locations forward (relative to
the current position of program control, i.e. the value in the program counter). The compiler
handles the interpretation of the field ¢2 as a constant/ variable/ label/ address. The machine code
just contains an 8-bit constant that is added to the program counter at run-time.

9. jump (op-code= 20)

This instruction instructs the processor to advance the program counter by the
displacement specified, unconditionally (an unconditional jump). The assembler
allows the displacement (or the jump) to be specified in any of the following ways

jump [ra + constant]
jump [ra + variable]
jump [ra + address]

jump [ra + label]

The types of unconditional jumps that are possible are
Direct

Indirect

PC relative (a ‘near’ jump)

Register relative (a ‘“far’ jump)

The c2 field may be a constant, variable, an address or a label.

A direct jump is specified by a PC-label.

An indirect jump is implemented by using the C2 field as a variable.

In all of the above instructions, if the value of the register ra is zero, then the Program Counter is

incremented (or decremented) by the sign-extended value of the constant specified in the

instruction. This is called the PC-relative jump, or the ‘near’ jump. It is denoted in RTL as:
(ra=0): PC+ PC + (80C2<7>) © C2<7..0>;

If the register ra field is non-zero, then the Program Counter is assigned the sum of the sign-

extended constant and the value of register specified in the field ra. This is known as the register-

relative, or the “far’ jump. In RTL, this is denoted as: (ra#0):PC«— R[ra]+(8aC2<7>)OC2<7..0>;

Note that C2 is computed by sign extending the constant, variable, address, or (label — PC). Since

we have 8 bits available for the C2 field (which can be a constant, variable, address or a PC-

label), the range for the field is -128 to + 127. Also note that the compiler does not allow an

instruction with a negative sign before the register name, such as ‘jump [-r2]". If the C2 field is

being used as an address, it should always be an even value for the jump instruction. This is

because our instruction word size is 16 bits, whereas in instruction memory, the instruction

memory cells are of 8 bits each. Two consecutive cells together make an instruction.

Type 111
There are nine instructions of the FALCON-A that belong to Type III. These are:

1. andi (op-code=29)
The andi instruction bit-wise ‘ands’ the constant specified in the instruction with
the value stored in the register specified in the second operand register and stores
the result in the destination register. An example is:
andi r4, 13, 5
This instruction will bit-wise and the constant 5 and R[3], and assign the value
thus obtained to the register R[4], as given .
R[4] <« R]J[3]&5
2. addi (op-code=1)
This instruction is to add a constant value to a register; the result is stored in a

Page 92

Advance Computer Architecture — CS501

destination register. An example:
addir4, 3,4 R[4] <« R[3]+4

3. subi (op-code =3)
The subi instruction will subtract the specified constant from the value stored in a
source register, and store to the destination register. An example follows.
subir5,17,9 R[5] <« R[7]-9

4. ori (op-code=11)
Similar to the andi instruction, the ori instruction bit-wise ‘ors’ a constant with a
value stored in the source register, and assigns it to the destination register. The
following instruction is an example.
orir4,1r7,3 R[4] <« R[7]~3

5. shiftl (op-code =12)
This instruction shifts the value stored in the source register (which is the second
operand), and shifts the bits left as many times as is specified by the third
operand, the constant value. For instance, in the instruction
shiftl r4, 13, 7
The contents of the register are shifted left 7 times, and the resulting number is
assigned to the register r4.

6. shiftr (op-code =13)
This instruction shifts to the right the value stored in a register. An example is:
shiftr r4, 13,9

7. asr (op-code =15)
An arithmetic shift right is an operation that shifts a signed binary number stored in the
source register (which is specified by the second operand), to the right, while leaving
the sign-bit unchanged. A single shift has the effect of dividing the number by 2. As
the number is shifted as many times as is specified in the instruction through the
constant value, the binary number of the source register gets divided by the constant
value times 2.
An example is asrrl, 12, 5

This instruction, when executed, will divide the value stored in r2 by 10, and
assign the result to the register rl.

8.load (op-code=29)
This instruction is to load a register from the memory. For instance, the
Instruction
load r1, [r4 +15]
will add the constant 15 to the value stored in the register r4, access the memory
location that corresponds to the number thus resulting, and assign the memory
contents of this location to the register rl1; this is denoted in RTL by:

R[1] — M[R[4]+15]

9. store (op-code=28)

This instruction is to store a value in the register to a particular memory location.
In the example:
store r6, [r7+13]
The contents of the register r6 are being stored to the memory location that
corresponds to the sum of the constant 13 and the value stored in the register r7.
MI[R[7]+13] < R[6]

Type III Modified

There are 3 instructions in the modified form of the Type III instructions. In the modified Type
I1I instructions, the field c1 is unused.

Page 93

Advance Computer Architecture — CS501

1.mov (op-code =6)
This instruction will move (copy) data of a source register to a destination
register. For instance, in the following example, the contents of the register r3 are
copied to the register r4.

mov r4, 13
In RTL, this can be represented as
R[4] — R[3]

2.not (op-code =14)
This instruction inverts the contents of the source register, and assigns the value
thus obtained to the destination register. In the following example, the contents of
register 12 are inverted and assigned to register r4.
not r4, r2
In RTL:
R[4] — IR]2]
3.call (op-code=22)
Procedure calls are often encountered in programming languages. To add support
for procedure (or subroutine) calls, the instruction call is used. This instruction
first stores the return address in a register and then assigns the Program Counter a
new value (that specifies the address of the subroutine). Following is an example
of the call instruction
call r4,r3
This instruction saves the current contents (the return address) of the Program
Counter into the register r4 and assigns the new value to the PC from register r3.
R[4] < PC, PC < R3]
Type IV
Six instructions belong to the instruction format Type IV. These are
l.add (op-code =0)
This instruction adds contents of a register to those of another register, and
assigns to the destination register. An example:
and r4, 13, r5
R[4] < R[3] +R[5]
2.sub (op-code =2)
This instruction subtracts value of a register from another the value stored in
another register, and assigns to the destination register. For example,
sub r4, 13, r5
In RTL, this is denoted by
R[4] < R[3] —R[5]
3.mul (op-code=4)
The multiply instruction will store the product of two register values, and stores in
the destination register. An example is
mul r5, 17, rl
The RTL notation for this instruction will be
R[0] © R[5] <= R[7]*R[1]
4.div (op-code=15)
This instruction will divide the value of the register that is the second operand, by the
number in the register specified by the third operand, and assign the result to the
destination register.
div r4, r7, 12 R[4]«<—R[0] ©OR[7]/R[2],R[0]«—R[0] ©R[7]%R[2]

5. and (op-code= 8)

Page 94

Advance Computer Architecture — CS501

This ‘and’ instruction will obtain a bit-wise ‘and’ of the values of two registers and
assigns it to a destination register. For instance, in the following example, contents of
register r4 and r5 are bit-wise ‘anded’ and the result is assigned to the register rl.
andrl, r4, r5

In RTL we may write this as

R[1] < R[4] & R[5]

6.or (op-code=10)

To bit-wise ‘or’ the contents of two registers, this instruction is used. For instance,
or 16, r7,r2

In RTL this is denoted as

R[6] — R[7] ~R[2]

FALCON-A: Instruction Set Summary

We have looked at the various types of instruction formats for the FALCON-A, as well as the
instructions that belong to each of these instruction format types. In this section, we have simply
listed the instructions on the basis of their functional groups; this means that the instructions that
perform similar class of operations have been listed together.

Data Transfer Mnemonic opcode
Instructions

move mov 00110 (8)
Move imumediate movi 00111 ()
Input to register in 11000 (24)
Output from register out 11001 (25)
Load from memory load 11101 (29)
Store into memory store 11100 (28)

Fig. Data Transfer Instructions

jump instruction Mnemonic opcode
Jamp if positive jpl 10000 (18)
Jump if negative Jrd 10001 (17)
Jamp if not zero nz 10010 (18)
Jump if zexo)z 10011 (19)
Jump Jump 10100 (20)

Fig. Jump Instructions

Page 95

Advance Computer Architecture — CS501

Control Instruction Mnemonic opcode
No operation nop 10101 (21)
call call 10110 (22)
retum ret 10111 (23)
interrapt int 11010 (26)
Intenupt returm et 11011 27)
reset reset 11110 (30)
halt halt 11111 (31)

Fig. Control Instructions

Examples for FALCON-A

In this section we take up a few sample problems related to the FALCON-A processor. This will
enhance our understanding of the FALCON-A processor, as well as of the general concepts
related to general processors and their instruction set architectures. The problems we will look at
include

1. Identification of the instruction types and operands

2. Addressing modes and RTL description

3. Branch condition and status of the PC

4. Binary encoding for instructions

Example 1:

Identify the types of given FALCON-A instructions and specify the values in the fields

Instruction Type ra 1h rc cl c2

movirl, 2

add 11,1213

nop

load 12,[15 + 6]

jz10, [3]

Fig. Example 1

Solution

The solution to this problem is quite straightforward. The types of these instructions, as well as
the fields, have already been discussed in the preceding sections.

Page 96

Advance Computer Architecture — CS501

Instruction Type ra 1h re cl c2

movirl, 2 II 1l - - 2
add 11,9213 v 1l 12 13 -
nop I - s - g
load 12,[t5 + 6] I 12 5 - 6 -
jz 10, [3] II 10 - - 3

Fig. Solution 1

We can also find the machine code for these instructions. The machine code (in the hexadecimal
representation) is given for these instructions in the given table.

Instruction Machine h cl c2
Code
movirl, 2 3902h 1l z z 2
add 11,1213 014Ch 1l 12 13 -
nop A800h - -]
load 12,[t5 + 6] EAA6h 12 t5 - é R
jz 10, [3] 9803h 10 . F 3
Fig. Machine Code
Example 2:

Identify the addressing modes and Register Transfer Language (RTL) description (meaning) for
the given FALCON-A instructions

Page 97

Advance Computer Architecture — CS501

Instruction

Addressing mode

RTL description
(meaning)

load 12,14 + 8]

inzl,[54]

shiftl 11,124

addi 13,162

sub 11, 17 12

Solution

Fig. Example 2

Addressing modes relate to the way architectures specify the address of the objects they access.

These objects may be constants and registers, in addition to memory locations.

Instruction Addressing mode RTL description
(meaning)

load 12,[14 + 8] Displacement R[2]«=—M[R[4]+8]

inztl, [54] Relative R[1]#0):
PC+—PC+54

shiftl 11,124 Immediate Shift 12 left 4 times and
store in 1l

addi 13,16,2 Immediate R[3}—R[6]+2

sub rl, 17,12 Register R[1}—R[7]-R[2]

Fig. Solution 2

Example 3: Specify the condition for the branch instruction and the status of the PC after the
branch instruction executes with a true branch condition

Page 98

Advance Computer Architecture — CS501

Instruction Condition PC status

iz 12,[35)

jump [12]

jnz 16, [3]

jplrl, [45]

jmi 12, [20]

Fig. Example 3

Solution
We have looked at the various jump instructions in our study of the FALCON-A. Using that
knowledge, this problem can be solved easily.

Instruction Condition PC status

iz 12,[35] IfR[2]==0 PC «~— PC+35

jump [12] always PC =— PC+12

nz 16, [3] IfR[6] #0 PC «~— PC+3

jplrl, [45] IfR[1]2 0 PC «— PCH45

jmir2, [20] IfR[2]< 0 PC «— PC+20
Fig. Solution 3

Example 4: Specify the binary encoding of the different fields in the given FALCON-A
instructions.

Page 99

Advance Computer Architecture — CS501

Insiruction TYPE opeode ra Hh rc C1@ bits)
OR
C2(8 biis)
store ¥, [x1+8]
sub ¥3,15,x5
shiftr ¥4 x6 9
Jump [10]
halt
Fig. Example 4
Solution

We can solve this problem by referring back to our discussion of the instruction format types.
The op-codes for each of the instructions can also be looked up from the tables. ra, rb and rc
(where applicable) registers’ values are obtained from the register encoding table we looked at.
The constants C1 and C2 are there in instruction type III and II respectively. The immediate
constant specified in the instruction can also be simply converted to binary, as shown.

Instruction TYPE opeode ra ™ e C1 hits)
OR
C2(hits)
store ¥, [x1+8] m 11100 100 001 - 01000
sub ¥3,06,x5 v 00010 011 110 101
shiftr ¥ x6 9 m 01101 100 110 - 01001
jump [10] o 10100 . - . 0000 1010
halt I 11111
Fig. Solution 4

Page 100

Advance Computer Architecture — CS501

Lecture No. 9
Description of FALCON-A and EAGLE using RTL

Reading Material
Handouts Slides

Summary
e Use of Behavioral Register Transfer Language (RTL) to describe the FALCON-A
e The EAGLE
e The Modified EAGLE

Use of Behavioral Register Transfer Language (RTL) to describe the
FALCON-A

The use of RTL (an acronym for the Register Transfer Language) to describe the FALCON-A is
discussed in this section. FALCON-A is the sample machine we are building in order to enhance
our understanding of processors and their architecture.

Behavior vs. Structure

Computer design involves various levels of abstraction. The behavioral description of a machine
is a higher level of abstraction, as compared with the structural description. Top-down approach
is adopted in computer design. Designing a computer typically starts with defining the behavior
of the overall system. This is then broken down into the behavior of the different modules. The
process continues, till we are able to define, design and implement the structure of the individual
modules.

As mentioned earlier, we are interested in the behavioral description of our machine, the
FALCON-A, in this section.

Register Transfer Language

The RTL is a formal way of expressing the behavior and structure of a computer.

Behavioral RTL

Behavioral Register Transfer Language is used to describe what a machine does, i.e. it is used to
define the functionality the machine provides. Basically, the behavioral architecture describes the
algorithms used in a machine, written as a set of process statements. These statements may be
sequential statements or concurrent statements, including signal assignment statements and wait
statements.

Structural RTL

Structural RTL is used to describe the hardware implementation of the machine. The structural
architecture of a machine is the logic circuit implementation (components and their
interconnections), that facilitates a certain behavior (and hence functionality) for that machine.
Using RTL to describe the static properties of the FALCON-A

We can employ the RTL for the description of various properties of the FALCON-A that we
have already discussed.

Specifying Registers
In RTL, we will refer to a register by its abbreviated, alphanumeric name, followed by the

number of bits in the register enclosed in angle brackets ‘<>’. For instance, the instruction
register (IR), of 16 bits (numbered 0 to 15), will be referred to as, IR<15..0>

Page 101

Advance Computer Architecture — CS501

Naming of the Fields in a Register

We can name the different fields of a register using the := notation. For example, to name the
most significant bits of the instruction register as the operation code (or simply op), we may
write:

op<4..0> :=IR<15..11>

Note that using this notation to name registers or register fields will not create a new copy of the
data or the register fields; it is simply an alias for an already existing register, or part of a
register.

Fields in the FALCON-A Instructions

We now use the RTL naming operator to name the various fields of the RTL instructions.
Naming the fields appropriately helps us make the study of the behavior of a processor more
readable.

op<4..0>:=IR<15..11>: operation code field

ra<2..0> := [R<10..8>: target register field

rb<2..0> := IR<7..5>: operand or address index

re<2..0> := IR<4..2>: second operand

c1<4..0> := [R<4..0>: short displacement field

€2<7..0> := [R<7..0>: long displacement or the immediate field

We are already familiar with these fields, and their usage in the various instruction formats of the
RTL.

Describing the Processor State using RTL

The processor state defines the contents of all the register internal to the CPU at a given time.
Maintaining or restoring the machine or processor state is important to many operations,
especially procedure calls and interrupts; the processor state needs to be restored after a
procedure call or an interrupt so normal operation can continue. Our processor state consists of
the following:

PC<15..0>: program counter (the PC holds the memory address of the next
instruction)

IR<15..0>: instruction register (used to hold the current instruction)

Run: one bit run/halt indicator

Strt: start signal

R 8 general purpose registers, each consisting of 16 bits

[0..7]<15..0>:

FALCON-A in a black box

The given figure shows what a processor appears as to a user. We see a start button that is
basically used to start up the processor, and a run indicator that turns on when the processor is in
the running state.

Connectors at
the back fto be
added later on)

Indicators
{include the RN
indicator)

Other switches
may be added
later on

Page 102

Advance Computer Architecture — CS501

There may be several other indicators as well. The start button as well as the run indicator can be
observed on many machines.

Using RTL to describe the dynamic properties of the FALCON-A
We have just described some of the static properties of the FALCON-A. The RTL can also be
employed to describe the dynamic behavior of the processor in terms of instruction interpretation
and execution.
Conditional expressions can be specified using the RTL. For instance, we may specify a
conditional subtraction operation employing RTL as
(op=2) : R[ra] « R[rb] - Rrc];

This instruction means that “if”” the operation code of the instruction equals 2 (00010 in binary),
then subtract the value stored in register rc from that of register rb, and store the resulting value
in register ra.
Effective address calculations in RTL (performed at runtime)
The operand or the destination address may not be specified directly in an instruction, and it may
be required to compute the effective address at run-time. Displacement and relative addressing
modes are instances of such situations. RTL can be used to describe these effective address
calculations.
Displacement address
A displacement address is calculated, as shown:

disp<15..0> := (R[rb]+ (11a c1<4>)O c1<4..0>);
This means that the address is being calculated by adding the constant value specified by the
field c¢1 (which is first sign extended), to the value specified by the register rb.
Relative address
A relative address is calculated by adding the displacement to the contents of the program
counter register (that holds the instruction to be executed next in a program flow). The constant
is first sign-extended. In RTL this is represented as, rel<15..0>:=PC+(8ac2<7>)Oc2<7..0>;

Range of memory addresses

Using the displacement or the relative addressing modes, there is a specific range of memory
addresses that can be accessed.

e Range of addresses when using direct addressing mode (displacement with rb=0)
o If c1<4>=0 (positive displacement) absolute addresses range: 00000b to 01111b
(0 to +15)
o If c1<4>=1 (negative displacement) absolute addresses range: 11111bto 10000b
(-1 to -16)
e Address range in case of relative addressing
o The largest positive value that can be specified using 8 bits (since we have only 8
bits available in ¢2<7..0>), is 27-1, and the most negative value that can be
represented using the same is 27. Therefore, the range of addresses or locations
that can be referred to using this addressing mode is 127 locations forward or 128

locations backward from the Program Counter (PC).

Instruction Fetch Operation (using RTL)

We will now employ the notation that we have learnt to understand the fetch-execute cycle of the
FALCON-A processor.

The RTL notation for the instruction fetch process is

Page 103

Advance Computer Architecture — CS501

instruction_Fetch = (
IRun&Strt : Run « 1,
Run : (IR < M[PC], PC < PC + 2;
instruction_Execution));

This is how the instruction-fetch phase of the fetch-execute cycle for FALCON-A can be
represented using RTL. Recall that “:=" is the naming operator, “!”” implies a logical NOT, “&”

6,9

implies a logical AND, “«=" represents a transfer operation, “;” is used to separate sequential
statements, and concurrent statements are separated by “,”. We can observe that in the
instruction Fetch phase, if the machine is not in the running state and the start bit has been set,
then the run bit is also set to true. Concurrently, an instruction is fetched from the instruction
memory; the program counter (PC) holds the next instruction address, so it is used to refer to the
memory location from where the instruction is to be fetched. Simultaneously, the PC is
incremented by 2 so it will point to the next instruction. (Recall that our instruction word is 2
bytes long, and the instruction memory is organized into 1-byte cells). The next step is the
instruction execution phase. Difference between “,” and ;" in RTL

(13

We again highlight the difference between the “,” and “;”. Statements separated by a “,” take
place during the same clock pulse. In other words, the order of execution of statements separated
by “,” does not matter.

On the other hand, statements separated by a “;” take place on successive clock pulses. In other
words, if statements are separated by “;” the one on the left must complete before the one on the
right starts. However, some things written with one RTL statement can take several clocks to
complete.
We return to our discussion of the instruction-fetch phase. The statement

'Run&Strt : Run 1
1s executed when ‘Run’ is 0, and ‘Strt’ is 1, that is, Strt has been set. It is used to set the Run bit.
No action takes place when both ‘Run’ and “Strt” are 0.
The following two concurrent register transfers are performed when ‘Run’ is set to 1, (as “:’ is a
conditional operator; if the condition is met, the specified action is taken).

IR — M[PC]

PC —~PC+2

Since these instructions appear concurrent, and one of the instructions is using the value of PC
that the other instruction is updating, a question arises; which of the two values of the PC is used
in the memory access? As a rule, all right hand sides of the register transfers are evaluated before
the left hand side is evaluated/updated. In case of simultaneous register transfers (separated by a
“,”), all the right hand side expressions are evaluated in the same clock-cycle, before they are
assigned. Therefore, the old, un-incremented value of the PC is used in the memory access, and
the incremented value is assigned to the PC afterwards. This corresponds to “master-slave” flip-
flop operation in logic circuits.

This makes the PC point to the next instruction in the instruction memory. Once the instruction
has been fetched, the instruction execution starts. We can also use i.F for

instruction Fetch and i.E for instruction Execution. This will make the Fetch operation easy to
write.

iF := ('Run&Strt : Run < 1, Run : (IR — M[PC], PC <~ PC +2;iE));

Instruction Execution (Describing the Execute operation using RTL)

Once an instruction has been fetched from the instruction memory, and the program counter has
been incremented to point to the next instruction in the memory, instruction execution
commences. In the instruction fetch-execute cycle we showed in the preceding discussion, the

Page 104

Advance Computer Architecture — CS501

entire instruction execution code was aliased iE (or instruction Execution), through the
assignment operator “:=". Now we look at the instruction execution in detail.
iE :=(
(op<4..0>=1) : R[ra] — R[rb]+ (11a c1<4>)© c1<4..0>,
(op<4..0>=2) : R[ra] < R|[rb]-R]r¢],

(op<4..0>=31) : Run « 0,); iF);

As we can see, the instruction execution can be described in RTL by using a long list of
concurrent, conditional operators that are
inherently ‘disjoint’. Being inherently disjointed
implies that at any instance, only one of the
conditions can be met; hence one of the
statements is executed. The long list of statements
is basically all of the instructions that are a part of

Instruction Fetch

Instruction Decade

the FALCON-A instruction set, and the condition Bipvotie =i o N

for their execution is related to the operation code P

of the instruction fetched. We will take a closer Op-code=30 Op-code=1 processing
. . . goes in this

look at the entire list in our subsequent place

discussion. Notice that in the instruction execute J, | 3 i

phase, besides the long list of concurrent, disjoint

instructions, there is also the instruction fetch or iF sequenced at the end. This implies that once
one of the instructions from the list is executed, the instruction fetch is called to fetch the next
instruction. As shown before, the instruction fetch will call the instruction execute after fetching
a certain instruction, hence the instruction fetch-execute cycle continues.

The instruction fetch-execute cycle is shown schematically in the above given figure. We now
see how the various instructions in the execute code of the fetch-execute cycle of FALCON-A,
are represented using the RTL. These instructions form the instruction set of the FALCON-A.

Jump instructions

Some of the instructions listed for the instruction execution phase are jump instruction, as shown.
(Note . . .” implies that more instructions may precede or follow, depending on whether it is
placed before the instructions shown, or after).

iE :=(

If op-code is 20, the branch is taken unconditionally (the jump instruction).
(op<4..0>=20) : (cond : (PC < R[ra]+C2(sign extended)),

If the op-code is 16, the condition for branching is checked, and if the condition is being met, the
branch is taken; otherwise it remains untaken, and normal program flow will continue.
(op<4..0>=16) : (cond : (PC — PC+C2 (sign extended))

Arithmetic and Logical Instructions

Several instructions provide arithmetic and logical operations functionality. Amongst the list of
concurrent instructions of the iE phase, the instructions belonging to this category are
highlighted:

iE :=(

Page 105

Advance Computer Architecture — CS501

If op-code is 0, the instruction is ‘add’. The values in register b and rc are added and the result is
stored in register ra
(0p<4..0>=0) : R[ra] < R[rb] + R|rc],
Similarly, if op-code is 1, the instruction is addi; the immediate constant specified by the
constant field C1 is sign extended and added to the value in register rb. The result is stored in the
register ra.
(op<4..0>=1) : R[ra] —R[rb] + (11a C1<4>)© C1<4..0>,
For op-code 2, value stored in register rc is subtracted from the value stored in register rb, and
the result is stored in register ra.
(0p<4..0>=2) : R[ra] < R[rb] - R|rc¢],
If op-code is 3, the immediate constant C1 is sign-extended, and subtracted from the value stored
in rb. Result is stored in ra.
(0p<4..0>=3) : R[ra] — R[rb]- (11a C1<4>)© C1<4..0>,
For op-code 4, values of rb and rc register are multiplied and result is stored in the destination
register.
(op<4..0>=4) : R|ra] < R[rb] * R[rc],
If the op-code is 5, contents of register rb are divided by the value stored in rc, result is
concatenated with Os, and stored in ra. The remainder is stored in RO.
(op<4..0>=5) : R[ra] — R[0] ©R[rb]/R[rc],

R[0] < R[0] ©OR[rb]%R][rc],
If op-code equals 8, bit-wise logical AND of rb and rc register contents is assigned to ra.
(0p<4..0>=8) : R|ra] — R[rb] & R]rc],
If op-code equals 8, bit-wise logical OR of rb and rc register contents is assigned to ra.
(0p<4..0>=10) : R[ra] — R[rb] ~R]¢],

For op-code 14, the contents of register specified by field rc are inverted (logical NOT is taken),
and the resulting value is stored in register ra.

(op<4..0>=14) : R[ra] < ! R[rc],

Shift Instructions
The shift instructions are also a part of the instruction set for FALCON-A, and these are listed in
the instruction execute phase in the RTL as shown.

iE :=(

If the op-code is 12, the contents of the register rb are shifted right N bits. N is the number
specified in the constant field. The space that has been created due to the shift out of bits is filled
with Os through concatenation. In RTL, this is shown as:

(0p<4..0>=12) : R[ra]<15..0> — R [rb]<(15-N)..0>©O(Na0),

If op-code is 13, rb value is shifted left, and Os are inserted in place of shifted out contents at the
right side of the value. The result is stored in ra.

(0p<4..0>=13) : R[ra]<15..0> — (Na0)OR [rb]<(15)..N>,

For op-code 15, arithmetic shift right operation is carried out on the value stored in rb. The
arithmetic shift right shifts a signed binary number stored in the source register to the right, while
leaving the sign-bit unchanged. Note that a means replication, and © means concatenation.
(op<4..0>=15) : R[ra]<15..0> — No(R [rb]<15>)© (R [rb]<15..N>),

Page 106

Advance Computer Architecture — CS501

Data transfer instructions
Several of the instructions belong to the data transfer category.
iE :=(

Op-code 29 specifies the load instruction, i.e. a memory location is referenced and the value
stored in the memory location is copied to the destination register. The effective address of the
memory location to be referenced is calculated by sign extending the immediate field, and
adding it to the value specified by register rb.

(0p<4..0>=29) : R[ra]«— M|[R[rb]+ (11a C1<4>)© C1<4..0>],

A value is stored back to memory from a register using the op-code 28. The effective address in
memory where the value is to be stored is calculated in a similar fashion as the load instruction.
(0p<4..0>=28) : M[R|[rb]+ (11a C1<4>)© C1<4..0>] — R [ra],

The move instruction has the op-code 6. The contents of one register are copied to another
register through this instruction.

(op<4..0>=6) : R[ra] — R[rb],

To store an immediate value (specified by the field C2 of the instruction) in a register, the op-
code 7 is employed. The constant is first sign-extended.

(0p<4..0>=7) : R[ra] — (8aC2<7>)©C2<7..0>,

If the op-code is 24, an input is obtained from a certain input device, and the input word is stored
into register ra. The input device is selected by specifying its address through the constant C2.

(0op<4..0>=24) : R[ra] < 10[C2],

Unconditional branch (jump)If the op-code is 25, an output (the register ra value) is sent to an
output device (where the address of the output device is specified by the constant C2).
(0p<4..0>=25) : IO[C2] < R|ra],

Miscellaneous instructions

Some more instruction included in the FALCON-A are
iE :=(

The no-operation (nop) instruction, if the op-code is 21. This instructs the processor to do
nothing.

(op<4..0>=21): ,

If the op-code is 31, setting the run bit to 0 halts the processor.

(op<4..0>=31) : Run < 0, Halt the processor (halt)

At the end of this concurrent list of instructions, there is an instruction i.F (the instruction fetch).
Hence when an instruction is executed, the next instruction is fetched, and the cycle continues,
unless the processor is halted.

); iF);
Note: For Assembler and Simulator Consult Appendix.

The EAGLE

(Original version)

Another processor that we are going to study is the EAGLE. We have developed two versions of
it, an original version, and a modified version that takes care of the limitations in the original

Page 107

Advance Computer Architecture — CS501

version. The study of multiple processors is going to help us get thoroughly familiar with the
processor design, and the various possible designs for the processor. However, note that these
machines are simplified versions of what a real machine might look like.

Introduction
The EAGLE is an accumulator-based machine. It is a simple processor that will help us in our
understanding of the processor design process. EAGLE is characterized by the following:

e FEight General Purpose Registers of the CPU. These are named R0, R1...R7. Each
register is 16-bits in length.

e Two 16-bit system registers transparent to the programmer are the Program Counter
(PC) and the Instruction Register (IR). (Being transparent to the programmer implies
the programmer may not directly manipulate the values to these registers. Their usage
is the same as in any other processor)

Memory word size is 16 bits
The available memory space size is 2!° bytes

e Memory organization is 2'¢ x 8 bits. This means that there are 2'® memory cells, each
one byte long.

e Memory is accessed in 16 bit words (i.e., 2 byte chunks)
e Little-endian byte storage is employed.

Programmer’s View of the [T s~ o0
EAGLE

| |

I

The programmer’s view of the | : :

EAGLE processor is shown by |R7T[] |

means of the given figure. I Register file |
| !
| |
| !
| !
I

EAGLE: Notation

Let us take a look at the notation that
will be employed for the study of the
EAGLE.

Enclosing the register name in square

Y —

2161

CPU Main memory Input/Outpyt

brackets refers to register contents; for
instance, R[3] means contents of register
R3.

Enclosing the location address in square
brackets, preceded by ‘M’ lets us refer to MS Byte LS Byte
memory contents. Hence M [8] means

contents of memory location 8.

As little endian storage is employed, a

memory word at address x is defined as the 16 bits at address x +1 and x. For instance, the bits
at memory location 9,8 define the memory word at location 8. So employing the special notation
for 16-bit memory words, we have

M [8]<15...0>:=M [9]CM [8]

Where © is used to represent concatenation

0 M[5] One instruction

1 M2 15 g7 0
[MBSl [mBEL |

€ Memory addresses

EAGLE Features

The following features characterize the EAGLE.

. Instruction length is variable. Instructions are either 8 bits or 16 long, i.e., instruction
size is either 8-bits or 16-bits.

. The instructions may have either one or two operands.

J The only way to access memory is through load and store instructions.

. Limited addressing modes are supported

Page 108

Advance Computer Architecture — CS501

EAGLE: Instruction Formats

There are five instruction formats for the EAGLE. These are

Type Z Instruction Format

The 7 format instructions are half-word (1 byte)
instructions, containing just the op-code field of 8 bits, as

shown
Type Y Instruction Format

The type Y instructions are also half-word. There is an

op-code field of 5 bits, and a register operand field ra.

Type X Instruction Format

Type X instructions are also half-word instructions, with a
2-bit op-code field, and two 3-bit operand register fields, as

shown. Type W instruction format

The instructions in this type are 1-word
(16-bit) in length. 8 bits are reserved for

the op-code, while the remaining 8 bits form the constant (immediate value) field.

Type V instruction format
Type V instructions are also 1-word

instructions, containing an op-code

field of 5 bits, an operand register field

of 3 bits, and

Encoding of the General Purpose Registers

The encoding for the eight
GPRs is shown in the table.

These binary codes are to be
used in place of the ‘place-

holders’ ra, rb in the actual
instructions of the processor

EAGLE.

7 0
Type Z opcode
7 32 0
Type ¥ | opcode ra
7 65 3 2 0
Type X |opcode| ra rb
15 0
Type Wl opcode | constant
15 1w 8 7 0
Type V | opcode I ra | constant
8bits a specifying a constant.
Register Code Register Code
RO noa R4 100
F1 001 RS 11
Rz 010 RE 110
R3 011 R 111

Listing of EAGLE instructions with respect to instruction formats
The following is a brief introduction to the various instructions of the processor EAGLE,

categorized with respect to the instruction formats.

Type Z
There are four type Z instructions,
e halt(op-code=250)

This instruction halts the processor

e nop(op-code=249)

nop, or the no-operation instruction stalls the processor for the time of execution of a

single instruction. It is useful in pipelining.

e init(op-code=251)

This instruction is used to initialize all the registers, by setting them to 0

e reset(op-code=248)

Page 109

Advance Computer Architecture — CS501

This instruction is used to initialize the processor to a known state.In this instruction the
control step counter is set to zero so that the operation begins at the start of the instruction
fetch and besides this PC is also set to a known value so that machine operation begins at
a known instruction.

Type Y
Seven instructions of the processor are of type Y. These are
e add(op-code=11)
The type Y add instruction adds register ra’s contents to register RO. For example, add rl
In the behavioral = RTL, we show this as
R[0] < R[1]+R][0]

e and(op-code=19)
This instruction obtains the logical AND of the value stored in register specified by field
ra and the register R0, and assigns the result to R0, as shown in the example:
and r5
which is represented in RTL as R[0] < R[1]&R]0]

e div(op-code=16)
This instruction divides the contents of register RO by the value stored in the register ra,
and assigns result to RO. The remainder is stored in the divisor register, as shown in
example,
div r6
In RTL, this is
R[0] « R[0]/R[6]
R[6] < R[0]%R[6]

e mul (op-code = 15)
This instruction multiplies the values stored in register RO and the operand register, and
assigns the result to R0). For example,
mul r4

In RTL, we specify this as R[0] « R[0]*R[4]

e not (op-code = 23)
The not instruction inverts the operand register’s value and assigns it back to the same
register, as shown in the example
not r6
R[6] < ! R[6]

e or (op-code=21)
The or instruction obtains the bit-wise OR of the operand register’s and R0’s value, and
assigns it back to R0. An example,
or r5
R[0] < R[0] ~ R[5]

e sub (op-code=12)
The sub instruction subtracts the value of the operand register from RO value, assigning it
back to register RO. Example:

sub r7
In RTL: R[0] « R[0] —R[7]

Page 110

Advance Computer Architecture — CS501

Type X
Only one instruction falls under this type. It is the ‘mov’ instruction that is useful for register
transfers
e mov (op-code = 0)
The contents of one register are copied to the destination register ra.

Example: mov 15, rl
RTL Notation: R[5]< R[1]

Type W
Again, only one instruction belongs to this type. It is the branch instruction
e br (op-code =252)
This is the unconditional branch instruction, and the branch target is specified by the 8-bit
immediate field. The branch is taken by incrementing the PC with the new value. Hence
itis a ‘near’ jump. For instance,
br 14
PC — PC+14

Most of the instructions of the processor EAGLE are of the format type V. These are

e addi (op-code = 13)
The addi instruction adds the immediate value to the register ra, by first sign-extending
the immediate value. The result is also stored in the register ra. For example,
addi r4, 31
In behavioral RTL, this is
R[4] < R[4]+(80ac<7>)Oc<7...0>;

e andi (op-code =20)
Logical ‘AND’ of the immediate value and register ra value is obtained when this

instruction is executed, and the result is assigned back to register ra. An example, andi r6,
1

R[6] < R[6] &1
e in (op-code=29)
This instruction is to read in a word from an IO device at the address specified by the
immediate field, and store it in the register ra. For instance,
inrl, 45
In RTL this is
R[1] < IO[45]
e load (op-code=8)
The load instruction is to load the memory word into the register ra. The immediate field
specifies the location of the memory word to be read. For instance,
load 13, 6
R[3] <+ M[6]
e brn (op-code = 28)
Upon the brn instruction execution, the value stored in register ra is checked, and if it is
negative, branch is taken by incrementing the PC by the immediate field value. An
example is
brn r4, 3
In RTL, this may be written as if R[4]<0, PC «— PC+3
e brnz (op-code =25)
For a brnz instruction, the value of register ra is checked, and if found non-zero, the PC-
relative branch is taken, as shown in the example,
brnz r6, 12 Which, in RTL is
if R[6]!=0, PC «— PC+12

Page 111

Advance Computer Architecture — CS501

brp (op-code=27)

brp is the ‘branch if positive’. Again, ra value is checked and if found positive, the PC-
relative near jump is taken, as shown in the example:

brp rl, 45

In RTL this is

if R[1]>0, PC «— PC+45

brz (op-code=8)

In this instruction, the value of register ra is checked, and if it equals zero, PC-relative
branch is taken, as shown,

brz 15, 8

In RTL:

if R[5]=0, PC — PC+8

loadi (op-code=9)

The loadi instruction loads the immediate constant into the register ra, for instance,
loadi r5,54 R[5] < 54

ori (op-code=22)

The ori instruction obtains the logical ‘OR’ of the immediate value with the ra register
value, and assigns it back to the register ra, as shown,

orir7, 11 InRTL,

R[7] < R[7]~11

out (op-code=30)

The out instruction is used to write a register word to an IO device, the address of which is
specified by the immediate constant. For instance,

out 32, r5

In RTL, this is represented by 10[32] < R[5]

shiftl (op-code=17)

This instruction shifts left the contents of the register ra, as many times as is specified
through the immediate constant of the instruction. For example: shiftl r1, 6

shiftr(op-code=18)

This instruction shifts right the contents of the register ra, as many times as is specified
through the immediate constant of the instruction. For example: shiftr 12, 5

store (op-code=10)

The store instruction stores the value of the ra register to a memory location specified by
the immediate constant. An example is,

store r4, 34

RTL description of this instruction is M[34] «— R[4]

subi (op-code=14)

The subi instruction subtracts the immediate constant from the value of register ra,

assigning back the result to the register ra. For instance,
subir3, 13

RTL description of the instruction
R[3] « R[3]-13

Page 112

Advance Computer Architecture — CS501

(ORIGINAL) ISA for the EAGLE

(16-bit registers, 16-bit PC and IR, 8-bit memory)

opcode joperandljoperand2jconstant IB

mnemeonic Format [Behavioral RTL
3 bits 3 bits

bdd 01011 fra [I Y R [0] — R [ra]+R [0]:
addi 01101 ra - c v R [ra] < R [ra]+(8ac<7=)Cxc;
and 10011 ra L - Y R[0] < R[ra]&R][0].
andi 10100 ra - c v R [ra] <— R [ra]& (8ac<7=)Cc:
br 11111100 | - c W PC «— PC+(8uc<7>)Cc:
brnv 11100 ra - ic [V (R [ra]<0): PC < PC+(8ac<7:
brnz 11001 1a - c [V (R [ra]<=0): PC < PC+(8u
brpl 11011 1a - c [V (R [ra]=0): PC «— PC+(8ac<7=)@c;
brzr 11010 ra - c [V (R [ra]=0): PC «— PC+(8ac<7>)@c;
div 10000 ra - - Y R [0] — R [0]/R [a]. R [ra] <R [0]%R [ra].
halt 11111010 | - - /. RUN<«— 0
in 11101 ra - c [V R [ra] <1OJc]:
init 11111011 } - - 7 R[7...0] < 0:
load 01000 ra - c v R [ra] <—M]c]:
loadi 01001 Ia 5 C [V R [ra] < (80c<7=)Cc:
mov 00 ra b - X R [ra] < R [1D]:
mul 01111 ra - - Y R [ra] © R [10] < R [ra]*R [0]:
nop 11111001 | - - 7 :
not 10111 ra - - Y R [ra] <! (R [ra]):
or 10101 ra - - Y R [0] < R [ra]~R [0]:
ori 10110 12 - C Vv R [ra] < R [ra]~ (8uac<7>)Cc:
out 11110 ra - C Vv IO[c] <R [ra]:
reset 11111000 |- - - /. TBD:
shiftl 10001 ra - c Vv R [ra] < R [ra]<(7-n)..0>©(na0):
shiftr 10010 ra - C vV R [ra] < (no0)©R [ra]<7..n>:
store 01010 ra - C Vv M[c]— R [ra]:
sub 01100 ra - - Y R [0] <— R [0]-R [a]:
subi 01110 ra - c [V R [ra] < R [ra]- (8ac<7>)@c;
Symbol | Meaning Symbol Meaning
a Replication % Remainder after integer division
© Concatenation & Logical AND
: Conditional constructs (IF-THEN) ~ Logical OR
3 Sequential constructs ! Logical NOT or complement
R Concuirent constructs — LOAD or assignment operator

Page 113

Advance Computer Architecture — CS501

Limitations of the ORIGINAL EAGLE ISA
The original 16-bit ISA of EAGLE has severe limitations, as outlined below.

1. Use of R0 as accumulator
In most cases, the register RO is being used as one of the source operands as well as the
destination operand. Thus, RO has essentially become the accumulator. However, this will
require some additional instructions for use with the accumulator. That should not be a problem
since there are some unused op-codes available in the ISA. Unequal and inefficient op-code
assignment
The designer has apparently tried to extend the number of operations in the ISA by op-code
extension. Op-code 11111 combine three additional bits of the instruction for five instructions:
unconditional branch, nop, halt, reset and init.while there is a possibility of including three more
instructions in this scheme, notice that op-code 00 for register to register mov is causing a “loss”
of eight “slots” in the original 5-bit op-code assignment. (The mov instruction is, in effect, using
eight op-codes). A better way would be to assign
a 5-bit op-code to mov and use the remaining op-codes for other instructions. Number of the
operands
Looking at the mov instruction again, it can be noted that this is the only instruction that uses
two operands, and thus requires a separate format (Format#1) for instruction enoding. If the job
of this instruction is given to two instructions (copy register to accumulator, and copy
accumulator to register), the number of instruction formats can be reduced thereby, simplifying
the assembler and the compiler needed for this ISA.

2. Use of registers for branch conditions
Note that one of the GPRs is being used to hold the branch condition. This would require that the
result from the accumulator be copied to the particular GPR before the branch instruction.
Including flags with the ALSU can eliminate this restriction

The Modified EAGLE

The modified EAGLE is an improved version of the processor EAGLE. As we have already
discussed, there were several limitations in EAGLE, and these have been remedied in the
modified EAGLE processor.

Introduction

The modified EAGLE is also an accumulator-based processor. It is a simple, yet complex
enough to illustrate the various concepts of a processor design. The modified EAGLE is
characterized by

e A special purpose register, the 16-bit accumulator: ACC
e 8 General Purpose Registers of the CPU: RO, R1, ..., R7; 16-bits each

e Two 16-bit system registers transparent to the programmer are the Program Counter (PC)
and the Instruction Register (IR).

e Memory word size: 16 bits

e Memory space size: 216 bytes
Memory organization: 210 x 8 bits
Memory is accessed in 16 bit words (i.e., 2 byte chunks)
Little-endian byte storage is employed

Programmer’s View of the Modified EAGLE

The given figure is the programmer’s view of the modified EAGLE processor.

Page 114

Advance Computer Architecture — CS501

Notation

The notation that is employed for the r——15————°——i

study of the modified EAGLE is the | ro | 7 0 7 0
same as the original EAGLE processor. : R1 | ?

Recall .that we kIlO\?V that: . Xl e— I >

Enclosing the register name in square | Register file |

brackets refers to register contents; for | :

instance, R [3] means contents of register |ace_____ | I

R3. w7 | 18,4

Enclosing the location address in square : PC I

brackets, preceded by ‘M’, lets us refer ——— —— ——— l

to memory contents. Hence M [8] MR L IpEOUTE

means contents of memory location 8.
As little endian storage is employed, a memory word at address x is defined as the 16
bits at address x+1 and x. For instance, the bits at memory location 9,8 define the
memory word at location 8. So employing the special notation for 16-bit memory words,
we have

M[8]<15...0>:=M[9]OM]§]

Where © is used to represent concatenation

The memory word access and copy to a
register is shown in the figure.

7 i
0 WIE] One instruction

1 M[5] 15 g7 n
[mE | mE |

MS Byie LS Byte

Features > 4
The following features characterize the u

modified EAGLE processor.
e Instruction length is variable. Instructions

« Memary addresses

are either 8 bits or 16 long, i.e., 7 32 0
instruction size is either half a word or 1 Type Z |opcode unused
word.
e The instructions may have either one or E S L
two operands. Type Y | opcods "
e The only way to access memory is 15 110 8 7
through load and store instructions Type X | opcode ra constant
e Limited addressing modes are supported
Note that these properties are the same as the L R
original EAGLE processor Type W | opcode |”””Sed| Corssant

Instruction formats

There are four instruction format types in the modified EAGLE processor as well. These are

Register Code Register Code
RO ooa R4 100
R1 oo R5 101
F2 010 F& 110
R3 011 R7 111

Page 115

Advance Computer Architecture — CS501

Encoding of the General Purpose Registers

The encoding for the eight GPRs is shown in the table. These are binary codes assigned to the
registers that will be used in place of the ra, rb in the actual instructions of the modified processor
EAGLE.

ISA for the Modified EAGLE
(16-bit registers, 16-bit ACC, PC and IR, 8-bit wide memory, 256 I/O ports)

IMnemonic Op-code ?l:::: and;‘gliltimml?ormat IBehavioral RTL
Unused 00111
addi 00100 fra C1 X ACC < R]ra] +(80C1<7>)@CI:
subi 00101 ra C1 X ACC < R]ra] - (8aC1<7>)©C1:
shittl 01010 ra C1 X R[ra] < RJra]<(15-n)..0>©(nu0):
shiftr 01011 ra C1 X R[ra] < (no0)©R[ral<15...n>;
andi 01100 ra C1 X ACC <— RJra] & (80C1<7=)©CI1;
ori 01101 ra C1 X ACC < RJra] ~ (8uCl1<7=)©CI.
st 01110 ra C1 X R[ra] < (noR[ra}<15>)©R[ra]<15..n>;
in 10001 ra C1 X R[ra] <-IO[C1]:
ldacc 10010 ra C1 X ACC <M][R[ra] +(8aC1<7>)©C1]:
movir 10100 ra C1 X R[ra] < (8uC1<7>)©C];
out 10101 ra C1 X I0[C1] <—R]Jral:
stacc 10111 ra C1 X M[R]ra] +(8uC1<7=)@C1]— ACC:
movia 10011 C1 W ACC — (8uCl<7=)©C1:
br 11000 - C1 W PC — PC + 8aC1<7>)©C1;
brn 11001 Cl W (S=1): PC < PC+BaCl<7>)©C1.
brnz 11010 C1 W (Z=0): PC <« PC+(8aC1<7>)@CI:
brp 11011 Cl W (S=0): PC < PC+(8aC1<7>)@CI:
brz 11100 C1 W (Z=1): PC < PCHBaC1<7>)©C1;
add 00000 ra - Y ACC — ACC + RJral:
sub 00001 ra - Y ACC <— ACC - RJal:

ACC — (R[ra] ©ACC)/R]al.
div 00010 ra - Y

R[ra] < (R[ra] ©ACC)%R][a].
mul 00011 ra - Y Rra] © ACC < RJra]*ACC:;
and 01000 ra - Y ACC «— ACC & Rral:
or 01001 ra - Y ACC <— ACC ~ R]ral:
not 01111 ra - Y ACC < !(R[ra]):
a2r 10000 fra - Y R[ra] < ACC
124 10110 ra Y ACC — R]ra]
cla 00110 4 ACC <0
halt 11101 - - /. RUN-<—0:
nop 11110 - - 7 :
‘eset 11111 - - 7 TBD:

Page 116

Advance Computer Architecture — CS501

Symbol [Meaning Symbol |Meaning

o Replication o Remainder after integer division

© Concatenation & [Logical AND

: Conditional constructs (IF-THEN) ~ [Logical OR

; Sequential constructs ! Logical NOT or complement
Concurrent constructs — [LOAD or assignment operator

Page 117

Advance Computer Architecture — CS501

Lecture No. 10
The FALCON-E and ISA Comparison

Reading Material

Handouts Slides

Summary
e The FALCON-E

e Instruction Set Architecture Comparison
THE FALCON-E
Introduction

FALCON stands for First Architecture for Learning Computer Organization and Networks. We
are already familiar with our example processor, the FALCON-A, which was the first version of
the FALCON processor. In this section we will develop a new version of the processor. Like its
predecessor, the FALCON-E is a General-Purpose Register machine that is simple, yet is able to
elucidate the fundamentals of computer design and architecture.

The FALCON-E is characterized by the following

e FEight General Purpose Registers

(GPRs), named RO, R1...R7.Each | 31 0o | . ; ,; 5
registers is 4 bytes long (32-bit i R !
registers). | I—l: | g
e Two special purposes registers, L — 2
named BP and SP. These registers I Regisier e i)
are also 32-bit in length. 1
- . isP__ 1
e Two special registers, the Program | 1 ! 2124
Counter (PC) and the Instruction | po———— |
Register (IR). PC points to the next | s e .
: | ain memory Input/Qutput

instruction to be executed, and the
IR holds the current instruction. Fig. Programmer's View
e Memory word size is 32 bits (4 bytes).

e Memory space is 232 bytes

e Memory is organized as 1-byte cells, and hence it is 232 x 8 bits.

e Memory is accessed in 32-bit words (4-byte chunks, or 4 consecutive cells)

e Byte storage format is little endian.

Programmer’s view of the FALCON-E
The programmer’s view of the FALCON-E
is shown in the given figure.

S Byte
u‘

Fig. FALCON-E Notation

. . .. LSE
Register contents are referred to in a similar e

fashion as the FALCON-A, i.e. the register
name in square brackets. So R[3] means
contents of register R3.

FALCON-E Notation % .l T L One memory “word”
We take a brief look at the notation that we 29 [3 23 15 e 5 o
will employ for the FACLON-E. g}? o) N O O 2 A
=
4

Page 118

Advance Computer Architecture — CS501

Memory contents (or the memory location) can be referred to in a similar way. Therefore, M[8]
means contents of memory location 8.
A memory word is stored in the memory in the little endian format. This means that the least
significant byte is stored first (or the little end comes first!). For instance, a memory word at
address 8 is defined as the 32 bits at addresses 11, 10, 9, and 8 (little-endian). So we can employ
a special notation to refer to the memory words. Again, we will employ © as the concatenation
operator. In our notation for the FALCON-E, the memory word stored at address 8 is represented
as:
M][8]<31...0>:=M[11]OM[10]OM[9]OM] 8]
The shown figure will make this easier to understand.
FALCON-E Features
The following features characterize the FALCON-E

e Fixed instruction size, which is 32 bits. So the instruction size is 1 word.

All ALU instructions have three operands

e Memory access is possible only through the load and store instructions. Also, only a
limited addressing modes are supported by the FALCON-E

FALCON-E Instruction Formats
Four different instruction formats are supported by the FALCON-E. These are
Type A instructions
The type A instructions have 5 bits reserved for the operation code (abbreviated op-code), and
the rest of the bits are either not used or specify a displacement.
31 2726 0
Type A Opeods Displacerent /Mot Used

Type B instructions

The type B instructions also have 5 bits (27 through 31) reserved for the op-code. There is a

register operand field, ra, and an immediate or displacement field in addition to the op-code field.
3l 2726 24123 0

TF[] e B Opoode ra Displacerment § Inmmed 1ate

Type C instructions

Type C instructions have the 5-bit op-code field, two 3-bit operand registers (rb is the source
register, ra is the destination register), a 17-bit immediate or displacement field, as well as a 3-bit
function field. The function field is used to differentiate between instructions that may have the
same op-code, but different operations.

31 2726 2423 3120 0
TFP e Opoode Ta b Displacement / [nmediate

Type D instructions

Type D instructions have the 5-bit op-code field, three 3-bit operand registers, 14 bits are unused,
and a 3-bit function field.

il 2725 2423 2120 1817 43 0
Type D Opeode ¥a th e Urnsed fire

Encoding for the General Purpose Registers (GPRs)

In the instruction formats discussed above, we used register operands ra, rb and rc. It is important
to know that these are merely placeholders, and not the real register names. In an actual
instruction, any one of the 8 registers of our general-purpose register file may be used. We need

Page 119

Advance Computer Architecture — CS501

to encode our registers so we can refer to them in an instruction. Note that we have reserved 3
bits for each of the register field. This is because we have 8 registers to represent, and they can

be completely represented by 3 bits, since 23 =8, The following table shows the binary encoding
of the general-purpose registers.

Register Code Register Code
RO ooo R4 100
R1 001 RS 101
R2 010 R6 110
F3 011 H7 111

Fig. Encoding of the GPRs

There are two more special registers that we need to represent; the SP and the BP. We will use
these registers in place of the operand register rb in the load and store instructions only, and
therefore, we may encode these as

Regisier Code
5P oo
EP 001

Fig. Special Registers Encoding

Instructions, Instruction Formats

The following is a brief introduction to the various instructions of the FALCON-E, categorized
with respect to the instruction formats.

Type A instructions
Four instructions of the FALCON-E belong to type A. These are

nop (op-code = 0)

This instruction instructs the processor to do nothing. It is generally useful in pipelining.
We will study more on pipelining later in the course.

ret (op-code = 15)

The return instruction is used to return control to the normal flow of a program after an
interrupt or a procedure call concludes

iret (op-code =17)

The iret instruction instructs the processor to return control to the address specified by

the immediate field of the instruction. Setting the program counter to the specified
address returns control.

near jmp (op-code = 18)

Page 120

Advance Computer Architecture — CS501

A near jump is a PC-relative jump. The PC value is incremented (or decremented) by the
immediate field value to take the jump.

Type B instructions
Five instructions belong to the type B format of instructions. These are:

push (op-code = 8)

This instruction is used to push the contents of a register onto the stack. For instance, the
instruction,

push R4

will push the contents of register R4 on top of the stack

pop (op-code =9)

The pop instruction is used to pop a value from the top of the stack, and the value is read
into a register. For example, the instruction

pop R7

will pop the upper-most element of the stack and store the value in register R7

Id (op-code = 10)

This instruction with op-code (10) loads a memory word from the address specified by
the immediate filed value. This word is brought into the operand register ra. For example,
the instruction,

1d R7, 1254h

will load the contents of the memory at the address 1254h into the register R7.

st (op-code = 12)

The store instruction of (opcode 12) stores a value contained in the register operand into
the memory location specified by the immediate operand field. For example, in

st R7, 1254h

the contents of register R7 are saved to the memory location 1254h.

Type C instructions

There are four data transfer instructions, as well as nine ALU instructions that belong to type C
instruction format of the FALCON-E. The data transfer instructions are

Ids (op-code = 4)

The load instruction with op-code (4)loads a register from the memory, after calculating
the address of the memory location that is to be accessed. The effective address of the
memory location to be read is calculated by adding the immediate value to the value
stored by the register rb. For instance, in the example below, the immediate value 56 is
added to the value stored by the register R4, and the resultant value is the address of the
memory location which is read

1ds R3, R4(56)

In RTL, this can be shown as

R [3] «— MIR [4]+56]

sts (op-code = 5)

This instruction is used to store the register contents to the memory location, by first
calculating the effective memory address. The address calculation is similar to the Ids
instruction. An example:

sts R3, R4 (56)

In RTL, this is shown as

M|R [4]+56] — R [3]

in (op-code = 6)

Page 121

Advance Computer Architecture — CS501

This instruction is to load a register from an input/output device. The effective address of
the I/O device has to be calculated before it is accessed to read the word into the
destination register ra, as shown in the example:

in RS, R4(100)
In RTL:
R[5] — IO[R[4]+100]

out (op-code = 7)

This instruction is used to write / store the register contents into an input/output device.
Again, the effective address calculation has to be carried out to evaluate the destination 1/0
address before the write can take place. For example,

out R8, R6 (36)

RTL representation of this is IO[R [6]+36] « R [8§]

Three of the ALU instructions that belong to type C format are

addi (op-code =2)

The addi instruction is to add a constant to the value of operand register rb, and assign the
result to the destination register ra. For example, in the following instruction, 56 is added
to the value of register R4, and result is assigned to the register R3.

addi R3, R4, 56

In RTL this can be shown as R[3] « R[4]+56

Note that if the immediate constant specified was a negative number, then this would
become a subtract operation.

andi (op-code = 2)

This instruction is to calculate the logical AND of the immediate value and the rb register
value. The result is assigned to destination register ra. For instance

andi R3, R4, 56

R[3] « R[4]&56

Note that the logical AND is represented by the symbol ‘&’

ori (op-code = 2)

This instruction calculates the logical OR of the immediate field and the value in operand
register rb. The result is assigned to the destination register ra. Following
is an example:

ori R3, R4, 56

The RTL representation of this instruction:

R [3] « R [4]~56

Note that the symbol ‘~’ is used to represent logical OR.

Type D Instructions

Four of the instructions that belong to this instruction format type are the ALU instructions
shown below. There are other instructions of this type as well, listed in the tables at the end of
this section.

add (op-code =1)

This instruction is used to add two numbers. The numbers are stored in the registers
specified by rb and rc. Result is stored into register ra. For instance, the instruction, add
R3,R5,R6

adds the numbers in register R5, R6, storing the result in R3. In RTL, this is given by R
[3] = R[5]+R[6]

sub (op-code = 1)

This instruction is used to carry out 2’s complement subtraction. Again, register
addressing mode is used, as shown in the example instruction

Page 122

Advance Computer Architecture — CS501

sub R3, R5, R6
RTL representation of this is R[3] «<— R[5] - R[6]
e and (op-code = 1)
For carrying out logical AND operation on the values stored in registers, this instruction
is employed. For instance
and R8, R3, R4
In RTL, we can write this as R [8] « R [3] & R [4]
e or (op-code=1)
For evaluating logical OR of values stored in two registers, we use this instruction. An
example is
or R8, R3, R4
In RTL, this is
R [8] < R [3] ~R [4]

Falcon-E Instruction Summary

The following are the tables that list the instructions that form the instruction set of the
FALCON-E. These instructions have been grouped with respect to the functionality they
provide.

Opcode Function
Control Instructions | Mnemonic

Dec Bin Dec | Bin

Mo Operation nop 0 00000 -

Fig. Control Instructions

::;:1:::::;?‘5 e ﬂpcﬂdﬂ_ FI.IIICHOI-'I
Dec Bin Dec Bin
Add add 1 goom a gooo
Add Immediate addi 2 o000 0 gooo
Subtract sub 1 oooot 1 0001
Subtract Immediate subi 2 ooo10 1 ooo
Multiply il 1 ooom 2 o010
Multiply Immediate muli . ooo10 2 o010
Divide div 1 ooom 3 o001
Divide Immediate divi 2 ooo10 3 o011

Fig. Arithmetic Instructions

Page 123

Advance Computer Architecture — CS501

Opcode Function
Mnemonic A)

Data Transfer Instructions Dec Bin Dec | Bin

Move Immediate to GPR movi 3 00011 -

Load Special Purpose

Register from GPR Ids 4 00100 .

Store Special Purpose)

Register to GPR sts 5 00101

Load Register from 10 in B 00110 -

Store Registerto 10 out 7 00111 -

Push GPR to Stack push 8 01000 -

Pop GPR from Stack pop 9 010m -

Load GPR from Memory)

(Direct Addressing) 5 L 01010

Load GPR from Memaory

(Displacement Addressing) Id 1 01011 .

Store GPR to Memory (Direct)

Addressing) st 12 01100

Store GPR to Memory

(Displacement Addressing) s 13 oo .

Fig. Data Transfer Instructions
Opcode Function
Procedure _
CallsiInterrupts Mnemonic
Dec Bin Dec Bin

Call call 14 01110 -
Return ret 15 011N -
Interrupt int 16 10000 -
Interrupt Return iret 17 100M -

Fig. Procedure Calls/Interrupts

Page 124

Instruction Set Architecture Comparison

Advance Computer Architecture — CS501

Opcode Function
Branch Instructions Mnemonic 5 %
Dec Bin Dec Bin
Mear Jump (Relative) jrmp 18 10010
Far Jurmp (Direct) jrp 19 1001
Branch If Egual (Relative) bre 20 10100 0 oooo
Branch If Equal {Direct) bre 21 10101 0 oooo
Branch If Mot Equal (Relative) bne 20 10100 1 0001
Branch If Not Equal (Direct) bne 21 10101 1 0001
Branch If Less (Relative) bl 20 10100 2 o010
Branch If Less (Direct) bl 21 1010 2 o010
Branch If Greater (Relative) b 20 10100 3 0011
Branch If Greater (Direct) by 21 101M 3 0011

Fig. Branch Instructions

In this lecture, we compare the instruction set architectures of the various processors we have
described/ designed up till now. These processors are:

Classifying Instruction Set Architectures

EAGLE
FALCON-A
FALCON-E

In the design of the ISA, the choice of some of the parameters can critically affect the code
density (which is the number of instructions required to complete a given task), cycles per
instruction (as some instructions may take more than one clock cycle, and the number of cycles
per instruction varies from instruction to instruction, architecture to architecture), and cycle time
(the total cycle time to execute a given piece of code). Classification of different architectures is
based on the following parameters.

Operand storage in CPU

Where are they stored other than memory?

Number of explicit
operatds in an

One, two or three operands?

choices for the opeodes?

mstruction

Addressing Modes How the effective address for operands is
caleulated?

Operations What operation are possible and what are the

Type and size of
operatids.

How the size is specified for operands?

Fig. ISA Comparison Parameters

Page 125

Advance Computer Architecture — CS501

Instruction Length

With reference to the instruction lengths in a particular ISA, there are two decisions to be made;
whether the instruction will be fixed in length or variable, and what will be the instruction length
or the range (in case of variable instruction lengths).

Fixed versus variable

Fixed instruction lengths are desirable when simplicity of design is a goal. It provides ease of
implementation for assembling and pipelining. However, fixed instruction length can be wasteful
in terms of code density. All the RISC machines use fixed instruction length format

Instruction Length

The required instruction length mainly depends on the number of instruction required to be in the
instruction set of a processor (the greater the number of instructions supported, the more bits are
required to encode the operation code), the size of the register file (greater the number of
registers in the register file, more is the number of bits required to encode these in an
instruction), the number of operands supported in instructions (as obviously, it will require more
bits to encode a greater number of operands in an instruction), the size of immediate operand
field (the greater the size, the more the range of values that can be specified by the immediate
operand) and finally, the code density (which implies how many instructions can be encoded in a
given number of bits). A summary of the instruction lengths of our processors is given in the
table below.

EAGLE FALCON-A |FALCON-E |SRC
Variable Fixed Fixed Fixed
8 bits or 16 bits | 16 bits 32 bits 32 bits

Fig. Instruction Length
Instruction types and sub-types

The given table summarizes the number of instruction types and sub-types of the processors we
have studied. We have already studied these instruction types, and their sub-types in detail in the
related sections.

FAGLE | FALCON-A FALCON-E SRC
Types 4 4 g e
Sub-types . 2 4 3

Number of operands in the instructions

The number of operands that may be required in an instruction depends on the type of operation
to be performed by that instruction; some instruction may have no operands, other may have up
to 3. But a limit on the maximum number of operands for the instruction set of a processor needs
to be defined explicitly, as it affects the instruction length and code density. The maximum
number of operands supported by the instruction set of each processor under study is given in the
given table. So FALCON-A, FALCON-E and the SRC processors may have 3, 2, 1 or no
operands, depending on the instruction. EAGLE has a maximum number of 2 operands; it may
have one operand or no operands in an instruction.

Page 126

Advance Computer Architecture — CS501

EAGLE

FALCON-A

FALCON-E

SRC

2

3

3

3

Fig. Number of Operands per instructions

Explicit operand specification in an instruction gives flexibility in storage. Implicit operands like
an accumulator or a stack reduces the instruction size, as they need not be coded into the
instruction. Instructions of the processor EAGLE have implicit operands, and we saw that the
result is automatically stored in the accumulator, without the accumulator being specified as a
destination operand in the instruction.

Number and Size of General Purpose Registers

While designing a processor, another decision that has to be made is about the number of
registers present in the register file, and the size of the registers.

Increasing the number of registers in the register file of the CPU will decrease the memory
traffic, which is a desirable attribute, as memory accesses take relatively much longer time than
register access. Memory traffic decreases as the number of registers is increased, as variables are
copied into the registers and these do not have to be accessed from memory over and over again.
If there is a small number of registers, the values stored previously will have to be saved back to
memory to bring in the new values; more registers will solve the problem of swapping in,
swapping out. However, a very large register file is not feasible, as it will require more bits of the
instruction to encode these registers. The size of the registers affects the range of values that can
be stored in the registers.

The number of registers in the register file, along with the size of the registers, for each of the
processors under study, is in the given table.

EAGLE FALCON-A |FALCON-E |SRC

Eight Eight Eight Thirty-two
registers, |registers, |registers, |registers
16 bit wide |16 bit wide |32 bit wide |32 bit wide

Fig. Number and size of GPRS
Memory specifications
Memory design is an integral part of the processor design. We need to decide on the memory
space that will be available to the processor, how the memory will be organized, memory word

size, memory access bus width, and the storage format used to store words in memory. The
memory specifications for the processor under comparison are:

Memory EAGLE FALCON-A | FALCON-E SRC
Specs.

Memory 216 216 232 232
Space

Memory 216 * o 216 *g 232 * 9 232 * g
Organization

Msmiory 16 bit | 16 bit | 32 bit | 32 bit
Word Size

Mamory 16 bits | 16 bits | 32 bits | 32 bits
Access

Memory Little-Endian | Big Endian |Little-Endian | Big Endian
Storage

Fig. Memory Specifications

Page 127

Advance Computer Architecture — CS501

Data transfer instructions

Data needs to be transferred between storage devices for processing. Data transfers may include
loading, storing back or copying of the data. The different ways in which data transfers may take
place have their related advantages and disadvantages. These are listed in the given table.

Data Transfer |Advantage Disadvantage

Register to Simple, faster, constant CPI, |Higher instruction

Register Easier to pipeline. count, longer program
codes

Register to Separate load instruction Variable CPI due to

Memory eliminated, good code different operand

density locations

Memory to Most compact, small number | Variable CPI, variable

Memory of registers required instruction size,
memory bottleneck,

Fig. Data Transfer Modes

Following are the data transfer instructions included in the instruction sets of our processors.

Register to register transfers

As we can see from the given table on the next page, in the processor EAGLE, register to register
transfers are of two types only: register to accumulator, or accumulator to register. Accumulator
is a special-purpose register.

FALCON-A has a mov instruction, which can be used to move data of any register to any other
register. FALCON-E has the instructions ‘lds’ and ‘sts” which are used to load/store a register
from/to memory after effective address calculation.

SRC does not provide any instruction for data movement between general-purpose registers.
However, this can be accomplished indirectly, by adopting either of the following two
approaches:

e A register’s contents can be loaded into another register via memory. First storing the
content of a register to a particular memory location, and then reading the contents of the
memory from that location into the register we want to copy the value to can achieve this.
However, this method is very inefficient, as it requires memory accesses, which are
inherently slow operations.

e A better method is to use the addi instruction with the constant set to 0.

Data Transfer Instructions

Instructions EAGLE FALCON-A FALCON-E SRC

Register to azr, r2a mov Ids, sts lar

Register (only from PC)
Register to Idacc, stacc | load, store Id, st Id, st

Memory

Memory to - - - -

Memory

Page 128

Advance Computer Architecture — CS501

Register to memory

EAGLE has instructions to load values from memory to the special purpose register, names the
accumulator, as well as saving values from the accumulator to memory. Other register to
memory transfers is not possible in the EAGLE processor. FALCON-A, FALOCN-E and the
SRC have simple load, store instructions and all register-memory transfers are supported.
Memory to memory

In any of the processors under study, memory-to-memory transfers are not supported.

However, in other processors, these may be a possibility.

Control Flow Instructions

All processors have instructions to control the flow of programs in execution. The general
control flow instructions available in most processors are:

e Branches (conditional)
e Jumps (unconditional)
e Calls (procedure calls)
e Returns (procedure returns)

Conditional Branches

Whereas jumps, calls and call returns changes the control flow in a specific order, branches
depend on some conditions; if the conditions are met, the branch may be taken, otherwise the
program flow may continue linearly. The branch conditions may be specified by any of the
following methods:

e Condition codes
e Condition register
e Comparison and branching

Condition codes

The ALU may contain some special bits (also called flags), which may have been set (or raised)
under some special circumstances. For instance, a flag may be raised if there is an overflow in
the addition results of two register values, or if a number is negative. An instruction can then be
ordered in the program that may change the flow depending on any of these flag’s values. The
EAGLE processor uses these condition codes for branch condition evaluation.

Condition register

A special register is required to act as a branch register, and any other arbitrary register (that is
specified in the branch instruction), is compared against that register, and the branching decision
is based on the comparison result of these two registers. None of the processors under our study
use this mode of conditional branching.

Compare and branch

In this mode of conditional branching, comparison is made part of the branching instruction.
Therefore, it is somewhat more complex than the other two modes. All the processors we are
studying use this mode of conditional branching.

Size of jumps
Jumps are deviations from the linear program flow by a specified constant. All our processors,

except the SRC, support PC-relative jumps. The displacement (or the jump) relative to the PC is
specified by the constant field in the instruction. If the constant field is wider (i.e. there are more

Page 129

Advance Computer Architecture — CS501

bits reserved for the constant field in the instruction), the jump can be of a larger magnitude.
Shown table specifies the displacement size for various processors.

Processor Displacement size

EAGLE 8 bits for both conditional and unconditional,

FALCON-A 8 hits for both conditional and unconditional.

FALCON-E 27 bits (unconditional jump),

21 or 32 hits (conditional jumps)

SRC 32 bits for both conditional and unconditional jumps,

Fig. Size of Jumps

Addressing Modes

All processors support a variety of addressing modes. An addressing mode is the method by
which architectures specify the address of an object they will access. The object may be a
constant, a register or a location in memory.

Common addressing modes are

o Immediate

An immediate field may be provided in instructions, and a constant value may be given in
this immediate field, e.g. 123 is an immediate value.

e Register
A register may contain the value we refer to in an instruction, for instance, register R4
may contain the value being referred to.

e Direct
By direct addressing mode, we mean the constant field may specify the location of the
memory we want to refer to. For instance, [123] will directly refer to the memory
location 123’s contents.

e Register Indirect
A register may contain the address of memory location to which we want to refer to, for
example, M [R3].

e Displacement
In this addressing mode, the constant value specified by the immediate field is added to
the register value, and the resultant is the index of memory location that is referred to,
e.g. M [R3+123]

e Relative
Relative addressing mode implies PC-relative addressing, for example, [PC+123] will
refer to the memory location that is 123 words farther than the memory index currently
stored in the program counter.

e Indexed or scaled
The values contained in two registers are added and the resultant value is the index to the
memory location we refer to, in the indexed addressing mode. For example, M
[[R1]+[R2]]. In the scaled addressing mode, a register value may be scaled as it is added
to the value of the other register to obtain the index of memory location to be referred to.

e Auto increment/ decrement
In the auto increment mode, the value held in a register is used as the index to memory
location that holds the value of operand. After the operand’s value is retrieved, the

Page 130

Advance Computer Architecture — CS501

register value is automatically increased by 1 (or by any specified constant). e.g. M
[R4]+, or M [R4]+d. In the auto decrement mode, the register value is first decremented
and then used as a reference to the memory location that referred to in the instruction, e.g.
-M [R4].

As may be obvious to the reader, some of these addressing modes are quite simple, others are
relatively complex. The complex addressing modes (such as the indexed) reduce the instruction
count (thus improving code density), at the cost of more complex implementation.

The given table lists the addressing modes supported by the processors we are studying. Note
that the register-addressing mode is a special case of the relative addressing mode, with the
constant equal to 0, and only the PC can be used as a source. Also note that, in the shown table,
relative implies PC-relative.

EAGLE FALCON-A | FALCON-E SRC
Immediate Irmediate Immediate Immediate
E Direct Direct
Register Register Register Register *

Register Indirect

Reqgister Indirect

Register Indirect

Register Indirect

Relative®®

Displacement

Displacement

Displacement

Displacement

Fig. Addressing Modes Comparison

Displacement addressing mode

We have already talked about the displacement-addressing mode. We look at this addressing
mode at length now.

The displacement-addressing mode is the most common of the addressing mode used in general

Size of displacement field

Processor Number of bits in displacement field

SRC 17 or 22 bits depending on the instruction type.
FALCON-E 21 or 24 bits depending on the instruction type.
FALCON-A 5 bits for load and store instruction

EAGLE 8 bits for Idacc and stacc instructions

purpose processors. Some other modes such as the indexed based plus index, scaled and register
indirect are all slightly modified forms of the displacement-addressing mode. The size of

Page 131

Advance Computer Architecture — CS501

displacement plays a key role in efficient address calculation. The following table specifies the
size of the displacement field in different processors under study. The given table lists the size of

the immediate field in our processors.

Processor Number of bits in the immediate field

EAGLE &8 bits

FALCON-A |5 or 8 bits

FALCON-E |17 or 24 bits depending on the
instruction

SRC 17 or 22 bits

Fig. Immediate Field Bits Comparison

Instructions common to all Instruction Set Architectures

In this section we have listed the instructions that are common to the Instruction Set

Architectures of all the processors under our study.

Arithmetic Instructions

add, addi & sub.

Logic Instructions

and, andi, or, ori, not.

Shift Instructions.

Right shift, left shift & arithmetic right shift.

Data movement Instructions.

Load and store instructions.

Control Instructions
Conditional and unconditional branches, nop & reset.

The following tables list the assembly language instruction codes of these common instructions

for all the processors under comparison.

Common Arithmetic Instructions

Instruction |EAGLE |FALCON-A |FALCON-E |SRC
Add add add add add
Add addi addi addi addi
Immediate

Subtract sub sub sub sub
Subtract subi subi subi -
Immediate

Multiply mul mul mul -
Divide div div div <

Page 132

Advance Computer Architecture — CS501

Common data movement Instructions

Instruction EAGLE FALCON-A FALCON-E SRC
Load Idacc load Id Id
Store stacc store st st
Move mov mov -
Move immediate movi movi movi la
In in in in
Qut out out out
Common Logical Instructions
Instruction | EAGLE |FALCON-A |FALCON-E |SRC
And and and and and
And andi andi andi andi
Immediate
Or or or or or
Or o ori ori ori
Immediate
Not not not not not
Neg neg neg
Common Shift Instructions
Instruction |EAGLE |FALCON-A |FALCON-E |SRC
Shift right shiftr shiftr - shr
Shift right - - srai shr
immediate
Circular - - rol she
shift
Shift left shiftl shiftl - shl
Shift right asr asr sra shra
arithmetic

Page 133

Advance Computer Architecture — CS501

Common Branch Instructions

Instruction EAGLE FALCON-A FALCON-E SRC
Unconditional br jump jmp br
branch
Branch if zero brz jz brzr
Branch if non brnz jnz brnz
zero
Branch if brp ipl brpl
positive
Branch if brn jmi brmi
negative

Common Call and Interrupt Instructions
Instruction |[EAGLE |FALCON-A |[FALCON-E |SRC
Procedure - call call brl
call
Interrupt - int int ?
Interrupt - iret iret ?
return

Common Control Instructions

Instruction |EAGLE |FALCON-A |FALCON-E |SRC
No nop nop nop nop
operation
Halt halt halt - stop
Reset reset reset - -

Page 134

Advance Computer Architecture — CS501

Instructions unique to each processor
Now we take a look at the instructions that are unique to each of the processors we are studying.
EAGLE

The EAGLE processor has a minimal instruction set. Following are the instructions that are
unique only to the EAGLE processor. Note that these instructions are unique only with reference
to the processor set under our study; some other processors may have these instructions.

movia

This instruction is for moving the immediate value to the accumulator (the special
purpose register)

a2r

This instruction is for moving the contents of the accumulator to a register

r2a

For moving register contents to the accumulator

cla

For clearing (setting to zero) the value in the accumulator

FALCON-A

There is only one instruction unique to the FALCON-A processor;
ret
This instruction is used to return control to a calling procedure. The calling procedure

may save the PC value in a register ra, and when this instruction is called, the PC value is
restored. In RTL, we write this as

PC R [ra];
FALCON-E
The instructions unique to the FALCON-E processor are listed:
e push
To push the contents of a specified general purpose register to the stack
® Ppop
To pop the value that is at the top of the stack
e ldr

SRC

To load a register with memory contents using displacement addressing mode
str

To store a register value into memory, using displacement addressing mode
bl

To branch if source operand is less than target address

bg

To branch if source operand is greater than target address

muli

To multiply an immediate value with a value stored in a register

divi

To divide a register value by the immediate value

XOr, XOri

To evaluate logical ‘exclusive or’

ror, rori

Following are the instructions that are unique to the SRC processor, among of the processors
under study

1dr
Page 135

Advance Computer Architecture — CS501

To load register from memory using PC-relative address

lar

To load a register with a word from memory using relative address

str

To store register value to memory using relative address

brinv

This instruction is to tell the processor to ‘never branch’ at that point in program. The
instruction saves the program counter’s contents to the register specified

brlpl

This instruction instructs the processor to branch to the location specified by a register
given in the instruction, if the condition register’s value is positive. Return address is
saved before branching.

brimi

This instruction instructs the processor to branch to the location specified by a register
given in the instruction, if the condition register’s value is negative. Return address is
saved before branching.

brlzr

This instruction instructs the processor to branch to the location specified by a register
given in the instruction, if the condition register’s value equals zero. Return address is
saved before branching.

brinz

This instruction instructs the processor to branch to the location specified by a register
given in the instruction, if the condition register’s value does not equal zero. Return
address is saved before branching.

Problem Comparison

Given is the code for a simple C statement:

a=(b-2)+4c

The given table gives its implementation in all the four processors under comparison. Note that
this table highlights the code density for each of the processors; EAGLE, which has relatively
fewer specialized instructions, and so it takes more instructions to carry out this operation as
compared with the rest of the processors

EAGLE FALCON-A | FALCON-E SRC
.org 100 .arg 100 .arg 100 .arg 100
a dw 1 3 chw 1 a s U = s
.org 200 .org 200 .org 200 org 200
Idacc b
azrri loadrl, b Idr1, b idr1,b
subi r1,2 subir2, r1,2 subir2, r1,2 addir2rt -2
azrri loadr3, c Idr3, c Idr3,c
Idacc c shiftl r3,r3,2 muli r3.ra, 4 shil ra, ra, 2
a2rr2 add rd r2r3 addrd, r3r2 addra r2r3
shir2, 2 store rd, a store rd.a strd, a
r2ar2
add r1
stacc a

Fig. Problem Comparison

Page 136

Advance Computer Architecture — CS501

Lecture No. 11

CISC and RISC

Reading Material
Vincent P. Heuring & Harry F. Jordan Chapter 3
Computer Systems Design and Architecture 33,34

Summary
J A CISC microprocessor:The Motorola MC68000
o A RISC Architecture:The SPARC

Material of this Lecture is included in the above-mentioned sections of Chapter 3.

Page 137

Advance Computer Architecture — CS501

Lecture No. 12
CPU Design

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 4.1,4.2,4.3
Summary

e The design process
e A Uni-Bus implementation for the SRC
e Structural RTL for the SRC instructions

Central Processing Unit Design

This module will explore the design of the central processing unit from the logic designer’s view.
A unibus implementation of the SRC is discussed in detail along with the Data Path Design and
the Control Unit Design. The topics covered in this module are outlined below:

e The Design Process

Unibus Implementation of the SRC
Structural RTL for the SRC

Logic Design for one bus SRC

The Control Unit

2-bus and 3-bus designs

The machine reset

The machine exceptions

As we progress through this list of topics, we will learn how to convert the earlier specified
behavioral RTL into a concrete structural RTL. We will also learn how to interconnect various
programmer visible registers to get a complete data path and how to incorporate various control
signals into it. Finally, we will add the machine reset and exception capability to our processor.
The design process

The design process of a processor starts with the

specification of the behavioral RTL for its instruction P
set. This abstract description is then converted into 48

structural RTL which shows the actual implementation ﬁ pu
details. Since the processor can be divided into two Memory il . L] B CPU
main sub-systems, the data path and the control unit, we abey pa—y (P)
can split the design procedure into two phases.
1. The data path design

2. The control unit design Sibareiom
It is important that the design activity of these (ehert)
important components of the processor be carried out VV‘,
with the pros and cons of adopting different approaches . 4

in mind.

. .. Block Diagram of Computer System
As we know, the execution time is dependent on the : ? y

following three factors. ET =IC x CPIx T

Page 138

Advance Computer Architecture — CS501

During the design procedure we specify the implementation details at an advanced level. These
details can affect the clock cycle per instruction and the clock cycle time. Hence following things
should be kept in mind during the design phase.

e Effect on overall performance

e Amount of control hardware

e Development time

Processor Design

Let us take a look at the steps involved in the processor design procedure.
1. ISA Design

The first step in designing a processor is the specification of the instruction set of the processor.
ISA design includes decisions involving number and size of instructions, formats, addressing
modes, memory organization and the programmer’s view of the CPU i.e. the number and size of
general and special purpose registers.

2. Behavioral RTL Description

In this step, the behavior of processor in response to the specific instructions is described in
register transfer language. This abstract description is not bound to any specific implementation
of the processor. It presents only those static (registers) and dynamic aspects (operations) of the
machine that are necessary to understand its functionality. The unit of activity here is the
instruction execution unlike the clock cycle in actual case. The functionality of all the
instructions is described here in special register transfer notation.

3. Implementation of the Data Path

The data path design involves decisions like the placement and interconnection of various
registers, the type of flip-flops to be used and the number and kind of the interconnection buses.
All these decisions affect the number and speed of register transfers during an operation. The
structure of the ALU and the design of the memory-to-CPU interface also need to be decided at
this stage. Then there are the control signals that form the interface between the data path and the
control unit. These control signals move data onto buses, enable and disable flip-flops, specify
the ALU functions and control the buses and memory operations. Hence an integral part of the
data path design is the seamless embedding of the control signals into it.

4. Structural RTL Description

In accordance with the chosen data path implementation, the structural RTL for every instruction
is described in this step. The structural RTL is formed according to the proposed micro-
architecture which includes many hidden temporary registers necessary for instruction execution.
Since the structural RTL shows the actual implementation steps, it should satisfy the time and
space requirements of the CPU as specified by the clocking interval and the number of registers
and buses in the data path.

5. Control Unit Design

The control unit design is a rather tricky process as it involves timing and synchronization issues
besides the usual combinational logic used in the data path design. Additionally, there are two
different approaches to the control unit design; it can be either hard-wired or micro-programmed.
However, the task can be made simpler by dividing the design procedure into smaller steps as
follows.

a) Analyze the structural RTL and prepare a list of control signals to be activated during the
execution of each RTL statement.

b) Develop logic circuits necessary to generate the control signals

c) Tie everything together to complete the design of the control unit.

Page 139

Advance Computer Architecture — CS501

Processor Design
A Uni-bus Data Path Implementation for the SRC

In this section, we will discuss the uni-bus implementation of the data path for the SRC. But
before we go onto the design phase, we will discuss what a data path is. After the discussion of
the data path design, we will discuss the timing step generation, which makes possible the
synchronization of the data path functions.

The Data Path

The data path is the arithmetic portion of the Von Neumann architecture. It consists of registers,
internal buses, arithmetic units and shifters. We have already discussed the decisions involved in
designing the data path. Now we shall have an overview of the 1-Bus SRC data path design. As
the name suggests, this implementation employs a single bus for data flow. After that we develop

each of its blocks in greater detail and
3l 0 <310

present the gate level implementation. RO
Overview of the Unibus SRC Data Path . 2o o
The 1-bus implementation of the SRC data [Do ;_ l
path is shown in the figure given. The s I
control signals are omitted here for the sake - ag of
simplicity. Following units are present in the ” p
SRC data path.
. . [& Je—
1. The Register File : _ :
The general-purpose register file includes 32 MER
reg@sters RO to R3'1 each '32 bit wide. These v
I eglster s communicate with CPIT bus Internal processor bus

other components via the internal processor bus.

2. MAR

The Memory Address Register takes input from the ALSU as the address of the memory location
to be accessed and transfers the memory contents on that location onto the memory sub-system.
3. MBR

The Memory Buffer Register has a bi-directional connection with both the memory sub-system
and the registers and ALSU. It holds the data during its transmission to and from memory.
4. PC

The Program Counter holds the address of the next instruction to be executed. Its value is
incremented after loading of each instruction. The value in PC can also be changed based on a
branch decision in ALSU. Therefore, it has a bi-directional connection with the internal
processor bus.

5. IR AdtoBdecoder | oy
The Instruction Register holds the

instruction that is being executed. The — I
instruction fields are extracted from the IR _ 0 — &
and transferred to the appropriate registers _ binf;f'cg'hm = 1 —— 13
according to the external circuitry (not 5 — T4
shown in this diagram). —T5
6. Registers A and C —
The registers A and C are required to hold —T7
an operand or result value while the bus is clear

busy transmitting some other value. Both
these registers are programmer invisible.
7. ALSU

Page 140

Advance Computer Architecture — CS501

There is a 32-bit Arithmetic Logic Shift Unit, as shown in the diagram. It takes input from
memory or registers via the bus, computes the result according to the control signals applied to it,
and places it in the register C, from where it is finally transferred to its destination.

Timing Step Generator To ensure the correct and controlled execution of instructions in a
program, and all the related operations, a timing device is required. This is to ensure that the
operations of essentially different instructions do not mix up in time. There exists a ‘timing step
generator’ that provides mutually exclusive and sequential timing intervals. This is analogous to
the clock cycles in the actual processor. A possible implementation of the timing step generator
is shown in the figure.

Each mutually exclusive step is carried out in one timing interval. The timing intervals can be
named TO, T1...T7. The given figure is helpful in understanding the ‘mutual exclusiveness in
time’ of these timing intervals.

Processor design

clock '_]_'_]_'_1'_'—__'_'_. _.w
Structural RTL descriptions of selected SRC " — | '_Eight
instructions n (rautnally
o
Structural RTL for the SRC iz ! o

steps

The structural RTL describes how a ™3 1

particular operation is performed using a T4 1

specific hardware implementation. In order = 1

to present the structural RTL we assume that —1
there exists a “timing step generator”, which —

provides mutually exclusive and sequential
timing intervals, analogous to the clock cycles in actual processor.

Structural RTL for Instruction Fetch

The instruction fetch procedure takes three Step RTL

time steps as shown in the table. During the 0 |MAR — PC, CoPC+4
first time step, TO, address of the instruction _

is moved to the Memory Address Register stuction/ [T [MBR < MMAR], PC - C;
(MAR) and value of PC is incremented. In T2 |IR —MER,

T1 the instruction is brought from the

memory into the Memory Buffer Register (MBR), and the incremented PC is updated. In the
third and final time-step of the instruction fetch phase, the instruction from the memory buffer
register is written into the IR for execution. What follows the instruction fetch phase, is the
instruction execution phase. The number of timing steps taken by the execution phase generally
depends on the type and function of instruction. The more complex the instruction and its
implementation, the more timing steps it will require to complete execution. In the following
discussion, we will take a look at various types of instructions, related timing steps requirements
and data path implementations of these in terms of the structural RTL.

Structural RTL for Arithmetic/Logic Instructions

The arithmetic/logic instructions come in two

formats, one with the immediate operand and the sew | BIL
other with register operand. Examples of both are TO-T2 | Instruction fetch
shown in the following tables. R

Register-to-Register sub

Register-to-register subtract (or sub) will take
three timing steps to complete execution, as
shown in the table. Here we have assumed that the
instruction given is:

T4 C o« A- R[rc);

T5 Rra] « C;

sub ra, rb, rc
Page 141

Advance Computer Architecture — CS501

Here we assume that the instruction fetch process has taken up the first three timing steps. In step T3
the internal register A receives the contents of the register rb. In the next timing step, the value of
register rc is subtracted (since the op-code is sub) from A. In the final step, this result is
transferred into the destination register ra. This concludes the instruction fetch-execute cycle and
at the end of it, the timing step generator is initialized to T0. The given figure refreshes our
knowledge of the data path. Notice that we can visualize how the steps that we have just outlined
can be carried out, if appropriate control signals are applied at the appropriate timing.

As will be obvious, control signals need to be - ‘ e
applied to the ALSU, based on the decoding R 2 s
of the op-code field of an instruction. The Hoes
given table lists these control signals: D, l
Note that we have used uppercase alphabets
for naming the ALSU functions. This is to R3l |
differentiate these control signals from the 3l 0

: . [Je—
actual operation-code mnemonics we have
been using for the instructions.

MEE

The SHL, SHR, SHC and the SHRA functions
are listed assuming that a barrel shifter is

available to the processor with signals to i
differentiate between the various types of shifts that are to be performed.

Internal processor bus

Structural RTL for Register-to-Register ALSU Needed for the following
dd assumingy Function instructions/operations
a 8. barel ADD od, add, add lculation for disp and rel
. shiﬂer =] , @00, address calcuy ation for ISP and re
To enhance our understanding of the ot SUB sub
instruction execution phase ned. 0> NEG neg; applies tothe B input ofthe ALSU
: : . Slghals AND and, and
implementation, we will now take a look at available — L
as well or, on

some more instructions of the SRC. The

. A A MNOT not; applies to the B input of the ALSL

structural RTL for a simple add instruction (5L o
add ra, rb, re is given in table. The first WER shr ey S0 UHEDIRRRIAE RG]

. . sighals, because lowercase
three instruction fetch steps are common to] SHC [she | “was used for mnemonics
all instructions. Execution of instruction LSH_RA AE ——

C=B to load from the bus directly into C

starts from Step T3 Where the ﬁrSt Operand INC4 to increment the PC by 4; applies to the B input;

is moved to register A. The second step

involves computation of the sum and result is
transferred to the destination in step T5. Hence the
complete execution of the add instruction takes 6
time steps. Other arithmetic/logic instructions T3 |AeRib]
having the similar structural RTL are “sub”,
“and” and “or”. The only difference is in the T4
step where the sign changes to (-), ("), or (~) T& |Rraj<C,
according to the opcode.

Step RTL

TO-T2 Instruction fetch

T4 T« A+ Rfrc);

Structural RTL for the not instruction

The first three steps TO to T2 are used up in Step |RTL
fetching the instruction as usual. In step T3, the T Tetroetion feteh
value of the operand specified by the register is

brought into the ALSU, which will use the control i s
function NOT, negate the value (i.e. invert it), and T4 |Rlra] < C;

the result moves to the register C. In the time step
R4, this result is assigned to the destination register through the internal bus. Note that we need
control signals to coordinate all of this; a control signal to allow reading of the instruction-
specified source register in T3, control signal for the selection of appropriate function to be

Page 142

Advance Computer Architecture — CS501

carried out at the ALSU, and control signal to allow only the instruction-specified destination
register to read the result value from the data bus.

The table shown outlines these steps for the instruction: not ra, rb

Structural RTL for the addi instruction

Again, the first three time steps are for the instruction fetch. Next, the first operand is brought into
ALSU in step T3 through register A. The step T4 is of interest here as the second operand c2 is
extracted from the instruction in IR register, sign extended to 32 bits, added to the first operand
and written into the result register C. The execution of instruction completes in step TS5 when the
result is written into the destination register. The sign extension is assumed to be carried out in
the ALSU as no separate extension unit is provided.

Sign extension for 17-bit c2 is the same as:(150IR<16> ©IR<16..0>)

Sign extension for 22-bit c1 is the same

Step RTL
as:(10aIR<21> ©IR<21..0>)
The given table outlines the time steps for the T0-T2 | Instruction fetch
instruction addi: T3 A« R[rb]
Other instructions that have the same structural T4 C « A+c2(sign extend),

Step |RTLforld RTL for st

RTL are subi, andi and ori.

RTL for the load (Id) and store (st) instructions
The syntax of load instructions is:

Id ra, c2(rb)

And the syntax of store instructions is:

st ra, c2(rb)

The given table outlines the time steps in fetching

TO-T2 |Instruction fetch

Instruction fetch

T3 |A & ((th=0) 0, (b £0) RTb];

A ((ro=0) 0, (tb #0) RIb]);

T4 C e A+ (15aIR<16> IR:;S D(i)j

C+ A+ (150IR<16> @IR=16.0=);

T5 MAR « C;

MAR « C;

T6 MBR < M[MAR];

MBR R [ra];

T7 | Riral « MBR; //

MIMAR] < MBR;

sign
extension

and executing a load and a store instruction. Note that the first 6 time steps (TO to T5) for both
the instructions are the same.

The first three steps are those of instruction fetch. Next, the register A gets the value of register
rb, in case it is not zero. In time step T4, the constant is sign-extended, and added to the value of
register A using the ALSU. The result is assigned to register C. Note that in the RTL outlined
above; we are sign extending a field of the Instruction Register (32-bit). It is so because this field
is the constant field in the instruction, and the Instruction Register holds the instruction in
execution. In step TS5, the value in C is transferred to the Memory Address Register (MAR). This
completes the effective address calculation of the memory location to be accessed for the load/
store operation. If it is a load instruction in time step T6, the corresponding memory location is
accessed and result is stored in Memory Buffer Register (MBR). In step T7, the result is
transferred to the destination register ra using the data bus. If the instruction is to store the value
of a register, the time step T6 is used to store the value of the register to the MBR. In the next
and final step, the value stored in MBR is stored in the memory location indexed by the MAR.
We can look at the data-path figure and visualize how all these steps can take place by applying
appropriate control signals. Note that, if more time steps are required, then a counter with more
bits and a larger decoder can be used, e.g., a 4-bit counter along with a 4-to-16 decoder can
produce up to 16 time steps.

Page 143

Advance Computer Architecture — CS501

Lecture No. 13
Structural RTL Description of the FALCON-A

Reading Material
Vincent P. Heuring & Harry F. Jordan Computer Systems Design and Chapter 4
Architecture 4.2.2, slides

Summary

e Structural RTL Description of the SRC (continued...)
e Structural RTL Description of the FALCON-A

This lecture is a continuation of the previous lecture.

Structural RTL for branch instructions

Let us take a look at the structural RTL for branch instructions. We know that there are several
variations of the branch instructions including unconditional branch and different conditional
branches. We look at the RTL for ‘branch if zero’ (brzr) and ‘branch and link if zero’ brlzr’
conditional branches.
The syntax for the branch if zero (brzr) is:

brzr rb, rc

As you may recall, this instruction
instructs the processor to branch to the
instruction at the address held in register
rb, if the value stored in register rc is zero. TO-T2 Instruction Fetch

Time steps for this instruction are outlined in
the table. T3 CON-<— cond(R[rc]);

The first three steps are of the instruction) :

fetch phase. Next, the value of register rc T4 CON: PC<—Rirb];

checked and depending

on the result, the condition flag CON is set. In time step T4, the program counter is set to the

register rb value, depending on the CON bit (the condition flag). The syntax for the branch and

link if zero (brlzr) is:
brlzr ra, rb, rc

Step RTL

is

This instruction is the same as the Siep RIL

instruction brzr but additionally the return _

address is saved (linking procedure). The T0-T2 Instruction Fetch
time steps for this instruction are shown in T3 CON « cond(R[rc]).
the table.

Notice that the steps for this instruction are T4 CON: R[ra] «—— PC;
the same as the instruction brzr with an _ _
additional step after the condition bit is T5 CON: PC —R[rb];

set; the current value of the program
counter is saved to register ra.

Page 144

Advance Computer Architecture — CS501

Structural RTL for shift instructions

Shift instructions are rather complicated in
the sense that they require extra hardware to
hold and decrement the count. For an ALSU T0-T2 | Instruction fetch
that can perform only single bit shifts, the
data must be repeatedly cycled through the T3 n<4..0><«—IR<4.0>;
ALSU and the count decremented until it
reaches zero. This approach presents some

Step RTL

T4 | (N=0):(n<4..0>— R[rc]<4..0>);

timing problems, which can be overcome by T5 C < (Na0) © R[rb]<31.N>:
employing multiple-bit shifts using a barrel T
shifter. T6 R[ra] «— C;

The structural RTL for shr ra, rb, rc or shr
ra, rb, ¢3 is given in the corresponding
table shown. Here n represents a 5-bit register; IR bits 0 to 4 are copied in to it. N is the decimal
value of the number in this register. The actual shifting is being done in step T5. Other
instructions that will have similar tables are: shl, she, shra e.g., for shra, T5 will have C<— (NaR
[rb] <31>) © R[rb] <31...N>;

Structural RTL Description of FALCON-A Instructions
Uni-bus data path implementation

Comparing the uni-bus implementation of FALCON—A with that of SRC results in the

Jollowing differences: . <15.0= T — =
" | | ‘ of drvidend KIS
e FALCON-A processor bus el e o w 16 Lnes Functinns
has 16 lines or is 16-bits I~ pumpose
wide while that of SRC is [megstes — — /
32-bits wide. I (16-bits eack) — | Mi A
o All registers of FALCON-
A are of 16-bits while in el ADD
case of SRC all registers . i ALSU s
are 32-bits. R — e
e Number of registers in
FALCON-A are 8 while in ; SN] |
SRC the number of A I o []
registers is 32. .

To external

e Special registers i.e. CPU bus

Program Counter (PC) and
Instruction Register (IR) are 16-bit registers while

" Halds ranl
and drr
Internal processor bus results
e in SRC these are 32-bits.

e Memory Address Register (MAR) and Memory Buffer Register (MBR) are also of 16-bits
while in SRC these are of 32-bits.

¢ MAR and MBR are dual port registers. At one side they are connected to internal bus and
at other side to external memory in order to point to a particular address for reading or
writing data from or to the memory and MBR would get the data from the memory.

Page 145

Advance Computer Architecture — CS501

ii;[ljj :)‘lflllzi}i)gz)l;?;is slightly ALS!J NeEded 1.’0r ol follo?:ing
different functions. These assumﬁi\,Fu"c“on instructions/operations
functions are given in the table. asf]?f[;?' ADD add, addi

Note that mul and div are two with five suUB Sub, subi

significant instructions in this g?;n';:; MUL i

instruction set. So whenever one availakla oY div

of these instructions is activated, as wel AND and, andi

operand from its input and MOT nat; applies to the B input of the ALSL

provide the output immediately, if BHIETL =hif

the ALSU unit would take the E}\ OR ar, ati
\ (
we neglect the propagation delays ~ SHIFTR shiftr

to its output. In case of L_ASR i)
=B to load from the bus directly into C
FALCON_A’ we have two M2 toincrement the PC by 2; applies to the B input;

registers A and AH each of 16-
bits. AH would contain the higher 16-bits or most significant 16-bits of a 32-bit operand. This
means that the ALSU provides the facility of using 32-bit operand in certain instructions. At the
output of ALSU we could have a 32-bit result and that cannot be saved in just one register C so
we need to have another one that is CH. CH can store the most significant 16-bits of the result.

Why do we need to add AH and CH?

This is because we have mul and div instructions in the instruction set of the FALCON-A. So for
that case, we can implement the div instruction in which, at the input, one of the operand which
is dividend would be 32-bits or in case of

mul instruction the output which is the Sep (RIL

result of multiplication of two 16-bit TO-T2 |Instruction fetch
numbers, would be 32-bit that could be

placed in C and CH. The data in these 2 T3 1A < R[]

registers will be concatenated and so
would be the input operand in two
registers AH and A. Conceptually one T5 R[ra] — C;
could consider the A and AH together to
represent 32-bit operand.

T4 C+«— A- R[]

Structural RTL for subtract instruction
sub ra, rb, rc

In sub instruction three registers are involved. The first three steps will fetch the sub instruction
and in T3, T4, T5 the steps for execution

of the sub instruction will be performed. Step |RTL

TO-TZ [Instruction fetch

.Structul.'al RTL for addition T3 A — R[]
instruction

add ra, rb, rc T4 C e« A +R[rc);
The table of add instruction is almost

same as of sub instruction except in T3 |Rlra] « C

timing step T4 we have + sign for
addition instead of — sign as in sub instruction. Other instructions that belong to the same group
are ‘and’, ‘or’ and ‘sub’.

Page 146

Advance Computer Architecture — CS501

Structural RTL for multiplication instruction
mul ra, rb, rc

This instruction is only present in this processor and not in SRC. The first three steps are exactly
same as of other instructions and would fetch the mul instruction. In step T3 we will bring the

contents of register R Sstep |RTL
[rb] in the buffer register A at the input of :
ALSU. In step T4 we take the TO-TZ2 | Instruction fetch

multiplication of A with the contents of

R[rc] and put it at the output of the T3 A« R[rb];

ALSU in two registers C and CH. CH T4 CHBC « A * Rre],
would contain the higher 16-bits while
register C would contain the lower 16- T3 |R[0]« CH,

bits. Now these two registers cannot

transfer the data in one bus cycle to T8 Rl =

the registers, since the width is 16-bits.

So we need to have 2 timing steps, in TS5 we transfer the higher byte to register R[0] and in T6
the lower 16-bits are transferred to the placeholder R[a]. As a result of multiplication instruction
we need 3 timing steps for Instruction Fetch and 4 timing steps for Instruction Execution and 7
steps altogether.

Structural RTL for division instruction

div ra, rb, re step |RTL

In this instruction first three steps are the :

same. In step T3 the contents of register TH-T2 | Instruction fetch
rb are placed in buffer register A and in T3 A — R[]

step T4 we take the contents of register

R[0] in to the register AH. We assume T4 AH — R[0];
before using the divide instruction that

we will place the hlgher 16-bits of T5 CH «— (AH@.-"J\ :I% R[rl:], O o I:.-E'\H@.ﬂ'«.jl !
dividend to register R[0]. Now in T5 the R[rc],

actual division ta1§es place in two TE R[ra] —C
concurrent operations. We have the

dividend at the input of ALSU unit T7 R[0] < CH;
represented by concatenation of AH and

A. Now as a result of division instruction, the first operation would take the remainder. This
means divide AH concatenated with A with the contents given in register rc and the remainder is
placed in register CH at the output of ALSU. The quotient is placed in C. In T6 we take C to the
register R[ra] and in T7 remainder available in CH is taken to the default register R[0] through
the bus. In divide instruction 5 timing steps are required to execute the instruction while 3 to
fetch the instruction.

Note: Corresponding to mul and div instruction one should be careful about the additional
register R[0] that it should be properly loaded prior to use the instructions e.g. if in the divide
instruction we don’t have the appropriate data available in R[0] the result of divide instruction
would be wrong.

Step |RTL

Structural RTL for not instruction T S P ————

not ra, rb

In this instruction first three steps will T3 C «— I(R[rb);
fetch the instruction. In T3 we perform the

not operation of contents in R[rb] and T4 |Rlra] < C;

transfer them in to the buffer register C. It
is simply the one’s complement changing of 0’s to 1’s and 1°s to 0’s. In timing step T4 we take

Page 147

Advance Computer Architecture — CS501

the contents of register C and transfer to register R[ra] through the bus as shown in its
corresponding table.

Structural RTL for add immediate instruction addi ra, rb, cl

In this instruction cl is a constant as a part of the instrucion. First three steps are for Instruction

Fetch operation. In T3 Step RTL

we take the contents of register R [rb] in

to the buffer register A. In TO-T2 | Instruction fetch

T4 we add up the contents of A with the T3 A< Rir]

constant c1 after sign extension and bring :

itto C. T4 T« A +Cil(sign extend);
Sign extension of 5-bit c¢1 and 8-bit T5 Rra] « C;

constant c2

Sign extension for 5-bit cl is: (11aIR<4> ©IR<4.. 0>)

We have immediate constant ¢l in the form of lower 5-bits and bit number 4 indicates the sign
bit. We just copy it to the left most 11 positions to make it a 16-bit number.

Sign extension for 8-bit c2 is: (8aIR<7> OIR<7.. 0>)

In the same way for constant c2 we need to place the sign bit to the left most 8 position to make
it 16-bit number.

Step |RTL for ld RTL for st
Structural RTL for the load and : :
store instruction TO-T2 | Instruction fetch Instruction fetch
T3 |A « R[] A R[rb);

Tables for load and store
instructions are same as SRC T4 Ce A+ I:'1 TalR=gd= Ce—A+ [1 TalR=d= |R<4..E|>:];
GIR=4 0=,

TS5 |MAR « C; MAR « C;

except a slight difference in the
notation. So when we have

square brackets [R [rb]+cl], it TE |MBR « MMAR]; MER « R [ra];
corresponds to the base address
in R[rb] and an offset taken from

T7 |R[ra] « MBR; MIMAR] — MBR;

cl.
Structural RTL for conditional jump Step ik
instructions
jz ra, [c2] TO-T2 Instruction Fetch
In first three steps of this table, the T3 CON — cond(R[ra]);
instruction is fetched. In T3 we set a 1-bit ’
register “CON” to true if the condition is T4 A — PC;
met.

T5 C «— A + c2(sign extend);
How do we test the condition?

T6 PC «— C;
This is tested by the contents given by the

register ra. So condition within square

brackets is R[ra]. This means test the data given in register ra. There are different possibilities
and so the data could be positive, negative or zero. For this particular instruction it would be
tested if the data were zero. If the data were zero, the “CON” would be 1.

In T4 we just take the contents of the PC into the buffer register A. In TS we add up the contents
of A to the constant c2 after sign extension. This addition will give us the effective address to
which a jump would be taken. In T6, this value is copied to the PC.

In FALCON-A, the number of conditional jumps is more than in SRC. Some of which are shown
below:

Page 148

Advance Computer Architecture — CS501

e jz (op-code= 19) jump if zero

jz 13, [4] (R[3]=0): PC+— PC+2;
e jnz (op-code= 18) jump if not zero

jnz r4, [variable] (R[4]#0): PC« PC+ variable;
e jpl (op-code= 16) jump if positive

ipl 3, [label] (R[3]20): PC « PC+ (label-PC);
e jmi (op-code= 17) jump if negative

jmi 17, [address] (R[7]<0): PC«— PC+ address;

The unconditional jump instruction will be explained in the next lecture.

Page 149

Advance Computer Architecture — CS501

Lecture No. 14
External FALCON-A CPU

Reading Material

Handouts Slides

Summary

e Structural RTL Description of the FALCON-A (continued...)
e External FALCON-A CPU Interface

This lecture is a continuation of the previous lecture.

Un-conditional jump instruction
jump (op-code= 20)
In the un-conditional jump with op-code 20, the op-code is followed by a 3-bit identifier for
register ra and then followed by an 8-bit constant c2.
Forms allowed by the assembler to define the jump are as follows:
jump [ra + constant]
jump [ra + variable]
jump [ra + address]
jump [ra + label]

For all the above instructions:
(ra=0):PC«— PC+(80C2<7>)OC2<7..0>,
(ra#0):PC— R[ra]+(8aC2<7>)©C2<7..O>;4

In the case of a constant, variable, an address or (label-PC) the jump ranges from —128 to 127
because of the restriction on 8-bit constant c¢2. Now, for example if we have jump [rO+a], it
means jump to a. On the other hand if we have jump [— r2] that is not allowed by the assembler.
The target address should be even because we have each instruction with 2 bytes. So the types
available for the un-conditional jumps are either direct, indirect, PC-relative or register relative.
In the case of direct jump the constant c2 would define the target address and in the case of
indirect jump constant ¢2 would define the indirect location of memory from where we could
find out the address to jump. While in the case of PC-relative if the contents of register ra are
zero then we have near jump and the type of jump for this would be PC-relative. If ra is not be
zero then we have a far jump and the contents of register ra will be added with the constant c2
after sign-extension to determine the jump address.

4 c2 is computed by sign extending the constant, variable, address or (label-PC)

Page 150

Advance Computer Architecture — CS501

Structural RTL description for un-conditional jump instruction
jump [ra+c2]

In first three steps, TO-T2, we

would fetch the jump instruction, Step RTL

while in T3 we would either take :

the contents of PC and place them T0-T2 Instruction Fetch

in a temporary register A if the T3 (ra=0): A— PC, (ra#0): A — R[ra];
condition given in jump instruction T4 C < A+ c2(sign extend),

1s true, that is if the ra field is zero, T5 PC « C;

otherwise we would place the

contents of register ra in the temporary register A. Comma °,” indicates that these two

instructions are concurrent and only one of them would execute at a time. If the ra field is zero
then it would be PC-relative jump otherwise it would be register-relative jump. In step T4 we
would add the constant c¢2 after sign-extension to the contents of temporary register A. As a
result we would have the effective address in the buffer register C, to which we need to jump. In
step TS5 we will take the contents of C and load it in the PC, which would be the required address
for the jump.

Structural RTL for the shift instruction
shiftr ra, rb, c1

First three steps would fetch the Step RTL
shift instruction. cl is the count

field. It is a 5-bit constant and is T0-T2 Instruction fetch

obtained from the lower 5-bits T3 n<4 0> — IR<4. 0>

of the instruction register IR. In

step T3 we would load the 5-bit T4 C « (NaD) ©R[rb]<15..N>;
register ‘n’ from the count field T Rlra] — C.

or the lower 5-bits of the IR and '

then in T4 depending upon the

value of ‘N’ which indicates the decimal value of ‘n’, we would take the contents of register rb
and shift right by N-bits which would indicate how many shifts are to be performed. ‘n” indicates
the register while ‘N’ indicates the decimal value of the bits present in the register ‘n’. So as a

result we need to copy the zeros to the left most bits, this shows that zeros are replicated ‘N’
times and are concatenated with the shifted bits that are actually 15...N. In TS5, we take the
contents from C through the bus and feed it to the register ra which is the destination register.
Other instructions that would have similar tables are ‘shiftl” and ‘asr’.

In case of asr, when the data is shifted right, instead of copying zeros on the left side, we would
copy the sign bit from the original data to the left-most position.

Other instructions

Other instructions are mov, call and ret. Note that these instructions were not available with the
SRC processor.

Page 151

Advance Computer Architecture — CS501

Structural RTL for the mov instruction

mov ra, rb

In mov instruction the data in register

rb, which is the source register, is to be
moved in the register ra, which is the

destination register. In first three steps,
mov instruction is fetched. In step T3

the contents of register rb are placed in

Step |RTL

TO-T2 |Instruction fetch
T3 C « R[rb];
T4 R[ra] « C;

buffer register C through the ALSU

unit while in step T4 the buffer register C transfers the data to register ra through internal uni-

bus.

Structural RTL for the mov immediate instruction

movi ra, c2

In this instruction ra is the destination
register and constant ¢2 is to be moved in
the ra. First three steps would fetch the
move immediate instruction. In step T3
we would take the constant c2 and place
it into the buffer register C. Buffer
register C is 16-bit register and c2 is 8-bit

Step |RTL

TO-T2 |Instruction fetch
T3 C « (Bac2<7>) © c2<7..0>;
T4 R[ra] « C;

constant so we need to concatenate the remaining leftmost bits with the sign bit which is bit *7°
shown within angle brackets. This sign bit which is the most significant bit would be ‘1’ if the
number is negative and ‘0’ if the number is positive. So depending upon this sign bit the
remaining 8-bits are replicated with this sign bit to make a 16-bit constant to be placed in the

buffer register C. In step T4 the contents of C are taken to the destination register ra.

In case of FALCON-A, ‘in’ and ‘out’ instructions are present which are not present in the SRC
processor. So, for this we assume that there would be interconnection with the input and output

addresses up to 0..255.
Structural RTL for the in instruction
inra, c2

First three steps would fetch the
instruction In step T3 we take the IO
[c2] which indicates that go to IO
address indicated by c2 which is a
positive constant in this case and then
data would be taken to the buffer

register C. In step T4 we would transfer the data from C to the destination register ra.

Structural RTL for the out instruction

out ra, c2

This instruction is opposite to the ‘in’
instruction. First three instructions would
fetch the instruction. In step T3 the
contents of register ra are placed in to the
buffer register C and then in Step T4
from C the data is placed at the output
port indicated by the c¢2 constant. So this

Step |RTL

TO-T2 |Instruction fetch
T3 C « 10[c2];
T4 Rlra] < C

Step |[RTL

TO-T2 |Instruction fetch
T3 C « R[ra];
T4 I0[c2] « C

Page 152

Advance Computer Architecture — CS501

instruction is just opposite to the ‘in’ instruction.
Structural RTL for the call instruction

call ra, rb

In this instruction we need to give the control

to the procedure, sub-routine or to another Step RTL
address specified in the program. First three

steps would fetch the call instruction. In step ,

T3 we store the present contents of PC in to T0-T2 Instruction Fetch
the buffer register C and then from C we T C — PC
transfer the data to the register ra in step T4. ’

As a result register ra would contain the - Rlra] — C:
original contents of PC and this would be a ’
pointer to come back after executing the sub-

routine and it would be later used by a return T5 C — RIrb];
instruction. In step TS5 we take the contents

of register rb, which would actually indicate T6 PC — C;

to the point where we want to go. So in step
T6 the contents of C are placed in

PC and as a result PC would indicate the position in the memory from where new execution has
to begin.

Structural RTL for return

instruction Step RTL
retra

After instruction fetch in first 3 steps TO-T2,

the register data in ra is placed in the buffer TO-T2 Instruction Eetch

register C through ALSU unit. PC is loaded
with contents of this buffer register in step
T4. Assuming that bus activity is T3 C <« R[ra];
synchronized, appropriate control signals are
available to us now.

T4 PC — C;
Control signals required at different
timing steps of FALCON-A instructions
The following table -
shows the details of the Step |RTL Control Signals
control signals needed. T0 |[MAR « PC,C«PC+2; [PCout, LMAR, INC2,LC
The first column is the
time step, as before. In T MBR « M[MAR],PC« C; |LMBR, MRead, MARout, Cout, LPC
the second column the T2 IR < MBR. MBRouL LIR
structural RTLs for the
particular step is given, T3 Instruction Execution

and the corresponding
control signals are shown in the third column. Internal bus is active in step TO0, causing the contents
of the PC to be placed in the Memory Address register MAR and simultaneously the PC is
incremented by 2 and placed it in the buffer register C. Recalling previous lectures, to write data
in to a particular register we need to enable the load signal. In case of fetch instruction in step
TO, control signal LMAR is enabled to cause the data from internal bus to be written in to the
address register. To provide data to the bus through tri-state buffers we need to activate the ‘out’
control signal named as ‘PCout’, making contents of the PC available to the ALSU and so
control unit provides the increment signal ‘INC2’ to increment the PC. As the ALSU is the
combinational circuit, the PCout signal causes the contents over the 2nd input of ALSU
incremented by 2 and so the data is available in buffer register C. Control signal “LC” is required

Page 153

Advance Computer Architecture — CS501

to write data into the buffer register C form the ALSU output. Now note that ‘INC2’ is one of the
ALSU functions and also it is a control signal. So knowing the control signals, which need to be
activated at a particular step, is very important.

So, at step TO the control signal ‘PCout’ is activated to provide data to the internal bus. Now
control signal ‘LMAR’ causes the data from the bus to be read into the register MAR. The ALSU
function ‘INC2’ increments the PC to 2 and the output are stored in the buffer register C by the
control signal ‘LC’. The data from memory location addressed by MAR is read into Memory
Buffer Register MBR in the next timing step T1. In the mean time there is no activity on the
internal bus, the output from the buffer register C (the incremented value of the PC) is placed in
the PC through bus. For this the control signal ‘LPC’ is activated.

To enable tri-state buffer of Memory Address Register MAR, we need control signal ‘MARout’.
Another control signal is required in step T1 to enable memory read i.e. ‘“MRead’. In order to
enable buffer register C to provide its data to the bus we need ‘Cout’ control signal and in order
to enable the PC to read from C we need to enable its load signal, which is ‘LPC’. To read data
coming from memory into the Memory Buffer Register MBR, ‘LMBR’control signal is enabled.
So in T2 we need 5 control signals, as shown.

In T2, the instruction register IR is loaded with data from the MBR, so we need two-control
signals,”MBRout’ to enable its tri-state buffers and the other signal required is the load signal for
IR register ‘LIR’. Fetch operation is completed in steps TO-T2 and appropriate control signals
are generated. Those control signals, which are not shown, would remain de-activated. All
control signals are activated simultaneously so the order of these controls signals is immaterial.
Recall that in SRC the fetch operation is implemented in the same way, but ‘INC4’ is used
instead of ‘INC2’ because the instruction length is 4 bytes.

Now we take a look at other examples for control signals required during execution phase.

For various instructions, we will define other control signals needed in the execution phase of
each instruction but fetch cycle will be the same for all instructions.

Another important fact is the interface of the CPU with an external memory and the I/O
depending upon whether the I/O is memory mapped or non-memory mapped. The processor will
generate some control signals, used by the memory or I/O to read/write data to/from the I/O
devices or from the memory. Another assumption is that the memory read is fast enough.
Therefore data from memory must be available to the processor in a fixed time interval, which in
this particular example is T2.

For a slow data transfer, the concept of handshaking is used. Some idle states are introduced and

buffer is prepared until the data is available. But for simplicity, we will assume that memory is
fast enough and data is available in buffer register MBR to the CPU.

External FALCON-A CPU
Interface

16-hit

16-hit data bus address hus

This figure is a symbolic
representation of the FALCON-
A in the form of a chip. The
external interface consists of a ,
16-bit address bus, a 16-bit data ‘[|
bus and a control bus on which v
different control signals like

FOWUR Contral

MRead, MWrite, IORead, bus signals:
. MRead
[OWrite are present. Mhrite
I10Read

10%yrite

Page 154

Advance Computer Architecture — CS501

Example Problem

Instruction RTL equivalent | Address Bus | DataBus |[MRead |[MWrite
<15..0> <15..0>

load r7, [12+r5]

addir2, r4, 31

jump [52]

store r1,[r3+17]

subrs, r7,ré

shiftr r2, r6, 4

movr3,r2

jzrd,[-32]

Memory | Memory
Address Content T T

0020h Dzh
0021h 96h C341h CAh
0022h 45h C343h D5Sh
0023h 2Fh C344h E2h
C300h 44h 1240h 07h
C301h 23h 1241h 85h
C'302h E3h 1242h E5h
3030 D5h 1243h 3Dh

(a) What will be the logic levels on the external FALCON-A buses when each of the given
FALCON-A instruction is executing on the processor? Complete the table given. All numbers are in
the decimal number system, unless noted otherwise.

(b) Specify memory-addressing modes for each of the FALCON-A instructions given.

Assumptions
For this particular example we will assume that all memory contents are properly aligned, i.e.
memory addresses start at address divisible by 2.

PC=C348h

This table contains a partial memory map showing the addresses and the corresponding data
values.

The next table shows the register map showing the contents of all the CPU registers.
Another important thing to note is that memory storage is big-endian.

Page 155

Advance Computer Architecture — CS501

Register Content
Name
R[0] AS54Bh
R[1] 4CB8h
R[2] 492Fh
R[3] C2EFh
R[4] 2301h
R[5] 1234h
R[6] 0020h
R[7] 2D7Fh
Solution:
FALCON-A RTL equivalent Address Bus* DataBus M M
Instruction <15.0> <15..0> R |W
load r7, [r5+12] | R[7] —— M[12+R[5]] 1240h 0785h 0
addir2, r4, 31 R[2] «— R[4]+31 Unknown ?22?? ?
jump [52] PC «— PC +52 Unknown ?2?? ?
store r1, [r3+17] | M[R[3]+17] «— R[1] C300h 4CBSh 1
sub r5, r7, r6 R[5] «— RI[7]-R[6] Unknown ?2?? ?
shiftrr2, r6, 4 R[2] <« Unknown 2?2?22 ?
(4a0)OR[6]<15...4>
mov r3, r2 R[3] «— R[2] Unknown ?2?? ?
jz 4, [-32] R[4]=0:PC+«—PC-32 Unknown ?2?? ?

In this table the second column contains the RTL descriptions of the instructions. We have to
specify the address bus and data bus contents for each instruction execution. For load instruction
the contents of register r5+12 are placed on the address bus. From register map shown in the
previous table we can see that the contents of r5 are 1234h. Now contents of r5 are added with
displacement value 12 in decimal .In other words the address bus will carry the hexadecimal
value 1234h+ Ch = 1240h.Now for load instruction, the contents of memory location at address
1240h will be placed on the data bus. From the memory map shown in the previous table we can
see that memory location 1240h contains 785h. Now to read this data from this location, MRead
control signal will be activated shown by 1 in the next column and MWrite would be 0.Similarly
RTL description is given for the 2nd instruction. In this instruction, only registers are involved so

Page 156

Advance Computer Architecture — CS501

there is no need to activate external bus. So data bus, address bus and control bus columns will
contain ‘?” or ‘unknown’. The next instruction is jump. Here PC is incremented by the jump
offset, which is 52 in this case. As before, the external bus will remain inactive and control
signals will be zero. The next instruction is store. Its RTL description is given. For store
instruction, the register contents have to be placed at memory location addressed by R [3] +17.
As this is a memory write operation, the MWrite will be 1 and MRead will be zero. Now the
effective address will be determined by adding the contents of R [3] with the displacement value
17 after its conversion to the hexadecimal. The resulting effective address would be C300h. In
this way we can complete the table for other instructions.

Addressing Modes

This table lists the addressing mode for each instruction given in the previous example.

FALCON-A Addressing
Instruction Mode
load 17, [r5+12] |Displacement

addir2, r4, 31 Immediate
jump [62] Relative

store r1, [r3+17] |Displacement
sub s, r7, 16 Register
shiftr r2, 16, 4 Register

mov r3, r2 Register
jzrd, [32] Relative

Page 157

Advance Computer Architecture — CS501

Lecture No. 15

Logic Design and Control Signals Generation in SRC

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 4.4
Summary

e Logic Design for the Uni-bus SRC
e Control Signals Generation in SRC

Logic Design for the Uni-bus SRC

In the previous sections, we have looked at both the behavioral and structural RTL for the SRC.
We saw that there is a need for some control circuitry for ensuring the proper and synchronized
functioning of the components of the data path, to enable it to carry out the instructions that are
part of the Instruction Set Architecture of the SRC. The control unit components and related
signals make up the control path. In this section, we will talk about

Identifying the control signals required

The external CPU interface

Memory Address Register (MAR), and Memory Buffer Register (MBR) circuitry
Register Connections

We will also take a look at how sign extension is performed. This study will help us understand

how the entire framework works together to ensure that the operations of a simple computer like
the SRC are carried out in a smooth and consistent fashion.

Identifying control signals

For any of the instructions that are a part of the instruction set of the SRC, there are certain
control signals required; these control signals may be to select the appropriate function for the
ALU to be performed, to select the appropriate registers, or the appropriate memory location.
Any instruction that is to be executed is first fetched into the CPU. We look at the control signals
that are required for the fetch operation.

Control signals for the fetch operation

Table 1 lists the control signals
that are needed to ensure the

synchronized register transfers ey Ik Faatral S

in the instruction fetch phase.

Note that we use uppercase for T0 MAR « PC,C< PC+4, | PCout, LMAR, INC4, LC
control signals as we have been

instruction mnemonics, and we Cout, LPC

want to distinguish between the n IR « MEBR, MERout, LIR

two. Also note that control

signals during each time slot are Table:1

activated simultaneously, and

Page 158

Advance Computer Architecture — CS501

that the control signals for successive time slots are activated in sequence. If a particular control
signal is not shown, its value is zero.
As shown in the Table: 1, some control signals are to let register values to be written onto buses,
or read from the buses. Similarly, some signals are required to read/ write memory contents onto
the bus. The memory is assumed to be fast enough to respond during a given time slot; if that is
not true, wait states have to be inserted. We require four control signals to be issued in the time
step TO:
PCout: This control signal allows the contents of the Program Counter register to be
written onto the internal processor bus.

LMAR: This signal enables write onto the memory address register (MAR), thus the
value of PC that is on the bus, is copied into this register

INC4: It lets the PC value to be incremented by 4 in the ALSU, and result to be stored in
C. Notice that the value of PC has been received by the ALSU as an operand. This
control signal allows the constant 4 to be added to it. The ALSU is assumed to include an
INC4 function

LC: This enables the input to the register C for writing the incremented value of PC onto
it.

During the time step T1, the following control signals are applied:

LMBR: This enables the “write” for the register MBR. When this signal is activated,
whatever value is on the bus, can be written into the MBR.

MRead: Allow memory word to be gated from the external CPU data bus into the MBR.
MARout: This signal enables the tri-state buffers at the output of MAR.

Cout: This will enable writing of the contents of register C onto the processor’s internal
data bus.

LPC: This will enable the input to the PC for receiving a value that is currently on the
internal processor bus. Thus the PC will receive an incremented value.

At the final time step, T2, of the instruction fetch phase, the following control signals are
issued:
MBRout: To enable the tri-state buffers with the MBR.

LIR: To allow the IR read the value from the internal bus. Thus the instruction stored in
the MBR is read into the Instruction Register (IR).

Uni-bus SRC implementation
The uni-bus implementation of the SRC data path is given in the Fig.1. We can now visualize

3l o H
RO ‘
Rl 37 s
Teteral AR e
[RHpaET
regElers
(3i-bats sach)
k3l
3l 1]
E;‘-“\‘ 3 e
’fT-:- extemalj ' ALSL
. CPIThus Internal processor bus | SEties

Fig.1

Page 159

Advance Computer Architecture — CS501

how the control signals in mutually exclusive time steps will allow the coordinated working of
instruction fetch cycle.

Similar control signals will allow the instruction execution as well. We have already mentioned

the external CPU buses that read from the memory and write back to it. In the given figure, we
had not shown these external (address and data buses) in detail. Fig.2 will help us understand this

external interface.
r I3t
-0l data bus address hus
L= 2

4" T 7
1 rﬂ . T A

ﬁ_
= T e M ey
_| Tm—. I".h-".r L
Cunimlnus
slgnals
x___—_,_,
Fig2

External CPU bus activity

Let us take up a sample problem to further enhance our understanding of the external CPU
interface. As mentioned earlier, this interface consists of the data bus/ address bus, and control
signals for enabling memory read and write.

Example problem:

(a) What will be the logic levels on the external SRC buses when each of the given SRC
instruction is executing on the processor? Complete Table: 2. all numbers are in the decimal
number system, unless noted otherwise.

(b) Specify memory addressing modes for each of the SRC instructions given in Table: 2.

. . Address Bus Data Bus .
Instruction RTL equivalent <31..0> <31..0> MRead | MWrite

Id r7, 12(r5)

Idr2,32

lar9, 32

Idrrl2,-72

larr3, 0

st r2, 0(r6)

strr3, -8

strd4, 32

Table 2

Page 160

Assumptions:

Advance Computer Architecture — CS501

. All memory content is aligned properly.
In other words, all the memory accesses start at addresses divisible by 4. Value in the PC =

000DC348h

(Note that the SRC uses the big-endian storage format).

Memory map with assumed values

Memory Memory

Address Content
00000020k Dih
00000021 D6k
00000022k 4090
00000023h 2Fh
00D 3000 ddh
0003010 23h
000D 302k E3h
000023030 Di5h

Register map with assumed values

Fig.3

000023 40k Slh
0o0DC34lh Cah
000DC3 430 D5k
000D 344k Eih
00ABLZ40h 0%h
00ABIZ4lh E5h
00AEI242h Esh
O0ABIZ43h 3Dk
Register MName Content
R[0] N01ZA54Eh
E[1] 10234CEEh
R[2] D296492Fh
E[Z] 0014000 TR
Ei4] B74322301h
Ri5)] DOAB 1234k
RI6] 00000020k
R[7] 01432D7Fh
R{B] NOBES4E821H
R[9] 00CD AT A3K
R[10] 0031 AOFOh
R[11] DO1ZAZ46hR
R[12] OOOEAER1Th
Fig.d

Page 161

Advance Computer Architecture — CS501

Solution Part (a):
. . Address Bus Data Bus .
Instruction RTL equivalent <31..0> <31..0> MRead | MWrite
Id r7, 12(r5) R[7] ¢ M[12+R[5]] 00AB1240 h 0785E53D h 1 0
Idr2,32 R[2] & M[32] 00000020 h D296492F h 1 0
lar9, 32 R[9] < 32 Unknown Unknown ? ?
Idr r12,-72 R[12] & M[PC-72] 000DC300 h 4423E3D5 h 1 0
larr3, 0 R[3] ¢ PC Unknown Unknown ? ?
st r2, 0{r6) MIR[6]] ¢ R[2] 00000020 h D296492F h 0 1
strr3, -8 MI[PC - 8] ¢ R[3] 000DC340 h 001400CD h 0 1
str4, 32 M[32] & R[4] 00000020 h B7432301 h 0 1
Solution part (b):
SRC Addressing
Instruction Mode
Id 7, 12(r5) Displacement
Idr2, 32 Direct
lar9, 32 Immediate
ldrr12, -4 PC Relative
lar r3, 0 Register
str2, 0(rg) Register Indirect
strr3. 8 PC Relative
strd. 32 Register Direct
Fig:5
Notes:
* Relative addressing is always PC relative in the SRC
ok Displacement addressing mode is the same as Based or Indexed in the SRC. It is also

the same as Register Relative addressing mode

Memory address register circuitry

We have already talked about the functionality of the MAR. It provides a temporary storage for
the address of memory location to be accessed. We now take a detailed look at how it is
interconnected with other components. The MAR 1is connected directly to the CPU internal bus,
from which it is loaded (receives a value). The LMAR signal causes the contents of the internal
CPU bus to be loaded into the MAR. It writes onto the CPU external address bus. The MARout
signal causes the contents of the MAR to be placed on the address bus. Thus, it provides the
addresses for the memory and I/O devices over the CPU’s address bus. A set of tri-state buffers

Page 162

Advance Computer Architecture — CS501

is provided with these connections; the tri-state buffers are controlled by the control signals,
which in turn are issued when the corresponding instruction is decoded. The whole circuitry is
shown in Fig.6.

MRead

x

from CPLU's

data bus = 3. stale buffars 1

LaAaR - MAR

L 3-state buffers [=—] 10 iNEMMaEl bus

AR oLt
Fig:6

Memory buffer register circuitry

The Memory Buffer Register (MBR) holds the value read from the memory or I/O device. It is
possible to load the MBR from the internal CPU bus or from the external CPU data bus. The
MBR also drives the internal CPU bus as well as the external CPU data bus. Similar to the MAR
register, tri-state buffers are provided at the connection points of the MBR, as illustrated in the
Fig.7.

MRead INTZMWER

from CPLI'S

dala bus . chate bufiers T Setate buffors fetram infemal bus

LMBR —— MER

to CRIIs = 3-<iale buflers L I-glate buffers —| to internal bus

data bus

M¥Yrite MEROouUt
Fig:7

Register connections

The register file containing the General Purpose Registers is programmer visible. Instructions
may refer to any of these registers, as source operands in an operation or as the destination
registers. Appropriate circuitry is needed to enable the specified register for read/ write.
Intuitively, we can tell that we require connections of the register to the CPU internal bus, and
we need control signals that will enable specified registers to be read/ write enabled as a
corresponding instruction is decoded. Fig.8 illustrates the register connections and the control
signals generation in the uni-bus data path of the SRC. We can see from this figure that the ra, rb
and rc fields of the Instruction Register specify the destination and source registers. The control
signals RAE, RBE and RCE can be applied to select any of the ra, rb or rc field respectively to
apply its contents to the input of 5-to-32 decoder. Through the decoder, we get the signal for the
specific register to be accessed. The BUS2R control signal is activated if it is desired to write
into the register. On the other hand, if the register contents are to be written to the bus, the
control signal R2BUS is activated.

Page 163

Advance Computer Architecture — CS501

IRlopc|ra | b | re| wewss

5 t’j:f ,ETF‘GE

L] A-to-32 decader Rioul
= i

Control Signals o register file

LR

R2BUS | BUSIR

Fig.8

Alternate control circuitry for register selection

Fig.9 illustrates an alternate circuitry that implements the register connections with the internal
processor bus, the instruction register fields, and the control signals required to coordinate the
appropriate read/write for these registers. Note that this implementation is somewhat similar to
our earlier implementation with a few differences. It illustrates the fact that the implementations
we have presented are not necessarily the only solutions, and that there may be other
possibilities.

T
IE. s e 8 rt g saaun
1
| I £l i
, v a
e B e RO
5 ¥ o B J—F'_F”. ;
; g = E{E i | L2
= H"'}t]E. . - E
& | ﬁ : =
S A b RIICE
4 E31E
I ECE -
A
RBE s
- < ROC

Thas part will be repaated for RZIBLUS
as showh on e nest slide

Fig.9

In this alternate circuitry, there is a separate 5-to-32 decoder for each of the register fields of the
instruction register. The output of these decoders is allowed to be read out and enables the
decoded register, if the control signal (RAE, RBE or RCE) is active.

Control signals Generation in SRC
We take a few example instructions to study the control signals that are required in the
instruction execution phase.

Page 164

Advance Computer Architecture — CS501

Control signals for the add instruction
The add instruction has the following syntax:

add ra, rb, rc
Table: 4 lists the | SteP RTL Control Signals

control signals

that are applied .
at each of the TO — T2 | Instruction Fetch As before

time steps. The
first three steps T3 A «— R[rb] RBE, R2BUS, LA
are of the
instruction fetch

phase, and we T4 C «— A+R[rc]; RCE, R2BUS, ADD, LC
have already

discussed the

control signals TS Rlra] « C; Cout. RAE, BUS2R
applied at this

phase.

At time step T3, the control RBE is applied, which will enable the register rb to write its contents
onto the internal CPU bus, as it is decoded. The writing from the register onto the bus is enabled by
the control signal R2BUS. Control signal LA allows the bus contents to be transferred to the register
A (which will supply it to the ALSU). At time step T4, the control signals applied are RCE, R2BUS,
ADD, LC, to respectively enable the register rc, enable the register to write onto the internal CPU
bus (which will supply the second operand to the ALSU from the bus), select the add function of the
ALSU (which will add the values) and enable register C (so the result of the addition operation is
stored in the register C). Similarly in T5, signals Cout, RAE and BUS2R are activated.

Sign extension

When we copy constant values

to registers that are 32 bits wide, ST < O R -
we need to sign extend the ,F,.| E— — 44
values first. These values are in 7 47 (
the 2’s complement form, and to i Trkstate | | B
sign-extend these values, we ; mwers: | Sl e —
need to copy the most significant) g At
bit to all the additional bits in the #
register. Enable

Py | Bus<31,17>
We consider the field c2, which / 15 o ek
is a 17 bit constant. Sign Trstate | 15| | /7
extension of ¢2 requires that we | e ol b
C(_)py c2<16> tf) al.l the le.ft-mo_st Sign extension ofthe 22 bit constant©1| Enable
bits of the destination register, in will be done I the same way i N
addition to copying the original clout
constant values to the register. Fig:10

This means that bus<31...17>
should be the same as c2<16>. A 15 line tri-state buffer can perform this sign extension. So we
apply ¢2<16> to all the inputs of this tri-state buffer as illustrated in the Fig.10.

Page 165

Advance Computer Architecture — CS501

Structural RTL for the addi instruction

We now return to our study of the control signals required in the instruction execute phase. We
have already looked at the add instruction and the corresponding signals. Now we take a look at
the addi (add immediate) instruction, which has the following syntax:

addi ra, rb, ¢2

Table: 5 lists the RTL and the control signals for the addi instruction:

Step RTL for addi Control signals
TO-T2 Instruction fetch As before
Ta A« Rirh]; RBE, R2ZBUS, LA
T4 e A+ c2(sion extend); cZout, ADD, LC
T4 Rra) « C: Cout RAE, BUISZR

Tahle:5

The table shows that the control signals for the addi instruction are the same as the add
instruction, except in the time step T4. At this time step, the control signals that are applied are
c2out, ADD and LC, to respectively do the following:

Enable the read of the constant c2 (which is sign extended) onto the internal processor bus. Add
the values using the ALSU and finally assign the result to register C by enabling write for this
register.

To place a 0 on the bus

When the field rb is zero, for instance, in the load and store instructions, we need to place a zero
on the bus. The given circuit in Fig.11 can be used to do this.

8
O] [A]w] eaeen o 2
o+ fi—rce 5
RAE £
/ Hardwired 1o | Tristate | =
L Logle O buffers '
/ R Enatzls
/ o= Loy
st L §-10-32 docoder A_.ig_--. ZRIBUIE
| RBE F_?_,_._*.fr |
L | 7 |
it
S .._.....D_ s
; =T
" Dontconmect |
this line 1o 1he LS
fri-gtate buffer a1 = REBE
| the output of R
Fig:11

Note that, by default, the value of register R0 is 0 in some cases. So, when the selected register
turns out to be 0 (as rb field is 0), the line connecting the output of the register R0 is not enabled,
and instead a hardwired 0 is output from the tri-state buffer onto the CPU internal bus. An
alternate circuitry for achieving the same is shown in the Fig.12.

Page 166

Advance Computer Architecture — CS501

e

p=1

Erom IR=21.17= Hardwirad to | Tri-state =
Logic 0T ™| buffers o

5 -

L Enabiz L=

[)

=

> ROE — '
P RIE BN ZRIBLE

-

—E31E

Instead of connacting this
e to the input of the
gates; conmect i to the
enable of the tn-stale

buffers az shown heams
-

Fig:12

b = 5.10-32 decoder
LI W

-
ket

Control signals for the Id instruction

Now we take a look at the control signals for the load instruction. The syntax of the instruction
is:

Id ra, ¢2 (rb)

Table: 6 outlines the control signals as well as the RTL for the load instruction in the SRC.
The first three steps are of the instruction fetch

step |RTLforid Control Signals

TO-T2 |Instruction fetch As before
T3 A = (frb=0:0 {rb#0):Rlrb]); | REE R2BLS, LA

T4 Ca= A+ (160R=16= @IR=15..0=); |Clout ADD, LT

T5 WAR « C; Cout, LMAR

TE WBR «— M[MAR]; MaRout, MRead, LMBR

T7 Rira] — MBR; WMBRout, RAE, BUSZR
Tahle:6

RBE is issued to allow the register rb value to be read R2ZBUS to allow the bus to read from the
selected register

LA to allow write onto the register A. This will allow the CPU bus contents to be written to the
register A.

At step T4 the control signals are:

c2out to allow the sign extended value of field c2 to be written to the internal CPU bus ADD to
instruct the ALSU to perform the add function.

LC to let the result of the ALSU function be stored in register C by enabling write of register C.
Control signals issued at step T5:

Cout is to read the register C, this copies the value in C to the internal CPU bus.

LMAR to enable write of the Memory Address Register (which will copy the value present on
the bus to MAR). This is the effective address of memory location that is to be accessed to read
(load) the memory word.

During the time step T6:

Page 167

Advance Computer Architecture — CS501

MAROout to read onto the external CPU bus (the address bus, to be more specific), the value
stored in the MAR. This value is an index to memory location that is to be accessed.

MRead to enable memory read at the specified location, this loads the memory word at the
specified location onto the CPU external data bus.

LMBR is the control signal to enable write of the MBR (Memory Buffer Register). It will obtain
its value from the CPU external data bus. Finally, the control signals issued at the time step T7
are:

MBRout is the control signal to allow the contents of the MBR to be read out onto the CPU
internal bus.

RAE is the control signal for the destination register field ra. It will let the actual index of the ra
register be encoded, and

BUS2R will let the appropriate destination register be written to with the value on the CPU
internal bus.

Page 168

Advance Computer Architecture — CS501

Lecture No. 16

Control Unit Design
Reading Material
Vincent P. Heuring & Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 422,4.6.1
Summary

e Control Signals Generation in SRC (continued...)
e The Control Unit
e 2-Bus Implementation of the SRC Data Path

This section of lecture 16 is a continuation of the previous lecture.

Control signals for the store instruction st ra, ¢2(rb)

The store time step operations are similar to the load instruction, with the exception of steps T6
and T7. However, one can easily interpret these now. These are outlined in the given table.

Step |RTL for st Control Signals
TO-T2 |instruction fetch As befone
T3 |A « ((m=0)0 (b#0) RBE, R2BUS, BAout, LA
Rirbik
T4 |C« & +({16aiR<16> C2out, ADD, LC
CIR<15 0>
TS |MAR L Cout, LMAR
T6 |MBR« R|ra) | RAE, R2BUS, INT2ZMER, LMER |
T7 |M[MAR]« MER, MaRout, MWnte

Control signals for the branch and branch link instructions

Branch instructions can be either be simple branches or link-and-then-branch type. The syntax
for the branch instructions is
brzr rb, rc

This is the branch and zero instruction we looked at earlier. The control signals for this
instruction are:

As usual, the first | Step RTL for br Control signals
three steps are for

the instruction T0-T2 |Instruction Fetch A5 before

fetch phase. Next, T3 CON «— cond{R[rc]), | LCON, RCE, R2BUS

the following [™~ 5 Rirb REE. RZBUS, LPC (If CON=1
control signals PC & RIrb] ; - (! =1)

are issued:

Page 169

Advance Computer Architecture — CS501

LCON to enable the CON circuitry to operate, and instruct it to check for the appropriate
condition (whether it is branch if zero, or branch if not equal to zero, etc.) RCE to allow the

register rc value to be read.

R2BUS allows the bus to read from the selected register.

At step T4:

RBE to allow the register rb value to be read. rb value is the branch target address.

R2BUS allows the bus to read from the selected register.

LPC (if CON=1): this control signal is issued conditionally, i.e. only if CON is 1, to enable the
write for the program counter. CON is set to 1 only if the specified condition is met. In this way,
if the condition is met, the program counter is set to the branch address.

Branch and link instructions

The branch and link instruction is similar to the branch instruction, with an additional step, T4.
Step T4 of the simple conditional branch instruction becomes the step T5 in this case.

Step |[RTL Control signals
T0-T2 |Instruction Fetch As befome

T3 | CON« cond(Rfrc]), |LCON, RCE, R2BUS

T4 CON: R[ra] « PC, RAE, BUSZR, PCout (if
CON=1)

TS CON: PC « R[rb], RBE, R2BUS, LPC (if CON=1)

The syntax of the instruction ‘branch and link if zero’ is
brlzr ra, rb, rc

Table that lists the RTL and control signals for the store instruction of the SRC is given: The
circuitry that enables the condition checking for the conditional branches in the SRC is illustrated

in the following figure:
Jf 3

J10.B Decoder

BUS3].8=

[Mevar Branch

Ahways Branch

; — e]

a2 = —— ranch if
’_DC T e

s, 1
D‘ _ CON
—. 20 b o
Eit =31= omiy D :
.E{..-f"

] ©

Branch if
not zero
T WSS ———

Page 170

Advance Computer Architecture — CS501

Control signals for the shift right instruction

The given table illustrates the RTL and the control signals for the shift right ‘shr’ instruction.
This is implemented by applying the five bits of n (nb4, nb3, nb2, nb1, nb0) to the select inputs
of the barrel shifter and activating the control signal SHR as explained in an earlier lecture.

Step |RTL for shr Control signals
TO-T2 | Instruction Fetch As before
T3 n<4..0><—|R<4.0>; LN
T4 (N=0):(n<4..0> «— LN{N=0), RCE, R2BUS

R[rc]<4..0>);
T5 C «— (Na0) ©R[rb]<31.N>; |LC, SHR(N)

16 Rlra] — C; Cout, RAE, BUS2R

Generating the Test Condition N=0

31 4 0
IR i count

The Control Unit

The control unit is responsible for generating control signals as well as the timing signals. Hence
the control unit is responsible for the synchronization of internal as well as external events. By
means of the control signals, the control unit instructs the data path what to do in every clock
cycle during the execution of instructions.

Control Unit Design

Since the control unit performs quite complex tasks, its design must be done very carefully. Most
errors in processor design are in the Control Unit design phase. There are primarily two
approaches to design a control unit.

1. Hardwired approach

2. Micro programming

Hardwired approach is relatively faster, however, the final circuit is quite complex. The micro-
programmed implementation is usually slow, but it is much more flexible.

Page 171

Advance Computer Architecture — CS501

“Finite-state machine” concepts are usually used to represent the CU. Every state corresponds to
one “clock cycle” i.e., 1 state per clock. In other words each timing step could be considered as
just 1 state and therefore from one timing step to other timing step, the state would change. Now,
if we consider the control unit as a black box, then there would be four sets of inputs to the
control unit. These are as follows:
1. The output of timing step generator (There are 8 disjoint timing steps in our example TO-
T7).
2. Op-code (op-code is first given to the decoder and the output of the decoder is given to
the control unit).
3. Data path generated signals, like the “CON” control signal,
4. Signals from external events, like “Interrupt” generated by the Interrupt generator.

The complexity of the control is a function of the
e Number of states
e Number of inputs to the CU
e Number of the outputs generated by the CU

Hardwired Implementation of the Control Unit

The accompanying block diagram shows the inputs to the control unit. The output control signals
generated from control unit to the various parts of the processor are also shown in the figure.

n

g E i signals
> S data path
- E . Hardwired o
s d
’é = '< Control e ;E;ir;
= e Unit e S
B i
: o signals
E £ fram
= E external
Sa L y _dﬂm
o

'y

timing step generator

Example Control Unit for the FALCON-A

The following figure shows how the operation code (op-code) field of the Instruction Register is
decoded to generate a set of signals for the Control unit.

Page 172

Advance Computer Architecture — CS501

s ... 1110, .8 0
Op-code| ra Imstruction Register

Sto32 |0 OPD for add
decoder |1 OP] foraddi
+——0 2 OP2 forsub
I | 1 3 OF3 forsubi
. r 2 14 _0OP4 for mul
| 3 5 OPS for di
.[-
4 2
I Fnable 131 OP31 for haki

This is an example for the FALCON-A processor where the instruction is 16-bit long. Similar
concepts will apply to the SRC, in which case the instruction word is 32 bits and IR <31...27>
contains the op-code. Similar concepts will apply to the SRC, in which case the instruction word
is 32 bits and IR<31..27> contains the opcode. The most significant 5 bits represent the op-code.
These 5-bits from the IR are fed to a 5-to-32 decoder. These 32 outputs are numbered from 0-to-
31 and named as op0, op1 up to op31. Only one of these 32 outputs will be active at a given time
.The active output will correspond to instruction executing on the processor.

To design a control unit, the next step is to write the Boolean Equations. For this we need to
browse through the structural descriptions to see which particular control signals occur in
different timing steps. So, for each instruction we have one such table defining structural RTL
and the control signals generated at each timing step. After browsing we need to check that
which control signal is activated under which condition. Finally we need to write the expression
in the form of a logical expression as the logical combination of “AND” and “OR” of different
control signals. The given table shows Boolean Equations for some example control signals.

Step RTL Control Signals
T0 |MAR<— PC; PCout, LMAR, C=B,;
T1 |MBR<— M[MAR], PCout, INC4, LPC, MRead,
PC«—PC + 4: MARout, LMBR;
T2 |IR+~— MBR; MBRout, C=B, LIR;
T3 |Instruction Execution

For example, PCout would be active in every TO timing step. Then in timing interval T3 the
output of the PC would be activated if the op-code is 20 or 22 which represent jump and sub-
routine call. In step T4 if the op-code is 16, 17, 18 or 19, again we need PCout activated and
these 4 instructions correspond to the conditional jumps. We can say that in other words in step

Page 173

Advance Computer Architecture — CS501

T1, PCout is always activated “OR” in T3 it is activated if the instruction is either jump or sub-
routine call “OR” in T4 if there is one of the conditional jumps. We can write an equation for it
as

PCout =T0 + T3.(OP20 + OP22) + T4.(OP16 + OP17 + OP18 + OP19)

In the form of logic circuit the implementation is shown in the figure. We can see that we “OR”
the op-ode 20 and 22 and “AND” it with T3, then “OR” all the op16 up to op19 and “AND” it
with T4, then TO and the “AND” outputs of T3 and T4 are “OR” together to obtain the PCout.

PCout

P20
oP22

T4
OplG
Op17
Op18
Op1d

In the same way the logic circuit for LPC control signal is as shown and the equation would be :
LPC =T1 + T5.0P20 + T6.CON.(OP16 + OP17 + OP18 + OP19)

T1

TS _ L T
oP20 =T

TG

OP18 —|
oP17 —
QP18

oP19

We can formulate Boolean equations and draw logic circuits for other control signals in the same
way.

Page 174

Advance Computer Architecture — CS501

Effect of using “real” Gates

We have assumed so far that the gates are ideal and that there is no propagation delay. In
designing the control unit, the propagation delays for the gates cannot be neglected. In particular,
if different gates are cascaded, the output of one gate forms the input of other. The propagation
delays would add up. This, in turn would place an upper limit on the frequency of the clock
which controls the generation of the timing intervals TO, T1... T7. So, we cannot arbitrarily
increase the frequency of this clock. As an example consider the transfer of the contents of a

register R1 to a register R2. The minimum time required to perform this transfer is given by
tmiu = tg + tbp + t('crml.l + t1

The details are explained in the text with reference to Fig 4.10. Thus, the maximum clock

frequency based on this transfer will be 1/tmin. Students are encouraged to study example 4.1 of
the text.

2-Bus Implementation of the SRC Data Path

In the previous sections, we studied the uni-bus implementation of the data path in the SRC.
Now we present a 2-bus implementation of the data path in the SRC. We observe from this
figure that there is a bus provided for data that is to be written to a component. This bus is named
the “in’ bus. Another bus is provided for reading out the values from these components. It is
called the ‘out’ bus.

A e 31 1] Bhus
{_“i.l'l.hl‘:s"} 31 R_u (‘" Uuthm”}l
F== === 4
) | General __| 32
' Purpose
| Regbters —
R3l
o | R -
uses are [
“Intermal j PC | .
processor 1 [wﬂ
L] F
busas j ~IRT -
- -\F.—-
—| A J N
TR Y b
/ -
1\ A / B To External
‘1 ,ff CPU Bus
\ ALSU /
\ C /
'-.; !
- |

Structural RTL for the ‘sub’ instruction using the 2-bus data path implementation

Next, we look at the structural RTL as well as the control signals that are issued in sequence for
instruction execution in a 2-bus implementation of the data path. The given table illustrates the
Register Transfer Language representation of the operations for carrying out instruction fetch,
and execution for the sub instruction.

Page 175

Advance Computer Architecture — CS501

RTL

T MAR <« PC

Insbruction T
Fetch =

MER e M[MAR], PC « PC + 4

T2 |IR — MBR

instruction

T3 A «— R[rb],

= =
EXeCULE Td

F[ra] « &- R[rc];

The first three steps belong to the instruction fetch phase; the instruction to be executed is
fetched into the Instruction Register and the PC value is incremented to point to the next-in-line
instruction. At step T3, the register R[rb] value is written to register A. At the time step T4, the
subtracted result from the ALSU is assigned to the destination register R[ra]. Notice that we did
not need to store the result in a temporary register due to the availability of two buses in place of
one. At the end of this sequence, the timing step generator is initialized to TO.
Control signals for the fetch operation
The control signals for the instruction fetch phase are shown in the table. A brief explanation is

given below:

Step RTL Control Signals
T0 |MAR<— PC; PCout, LMAR, C=B;
T1 |MBR<— M[MAR], PCout, INC4, LPC, MRead,
PC«—PC +4; MARout, LMBR;
T2 |IR +— MBR; MBRout, C=B, LIR;
T3 |Instruction Execution

At time step T0, the following control signals are issued:

e PCout: This will enable read of the Program Counter, and so its value will be transferred
onto the ‘out’ bus

e LMAR: To enable the load for MAR

e (C=B: This instruction is used to copy the value on the ‘out’ bus to the ‘in’ bus, so it can
be loaded into the Memory Address Register. We can observe in the data-path
implementation figure given earlier that, at any time, the value on the ‘out’ bus makes up
the operand B for the ALSU. The result C of ALSU is connected to the “in” bus, and
therefore, the contents transfer from one bus to the other can take place.

At time step T1:

Page 176

Advance Computer Architecture — CS501

PCout: Again, this will enable read of the Program Counter, and so its value will be
transferred onto the CPU internal ‘out’ bus

INC4: To instruct the ALSU to perform the increment-by-four operation.
LPC: This control signal will enable write of the Program Counter, thus the new,

incremented value can be written into the PC if it is made available on the “in” bus. Note
that the ALSU is assumed to include an INC4 function.

MRead: To enable memory word read.
MARout: To supply the address of memory word to be accessed by allowing the

contents of the MAR (memory address register) to be written onto the CPU external
(address) bus.

LMBR: The memory word is stored in the register MBR (memory buffer register) by
applying this control signal to enable the write of the MBR.

At time step T2:

MBRout: The contents of the Memory Buffer Register are read out onto the ‘out’ bus, by
means of applying this signal, as it enables the read for the MBR.

C=B: Once again, this signal is used to copy the value from the ‘out’ bus to the ‘in’ bus,
so it can be loaded into the Memory Address Register.

LIR: This instruction will enable the write of the Instruction Register. Hence the
instruction that is on the “in” bus is loaded into this register.

At time step T3, the execution may begin, and the control signals issued at this stage depend on
the actual instruction encountered. The control signals issued for the instruction fetch phase are
the same for all the instructions.

Note that, we assume the memory to be fast enough to respond during a given time slot. If that is
not true, wait states have to be inserted. Also keep in mind that the control signals during each
time slot are activated simultaneously, while those for successive time slots are activated in
sequence. If a particular control signal is not shown, its value is zero.

Page 177

Advance Computer Architecture — CS501

Lecture No. 17
Machine Reset and Machine Exceptions

Reading Material
Vincent P. Heuring & Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 4.6.2,4.7,4.8

Summary
e 3-bus implementation for the SRC

e The Machine Reset
e Machine Exceptions

A 3-bus Implementation for the SRC

C bhus 3l L gop Abus Bhus
| 32 | A

Let us now look at a 3-bus 4 e ns
. . 4 | General __|
implementation of the data-path /] Purpocs
for the SRC as shown in the — Registers —
figure. Two buses, ‘A’ and ‘B’
bus for reading, and a bus ‘C’ s
for writing, are part of this :
. . IR I
implementation. Hence all the oC :
special purpose as well as the I ‘
general purpose registers have
two read ports and one write MER)
port. The : P

register A \/ R

file must

have 2 ALU

read ports C To External

and one CPU Bus

write port |

v A J

Structural RTL for the
Subtract Instruction using the 3-bus Data Path Implementation

We now consider how instructions are fetched and executed in 3-bus architecture. For this
purpose, the same ‘sub’ instruction example is followed.

The syntax of the subtract instructions is
sub ra, rb, rc

The structural RTL for

implementing this Step RTL

instruction is given in | T0 |MAR—PC: MBR — M[MAR], PC — PC + 4
the table. We observe Instruction)

that in this table, only e ‘ T |IR —MBR,

two time steps are T R g

required for the Execute 2 | Rira] —R[rb] - Rfrc],

instruction fetch phase.
At time step TO, the Memory Address Register receives the value of the Program Counter. This

Page 178

Advance Computer Architecture — CS501

is done in the initial phase of the time step TO. Then, the Memory Buffer Register receives the
memory word indexed by the MAR, and the PC value is incremented. At time step T1, the
instruction register is assigned the instruction word that was loaded into the MBR in the previous
time step. This concludes the instruction fetch and now the instruction execution can commence.

In the next time step, T2, the instruction is executed by subtracting the values of register rc from
rb, and assigning the result to the register ra.
At the end of each sequence, the timing step generator is initialized to TO

Control Signals for the Fetch Operation

The given table lists the control signals in the instruction fetch phase. The control signals for the
execute phase can be written in a similar fashion.

Step |RTL Control Signals
TO | MAR—PC; MBR «— M|MAR], PCout, INC4, LPC, LbMAR , MRead,
PC «—PC +4;
T [IR—MBE, MBRout, C=B, LIR;
T2 |Instruction_ Execution

The Machine Reset

In this section, we will discuss the following
e Reset operation
e Behavioral RTL for SRC reset
e Structural RTL for SRC reset

The reset operation

Reset operation is required to change the processor’s state to a known, defined value. The two
essential features of a reset instruction are clearing the control step counter and reloading the PC
to a predefined value. The control step counter is set to zero so that operation is restarted from
the instruction fetch phase of the next instruction. The PC is reloaded with a predefined value
usually to execute a specific recovery or initializing program.

In most implementations the reset instruction also clears the interrupt enable flags so as to
disable interrupts during the initialization operation. If a condition code register is present, the
reset instruction usually clears it, so as to clear any effects of previously executed instructions.
The external flags and processor state registers are usually cleared too.

The reset instruction is mainly used for debugging purposes, as most processors halt operations
immediately or within a few cycles of receiving the reset instruction. The processors state may
then be examined in its halted state.

Some processors have two types of reset operations. Soft reset implies initializing PC and
interrupt flags. Hard reset initializes other processor state registers in addition to PC and
interrupts enable flags. The software reset instruction asserts the external reset pin of the
processor.

Reset operation in SRC
Hard Reset

The SRC should perform a hard reset upon receiving a start (Strt) signal. This initializes the PC
and the general registers.

Page 179

Advance Computer Architecture — CS501

Soft Reset

The SRC should perform a soft reset upon receiving a reset (rst) signal. The soft reset results in
initialization of PC only.

The reset signal in SRC is assumed to be external and asynchronous.

PC Initialization

There are basically two approaches to initialize a PC.

1. Direct Approach

The PC is loaded with the address of the startup routine upon resetting.

2. Indirect Approach

The PC is initialized with the address where the address of the startup routine is located. The
reset instruction loads the PC with the address of a jump instruction. The jump instruction in turn
contains the address of the required routine.

An example of a reset operation is found in the 8086 processor. Upon receiving the reset
instruction the 8086 initializes its PC with the address FFFFOH. This memory location contains a
jump instruction to the bootstrap loader program. This program provides the system initialization

Behavioral RTL for SRC Reset
The original behavioral RTL for SRC without any reset operation is:
Instruction_Fetch :=(! Run&Strt: (Run « 1; instruction_Fetch,
Run : (IR «+— M [PC]; PC «— PC+4;instruction_execution)),
instruction_execution:= (Id (:=op=1...) ;
This recursive definition implies that each instruction at the address supplied by PC is executed.
The modified RTL after adding the reset capability is
Instruction_Fetch:=(! Run&Strt :(Run « 1,
PC,R [0...31] < 0),
Run&!Rst :(IR «— M [PC],
PC < PC+4, instruction_execution);
Runé&Rst:(Rst < 0, PC « 0);
instruction_Fetch),
The modified definition includes testing the value of the “rst” signal after execution of each
instruction. The processor may not be halted in the midst of an instruction in the RTL definition

To actually implement these changes in the SRC, the following modification are required to add
the reset operation to the structural RTL for SRC:

e A check for the reset signal on each clock cycle
e A control signal for clearing the PC
e A control signal to load zero to control step counter

Example: The sub instruction with RESET processing

To actually reset the processor in the midst of an instruction, the “Rst” condition must be tested
after each clock cycle.

Let us examine the contents of each phase in the given table. In step TO, if the Rst signal is not
asserted, the address of the new instruction is delivered to memory and the value of PC is
incremented by 4 and stored in another register. If the “Rst” signal is asserted, the “Rst” signal is
immediately cleared, the PC is cleared to zero and T, the step counter is also set to zero. This
behavior (in case of ‘Rst’ assertion) is the same for all steps. In step T1, if the rst signal is not
asserted, the value stored at the delivered memory word is stored in the memory data register and
the PC is set to its incremented value.

In step T2, the stored memory data is transferred to the instruction register.

In step T3, the register operand values are read.

Page 180

Advance Computer Architecture — CS501

In step T4, the mathematical operation is executed.
In step T3, the calculated value is written back to register file.

During all these steps if the Rst signal is asserted, the value of PC is set to 0 and the value of the
step counter is also set to zero.

| Step RTN Control Sequence

TO IRsl:(MA « PC.C « PC+H), | IRst:(PC,c LMAR, INC4, LG
Ret:(Rst «DPC «0T+« |MRaad), Rst.(CIfPC, Gotol);
0)

T1 Rst:(MD « M[MA]PC « IRst: (T, LPC Wait),
Cl Rst ((CIPC, Gotol);
Hat(Fst «— 0PC 0T
0)

T2 IRst: (IR « MDY, IRst:(MER,» LIR),
Rst(Rst <0 PC «0.T « |Rst: (CIiPC, Gotol),
0)

T3 Rst: (A « R[b]), IRst:(RBE, R2ZBUS, LA},
Rst:Fst < 0: PC «0: T « |Rst: {CHPC, Gotol),
d)

T4 IRl (T« A - Rlrc], IRst:(RCE, RZBUS, SUB, LC),
Rst(Rst <0 PC «0T« |Rst (CIPC, Gotol)
0

T5 IRst: (R[ra] « C). IRst (LC: RAE, BUSZR: End),
Ret:(Rst «0PC «0; T+« |Rst: (CIPC, Gotol); .
0)

Machine Exceptions

Anything that interrupts the normal flow of execution of instructions in the processor is
called an exception.

Exceptions may be generated by an external or internal event such as a mouse click or an
attempt to divide by zero etc.

External exceptions or interrupts are generally asynchronous (do not depend on the
system clock) while internal exceptions are synchronous (paced by internal clock)

The exception process allows instruction flow to be modified, in response to internal or
external events or anomalies. The normal sequence of execution is interrupted when an
exception is thrown.

Exception Processing
A generalized exception handler should include the following mechanisms:

1.

Logic to resolve priority conflicts. In case of nested exceptions or an exception
occurring while another is being handled the processor must be able to decide which
exception bears the higher priority so as to handle it first. For example, an exception
raised by a timer interrupt might have a higher priority than keyboard input.

Identification of interrupting device. The processor must be able to identify the
interrupting device that it can to load the appropriate exception handler routine. There are
two basic approaches for managing this identification: exception vectors and

Page 181

Advance Computer Architecture — CS501

“information” register. The exception vector contains the address of the exception
handling routine. The interrupting process fills the exception vector as soon as the
interruption is acknowledged. The disadvantage of this approach is that a lot of space
may be taken up by vectors and exception handler codes.

In the information register, only one general purpose exception handler is used. The PC is
saved and the address of the general purpose register is loaded into the PC. The
interrupting process must fill the information register with information to allow
identification of the cause and type of exception.

Saving the processor state. As stated earlier the processor state must be saved before
jumping to the exception handler routine. The state includes the current value of the PC,
general purpose registers, condition vector and external flags.

Exception disabling during critical operation. The processor must disable interrupts
while it is switching context from the interrupted process to the interrupting process, so
that another exception might not disrupt the transition.

Examples of Exceptions

Reset Exception

Reset operation is treated as an exception by some machines e.g. SPARC and MC68000.
Machine Check

This is an external exception caused by memory failure

Data Access Exception

This exception is generated by memory management unit to protect against illegal
accesses.

Instruction Access Exception

Similar to data access exception

Alignment Exception

Generated to block misaligned data access

Types of Exception

Program Exceptions

These are exceptions raised during the process of decoding and executing the instruction.
Examples are illegal instruction, raised in response to executing an instruction which
does not belong to the instruction set. Another example would be the privileged
instruction exception.

Hardware Exceptions

There are various kinds of hardware exceptions. An example would be of a timer which
raises an exception when it has counted down to zero.

Trace and debugging Exceptions

Variable trace and debugging is a tricky task. An easy approach to make it possible is
through the use of traps. The exception handler which would be called after each
instruction execution allows examination of the program variables.

Non-Maskable Exceptions

These are high priority exceptions reserved for events with catastrophic consequences
such as power loss. These exceptions cannot be suppressed by the processor under any
condition. In case of a power loss the processor might try to save the system state to the
hard drive, or alert an alternate power supply.

Interrupts (External Exceptions)

Exception handlers may be written for external interrupts, thus allowing programs to
respond to external events such as keyboard or mouse events.

Page 182

Advance Computer Architecture — CS501

Lecture No. 18
Pipelining

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 4.8

Summary

SRC Exception Processing Mechanism
Introduction to Pipelining
Complications Related to Pipelining
Pipeline Design Requirements

Correction: Please note that the phrase “instruction fetch” should be used where the speaker has
used “instruction interpretation”.

SRC Exception Processing Mechanism

r

Interrupt Request Interrupt Disable
: Acknowledge ———

i g Interrupt

iack: Flag IE:

Load PC with saat ool

Exception Vector I I"f_(.)'f- Save PC
Ivect<31...0> :1’;"“0;’ inlPC=31..0>

The following tables on the next few pages summarize the changes needed in the SRC
description for including exceptions:

Page 183

Advance Computer Architecture — CS501

Behavioral RTL for Exception Processing

Instruction_Fetch:=

('Runé&Strt: Run «— 1, Start
Run & !(ireq&IE):(IR «—M[PC], Normal Fetch
PC « PC + 4;

Instruction_Execution),

Runé&(ireq&IE): (IPC « PC<31..0>, Interrupt, PC copied
[1<15..0> « Isrc_info<15..0>, 11 is loaded with the info. PC loaded with
IE <« 0: PC « Ivect<31..0>, new address

iack « 1; iack < 0),
Instruction_Fetch);
Additional Instructions to Support Interrupts

Mnemonic Behavioral RTL Meaning

svi (op=16) R[ra]<15..0> « [I<15..0>, Save Il and IPC

R[tb] « IPC<31..0>;

11 (op=17) 1I<15..0> « R|ra]<15..0>, Restore Il and IPC

IPC<31..0> < R]rb];

een (op=10) IE « 1; Exception enable
edi (op=11) IE « 0; Exception disable
rfi (op=30) PC —IPC, IE « 1; Return from interrupt

Page 184

Advance Computer Architecture — CS501

Structural RTL for the Fetch Phase including Exception Processing

Step Structural RTL for the 1-bus SRC
TO (ireq&IE): (MA « PC, C « PC + 4);

(ireq&IE): (IPC « PC,I1« Isrc_info,

IE <= 0,PC « (220 0)O(Isrc_vect<7..0>)© 00, iack « 1;
iack « 0, End) ;

Tl MD «— M[MA], PC « C;
T2 IR < MD;
T3 Instruction_Execution;

Combining the RTL for Reset and Exception Instruction_Fetch:=

RTL Event
(Run&!Rst&! (ireq&IE):(IR «<— M[PC], PC < PC+4; Normal
Instruction_Execution),
Run&Rst: (Rst «—0, [E « 0, PC « 0; Instruction_Fetch), Fetch
'Run&Strt: (Run «1, PC « 0, R[0..31] « 0; Instruction_Fetch), Soft Reset
Run&!Rst&(ireq&IE): (IPC «— PC<31..0>, Hard Reset
[1<15..0> «Isrc_info<15..0>, IE «— 0, PC « Ivect<31..0>, Interrupt

iack « 1; iack «— 0; Instruction_Fetch));

Introduction to Pipelining

Pipelining is a technique of overlapping multiple instructions in time. A pipelined processor
issues a new instruction before the previous instruction completes. This results in a larger
number of operations performed per unit of time. This approach also results in a more efficient
usage of all the functional units present in the processor, hence leading to a higher overall
throughput. As an example, many shorter integer instructions may be executed along with a

Page 185

Advance Computer Architecture — CS501

longer floating point multiply instruction, thus employing the floating point unit simultaneously
with the integer unit.

Executing machine instructions with and without pipelining

We start by assuming that a given processor can be split in to five different stages as shown in
the diagram below, and as

explained later in this section. A O
1 1< 1 Fetch Fetch =g el Eegister
Each stage receives its input from st — oporand L

the previous stage and provides
its result to the next stage. It can
be easily seen from the diagram
that in case of a non-pipelined
machine there is a single
instruction add r4, r2, r3 being
processed at a given time, while
in a pipelined machine, five
different instructions are being
processed simultaneously. An
implied assumption in this case is
that at the end of each stage, we have some sort of a storage place (like temporary registers) to
hold the results of the present stage till they are used by the next stage.

acldd rd, r2, 13
Only one

functional

5 Withouwt Pipelining
unit busy

"

add rd, r2,r3 sub rB, 17, r5 zhir r2, 4

All
functional
units busy

With Pipelining

Description of the Pipeline Stages
In the following paragraphs, we discuss the pipeline stages mentioned in the previous example.

1. Instruction fetch

As the name implies, the instruction is fetched from the
instruction memory in this stage. The fetched instruction bits are ldrt, 2
loaded into a temporary pipeline register.

2. Instruction decode/operand fetch

In this stage the operands for the instruction are fetched from the
register file. If the instruction is add rl1, r2, r3 the registers r2
and r3 will be read into the temporary pipeline registers.

#r2 b

addrd, r2, r3
3. ALU® operation

In this stage, the fetched operand values are fed into the ALU
along with the function which is required such as addition,
subtraction, etc. The result is stored into temporary pipeline
registers. In case of a memory access such as a load or a store
instruction, the ALU calculates the effective memory address in
this stage.

sub rE, F7 S |

shert, 2, 4

4. Memory access
For a load instruction, a memory read operation takes place. For a store instruction, a memory
write operation is performed. If there is no memory access involved in the instruction, this stage
is simply bypassed.

3 The ALU is also called the ALSU in some cases, in particular, where its “shifting” capabilities need to be
highlighted. ALSU stands for Arithmetic Logic Shift Unit.

Page 186

Advance Computer Architecture — CS501

5. Register write
The result is stored in the destination register in this stage.

Latency & throughput

Latency is defined as the time required to process a single instruction, while throughput is
defined as the number of instructions processed per second. Pipelining cannot lower the latency
of a single instruction; however, it does increase the throughput. With respect to the example
discussed earlier, in a non-pipelined machine there would be one instruction processed after an
average of 5 cycles, while in a pipelined machine, instructions are completed after each and
every cycle (in the steady-state, of course!!!). Hence, the overall time required to execute the
program is reduced.

Remember that the performance gain in a pipeline is limited by the slowest stage in the pipeline.

Complications Related to Pipelining
Certain complications may arise from pipelining a processor. They are explained below:
Data dependence

This refers to the situation when an instruction in one stage of the pipeline uses the results of an
instruction in the previous stage. As an example let us consider the following two instructions

S1:add r3,r2, r1
S2: subr4, r5, r3

There is a data-dependence among the above two instructions. The register R3 is being written to
in the instruction S1, while it is being read from in the instruction S2. If the instruction S2 is
executed before instruction S1 is completed, it would result in an incorrect value of R3 being
used.

Resolving the dependency
There are two methods to remedy this situation:

1. Pipeline stalls

These are inserted into the pipeline to block instructions from entering the pipeline until some
instructions in the later part of the pipeline have completed execution. Hence our modified code
would become

S1:add r3,r2, r1
stall®

stall

stall

S2: sub r4, r5, r3

A pipeline stall can be achieved by using the nop instruction.

Page 187

Advance Computer Architecture — CS501

2. Data forwarding

When using data forwarding, special hardware is added to the processor, which allows the results
of a particular pipeline stage to be transferred directly to another stage in the pipeline where they
are required. Data may be forwarded directly from the execute stage of one instruction to the
decode stage of the next instruction. Considering the above example, S1 will be in the execute
stage when S2 will be decoded. Using a comparator we can determine that the destination
operand of S1 and source operand of S2 are the same. So, the result of S1 may be directly
forwarded to the decode stage.

Other complications include the “branch delay” and the “load delay”. These are explained below:

Branch delay

Branches can cause problems for pipelined processors. It is difficult to predict whether a branch
will be taken or not before the branch condition is tested. Hence if we treat a branch instruction
like any normal instruction, the instructions following the branch will be loaded in the stages
following the stage which carries the branch instruction. If the branch is taken, then those
instructions would need to be removed from the pipeline and their effects if any, will have to be
undone. An alternate method is to introduce stalls, or mop instructions, after the branch
instruction.

Load delay

Another problem surfaces when a value is loaded into a register and then immediately used in the
next operation. Consider the following example:

S1: load r2, 34(r1)
S2: add r5,r2, r3

In the above code, the “correct” value of R2 will be available after the memory access stage in
the instruction S1. Hence even with data forwarding a stall will need to be placed between S1
and S2, so that S2 fetches its operands only after the memory access for S1 has been made.

Pipeline Design Requirements

For a pipelined design, it is important that the overall meaning of the program remains
unchanged, i.e., the program should produce the same results as it would produce on a non-
pipelined machine. It is also preferred that the data and instruction memories are separate so that
instructions may be fetched while the register values are being stored and/or loaded from data
memory. There should be a single data path so as not to complicate the flow of instructions and
maintain the order of program execution. There should be a three port register file so that if the
register write and register read stages overlap, they can be performed in parallel, i.e., the two
register operands may be read while the destination register may be written. The data should be
latched in between each pipeline stage using temporary pipeline registers. Since the clock cycle
depends on the slowest pipeline stage, the ALU operations must be able to complete quickly so
that the cycle time is not increased for the rest of the pipeline.

Designing a pipelined implementation

In this section we will discuss the various steps involved in designing a pipeline. Broadly
speaking they may be categorized into three parts:

Page 188

Advance Computer Architecture — CS501

1. Adapting the instructions to pipelined execution

The instruction set of a non-pipelined processor is generally different from that of a pipelined
processor. The instructions in a pipelined processor should have clear and definite phases, e.g.,
add rl, r2, r3. To execute this instruction, the processor must first fetch it from memory, after
which it would need to read the registers, after which the actual addition takes place followed by
writing the results back to the destination register. Usually register-register architecture is
adopted in the case of pipelined processors so that there are no complex instructions involving
operands from both memory and registers. An instruction like add rl, r2, a would need to
execute the memory access stage before the operands may be fed to the ALU. Such flexibility is
not available in a pipelined architecture.

2. Designing the pipelined data path

Once a particular instruction set has been chosen, an appropriate data path needs to be designed
for the processor. The data path is a specification of the steps that need to be followed to execute
an instruction. Consider our two examples above

For the instruction add r1, ¥2, r3: Instruction Fetch — Register Read — Execute — Register Write,

Whereas for the instruction add r1, r2, a (remember a represents a memory address), we have
Instruction Fetch — Register Read —Memory Access— Execute — Register Write,

The data path is defined in terms of registers placed in between these stages. It specifies how the
data will flow through these registers during the execution of an instruction. The data path
becomes more complex if forwarding or bypassing mechanism is added to the processor.

3. Generating control signals

Control signals are required to regulate and direct the flow of data and instruction bits through
the data path. Digital logic is required to generate these control signals.

Page 189

Advance Computer Architecture — CS501

Lecture No. 19
Pipelined SRC

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 5
Computer Systems Design and Architecture 5.13
Summary

e Pipelined Version of the SRC
e Adapting SRC instructions for Pipelined Execution
e Control Signals for Pipelined SRC

Pipelined Version of the SRC

In this lecture, a pipelined version of the SRC is presented. The SRC uses a five-stage pipeline.
Those five stages are given below:

Instruction Fetch

Instruction decode/operand fetch
ALU operation

Memory access

Register write

MBS

As shown in the next diagram, there are several registers between each stage.

After the instruction has been fetched, it is stored in IR2 and the incremented value of the
program counter is held in PC2. When the register values have been read, the first register value
is stored in X3, and the second register value is stored in Y3. IR3 holds the opcode and ra. If it is
a store to memory instruction, MD3 holds the register value to be stored.

After the instruction has been executed in the ALU, the register Z4 holds the result. The op-code
and ra are passed on to IR4. During the write back stage, the register Z5 holds the value to be
stored back into the register, while the op-code and ra are passed into IRS. There are also two
separate memories and several multiplexers involved in the pipeline operation. These will be
shown at appropriate places in later figures.

The number after a particular register name indicates the stage where the value of this register is
used.

Page 190

Advance Computer Architecture — CS501

Pipeline Stages "“'-—-_________* Instruction

Fetch
Decode and
Dperand
Head
L, g Bl
—_— - -+ [¥3 F -[MD3 h—
Pipeline Registers AL
Dperation
‘o 4 :
Femory
1 ¥ ACcess
— — I_L_Iﬂ_i} — zﬁ ----- —
Register
Wiritehack

Adapting SRC Instructions for Pipelined Execution
As mentioned earlier, the SRC instructions fall into the following three categories:

1. ALU Instructions
2. Load/Store instructions
3. Branch Instructions

We will now discuss how to design a common pipeline for all three categories of instructions.
1. ALU instructions
ALU instructions are usually of the form:

op-code ra, rb, re
or
op-code ra, rb, constant.

In the diagram shown, X3 and Y3 are temporary registers to hold the values between pipeline
stages. X3 is loaded with operand value from the register file. Y3 is loaded with either a register
value from the register file or a constant from the instruction. The operands are then available to
the ALU. The ALU function is determined by decoding the op-code bits. The result of the ALU
operation is stored in register Z4, and then stored in the destination register in the register write
back stage. There is no activity in the memory access stage for ALU instructions. Note that 75,
IR3, IR4, and IR5 are not shown explicitly in the figure. The purpose of not including these
registers is to keep the drawing simple. However, these registers will transfer values as

Page 191

Advance Computer Architecture — CS501

instructions progress through the pipeline. This comment also applies to some other figures in
this discussion.

ALU Instruction [Instruction

Memory I]
[Ine4 | Instruction

Feich

Register File |<«— regwrite
R[rb] R[rc] R[ra] [s=

Opcode| ra | «| ¢2

‘D | Decode and

P RS QOperand Read

Mpa—MUX/

= ALU

E“’ Operation
Memory
Access
Register
Writeback

2. Load/Store instructions

Load/Store instructions are usually of the form:
op-code ra, constant(rb)

The instruction is loaded into IR2 and the incremented value of the PC is loaded in PC2. In the
next stage, X3 is loaded with the value in PC2 if the relative addressing mode is used, or the
value in rb if the displacement addressing mode is used. Similarly, C1 is transferred to Y3 for
the relative addressing mode, and ¢2 is transferred to Y3 for the displacement addressing mode.
The store instruction is completed once memory access has been made and the memory location
has been written to. The load instruction is completed once the loaded value is transferred back
to the register file. The following figure shows the schematic for a load instruction. A similar
schematic can be drawn for the store instruction.

Page 192

Advance Computer Architecture — CS501

Load_ In:ntruction (P ke
Instruction [:9m°w
[(Inc4 |

{Id, Idr, la, lar) Instruction
Fetch
Op codejra [c1 *.m Register File |+— regwrite
| - | | | Rlrb] Rlrc] Rlra] (e
|_* ‘l Decode and
Pan et Operand Read
Mpa—MUX/ Mp3—> MUX/
ALU
Operation
Memory
Access
Register
Writeback

3. Branch Instructions

Branch Instructions usually involve calculating the target address and evaluating a condition.
The condition is evaluated based on the c2 field of the IR and by using the value in R[rc]. If the
condition is true, the PC is loaded with the value in R[rb], otherwise it is incremented by 4 as
usual. The following figure shows these details.

; 1
Branch Instruction Instruction (.
(" o]
l

: Instruction

l— Fetch
Register File regwrite

‘Op code‘ ra ‘ ‘ c2 ‘ PC2 RIrb] Rlrc] Rlra] 4=

_l_l Decode and
Branch Logic |+ coniifion Operand Read

ALU
Operation

Memory
Access

Register
Writeback

The complete pipelined data path

The pipelined data path implementation diagrams shown earlier for the three SRC instruction
categories must be combined and refined to get a working system. These details get complicated
very quickly. A detailed combined diagram is shown in Figure 5.7 of the text book.

Page 193

Advance Computer Architecture — CS501

Control Signals for the Pipelined SRC

We define the following signals for the SRC by grouping similar op-codes:

Control signals for pipeline stages

. branch = br~brl

. cond = (IR2=2 0==11~{IRZ=2_1==11&{]R2=0=ER[rc]=0)~
& (IR 2=2 1==2E{IR2=0= & R[rc]=31=1)

® shi=shr~shra~shl~shc

' alu=add-~addi~suh~ned~and~andi~ar~ori~nat-~sh
- i =addi~andi~ori~{sh&(R=4.. .0=1=0))

. logd:=Id ~Idr

- ladr=la~lar

¥ store=st~str

Y l-==load~ladr~stone

- regitite:=load~ladr-arl-alu

o dspi=ld~st-a

& rl=ldr-str~lar

In most cases, the signals defined above are used in the same stage where they are generated. If
that is not the case, a number used after the signal name indicates the stage where the signal is
generated.

Using these definitions, we can develop RTL statements for describing the pipeline activity as
well as the equations for the multiplexer select signals for different stages of the pipeline. This is
shown in the next diagram.

Control Signals for different pipeline Stages

Consider the RTL description of the Mp1 signal, which controls the input to the PC. It simply
means that if the branch and cond signals are not activated, then the PC is incremented by 4,
otherwise if both are activated then the value of R1 is copied in to the PC.

The multiplexer Mp2 is used to decide which registers are read from the register file. If the store
signal is activated then R[rb] from the instruction bits is read from the register file so that its
value may be stored into memory, otherwise R[rc] is read from the register file.

The multiplexer Mp3 is used to decide which registers are read from the register file for operand 2. If
either rl or branch is activated then the updated value of PC2 is transferred to X3, otherwise if dsp or
alu is activated, the value of R[ra] from the register file is transferred to the x3. In the same way,
multiplexer Mp4 is used to select an input from Y3.

In the same way, multiplexer Mp4 is used to select an input for Y3.

Page 194

Advance Computer Architecture — CS501

Control signals for pipeline stages

hMP 1 +— (l{branch2&cond)incd), Inztruction
((hranch2&cond)R1) Fetch

mpz +— (lstorerc)[storers)

MP3 *+— (rl~branchPC2), Decaode and
(dd=pali Rl Ciperand Read

MP4 «+— oty (depimm:c2) aludlimm:E2)

AL
Cperation

(load: 24, Mmooy

i ‘_[Iuad:mem data) Arcess

Redizter
Wiritekiack

The multiplexer MPS5 is used to decide which value is transferred to be written back to the
register file. If the load signal is activated data from memory is transferred to Z5, however if the
load signal is not activated then data from Z4 (which is the result of ALU) is transferred to Z5
which is then written back to the register file.

Page 195

Advance Computer Architecture — CS501

Lecture No. 20
Hazards in Pipelining
Reading Material
Vincent P. Heuring & Harry F. Jordan Computer Systems Design and Chapter 5
Architecture 5.1.5,5.1.6

Summary

e Structural RTL for Pipeline Stages

¢ Instruction Propagation Through the Pipeline
e Pipeline Hazards

Data Dependence Distance

Data Forwarding

Compiler Solution to Hazards

SRC Hazard Detection and Correction

e RTL for Hazard Detection and Pipeline Stall

Structural RTL for Pipeline Stages

The Register Transfer Language for each phase is given as follows:
Instruction Fetch

IR2 « M [PC];
PC2 — PC+4:

Instruction Decode & Operand fetch

X3«1-s2:(rel2:PC2, disp2:(rb=0):?, (rb!=0):R[rb]), brl2:PC2, alu2:R[rb],

Y3 « 1-s2:(rel2:cl, disp2:c2), alu2:(imm2:c2, limm2:R[rc]),

MD3 «store2:R[ra], IR3 « IR2, stop2:Run « 0,

PC « !branch2:PC+4, branch2:(cond(IR2, R[rc]):R][rb], !cond(IR2, R[rc]):PC+4;

ALU operation

74 «— (I-s3: X3+Y3, brl3: X3, Alu3: X3 op Y3,
MD4 «— MD3,
IR4 « IR3;

Memory access

75 « (load4: M [Z4], ladr4~branch4~alu4:74),
store4: (M [Z4] < MD#4),
IR5 «IR4;

Page 196

Advance Computer Architecture — CS501

Write back
regwrite5: (R[ra] < Z25);
Instruction Propagation through the Pipeline

Consider the following SRC code segment flowing through the pipeline. The instructions along
with their addresses are

200: add r1, r2, r3
204: Id r5, [4(r7)
208: br r6

212: str r4, 56

400

We shall review how this chunk of code is executed.

First Clock Cycle

Add instruction enters the pipeline in the first cycle. The value in PC is incremented from 200 to
204.

Second Clock Cycle

Add moves to decode stage. Its operands are fetched from the register file and moved to X3 and
Y3 at the end of clock cycle, meanwhile the Instruction 1d r5, [4+r7] is fetched in the first stage
and the PC value is incremented from 204 to 208.

Third Clock Cycle

Add instruction moves to the execute stage, the results are written to Z4 on the trailing edge of
the clock. Ld instruction moves to decode stage. The operands are fetched to calculate the
displacement address. Br instruction enters the pipeline. The value in PC is incremented from
208 to 212.

Fourth Clock Cycle

Add does not access memory. The result is written to Z5 at the trailing edge of clock. The
address is being calculated here for 1d. The results are written to Z4. Br is in the decode stage.
Since this branch is always true, the contents of PC are modified to new address. Str instruction
enters the pipeline. The value in PC is incremented from 212 to 216.

Fifth Clock Cycle

The result of addition is written into register r1. Add instruction completes. L.d accesses data
memory at the address specified in Z4 and result stored in Z5 at falling edge of clock. Br
instruction just propagates through this stage without any calculation. Str is in the decode stage.
The operands are being fetched for address calculation to X3 and Y3. The instruction at address
400 enters the pipeline. The value in PC is incremented from 400 to 404.

Page 197

Advance Computer Architecture — CS501

Instruction Instruction AL Memory Fegister
Fetch decode Operation ACCESS Writehack

CC1 | Ldr748 | fadd ri.r2rg [pub rzrdrd [sirrasz | [snirersz)
ccz | Ldras |lacd i r2rd [Bub 2 rard | strraaz |

CC3 | Ldr748 ||add r1r2rg

cca | Larras | [Add g
cos | ew [Lar7a8 ||addr1r23)

Pipeline Hazards

The instructions in the pipeline at any given time are being executed in parallel. This parallel
execution leads to the problem of instruction dependence. A hazard occurs when an instruction
depends on the result of previous instruction that is not yet complete.

Classification of Hazards

There are three categories of hazards
1. Branch Hazard
2. Structural Hazard
3. Data Hazard

Branch hazards

The instruction following a branch is always executed whether or not the branch is taken. This is
called the branch delay slot. The compiler might issue a nop instruction in the branch delay slot.
Branch delays cannot be avoided by forwarding schemes.

Structural hazards

A structural hazard occurs when attempting to access the same resource in different ways at the
same time. It occurs when the hardware is not enough to implement pipelining properly e.g.
when the machine does not support separate data and instruction memories.

Data hazards

Data hazard occur when an instruction attempts to access some data value that has not yet been
updated by the previous instruction. An example of this RAW (read after write) data hazard is;

200: add 12, r3, r4
204: sub r7, 12, r6

The register r2 is written in clock cycle 5 hence the sub instruction cannot proceed beyond stage
2 until the add instruction leaves the pipeline.

Page 198

Advance Computer Architecture — CS501

Data Hazard Detection & Correction

Data hazards can be detected easily as they occur when the destination register of an instruction
is the same as the source register of another instruction in close proximity. To remedy this
situation, dependent instructions may be delayed or stalled until the ones ahead complete. Data
can also be forwarded to the next instruction before the current instruction completes, however
this requires forwarding hardware and logic. Data can be forwarded to the next instruction from
the stage where it is available without waiting for the completion of the instruction. Data is
normally required at stage 2 (operand fetch) however data is earliest available at stage 3 output
(ALU result) or stage 4 output (memory access result). Hence the forwarding logic should be
able to transfer data from stage 3 to stage 2 or from stage 4 to stage 2.

Data Dependence Distance

Designing a data forwarding unit requires the study of dependence distances. Without
forwarding, the minimum spacing required between two data dependent instructions to avoid
hazard is four. The load instruction has a minimum distance of two from all other instructions
except branch. Branch delays cannot be removed even with forwarding.

Table 5.1 of the text shows numbers related to dependence distances with respect to some
important instruction categories.

Compiler Solution to Hazards

Hazards can be detected by the compiler, by analyzing the instruction sequences and
dependencies. The compiler can inserts bubbles (nop instruction) between two instructions that
form a hazard, or it could reorder instructions so as to put sufficient distance between dependent
instructions. The compiler solution to hazards is complex, expensive and not very efficient as
compared to the hardware solution.

SRC Hazard Detection and Correction

The SRC uses a hazard detection unit. The hazard can be resolved using either pipeline stalls or
by data forwarding.

Pipeline stalls

Consider the following sequence of instructions going through the SRC pipeline

200: shl r6, r3, 2

204: strr3, 32

208: sub r2, r4,r5

212: add r1,12,13

216: Id r7, 48

There is a data hazard between instruction three and four that can be resolved by using pipeline
stalls or bubbles

When using pipeline stalls, nop instructions are placed in between dependent instructions. The
logic behind this scheme is that if opcode in stage 2 and 3 are both alu, and if ra in stage 3 is the
same as rb or rc in stage 2, then a pause signal is issued to insert a bubble between stage 3 and 2.
Similar logic is used for detecting hazards between stage 2 and 4 and stage 4 and 5.

Data Forwarding

Page 199

Advance Computer Architecture — CS501

By adding data forwarding mechanism to the SRC data path, the stalls can be completely
eliminated at least for the ALU instructions. The hazard detection is required between stages 3
and 4, and between stages 3 and 5. The testing and forwarding circuits employ wider IRs to store
the data required in later stages. The logic behind this method is that if the ALU is activated for
both 3 and 5 and ra in 5 is the same as rb in 3 then Z5 which hold the currently loaded or
calculated result is directly forwarded to X3. Similarly, if both are ALU operations and
instruction in stage 3 does not employ immediate operands then value of Z5 is transferred to Y3.
Similar logic is used to forward data between stage 3 and 4.

RTL for Hazard Detection and Pipeline Stall

The following RTL expression detects data hazard between stage 2 and 3, then stalls stage 1 and
2 by inserting a bubble in stage 3

alu3&alu2&((ra3=rb2)~((ra3=rc2)&!imm?2)):
(pause2, pausel, op3+—0)

Meaning:
If opcode in stage 2 and 3 are both ALU, and if ra in stage 3 is same as rb or rc in stage 2, issue a
pause signal to insert a bubble between stage 3 and 2.

Following is the complete RTL for detecting hazards among ALU instructions in different stages
of the pipeline

Data Hazard RTL for detection and stalling
(between)
Stage 2 and 3 alu3&alu2&((ra3=rb2)~((ra3=rc2)&!imm?2)):

(pause2, pausel, op3+—0)

Stage 2 and 4 alud&alu2 &((rad=rb2)~((rad=rc2)&!imm?2)):
(pause2, pausel, op3+—0)

Stage 2 and 5 aluS&alu2&((ra5=rb2)~((rad5=rc2)&!imm?2)):
(pause2, pausel, op3+—0)

Page 200

Advance Computer Architecture — CS501

Lecture No. 21
Instruction Level Parallelism

Reading Material

Vincent P. Heuring & Harry F. Jordan Computer Systems Design and Chapter 5
Architecture 52

Summary

Data Forwarding Hardware

Instruction Level Parallelism

Difference between Pipelining and Instruction-Level Parallelism
Superscalar Architecture

Superscalar Design

VLIW Architecture

Maximum Distance between two instructions
Example

Read page no. 219 of Computer System Design and Architecture (Vincent P.Heuring,
Harry F. Jordan)

Data forwarding Hardware
The concept of data forwarding was introduced in the previous lecture.

Instruction
Fetch
[RZ]
Decode and
Operand
y FRezd
[1IR3 | [‘ES;JI y3l [MD3]
T —2.Y el
Mp7SMUX7 \MUXA Mps ALL
Operation
= ALU
Bd i ¥
LR [z4] [WDAl
Hazard MEemary
Detforward ACCess
unit
[IRS | Hazard Lz5] Bedict
> egister
Detforward :

RTL for data forwarding in case of ALU instructions

Page 201

Advance Computer Architecture — CS501

Dependence RTL

Stage 3-5 aluS&alu3:((ra5=rb3):X 75,

(ra5=rc3)&!imm3: Y « Z5);
Stage 3-4 alud4&alu3:((rad=rb3):X«—74,

(rad=rc3)&!imm3: Y « Z4);

Instruction-Level Parallelism

Increasing a processor’s throughput

There are two ways to increase the number of instructions executed in a given time by a
processor

e By increasing the clock speed
e By increasing the number of instructions that can execute in parallel

Increasing the clock speed

e Increasing the clock speed is an IC design issue and depends on the advancements in chip
technology.

¢ The computer architect or logic designer can not thus manipulate clock speeds to increase
the throughput of the processor.

Increasing parallel execution of instructions

The computer architect cannot increase the clock speed of a microprocessor however he/she can
increase the number of instructions processed per unit time. In pipelining we discussed that a
number of instructions are executed in a staggered fashion, i.e. various instructions are
simultaneously executing in different segments of the pipeline. Taking this concept a step further
we have multiple data paths hence multiple pipelines can execute simultaneously. There are two
main categories of these kinds of parallel instruction processors VLIW (very long instruction
word) and superscalar.

The two approaches to achieve instruction-level parallelism are

> Superscalar Architecture
A scalar processor that can issue multiple instructions simultaneously is said to be
superscalar

» VLIW Architecture
A VLIW processor is based on a very long instruction word. VLIW relies on instruction
scheduling by the compiler. The compiler forms instruction packets which can run in
parallel without dependencies.

Page 202

Advance Computer Architecture — CS501

Difference between Pipelining and Instruction-Level Parallelism

Pipelining Instruction-Level Parallelism
Single functional unit Multiple functional units
Instructions are issued sequentially Instructions are issued in parallel
Throughput increased by overlapping the Instructions are not overlapped but executed in
instruction execution parallel in multiple functional units

Multiple functional units within the CPU are
Very little extra hardware required to required

implement pipelining

Superscalar Architecture

A superscalar machine has following typical features
e It has one or more IUs (integer units) , FPUs (floating point units), and BPUs (branch
prediction units)
e [t divides instructions into three classes
o Integer
o Floating point
o Branch prediction
The general operation of a superscalar processor is as follows
e Fetch multiple instructions
e Decode some of their portion to determine the class
e Dispatch them to the corresponding functional unit

As stated earlier the superscalar design uses multiple pipelines to implement instruction level
parallelism.

Operation of Branch Prediction Unit

e BPU calculates the branch target address ahead of time to save CPU cycles

e Branch instructions are routed from the queue to the BPU where target address is
calculated and supplied when required without any stalls

e BPU also starts executing branch instructions by speculating and discards the results if
the prediction turns out to be wrong

Page 203

Advance Computer Architecture — CS501
Superscalar Design

The philosophy behind a superscalar design is

. to prefetch and decode as many instructions as possible before execution
. and to start several branch instruction streams speculatively on the basis of this decoding
. and finally, discarding all but the correct stream of execution

The superscalar architecture uses multiple instruction issues and uses techniques such as branch
prediction and speculative instruction execution, i.e. it speculates on whether a particular branch
will be taken or not and then continues to execute it and the following instructions. The results
are not written back to the registers until the branch decision is confirmed. Most superscalar
architectures contain a reorder buffer. The reorder buffer acts like an intermediary between the
processor and the register file. All results are written onto the reorder buffer and when the
speculated course of action is confirmed, the reorder buffer is committed to the register file.

Superscalar Processors

Examples of superscalar processors

e PowerPC 601
e Intel P6
e DEC Alpha 21164

VLIW Architecture

VLIW stands for “Very Long Instruction Word” typically 64 or 128 bits wide. The longer
instruction word carries information to route data to register files and execution units. The
execution-order decisions are made at the compile time unlike the superscalar design where
decisions are made at run time. Branch instructions are not handled very efficiently in this
architecture. VLIW compiler makes use of techniques such as loop unrolling and code reordering
to minimize dependencies and the occurrence of branch instructions.

Page 204

Advance Computer Architecture — CS501

Lecture No. 22
Microprogramming
Reading Material
Vincent P. Heuring & Harry F. Jordan Chapter 5
Computer Systems Design and Architecture 53

Summary

e Microprogramming
Working of a General Microcoded Controller
Microprogram Memory
Generating Microcode for Some Sample Instructions
Horizontal and Vertical Microcode Schemes
Microcoded 1-bus SRC Design
The SRC Microcontroller

Microprogramming

In the previous lectures, we have discussed how to implement logic circuitry for a control unit
based on logic gates. Such an implementation is called a hardwired control unit. In a micro
programmed control unit, control signals which need to be generated at a certain time are stored
together in a control word. This control word is called a microinstruction. A collection of
microinstructions is called a microprogram. These microprograms generate the sequence of
necessary control signals required to process an instruction. These microprograms are stored in a
memory called the control store.

As described above microprogramming or microcoding is an alternative way to design the
control unit. The microcoded control unit is itself a small stored program computer consisting of
e Micro-PC
e Microprogram memory
e Microinstruction word

Comparison of hardwired and microcoded control unit

Hardwired Control Unit Microcoded Control Unit

The relationship between copntrolThe control signals here are stored as words
mputs and control outputs is a seriesfin a microcode memory.
of Boolean functions.

[Hardwired control units are generallyfMicrocode units sumplify the computer logig
taster. [but 1t 1s comparatively slower.

Working of a general microcoded controller

Page 205

Advance Computer Architecture — CS501

A microcoded controller works in the same way as a small general purpose computer.

1. Fetch a micro-instruction and increment micro-PC.
2. Execute the instruction present in micro-IR.
3. Fetch the next instruction and so on...

The microcoded control unit is like a
small computer in itself. It consists of a
microprogram memory, which is read
using a micro program counter. The
micro PC is controlled by the
microprogram controller. Values of the
micro PC depends on a 4 to 1 MUX.
The source may be the incremented
micro PC value, or a calculated branch
value, or a value derived by decoding
an opcode for an instruction. The
microprogram memory writes the
control word at the chosen address into
the micro

instruction register. This control word is

Esxternal source opoode
... I R —t l_ _J . Microprogram
“w M = 1] Controller
L S r
1 [Inc
Branch Micro-FC I

Address

Starding

address from

Clk Other

Microprogram
b rnory

Micro- 1R

Contral
Signals

hdicro- Branch
Cantrol

basically the set of all the control signals needed to execute the instruction at that particular

instant.

Fields in the micro instruction

C Bits [

These form the control signal

field

M Bits

These form the branch address
field

B Bits
These form the branch control

field.

Loading the micro-PC

¢ bits control
signal field

1

The micro-PC can be loaded from one of the four possible sources
e Simple increment Steps sequentially from microinstruction to microinstruction

m bits branch b bits branch '
address field control field .

¢ Lookup table A lookup table maps the opcode field to the starting address of the
microcode routine that generates control signals.

¢ External source Initializes micro-PC to begin an operation e.g. interrupts service, reset etc.
¢ Branch addresses Jumps anywhere in the microprogram memory on the basis of

conditional or unconditional branch.

Microprogram Memory

e This small memory contains micro routines for all the instructions in the ISA

e The micro-PC supplies the address and it returns the control word stored at that address
e [t is much faster and smaller than a typical main memory

Page 206

Advance Computer Architecture — CS501

Layout of a typical microprogram memory

i Cro- Mlemory
Address Contents
] Microcode for instruction fetch

Microcode for load instruction

Microcode for add instruction

Microcode for br instruction

20 Microcode for reset instruction

Generating Microcode for Some Sample Instructions

e The control word for an instruction is used to generate the equivalent microcode sequence

e Each step in RTL corresponds to a microinstruction executed to generate the control
signals.

Each bit in the control words in the microprogram memory represents a control signal.
The value of that bit decides whether the signal is to be activated or not.

Example: Control Signals for the sub Instruction

The first three addresses from 100 to 102 represent microcode for instruction fetch and the last
three addresses from 203 to 205 represent microcode for sub instruction. In the first cycle at
address 100, the control signal PCout, LMAR, LC, and INC4 are activated and all other signals
are deactivated. All these control signals are for the SRC processor. So, if the micro-PC contains
100, the contents of microprogram memory are copied into the micro IR. This corresponds to the
structural RTL description of the TO clock during instruction fetch phase. In the same way, the
content of address 101 corresponds to T1, and the content of address 102 corresponds to T2.

Page 207

Advance Computer Architecture — CS501

100 1T 10 (0 jo |1 |1jojojofopjo (o (oo (o (o oo
101 o (1 |jo (o f{ocqjofr{ojojoeftr (1)1 oo (oo (o
M o (o |1 (0 (ojofoft o000 (oo oo (o oo
203 | o (oo (1 {ocjofofoj1oje{o (oo oo 1 |o o
204 .. o (oo (1 (o1 ({ojojojojofo (oo 1o (o {1 (0
e | a |1 (0 (oo jafocjo a1 (oo (o o o1 oo (1

Microprogram Controller functions: Branching and looping

e Microprogram controller [Nex flag |
controls the sequence of the N Z ——— Zeroflag

flow of microinstructions.

External Branch
: AddresT From IR Address

e The inputs to the
microcontroller are from the
branch control fields

specified in the microcode _3334,7
word. ’
2 i Micro-PC

e [ts output controls the 4 to 1 — Microprogram | l

multiplexer inside the A O RO, .| -

microcoded control unit. Micg:s;oogr;am
e It implements conditional

execution and both ‘ 0 ‘0‘ 0‘0 ‘ o‘o ‘0 ‘ Control Signals ‘ BR ‘

conditional and 2 |

. y
unconditional branch

If a branch instruction is encountered within the microprogram hardwired logic selects the
branch address as the source of micro-PC using 4 to 1 mux. This hardwired logic caters for all
branch instructions including branch if zero.

4-1 Multiplexer
The multiplexer supplies one of the four possible values to the micro-PC

The incremented value of the micro-PC is used when dealing with the normal flow of
microinstructions.

Page 208

Advance Computer Architecture — CS501

The opcode from the instruction is used to set the micro-PC when a microroutine is initially
being loaded.

Muz= Control Select
External Branch
oo Increment micro-FPC Address From IR Address
01 Opcode from IR N 5'-'-;-._.
hux Control ——=—%, MUA E‘E
10 External address 1
fticm-PC —
11 Branch address l

External address is used when it is required to reset the microprogram controller.
Branch address is set into the micro-PC when a branch microinstruction is encountered.

How to form a branch

e A branch can be implemented by choosing one alternative from each of the following two
lists.

e This scheme provides flexibility in choosing branches as we can form any combination of
conditions and addresses.

Condition
unconditional Address
not zero From IR
il External Address
positive
: Branch Address
negative

e Microcode Branching Examples

Following is an example of branch instructions in microcode

Page 209

Advance Computer Architecture — CS501

% Branching Equivalent

2 |© |- = | ofAction IC

21712l =2 2 construct

S ER E E B E E R s

< |=Z |2lsle]le]le]|e 2 4

400 100 Jo |0 0 O JO xxx [No branch.goto nexf|{...}:
address in sequence-401

401 o1 |1 Jo [0 o [o xxx [To the address supplied|{...}: gotol
[by opcode initial address;

402 {10 J0 10 |1 J0 |0 |... [xx [To external address if Z}{...}: if Z then|
flag is set goto Ext. Add.

403 |11 Jo 10 [0 o |1 |... 00 |To 200 if N flag 1s setf{...}; if N then]
else to 404 goto Labell:

404 |11 |0 J0 |0 |1 |0 Jo00O HO06 [To 406 if N i1s false, elsefWhile (N)|
[to 405 {.}:

405 |11 |1 10 [0 0 |0 |... 404 |Branch to 404 [While contd. ..

Similarity between microcode and high level programs

e Any high level construct such as if-else, while, repeat etc. can be implemented using
microcode

e A variety of microcode compilers similar to the high level compilers are available that
allow easier programming in microcode

e This similarity between high level language and microcode simplifies the task of
controller design.

Horizontal and vertical microcode schemes

In horizontal microcode schemes, there are no intermediate decoders and the control word bits
are directly connected to their destination i.e. each bit in the control word is directly connected to
some control signal and the total number of bits in the control word is equal to the total number
of control signals in the CPU.

Vertical microcode schemes employ an extra level of decoding to reduce the control word width.
From an n bit control word we may have 2" bit signal values.

However, a completely vertical scheme is not feasible because of the high degree of fan out.

Horizontal Microcode Scheme

Page 210

Advance Computer Architecture — CS501

[Coeere = pcroprogra
-
Micropragrarm

hMemary

g e
inead
+IMI

Vertical Microcode Scheme

Vertica

hdicrop ragram
bermory

¥ ¥ W W [ata Fath

n to 20 decoder

FCaut

INC

G

Microcoded 1-bus SRC design

In the SRC the bits from the opcode in the instruction register are decoded to fetch the address of
the suitable microroutine from the microprogram memory. The microprogram controller for the
SRC microcoded control unit employs the logic for handling exceptions and reset process. Since
the SRC does not have any condition codes, we use the CON and n signals instead of N and Z
flags to control branches in case of branch if equal to zero or branch if less than instructions.

The SRC Microprogram Controller

e The microprogram controller for the SRC microcoded control unit employs the logic for
handling exceptions and reset process

¢ Since the SRC does not have any condition codes, we use the CON and n signals instead
of N and Z flags to control branches

Page 211

Advance Computer Architecture — CS501

Starting address from
opcode Clk Other
External source

W
Branch Address
Memory
Micro- IR
Cortrol Signals
CON n=0
2 |
i Externd Branch
)%.; i Addresr From IR Address
1
1
1
—]);4 o A
——) 2. / [41
| | MU,
1
— % : (o]
[Microprogram
B T M e Controller ___ !
h
| Micrn-PC I_
MuxControl
Branch
BrCON=0)
Brin=1)
Brin=0)
END

Microcode for some SRC instructions

Page 212

Advance Computer Architecture — CS501

—_ —_
o =

2 |5 2AEEB S

4] < 1 [® =|=1c 4
— o = bl BN B Sl | =
- z slll=l=z=l=slzZIE | = 8
- = r:‘..:,‘_.dr{z = g
= = —l=l=1=1=|0 o o
< =)l Jasll Jaal faaly Ja) iy P ROURR-

Branch
Address

RTL

(IMAR< PC: C €« PC +4;

300 [0 o oo P o p Rt XXX

301 |00 0 J0 0 0 |0 o [0 xxx [MBR& M[MAR]: PC € C;
302 101 QL oo jo P [0 xxX |[R,Micro-PC<MBR<31...27>;
400 100 JO J0 [0 |0 [0 o [0 xxx |[A € R[1b];

401 100 J0 0 j0 Jo J0 Jo o xxx |C € A +Rlrel:

402 |11 |1 o 0 Jo |1 P o 300 |R[ra] € C; Micro-PC < 300;

Assume the first control word at address 300. The RTL of this instruction is MAR PC combined
with C PC+4. To facilitate these actions the PCout signal bit and the LMAR signal bit are set to
one, so that the value of the PC may be written to the internal processor bus and written onto the
MAR. The instructions at 300, 301 and 302 form the microcode for instructions fetch. If we
examine the RTL we can see all the functionality of the fetch instruction. The value of PC is
incremented, the old value of PC is sent to memory, the instruction from the sent address is
loaded into memory buffer register. Then the opcode of the fetched instruction is used to invoke

the appropriate microroutine.
Alternative approaches to microcoding

Bit ORing

Nanocoding

Writable Microprogram Memory
Subroutines in Microprogramming

Page 213

Advance Computer Architecture — CS501

Lecture No. 23
I/O Subsystems

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 8
Computer Systems Design and Architecture 8.1,8.2

Summary

Introduction to I/O Subsystems

Major Components of an I/O Subsystems
Computer Interface

Memory Mapped /O versus Isolated I/0O
Considerations during I/O Subsystem Design
Serial and Parallel Transfers

I/O Buses

Introduction to I/O Subsystems

This module is about the computer’s input and output. As we have seen in the case of memory
subsystems, that when we use the terms “ read” and “write”, then these terms are from the CPU’s
point of view. Similarly, when we use the terms “input” and “output” then these are also from
the CPU’s point of view. It means that when we are talking about an input cycle, then the CPU is
receiving data from a peripheral device and the peripheral device is providing data. Similarly,
when we talk about an output cycle then the CPU is sending data to a peripheral device and the
peripheral device is receiving data. /O Subsystems are similar to memory subsystems in many
aspects. For example, both exchange bits or bytes. This transfer is usually controlled by the CPU.
The CPU sends address information to the memory and the I/O subsystems. Then these
subsystems decode the address and decide which device should be involved in the transfer.
Finally the appropriate data is exchanged between the CPU and the memory or the I/O device.

Memory and I/O subsystems differ in the following ways:

1. Wider range of data transfer speed:

I/O devices can be very slow such as a keyboard in which case the interval between two
successive bytes (or keystrokes) can be in seconds. On the other extreme, I/O devices can be
very fast such as a disk drive sending data to the CPU or a stream of packets arriving over a
network, in which case the interval between two successive bytes can be in microseconds or even
nanoseconds. While I/O devices can have such a wide range of data transfer speed compared to
the CPU’s speed, the case of memory devices is not so. Even if a memory device is slow
compared to the CPU, the CPU’s speed can be made compatible by inserting wait states in the
bus cycle.

2. Asynchronous activity:

Page 214

Advance Computer Architecture — CS501

Memory subsystems are almost always synchronous. This means that most memory transfers are
governed by the CPU’s clock. Generally this is not the case with I/O subsystems. Additional
signals, called handshaking signals, are needed to take care of asynchronous /O transfers.

3. Larger degradation in data quality:

Data transferred by I/O subsystems can carry more noise. As an example, telephone line noise
can become part of the data transferred by a modem. Errors caused by media defects on hard
drives can corrupt the data. This implies that effective error detection and correction techniques
must be used with I/O subsystems.

4. Mechanical nature of many I/O devices:

Many I/O devices or a large portion of I/O devices use mechanical parts which inherently have a
high failure rate. In case an I/O device fails, interruptions in data transfer will occur, reducing the
throughput. As an example, if a printer runs out of paper, then additional bytes cannot be sent to
it. The CPU’s data should be buffered (or kept in a temporary place) till the paper is supplied to
the printer, otherwise the CPU will not be able to do anything else during this time.

To deal with these differences, special software programs called device drivers are made a part
of the operating system. In most cases, device drivers are written in assembly language.

You would recall that in case of memory subsystems, each location uses a unique address from
the CPU’s address space. This is generally not the case with I/O devices. In most cases, a group
or block of contiguous addresses is assigned to an I/O device, and data is exchanged byte-by-
byte. Internal buffers (memory) within the device store this data if needed.

In the past, people have paid a lot of attention to improve the CPU’s performance, as a result of
which the performance improvement of I/O subsystems was ignored. (I/O subsystems were even
called the “orphans” of computer architecture by some people). Perhaps, many benchmark
programs and metrics that were developed to evaluate computer systems focused on the CPU or
the memory performance only. Performance of I/O subsystems is as important as that of the CPU
or the memory, especially in today’s world. For example, the transaction processing systems
used in airline reservation systems or the automated teller machines in banks have a very heavy
I/O traffic, requiring improved I/O performance. To illustrate this point, look at the following
example.

Suppose that a certain program takes 200 seconds of elapsed time to execute. Out of these 200
seconds, 180 seconds is the CPU time and the rest is I/O time. If the CPU performance improves
by 40% every year for the next seven years because of developments in technology, but the I/O
performance stays the same, let us look at the following table, which shows the situation at the
end of each year. Remember that Elapsed time = CPU time + /O time.

This gives us the I/0 time =200 — 180 = 20 seconds at the beginning, which is 10 % of the
elapsed time.

Year # CPU 1’0 Elapsed 1/0 Time x100 %

Time Time Time Elapsed Time

0 180 20 200 10 %

1 129 20 149 13.42 %
2 92 20 112 17.85 %
3 66 20 86 23.25%
4 47 20 67 29.85 %
5 34 20 54 37.03 %
6 24 20 44 45.45 %
7 17 20 37 54.05 %

Page 215

Advance Computer Architecture — CS501

It can be easily seen that over seven years, the I/O time will become more than 50 % of the total
time under these conditions. Therefore, the improvement of I/O performance is as important as
the improvement of CPU performance. I/O performance will also be discussed in detail in a later
section.

Major components of an I/O subsystem

I/O subsystems have two major parts:

e The /O interface, which is the electronic circuitry that connects the CPU to the I/O
device.

e Peripherals, which are the devices used to communicate with the CPU, for example,
the keyboard, the monitor, etc.

Computer Interface

CrU
(uP)

Memory |4
Subsytem |~

A Computer Interface is a piece of hardware
whose primary purpose is to connect together
any of the following types of computer
elements in such a way that the signal levels
and the timing requirements of the elements
are matched by the interface. Those elements
are:

_lock Diagram of Computer System

The processor unit FEUph s
The memory subsystem(s)

Peripheral (or I/0) devices

The buses (also called "links")

In other words, an interface is an electronic circuit that matches the requirements of the two
subsystems between which it is connected. An interface that can be used to connect the
microcomputer bus to peripheral devices is called an I/O Port. I/O ports serve the following three
purposes:

e Buffering (i.e., holding temporarily) the data to and from the computer bus.
Holding control information that dictates how a transfer is to be conducted.

Holding status information so that the processor can monitor the activity of the interface
and its associated I/O element.

This control information is usually provided by
the CPU and is used to tell the device how to

perform the transfer, e.g., if the CPU wants to /O Subsystem Block Diagram

tell a printer to start a new page, one of the
control signals from the CPU can be used for a i

paper advance command, thereby telling the Processor 10 Module 10 Module
printer to start printing from the top of the next] 7
page. In the same way the CPU may send a System Bus] +

v

e Y A

control signal to a tape drive connected in the
system asking it to activate the rewind y v

mechanism so that the start of the tape is Megnary I Miadde I huile
positioned for access by the CPU. Status
information from various devices helps the CPU [Keyboard] | wouse | [monitr |

to know what is going on in the system. Once
again, using the printer as an example, if the printer runs out of paper, this information should be

Page 216

Advance Computer Architecture — CS501

sent to the CPU immediately. In the same way, if a hard drive in the system crashes, or if a sector
is damaged and cannot be read, this information should also be conveyed to the CPU as soon as
possible

The term “buffer” used in the above discussion also needs to be understood. In most cases, the
word buffer refers to I/O registers in an interface where data, status or control information is
temporarily stored. A block of memory locations within the main memory or within the
peripheral devices is also called a buffer if it is used for temporary storage. Special circuits used
in the interfaces for voltage/current matching, at the input and the output, are also called buffers.

The given figure shows a block diagram of a typical I/O subsystem connected with the other
components in a computer. The thick horizontal line is the system bus that serves as a back-bone
in the entire computer system. It is used to connect the memory subsystems as well as the I/O
subsystems together. The CPU also connects to this bus through a “bus interface unit”, which is
not shown in this figure. Four /O modules are shown in the figure. One module is used to
connect a keyboard and a mouse to the system bus. A second module connects a monitor to the
system bus. Another module is used with a hard disk and a fourth /O module is used by a
modem. All these modules are examples of I/O ports. A somewhat detailed view of these
modules is shown in the next figure.

As we already know that the system bus actually consists of three buses, namely the address bus,
the data bus and the control bus. These three buses are being applied to the I/O module in this
figure. At the bottom, we see a set of data, status and control lines from each “device interface
logic” block. Each of these sets connects to a peripheral device. I/O decoding logic is also shown
in this figure.

Memory Mapped 1/0O versus Isolated I/O

Although this concept was explained earlier as

well, it will be useful to review it again in this Isolated /O

context. In isolated /O, a separate address

space of the CPU is reserved for I/O . Address Bus -

operations. This address space is totally < Data Bus -
different from the address space used for - L >

memory devices. In other words, a CPU has
two distinct address spaces, one for memory
and one for input/output. Unique CPU >

instructions are associated with the I/O space, MEMREL o | one
which means that if those instructions are RERE ek
executing on the CPU, then the accessed
address space will be the /O space and hence
the devices mapped on the I/O space. PENTIUM ADDRESS SPACE

The x86 family with the in and the out PENTIUM 1O MAP(64K)
1nstructi0ns 1S a Well—known example Of this 0007h || 0006h || 0005h || 0004h|| 0003h || 0002h || 0001h|| 0000h
situation. Using the in instruction, the Pentium
processor can receive information from a e e e e
peripheral device, and using the out PENTIUM MENIORY MAP
instruction, the Pentium processor can send h
information to a peripheral device. Thus, the
I/O devices are mapped on the I/O space in
case of the Pentium processor. In some
processors, like the SRC, there is no separate
I/O space. In this case, some address space out erereeren CEEEREG
of the memory address space must be used to BANK? BANKE BANKS BANK4 BANK3 BANK2 BANK1 BANKO

¥Q

l LA J

000FFFFFh 000FFFF8h

Page 217

Advance Computer Architecture — CS501

map I/O devices. The benefit will be that all the instructions which access memory can be used
for I/0 devices. There is no need for including separate I/O instructions in the ISA of the
processor. However, the disadvantage will be that the I/O interface will become complex. If
partial decoding is used to reduce the complexity of the I/O interface, then a lot of memory
addresses will be consumed. The given figure shows the memory address space as well as the
I/O address space for the Pentium processor. The 1/O space is of size 64 Kbytes, organized as
eight banks of 8 Kbytes each.

A similar diagram for the FALCON-A was shown earlier and is repeated here for easy reference.

The next question to be answered is how the
CPU will differentiate between these two Programmer’s view of the FALCON-A
address spaces. How will the system
components know whether a particular transfer

| |

is meant for memory or an I/O device? The | §2E | o ! = ‘ i
answer is simple: by using signals from the | : : 1 1
control bus, the CPU will indicate which /[] I 2
address space is meant during a particular | Ressterfie -
transfer. Once again, using the Pentium as an | :

example, if the in instruction is executing on l "L :2161 Input/Output

the processor, the IOR# signal will become | P[] |)

active and the MEMR# signal will be L _____1

deactivated. For a mov instruction, the control CPU Main memory

logic will activate the MEMR# signal instead

of the IOR# signal.

Considerations during I/O Subsystem Design

Certain things must be taken care of during the design of an I/O subsystem.
Data location:

The designer must identify the device where the data to be accessed is available, the address of
this device and how to collect the data from this device. For example, if a database needs to be
searched for a record that is stored in the fourth sector of the second track of the third platter on a
certain hard drive in the system, then this information is related to data location. The particular
hard drive must be selected out of the possibly many hard drives in the system, and the address
of this record in terms of platter number, track number and sector number must be given to this
hard drive.

Data transfer:

This includes the direction of transfer of data; whether it is out of the CPU or into the CPU,
whether the data is being sent to the monitor or the hard drive, or whether it is being received
from the keyboard or the mouse. It also includes the amount of data to be transferred and the rate
at which it should be transferred. If a single mouse click is to be transferred to the CPU, then the
amount of data is just one bit; on the other hand, a block of data for the hard drive may be several
kilo bytes. Similarly, the rate of the transfer of data to a printer is very different from the transfer
rate needed for a hard drive.

Data synchronization:

This means that the CPU should input data from an input device only when the device is ready to
provide data and send data to an output device only when it is ready to receive data.
There are three basic schemes which can be used for synchronization of an I/O data
transmission:

» Synchronous transmission

» Semi-synchronous transmission

» Asynchronous transmission

Page 218

Advance Computer Architecture — CS501

Synchronous transmission:

This can be understood by looking at the waveforms shown in Figure A. M stands for the bus
master and S stands for the slave device on the bus. The master and the slave are assumed to be
permanently connected together, so that there is no need for the selection of the particular slave
device out of the many devices that may be present in the system. It is also assumed that the
slave device can perform the transfer at the speed of the master, so no handshaking signals are
needed.

At the start of the transfer operation, the master activates the Read signal, which indicates to the slave that it
should respond with data. The data is provided by the slave, and the master uses the Enable signal to latch
it. All activity takes place synchronously with the system clock (not shown in the figure). A
familiar example of synchronous transfer is a register-to-register transfer within a CPU.

|-_ Cycle time Cycle time_.|
I of master Extension
Eveletme . T e e]
of master Read(M i
Read(M) Data(e) valid data
Enable(M)
Enable{\)

Semisynchronous data transfer

Synchronous data transfer

Figure A Figure B

Semi-synchronous transmission:

Figure B explains this type of transfer. All
activity is still synchronous with the system
clock, but in some situations, the slave
device may not be able to provide the data
to the master within the allotted time. The \1
additional time needed by the slave, can be ~ Acknowledge(s) ™

provided by adding an integral number of

Ready(M) i

ey

clock periods to Figure A the master’s Data(S) lralid data
cycle time.

The slave indicates its readiness by

activating the complete signal. Upon Enable(M)

receiving this signal, the master activates
the Enable signal to latch the data provided
by the slave. Transfers between the CPU
and the main memory are examples of
semi-synchronous transfer.

Asynchronous data transfer

Figure C
Asynchronous transmission:
This type of transfer does not require a common clock. The master and the slave operate at
different speeds. Handshaking signals are necessary in this case, and are used to coordinate the
data transfer between the master and the slave as shown in the Figure C. When the master wants
Page 219

Advance Computer Architecture — CS501

to initiate a data transfer, it activates its Ready signal. The slave detects this signal, and if it can
provide data to the master, it does so and also activates its Acknowledge signal. Upon receiving
the Acknowledge signal, the master uses the Enable signal to latch the incoming data .The
master then deactivates its Ready line, and in response to it, the slave removes its data and
deactivates its Acknowledge line.

In all the three cases discussed above, the waveforms correspond to an “input” or a “read” operation.
A similar explanation will apply to an “output” or a “write” operation. It should also be noted
that the latching of the incoming data can be done by the master either by using the rising edge
of the Enable signal or by using its falling-edge. This will depend on the way the intermediate
circuitry between the master and the slave is designed.

Serial and Parallel Transfers

There are two ways in which data can be transferred between the CPU and an I/O device: serial
and parallel.

Serial Transfer, or serial communication of data between the CPU and the I/O devices, refers to
the situation when all the data bits in a "piece of information", (which is a byte or word mostly),
are transferred one bit at a time, over a single pair of wires. Advantages:

Easy to implement, especially by using UARTs’ or USARTS®.

Low cost because of less wires.

Longer distance between transmitter and receiver. Disadvantages:
e Slow by its very nature.

e Inefficient because of the associated overhead, as we will see when we discuss the serial
wave forms.
Parallel Transfer, or parallel communication of data between the CPU and the 1/O devices,
refers to the situation when all the bits of data (8 or 16 usually), are transferred over separate
lines simultaneously, or in parallel. Advantages:

Fast (compared to serial communication) Disadvantages:
High cost (because of more lines).

Cost increases with distance.

Possibility of interference (noise) increases with distance.

Remember that the terms "serial" and "parallel" are with respect to the computer I/O ports and
not with respect to the CPU. The CPU always transfers data in parallel.

Types of serial communication
There are two types of serial communication:

Asynchronous:
e Special bit patterns separate the characters.
e "Dead time" between characters can be of any length.

e Clocks at both ends need not have the same frequency (within permissible limits).

3

Universal Asynchronous Receiver Transmitter.
8 Universal Synchronous Asynchronous Receiver Transmitter.

Page 220

Advance Computer Architecture — CS501

Synchronous:

Characters are sent back to back.
Must include special "sync" characters at the beginning of each message.

e Must have special "idle" characters in the data stream to fill up the time when no
information is being sent.

e Characters must be precisely spaced.

e Activity at both ends must be coordinated by a single clock. (This implies that the clock
must be transmitted with data).

The "maximum information rate" of a synchronous line is higher than that of an asynchronous
line with the same "bit rate", because the asynchronous transmission must use extra bits with
each character. Different protocols are used for serial and parallel transfer. A protocol is a set of
rules understood by both the sender and the receiver. In some cases, these protocols can be
predefined for a certain system. As an alternate, some available standard protocols can be used.

Computer Bus or
Svystem Bus

#l
Memory 4 CPU
Subsytem /:: ; (nF)

¢ &

wo [T

Subsystem [\ ——) The bus interface
{Peripheraly) I - . o

G unit 1s usually

< | between the CPU
k. i and System bus.

S

Block Diagram of a Computer System

Figure 1

Error conditions related to serial communication
(Some related to synchronous transmission, some to asynchronous, and some to both).
e Framing Error: is said to occur when a 0 is received instead of a stop bit (which is always
a 1). It means that after the detection of the beginning of a character with a start bit, the
appropriate number of stop bits was not detected. [A]

e Parity Error: is said to occur when the parity* of the received data is not the same as it
should be. [B] (PARITY is equivalent to the number of 1's; it is either EVEN or ODD. A
PARITY BIT is an extra bit added to the data, for the purpose of error detection and
correction. If even parity is used, the parity bit is set so that the total number of 1’s,
including the parity bit, is even. The same applies to odd parity.)

Page 221

Advance Computer Architecture — CS501

e Overrun Error: means that the prior character that was received, was not yet read from the
USART's "receive data register" by the CPU, and is overwritten by the new received
character. Thus the first character was lost, and should be retransmitted. [A]

e Under-run Error: If a character is not available at the beginning of an interval, an under-
run is said to occur. The transmitter will insert an idle character till the end of the interval.

[S]
1I/0 Buses

The block diagram of a general purpose computer system that has been referred to repeatedly in
this course has three buses in addition to the three most important blocks. These three buses are

collectively referred to as the system bus or the computer bus’. The block diagram is repeated
here for an easy reference in Figure 1.

Another organization that is used in modern
computers is shown in Figure 2. It has a memory /0 Sub System
bus for connecting the CPU to the memory
subsystem. This bus is separate from the I/O bus HARD DISK

that is used to connect peripherals and I/O devices TEXTERNAL
to the system. o =

Examples of I/O buses include the PCI bus and the cD-ROM 4% [NTEREACE
ISA bus. These 1/0O buses provide an “abstract

interface” that can be used for interfacing a large MEMORY BUS
variety of peripherals to the system with minimum o
hardware. It is also possible to standardize I/O | "MoNTR CARD MEMORY
buses, as done by several agencies, so that third e
party manufacturers can build add-on sub systems

CPU

1fO BUS

for existing architectures.

Figure 2
The location of these I/0 buses may be different in different computers.

Earlier generation computers used a single bus over which the CPU could communicate with the
memory as well as the I/O devices. This meant that the bandwidth of the bus was shared between
the memory and I/O devices.

However, with the passage of time, FIGURE 1 computer architects drifted towards separate
memory and I/O buses, thereby giving more flexibility to users wanting to upgrade their existing
systems. A main disadvantage of I/O buses (and the buses in general) is that every bus has a
fixed bandwidth which is shared by all devices on the bus. Additionally, electrical constraints
like transmission line effects and bus length further reduce the bandwidth. As a result of this, the
designer has to make a decision whether to sacrifice interface simplicity (by connecting more
devices to the bus) at the cost of bandwidth, or connect fewer devices to the bus and keep things
simple to get a better bandwidth. This can be explained with the help of an example.

Example # 1
Problem statement:

Consider an I/O bus that can transfer 4 bytes of data in one bus cycle. Suppose that a designer is
considering to attach the following two components to this bus:

? In some cases, the external CPU bus is the same as the dedicated systems. However, for most systems,
there is a “bus interface unit” between the CPU and the system bus. The bus interface unit is not shown in the figure.

Page 222

Advance Computer Architecture — CS501

Hard drive, with a transfer rate of 40 Mbytes/sec Video card, with a transfer rate of 128
Mbytes/sec. What will be the implications?

Solution:

The maximum frequency of the bus is 30 MHz'?. This means that the maximum bandwidth of
this bus is 30 x 4 = 120 Mbytes/sec. Now, the demand for bandwidth from these two components
will be 128 + 40 =168 Mbytes/sec which is more than the 120 Mbytes/sec that the bus can
provide. Thus, if the designer uses these two components with this bus, one or both of these
components will be operating at reduced bandwidth.

Bus arbitration:
Arbitration is another issue in the use of I/O buses. Most commercially available I/O buses have

protocols defining a number of things, for example how many devices can access the bus, what
will happen if multiple devices want to access the bus at the same time, etc. In such situations, an

“arbitration scheme” must be established. As an example, in the scsi'! specifications, every
device in the system is assigned an ID which identifies the device to the “bus arbiter”. If multiple
devices send a request for the bus, the device with the highest priority will be given access to the
bus first. Such a scheme is easy to implement because the arbiter can easily decide which device
should be given access to the bus, but its disadvantage is that the device with a low priority will

not be able to get access to the bus'?. An alternate scheme would be to give the highest priority
to the device that has been waiting for the longest time for the bus. As a result of this arbitration,
the access time, or the latency, of such buses will be further reduced. Details about the PCI and
some other buses will be presented in a separate section.

Example # 2

Problem statement:

If a bus requires 10 nsec for bus requests, 10 nsec for arbitration and the average time to
complete an operation is 15 nsec after the access to the bus has been granted, is it possible for
such a bus to perform 50 million IOPS?

Solution:
For 50 million IOPS, the average time for each IOP is 1 / (50 x 106) =20 nsec. Given the
information about the bus, the sum of the three times is 10 + 10 + 15 = 35 nsec for a complete

I/O operation. This means that the bus can perform a maximum of 1 / (35 x 10'9) = 28.6 million
IOPS.
Thus, it will not be able to perform 50 million IOPS.

10

than this.
11

12

These numbers correspond to an I/O bus that is relatively old. Modern systems use much faster buses

Small Computer System Interface.
Such a situation is called “starvation”.

Page 223

Advance Computer Architecture — CS501

Lecture No. 24
Designing Parallel Input and Output Ports

Reading Material

Handouts Slides

Summary

Designing Parallel I/0O Ports

Practical Implementation of the SAD

NUXI Problem

Variation in the Implementation of the Address Decoder
Estimating the Delay Interval

Designing Parallel 1/0 Ports

This section is about designing parallel input and output ports. As you already know from the
previous discussion, an interface that is used to connect the computer bus with I/O devices is
called an I/O port. This I/O port can be connected directly to the computer bus (also called the
system bus) or through an intermediate bus called the I/O bus. This intermediate bus is also
called the expansion bus or the peripheral bus. In any case, the following general information
about I/O bus cycles on a typical CPU should be kept in mind: At the start of a particular bus
cycle (which will be an I/O bus cycle in this case), the CPU places an address on its address bus.
This address will identify the I/O device to be involved in the transfer. After some time the CPU
will activate certain control signals, which will indicate whether the particular I/O bus cycle, is
an 1/0 read or an I/O write cycle. Based on these control signals, in case of I/O read cycle, the
CPU will be expecting data from the selected input device over the data bus, and for an I/O write
cycle the CPU will provide data to the selected device over the data bus. At the end of this I/O
bus cycle, the address (and data) information will be removed from the buses and the control
signals will be reset. It can be easily understood from this discussion that we must match the
timing requirements of the I/O ports to be designed with the timing parameters of the given CPU.
Additionally, the voltage and current requirements of the I/O ports must be matched with the
voltage and current specifications of the CPU. For simplicity, we ignore the voltage and current
matching details in this discussion and only focus on the logic levels and timing aspects of the
design. Voltage and current related discussions are the topic of an electronics course.

Thus, there are two important functions which should be built into I/O ports.

1. Address decoding
2. Data isolation for input ports or data capturing for output ports.
1. Address decoding: Since every 1/O port has a unique identifier associated with it, (which

is called its address, and no other port in the system should have the same address), by monitoring
the system address bus, the I/O port knows when it is its turn to participate in a transfer. At this time,
the address decoder within the I/O port generates an asserted output which can be applied to the
enable input of tri-state buffers in input ports or the latch enable input of latches in output ports.

Page 224

Advance Computer Architecture — CS501

Our definition of an address decoder:

An "Address Decoder" is a combinational (logic) Block diagram of an address decoder
circuit with n» + r inputs and a single output, where

n = the number of address lines into the decoder, and

r = the number of control lines into the decoder. T L
The output fp is active only when the corresponding : lines
address is present on the m address lines and the fp ADDRESS

corresponding r control lines hold the "proper" | DECODER | ______
(active or inactive) value. fp is inactive for all other ’ -
situations. lines

Suggestions for address decoder design:
1.1 Start by thinking of the address decoder as a “big AND gate”. We will call this a “skeleton
address decoder” or SAD. The output of the SAD will be active only when the correct address is
present on the system address bus and the relevant control bus signals hold the proper values. At
all other times, the output of the SAD should be deactivated.

1.2 Always write the port address of the port to be designed in binary. Associate the CPU’s
address lines with each bit. Those lines which are zero will be inverted before being fed into the
“big AND gate”; other address lines will not be inverted.

1.3 List the relevant control signals for the system to which the port is to be attached. If the
“proper” value of the signal is 0, it should be inverted before applying to the SAD, otherwise it is
fed directly into the SAD.

1.4 Determine whether the decoder output should be active high or low. This will depend on the

type of latch or buffer used in the design. If an active low decoder output is needed, invert the
output from the “big AND gate”.

1.5 Once the logic for the address decoder is established, the SAD can be implemented using any
of the available methods of logic design. For example, HDL code in Verilog or VHDL can be
generated and the address decoder can be implemented using PLDs. Alternately, the SAD can be
implemented using SSI building blocks.

2. Data isolation or capturing: For input ports, the incoming data should be placed on
the data bus only during the I/O read bus cycle. At all other times, this data should be isolated
from the data bus otherwise it will cause “bus contention”. Tri-state buffers are used for this
purpose. Their input lines are connected to the peripheral device supplying data and their output
lines are connected to the data bus. The common enable line of such buffers is driven with the
output of the SAD. If this enable is active low, the output of the big AND gate in the SAD should
be inverted, as described earlier.

For output ports, data is made available for the peripheral device at the data bus during the 1/0
write bus cycle. During other bus cycles, this data will be removed from the data bus by the
processor. Latches (or registers) are used for this purpose. Their input lines are connected to the
system data bus and their output lines are connected to the peripheral device receiving data. The
common clock (or latch enable) line of such latches is driven with the output of the SAD. If this
clock is active low, the output of the big AND gate in the SAD should be inverted.

Example # 1

Problem Statement:

Design a 16-bit parallel output port mapped on address DEh of the I/O space of the
FALCON-A CPU.

Page 225

Advance Computer Architecture — CS501

Solution:

Using the guidelines mentioned above, we start with a
“big AND gate” (SAD) and write the address to be
decoded (DEh) in binary.

Thus, DEh — 1101 1110 b. Associating one CPU address
line with each bit, we get A0 = 0, A1=1, etc as shown in
the table below.

Because the 1/0 space on the FALCON-A is only 256
bytes, address lines A15 .. A8 are don’t cares, and will
not be used in this design.

1 1 0 1 1 1 1 0
A7 A6 AS A4 A3 A2 Al A0

Thus, A0 and A5 will be applied to the “big AND gate” after inversion. The remaining address
lines will be connected directly to the inputs of the SAD.
Next, we look at the relevant control signals. The only signal
which should be used in this case is IOW#. A logic 0 (zero) on
this line indicates that it is active. Thus, it should be inverted
before being applied to the input of the SAD.

We can easily see that our SAD intuitively conforms to the way
we defined an address decoder. Its output is a 1 only when the
address (xxxx xxxx 1101 1110 b) is present on the FALCON-A’s
address bus during an I/O write cycle (By the way, this will take
place when the instruction out reg, addr with addr=DEh or
222d is executing on the FALCON-A). At all other times, its
output will be inactive.

To make things simple, we use a circle (or a bubble) to indicate
an inverter, as shown .Since this is a 16-bit output port, we will
use two 8-bit registers to capture data from the FALCON-A’s
data bus. The output of the SAD will be connected to the enable
inputs of the two registers. The D-inputs of the registers will be
connected to the data bus and the Q outputs of the registers will be connected to the peripheral
device.

Practical implementation of the SAD

Our SAD in this design is an AND gate with 9 inputs. Using SSI chips, we can implement this
SAD using an 8-input AND gate and a 2-input AND gate as shown in the figure shown below.
Displaying output data using LED branches:

An “LED branch” is a combination of a resistor and a light emitting diode (LED) in series.
Sixteen LED branches can be used to display the output data captured by the registers as shown
in the figure below.

Page 226

Advance Computer Architecture — CS501

‘ High BYTE @DEh

L15
]
1
L8 sl 42

83
a4
45

CLk
Dy Q7
DE 0B
From FALCON's D5 QS.

0

[]

L7 AR
o D7 = A7
= D5 QE—(=
o D5 05— C< (O A15.AB unused
o 04 Q4— for /O ports
i D3 QI— (= . ;
= D2 Q2 From FALCON's From FALCON's
< [0] s [control bus address bus

00 oo—= al
i6 :

Bbtregster) ow BYTE @DFh

A 16-bit parallel output port for the FALCON-A at address DEh and DFh

Example # 2
Problem statement:

Given a 16-bit parallel output port attached with the FALCON-A CPU as shown in the figure.
The port is mapped onto address DEh of the FALCON-A’s I/O space. Sixteen LED branches are
used to display the data being received from the FALCON-A’s data bus. Every LED branch is
wired in such a way that when a 1 appears on the particular data bus bit, it turns the LED on; a 0
turns it off. Which LEDs will be ON when the instruction

outr2,222 13

executes on the CPU? Assume r2 contains 1234h.

Solution:

Since r2 contains 1234h, the bit pattern corresponding to this value will be sent out to the output
port at address 222 (or DEh). This is the address of the output port in this example. Writing the
bit pattern in binary will help us determine the LEDs which will be ON.

Now 1234h gives us the following bit associations with the data bus

0 0 0 1 0 0 1 O 0 0 1 1 0 1 0 o
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 DI DO
MSB at address DEh LSB at address DFh

Note that the 8-bit register which uses lines D15 .. D8 of the FALCON-A’s data bus is actually
mapped onto address DEh of the I/O space.

13 Depending on the way the assembler is written, the syntax of the out instruction may allow only the
decimal form of the port address, or only the hexadecimal form, or both. Our version of the assembler for the
FALCON-A allows the decimal form only. It also requires that the port address be aligned on 16-bit “word
boundaries”, which means that every port address should be divisible by 2.

Page 227

Advance Computer Architecture — CS501

This is because the architect of the FALCON-A had chosen a “byte-wide” (i.e., x8) organization
of the address space, a 16-bit data bus width, and the “big-endian” data format at the ISA design
stage. Additionally, data bus lines D15...D8 will transfer the data byte of higher significance
(MSB) using address DEh, and D7...D0 will transfer the data byte of lower significance (LSB)
using address DFh. Thus the LEDs at L12, L9, L5, 1.4 and L2 will turn on.

The NUXI Problem

It can be easily understood from the previous example that the big-endian format results in the
least significant byte being transferred over the most significant side of the data bus, and vice
versa. The situation will be exactly opposite when the little-endian format is used. In this case,
the least significant byte will be transferred over the least side of the data bus. Now imagine a
computer using the little-endian format exchanging data with a computer using the big-endian
format over a 16-bit parallel port. (this may be the case when we have a network of different
types of computer, for example). The data transmitted by one will be received in a “swapped”
form by the other, eg., the string “UN” will be received as “NU” and the string “IX” will be
received as “XI”. So UNIX changes to NUXI --- hence the name NUXI problem. Special
software is used to resolve this problem.

Variation in the Implementation of the Address Decoder

The implementation of the address decoder shown in Example #1(lec24) assumes that the
FALCON-A does not allow the use of some part of its data bus during an I/O (or memory)
transfer. Another restriction that was imposed by the assembler was that all port addresses should
be divisible by 2. This implies that address line A0 will always be zero. If the FALCON-A
architect had allowed the use some of part of its data bus (eg, 8-bits) during a transfer, the
situation would be different.

‘ ngh BYTE @DEh

From FALCON's D5 Q5
data bus

_Oﬂ‘ A From FALCON's
015 control bus

o J o0 og— = 1

Dz =

3110 B-hit register (—:3

L | a5

|
DDDDDDD

=4
|

1=

t==3

o]
=
]
=

B
CLK L
= D7 o7 — A7
o5 DG Qf
a D5 Q5 Al Al5.AS unused
o3 far 10 ports

b2
o |
o]

From FALCORN's
address bus

— Lo
BEMIISE) ow BYTE @DFh

A 16-hit parallel output port for the FALCON-A at address DEh and DFh

The logic diagram shown in the next figure is a 16-bit parallel output port at the same address
(DEh) for the FALCON-A assuming that part of its data bus (D15..D8) or (D7..D0) can be used
independently during an I/O transfer. Note that the enable inputs of the two 8-bit registers are not
connected together in this case. Moreover, since the 16-bit port uses two addresses, address line
A0 will be at a logic 0 for address DEh, and at a logic 1 for address DFh. This means that it
cannot be used at the input of the big AND gate. So, A0 has been used in a different position
with the two 2-input AND gates. The 2-input AND gate where A0 is applied after inversion will
generate a 1 at its output when A0 = 0. Thus, this output will enable the 8-bit register mapped on

Page 228

Advance Computer Architecture — CS501

the even address DEh. In case of the other AND gate, A0 is not inverted. So the corresponding 8-
bit register will be mapped on the odd address DFh. The input that became available after
removing AO from its old position can be used for the IOW# control signal. The rest of the
circuit is the same as it was in the previous figure.

We can understand from the above discussion that the decisions made at the time of ISA design
have a strong bearing on the implementation details and the working of the computer. Suppose
we assume that the assembler developer had decided not to restrict the port addresses to even
values, then what will be the implications?

As an example, consider the execution of the instruction out r2, 223 assuming r2 contains
1234h. This is a 16-bit transfer at address 223 (DFh) and 224 (EOh).

For the output port (shown in the first figure) where the CPU does not allow the use of some part
of its data bus in a transfer, none of the registers will be enabled as a result of this instruction
because the output of the 8-input AND gate will be a zero for both addresses DFh and EOh. Thus,
that output port cannot be used.

In the second figure, where the CPU has allowed to use a portion of its data bus in an I/O
transfer, the register at the address DEh will not be enabled. The CPU will send the high data
byte(12h) to the register at the address DFh (because it will be enabled at that time due to the
address DFh) over data lines D7...D0. The fact that data lines D7...D0 should be used for the
transfer of high byte, will be taken care of by the hardware, internal to the CPU.

Now the question is where the low data byte (i.e. 34h) present at D15...D8 data lines would be
placed? If there exists an output port at address EOh in the system, then 34h will be placed there
(in the next bus cycle), otherwise it will be lost. Again, it is the CPU’s responsibility to check
whether the next address in the system exists or not and if exists then enable that port so that the
low byte of data can be placed there.

From PENTIUM Control Bus

L Gl = Gl =R

n a1
o1
Enable _C_'—mn

Bhltreg kT =
From PENTIUM Data Bus BYTE@FEFZh
{D63..D24) and (D15..00) Logic 1 From PENTIUM

unused for this 8-bit port Address Bus
(A16..A431) Unused
For O ports

An B-bit Parallel Qutput Port for the PENTIUM Processor
at address FEF2h of the /O space

A possible option for the architect in this case would be to revisit the design steps and allow the
use of part of the CPU registers (or at least for some of them) for I/O transfers. The logic
diagram shown below shows an 8-bit parallel output port at address FEF2h of the Pentium’s I/O
address space. Since the Pentium allows the use of some part of its data bus during a transfer, we

Page 229

Advance Computer Architecture — CS501

can use the BE2# signal in the address decoder to enable the 8-bit register. The following
instructions will access this output port.

mov dx, OFEF2h

mov al, 12h

out dx, al

The Pentium does allow the use of some part of its 32-bit accumulator register EAX. In case
only 8-bits are to be transferred, register AL can be used, as shown in the program fragment
above. The data byte 12h will be sent to the 8-bit register over lines D23..D16. Since 12h
corresponds to 0001 0010 in binary, this will cause the LEDs 1.4 and L1 to turn on.

Example # 3 - filename: Example_3.asmfa
Problem statement:

Write an assembly language program to turn on
the 16 LEDs one by one on the output port of

;ALL LEDS ARE tumed Off inifially

Example #1(lec24). Each LED should stay on 2:3:111-1.-’;
for a noticeable duration of time. Repeat from | .
the first LED after the last LED is turned on. First LED will be turned on each time
Solution: 2
The solution is shown in the text box with a | Start: movirl.l
filename: Example 3.asmfa. The working of out r1.227
this program is explained below: e
The first two instructions turn all the LEDs off _ movi £3.15
by sending a 0 to each bit of the output port at DELAY LOOP
address 222. .
delayl: movi 2.0

mov rl,0 againl: subir2 21

out rl ,222 inz el [Egﬂlﬂ].]
Then a 1 is sent to L0 causing it to turn on, and ’ movir3.0 - TURN OFF ALL LEDS
the program enters a loop which executes out 13.222
15 times to cause the other LEDs (L1 through -
L15) to turn on, one by one in sequence. delay?: movi 12.0
Register 15 is being used as loop counter. The again?: subir2 121
following three instructions introduce a delay jnz 12, [again?]
between successive bit patterns sent to the ;
output port, so that each LED stays on for a shiftirlrl 1 nextIFD ON
noticeable duration of time. out 1,222

subi 15.15.1

delayl: movi 12,0 jnz 15, [delayl]

againl: subi r2,r2,1 jump [start]
jnz r2,[againl] halt

Starting with a value of 0 in r2!4, this value is

decremented to FFFFh when the againl loop is entered. The jnz instruction will cause 2 to
decrement again and again; thereby executing the loop 65,535 times. An estimate of the delay
interval is presented at the end of this section.

After this delay, all the LEDs are turned off, and a second delay loop executes. Finally, the next
LED on the left, in sequence, is turned on by the following two instructions:

14 This is necessary because the immediate operand with the movi instruction of the FALCON-A has a range of
Oh to FFh. This will not give us the large loop counter that we need here. So we use the above software trick. An alternate
way would be to use nested loops, but that will tie up additional CPU registers.

Page 230

Advance Computer Architecture — CS501

shiftl r1,r1,1
outrl, 222

After the left most LED is turned on, the process starts all over again because of the last jump
instruction. The outermost loop executes indefinitely.

Estimating the Delay Interval

To make things simple, assume that the FALCON-A is operating at a clock frequency of 1 MHz.
Also, assume that the subi and the jnz instructions take 3 and 4 clock periods, respectively, to
execute. Since these two instructions execute 65,535 times each, we can use the following
formula to compute the execution time of this loop:

ET=CPIxXxICxT=CPIXIC/f
where Initialize the ports
CPI =clocks per instruction ANLEDs off 3t DEh
= : T ight most LED
IC instruction count [Tum on rig mes |
T = time period of the clock, wait
And [Tumoffall LEDs |
f = frequency of the clock. walt
[Turn on next LED on the left]

L

Ik

Using the assumed values, we get
Y eftmos N

LED
lit?

ET = (3+4) x 65535 / (1x10%) = 0.459 sec

Since the movi r2, 0 instruction executes only once, the time it takes to execute is negligible and
has been ignored in this calculation.

Page 231

Advance Computer Architecture — CS501

Lecture No. 25

Input Output Interface
Reading Material

Handouts Slides

Summary

Designing a Parallel Input Port

Memory Mapped /O Ports

Partial Decoding and the “wrap around” Effect
Data Bus Multiplexing

A generic /O Interface

The Centronics Parallel Printer Interface

Designing a parallel input port
The following example illustrates a number of important concepts.
Example # 1

Problem statement:

Design an 16-bit parallel input port mapped on address 7Eh of the 1/O space of the
FALCON-A CPU.

Solution:

The process of designing a parallel input port is very similar to the design of a parallel output
port except for the following differences:

1. The address in this case is 7Eh, which is different from the previous value. Hence, the
address decoder will have the inputs A7 and A0 inverted, while the other address lines at
its input will not be inverted.

2. Control bus signal IOR# will be used instead of the signal IOW#.

3. A set of sixteen tri-state buffers will be used for data isolation. Their common enable line

will be connected to the output of the big AND gate (in the figure, {p is being inverted
because Enable is active low). The input of these buffers can be connected to the input
device and the output is connected to the FALCON-A’s data bus.

In this example, switches S15...S0 are used to simulate the input data. The complete logic circuit
is shown in the next two figures.

In the second figure, the CPU is assumed to allow the use of some part of its data bus during a
transfer, while in the first figure it is not allowed.

Page 232

Advance Computer Architecture — CS501

Sixteen switches
to simulate input data

High BYTE @TEh Low BYTE @7Fh

515 58 57 S1 50
o - o4 o+d oA oA Al
[ces L1 I I L1 21
EEm —AZ
AZ

| ‘ 1 BQ—C{—E
? OQ‘ IORz ATA. AT unused

for VO ports

el g il £y e F FALCON' f
I P A F S PR P P From PALOONS From FALCON's

alo

m\:r|m

To FALCON's data bus
A 16-bit parallel input port for the FALCON-A at address 7Eh and 7Fh

Sixteen switches
to simulate input data

High BYTE @7Eh Low BYTE @7Fh From FALCON's
515 58 s7 51 S0 Al control bus

o o~ o- oH o-d oA —OQ»
11 I 1 [1 1

<] —
3 =

vslive —

= Al5. A d
:? amn 8 for KO pULrITnSUSB
ssyset ol Lot el From FALCON's
ol olal ol ol ol ol ol of al ol ol ol al &l O address bus

To FALCON's data bus
A 16-bit parallel input port for the FALCON-A at address 7Eh and 7Fh

Example # 2

Problem statement:

Given a FALCON-A processor with a 16-bit parallel input port at address 7Eh and a 16-bit
parallel output port at address DEh. Sixteen LED branches are used to display the data at the
output port and sixteen switches are used to send data through the input port. Write an assembly
language program to continuously monitor the input port and blink the LED or LED(s)
corresponding to the switch (es) set to logic 1. For example, if SO and S2 are set to 1, then only
the LEDs LO and L2 should blink. If S7 is also set to logic 1 later, then L7 should also start
blinking.

Page 233

Advance Computer Architecture — CS501

Solution:

The program is shown in the text box
with filename: Example 2. It works as
explained below;

The first two instructions read the input
port at address 7Eh and send this bit
pattern to the output port at address DEh.
This will cause the LEDs corresponding
to the switches that are set to a 1 to turn
on. Next, the program waits for a
suitable amount of time, and then turns
all LEDs off and waits again.

After the second wait, the program reads
the input port again. The LEDs that will
be turn on at the output port will now be
according to the new switch settings at
the input port. The process repeats
indefinitely. Please see the flowchart
also.

A
Stat)

¢

S
‘ Read switch settings from 7Eh ‘

]
Send bit patterns of switches
to turn LEDs on

| Tumal LEDs off |

wait

J

It is also possible to use a single
address for both the input and the
output port. The following diagram
shows an address decoder for a 16-
bit parallel input/output port at
address 2Ch of the FALCON-A’s
I/O space. Note that the control bus
lines [OW# and IOR# will
differentiate between the register
and the tri-state buffer.

.filename: Example 2.asmfa
‘Notes:
rl 1s used as an I/O register
12 1s used as a delay counter

start: 1nrl. 126 - 126d = 7Eh
outrl. 222 - 222d = DEh

movi 12, 0
delayl: subir2.12. 1

mz 12, [delayl]

movirl. 0 - all LEDs off
outrl, 222

movi 12, 0
delay2: sub112.12. 1
jnz 12, [delay2]

jump [start]

halt

From FALCON-A's

To Enable C< OVt address bus
output port From FALCON-A's

control bus

'{ 43

To Enable Tul=r:3 3<I|
input port ﬂ: < c:<ll A
From FALCON-A's

control bus AS A5 unused

for A2 ports

FALCON-A's Address Decoder for an IfO Port at the Address 2Ch

Page 234

Advance Computer Architecture — CS501

Memory mapped 1/0 ports

If it is desired to map the 16-bit output port

of Example #1(lec24) on the memory space

of the FALCON-A, the following changes
would be needed.

1. Replace the IOW# signal with the
MEMW# signal.

2. Use the entire CPU address bus at the
input of the address decoder, as shown
in the next figure. This address decoder
uses the addresses 00DEh and 00DFh of
the FALCON-A’s memory space.

3. Use the store instruction instead of the
out instruction for sending data to the

To enable of registers

MERH

From FALCON's
control bus

E:[EBE:[

g

g
G

i[

From FALCON's
address bus

Address Decoder for a memory mapped 16-bit parallel output port
for the FALCON-A at address 00DEh and 00DFh

output port (for memory mapped input ports, use the load instruction instead of the in

instruction).

The program for Example #2 (lec25) is rewritten for the case
of a memory mapped output port, and is shown in the
attached text box. The advantage will be that more than 256
ports are available, but the disadvantage is that the address
decoder will become more complex, resulting in increased
hardware costs.

To avoid the increase in hardware complexity, many
architects use what is called “partial decoding”. This is
explained in the next section.

Partial decoding and the “wrap around” effect

Partial decoding is a technique in which some of the CPU’s
address lines forming an input to the address decoder are
ignored. This reduces the complexity of the address decoder,
and also lowers the cost. As an example, if the address lines
A8...A15 from the FALCON-A are not used in the address
decoder of the previous figure, this will save eight inverters
and two AND gates. Partial decoding is an attractive choice
in small systems, where the size of the address space is large
but most of the memory is unimplemented. However, partial
decoding has its price as well. Consider the memory map for
the

FALCON-A, shown again in the next figure. With 16 address

lines, the total address space is 216 =64 Kbytes. When the
upper eight address lines are unused, they become don’t
cares. The port shown in the previous figure will be accessed
for address 00DEh. But, it will also be accessed for address
01DEh, 02DEh... FFDEh. In fact, the 64 Kbyte address space
has been reduced to a 256 byte space. It “wrapped around”
itself 256 times. If we only left 6 address lines, i.e., A15

Afilename: Example 2MM.asmfa

Notes:

start:

delayl:

delay2:

For MEMOEY MAPPED
output port at 00DEQ

6 holds the output address
17 holds the input address

movi 16, 111
add 6. 16, 16

movi 17, 126

rl isused as an 'O register
12 isused as a delay counter

load rl.[r7] :126d=TEh
store rl, [16] :222d=DEh

movir2, 0
subi 2. 12,1
jnz 12, [delayl]
movirl, 0 ;all LEDs off
store rl, [16]

movi 12 0
subir? 121
jnz 12, [delay2]

jump [start]

halt

Page 235

Advance Computer Architecture — CS501

... A10, unconnected, then we will still have a
“wrap around”, but of a different type. Now a 1

Kbyte (= 210) address area will wrap around
itself 64 times (= 2°).

Data bus multiplexing e

Data bus multiplexing refers to the situation

when one part of the data bus is connected to FEOCh
the peripheral’s data bus at one time and the
second part of the data bus is connected to the Froon
peripheral’s data bus at a different time in such
a way that at one time, only one 8-bit portion of
the data bus is connected to the peripheral.

FFFFh

i
ggn Enabla Cﬂ» a0
;]
N N P T T T From FaLcONs
control bus
- - . - = . i LR L7 LED branches oy #
07 e a1 4
From DE (0 % = ¢ w5
' D5 Q5
FALCON's = = G —
data bus
02 o2—0 —— s
Dl el 45
D0 o=l
L Ay - e
i Zl@ Z&? l@ ZS 8-bit register t AT
oY ar .
e peripheral device A15 AR unused
. =2 = + + + + * far I¥0 parts
e From FALCON's
= Enable address bus
0z
A0

A Data Bus Multiplexer for an 8-bit Peripheral
using address DCh and DDh.

Consider the situation where an 8-bit peripheral is to be interfaced with a CPU that has a 16-bit
(or larger) data bus, but a byte-wide address space. Each byte transferred over the data bus will
have a separate address associated with it. For such CPUs, data bus multiplexing can be used to
attach 8-bit peripherals requiring a block of addresses. Tri-state buffers can be used for this

purpose as shown in the attached figure. The logic circuit shown is for an 8-bit parallel output
port using addresses DCh and DDh of the FALCON’s I/O address space. It is assumed that the
CPU allows the use of a part of its data bus during a transfer, and that each 16-bit general
purpose register can be used as two separate 8-bit registers, e.g., rl can be split as r1L and r1H
such that

r1L<7..0> :=r1<7..0>, and

r1H<7..0> := r1<15..8>

The LED branches and the 8-bit register shown in the diagram serve as a place holder, and can
be replaced by a peripheral device in actual practice. For an even address, A0=0, and the upper
group of the tri-state buffers is enabled, thereby connecting D<15..8> of the CPU to the
peripheral, while for an odd address from the CPU, A0=1, and the lower group of the tri-state
buffers is enabled. This causes D<7..0> of the CPU to be connected with the peripheral device.
In such systems the instruction out r1H,220 will access the peripheral device using D<15..8>,
while the instruction out r1L,221 will access it using D<7..0>. The instruction out r1,220 will

Page 236

Advance Computer Architecture — CS501

send r1H to the peripheral and the contents of r1L will be lost. Why? This is left as an exercise
for the student. The advantage of data bus multiplexing is that all addresses are utilized and none
of them is wasted, while the disadvantage is the increased complexity and cost of the interface.

A generic I/0 interface

Most parallel I/O ports used with peripheral @T"’f”’“‘ CPU’s data bus
devices are mapped on a range of contiguous 15 210
addresses. The following figure shows the Data Out Registe{ | e | || | 657
block diagram of part of an interface that can B LA
. . . Status Register ‘ ‘ ‘ ‘ ‘ ‘ 58,59

be used with a typical parallel printer. It used

ight tives addresses: address 56 t0 63. paraiel = e
eight consecu : - . pa_ri;"el Control Register ‘ ‘ ‘ ‘ ‘ | 60,61
A similar interface can be used with the "Cr’"‘:er> iE Tl
FALCON-A. The registers shown within the DatainRegister | | .o [[] 6263
interface are associated with some parallel To CLK and
device, and have some pre-defined functions. .1 ENABLE o CPLs
For example, the 16 bit register at addresses ADDRESS DECODER <= Address Bus
56 and 57 can be used as a “data out” register ;F' il

for sending data bytes to the parallel device. In
the same way, the register at addresses 60 and 61 can be used by the CPU to send control bits to
the device. The double arrow shown at the top corresponds to the data bus connection of the
interface with the CPU. The address decoder shown at the bottom receives address and control
information from the CPU and generates enable signals for these registers. These abstract
concepts are further explained in Example #3(lec25).

The Centronics Parallel Printer Interface

The Centronics Parallel Printer Interface is an example of a real, industry standard, set of signal
specifications used by most printer manufacturers. It was originally developed for Centronics
printers and can be used by devices having a uni-directional, byte-wide parallel interface. Table 1
shows the important signals and their functions as defined by the Centronics standard. Note that
the direction of the signals is with respect to the printer and not with respect to the CPU.

Typically, the printer (or any other similar device) is connected to the CPU via a cable which has
a 25-pin connector at the CPU side and a 36-pin connector at the printer side. Every data bit in
the 8-bit data bus D<7...0> uses a twisted pair for suppressing transmission-line effects, like
radiation and noise. The return path of these pins should always be connected to signal ground.
Additionally, the entire printer cable should be shielded, and connected to chassis ground on
each side. The three signals STROBE#, BUSY and ACKNLG# form a set of handshaking
signals. By using these signals, the CPU can communicate asynchronously with the printer, as
shown in the accompanying timing waveforms. When the printer is ready for printing, the CPU
starts data transfer to the printer by placing the 8-bit data (corresponding to the ASCII value of
the character to be printed) on the printer’s data bus (pin 2 through 9 on the 36-pin connector, as
shown in Table 1). After this, a negative pulse of duration at least 0.5us is applied to the
STROBE# input (pinl) of the printer. The minimum set-up and hold times of the latches within
the printer are specified as 0.5us each, and these timing requirements must be observed by the
CPU (the interface designer should make sure that these specifications are met). As soon as
STROBE# goes low, the printer activates its BUSY line (pin 11) which is an indication to the
CPU that additional bytes cannot be accepted. The CPU can monitor this status signal over an
input port (a detailed assignment of these signals to I/O port bits is given in Table 2).

Page 237

Advance Computer Architecture — CS501

Table 1: The Centronics Parallel Printer Interface

Signal
Name

D<7..0>

STROBE#

(power and ground signals are not shown)

Direction Function

w.r.t.
Printer

Input

Input

ACKNLG# Output

BUSY

PE#

INIT#

SLCT

AUTO
FEED XT#

Output

Output

Input

Output

Input

Summary

8-bit data bus
1-bit control signal

High: default value.

Low: read-in of data is
performed.

1-bit status signal

Low: data has been received
and the printer is ready to
accept new data.

High: default value.
1-bit status signal

Low: default value

High: see note#1
1-bit status signal

High: the printer is out of
paper.

Low: default value.
1-bit control signal

Low: the printer controller is
reset to its initial state and
the print buffer is cleared.

High: default value.
1-bit status signal

High: the printer is in
selected state.
1-bit control signal

Low: paper is automatically
fed after one line.

Pin#
(25-DB)
CPU

side
9,8,...2

10

11

12

16

13

14

Pin#
(36-DB)
Printer

side
9.8,....2

10

11

12

31

13

14

Page 238

Advance Computer Architecture — CS501

1-bit control signal

Low: data entry to the
printer is possible.

SLCTIN# Input 17 36
High: data entry to printer is
not Possible.
1-bit status signal

ERROR# Output Low: see note#2. 15 32

High: default value.

Note#l

The printer cannot read data due to one of the following reasons:

1. During data entry

2. During data printing

3. In offline state

4. During printer error status
Note#2
When the printer is in one of the following
states:

1. Paper end state

2. Offline state

3. Error state

When this character is completely
received, the ACKNLG# signal (pin 10)
goes low, indicating that the transfer is
complete. Soon after this, the BUSY
signal returns to logic zero, indicating that
a new transfer can be initiated. The BUSY

D=7.0 walid data to the printer

STROBE#

L0 E u5usi 0.aps |
U | i | (min) |

=]
=
L)

BUEY

ACKNLG#

E Tus | | Susi

Centronics Printer Data Transfer Timing

signal is more suitable for level-triggered systems, while the ACKNLG# signal is better for edge-

triggered systems.

The interface will typically use two eight bit parallel output ports of the CPU, one for the ASCII
value of the character byte and the other for the control byte. It also specifies an 8-bit parallel
input port for the printer’s status information that can be checked by the CPU.

Table 2: Centronics Bit Assignment For I/0 Ports

Logical | Descripti
Address on

8-bit
output

port for
DATA

D<7> D<6>

D<5 D<4> D<3> D<2> D<1> D<0>

8-bit
1 input port
for

BUS | ACKNL

PE# | SLCT ERROR | Unuse | Unuse Unused

Page 239

Advance Computer Architecture — CS501

STATUS
8-bit
output 1 Auto
2 port for Un:ils Unused DISR IRI\?E SI];Q(;T INIT# | Feed ST§ ;)B
CONTR | °© XTH#
OL
Example # 3:

Problem statement:

Design a Centronics parallel printer interface for the FALCON-A CPU. Map this interface
starting at address 38h (56 decimal) of the FALCON-A’s I/O address space. Solution:

The Centronics interface requires at least three I/O addresses. However, since the FALCON-A
has a 16-bit data bus, and since we do not want to implement data bus multiplexing (to keep
things simple), we will use three contiguous even addresses, i.e., 38h, 3Ah and 3Ch for the

address decoder design. This arrangement also
conforms to the requirements of our
assembler.

Moreover, we will connect data bus lines
D7..D0 of the FALCON-A to the 8-bit data
bus of the printer (i.e. pins 9, 8, ... , 2 of the
printer cable) and leave lines D15...D8
unconnected. Since the FALCON-A uses the
big-endian format, this will make sure that the
low byte of CPU registers will be transferred
to the printer. (Recall that these bytes will
actually be mapped on addresses 39h, 3Bh and
3Dh). The logic diagram of the address
decoder for this interface is shown in the
given figure.

15 This bit, when set, enables the bidirectional mode.

From FALCON's
control bus

oW IOR#
Al
Selss —{ ad
s Logic 1 From FALCON's
J address bus
Sel 58 z— ki q)
] /— a3
R , — Al
A5
?’: iR
—Lcﬂ— AT
SelE0 —{ A5, AS unused
— for O ports

Address decoder for three parallel ports for the FALCON-A
at addresses 38h, 3Ah, and 3Ch

Page 240

Advance Computer Architecture — CS501

Lecture No. 26
Programmed 1/O

Reading Material

Vincent P. Heuring & Harry F. Jordan
Computer Systems Design and Architecture

Summary

The Centronic Parallel Printer Interface(Cont.)

e Programmed Input/Output

e Examples of Programmed I/O for FALCON-A and SRC
e Comparisons of FALCON-A, SRC examples

The Centronic Parallel Printer Interface (Cont.)

Table 1: The Centronics Parallel Printer Interface
(power and ground signals are not shown)
(The explanation of this table is provided in lecture 25 also)

Signal Direction Function
Name
w.r.t. Summary
Printer

D<7..0> Input 8-bit data bus
1-bit control signal

STROBE# Input High: default value.

Low: read-in of data is
performed.

1-bit status signal
Low: data has been received
and the printer is ready to

ACKNLG# Output accept new data.

High: default value.
1-bit status signal

BUSY Output Low: default value

High: see note#1
1-bit status signal

Chapter 8
8.2.2
Pin# Pin#
(25-DB) (36-DB)
CPU Printer
side side
9,8,...2 9.8,....2
1 1
10 10
11 11

Page 241

PE#

INIT#

SLCT

AUTO

Advance Computer Architecture — CS501

Output High: the printer is out of
paper.

Low: default value.
1-bit control signal

Input Low: the printer controller is
reset to its initial state and
the print buffer is cleared.

High: default value.
1-bit status signal

Output High: the printer is in
selected state.

1-bit control signal

Input Low: paper is automatically

FEED XT# fed after one line.

1-bit control signal

Low: data entry to the
printer is possible.

SLCT IN# Input

ERROR#

Note#1

The printer cannot read data due to one of the following

reasons:

5. During data entry
6. During data printing
7. In offline state

High: data entry to printer is
not Possible.
1-bit status signal

Output Low: see note#2.

High: default value.

STROBE#

12

16

13

14

17

15

D=7.0 valid data ta the printer

12

31

13

14

36

32

1 DSUSE Dsusi TN
Lfmin) §((mind | oming |

8. During printer error status LT

Note#2

When the printer is in one of the following states:

ACKMLG#

4. Paper end state

5. Offline state
6. Error state

Centronics Printer Data Transfer Timing

When this character is completely received, the ACKNLG# signal (pin 10) goes low, indicating
that the transfer is complete. Soon after this, the BUSY signal returns to logic zero, indicating
that a new transfer can be initiated. The BUSY signal is more suitable for level-triggered
systems, while the ACKNLG# signal is better for edge-triggered systems.

Page 242

Advance Computer Architecture — CS501

The interface will typically use two eight bit parallel output ports of the CPU, one for the ASCII
value of the character byte and the other for the control byte. It also specifies an 8-bit parallel
input port for the printer’s status information that can be checked by the CPU.

Table 2: Centronics Bit Assignment For I/O Ports

Logical | Descripti
Address on 7 6 > 4 3 2 ! 0
8-bit
0 output |y 7o | p<g> | P | p<a> | D<3> | D<2> | D<1> | D<0>
port for >
DATA
8-bit
input port | BUS | ACKNL ERROR | Unuse | Unuse
1 Py v Ge | PE# | SLCT | T | 1 | Unused
STATUS
8-bit
output 1 5 1s DIR' | IRQE | SLCT AU | oTROB
2 port for ed Unused 5 N IN# INIT# | Feed E 4
CONTR XT#
OL
Example # 1

Problem statement:

Assuming that a Centronics parallel printer is
interfaced to the FALCON-A processor, as shown
in example 3 of lecture 25, write an assembly
language program to send an 80 character line to
the printer. Assume that the line of characters is
stored in the memory starting at address 1024.
Solution:

The flowchart for the solution is shown in given
figure and the program listing is shown in the
textbox with filename: Example 1.

The first thing that needs to be done is the
initialization of the printer. This means that a
“reset” command should be sent to the printer.
Using the information from Table 1, this can be
done by writing a 0 to bit 2 (i.e., INIT#) of the
control register having logical address 2. In our
example, this maps onto address 60 of the
FALCON-A. (Remember to set this bit to logic 1
for normal operation of the printer). Then we
make STROBE# high by

| Initialize tpe printer?

Make sure that STROBE#
and INIT# are high.

4
__—~TCheck the printer's status—

‘W’ YES
N

L]

|Load Character byte from memory|

;
Send character to the printer|

* Includes Ihe following:

|
| Activate STRC?BE# for 0.5us| | +Reset priter

+Sel buffer size inr5

|Set STRQBE# o 1] Sel mask to detect busy
; +3et control port value for
| Increment huffer pointer | e STROBEE e
' Decrement loop counter | +Set loop counter to NOB
NO ¥ES

placing logic 1 in bit 0 of the control register. Bit 1 and bit 3 should be 0 because we want to
activate auto line feed and keep the printer in selected mode. Additionally, bit 4 and bit 5 should
be 0 so that interrupts are disabled and the bi-directional mode is not selected. The complete
control word is 0000 0001 and this value has been assigned to the variable reset in the program.
The following instruction pair performs the reset operation:

Page 243

Advance Computer Architecture — CS501

movirl, reset
out rl, controlp

As it is given that the starting address of the printer buffer is 102417, so we place this address in
r5S. The mask to test the BUSY flag is placed in r3. The value for the mask is 80h. This
corresponds to a logic 1 in bit 7 and logic zeros elsewhere for the status register having address
58 (logical address 1 in Table 1). Then the program enters a loop, called the polling loop, to test
the status of the printer. If the printer is busy, the loop repeats. The following three instructions
form the polling loop:

in rl, statusp
andrl, rl, r3
jnz rl, [again]

The status of the printer is placed in register rl, and bit 7 is tested for logic 0. If not so, the
program repeats the status check operation.

When the printer is ready to accept a new character, it clears bit 7 (i.e., the BUSY bit) of the
status register. At this time, the program picks the next character from the memory and sends it
to the printer. The STROBE# line is activated and then it is deactivated to generate the necessary
pulse on this input of the printer. Finally, the buffer pointer is advanced, the loop counter is
decremented and the process repeats. When all the characters have been printed, the program
halts.

A number of equates have been used in the program to make it flexible as well as easily
readable. The program is shown on the next page.

17 The mul instruction is used for this purpose because the 8-bit immediate operand in the movi instruction
can only be within the range —128 and +127. Using the mul instruction in this way overcomes the limitation of the
FALCON-A. Similarly, the shiftl instruction is used to bring 80h in register r3.

Page 244

Advance Computer Architecture — CS501

.

at]

2

.

-~

i

connected to
(remember big-endian)
=

uses addrs o7

C Y
20y 2

[Ta]

character per 16-bits of data xfered
A00
equ B0
e 37
. 32
¥5, 1D, ES ; 5 holds 1024 temporarily
3
r3i, 1

oqu
.equ
.edqu

rl for

data =fer

=
e |
ol
s
(%)
o
=
i
il
=]

]
in
)
|
'_
L

est 1if
ait if

[WIRNE
o
[¥7}
e
|
'__

o

Page 245

Advance Computer Architecture — CS501
I/0 techniques:

There are three main techniques using which a CPU can exchange data with a peripheral device,
namely

e Programmed /O
e Interrupt driven I/O
e Direct Memory Access (DMA).

In this section, we present the first one.
Programmed Input/Output

Programmed 1/O refers to the situation when all I/O operations are performed under the direct
control of a program running on the CPU. This program, which usually consists of a “tight loop”,
controls all I/O activity, including device status sensing, issuing read or write commands, and
transferring the data'd. A subsequent I/O operation cannot begin until the current I/O operation
to a certain device is complete. This causes the CPU to wait, and thus makes the scheme
extremely inefficient. The solution to Example # 3(lec24), Example #2(lec25), and Example
#1(lec26) are examples of programmed input/output. We will analyze the program for Example
#1(lec26) to explain a few things related to the programmed I/O technique.

Timing analysis of the program in Example # 1(lec26)

The main loop of the program given in the solution to movir7. NOB [2]
Example #1(lec26) executes 80 times. This is equal to
the gumber of character's to be printqd on one line. Thi.s a gain: in rl. statusp 3]
portion of the program is shown again with the execution - and 1l .rl. 13 [3]
time of each instruction listed in brackets with it. The

numbers shown are for a uni-bus CPU implementation. ,
A complete list of execution times for all the FALCON- “ load r1, [15] [5]
A’s instructions is given in Appendix A. A number of P :

jnz rl. [again] [4]

. out rl. datap [3]
things can be noted now. movirl.strob L [2]
1. Assuming that the output at the hardware pins 311(:‘1111; o;lgg]ljp H F}%
changes at the end of the (I/O write) bus cycle, out 11 c.611n‘01 N [g]
the STROBE# signal will go from logicl to logic ddi DA P [“%]

0 at the end of the instruction pair. acaL . 1o, = :
subir7.17. 1 [3]
movirl, strb L [2] jnz 17. [again] [4]

out rl, controlp [3] halt

The execution time for these two instructions is 2+3 = 5 clock periods. Therefore, STROBE#
stays at logicl for at least 5 clock periods i.e., during these two instructions. For a 10MHz
FALCON-A CPU, this will correspond to 5x100 = 500nsec = 0.5lsec.

18 The I/O device has no direct access to the memory or the CPU, and transfer is generally done by using
the CPU registers.

Page 246

Advance Computer Architecture — CS501

Since the data to the printer is being sent by the CPU using the two instructions (load rl, [r5]
and out r1, datap) which are before the first movi instruction, the printer’s data setup time
requirement is satisfied as long as we do not increase the clock frequency beyond 10MHz.

After these two instructions, the next two instructions in the program cause STROBE# to go to
logic 1 again.

movirl, strtb H [2]
out rl, controlp [3]

These two instructions also take 5 clock periods, or 0.5lsec, to execute. Thus, the timing
requirement of the STROBE# pulse width will also be satisfied as long as we do not increase the
clock frequency beyond 10MHz. In case the frequency is greater than 10MHz, other instruction
can be used in between these two pairs of instructions.

The printer’s data hold time requirement is easily satisfied because there are a number of
instructions after this out instruction which do not change the control port, and the character
value is already present in the data register within the interface since the end of the out r1, datap
instruction.

2. The three instructions given below:

again: inrl, statusp [3]
and rl, rl, r3 [3]
jnz rl, [again] [4]

form what is called a “polling loop”. The process of periodically checking the status of a device
to see if it is ready for the next I/O operation is called “polling”. It is the simplest way for an I/O
device to communicate with the CPU. The device indicates its readiness by setting certain bits in
a status register, and the CPU can read these bits to get information about the device. Thus, the
CPU does all the work and controls all the I/O activities. The polling loop given above takes 10
clock periods. For a 10MHz FALCON-A CPU, this is 10x100=1Isec. One pass of the main loop
takes a total of 3+3+4+5+3+2+3+2+3+34+3+4 = 38 clock periods which is 38x100 = 3.8lsec. This
is the time that the CPU takes to send one character to the printer. If we assume that a 1000
character per second (cps) printer is connected to the CPU, then this printer has the capability to
print one character in every 1msec or every 1000lsec. So, after sending a character in 3.8lsec to
the printer, the CPU will wait for about 996lsec before it can send the next character to the
printer. This implies that the polling loop will be executed about 996 times for each character.
This is indeed a very inefficient way of sending characters to the printer.

An improved way of doing this would be to include a memory of suitable size within the printer.
This memory is also called a buffer, as explained earlier. The CPU can fill this buffer in a single
“burst” at its own speed, and then do something else, while the printer picks up one character at a
time from this buffer and prints it at its own speed. This is exactly the situation with today’s
printers. The task of generating the STROBE# pulse will also be done by the electronic circuits
within the printer. In effect, a dedicated processor within the printer will do this job. However, if
the buffer within the printer fills up, the CPU will still not be able to transfer additional data to it.
A different handshaking scheme will then be needed to make the CPU to communicate
asynchronously with the buffer in the printer, resulting in an inefficient operation again. This is
explained below.

Page 247

Advance Computer Architecture — CS501

Assume that the printer has a FIFO type buffer of size 64 bytes that can be filled up without any
delay at the time when the printer is not printing anything. When one or more character values
are present in the buffer, the printer will pick up one value at a time and print it. Remember we
have a 1000 cps printer, so it takes Imsec to print a character. The program for Example
#1(lec26) is modified for this situation and is given below. All the assumptions are the same,
unless otherwise mentioned.

again: inrl, statusp [3]
and rl, rl, r3 [3]
jnz r1, [again] [4]
load r1, [r5] [5]
out r1, datap [3]
addi r5, r5, 2 [3]
subi r7, 17, 1 [3]
jnz r7, [again] [4]

Note that while the instructions for generating the STROBE# pulse have been eliminated, the
polling loop is still there. This is necessary because the BUSY signal will still be present,
although it will have a different meaning n now. In this case, BUSY =1 will mean that the buffer
within the printer is full and it cannot accept additional bytes.

The main loop shown in the program has an execution time of 28 clock periods, which is 2.8lsec
for a 10MHz FALCON-A CPU. The polling loop still takes 10 clock periods or 1lsec. Assuming
that this program starts when the buffer in the printer is empty, the outer loop will execute 64
times before the CPU encounters a BUSY=1 condition. After that the situation will be the same
as in the previous case. The polling loop will execute for about 996 times before BUSY goes to
logic 0. This situation will persist for the remaining 16 characters (remember we are sending an
80 character line to the printer).

One can argue that the problem can be solved by increasing the buffer size to more than 80
bytes. Well, first of all, memory is not free. So, a large buffer will increase the cost of the printer.
Even if we are willing to pay more for an improved printer, the larger buffer will still fill up
whenever the number of characters is more than the buffer size. When that happens, we will be
back to square one again.

A careful analysis of the situation reveals that there is something wrong with the scheme that is
being used to send data to the printer. This problem of having a larger overhead of polling was
recognized long ago, and therefore, interrupts were invented as an alternate to programmed I/O.
Interrupt driven I/O will be the topic of the next lecture.

Programmed 1/0 in SRC

In this section, we will discuss some more examples of programmed [/O with our example
processor SRC which uses the memory mapped I/O technique.

Program for Character Output

To understand how programmed I/O works in SRC, we will discuss a program which outputs the
character to the printer. The first instruction loads the branch target and the second instruction
loads the character into lower 8 bits of register r2. The 2-instruction loop reads the status register
and tests the ready signal by checking its sign bit. It executes until the ready signal becomes
logic one. On exit from the loop, the character is written to the device data register by the store
instruction.

Page 248

Advance Computer Architecture — CS501

lar r3, wait

Idr 12, char
wait: 1drl, COSTAT

brpl 13, rl

str2, COUT

A 10 MIPS, SRC would execute 10,000 instructions waiting for a 1,000 character/sec printer.

i - Line
Program Fragment to Print 80-Character ‘ ' ‘
Thegnext example for the SRC is of a program which sends an 80-chlaracj[er %gletto a‘hnte prtlinotgr
i i loops starting at label wait. The two instruc
th a command register. There are two nested . : .
flvliler loop, which V\%aits for ready and the outer seven instruction loop which performs the

following tasks.

e OQutputs a character
Advance the buffer pointer .
Decrement the register containing the number of characters left to print
Repeat if there are more characters left to send}.l)

i ions i to print the line.

The last two instructions issue the command ' . .
The next example discussed from the book is of a driver program for 32-character input devices

(Figure 8.10, Page 388).

’ 388 Chapter 8 Input and Output
FIGURE 8.10 Programmed /O Driver for 32 Character Input Devices

iDriver for 32 char. input devices. Register usage:
ir@ - working register. r1 - stores a char. into
iselected buffer. r2 _ jndexes (CIN, CICTL) pairs
iof I/0 registers & (Bufp, Dene) pairs controlling

iinput lines. r3 - =1 at the end of a pass only if
ino device is active.
CICTL .equ FFFFF300H ;First char.-in control reg.
CIN .equ FFFFF304H iFirst input data register.
CR . equ 13 ;ASCII carriage return,
Bufp: . dew 1 ;First pointer into a buffer.
Done: .dew 63 ilst done & rest of pointers,
Driver: Tlar r4, Next iBranch targets: move to next
lar r5, Check i char., check device active,
lar r6, Start i & start a new polling pass.
Start: . la r2, @ ;Point to first device, &
Ta r3 . : set all inactive flag.
Check: 1d r@, Done(r2) ;If device not still active,
brmi r4, roe 3 g0 advance to next.
1d r3, @ iClear the all inactive flag.
1d r@, CICTL(r2) ;Get device ready flag, & go
brpl r4, re i Move to next if not ready.
1d r@, CIN(r2) ;Get character and
1d rl, Bufp(r2) ; correct buffer pointer, &
st ré, e(rl) i store character in buffer,
addi rd, L rl, 4 ;Advance character pointer,
st rl, Bufp(r2) : and return it to memory.
addi ré, re,-CcrR iIf not carriage return,
brnz rd, ro i go advance to next device.
la rg, -1 ;5et done flag to -1 on
st r@, Done(r2) ; detecting carriage return.
Next: addi r2, r2.8 ;Advance device pointer, and
addi r@, r2,-256 i if not Tast device,
brnz r5, ro i go check next one, |
brzr ré, r3 ;If any acétive, make new pass.

Page 249

Advance Computer Architecture — CS501

Comparisons of the SRC and FALCON-A Examples

The FALCON-A and SRC programmed I/O examples discussed are similar with some
differences. In the first example discussed for the SRC (i.e. Character output), the control signal
responsible for data transfer by the CPU is the ready signal while for FALCON-A Busy (active
low)signal is checked. In the second example for the SRC, the instruction set, address width and
no. of lines on address is different.

Although different techniques have been used to increase the efficiency of the programmed I/O,
overheads due to polling cannot be completely eliminated.

Page 250

Advance Computer Architecture — CS501

Lecture No. 27
Interrupt Driven 1/O

Reading Material

Vincent P. Heuring & Harry F. Jordan
Computer Systems Design and Architecture 82.2

Summary
e Programmed I/O Driver for SRC

e Interrupt Driven I/O

Programmed I/O Driver for SRC

Please refer to Figure 8.10 of the text and its associated explanation.

Input and Output
Programmed /O Driver for 32 Character Input Devices
Register usage:

[388 Chapter 8

FIGURE 8.10
input dewvices.

siDriver for 32 char.
3r® - working register. ri - stores a char. "Pinto
rz - indexes (CIN, CICTL) pairs

;selected buffer.
;of T/0 registers & CBufp, Doned) pairs controlling
sinput Tinmes._. 3 — -3 at the end of a pass only if

Chapter 8

ino device is active.
CICTL -equ FFFFF300H ;First char.-4in control reg.
CIN -equ FEFFFF304H First input data register.
CR -.equ sASCII carriage return.
Bufp: -dcw £ ;First pointer into a buffer.
Done: -dcw 63 ilst done & rest of pointers.
Driver Tar rd, Next sBranch targets: mowve to next
Tar r5, Check = char., check device actiwve,
Tar b, Start 5 & sTtart a new polling pass.
Start Jla r2, . 9 ;Point to first dewvice, &
Ta S = set all +Hinactive flag.
Check Td @, Donedlr2) :If device not still active,
brmi 4 re 3 g0 advance to next.
Id 3, @ iClear the all +dinactiwve flag.
Id re, CrcyvLCr2d ;Get device ready flag. & go
brpl r4, re < move Tto next if not ready.
id e, CINCr2) :Get character and
1d rl, Bufp(r2) - correct buffer pointer, &
st 2, eCrl) H store character in buffer.
addi ri, ri, 4 s Advance character pointer,
st rl, BufpCr2)d = and return it to memory .
addq re,. re,-Ccr :If not carriage return,
brn= r4, reo 3 go adwvance to next device.
da re, -1 iSet done flag to -1 on
st r®, DoneCr2) = detecting carriage return.
Next: addi r2, 2.8 iAdvance dewvice pointer, and
add-i re r2,-256 if not lTast dewvice,
brn=z S, 0 5 go check next one. |
brzr ré, r3 ;IF any active, make new pass . 1
|

Interrupt Driven I/O:
Program Flow

Introduction:
An interrupt is a request to the CPU to <
normal processing and

suspend

Pregram Flow

temporarily divert the flow of control
' Main Program

through a new program. This new
program to which control is transferred

is called an Interrupt Service Routipe or '
ISR. Another name for an ISR is an) N

Interrupt Handler. interrupt Interrupt

"

Interrupts are used to demand attention from the CPU.

Key Board

Interrupt

[]

e Interrupts are asynchronous breaks in program flow that occur as a result of events
outside the running program.

e Interrupts are usually hardware related, stemming from events such as a key or button

press, timer expiration, or completion of a data transfer.

Page 251

Advance Computer Architecture — CS501

The basic purpose of interrupts is to divert CPU processing only when it is required. As an
example let us consider the example of a user typing a document on word-processing software
running on a multi-tasking operating system. It is up to the software to display a character when
the user presses a key on the keyboard. To fulfill this responsibility the processor can repeatedly
poll the keyboard to check if the user has pressed a key. However, the average user can type at
most 50 to 60 words in a minute. The rate of input is much slower than the speed of the
processor. Hence, most of the polling messages that the processor sends to the keyboard will be
wasted. A significant fraction of the processor’s cycles will be wasted checking for user input on
the keyboard. It should also be kept in mind that there are usually multiple peripheral devices
such as mouse, camera, LAN card, modem, etc. If the processor would poll each and every one
of these devices for input, it would be wasting a large amount of its time. To solve this problem,
interrupts are integrated into the system. Whenever a peripheral device has data to be exchanged
with the processor, it interrupts the processor; the processor saves its state and then executes an
interrupt handler routine (which basically exchanges data with the device). After this exchange is
completed, the processor resumes its task. Coming back to the keyboard example, if it takes the
average user approximately 500 ms to press consecutive keys a modern processor like the
Pentium can execute up to 300,000,000 instructions in these 500 Ms. Hence, interrupts are an
efficient way to handle I/O compared to polling.

Advantages of interrupts:
. Useful for interfacing I/O devices with low data transfer rates.
. CPU is not tied up in a tight loop for polling the I/O device.

Program Flow for an interrupt driven interface:

The attached figure shows the program flow executing on a processor with interrupts enabled. As
we can see, the program is interrupted in several locations to service various types of interrupts.

Types of Interrupts:
The general categories of interrupts are as follows:

. Internal Interrupts
. External Interrupts
. Hardware Interrupts
. Software Interrupts

Internal Interrupts:

. Internal interrupts are generated by the processor.
. These are used by processor to handle the exceptions generated during instruction
execution.

Internal interrupts are generated to handle conditions such as stack overflow or a divide-by-zero
exception. Internal interrupts are also referred to as traps. They are mostly used for exception
handling. These types of interrupts are also called exceptions and were discussed previously.

External Interrupts:

External interrupts are generated by the devices other than the processor. They are of two types.

. Hardware interrupts are generated by the external hardware.

. Software interrupts are generated by the software using some interrupt instruction.
As the name implies, external interrupts are generated by devices external to the CPU, such as
the click of a mouse or pressing a key on a keyboard. In most cases, input from external sources
requires immediate attention. These events require a quick service by the software, e.g., a word
processing software must quickly display on the monitor, the character typed by the user on the
keyboard. A mouse click should produce immediate results. Data received from the LAN card or

Page 252

Advance Computer Architecture — CS501

the modem must be copied from the buffer immediately so that pending data is not lost because
of buffer overflow, etc.

Hardware interrupts:

Hardware interrupts are generated by external events specific to peripheral devices. Most
processors have at least one line dedicated to interrupt requests. When a device signals on this
specific line, the processor halts its activity and executes an interrupt service routine. Such
interrupts are always asynchronous with respect to instruction execution, and are not associated
with any particular instruction. They do not prevent instruction completion as exceptions like an
arithmetic overflows does. Thus, the control unit only needs to check for such interrupts at the
start of every new instruction. Additionally, the CPU needs to know the identification and
priority of the device sending the interrupt request.

There are two types of hardware interrupt:
Maskable Interrupts
Non-maskable Interrupts

Maskable Interrupts:
. These interrupts are applied to the INTR pin of the processor.
. These can be blocked by resetting the flag bit for the interrupts.

Non-maskable Interrupts:

. These interrupts are detected using the NMI pin of the processor.
. These can not be blocked or masked.
. Reserved for catastrophic event in the system.

Software interrupts:

Software interrupts are usually associated with the software. A simple output operation in a
multitasking system requires software interrupts to be generated so that the processor may
temporarily halt its activity and place the data on its data bus for the peripheral device. Output is
usually handled by interrupts so that it appears interactive and asynchronous. Notification of
other events, such as expiry of a software timer is also handled by software interrupts. Software

User Level I/O Software

Device-Independent Operating System Software

Device Drivers

Interrupt Handlers

Hardware

interrupts are also used with system calls. When the operating system switches from user mode
to supervisor mode it does so through software interrupts. Let us consider an example where a
user program must delete a file. The user program will be executing in the user mode. When it
makes the specific system call to delete the file, a software interrupt will be generated, this will
cause the processor to halt its current activity (which would be the user program) and switch to
supervisor mode. Once in supervisor mode, the operating system will delete the file and then
control will return to the user program. While in supervisor mode the operating system would
need to decide if it could delete the specified file without harmful consequences to the systems
integrity, hence it is important that the system switch to supervisor mode at each system call.

Page 253

Advance Computer Architecture — CS501

I/0 Software System Layers:

The above diagram shows the various software layers related to I/O. At the bottom lies the actual
hardware itself, i.e. the peripheral device. The peripheral device uses the hardware interrupts to
communicate with the processor. The processor responds by executing the interrupt handler for
that particular device. The device drivers form the bridge between the hardware and the software.
The operating system uses the device drivers to communicate with the device in a hardware
independent fashion, e.g., the operating system need not cater for a specific brand of CRT
monitors, or keyboards, the specific device driver written for that monitor or keyboard will act as
an intermediary between the operating system and the device. It would be clear from the
previous statement that the operating system expects certain common functions from all brands
of devices in a category. Actually implementing these functions for each particular brand or
vendor is the responsibility of the device driver. The user programs run at top of the operating
system.

Interrupt Service Routine (ISR):

. It is a routine which is executed when an interrupt occurs.
. Also known as an Interrupt Handler.
. Deals with low-level events in the hardware of a computer system, like a tick of a

real-time clock.

As it was mentioned earlier, an interrupt once generated must be serviced through an interrupt
service routine. These routines are stored in the system memory ready for execution. Once the
interrupt is generated, the processor must branch to the location of the appropriate service routine
to execute it. The branch address of the ISR is discussed next.

Branch Address of the ISR:
There are two ways used to choose the branch address of an Interrupt Service Routine.

Non-vectored Interrupts Vectored Interrupts

Non-vectored Interrupts:

In non-vectored interrupts, the branch address of the interrupt service routine is fixed. The code
for the ISR is loaded at fixed memory location. Non-vectored interrupts are very easy to
implement and not flexible at all. In this case, the number of peripheral devices is fixed and may
not be increased. Once the interrupt is generated the processor queries each peripheral device to
find out which device generated the interrupt. This approach is the least flexible for software
interrupt handling.

Vectored Interrupts:

Interrupt vectors are used to specify the address of the interrupt service routine. The code for ISR
can be loaded anywhere in the memory. This approach is much more flexible as the programmer
may easily locate the interrupt vector and change its addresses to use custom interrupt servicing
routines. Using vectored interrupts, multiple devices may share the same interrupt input line to
the processor. A process called daisy chaining is then used to locate the interrupting device.

Interrupt Vector:
Interrupt vector is a fixed size structure that stores the address of the first instruction of the ISR.
Interrupt Vector Table:

. All of the interrupt vectors are stored in the memory in a special table called
Interrupt Vector Table.
. Interrupt Vector Table is loaded at the memory location 0 for the 8086/8088.

Page 254

Advance Computer Architecture — CS501

Interrupts in Intel 8086/8088:

. Interrupts in 8086/8088 are vector interrupts.

. Interrupt vector is of 4 bytes to store IP and CS.

. Interrupt vector table is loaded at address 0 of main memory.

. There is provision of 256 interrupts.

Branch Address Calculation:

. The number of interrupt is the number of interrupt vector in the interrupt vector
table.

. Since size of each vector is 4 bytes and interrupt vector starts from address 0,

therefore, the address of interrupt vector can be calculated by simply multiplying the number by
4.

Interrupt Vector Example:
In 8086/8088 machines the size of interrupt vector is 4 bytes that holds IP and CS of ISR.

Code Segment Register Value
at3 (Most Significant Byte)
Code Segment Register Value
a+2 (Least Significant Byte)
Instruction Pointer Value
atl (Most Significant Byte)
Instruction Pointer Value
a (Least Significant Byte)
Returning from the ISR:

Every ISA should have an instruction, like the IRET instruction, which should be executed when
the ISR terminates. This means that the IRET instruction should be the last instruction of every
ISR. This is, in effect, a FAR RETURN in that it restores a number of registers, and flags to their
value before the ISR was called. Thus the previous environment is restored after the servicing of
the interrupt is completed.

Interrupt Handling:

The CPU responds to the interrupt request by completing the current instruction, and then storing
the return address from PC into a memory stack. Then the CPU branches to the ISR that
processes the requested operation of data transfer. In general, the following sequence takes place.

Hardware Interrupt Handling:
o Hardware issues interrupt signal to the CPU.

e CPU completes the execution of current instruction. CPU acknowledges interrupt.
o Hardware places the interrupt number on the data bus.

e CPU determines the address of ISR from the interrupt number available on the data bus.

Page 255

Advance Computer Architecture — CS501

e CPU pushes the program status word (flags) on the stack along with the current value of
program counter.
e The CPU starts executing the ISR.

e After completion of the ISR, the environment is restored; control is transferred back to
the main program.

Interrupt Latency:

Interrupt Latency is the time needed by the CPU to recognize (not service) an interrupt request. It
consists of the time to perform the following:

e Finish executing the current instruction.

Perform interrupt-acknowledge bus cycles.

Temporarily save the current environment.

Calculate the IVT address and transfer control to the ISR.

If wait states are inserted by either some memory module or the device supplying the interrupt
type number, the interrupt latency will increase accordingly.

Interrupt Latency for external interrupts depends on how many clock periods remain in the
execution of the current instruction.

On the average, the longest latency occurs when a multiplication, division or a variable-bit shift
or rotate instruction is executing when the interrupt request arrives.

Response Deadline:

It is the maximum time that an interrupt handler can take between the time when interrupt was
requested and when the device must be serviced.

Expanding Interrupt Structure:

When there is more than one device that can interrupt the CPU, an Interrupt Controller is used to
handle the priority of requests generated by the devices simultaneously.

Interrupt Precedence:

Interrupts occurring at the same time i.e. within the same instruction are serviced according to a
pre-defined priority.

e In general, all internal interrupts have priority over all external interrupts; the single-step
interrupt is an exception.
e NMI has priority over INTR if both occur simultaneously.

e The above mentioned priority structure is applicable as far as the recognition of
(simultaneous) interrupts is concerned. As far as servicing (execution of the related ISR)
is concerned, the single-step interrupt always gets the highest priority, then the NMI, and
finally those (hardware or software) interrupts that occur last. If IF is not 1, then INTR is
ignored in any case. Moreover, since any ISR will clear IF, INTR has lower "service
priority" compared to software interrupts, unless the ISR itself sets IF=1.

Simultaneous Hardware Interrupt Requests:
The priority of the devices requesting service at the same time is resolved by using two ways:
Daisy-Chained Interrupt Parallel Priority Interrupt

Page 256

Advance Computer Architecture — CS501

Daisy-Chaining Priority:

. The daisy-chaining method to resolve the priority consists of a series connection of
the devices in order of their priority.

. Device with maximum priority is placed first and device with least priority is placed
at the end.

Daisy-Chain Priority Interrupt

. The devices interrupt the CPU.

. The CPU sends acknowledgement to the maximum priority device.

. If the interrupt was generated by the device, the interrupt for the device is
serviced.

. Otherwise the acknowledgement is passed to the next device.

If the higher priority devices are going to interrupt continuously then the device with the lower
priority is not serviced. So some additional circuitry is also needed to introduce fairness.

- Priority In
Interrupt =
Acknowledge Device 1
(Max Priority)
CPU Device 2
i Device 3
Interrupt (Min Priority)
1 Priority Out
VAD stands .
for Vector To Next Device
Address
Parallel Priority:
. Parallel priority method for resolving the priority uses individual bits of a priority
encoder.
. The priority of the device is determined by position of the input of the encoder

used for the interrupt.

Parallel Priority Interrupt:

Page 257

Advance Computer Architecture — CS501

Priority
Encoder

Page 258

Advance Computer Architecture — CS501

Lecture No. 28

Interrupt Hardware and Software
Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 8
Computer Systems Design and Architecture 8.3
Summary

e Comparison of Interrupt driven I/O and Polling
Design Issues

Interrupt Handler Software

Interrupt Hardware

Interrupt Software

Comparison of Interrupt driven I/O and Polling

Interrupt driven I/O is better than polling. In the case of polling a lot of time is wasted in
questioning the peripheral device whether it is ready for delivering the data or not. In the case of
interrupt driven I/O the CPU time in polling is saved.

Now the design issues involved in implementation of the interrupts are twofold. There would be
a number of interrupts that could be initiated. Once the interrupt is there, how the CPU does
know which particular device initiated this interrupt. So the first question is evaluation of the
peripheral device or looking at which peripheral device has generated the interrupt. Now the
second important question is that usually there would be a number of interrupts simultaneously
available. So if there are a number of interrupts then there should be a mechanism by which we
could just resolve that which particular interrupt should be serviced first. So there should be
some priority mechanism.

Design Issues

There are two design issues:
1. Device Identification
2. Priority mechanism

Device Identification

In this issue different mechanisms could be used.
e Multiple interrupt lines
e Software Poll
e Daisy Chain

1. Multiple Interrupt Line

This is the most straight forward approach, and in this method, a number of interrupt lines are
provided between the CPU and the I/0 module. However, it is impractical to dedicate more than
a few bus lines or CPU pins to interrupt lines. Consequently, even if multiple lines are used, it is

Page 259

Advance Computer Architecture — CS501

likely that each line will have multiple I/O modules attached to it. Thus on each line, one of the
other technique would still be required.

2. Software Poll

CPU polls to identify the interrupting module and branches to an interrupt service routine on
detecting an interrupt. This identification is done using special commands or reading the device
status register. Special command

may be a test I/O. In this case, Inte rrupt Inte rrupt

CPU raises test I/O and places the Data (23---15}47%::&?...0) request enable
address of a particular I/O module i ? U

on the address line. If /O module ~ Data(l...15) —ﬂ—lnfﬂ (15...0) . il

sets the interrupt then it responds 2 Sl
positively. In the case of an

addressable status register, the ineq 9 oo

CPU reads the status register of

each I/O module to identify the imck

interrupting module. Once the correct module is identified, the CPU branches to a device service
routine which is specific to that particular device.

Simplified Interrupt Circuit for an I/O Interface

For above two techniques the implementation might require some hardware. The hardware
would be specific to the processor which is being used. For example, for the case of SRC, simple
hardware machanism is indicated. Now the basic technique is handshaking and in this case of
handshaking, the peripheral device would initiate an interrupt. This interrupt needs to be enabled.
We will have a mechanism of ANDing the two signals. One is interrupt enable and other is
interrupt request. Now these two requests would be passed on the CPU. The CPU passes on the
acknowledge signal to the device. The acknowledge signal is shared and it goes on to different
devices.

The information about interrupt vector is given in 8-bits, from bit 0 to 7, which is translated to bit
16 to 23 on the data bus. Now the other 16-bits, from 0 to 15 are mapped to the data lines from 0
to 15. Now both of these are available through the tri-state buffers, which would be enabled
through interrupt acknowledge.

3. Daisy Chain

The wired or interrupt signal allows several devices to request interrupt simultaneously.
However, for proper
operation one and only
one requesting device
must receive an Ired 7
acknowledge signal, iack ﬁ m

otherwise if we have L
more than one devices, 0 device 10 device I device
we would have a data 0 1 J
bus contention and the
interrupt information would not be resolved. The usual solution is called a daisy chain. Assuming
that if we have jth devices requesting for interrupt then first device 0 would receive the
acknowledge signal, so therefore, iackO=iack. The next device would only receive an
acknowledge i.e., the jth device would receive an acknowledge if the previous device that means
j-1 does not have an enabled interrupt request, that means interrupt was not initiated by the

Page 260

[bus
data

Advance Computer Architecture — CS501

previous device. Now the figure shows this concept in the form of a connection from device 0 to
1. From 0, we see the acknowledge is generated for device 1, device 1 generates acknowledge
for device2 and so on. So this signal propagates from one device to other device. Logically we
could write it in the form of equation:

iackj = iack j-1"\(reqj-1"enb j-1)

As we said that the previous device should not have generated an interrupt, that means its
interrupt was not enabled and therefore, it passes on the acknowledge signal from its
output to he next device.

Disadvantages of Software Poll and Daisy Chain

The software poll has a disadvantage is that it consumes a lot of time, while the daisy chain is
more efficient. The daisy chain has the disadvantage that the device nearest to the CPU would
have highest priority. So, usually those devices which require higher priority would be connected
nearer to the CPU. Now in order to get a fair chance for other devices, other mechanisms could
be initiated or we could say that we could start instead of device 0 from that device where the
CPU finishes the last interrupt and could have a cyclic provision to different devices.

Interrupt Handler Software

Example using SRC
(Read from Book, Jordan page395)
31 30 1 4 0
Unused vect —
2N
o o
Ready Interrupt Request Interrupt enable

CICTL : The Control Register
:Getline is called with return address in R31 and a pointer to a
:character buffer in R1. It will input characters up to a carriage
return under interrupt control, setting Done to -1 when complete.
CR .equ 13 (ASCI code for carriage return.

Clvec _.equ O01FOH :Character input interrupt vector address.
Bufp: Ldhw 1 .Pointer to next character location.
Save: .dw 2 :Save area for registers on interrupt.
Done: .dw 1 ;Flag location is -1 if input complete.
Getin: st r1. Bufp :Record pointer to next character.

edi ;:Disable interrupts while changing mask.

la r2, 1F1H ;Get vector address and device enable bit

st r2, CICTL ;and put into control register of device.

la r3. 0 .Clear the

st r3, Done ;line input done flag.

een ;Enable Interrupts

br r31 ;and return to caller.

.org Clvec :Start handler at vector address.

str ro, Save Save the registers that

str ri, Save+4 : will be used by the interrupt handler.

Idr r1, Bufp Get pointer to next character position.

Id ro, CIN :Get the character and enable next input.

st rO, O(r1) :Store character in line buffer.

addi r1,r1, 4 (Advance pointer and

str r1. Bufp : store for next interrupt.

lar r1, Exit ;Set branch target.

addi rO,r0, -CR cCarriage return? addi with minus CR

brnz r1, ro ;Exit if not CR, else complete line.

la ro, 0 ;Turn off input device by

st ro, CICTL ; disabling its interrupts.

la ro, -1 :Get a -1 indicator, and

str rO, Done ; report line input complete.
Exit: Idr r0, Save :Restore registers

Idr r1, Save+4 ; of interrupted program.

rfi :Return to interrupted program.

Example using FALCON-A

Page 261

Advance Computer Architecture — CS501

As an example of interrupt-driven /O, consider an output device, such as a parallel printer
connected to the FALCON-A CPU. Now suppose that we want to print a document while using
an application program like a word processor or a spread sheet. In this section, we will explain
the important aspects of hardware and software for implementing an interrupt driven parallel
printer interface for the FALCON-A. During this discussion, we will also explain the differences
and similarities between this interface and the one discussed earlier. To make things simple, we
have made the assumption that only one interrupt pin is available on the FALCON-A, and only
one interrupt is possible at a given time with this CPU. Implications of allowing only one
interrupt at a time are that

No NMI is possible

No nesting of interrupts is possible

No priority structure needed for multiple devices
No arbitration needed for simultaneous interrupts

e No need for vectored interrupts, therefore, no need of interrupt vectors and interrupt
vector tables

o [Effect of software initiated interrupts and internal interrupts (exceptions) has to be
ignored in this discussion

Along with the previous assumption, the following assumptions have also been used:

e Hardware sets and clears the interrupt flag, in addition to handling other things like
saving PC, etc.

e The address of the ISR is stored at absolute address 2 in memory.
e The ISR will set up a stack in the memory for saving the CPU’s environment
e One ASCII character stored per 16-bit word in the FALCON-A’s memory and one
character transferred during a 16-bit transfer.
. (li"he calling program will call the ISR for printing the first character through the printer
river.

e Printer will activate ACKNLG# only when not BUSY.

Interrupt Hardware:

The logic diagram for the interrupt hardware is

shown in the Figure. The interrupt request is F
synchronized by handshaking signals, called FALCON-A o o
IREQ and IACK. The timing diagram for the cPU J i A———
handshaking signals used in the interrupt driven IREQ e ﬁ—
I/O is shown in the next Figure. The printer will 'ACKT '?; from IRQEN
assert IREQ as soon as the ACKNLG# signal o

goes low (i.e. as soon as the printer is ready to

accept new data) provided that IREQN=1. The Logic Diagram for Interrupt Driven /O
processor will complete the current instruction on the FALCON-A CPU

and respond by executing the interrupt service

routine. The inverting tri-state buffer at the clock input of the D flip flop is enabled by IRQEN.
This will make sure that after the current print job is complete, additional requests on IREQ are
disabled. This can happen as a result of the printer being available even through the user may not
have requested a print operation. The IACK line from the CPU is connected to the asynchronous
reset, R, of the D flip flop so that the same interrupt request from the printer is not presented
again to the CPU. The asynchronous set input of the D flip flop, labeled S in the diagram, is
permanently connected to logic 1.

Page 262

Advance Computer Architecture — CS501

This will make sure that the flip flop will

never be set asynchronously. The D input is — ackniG#
also permanently connected to logic 1, as a

result of which the flip flop will always be set
synchronously in response to ACKNLG# u
provided IRQEN=1. Recall that IRQEN is bit

4 on the centronics control port at logical YR
address 2, and this is mapped onto address 60
of the FALCON-A’s I/O space. The rest of —ack
the hardware is case of the same as in the case

of the programmed I/O example.

Timing Diagram for Interrupt Driven /O
on the FALCON-A CPU
Interrupt Software:

Our software for the interrupt driven printer example consists of three parts:
1). Dummy calling program

2). Printer Driver

3). ISR

We are assuming that normal processing is taking place19 e.g., a word processor is executing.
The user wants to print a document. This document is placed in a buffer by the word processor.
This buffer is usually present somewhere else in the memory. The responsibility of the calling

Main Progralm {e.g. Word) in progress

User mmvokes

Print command Use 15 to pass Bufp,

17 to pass NOB , and
| 14 to pass return address
Call Printer Driver to the printer driver

Return with error code
‘]Il 7

NO ERROR?
(*7=07?)

Send Error message
and invoke Error Routine

@7=0) |
Resume Normal Processing
program is to pass the number of bytes to be printed and the starting address of the buffer where
these bytes are stored to the printer driver. The calling program can also be called the main
program.

19 Since only one interrupt is possible, a question may arise about the way the print command is presented
to the word processor. It can be assumed that polling is used for the input device in this case.

Page 263

Advance Computer Architecture — CS501

. filename: Example Falcon-A .asmfa
:This program sends a single character
:to a FALCON-A parallel printer

:using an interrupt driven I/O interface

. Notes:
. 1. 8-bit printer data bus connected to
<7..0> of the FALCON-A (remember big-endian)
Thus. the printer actually uses addresses 57. 59 & 61

: 2. one character per 16-bits of data xfered :
org 0

Jump [main]
a4ISR: sw beginISR

a4PD: sw Pdriver
dvl: Ssw 1024
dv2: sw 40
Bufp: dw 1

NOB: dw 1

PB: dw 1

temp: dw 6

: Dummy Calling Program. e.g.. a word processor

.org 32
main: load 6. [a4PD] .16 holds address of printer driver

- user invokes print command here
load 15, [dv1] :Prepare registers for passing
load 17. [dv2] . information about print buffer.
. call printer driver
call 14. 16
: Handle error conditions. if any . upon return.

: Normal processing resumes

halt

Suppose that the total number of bytes to be printed are 40. (They are placed in a buffer having
the starting address 1024.) When the user invokes the print command, the calling program calls
the printer driver and passes these two parameters in r7 and r5 respectively. The return address of
the calling program is stored in r4. A dummy calling program code is given below. Bufp, NOB,
PB, and temp are the spaces reserved in memory for later use in the program. The first
instruction is jump [main]. It is stored at absolute memory address O by using the .org 0
directive. It will transfer control to the main program. The first instruction of the main program is

Page 264

Advance Computer Architecture — CS501

placed at address “main”, which is the entry point in this example. Note that the entry point is
different in this case from the reset address, which is address 0 for the FALCON-A. Also note
that the address of the first instruction in the printer driver is stored at address “a4PD” using the
.sw directive. This value is then brought into r6. The main program calls the printer driver by
using the instruction call r4, r6. In an actual program, after returning from the printer driver, the
normal processing resumes and if there are any error conditions, they will be handled at this
point. Next, consider the code for the printer driver, shown in the attached text box.

The printer driver is loaded at address 50. Initialization of the variables includes setting of port
addresses, variables for the STROBE# pulse, initializing the printer and enabling its IRQEN. The
variables can be defined anywhere in the program because they reserve no memory space. When
the printer driver starts, the PB flag is tested to make sure that a previous print job is not in
progress. If so, the ISR is not invoked and a message is returned to the main program indicating
that printing is in progress. This may display a “printer busy” icon on the user’s screen, or cause
some other appropriate action. If the printer is available, it is initialized by the driver.

The following activities are also performed by the driver (see the attached flow chart also).

Set port addresses

Set up variables for the STROBE# puls

Initialize printer and enable its IRQEN.

Set up printer ISR by pointing to the buffer and initializing counter
Make sure that the previous print job is not in progress

Set PB flag to block further print jobs till current one is complete
Invoke ISR for the first time

Pass error message to main program if ISR reports an error

Return to main program

The code and flow chart for the interrupt service routine (ISR) are discussed in the next few
paragraphs.

The Printer Driver

[Initialization of the variables*]
I

*datap: .equ 56
[Check the PB flag shatussy Al
controlp: .equ 60
reset: .equ 17
disable: .equ 5
strb_H: .equ 21

[Set the PBflag | strb_L: .equ 20

i
[Initialize the printer and enable interrupt]
+

A message
indicating printing
in progress

[Store the address of the character buffer in Bufp]

:
| Store the total number of bytes to be printed in NOB |

Call ISR ISR

! Return
| Return to the Caller | from ISR

Page 265

Advance Computer Architecture — CS501

: Printer driver

.org 50 . starting address of Printer driver
datap: .equ 56
statusp: .equ 58
controlp: .equ 60
reset: equ 17 cor 11h

: used to set unidirectional. enable interrupts.
. auto line feed. and strobe high

disable: equ 3
strb H: .equ 21 cor 15h
strb_L: .equ 20 :or 14h

. check PB flag first. if set.
. return with message.

Pdriver: load rl. [PB]
jnz rl. [message]

movirl. 1
store 11, [PB] :a 1 in PB indicates Print In Progress
movirl. reset s use rl for data xfer

out rl. controlp
store 13, [Bufp]
store 17, [NOB]

int

jump [finish]
message: nop . in actual situation. put a message routine here
:to indicate print in progress
finish: ret r4

We have assumed that the address of the ISR is stored at absolute memory address 2 by the
operating system. One way to do that is by using the .sw directive (as done in the dummy calling
program). The symbol sw stands for “storage of word”. It enables the user to identify storage for
a constant, or the value of a variable, an address or a label at a fixed memory location during the
assembly process.

Page 266

Advance Computer Architecture — CS501

[Save the CPU environment]

ISR __.

[Recover buff&er information|
|Read the printer's status|

[Error messagg-—YES
: NO

Load character from the buffer,
and send to the printer
[Activate STROBE#]

| Update buffer pointer and character counter \
[Test the counter]

NO

Coun:c,er =0
5 YES
[Disable the interrup:cs and clear PB flag|

| Restore the environment and quit |
[Return to the Calling Program]

These values become part of the binary file and are then loaded into the memory when the binary
file is loaded and executed. In response to a hardware interrupt or the software interrupt int, the
control unit of the FALCON-A CPU will pick up the address of the first instruction in the ISR
from memory location 2, and transfer control to it. This effectively means that the behavioral
RTL of the int instruction will be as shown below:

int I[PC— PC, PC <~ M|2],IF <0

The IPC register in the CPU is a holding place for the current value of the PC. It is invisible to
the programmer. Since the iret instruction should always be the last instruction in every ISR, its
behavior RTL will be as shown below:

iret PC —1IPC,IF <1

The saving and restoring of the other elements of the CPU environment like the general purpose
registers should be done within the ISR. The five store instructions at the beginning are used to
save these registers into the memory block starting at address temp, and the five load
instructions at the end are used to restore these registers to their original values.

Page 267

Advance Computer Architecture — CS501

ISR starts here
.org 100

beginISR: movi r6. temp

store rl. [r6]
store r3. [16+2]
store 4. [16+4]
store 13, [r6+6]
store r7. [r6+8]
movir3. 1
shiftl 13.13.7
load 15. [Buip]
load 7. [NOB]
in rl. statusp
and rl.rl.r3

. to set mask to 0080h
: not necessary to use 15 & r7 here
: using r7 as character counter

ctestif BUSY =179

. error if BUSY =1
. get char from printer buffer

jnz rl. [error]
load rl, [15]
out rl. datap
movirl. sttb L
out rl. controlp
movirl, sttb H
out rl. controlp
addi r5.15.2
store 15. [Buip]
subi r7. 17, 1
store 7. [NOB]
jz 17. [suspend]
Jjump [last]
suspend: store 17. [PB]
movirl, disable
out rl. controlp
jump [last]
error: movi 17, -1
. other error codes go here

: update buffer pointer
: update character counter

. clear PB flag
. disable future mterrupts till
. printer driver called again

: error code 1 17

last: load r1. [16]
load 13. [16+2]

{'_
load 14, [r6+4]
load 15. [16+6]
load 17, [r6+8]
wret
end

After setting the mask to 80h in r3, the current value of the buffer pointer and the number of
bytes to be printed are brought from the memory into r5 and r7 respectively. After a byte is
printed, these values are updated in the memory for use by the ISR when it is invoked again. The
rest of the code in the ISR is the same as it was in case of the programmed I/O example. Note
that we are testing the printer’s BUSY flag within the ISR also. However, the difference here is

Page 268

Advance Computer Architecture — CS501

that this testing is being done for a different reason, and it is done only once for each call to the
ISR.

Memory Map for our ISR
Entry Point
Address of ISR
4 Data and Pointer Area
32 Main Program
(Dummy Calling Program)
50 Printer Driver
100 ISR
1024 Print Buffer

The memory map for this program is as shown in the Figure. The point to be noted here is that
the ISR can be loaded anywhere in the memory but its address will be present at memory
location 2 i.e. M[2].

Page 269

Advance Computer Architecture — CS501

Lecture No. 29
FALSIM

Reading Material

Handouts Slides

Summary

Introduction to FALSIM

e Preparing source files for FALSIM

e Using FALSIM

e FALCON-A assembly language techniques

Introduction to FALSIM:

FALSIM is the name of the software application which consists of the FALCON-A assembler
and the FALCON-A simulator. It runs under Windows XP.

FALCON-A Assembler:

Figure 1 shows a snapshot of the graphical user interface (GUI) for the FALCON-A Assembler.
This tool loads a FALCON-A assembly file with a (.asmfa) extension and parses it. It shows the
parsed results in an error log, lets the user view the assembled file’s contents in the file listing

and also provides the features of printing the machine code, an Instruction Table and a Symbol
Table to a FALCON-A listing file. It also allows the user to run the FALCON-A Simulator.

The FALCON-A Assembler source code has two main modules, the 1st-pass module and the
2nd-pass module. The Ist-pass module takes an assembly file with a (.asmfa) extension and
processes the file contents. It then generates a Symbol Table which corresponds to the storage of
all program variables, labels and data values in a data structure at the implementation level. The
Symbol Table is used by the 2nd-pass module. Failures of the Ist-pass are handled by the
assembler using its exception handling mechanism.

The 2nd-pass module sequentially processes the .asmfa file to interpret the instruction op-codes,
register op-codes and constants using the Symbol Table. It then produces a list file with a .Istfa
extension independent of successful or failed pass. If the pass is successful a binary file with a
.binfa extension is produced which contains the machine code for the program contained in the
assembly file.

FALCON-A Simulator:

Figure 6 shows a snapshot of the GUI for the FALCON-A Simulator. This tool loads a
FALCON-A binary file with a (.binfa) extension and presents its contents into different areas of
the simulator. It allows the user to execute the program to a specific point within a time frame or
just executes it, line by line. It also allows the user to view the registers, I/O port values and
memory contents as the instructions execute.

FALSIM Features:
The FALCON-A Assembler provides its user with the following features:
Select Assembly File: Labeled as “1” in Figure 1, this feature enables the user to choose a

FALCON-A assembly file and open it for processing by the assembler. Assembler Options:
Labeled as “2” in Figure 1.

o Print Symbol Table

Page 270

Advance Computer Architecture — CS501

This feature, if selected, writes the Symbol Table (produced after the execution of the 1st-pass of
the assembler) to a FALCON-A list file with an extension of (.Istfa). The Symbol Table includes
variables, addresses and labels with their respective values.

o Print Instruction Table

This feature, if selected, writes the FALCON-A instructions along with their op-codes at the end
of the list file.

List File: Labeled as “3”, in Figure 1, the List File feature gives a detailed insight of the
FALCON-A listing file, which is produced as a result of the execution of the 1st and 2nd-pass. It
shows the Program Counter value in hexadecimal and decimal formats along with the machine
code generated for every line of assembly code. These values are printed when the 2nd-pass is
completed.

Error Log: The Error Log is labeled as “4” in Figure 1. It informs the user about the errors and
their respective details, which occurs in any of the two passes of the assembler. The size of this
window can be changed by dragging the boundary line up or down.

Highlight: This feature is labeled as “S” in Figure 1 and helps the user to search for a certain
input with the options of searching with “match whole” and “match any” parts of the string.
The search also has the option of checking with/without considering “case-sensitivity”. It
searches the List File area and highlights the search results using the yellow color. It also
indicates the total number of matches found.

Start Simulator: This feature is labeled as “6” in Figure 1. The FALCON-A Simulator is run
using the FALCON-A Assembler’s “Start Simulator” option. Its features are detailed as follows:

Load Binary File: The button labeled as “11” in Figure 6, allows the user to choose and open a
FALCON-A binary file with a (.binfa) extension. When a file is being loaded into the simulator
all the register, constants (if any) and memory values are set.

Registers: The area labeled as “12” in Figure 6. enables, the user to see values present in
different registers before, during and after execution.

Instruction: This area is labeled as “13” in Figure 6 and contains the value of PC, address of an
instruction, its representation in Assembly, the Register Transfer Language, the op-code and the
instruction type.

/O Ports: 1/O ports are labeled as “14” in Figure 6. These ports are available for the user to enter
input operation values and visualize output operation values whenever an I/O operation takes
place in the program. The input value for an input operation is given by the user before an
instruction executes. The output values are visible in the I/O port area once the instruction has
successfully executed.

Memory: The memory is divided into two areas and is labeled as “15” in Figure 6, to facilitate
the view of data stored at different memory locations before, during and after program execution.
Processor’s State: Labeled as “16” in Figure 6, this area shows the current values of the
Instruction Register and the Program Counter while the program executes.

Highlight: The highlight option for the FALCON-A simulator is labeled as “17” in Figure 6.
This feature is similar to the way the highlight feature of the FALCON-A Assembler works. It
offers to highlight the search string which is entered as an input, with the “All “ and “ Part
option. The results of the search are highlighted using the yellow color. It also indicates the total
number of matches.

The following is a description of the options available on the button panel labeled as “18” in
Figure 6.

Single Step: “Single Step” lets the user execute the program, one instruction at a time. The next
instruction is not executed unless the user does a “single step” again. By default, the instruction
to be executed will be the one next in the sequence. It changes if the user specifies a different PC
value using the Change PC option (explained below).

Page 271

Advance Computer Architecture — CS501

Change PC: This option lets the user change the value of PC (Program Counter). By changing
the PC the user can execute the instruction to which the specified PC points. The value in the PC
must be an even address.

Execute: By choosing this button, the user is able to execute the loaded program with the options
of execution with/without breakpoint insertion. In case of breakpoint insertion, the user has the
option to choose from a list of valid breakpoint values. It also has the option to set a limit on the
time for execution. This “Max Execution Time” option restricts the program execution to a time
frame specified by the user.

Change Register: Using the Change Register feature, the user can change the value present in a
particular register.

Change Memory Word.: This feature enables the user to change values present at a particular
memory location.

Display Memory: Display Memory shows an updated memory area, after a particular memory
location other than the pre-existing ones is specified by the user.

Change I/O: Allows the user to give an I/O port value if the instruction to be executed requires
an I/O operation. Giving in the input in any one of the I/O ports areas before instruction
execution, indicates that a particular I/O operation will be a part of the program and it will have
an input from some source. The value given by the user indicates the input type and source.

Display I/O: Display I/O works in a manner similar to Display Memory. Here the user specifies
the starting index of an I/O port. This features displays the I/O ports stating from the index
specified.

2. Preparing Source Files for FALSIM:

In order to use the FALCON-A assembler and simulator, FALSIM, the source file containing
assembly language statements and directives should be prepared according to the following
guidelines:

e The source file should contain ASCII text only. Each line should be terminated by a
carriage return. The extension .asmfa should be used with each file name. After
assembly, a list file with the original filename and an extension .Istfa, and a binary file
with an extension .binfa will be generated by FALSIM.

e Comments are indicated by a semicolon (;) and can be placed anywhere in the source file.
The FALSIM assembler ignores any text after the semicolon.

e Names in the source file can be of one of the following types:

e Variables: These are defined using the .equ directive. A value must also be assigned to
variables when they are defined.

e Addresses in the “data and pointer area” within the memory: These can be defined using
the .dw or the .sw directive. The difference between these two directives is that when .dw
is used, it is not possible to store any value in the memory. The integer after .dw
identifies the number of memory words to be reserved starting at the current address.
(The directive .db can be used to reserve bytes in memory.) Using the .sw directive, it is
possible to store a constant or the value of a name in the memory. It is also possible to
use pointers with this directive to specify addresses larger than 127. Data tables and jump
tables can also be set up in the memory using this directive.

e Labels: An assembly language statement can have a unique label associated with it. Two
assembly language statements cannot have the same name. Every label should have a
colon (©) after it.

e Use the .org 0 directive as the first line in the program. Although the use of this line is
optional, its use will make sure that FALSIM will start simulation by picking up the first
instruction stored at address 0 of the memory. (Address 0 is called the reset address of the
processor). A jump [first] instruction can be placed at address 0, so that control is
transferred to the first executable statement of the main program. Thus, the label first

Page 272

20

Advance Computer Architecture — CS501

serves as the identifier of the “entry point™ in the source file. The .org directive can also
be used anywhere in the source file to force code at a particular address in the memory.

Address 2 in the memory is reserved for the pointer to the Interrupt Service Routine
(ISR). The .sw directive can be used to store the address of the first instruction in the ISR
at this location.

Address 4 to 125 can be used for addresses of data and pointerszo. However, the main

program must start at address 126 or lesszl, otherwise FALSIM will generate an error at
the jump [first] instruction.

The main program should be followed by any subprograms or procedures. Each
procedure should be terminated with a ret instruction. The ISR, if any, should be placed
after the procedures and should be terminated with the iret instruction.

The last line in the source file should be the .end directive.
The .equ directive can be used anywhere in the source file to assign values to variables.

It is the responsibility of the programmer to make sure that code does not overwrite data
when the assembly process is performed, or vice versa. As an example, this can happen if
care is not exercised during the use of the .org directive in the source file.

Using FALSIM:

To start FALSIM (the FALCON-A assembler and simulator), double click on the
FALSIM icon. This will display the assembler window, as shown in the Figure 1.

Select one or both assembler options shown on the top right corner of the assembler
window labeled as “2”. If no option is selected, the symbol table and the instruction table
will not be generated in the list (.Istfa) file.

Click on the select assembly file button labeled as “1”. This will open the dialog box as
shown in the Figure 2.

Select the path and file containing the source program that is to be assembled.

Click on the open button. FALSIM will assemble the program and generate two files with
the same filename, but with different extensions. A list file will be generated with an
extension .Istfa, and a binary (executable) file will be generated with an extension .binfa.
FALSIM will also display the list file and any error messages in two separate panes, as
shown in Figure 3.

Double clicking on any error message highlights and displays the corresponding
erroneous line in the program listing window pane for the user. This is shown in Figure 4.
The highlight feature can also be used to display any text string, including statements
with errors in them. If the assembler reported any errors in the source file, then these
errors should be corrected and the program should be assembled again before simulation
can be done. Additionally, if the source file had been assembled correctly at an earlier
occasion, and a correct binary (.binfa) file exists, the simulator can be started directly
without performing the assembly process.

Any address between 4 and 14 can be used in place of the displacement field in load or store instructions.

Recall that the displacement field is just 5 bits in the instruction word.

21

This restriction is because of the fact that the immediate operand in the movi instruction must fit an 8-bit

field in the instruction word.

Page 273

Advance Computer Architecture — CS501

To start the simulator, click on the start simulation button labeled as “6”. This will open
the dialog box shown in Figure 6.

Select the binary file to be simulated, and click Open as shown in Figure 7. (It is also
possible to open the file by double clicking on the file name in the “Open” window).

This will open the simulation window with the executable program loaded in it as shown
in Figure 8. The details of the different panes in this window were given in section 1
earlier. Notice that the first instruction at address 0 is ready for execution. All registers
are initialized to 0. The memory contains the address of the ISR (i.e., 64h which is 100
decimal) at location 2 and the address of the printer driver at location 4. These two
addresses are determined at assembly time in our case. In a real situation, these addresses
will be determined at execution time by the operating system, and thus the ISR and the
printer driver will be located in the memory by the operating system (called re-locatable
code). Subsequent memory locations contain constants defined in the program.

Click single step button labeled as “19”. FALSIM will execute the jump [main]
instruction at address 0 and the PC will change to 20h (32 decimal), which is the address
of the first instruction in the main program (i.e., the value of main).

Although in a real situation, there will be many instructions in the main program, those
instructions are not present in the dummy calling program. The first useful instruction is
shown next. It loads the address of the printer driver in r6 from the pointer area in the
memory. The registers r5 and r7 are also set up for passing the starting address of the
print buffer and the number of bytes to be printed. In our dummy program, we bring these
values in to these registers from the data area in the memory, and then pass these values
to the printer driver using these two registers. Clicking on the single step button twice,
executes these two instructions.

The execution of the call instruction simulates the event of a print request by the user.
This transfers control to the printer driver. Thus, when the call r4, r6 instruction is single
stepped, the PC changes to 32h (50 decimal) for executing the first instruction in the
printer driver.

Double click on memory location 000A, which is being used for holding the PB (printer
busy) flag. Enter a 1 and click the change memory button. This will store a 0001 in this
location, indicating that a previous print job is in progress. Now click single step and note
that this value is brought from memory location 000E into register rl1. Clicking single
step again will cause the jnz rl, [message] instruction to execute, and control will
transfer to the message routine at address 0046h. The nop instruction is used here as a
place holder.

Click again on the single step button. Note that when the ret r4 instruction executes, the
value in r4 (i.e., 28h) is brought into the PC. The blue highlight bar is placed on the next
instruction after the call r4, r6 instruction in the main program. In case of the dummy
calling program, this is the halt instruction.

Double click on the value of the PC labeled as “20”. This will open a dialog box shown
below. Enter a value of the PC (i.e. 26h) corresponding to the call r4, r6 instruction, so
that it can be executed again. A “list” of possible PC values can also be pulled down
using, and 0026h can be selected from there as well.

Click single step again to enter the printer driver again.
Change memory location 000A to a 0, and then single step the first instruction in the

printer driver. This will bring a 0 in rl, so that when the next jnz rl, [message]
Page 274

Advance Computer Architecture — CS501

instruction is executed, the branch will not be taken and control will transfer to the next
instruction after this instruction. This is movi r1, 1 at address 0036h.

Continue single stepping.

Notice that a 1 has been stored in memory K&lpF{gf==lzid
location 000A, and rl contains 11h, which is

then transferred to the output port at address 3Ch SRR

(60 decimal) when the out rl, controlp [0 =
instruction executes. This can be verified by
double clicking on the top left corner of the 1/0 ok | Cancel |

port pane, and changing the address to 3Ch.
Another way to display the value of an I/O port is to scroll the I/O window pane to the
desired position.

Continue single stepping till the int instruction and note the changes in different panes of
the simulation window at each ste

When the int instruction executes, the PC changes to 64h, which is the address of the first
instruction in the ISR. Clicking single step executes this instruction, and loads the address of
temp (i.e., 0010h) which is a temporary memory area for storing the environment. The five
store instructions in the ISR save the CPU environment (working registers) before the
ISR change them.

Single step through the ISR while noting the effects on various registers, memory
locations, and 1/O ports till the iret instruction executes. This will pass control back to the
printer driver by changing the PC to the address of the jump [finish] instruction, which is
the next instruction after the int instruction.

Double click on the value of the PC. Change it to point to the int instruction and click
single step to execute it again. Continue to single step till the in rl, statusp instruction is
ready for execution.

Change the I/O port at address 3Ah (which represents the status port at address 58) to 80
and then single step the in rl, statusp instruction. The value in r1 should be 0080.

| FALCON-A Assembler > - - iul‘gfj]
i Azsambles Ophons
galert ™ Print instraction Table ﬁ
:&ssemnlﬂ-ng I I P Syl Tabie FALCON
Q g | [Do T wachinw T i R, T Sonrce Statement '
Q iy

Hignignt |

-

Page 275

Advance Computer Architecture — CS501

e Single step twice and notice that control is transferred to the movi r7, FFFF??
instruction, which stores an error code of —1 in rl.

FALCON-A Assembler

Select
Assembly Fi_Ie

Assembler Options——
P‘ Frint Instruction Table ;%.

™ Print Symbol Table || EAT LCON

Hex I Dec. i Machine | Line Mo, i Source Statement |

Open
Lok in: Ilfa My Documents _:J & I‘j‘ Ea~

EExample 11-10 9Feb04ISRAFALCONA

| g |

File: namie: lExampIe_11-1 0_SFeb04ISRAFALCOMNA Open I
Filez of type: IFaIcon-A Azzembly Files [*.asmfa) ;l Cancel Iﬁ_

~Options
™ Case Sensitive

Highlight |T_0ta|-Match| 1] 7 Match Whole © Match Any Star_tSimuIator“ About " Exit Il

Figure 2
Salect CADacuments and l—’issernbler Hiing |

L ‘SeMingsyavanaDeskiopiExample_11-10_TFenlISRAFALCONA asr | | Printinstustion Table | =~
SRR | | I Printsymbol Table | AT (CON

Hex I Dec IMachine Line Ma, | Source Staterment I A
oooa aooo ooan 1 Jfilename: Exampla_11-10 _E‘
oooa aogo ooan 2 \This program sends a single character B |
0000

0000

0000

0000

0000

0000 0000 Q 1 Error(s) During Second Pass

EBEE BEBE See C:\Documents and

i g Seftings\javaria\Desktop\Example_1 1-10_7Feb04ISRARALCONA Istfa

0000 0000

0000 0000

0002 0002

ooopd O0n4 TS TS EE15i8) T POTIVET 55]
Errar Line 62 Undefined variable "r2'

i Options
I Case Sensitive

Highliant TotalMatch | O | © Match\hole © MatchAny | grap Simulamr“ Apaut " Exit "

Figure 3

2 The instruction was originally movi r7, -1. Since it was converted to machine language by the assembler,
and then reverse assembled by the simulator, it became movi r7, FFFF. This is because the machine code stores the
number in 16-bits after sign-extension. The result will be the same in both cases.

Page 276

Advance Computer Architecture — CS501

FALCOMN-A Assembler

Select [CiDocuments and i :
ISettingsijavariaiDeskiopiExample_11-10_TFeb04ISR4FALCONA sy | Printinstruction Table

SR | | Printsymboi Table | EALCON

~Assembler Options—i ii— e

Hex | Dec. | Machine | Line Mo, | Source Staterment | A |
no3z 0050 0ood 52 disable: egus
no3z 0050 0ood 53 ;
no3z nosn nooon 54 strb H: egu 21 car1sh
no3z nosn nooon 54 strb L equ 20 cartdh
003z 0050 0ood 56 ;
no3z nosn nooon a7 ccheck PB flag first, if set,
no3z nosn nooon L] creturniwith message.
003z 0050 0o0d 54 ; |
no3z 0050 E90A 50 Pdriver: load r1, [PB]
9112 Bl jnz rl, [message]
a1, 12
E104 63 store r1, [FB] valinPBindicates PrintIn Progress
3911 G4 movi i, reset cuse rl for data xfer
CH3C il out rl, controlp
E&06 Gf store r5, [Butp]
ET08 67 store 17, [NOB] S |

~Optiong ————————————
[T Case Sensitive
Highlight | Total Match | 0 Matchhale Match Any .StanSimulamr” T “ [e | |
Figure 4

— [ADacuments and Seftingsijavariaihty '_!i "f"”'erOpt'_DnS' i | ?

nssomtts File | DOCUMENtsiExample_11-10_BFehD4ISR4FALCONA asrmfa prnnit=tienin sanlel =

st | | I~ Printgymbol Table | EALCON

Hex] Cec.. 1 Machine I Line No, 1 Source Statement _I A
ooon 0ooon oooo 1 sMilename: Example_11-10.asmfa _
ooog 0ooon nooo 2 “This program sends a single character [IT
0000 0000 000§ - — ;

LB DIgFalconA_7Feb04

0000 0000 000

0000 0000 000

0no0 0ooo oo ,E Following Files are Generated Successfully;

ooon . 0odo - 00ojg C:\Documents and Settings'javariaiy

L R Docurnents'Exarmple_11-10_0Feb041SR4FALCONA Istfa

0000 0000 000 As

0000 oooo oood Ci\Documents and Seffingstjavariaiy

0000 0000 O0Oj DocumentsiExample_11-10_9Feb041SE4FALCONA binfa

0000 0000 000

0000 0000 AD2

0004 0004 003 Sl
= .

~Optiohs —
™ Case Sensitive
Highlight TotalMatch | 0 MatchWhole ™ Mateh Any StanSimmatorﬂ e n Exit ||
Figure 5

Page 277

Advance Computer Architecture — CS501

FALCON-A Simulator
:%" Loag

Binary Fiie
Feuiulers

Totimasen | Hignignt [

Rep#| valve | value | value | Vale

S,

(it @00 -

Misch |~ Casa T pl T Pan

Fetum To
As

X

| [[doress [insiruchon | pssemy |

€

A

p-1_ | z:3 | 48 | s-

% || | | Memon]

10 Pots (00 FF)

Pod# | 0-1 | _3-3 | 4.5 [E

S

- Procéssods State

| IR | re

Figure 6

18

FALCON-A Simulator

~ Load
Binary File

Total Match | Highlight |

Return To-

W

[Match [Case[C Al [Part

Assembler

{

R |

- Register Mernory (00h-800k) -
Reg#| walue | value | value | WValue | memary| 0-1 BT | 4-5 B
—Instruction = E
Address | Instruction | Look in: Iﬂ My Documents =] = oF Er
Example_l 1-10 9Feb04ISR4FALCONA
HprinterDriver
— g 7 | i 3|
i| 1lif — i — I 4-5 B-7
= File name: IExampIe-_‘I 1-10_9Feb04ISRAFALCONA Open
1o Ports (00h-FFRY _
FPort# ’ 0-1 | 7.3l Files of type: IFaIcon-A Bin Files [*.binfa] ;I ﬂlﬂ
Processor's State Charnge Register || Cifeplay Merror: || Chanoe Mermor Words || Help |

IR | P | PO

Engclte || SifigleStep || Chanie o || Change o || Biapian o |

Figure 7

Page 278

Advance Computer Architecture — CS501

FALCON-A Simulator
Loag | Dot et and et gulaemuibly } TolaiMsich | Highlight Fatum Ta
Binary il || DOCEmEnisiEsmmbie_11-10_0F cu0dISRAFALCONA infa . ASEEmENS
_____J a Maicn I Cass i AR ¢ Pad
Reqiskars Mesmiary (00h- GO0
Rege| vale | vee | vae | vaue | [Memony] 0.y] 23 [a5 [8.7 a4
3] 0amn anan (el 1} i aonn AN nogd o032 Lm0
-7 nooo il oo opan | oina 0038 Do i (o]
{omo 000 pono 0a0a g
Instructizn logie oom [l 0aDa 0400
| Mddress | insinuetion smmibly ___Ela | oo EE04 EDi0 EFD8 BACH
nona AOF0 JueF [207 PO« PCo= I | og2g Faia o Dooa oo
000 noGE ADD RO, BRI, R R[D] = R[] | 0030]] iz 90
oo oa3z ADD RO, R, R4 RiO]=R[1] | oo3e E10A4 ECLR Ca3c E&OC
] 400 AJDRA.RO,RD R4 R[0] | 0040 ETOE Doap AQL Ag
1 nazas AOOROAY, RI RID]=A[1] | no4E BCOD 0ang DOm0 (i)
| OO, 000 ADD RO RO, RO R|0] = RG] : noso [0 1] r] poon e]
a0 Do ADD RO, RO RO R0 =R{0] | ¥
| nopE 0aoa ADD RO RO, RI R0 = R[O] ™
|2 ¥ [wermn] ®8:1 | 2-3 | 4-5% | 6-7 |
]
: lopao AOID noie 00372 0400
i Pofe om0 | oons Da0d)
Pot#] 0.1 | 2-3 | #-% &7 A || lomio nana B0
] noan nana oran ouan | on1a nona nand
a noon 000 oo Dooon | ooz EFg8 B4CT
110 a0 (] onoo (el onie oo paa
16 oooo Do alii] ood 030 o112 1M
20 T 00D 006 o nas CHAL EAOC
. . =]
L | Exscige: || Bindesten |'Change o | 1 |
Figure 8

4. FALCON-A assembly language programming techniques:

If a signed value, x, cannot fit in 5 bits (i.e., it is outside the range -16 to +15), FALSIM will
report an error with a load rl, [x] or a store rl, [X] instruction. To overcome this problem, use
movi 12, x followed by load r1, [r2].

If a signed value, x, cannot fit in 8 bits (i.e., it is outside the range -128 to +127), even the
previous scheme will not work. FALSIM will report an error with the movi r2, X instruction.
The following instruction sequence should be used to overcome this limitation of the
FALCON-A. First store the 16-bit address in the memory using the .sw directive. Then use
two load instructions as shown below:
a: .sw x load r2, [a]
load r1, [r2]

This is essentially a “memory-register-indirect” addressing. It has been made possible by the
.sw directive. The value of a should be less than 15.

A similar technique can be used with immediate ALU instructions for large values of the
immediate data, and with the transfer of control (call and jump) instructions for large values
of the target address.

Large values (16-bit values) can also be stored in registers using the mul instruction
combined with the addi instruction. The following instructions bring a 201 in register rl.

movir2, 10
movi r3, 20
mul r1, r2, r3 ; rl contains 200 after this instruction
addirl, rl, 1 ; r1 now contains 201

Page 279

Advance Computer Architecture — CS501

Moving from one register to another can be done by using the instruction addi r2, r1, 0.
Bit setting and clearing can be done using the logical (and, or, not, etc) instructions.

Using shift instructions (shiftl, asr, etc.) is faster that mul and div, if the multiplier or
divisor is a power of 2.

Page 280

Advance Computer Architecture — CS501

Lecture No. 30

Interrupt Priority and Nested Interrupts
Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 8
Computer Systems Design and Architecture 8.3.3,8.4
Summary

e Nested Interrupts
e Interrupt Mask
e DMA

Nested Interrupts
(Read from Book, Jordan Page 391)

Interrupt Mask

(Read from Book, Jordan Page 391)
Priority Mask

(Read from Book, Jordan Page 392)
Examples

Example # 123

Assume that three I/O devices are connected to a 32-bit, 10 MIPS CPU. The first device is a hard
drive with a maximum transfer rate of 1MB/sec. It has a 32-bit bus. The second device is a
floppy drive with a transfer rate of 25KB/sec over a 16-bit bus, and the third device is a keyboard
that must be polled thirty times per second. Assuming that the polling operation requires 20
instructions for each I/O device, determine the percentage of CPU time required to poll each
device.

Solution:
The hard drive can transfer IMB/sec or 250 K 32-bit words every second. Thus, this hard drive
should be polled using at least this rate.
Using 1K=2"'% the number of CPU instructions required would be
250 x 219 x 20 = 5120000 instructions per second.

Percentage of CPU time required for polling is

(5.12 x 10%/ (10 x10%) = 51.2%

23 Adopted from [H&P org]

Page 281

Advance Computer Architecture — CS501

The floppy disk can transfer 25K/2= 12.5 x 210 half-words per second. It should be polled with
at least this rate. The number of CPU instructions required will be 12.5 x 2105 20 = 256,000
instructions per second.

Therefore, the percentage of CPU time required for polling is
(0.256 x 10%)/ (10 x 10%) = 2.56%.

For the keyboard, the number of instructions required for polling is
30 x 20 = 600 instructions per second.

Therefore, the percentage of CPU time spent in polling is
600/ (10 x 106) =0.006%

It is clear from this example that while it is acceptable to use polling for a keyboard or a floppy
drive, it is very risky to use polling for the hard drive. In general, for devices with a high data
rate, the use of polling is not adequate.

Example # 22

a. What should be the polling frequency for an I/O device if the average delay
between the time when the device wants to make a request and the time when it is polled, is to be
at most 10 ms?

b. If it takes 10,000 cycles to poll the I/O device, and the processor operates at
100MHz, what % of the CPU time is spent polling?

c. What if th*%e system wants to provide an average delay of 1msec?

Solution:

a. Assuming that the I/O requests are distributed evenly in time, the average time

that a device will have to wait for the processor to poll is half the time between polling attempts.
Therefore, to provide an average delay of 10 ms, the processor will have to poll every 20 ms, or
50 times per second.

b. If each polling attempt takes 10,000 cycles, then the processor will spend 500,000
cycles polling each second. The % of CPU time spent in polling is then
(0.5x10%)/(100x10%)=0.5%

c. To provide an average delay of 1ms, the polling frequency must be increased. The
processor will have to poll every 2ms, or 500 times per second. This will consume 5,000,000
cycles for polling. The % of CPU time spent polling then becomes 5/100=5%.

Example # 323

What percentage of time will a 20MIPS processor spend in the busy wait loop of an 80-character
line printer when it takes 1 msec to print a character and a total of 565 instructions need to be
executed to print an 80 character line. Assume that two instructions are executed in the polling
loop.

24 Adopted from [Schaum]
25 Adopted from [H&J]

Page 282

Advance Computer Architecture — CS501

Solution:
Out of the total 565 instructions executed to print a line, 80x2=160 are required for polling. For a

20MIPS processor, the execution of the remaining 405 instructions takes 405/ (20X106) =
20.25csec. Since the printing of 80 characters takes 80ms, (80-0.02025) =79.97msec is spent in
the polling loop before the next 80 characters can be printed. This is 79.97/80=99.96% of the
total time.

Example # 426
Consider a 20 MIPS processor with several input devices attached to it, each running at 1000
characters per second. Assume that it takes 17 instructions to handle an interrupt. If the hardware
interrupt response takes locsec, what is the maximum number of devices that can be handled
simultaneously?

Solution:

A service for one character requires 17/ (20X106) +1ocsec=1.85xsec. Since each device
runs at 1000 characters per second, 1.85 ms of handling time is required by each device

every second. Therefore the maximum number of devices that can be handled is 1/ (1 85x107)=
540.
Example # 527

Assume that a floppy drive having a transfer rate of 25KB per second is attached to a 32 bit,
10MIPS CPU using an interrupt driven interface. The drive has a 16-bit data bus. Assume that
the interrupt overhead is 20 instructions. Calculate the fraction of CPU time required to service
this drive when it is active.

Solution:

Since the floppy drive has a 16-bit data bus, it can transfer two bytes at one time. Thus its
transfer rate is 25/2 = 12.5K half-words (16-bits each) per second. This corresponds to an

overhead of 20 instructions or 12.5K x 20 = 12.5 x 2% x 20 = 256000 instructions per second.

Example # 628

A processor with a 500 MHz clock requires 1000 clock cycles to perform a context switch and
start an ISR. Assume each interrupt takes 10,000 cycles to execute the ISR and the device makes
200 interrupt requests per second. Also, assume that the processor polls every 0.5msec during the
time when there are no interrupts. Further assume that polling an I/O device requires 500 cycles.
Compute the following:

a. How many cycles per second does the processor spend handling I/O from the
device if only interrupts are used?

b. What fraction of the CPU time is used in interrupt handling for part (a)?

c. How many cycles per second are spent on I/O if polling is also used with
interrupts?

d. How often should the processor poll so that polling incurs the same overhead as
interrupts?

26 Adopted from [H&J]

27 Adopted from [H&P org]

28 Adopted from [Schaum]

Page 283

Advance Computer Architecture — CS501

Solution:

a. The device makes 200 interrupt requests per second, each of which takes 10,000 +
2x1000 (context switching to the ISR and back from it)
= 12,000 cycles.

Thus, a total of 200x12,000=2,400,000 cycles per second are spent handling I/O using interrupts.

b. The percentage of the processor time used in interrupt handling is 2,400,000/(500)(106) or

0.48%.

C. There are 200 interrupt requests per second, or one interrupt request every 5 ms.
Every interrupt consumes a total of 12,000 cycles, as calculated in part (a). For a 500 MHz CPU,
this is

12000 / (500 x 10°) =24 microseconds.
For 200 interrupts per second, this is 4.8 msec. This leaves 1000 - 4.8 = 995.2 msec for polling.

Since the processor polls once every 0.5 msec during the time when there is no interrupt, this
corresponds to

995 /0.5 = 1990 times per second.
The total number of cycles required for polling is

1990 x 500 = 995,000 cycles per second.

Thus, the total time spent on I/O when using polling with interrupts is

2,400,000 + 995,000 = 3,395,000 cycles per second.

d. The interrupt overhead is 1000 cycles per second for a context switch to the ISR
and 1000 cycles per second back from it. This is a total of 2 x 1000 cycles per second. With 200
interrupts per second, this is

200 x 2000 = 400,000 cycles per second.

The polling overhead is 500 cycles per second. Thus, for the same overhead as interrupts, the
polling operation should be performed

400,000 / 500 = 800 times per second,

or 1/800 = every 1.25 msec.

Page 284

Advance Computer Architecture - CS501

Direct Memory Access (DMA)

Direct memory access is a technique, where by the CPU passes its control to the memory
subsystem or one of its peripherals, so that a contiguous block of data could be transferred from
peripheral device to memory subsystem or from memory subsystem to peripheral device or from
one peripheral device to another peripheral device.

Advantage of DMA

The transfer rate is pretty fast and conceptually you could imagine that through disabling the tri-
state buffers, the system bus is isolated and a direct connection is established between the 1/0
subsystem and the memory subsystem and then the CPU is free. It is idle at that time or it could
do some other activity. Therefore, the DMA would be quite useful, if a large amount of data
needs to be transferred, for example from a hard disk to a printer or we could fill up the buffer of
a printer in a pretty short time.

As compared to interrupt driven I/O or the programmed /O, DMA would be much faster.

What is the consequence? The consequence is that we need to have another chip, which is a
DMA controller. “A DMA controller could be a CPU in itself and it could control the total
activity and synchronize the transfer of data”. DMA could be considered as a technique of
transferring data from I/O to memory and from memory to I/O without the intervention of the
CPU. The CPU just sets up an I/O module or a memory subsystem, so that it passes control and
the data could be passed on from I/O to memory or from memory to I/O or within the memory
from one subsystem to another subsystem without interaction of the CPU. After this data transfer
is complete, the control is passed from I/O back to the CPU.

Now we can illustrate further the advantage of DMA using following example.

Example of DMA
If we write instruction load as follows:
load [2], [9]

This instruction is illegal and not available in the SRC processor. The symbols [2] and [9]
represent memory locations. If we want to have this transfer to be done then two steps would be
required. The instruction would be:

load r1, [9]

store rl, [2]

Thus it is not possible to transfer from one memory location to another without involving the
CPU. The same applies to transfer between memory and peripherals connected to 1/O ports. For
example we cannot have:

out [6], datap
It has to be done again in two steps:

load rl, [6]

out r1, datap

Similar comments apply to the “in” instruction. Thus the real cause of the limited transfer rate is
the CPU itself. It acts as an unnecessary middle man. The example illustrates that in general,
every data word travels over the system bus twice and this is not necessary, and therefore, the
DMA in such cases is pretty useful.

DMA Approach

The DMA approach is to turn off i.e. through tri-state buffers and therefore, electrically
disconnect from the system bus, the CPU and let a peripheral device or a memory subsystem or
Page 285

Advance Computer Architecture - CS501

any other module or another block of the same module communicate directly with the memory
or with another peripheral device. This would have the advantage of having higher transfer rates
which could approach that of limited by the memory itself.

Disadvantage of DM A

The disadvantage however, would be that an additional DMA controller would be required, that
could make the system a bit more complex and expensive. Generally, the DMA requests have
priority over all other bus activities including interrupts. No interrupts may be recognized during
a DMA cycle.

Page 286

Advance Computer Architecture - CS501

Lecture No. 31
Direct Memory Access (DMA)

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 8
Computer Systems Design and Architecture 8.4
Summary

e Direct Memory Access (DMA)

Direct Memory Access (DMA):

Introduction

Direct Memory Access is a technique which allows a peripheral to read from and/or write to
memory without intervention by the CPU. It is a simple form of bus mastering where the I/O
device is set up by the CPU to transfer one or more contiguous blocks of memory. After the
transfer is complete, the I/O device gives control back to the CPU. The following DMA transfer
combinations are possible:

e Memory to memory

e Memory to peripheral

e Peripheral to memory

e Peripheral to peripheral

The DMA approach is to "turn off" (i.e., tri-state and electrically disconnect from the system
buses) the CPU and let a peripheral device (or memory - another module or another block of the
same module) communicate directly with the memory (or another peripheral).

ADVANTAGE: Higher transfer rates (approaching that of the memory) can be achieved.
DISADVANTAGE: A DMA Controller, or a DMAC, is needed, making the system complex and
expensive.

Generally, DMA requests have priority over all other bus activities, including interrupts.

No interrupts may be recognized during a DMA cycle.

Reason for DMA:

The instruction load [2], [9] is illegal. The symbols [2] and [9] represent memory locations. This
transfer has to be done in two steps:

e loadrl,[9]
e store rl,bx

Thus, it is not possible to transfer from one memory location to another without involving the
CPU. The same applies to transfer between memory and peripherals connected to I/O ports. e.g.,
we cannot have out [6], datap. It has to be done in two steps:

e load rl1,[6]
e outrl, datap

Similar comments apply to the in instruction.

Page 287

Advance Computer Architecture - CS501

Thus, the real cause of the limited transfer rate is the CPU itself. It acts as an unnecessary
"middleman"'. The above discussion also implies that, in general, every data word travels over
the system bus twice.

Some Definitions:

e MASTER COMPONENT: A component connected to the system bus and having
control of it during a particular bus cycle.

e SLAVE COMPONENT: A component connected to the system bus and with which the
master component can communicate during a particular bus cycle. Normally the CPU
with its bus control logic is the master component.

e QUALIFICATIONS TO BECOME A MASTER: A Master must have the capability
to place addresses on the address bus and direct the bus activity during a bus cycle.

e QUALIFIED COMPONENTS:

o Processors with their associated bus control logic.
o DMA controllers.
e CYCLE STEALING: Taking control of the system bus for a few bus cycles.

Data Transfer using DMA:

Data transfer using DMA takes place in three steps.

15 Step:

In this step when the processor has to transfer data it issues a command to the DMA controller
with the following information:

Operation to be performed i.e., read or write operation. Address of I/O device.

Address of memory block.

Size of data to be transferred.

After this, the processor becomes free and it may be able to perform other tasks.

2nd Step:

In this step the entire block of data is transferred directly to or from memory by the DMA
controller.

3rd Step:

In this, at the end of the transfer, the DMA controller informs the processor by sending an
interrupt signal.

See figure 8.18 on the page number 400 of text book.

The DMA Transfer Protocol:

Most processors have a separate line over which an external device can send a request for DMA.
There are various names in use for such a line. HOLD, RQ, or Bus Request (BR), etc. are
examples of these names.

The DMA cycle usually begins with the alternate bus master requesting the system bus by
activating the associated Bus Request line and, of course, satistying the setup and hold times.
The CPU completes the current bus cycle, in the same way as it does in case of interrupts, and
responds by floating the address, data and control lines. A Bus Grant pulse is then output by the
CPU to the same device from where the request occurred. After receiving the Bus Grant pulse,
and waiting for the "float delay" of the CPU, the requesting device may drive the system bus.
This precaution prevents bus contention. To return control of the bus to the CPU, the alternate
bus master relinquishes bus control and issues a release pulse on the same Bus Request line. The
CPU may drive the system bus after detecting the release pulse. The alternate bus master should
be tri-stated off the local bus and have other CPU interface circuits re-enabled within this time.

Page 288

Advance Computer Architecture - CS501

DMA has priority over Interrupt driven 1/O:

In interrupt driven I/O the I/O transfer depends upon the speed at which the processor tests and
service a device. Also, many instructions are required for each I/O transfer. These factors
become bottleneck when large blocks of data are to be transferred. While in the DMA technique
the I/O transfers take place without the intervention by the CPU, rather CPU pauses for one bus
cycle. So DMA technique is the more efficient technique for I/O transfers.

DMA Configurations:
e Single Bus Detached DMA
¢ Single Bus Integrated DMA
e [/OBus

Single Bus Detached DMA

In the example provided by the above diagram, there is a single bidirectional bus connecting the
processor, the memory, the DMA module and all the I/O modules. When a particular I/O module
needs to read or write large amounts contiguous data it requests the processor for direct memory
access. If permission is granted by the
processor, the I/O module sends the read or
write address and the size of data needed to
be read or written to the DMA module. Once ‘Processor\ ‘ Memory ‘ ‘ DMA ‘ ‘ 10 ‘ ‘ 1o ‘
the DMA module acknowledges the request,

the I/O module is free to read or write its contiguous block of data from or onto main memory.
Even though in this situation the processor will not be able to execute while the transfer is going
on (as there is a just a single bus to facilitate transfer of data), DMA transfer is much faster than
having each word of memory being read by the processor and then being written to its location.

Single Bus Integrated DMA
In this configuration the DMA and one or more

/O modules are integrated without the = |Processor| | Memory | | DA DMA
inclusion of system bus functioning as the part 1o
of I/O module or may be as a separate module | o | | o |

controlling the I/O module.

System Bus

10 Bus
In this configuration we integrate the DMA and me— -
I/O modules through an I/O bus. So it will cut = i | E3
the number of I/O interfaces required between e
DMA and I/O module.

| o | | o | .. 10
Example

An 1/O device transfers data at a rate of 10MB/s over a 100MB/s bus. The data is transferred in
4KB blocks. If the processor operates at S00MHz, and it takes a total of 5000 cycles to handle
each DMA request, find the fraction of CPU time handling the data transfer with and without
DMA.

Solution.
Without DMA

Page 289

Advance Computer Architecture - CS501

The processor here copies the data into memory as it is sent over the bus. Since the I/O device
sends data at a rate of 10MB/s over the 100MB/s bus, 10 % of each second is spent transferring
data. Thus 10% of the CPU time is spent copying data to memory. With DMA

Time required in handling each DMA request is 5000 cycles. Since 2500 DMA requests are
issued (10MB/4KB) the total time taken is 12,500,000 cycles. As the CPU clock is SOOMHZ, the

fraction of CPU time spent is 12,500,000/(500)(106) or 2.5%.

Example

A hard drive with a maximum transfer rate of 1Mbyte/sec is connected to a 32-bit, IOMIPS CPU
operating at a clock frequency of 100 MHz. Assume that the I/O interface is DMA based and it
takes 500 clock cycles for the CPU to set-up the DMA controller. Also assume that the interrupt
handling process at the end of the DMA transfer takes an additional 300 CPU clock cycles. If the
data transfer is done using 2 KB blocks, calculate the percentage of the CPU time consumed in
handling the hard drive.

Solution
Since the hard drive transfers at 1MB/sec, and each block size is 2KB, there are

1000/2= 500 blocks transferred/sec

Every DMA transfer uses 500+300=800 CPU cycles. This gives us

800x500 = 400,000 = 400x10° cycles/sec

For the 100 MHz CPU, this corresponds to
(400x10%) / (100x10%) = 4x10 = 0.4%

This would be the case when the hard drive is transferring data all the time. In actual situation,
the drive will not be active all the time, and this number will be much smaller than 0.4%.

Another assumption that is implied in the previous example is that the DMA controller is the
only device accessing the memory. If the CPU also tries to access memory, then either the
DMAC or the CPU will have to wait while the other one is actively accessing the memory. If
cache memory is also used, this can free up main memory for use by the DMAC.

Cycle Stealing

The DMA module takes control of the bus to transfer data to and from memory by forcing the
CPU to temporarily suspend its operation. This approach is called Cycle Stealing because in this
approach DMA steals a bus cycle.

Instruction cycfe

ad L

DMA and Interrupt breakpoints during an | : - .
. . rocessor| Processor|Processer Processor|Processor| Processar
instruction cycle ‘el | owcle | Cyele | Oyele | Gyele | Cyele

o b o

#

The ﬁgure shows that the CPU Suspends Or pauses Fetch Decode | Fetch | Execute | Store | Process
for one bus cycle when it needs a bus cycle, Instruction| Instruction| Cperand |Instruction| Resalt | Interrupt

transfers the data and then returns the control back t ’
Interrupt
1/0 processors o . Breakpaint
Breakpoints

When /O module has its own local memory to
control a large number of I/O devices without the involvement of CPU is called I/O processor.

Page 290

Advance Computer Architecture - CS501

I/0 Channels

When an I/O module has a capability of executing a specific set of instructions for specific I/O
devices in the memory without the involvement of CPU is called I/O channel.

I/0 channel architecture:

DMA Selector

Address
Count

Selector Channel T

It is the DMA controller that can do block
transfers for several devices but only one at a Memory

time. ‘ Device 1 ‘ ‘ Device 2 ‘ ‘ Device 3 ‘

Types of I/O channels: Processor

Multiplexer Channel
It is the DMA controller that can do block transfers for several devices at once.

Types of Multiplexer Channel

e Byte Multiplexer — DMA Selector
e Block Multiplexer Address 1
Count 1
Address 2
Byte Multiplexer Count 2
e Byte multiplexer accepts or transmits

Memory
characters. H ;‘

e Interleaves bytes from several devices. ‘ Device 1 ‘ ‘ Device 2 ‘ ‘ — ‘
e Used for low speed devices.

Block Multiplexer
e Block multiplexer accepts or transmits block of characters.
e Interleaves blocks of bytes from several devices.
e Used for high speed devices.

Virtual Address:
Virtual address is generated be the logical by the memory management unit for translation.

Physical Address:
Physical address is the address in the memory.

DMA and memory system
DMA disturbs the relationship between the memory system and CPU.

Direct memory access and the memory system

Without DMA, all memory accesses are handled by the CPU, using address translation and cache
mechanism. When DMA is implemented into an I/O system memory accesses can be made
without intervening the CPU for address translation and cache access. The problems created by
the DMA in virtual memory and cache systems can be solved using hardware and software
techniques.

Hardware Software Interface

Page 291

Advance Computer Architecture - CS501

One solution to the problem is that all the I/O transfers are made through the cache to ensure that
modified data are read and updated in the cache on the I/O write. This method can decrease the
processor performance because of infrequent usage of the I/0 data.

Another approach is that the cache is invalidated for an I/O read and for an I/O write, write-back
(flushing) is forced by the operating system. This method is more efficient because flushing of
large parts of cache data is only done on DMA block accesses.

Third technique is to flush the cache entries using a hardware mechanism, used in
multiprogramming system to keep cache coherent.

SOME clarifications:

e The terms "serial" and "parallel" are with respect to the computer I/O ports --- not with
respect to the CPU. The CPU always transfers data in parallel.

e The terms "programmed I/O", "interrupt driven I/O" and "DMA" are with respect to the
CPU. Each of these terms refers to a way in which the CPU handles I/O, or the way data
flow through the ports is controlled.

e The terms "simplex" and "duplex" are with respect to the transmission medium or the
communication link.

e The terms "memory mapped I/O" and "independent I/O" are with respect to the mapping
of the interface, i.e., they refer to the CPU control lines used in the interface.

Page 292

Advance Computer Architecture - CS501

Lecture No. 32

Magnetic Disk Drives
Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 9
Computer Systems Design and Architecture 9.1
Summary

e Hard Disk

e Static and Dynamic Properties

e Examples

e Mechanical Delays and Flash Memory

e Semiconductor Memory vs. Hard Disk

Hard Disk

Peripheral devices connect the outside world with the central processing unit through the 1/0
modules. One important feature of these peripheral devices is the variable data rate. Peripheral
devices are important because of the function they perform.

A hard disk is the most frequently used peripheral device. It consists of a set of platters. Each
platter is divided into tracks. The track is subdivided into sectors. To identify each sector, we
need to have an address. So, before the actual data, there is a header and this header consisting of
few bytes like 10 bytes. Along with header there is a trailer. Every sector has three parts: a
header, data section and a trailer.

Static Properties
The storage capacity can be determined from the number of platters and the number of tracks. In

order to keep the density same for the entire surface, the trend is to use more number of sectors
for outer tracks and lesser number of sectors for inner tracks.

Dynamic Properties

When it is required to read data from a particular location of the disk, the head moves towards
the selected track and this process is called seek. The disk is constantly rotating at a fixed speed.
After a short time, the selected sector moved under the head. This interval is called the rotational
delay. On the average, the data may be available after half a revolution. Therefore, the rotational
latency is half revolution.

The time required to seek a particular track is defined by the manufacturer. Maximum, minimum
and average seek times are specified. Seek time depends upon the present position of the head
and the position of the required sector. For the sake of calculations, we will use the average value
of the seek time.

e Transfer rate

When a particular sector is found, the data is transferred to an I/O module. This would depend on
the transfer rate. It would typically be between 30 and 60 Mbytes/sec defined by the
manufacturer.

Page 293

Advance Computer Architecture - CS501

e Overhead time
Up till now, we have assumed that when a request is made by the CPU to read data, then hard
disk is available. But this may not be the case. In such situation we have to face a queuing delay.
There is also another important factor: the hard disk controller, which is the electronics present in
the form of a printed circuit board on the hard disk. So the time taken by this controller is called
over head time.
The following examples will clarify some of these concepts.

Example 1
Find the average rotational latency if the disk rotates at 20,000 rpm.

Solution
The average latency to the desired data is halfway round the disk so
Average rotational latency = 0.5/(20,000 / 60)
=1.5ms
Example 2
A magnetic disk has an average seek time of 5 ms. The transfer rate is 50 MB/sec. The disk
rotates at 10,000 rpm and the controller overhead is 0.2 msec. Find the average time to read or
write 1024 bytes.

Solution
Average Tseek=5ms
Average Trot=0.5*%60/10,000=3 ms
Ttransfer=1KB/50MB=0.02ms
Tcontroller=0.2ms
The total time taken= Tseek +Trot+ Ttsfr +Tctr
=5+3+0.02+0.2
=8.22 ms

Example 3

A hard disk with 5 platters has 1024 tracks per platter,512 sectors per track and 512 bytes/sector.
What is the total capacity of the disk?

Solution
512 bytes x 512
sectors=0.2MB/track
0.2MB x 1024 tracks=0.2GB/platter
Therefore the hard disk has the total capacity of 5 x 0.2=1GB

Example 4
How many platters are required for a 40GB disk if there are 1024 bytes/sector, 2048 sectors per
track and 4096 tracks per platter

Solution

The capacity of one platter
=1024 x 2048 x 4096
=8GB

For a 40GB hard disk, we need 40/8
= 5 such platters.

Page 294

Advance Computer Architecture - CS501

Example §
Consider a hard disk that rotates at 3000 rpm. The seek time to move the head between adjacent
tracks is 1 ms. There are 64sectors per track stored in linear order.
Assume that the read/write head is initially at the start of sector 1 on track 7.
a. How long will it take to transfer sector 1 on track 7 to sector 1 on track 9?

b. How long will it take to transfer all the sectors on track 12 to corresponding sectors on
track 13?

Solution
Time for one revolution=60/3000=20ms

a. Total transfer time=sector read time+head movement time-+rotational delay+sector write time
Time to read or write on sector = 20 / 64 = 0.3 1ms/sector
Head movement time from track 7 to track 9 = Ims x 2 = 2ms

After reading sector 1 on track 7, which takes .31ms, an additional 19.7 msrotational delay is
needed for the head to line up with sector 1 again. The head movement time of 2 ms gets
included in the 19.7 ms. transfer

Total time=0.31ms+19.7ms+0.31ms=20.3ms

b. The time to transfer all the sectors of track 12 to track 13 can be computed in the similar way.
Assume that the memory buffer can hold an entire track. So the time to read or write an entire track is
simply the rotational delay for a track, which is 20 ms. The head movement time is 1ms, which is
also the time for 1/0.3=3.3H 4 sectors to pass under the head. Thus after reading a track and
repositioning the head, it is now on track 13, at four sectors past the initial sector that was read on
track 12. (Assuming track 13 is written starting at sector 5) therefore;

Total transfer time = 20+1+20 = 41ms.

If writing of track 13 start at the first sector, an additional 19 ms should be added, giving a total
transfer time = 60 ms

Example 6

Calculate time to read 64 KB (128 sectors) for the following disk parameters.
—180 GB, 3.5 inch disk
—12 platters, 24 surfaces
—7,200 RPM; (4 ms avg. latency)
—6 ms avg. seek (r/w)
—64 to 35 MB/s (internal)
—0.1 ms controller time

Solution

Disk latency = average seek time + average rotational delay + transfer time + controller overhead
=6 ms + 0.5 x 1/(7200 RPM) /(60000ms/M)) + 64 KB / (64 MB/s) + 0.1 ms
=6+42+1.0+0.1 ms=11.3ms

Mechanical Delay and Flash Memory
Page 295

Advance Computer Architecture - CS501

Mechanical movement is involved in data transfer and causes mechanical delays which are not
desirable in embedded systems. To overcome this problem in embedded systems, flash memory
is used. Flash memory can be thought of a type of electrically erasable PROM. Each cell consists
of two MOSFET and in between these two transistors, we have a control gate and the
presence/absence of charge tells us that it is a zero or one in that location of memory.

The basic idea is to reduce the control overheads, and for a FLASH chip, this control overhead is
low. Furthermore flash memory has low power dissipation. For embedded devices, flash is a
better choice as compared to hard disk. Another important feature is that read time is small for
flash. However the write time may be significant. The reason is that we first have to erase the
memory and then write it. However in embedded system, number of write operations is less so
flash is still a good choice.

Example 7

Calculate the time to read 64 KB for the previous disk, this time using 1/3 of quoted seek time,
3/4 of internal outer track bandwidth

Solution

Disk latency = average seek time + average rotational delay + transfer time + controller overhead
=(0.33* 6 ms) + 0.5 * 1/(7200 RPM) + 64 KB / (0.75* 64 MB/s) + 0.1 ms
=2ms + 0.5 /(7200 RPM/(60000ms/M)) + 64 KB / (48 KB/ms) + 0.1 ms
=2+42+1.3+0.1 ms=7.6 ms

Semiconductor Memory vs. Hard Disk

At one time developers thought that development of semiconductor memory would completely
wipe out the hard disk. There are two important features that need to be kept in mind in this
regard:

1. Cost

It is low for hard disk as compared to semi-conductor memory.

2. Latency

Typically latency of a hard disk is in milliseconds. For SRAM, it is 10° times lower as compared
to hard disk.

Page 296

Advance Computer Architecture - CS501

Lecture No. 33

Error Control
Reading Material

William Stallings 6th edition
Computer Organization and Architecture

Summary
e Operating System Interface
e Error Control
e RAID

Operating System Interface

The Operating system interface plays an important role for disk operation. Operating system
would define a logic block telling the controller about the track, sector, etc. There are different
ways to define logic blocks. For example, we can define 5 bytes containing this information such
that: the first 4 bits contain disk number(in case of a system having more than one disk), the next
4 bits contain the address of a particular track followed by a sector number and at the end, the
number of bytes to transferred. So this defines a logical block transferred by the controller.
Along this, we have additional information about control and status of the controller. The
operating system essentially insulates the users from the hardware details of the disk.

Error Control

There are two main issues in error control:
1. Detection of Error

2. Correction of Error

For detection of error, we just need to know that there exists an error. When the error is detected
then the next step is to ask the source to resend that information. This process is called automatic
request for repeat. In some cases there is also possibility that redundancy is enough and we
reconstruct and find out exactly which particular bits are in error. This is called error correction.
There are three schemes commonly used for error control.

1. Parity code

2. Hamming code
3. CRC mechanism
1. Parity code

Along with the information bits, we add up another bit, which is called the parity bit. The
objective is the total number of 1’s as even or odd. If the parity at the receiving end is different,
an error is indicated. Once error is found, CPU may request to repeat that data. The concept of
parity bit could be enhanced. In such a case, we would like to increase the distance between
different code words. Consider a code word consists of four bits, 0000, and second code word
consists of 1111. The distance between two codes is four. So the distance between the two codes
would be the number of bits in which they differ from each other. So the concept of introducing
redundancy is increase this distance. Larger the distance, higher will be the capacity of the code.
For single parity, the distance is two, we can only detect the parity. But if the distance is three,
we could also correct these single errors.

Page 297

Advance Computer Architecture - CS501

If D= minimum distance between two code words then D-1 errors could be detected and D/2
errors could be corrected.

2. Hamming code
Hamming code is an example of block code. We have an encoder which could be a program or a
hardware device. We feed k inputs to it. These are k information input bits. We also feed some
extra bits. Let r be the number of redundant bits. So at output we have r+k = m bits. As an
example, for parity bit, we have k=7 and r=1 and m=8. So for 7 bits we get eight output bits.

For any positive integer m<=3, a Hamming code with following parameters exists:

. Code Length: n=2"-1

. Number of information symbols: k =2™-1-m
. Number of parity-check symbols: n —k =m
3. CRC

The basic principle for CRC is very simple. We divide a particular code word and make it
divisible by a prime number, and if it is divisible by a prime number then it is a valid code word.
CRC does not support error correction but the CRC bits generated can be used to detect multi-bit
errors. At the transmitter, we generate extra CRC bits, which are appended to the data word and
sent along. The receiving entity can check for errors by re computing the CRC and comparing it
with the one that was transmitted.

CRC has lesser overhead as compared to Hamming code. It is practically quite simple to
implement and easy to use.

RAID

The main advantage of having an array of disks is that we could have a simultaneous I/O request.
Latency could also be reduced...

RAID Level 0
Strip0 Strip1 Strip2 Strip3
Strip4 Strip5 Strip6 Strip7
Strips Strip9 Strip10 Strip11
Strip12 Strip13 Strip14 Strip15

e Not a true member of the RAID family.
e Does not include redundancy to improve performance.

e In few applications, capacity and performance are primary concerns than improved
reliability. So RAID level 0 is used in such applications.
The user and system data are distributed across all the disks in the array.
Notable advantage over the use of a single large disk.
Two requests can be issued in parallel, reducing the I/O queuing time.

Performance of RAID Levels
Page 298

Advance Computer Architecture - CS501

Performance of RAID Levels depends upon two factors:

Request pattern of the host system
Layout of the data

Similarities between RAID Levels 2 and 3

Make use of parallel access techniques.

All member disks participate in execution of every request.

Spindles of the individual drives are synchronized

Data striping is used.

Strips are as small as a single byte or word.

fo (b)

f,(b)

f(b)

RAID Level 2

Differences between RAID2 and RAID 3

In RAID 2, error-correcting code is calculated across corresponding bits on each data

disk.
RAID 3 requires only a single redundant disk.

Instead of an error-correcting code, a simple parity bit is computed for the set of

individual bits in RAID 3

by b, b,
RAID Level 3

RAID Level 4

Make use of independent access technique.

P (b)

Page 299

Advance Computer Architecture - CS501

e Data striping is used.
e A bit-by-bit parity strip is calculated across corresponding strip on each data disk.

e Involves a write penalty when an I/O write request of small size is performed.
e To calculate the new parity, the array management software must read the old user parity

strip.
Block0 Block1 Block?2 Block3 P(0-3)
Block4 Block5 Blocké Block7 P(4-7)
Blocks Block9 Block10 Block11 P(8-11)
Block12 Block13 Block14 Block15 P(12-15)
RAID Level 4
RAID Level 5

e Organized in a similar fashion to RAID 4
e The only difference is that RAID 5 distributes the parity strips across all disks.

Block0 Block1 Block2 Block3 P(0-3)

Block4 Block5 Block& P{4-7) Block7?

Blocks Block9 P(8-11) Block10 Block11

Block12 P(12-15) Block13 Block14 Block15

P{16-19) Block16 Block17 Block18 Block19
RAID Level 5

Page 300

Advance Computer Architecture - CS501

Lecture No. 34

Number Systems and Radix Conversion
Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 6
Computer Systems Design and Architecture 6.1,6.2
Summary

e Introduction to ALSU

Radix Conversion

Fixed Point Numbers

Representation of Numbers

Multiplication and Division using Shift Operation
Unsigned Addition Operation

Introduction to ALSU %°

ALSU is a combinational circuit so inside an ALSU, we have AND, OR, NOT and other
different gates combined together in different ways to perform addition, subtraction, and, or, not,
etc. Up till now, we consider ALSU as a “black box™ which takes two operands, a and b, at the
input and has c at the output. Control signals whose values depend upon the opcode of an
instruction were associated with this black box.

In order to understand the operation of the ALSU, we need to understand the basis of the
representation of the numbers. For example, a designer needs to specify how many bits are
required for the source operands and how many will be needed for the destination operand after
an operation to avoid overflow and truncation.

Radix Conversion

Converting from Base bto Base ¢

Start with base b Initialize base ¢ SRy

" S Going from
representation value xto 0 left to right
) QU .5 - e
onvert (x),
S rumer 0}
g by using table

I

Initialize base ¢
value x1to 0

Update the base ¢
— value by
X=X+ D;

Now we will consider the conversion of numbers from a representation in one base to another.
As human works with base 10 and computers with base 2, this radix conversion operation is
important to discuss here. We will use base ¢ notion for decimal representation and base b for
any other base. The following figure shows the algorithm of converting from base b to base c:

Page 301

Advance Computer Architecture - CS501

29 In our discussion we have used ALU and ALSU for the same thing. We use ALSU when the shift aspect
also needs to be emphasized.

Example 1

Convert the hexadecimal number B3¢ to base 10.
Solution

According to the above algorithm,

X=0

X=x+B (=11) =11

X=16*114+3=179

Hence B316=17910

The following figure shows the algorithm of converting from base ¢ to base b:

Converting from Base c to Base b

SetD=vmodb
And wlwh |
Conwert (D) Wby

Startwith hace o Initialize =0 =
intager and v=x

Seti=itl
If wl=0, repeat

Example 2
Convert 3901¢ to base 16.
Solution

According to the above algorithm
390/16 =24(rem=6), x0=6
24/16= 1(rem=8), x1=8, x2=1
Thus 39010=18616

Fixed Point Numbers

Suppose we have a number with a radix point. For example, in 16.12, there are two digits on the
left side and two digits on the right of the decimal point. In this case, the radix point is a decimal
point because we suppose that given number is a decimal number.

If we have an integer, then this decimal point will be on the right most position i.e. 1612.0 and if
it is in fraction then decimal will be at the left most position i.e. 0.1612 There are situations when
we shift the position of the radix point. Shifting of the radix point towards left or right is called
scaling and we could have multiplication with a base or division by a base respectively.

Page 302

Advance Computer Architecture - CS501

The following figure shows the algorithm of converting a base b fraction to base c:

Converting a Base b fraction to
Base c

Convert to Base o

Start with base b Initialize =00 and niumber (R,

representation Seti=-m 1 by using table
7 |
Y4 ¥nn. KM g K. X, Depeatir
-14n-2 <12 Aem all digits
until'i=0
L

—— Update f=f+0vb. *+—
e =44

Example 3
Convert (.4cd) 16 to Base 10.

Solution

F=0
F = (0+13)/16=0.8125

F = (0.8125+12)/16=0.80078125

F = (0.80078125+4)/16=(0.3000488) 10

The following figure shows the algorithm of converting fraction from base ¢ to base b:

Converting a fraction from Base ¢ to Base b

Start with fraction e Set Dyl |
2t Initializei=1
fin Baze c e = andu=hiely =

SRl Conwert [y tof,

Setizitl
If wl=0 repeat
Until enaugh digits
are generatad

Page 303

Advance Computer Architecture - CS501

Example 4

Convert 0.241¢ to base 2.

Solution

0.24*2=0.48, f.1=0
0.48*2=0.96, f.o=0
0.96*2=1.92, f.3=1
0.92*%2=1.84, f_4=1
0.84*2=1.68, f.5=1,...
Thus 0.24109 =(0.00111) 2

Representation of Numbers
There are four possibilities to represent integers.

Sign magnitude form

Radix complement form
Diminished radix complement form
Biased representation

el

Sign magnitude form
e This is the simplest form for representing a signed number

e A symbol representing the sign of the number is appended to the left of the number

e This representation complicates the arithmetic operations

Radix complement form
e This is the most common representation.

e Given an m-digit base b number x, the radix complement of x is x* = (b™-x) mod b™
e This representation makes the arithmetic operations much easier.

Diminished radix complement form
The diminished radix complement of an m-digit number x is x*’=b™ -1- x
This complement is easier to compute than the radix complement.
e The two complement operations are interconvertible, as
e x°=(x®+1)mod b™

Table 6.1 of the text book shows the complement representation of negative numbers for radix
complement and diminished radix complement form:

Table 6.2 of the text book shows the base 2 complement representation for 8-bit 2°s and 1°s
complement numbers.

Example 5

The following table shows the decimal values in 2’s complement, 1°s complement, sign
magnitude, 16’s complement and in unsigned form:

Page 304

Advance Computer Architecture - CS501

Decimal | 2's 1's Sign- 16’s Unsighed
complement complement magnitude | complement

27 011011 011011 011011 1B 1011

AT 0.00101011 0.00101011 000101011 |02B 0.00101011

-26 100110 100101 111010 E6

057 1.01101110 1.01101101 1.10010010 | F6E

Multiplication and Division using Shift Operation

Shift left and shift right are two important operations used for various purposes. One typical
example could be multiplication or division by base b. The following examples explain
multiplication and division by using shift operation.

Example 6
o 06x4
001102 x410=110002=241¢
Overflow would occur if we will use 4 bits instead of 5 bits here.
e 60/16
01111002/ 1610=00000112=31¢
The fractional portion of the result is lost. Uhsignedadifiorepestion
Example 7
o -6x4 Initialize digit j=0 and c-in ¢;=0
-6=(11010) 2
-6x4 = (01000) 2=8 which is wrong! : l
using less no. of bits might change sign
So, -6 =(111010) 2
-6x4 = (101000) 2 = -24

.Computej sum §j=(xj+yj+cj)m'od b
And carry c+1=L(x+y+c)] /b

Example 8 Inoremen_t J=J+‘1
Repeat if j<m
Multiplication and division of negative numbers l

Solution

-24x2

-24=(101000) 2

-24x2=(010100)2 = 20 -24x2=(110100)2 = -12 Changing the size of the number,
24= 011000 (n=6) to 00011000 (n=8)

-24=101000 (n=6) to 11101000 (n=8)

Unsigned Addition Operation
The following diagram shows the digit wise procedure for adding m-digit base b numbers, x and
y:

Page 305

Advance Computer Architecture - CS501

Example 9

Unsigned addition in base 2 and basel6.

Solution
Base 16 addition Base 2 addition
AB42ys 100011 »
+31C1 16 + 011011 »
carty 0 10 0O carry 000110
sum DDO3 sum 111110,

1-bit half adder

The following diagram shows the logic circuit
for 1-bit half adder. It takes two 1-bit inputs x

and y and as a result, we get a 1-bit sum and a ¥ ~

1-bit carry. This circuit is called a half adder * sum
because it does not take care of input carry. In ¥ —%D
order to take into account the effect of the input
carry, a 1-bit full adder is used which is also

shown in the figure. We can add two m-bit
numbers by using a circuit which is made by carry
cascading m 1-bit full adders.

The situation, when addition of unsigned m-bit numbers results in an m+1 bit number, is called
overflow. Overflow is treated as exception in some processors and the overflow flag is used to
record the status of the result.

Page 306

Advance Computer Architecture - CS501

Lecture No. 35

Multiplication and Division of Integers
Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 6
Computer Systems Design and Architecture 6.3, 6.4
Summary

e Overflow

e Different Implementations of the adder
e Unsigned and Signed Multiplication
e Integer and Fraction Division
e Branch Architecture
Overflow

When two m-bit numbers are added and the result exceeds the capacity of an m-bit destination,
this situation is called an overflow. The following example describes this condition:

Example 1
Overflow in fixed point addition:

Base 2 Base 8 Base 16
1011.1 7.25 C36.A
+1110.0 +6.76 +72B.3
c 1100 c11.1 ¢ 1010
s (11001.1 s/16.23 s [1361.D

In these three cases, the fifth position is not allowed so this results in an overflow.
Different Implementations of the Adder

For a binary adder, the sum bit is obtained by following equation:

Sj = XjYiCi TXjyjcitXyjcitXjyicj
and the equation for carry bit is
Cj+I=XjYjX(CiYic)
where x and y are the input bits.

The sum can be computed by the two methods:

e Ripple Carry Adder
Page 307

Advance Computer Architecture - CS501

e Carry Look ahead Adder

Ripple Carry Adder

In this adder circuit, we feed carry out from the previous stage to the next stage and so on. For 64
bit addition, 126 logic levels are required between the input and output bits. The logic levels can
be reduced by using a higher base (Base 16). This is a relatively slow process.

Complement Adder/Subtractor

We can perform subtraction using an unsigned adder by
e Complement the second input
e Supply overflow detection hardware

2’s Complement Adder/Subtractor

A combined adder/subtractor can be built using a mux to select the second adder input. In this
case, the mux also determines the carry-in to the adder. The equation for mux output is :

q=yjrtyr

Carry Look ahead Adder

The basic idea in carry look ahead is to speed up the ripple carry by determining whether the
carry is generated at the j position after addition, regardless of the carry-in at that stage or the
carry is propagated from input to output in the digit.
This results in faster addition and lesser propagation delay of the carry bits. It divides the carry
into two logical variables Gj (generate) and Pj (propagate). These variables are defined as:

G =XjYj

Pi=Xjty]
Hence the carry out will be

Cj+1=Gj+Pjcj
Here the G and P each require one gate, and the sum bit needs two more gates in the full adder.
This results in a less complexity i.e. log(m) which is much less as compare to ripple carry adder
where complexity is m (m is the number of bits of a digit to be added). Ripple carry and look
ahead schemes are can be mixed by producing a carry-out at the left end of each look ahead
module and using ripple carry to connect modules at any level of the look ahead tree.

Unsigned Multiplication
The general schema for unsigned multiplication in base b is shown in Figure 6.5 of the text book.

Parallel Array Multiplier

Figure 6.6 of the text book shows the structure of a fully parallel array multiplier for base b
integers. All signal lines carry base b digits and each computational block consists of a full adder
with an AND gate to form the product xiyj. In case of binary, m? full adders are required and the
signals will have to pass through almost 4m gates.

Series parallel Multiplier

A combination of parallel and sequential hardware is used to build a multiplier. This results in a
good speed of operation and also saves the hardware.

Page 308

Advance Computer Architecture - CS501

Signed Multiplication

The sign of a product is easily computed from the sign of the multiplier and the multiplicand.
The product will be positive if both have same sign and negative if both have different sign.
Also, when two unsigned digits having m and n bits respectively are multiplied, this results in a
(m+n) —bit product, and (m-+n+1)-bit product in case of sign digits. There are three methods for
the multiplication of sign digits:

1. 2’s complement multiplier
. Booth recoding
3. Bit-Pair recoding

2’s complement Multiplication

If numbers are represented in 2°s complement form then the following three modifications are
required:

1. Provision for sign extension

2. Overflow prevention

3. Subtraction as well as addition of the partial product
Booth Recoding

The Booth Algorithm makes multiplication simple to implement at hardware level and speed up
the procedure. This procedure is as follows:

e Start with LSB and for each 0 of the original number, place a 0 in the recorded number
until a 1 in indicated.

e Place a1 for lin the recorded table and skip any succeeding 1°s until a 0 is encountered.
Place a 0 with 1 and repeat the procedure.

Example 2
Recode the integer 485 according to Booth procedure.

Solution

Original number:
00111100101=256+128+64+32+4+1=485
Recoded Number:

01000101111=+512-32+8-4+2-1=485
Bit-Pair Recoding

Booth recoding may increase the number of additions due to the number of isolated 1s. To avoid
this, bit-pair recoding is used. In bit-pair recoding, bits are encoded in pairs so there are only n/2
additions instead of n.

Division

There are two types of division:
Page 309

Advance Computer Architecture - CS501

e Integer division
e Fraction division

Integer division

The following steps are used for integer division:

1. Clear upper half of dividend register and put dividend in lower half. Initialize quotient
counter bit to 0

2. Shift dividend register left 1 bit

3. If difference is +ve, put it into upper half of dividend and shift 1 into quotient. If — ve,
shift 0 into quotient

4. If quotient bits<m, goto step 2

5. m-bit quotient is in quotient register and m-bit remainder is in upper half of dividend

register

Example 3

Divide 4710 by 510.

Solution

D=000000 101111. d=000101

D 000001 011110
d 000101

Diff(-)

D 000010 111100
d 000101

Diff(-)

D 000101 111000
d 000101

Diff(+)

D 000001 110000
d 000101

Diff(-)

D 000011 100000
d 000101

Diff(-)

D 000111 000000
d 000101

Diff(+)000010

Hence remainder = (000010), = 24
Quotient = (001001), =94

00

001

0010

00100

001001

Page 310

Advance Computer Architecture - CS501

Fraction Division

The following steps are used for fractional division:

1. Clear lower half of dividend register and put dividend in upper half. Initialize quotient
counter bit to 0

2. If difference is +ve, report overflow

Shift dividend register left 1 bit

4. If difference is +ve, put it into upper half of dividend and shift 1 into quotient. If
negative, shift 0 into quotient

5. If quotient bits<m, go to step 3

6. m-bit quotient has decimal at the left end and remainder is in upper half of dividend
register

(O8]

Branch Architecture

The next important function perform by the ALU is branch. Branch architecture of a machine is
based on

1. Condition Codes
2. Conditional Branches

Condition Codes

Condition Codes are computed by the ALU and stored in processor status register. The
‘comparison’ and ‘branching’ are treated as two separate operations. This approach is not used in
the SRC. Table 6.6 of the text book shows the condition codes after subtraction, for signed and
unsigned x and y. Also see the SRC Approach from text book.

Usually implementation with flags is easier however it requires status registers. In case of branch
instructions, decision is based on the branch itself.

Note: For more information on this topic, please see chapter 6 of the text book.

Page 311

Advance Computer Architecture - CS501

Lecture No. 36

Floating-Point Arithmetic
Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 6
Computer Systems Design and Architecture 632,64,64.1,64.2,64.3
Summary

e NxN Crossbar Design for Barrel Rotator

e Barrel Shifter with Logarithmic Number of Stages

e ALU Design

¢ Floating-Point Representations

e [EEE Floating-Point Standard

e Floating-Point Addition and Subtraction

e Floating-Point Multiplication

¢ Floating-Point Division

NxN Crossbar Design for Barrel Rotator
Figure 6.11 of the text book

The figure shows an NxN crossbar design for barrel rotator. x indicates the input. So
x0,x1,...,xn-1 are applied to the rows. The vertical lines are indicated by yl1, y2,...yn-1 where y
shows the output. So this forms a cross of x and y and the number of cross points are NxN. There
is also a connection between each input and output using a tri-state buffer. At the input, we have
a decoder which is used to select the shift count. Each output from the decoder is connected
diagonally to the tri-state buffers. This arrangement requires N2 gates.

Barrel Shifter with Logarithmic Number of Stages

Another alternate to an NxN crossbar barrel rotator is a logarithmic barrel shifter. This design is
time-space trade-off. In this case, the number of shifts required is eight, and then there will be
three stages for this purpose. Now a word is passed as input to the shifter. There are two
possibilities. First the input word is passed to the next stage without any shift. This process is
called bypass and second option is shift. The word is passed to the next stage after shift.

For the first stage, we have 1-bit right shift, for second stage, 2-bit right shift and so on. There is
also a shift count unit which controls the number of shifts. For example, if 1-bit shift is required
then only sO will be one and other signals from shift count will be zero. If we want a 3-bit shift,
then sO and s1 will be 1 and all other signals will be zero.

The figure also shows one shift/bypass cell which is a combinational logic circuit. A shift/bypass
signal decides whether the input word should be shifted or bypassed. This design requires only O
(NlogN) switches but propagation delay has increased i.e. from O(1) to O(logN).

Figure 6.12 of the text book

ALU Design
Page 312

Advance Computer Architecture - CS501

ALU is a combination of arithmetic, logic and shifter unit along with some multiplexers and
control unit. The idea is that based on the op-code of an instruction, appropriate control signals
are activated to perform required ALU operation. Figure 6.13 of the text book

The diagram shows two inputs X and y and one output z. All these are of n-bits. The inputs x and
y are simultaneously provided to arithmetic, logic and shifter unit. There is a control unit which
accepts op-code as input. Based on the op-code, it provides control signals to arithmetic, logic
and shifter unit. The control unit also provides control signals to the two multiplexers. One mux
has three inputs; each from arithmetic, logic and shifter unit and its output is z. The second mux
provides status output corresponding to condition codes.

Floating Point Representations
Example

-0.5 x 10-3

Sign = -1

Significand= 0.5

Exponent= -3

Base = 10= fixed for given type of representation
Significant is also called mantissa.
In computers, floating-point representation uses binary numbers to encode significant, exponent
and their sign in a single word.
The diagram on Page 293 of the text shows an m-bit floating point number where s represents the
sign of the floating point number. If s = 1 then the floating-point number will be a positive
number; if s= 0 then it will be a negative number. The e field shows the value of exponent. To
represent the exponent, a biased representation is used. So we represent e” instead of e to show
biased representation. In this technique, a number is added to the exponent so that the result is
always positive. In general floating point numbers are of the form.

(-1)s x fx2e
Normalization

A normalized, non-zero floating point number has a significand whose left-most digit is non-zero
and is a single number.

Example
0.56 x 10-3........... (Not normalized)
56 x10-3........... (Normalized form)

Same is the case for binary.

IEEE Floating-Point Standard
IEEE floating -point standard has the following features.

Single-Precision Binary Floating Point Representation
e 1-bitsign
e 8-bit exponent
e 23-bit fraction
e A bias of 127 is used.
Figure 6.15 of the text book

Page 313

Advance Computer Architecture - CS501

Double precision Binary Floating Point Representation
e 1-bitsign
e 11-bit exponent
e 52-bit fraction
e Exponent bias is 1023
Figure 6.16 of the text book.

Overflow

In table 6.7 of the text book, e"= 255, denotes numbers with no numeric value including + c and
- o0 and called Not-a-Number or NaN. In computers, a floating-point number ranges from 1.2 x
1038 <x <3.4 x 10 can be represented. If a number does not lie in this range, then overflow
can occur.

Overflow occurs when the exponent is too large and can not be represented in the exponent field.

Floating —Point Addition and Subtraction

The following are the steps for floating-point addition and subtraction.
Unpack sign , exponent and fraction fields

Shift the significant

Perform addition

Normalize the sum

Round off the result

Check for overflow

Figure 6.17 of the text book.

Example 1

Perform addition of the following floating-point numbers.
0.510, -0.437510

Binary:

0.510=1/210=0.12=1.000 x 2-1

-0.437510=-7/1610 =-7/24=-0.01112=-1.110 x 2-2

Align: -1.110x 2-2 — -0.111 x 2-1
Addition: 1.000 x 2-1 + (-0.111 x 2-1) = 0.001 x 2-1
Normalization of Sum:
0.001 o x2-1 =0.0100x2-2
=1.00012 x 2-4

Hardware Structure for Floating-Point Add and Subtract Figure 6.17 of the text book.

Floating-Point Multiplication

The floating-point multiplication uses the following steps:
e Unpack sign, exponent and significands
e Apply exclusive-or operation to signs, add exponents and then multiply significands.
e Normalize, round and shift the result.
Page 314

Advance Computer Architecture - CS501

e Check the result for overflow.
e Pack the result and report exceptions.

Floating-Point Division

The floating-point division uses the following steps:
e Unpack sign, exponent and significants
e Apply exclusive-or operation to signs, subtract the exponents and then divide the
significants.
e Normalize, round and shift the result.
e Check the result for overflow.
e Pack the result and report exceptions.

Page 315

Advance Computer Architecture - CS501

Lecture No. 37

Components of Memory Systems
Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 7
Computer Systems Design and Architecture 71,72
Summary

e CPU to Memory Interface

e Static RAM cell Organization and Operation

e One & two Dimensional Memory Cells

e Matrix and Tree Decoders

® Dynamic RAM
CPU to Memory Interface

The memory address register (MAR) is m-bits wide and contains memory address generated by
the CPU directly connected to the m-bit wide address bus. The memory buffer register (MBR) is
w-bit wide and contains a data word, directly connected to the data bus which is b-bit wide. The
register file is a collection of 32, 32-bit wide registers used for data transfer between memory

and the CPU. Memory address ranges from 0 to 2™-1.There also exist three control signals: Ef#
, REQUEST, and COMPLETE. When rfw signal is high, this would correspond to a read
operation equivalent to having an input data to the CPU and output from the memory. If this
signal is low then it would be a write operation and data would come from the CPU as an output
and it would be written into a portion in the memory. In this case, the REQUEST signal coming
from the CPU telling the memory that some interaction is required between the CPU and
memory. As a result of this request (either read/write), along with the signal on the control and
the address on the address bus, we might have the corresponding data on the data bus for a read
operation and after the operation is complete, the memory would issue a control signal which
corresponds in this case to COMPLETE. Figure 7.1 of the text book.

CPU to memory interface

Crata s Address bus
CPU PSRN TSmOy
m =)
[LA i = B Py o
= [= \ - 5 1
[o] = = e =
- W o o =
L
Rergis‘ler
e | / REQUEST [J=zm-—n
I \ || / COMPLETE

Control signals

Static RAM Cell Organization and Operation

A Typical Memory Cell

Page 316

Advance Computer Architecture - CS501

A memory cell provides four functions: Select, Dataln, DataOut, and Read/Write. Dataln means
input and DataOut means output. The select signal would be enabled to get an operation of

Read/Write from this cell.
Figure 7.3 of the text book.

Memory cell internal diagram

Selact

1 |
Dataln

DataoOut

T
|RrW

1x8 Memory Cell Array (1D)
In this arrangement, each block is connected through a bi-directional data bus implemented with

2 tri-state buffers. E/& and Select signals are common to all these cells. This 1-dimentional
memory array could not be very efficient, if we need to have a very large memory.

1x8 Memory Cell Array (1D)

Select

Da:aln—>'| |—> DataCut

ey e ey ey

T YYYTTY

ds dy dg dg d,

4%x8 Memory Cell Array (2D)

In this arrangement, 4x8 memory cell array is arranged in 2-dimensions. At the input, we have a
2x4 decoder. Two address bits at the input AO and A1 would be decoded into 4 select lines. The
decoder selects one of four rows of cells and then Ef& signal specifies whether the row will be

read or written.

A8 NMiemory Cell Array (2D)

1
=1}
k]

34

2-bit -
address 5

A 64kx1 Static RAM Chip
The cell array is indicated as 256 X 256. So, there would be 256 rows and 256 columns. A 64k X
1 cell array requires 16 address lines, a read/write line, Rfw , a chip select line, CS, and only a

Page 317

Advance Computer Architecture - CS501

single data line. The lower order 8-address lines select one of the 256 rows using an 8-to-256 line
row decoder. Thus the selected row contains 256 bits. The higher order 8-address lines select one
of those 256 bits. The 256 bits in the row selected flow through a 256-to-1 line multiplexer on a
read. On a memory write, the incoming bit flows through a 1-to-256 line demultiplexer that
selects the correct column of the 256 possible columns.

A 64 K x 1 Static RAM Chip

Row address: 2 a_o56 258

Ao Ay - = it 256 = 256

cell array

% 256
COlurgn a:dress: 8 1 256— 1 mux
a "*15 11— 256 demux

decoder

A 16kx4 Static RAM Chip

In this case, memory is arranged in the form of four 64x256 memory cells. Four bits can be read
and written at a time. For this, we use one 8-256 row decoder, four 64-1 muxes and four 1-64

demuxes. The lower address lines (A0-A7) are decoded into 28 lines, 26 lines from these 28 are

used to select row from one of the four 64x256 cell array and the remaining 22 lines are used to
select one of the 64x256 cell array. Now the upper address lines (A8-A13) are input into the 4
muxes and their output is used to select the required column from the four 64x256 cell arrays.
Control lines read/write, R/ , chip select, CS, are just similar to previous arrangement.

A.16 K x4 SRAINM Chip

Row address: a8 256

Ag— Ay | 8256 | o o 4 64 < 256
o cell arrays

decoder
% % % % 54 each

Column address: A GA— 1 muxes
a— Mo a4 1T— 654 demuxes

g —— 1
T 3~
s

Matrix and Tree Decoders

A typical one level decoder has n inputs and 2" output, using one level of gates, each with a fan-
in of n. Two level decoders are limited in size because of high gate fan-in. In order to reduce the
gate fan-in to a value of 8 or 6, tree and matrix decoders are utilized.

Six Transistor SRAM Cell

In this arrangement, the cross connection is through inverters to make the latch, the basic storage
cell. This implementation uses six transistor cells. One transistor is used to implement each of
the two inverters, two transistors are used to control access to the inverters for reading and
writing, and two are used as active loads.

SRAM Read Operation

First of all, the CPU provides the address on the external address bus. The read/write signal
becomes active high. After time "tAA", the data becomes available on the data bus. The chip
retains this data on the data lines until the control signals are de asserted.

Page 318

Advance Computer Architecture - CS501

SRANM Read operation

emory

SRAM Write Operation

In the case of write cycle, the major difference is that along with the address the CPU has also
provided the data on the data bus. The chip select, CS, is immediately provided and write signal

is made low. The r/w line must be held valid for a minimum time interval tw | the write time,
until data, address, and control information have been propagated to the cell and strobe into it.
During this period the data lines must be driven with the data to be written.

SRAINM Write operation

Memon,
address

Readfnrite

Dynamic RAM

As an alternate to the SRAM cell, the data can be stored in the form of a charge on a capacitor (a
charging/discharging transistor that can become a valid memory element), and this type of
memory is called dynamic memory. The capacitor has to be refreshed and recharged to avoid
data loss.

b Switch to control
Single bit line SRS - i =Scocess to o

Dynamic RAM il -
Cell | _
organization | e
and | :
operation

Sensefwrite ampifiers —
sanse and ampify data
on Read. dive b, and b,

om write

Dynamic RAM Cell Operation

In a DRAM cell, the storage capacitor will discharge in around 4-15ms. Refreshing the capacitor
by reading or sensing the value on bit line, amplifying it, and placing it back on to the bit line is
required. The need to refresh the DRAM cell complicates the DRAM system design.

For details, refer to Chapter 7 of the text book.

Page 319

Advance Computer Architecture - CS501

Lecture No. 38
Memory Modules
Reading Material
Vincent P. Heuring & Harry F. Jordan Chapter 7
Computer Systems Design and Architecture 7.2.6,7.3

Summary

e Memory Modules
e Read Only Memory (ROM)
e Cache

Memory Module

Static RAM chips can be assembled into systems without changing the timing characteristics of a
memory access. Dynamic RAM chips, however, have enough timing complexity that a memory
module built from dynamic RAM chips will have complex control. The cause of timing
complexity is the time-multiplexed row and column addresses, and the refresh operation.

Word Assembly from Narrow Chips

Chips can be combined to expand the memory word size while keeping the same number of
words. Address, chip select, and R/W signals are connected in parallel to all the chips. Only the
data signals are kept separate, with those from each chip supplying different bits of the wider
word. For high capacity memory chips, narrow words are used. This is because adding a data pin

to a chip with 2™ words of s bits increases the number of bits it can store by only a factor of
(st+1)/s, while adding an address pin always doubles the capacity.

Word Assembly from Narrow
Chips

ss
R J RIW J | R
ddress =
aia at
= =

P chips expand word size from s bits to p x s bits

Dynamic RAM Module with Refresh Control

For Dynamic RAM chips the total address is divided into row and column address. Row address
strobe signal RAS and a column strobe signal CAS are used to differentiate between these two
signals.

Read Only Memory (ROM)

ROM is the read-only memory which contains permanent pattern of data that cannot be changed.
ROM is nonvolatile i.e. it retains the information in it when power is removed from it. Different
types of ROMs are discussed below.

Page 320

Advance Computer Architecture - CS501

PROM

The PROM stands for Programmable Read only Memory. It is also nonvolatile and may be
written into only once. For PROM, the writing process is performed electrically in the field.
PROMs provide flexibility and convenience.

EPROM

Erasable Programmable Read-only Memory or EPROM chips have quartz windows and by
applying ultraviolet light erase the data can be erased from the EPROM. Data can be restored in
an EPROM after erasure. EPROMs are more expensive than PROMs and are generally used for
prototyping or small-quantity, special purpose work.

EEPROM

EEPROM stands for Electrically Erasable Programmable Read-only Memory. This is a read-
mostly memory that can be written into at any time without erasing prior contents; only the byte
or bytes addressed are updated. The write operation takes considerably longer than the read
operation. It is more expensive than EPROM.

Flash Memory

An entire flash memory can be erased in one or a few seconds, which is much faster than
EPROM. In addition, it is possible to erase just blocks of memory rather than an entire chip.

Cache

Cache by definition is a place for safe storage and provides the fastest possible storage after the
registers. The cache contains a copy of portions of the main memory. When the CPU attempts to
read a word from memory, a check is made to determine if the word is in the cache. If so, the
word is delivered to the CPU. If not, a block of the main memory, consisting of some fixed
number of words, is read into the cache and then the word is delivered to the CPU.

Spatial Locality

This would mean that in a part of a program, if we have a particular address being accessed then
it is highly probable that the data available at the next address would be highly accessed.

Temporal Correlation

In this case, we say that at a particular time, if we have utilized a particular part of the memory
then we might access the adjacent parts very soon.

Cache Hit and Miss

When the CPU needs some data, it communicates with the cache, and if the data is available in
the cache, we say that a cache hit has occured. If the data is not available in the cache then it
interacts with the main memory and fetches an appropriate block of data. This is a cache miss.

Page 321

Advance Computer Architecture - CS501

Lecture No. 39
The Cache
Reading Material
Vincent P. Heuring & Harry F. Jordan Chapter 7
Computer Systems Design and Architecture 7.4,7.5

Summary
e Cache Organization and Functions
e Cache Controller Logic
e Cache Strategies

Cache Organization and Functions:

The working of the cache is based on the principle of locality which has two aspects. Spatial
Locality: refers to the fact when a given address has been referenced, the next address is highly
probable to be accessed within a short period of time.

Temporal Locality refers to the fact that once a particular data item is accessed, it is likely that
it will be referenced again within a short period of time.

To exploit these two concepts, the data is transferred in blocks between cache and the main
memory. For a request for data, if the data is available in the cache it results in a cache hit. And if
the requested data is not present in the cache, it is called a cache miss. In the given example
program segment, spatial locality is shown by the array ALPHA, in which next variable to be
accessed is adjacent to the one accessed previously. Temporal locality is shown by the reuse of
the loop variable 100 times in For loop instruction.

Int ALPHA [100], SUM;

SUM=0;

For (i=0; i<100; i++)

{SUM= SUM+ALPHA[i];}

Cache Management

To manage the working of the cache, cache control unit is implemented in hardware, which
performs all the logic operations on the cache. As data is exchanged in blocks between main
memory and cache, four important cache functions need to be defined.

Block Placement Strategy

e Block Identification
e Block Replacement Cache
e Write Strategy
Block Diagram of a Cache System In the Cantral Lagic
figure, the block diagram of a system using
cache is shown. It consists of two components. Fast Determine
o FaSt Memory Memory com;:ﬂﬂon RT:r?ﬂ
e Control Logic Unit ot
Control logic is further divided into two parts.

Page 322

Advance Computer Architecture - CS501

Determine and Comparison Unit: For determining and comparisons of the different parts of
the address and to evaluate hit or miss.

Tag RAM: Second part consists of tag memory which stores the part of the memory address
(called tag) of the information (block) placed in the data cache. It also contains additional bits
used by the cache management logic.

Data Cache: is a block of fast memory which stores the copies of data and instructions
frequently accessed by the CPU.

Cache Strategies

In the next section we will discuss various cache functions, and strategies used to implement
these functions.

Block Placement

Block placement strategy needs to be defined to specify where blocks from main memory will be
placed in the cache and how to place the blocks. Now various methods can be used to map main
memory blocks onto the cache .One of these methods is the associative mapping explained
below.

Associative Mapping:
In this technique, block of data from main memory can be placed at any location in the cache
memory. A given block in cache is identified uniquely by its main memory block number,
referred to as a tag, which is stored inside a separate tag memory in the cache. To check the
validity of the cache blocks, a valid bit is stored for each cache entry, to verify whether the
information in the corresponding block is valid or not. Main memory address references have
two fields.

e The word field becomes a “cache address” which specifies where to find the word in the

cache.
e The tag field which must be compared against every tag in the tag memory.

Associative Mapping Example
Refer to Book Ch.7 Section (7.5) Figure 7.31(page 350-351) for detailed explanation.

Associative Cache
Tig. 7.31(ordan)

Taa Walicl Cache Ml ain
MErmory bits TSI O Ty e TIMO Ty
az1 1 o Gache block 0| | rar block o |
2 o 1 7 PM bilock 1
119 1 2 Cache block 2
= 1 255
i — 3= MBM block 119
Taa T e cache line,
mieid . & byt
P I AU MMM Block 421
walid,
1 kit
MM bDlock S191

Main memory address: | 13 I 3 I One cache line

Tag Bvie 8 bytes

Mechanism of the Associative Cache Operation
For details refer to book Ch.7, Section 7.5, Figure 7.32 (Page 351-352).

Page 323

Advance Computer Architecture - CS501

Associative Cache Mechanism
fig. 7.32 (Jordan)

Associative tag memory

Argument
DERISteE Maich Walid
bit bit

. . Cache block O
e & 7
Match

- Cache block 2

Main memory address
Tag Byte

13 I s

Cache block 255

B4

Cne cache line,
2 bytes

Direct Mapping

In this technique, a particular block of data from main memory can be placed in only one
location into the cache memory. It relies on principle of locality. Cache address is composed of
two fields:

e Group field
e Word field
Valid bit specifies that the information in the selected block is valid.

For a direct mapping example, refer to the book Ch.7, Section 7.5, Figure 7.33 (page 352
—353).

Direct mapped cache
fig. 7.33 (Jordan)

Tag Walid Cache

memory brits eIy Main memory block numbers Group #:
30 o 256] 512 = ¥ 2 TE80| 7235 O
9 - 1 257 | 513 2305 TEE1||7237T] 1
1 2 258 | 514 TEBEZ||7Ta38] =2
R - .
1 - | 5] 511 | 767 2191) 255
- P S——— Tag #: o 1 > - =] . 30 31
T=ag One
field, cache
5 hits line, ||
a8 bytes One cache line,
Cacheaddress: | 5 | 3 | Bbytes
Biain meamory address: | 5 I a8 I 3 I

Tag Group Byte

Logic Implementation of the Controller for Direct Mapping
Logic design for the direct mapping is simpler as compared to the associative mapping.
Page 324

Advance Computer Architecture - CS501

Only one tag entry needs to be compared with the part of the address called group field.

Tasks Required For Direct Mapping Cache:
For details refer to the book Ch. 7, Section 7.5, Figure 7.34 (Page 353-354).

FIGURE 7.34 Direct-Mapped Cache Operation

Main memory address
Tag Group Byte

21 % 3

8-256
Tag Valid decoder Cache
memaory bits s Hit memory
30 1 -~ dr] 0
e ! 5 @ - ®
1 riz ﬁ{g plarn e
. 1 3 "

I' L] e 255:}

- /5 5 64

3
Selector
Cache hit 8
Cache Design: Direct Mapped Cache

To understand the principles of cache design, we will discuss an example of a direct mapped
cache.

The size of the main memory is 1 MB. Therefore 20 address bits needs to be specified. Assume
that the block size is 8 bytes. Cache memory is assumed to be 8 KB organized as 1 K lines of
cache memory. Cache memory addresses will range from 0 up to 1023. Now we have to specify
the number of bits required for the tag memory. The least significant three bits will define the
block. The next 10 bits will define the number of bits required for the cache. The remaining 7
bits will be the width of the tag memory.

Main memory is organized in rectangular form in rows and columns. Number of rows would be
from 0 up to 1023 defined by 10 bits. Number of rows in the main memory will be the same as
number of lines in the cache. Number of columns will correspond to 7 bits address of the tag
memory. Total number of columns will be 128 starting from 0 up to 127.

With direct mapping, out of any particular row only one block could be mapped into the cache.
Total number of cache entries will be 1024 each of 8 bytes.

Tag
field,
5 bits

® 5.5i
comparator

Cache miss

Advantage:
Simplicity
Disadvantage:

Only a single block from a given group is present in cache at any time. Direct map Cache
imposes a considerable amount of rigidity on cache organization.

Set Associative Mapping
Page 325

Advance Computer Architecture - CS501

In this mapping scheme, a set consisting of more than one block can be placed in the cache
memory.

The main memory address is divided into two fields. The Set field is decoded to select the
correct group. After that the tags in the selected groups are searched. Two possible places in
which a block can reside must be searched associatively. Cache group address is the same as that
of the direct-mapped cache.

For details of the Set associative mapping example, refer to the book Ch.7, Section 7.5, Figure
7.35 (Page 354-355).

2-Way Set-Associative Cache
fig. 7.35(Jordan)

Tag Cache
memory memaory Main memory block numbers Group #:
2Ja0] o 8127680 |« 0 [256]E02] - H - |7e80]7az6] 0
214 1| 513 | 1 | 257|513 TEB|TE3T] 1

2 258 2 | 258 | 514 TEEZ} 7938 2

e e
o] 1] 25 [757 8191 255
- > - Tag#: O 1 2 . 9 g o N
Tag Cne
e 1
8 bytes Oneapi;?:;me:

Cache group address:
Main memory address: |

Tag Set Byte

Replacement Strategy

For a cache miss, we have to replace a cache block with the data coming from main memory.
Different methods can be used to select a cache block for replacement. Always Replacement:
For Direct Mapping on a miss, there is only one block which needs replacement called always
replacement.

For associative mapping, there are no unique blocks which need replacement .In this case there
are two options to decide which block is to be replaced.

e Random Replacement: To randomly select the block to be replaced

e LFU: Based on the statistical results, the block which has been least used in the recent
past, is replaced with a new block.

Write Strategy

When a CPU command to write to a memory data will come into cache, the writing into the
cache requires writing into the main memory also.

Write Through: As the data is written into the cache, it is also written into the main memory
called Write Through. The advantages are:

e Read misses never result in writes to the lower level.

e Easy to implement than write back

Page 326

Advance Computer Architecture - CS501

Write Back: Date resides in the cache, till we need to replace a particular block then the data of
that particular block will be written into the memory if that needs a write, called write back. The
advantages are:

e Write occurs at the speed of the cache
e Multiple writes with in the same block requires only one write to the lower memory.

e This strategy uses less memory bandwidth, since some writes do not go to the lower
level; useful when using multi processors.

Cache Coherence

Multiple copies of the same data can exist in memory hierarchy simultaneously. The Cache
needs updating mechanism to prevent old data values from being used. This is the problem of
cache coherence. Write policy is the method used by the cache to deal with and keep the main
memory updated.

Dirty bit is a status bit which indicates whether the block in cache is dirty (it has been modified)
or clean (not modified). If a block is clean, it is not written on a miss, since lower level contains
the same information as the cache. This reduces the frequency of writing back the blocks on
replacement.

Writing the cache is not as easy as reading from it e.g., modifying a block can not begin until the
tag has been checked, to see if the address is a hit. Since tag checking can not occur in parallel
with the write as is the case in read, therefore write takes longer time.

Write Stalls: For write to complete in Write through, the CPU has to wait. This wait state is
called write stall.

Write Buffer: reduces the write stall by permitting the processor to continue as soon as the data
has been written into the buffer, thus allowing overlapping of the instruction execution with the
memory update.

Write Strategy on a Cache Miss

On a cache miss, there are two options for writing.

Write Allocate: The block is loaded followed by the write. This action is similar to the read
miss. It is used in write back caches, since subsequent writes to that particular block will be
captured by the cache.

No Write Allocate: The block is modified in the lower level and not loaded into the cache. This
method is generally used in write through caches, because subsequent writes to that block still
have to go to the lower level.

Page 327

Advance Computer Architecture - CS501

Lecture No. 40

Virtual Memory
Reading Material
Vincent P. Heuring & Harry F. Jordan Chapter 7
Computer Systems Design and Architecture 7.6

Summary
e Virtual Memory Introduction
e Virtual Memory Organization

Virtual Memory

Introduction

Virtual memory acts as a cache between main memory and secondary memory. Data is fetched
in advance from the secondary memory (hard disk) into the main memory so that data is already
available in the main memory when needed. The benefit is that the large access delays in reading
data from hard disk are avoided.

Pages are formulated in the secondary memory and brought into the main memory. This process
is managed both in hardware (Memory Management Unit) and the software (The operating
systems is responsible for managing the memory resources).

The block diagram shown (Book Ch.7, Section 7.6, and figure 7.37) specifies how the data
interchange takes place between cache, main memory and the disk. The Memory Management
unit (MMU) is located between the CPU and the physical memory. Each memory reference
issued by the CPU is translated from the logical address space to the physical address space,
guided by operating system controlled mapping tables. As address translation is done for each
memory reference, it must be performed by the hardware to speed up the process. The operating
system is invoked to update the associated mapping tables.

Memory Management and Address Translation

The CPU generates the logical address. During program execution, effective address is generated
which is an input to the MMU, which generates the virtual address. The virtual address is divided
into two fields. First field represents the page number and the second field is the word field. In
the next step, the MMU translates the virtual address into the physical address which indicates
the location in the physical memory.

Advantages of Virtual Memory

e Simplified addressing scheme: the programmer does not need to bother about the exact
locations of variables/instructions in the physical memory. It is taken care of by the
operating system.

e For a programmer, a large virtual memory will be available, even for a limited physical
memory.

e Simplified access control.

Virtual Memory Organization
Virtual memory can be organized in different ways. This first scheme is segmentation.

Page 328

Advance Computer Architecture - CS501

Segmentation:
In segmentation, memory is divided into segments of variable sizes depending upon the
requirements. Main memory segments identified by segments numbers, start at virtual address 0,
regardless of where they are located in physical memory.
In pure segmented systems, segments are brought into the main memory from the secondary
memory when needed. If segments are modified and not required any more, they are sent back to
secondary memory. This invariably results in gap between segments, called external
fragmentation i.e. less efficient use of memory. Also refer to Book Ch.7 , Section 7.6, Figure
7.38.

Memory NManagement by Segmentation

Fig 7.38
MMain memory
- - == FFF
Segment S
Sap
(o] Segment 1
“irtual pﬂemory/ - Segment & Physical memory
addresses o addresses
Sa
D p
[s) Segment 9
a SezlrEaias | o000

Addressing of Segmented Memory

The physical address is formed by adding each virtual address issued by the CPU to the contents
of the segment base register in the MMU. Virtual address may also be compared with the
segment limit register to keep track and avoiding the references beyond the specified limit. By
maintaining table of segment base and limit registers, operating system can switch processes by
switching the contents of the segment base and limit register. This concept is used in
multiprogramming. Refer to book Ch.7, Section 7.6, and Figure 7.39

Segmentation Mechanism
Fig 7.39

Main memonry

Segment 5
Offset in L=
segment Segment 1
Wirtual memory é Segment &
address | L
from CPU ! | [1 =
Segment ap
Bounds Mo = base
error @ register Segment 9
Segment 3

Segment
lirmit
register
Paging:
In this scheme, we have pages of fixed size. In demand paging, pages are available in secondary
memory and are brought into the main memory when needed.
Virtual addresses are formed by concatenating the page number with the word number. The
MMU maps these pages to the pages in the physical memory and if not present in the physical
memory, to the secondary memory. (Refer to Book Ch.7, Section 7.6, and Figure 7.41)

Page 329

Advance Computer Architecture - CS501

Paging (Fig. 7.41)

Virtual memaory

Secondary memory

-\\ -I-:;h'ysical memaory

.- N B .| Pagend |+
. - \ Program
R el ; unit
..-'/ KH'“""‘- -
" ‘-"\-\.,._‘

| ! . \\ Page 2
~ \ (=< |__Page
N, & " Page0 0

Page Size: A very large page size results in increased access time. If page size is small, it may
result in a large number of accesses.
The main memory address is divided into 2 parts.

e Page number: For virtual address, it is called virtual page number.

e Word Field

Virtual Address Translation in a Paged MMU:

Virtual address composed of a page number and a word number, is applied to the MMU. The
virtual page number is limit checked to verify its availability within the limits given in the table.
If it is available, it is added to the page table base address which results in a page table entry. If
there is a limit check fault, a bound exception is raised as an interrupt to the processor.

Page Table

The page table entry for each page has two fields.

Page field

Control Field: This includes the following bits.

e Access control bits: These bits are used to specify read/write, and execute permissions.
e Presence bits: Indicates the availability of page in the main memory.
e Used bits: These bits are set upon a read/ write.

If the presence bit indicates a hit, then the page field of the page table entry contains the physical
page number. It is concatenated with the word field of the virtual address to form a physical
address.

Page fault occurs when a miss is indicated by the presence bit. In this case, the page field of the
page table entry would contain the address of the page in the secondary memory. Page miss
results in an interrupt to the processor. The requesting process is suspended until the page is
brought in the main memory by the interrupt service routine.

Page 330

Advance Computer Architecture - CS501

Dirty bit is set on a write hit CPU operation. And a write miss CPU operation causes the MMU
to begin a write allocate (previously discussed) process. (Refer to book Ch.7, Section 7.6, and
Figure 7.42)

Virtual Address Translation
Fig 7.42

: Main memory

Physical address —'| Desired word Virtual address from CPU
| Word | Physical page| : i | Offset in page | Page number
f T | . i |
Hit. | 1]
Page in — Page table
Primary memory Offset in page table
+
Miss ~
{page fault). 2 ‘ =
Fagen Page table

Secondary memory | base register

No
Physical page Access- Rotnds
Translate to number or control bits: e
Disk address pointer to presence hit,
secondary dirty bit,
storage usage bits Page table
limit register
Fragmentation:

Paging scheme results in unavoidable internal fragmentations i.e. some pages (mostly last pages
of each process) may not be fully used. This results in wastage of memory.

Processor Dispatch -Multiprogramming

Consider the case, when a number of tasks are waiting for the CPU attention in a
multiprogramming, shared memory environment. And a page fault occurs. Servicing the page
fault involves these steps.

1. Save the state of suspended process
2. Handle page fault
3. Resume normal execution

Scheduling: If there are a number of memory interactions between main memory and secondary
memory, a lot of CPU time is wasted in controlling these transfers and number of interrupts may
occur.

To avoid this situation, Direct Memory Access (DMA) is a frequently used technique. The Direct
memory access scheme results in direct link between main memory and secondary memory, and
direct data transfer without attention of the CPU. But use of DMA in virtual memory may cause
coherence problem. Multiple copies of the same page may reside in main memory and secondary
memory. The operating system has to ensure that multiple copies are consistent.

Page Replacement

Page 331

Advance Computer Architecture - CS501

On a page miss (page fault), the needed page must be brought in the main memory from the
secondary memory. If all the pages in the main memory are being used, we need to replace one
of them to bring in the needed page. Two methods can be used for page replacement.

Random Replacement: Randomly replacing any older page to bring in the desired page. Least
Frequently Used: Maintain a log to see which particular page is least frequently used and to
replace that page.

Translation Lookaside buffer

Identifying a particular page in the virtual memory requires page tables (might be very large)
resulting in large memory space to implement these page tables. To speed up the process of
virtual address translation, translation Lookaside buffer (TLB) is implemented as a small cache
inside the CPU, which stores the most recent page table entry reference made in the MMU. It
contents include

e A mapping from virtual to physical address

e Status bits i.e. valid bit, dirty bit, protection bit It may be implemented using a fully

associative organization

Operation of TLB
For each virtual address reference, the TLB is searched associatively to find a match between the
virtual page number of the memory reference and the virtual page number in the TLB. If a match
is found (TLB hit) and if the corresponding valid bit and access control bits are set, then the
physical page mapped to the virtual page is concatenated. (Refer to Book Ch.7, Section 7.6, and
Figure 7.43)

TLB (Fig. 7.43)

Main memory or cache J
Desired word
, , . ' Virtual address from CPU
Physical address = . ‘| Page number Word
Word | Physical page
T
Hit. Associative lookup
Page in of virtual page
Primarf,i memary number in TLB
R |- " ‘
Y it

Physical Access- virtyal TLB miss,
page control bis: nage Look for physical page in

number E_ﬁsintce bit, humber page table
irty bit,

usage bits
g To page table

Page 332

Advance Computer Architecture - CS501

Working of Memory Sub System

When a virtual address is issued by the CPU, all components of the memory subsystem interact
with each other. If the memory reference is a TLB hit, then the physical address is applied to the
cache. On a cache hit, the data is accessed from the cache. Cache miss is processed as described
previously. On a TLB miss (no match found) the page table is searched. On a page table hit, the
physical address is generated, and TLB is updated and cache is searched. On a page table miss,
desired page is accessed in the secondary memory, and main memory, cache and page table are
updated. TLB is updated on the next access (cache access) to this virtual address. (Refer to Book
Ch.7, Section 7.6, and Figure 7.44).

To reduce the work load on the CPU and to efficiently use the memory sub system, different
methods can be used. One method is separate cache for data and instructions.

Flow Chart (fig. 7.44) ™

Virtual address

[y

Secondary memory Main memory Cache
|]
@earch page tab@ (Search ::athED Search TLB
¥
Page fault Get page from
secondary memory Y Y
Update MM. cache’ ' Miss M
and page table —

(zenerte physical
address

Update cache
from MM Generte physical
I address

Update * |
TLB Return value
from ;ahce

Instruction Cache: It can be implemented as a Translation Lookaside buffer.

Data Cache: In data cache, to access a particular table entry, it can be implemented as a TLB
either in the main memory, cache or the CPU.

Page 333

Advance Computer Architecture - CS501

Lecture No. 41
Numerical Examples of DRAM and Cache

Reading Material

Vincent P. Heuring & Harry F. Jordan
Computer Systems Design and Architecture

Summary
Numerical Examples related to

DRAM

Pipelining, Pre-charging and Parallelism
Cache

Hit Rate and Miss Rate

Access Time

Example 1

If a DRAM has 512 rows and its refresh time is 9ms, what should be the frequency of row
refresh operation on the average?

Solution

Refresh time= 9ms

Number of rows=512

Therefore we have to do 512 row refresh operations in a 9 ms interval, in other words one row
refresh operation every (9x1 03)/512 =1 .76x10 seconds.

Example 2

Consider a DRAM with 1024 rows and a refresh time of 10ms.
a. Find the frequency of row refresh operations.
b. What fraction of the DRAM’s time is spent on refreshing if each refresh takes 100ns.

Solution

Total number of rows = 1024

Refresh period = 10ms

One row refresh takes place after every
10ms/1024=9.7micro seconds

Each row refresh takes 100ns, so fraction of the DRAM’s time taken by row refreshes is,
100ns/9.7 micro sec= 1.03%

Example 3

Consider a memory system having the following specifications. Find its total cost and cost per
byte of memory.

Page 334

Advance Computer Architecture - CS501

Memory type Total bytes Cost per byte
SRAM 256 KB 308 per MB
DRAM 128 MB 1$ per MB
Disk 1 GB 10% per GB
Solution

Total cost of system

256 KB(% MB) of SRAM costs =30 x 4= $7.5

128 MB of DRAM costs= 1 x 128= $128

1 GB of disk space costs= 10 x 1=$10

Total cost of the memory system

= 7.5+128+10=$145.5 Cost per byte

Total storage=256 KB + 128 MB + 1 GB

= 256 KB + 128x1024KB + 1x1024x1024KB =1,179,904 KB
Total cost = $145.5

Cost per byte=145.5/(1,179,904x1024)

= $1.2x10°7$/B

Example 4

Find the average access time of a level of memory hierarchy if the hit rate is 80%. The memory
access takes 12ns on a hit and 100ns on a miss.

Solution

Hit rate =80%

Miss rate=20%

Thit=12 ns

Tmiss=100ns

Average Taccess=(hit rate* Thit)+(miss rate* Tmiss)
=(0.8*12ns)+(0.2*100ns)

=29.6ns

Example 5

Page 335

Advance Computer Architecture - CS501

Consider a memory system with a cache, a main memory and a virtual memory. The access
times and hit rates are as shown in table. Find the average access time for the hierarchy.

Main memory cache virtual memory
Hit rate 99% 80% 100%
Access time 100ns Sns gms

Solution

Average access time for requests that reach the main memory
(100ns*0.99)+(8ms*0.01)
= 80,099 ns

Average access time for requests that reach the cache =(5ns*0.8)+(80,099ns*0.2) =16,023.8ns

Example 6

Given the following memory hierarchy, find the average memory access time of the complete
system

Memory type Average access time Hit rate
SRAM Sns 80 %
DRAM 60ns 80%

Disk 10ms 100%

Page 336

Advance Computer Architecture - CS501

Solution

For each level, average access time=(hit rate x access time for that level) + ((1-hit rate) x
average access time for next level)

Average access time for the complete system

= (0.8x5ns) + 0.2 x((0.8x60ns) + (0.2)(1x10ms))

4 +0.2(48+2000000)

4 +400009.6

400013.6 ns

Example 7

Find the bandwidth of a memory system that has a latency of 25ns, a pre charge time of 5ns and
transfers 2 bytes of data per access.

Solution

Time between two memory references
=latency + pre charge time

= 25 ns+ Sns

= 30ns

Throughput = 1/30ns

=3.33x107 operations/second
Bandwidth = 2x 3.33x10’

= 6.66x107 bytes/s

Example 8

Consider a cache with 128 byte cache line or cache block size. How many cycles does it take to
fetch a block from main memory if it takes 20 cycles to transfer two bytes of data?

Solution

The number of cycles required for the complete transfer of the block
=20 x 128/2

= 1280 cycles

Using large cache lines decreases the miss rate but it increases the amount of time a program
takes to execute as obvious from the number of clock cycles required to transfer a block of data
into the cache.

Example 9

Find the number of cycles required to transfer the same 128 byte cache line if page-mode DRAM
with a CAS-data delay of 8 cycles is used for main memory. Assume that the cache lines always
lie within a single row of the DRAM, and each line lies in a different row than the last line
fetched.

Solution
Memory requests to fetch each cache line=128/2= 64

Page 337

Advance Computer Architecture - CS501

Only the first fetch require the complete 20 cycles, and the other 63 will take only 8 clock cycles.
Hence the no. of cycles required to fetch a cache line =20 + 8 x 63

=524
Example 10

Consider a 64KB direct-mapped cache with a line length of 32 bytes.

a. Determine the number of bits in the address that refer to the byte within a cache line.
b. Determine the number of bits in the address required to select the cache line.

Solution
Address breakdown

n=log of number of bytes in line
m=log of number of lines in cache

a. For the given cache, the number of bits in the address to determine the byte within the
line=n =log232 =5

b. There are 64K/32= 2048 lines in the given cache. The number of bits required to select
the required line = m =log22048 = 11

Hence n=5 and m=11 for this example.
Example 11

Consider a 2-way set-associative cache with 64KB capacity and 16 byte lines.

a. How many sets are there in the cache?
b. How many bits of address are required to select a set in the cache?
c. Repeat the above two calculations for a 4-way set-associative cache with same
size.
Solution

a. A 64KB cache with 16 byte lines contains 4096 lines of data. In a 2-way set
associative cache, each set contains 2 lines, so there are 2048 sets in the cache.

b. Log» (2048) = 11. Hence 11 bits of the address are required to select the set.

c. The cache with 64KB capacity and 16 byte line has 4096 lines of data. For a 4-way
set associative cache, each set contains 4 lines, so the number of sets in the cache

would be 1024 and Log 2 (1024) =10. Therefore 10 bits of the address are required to
select a set in the cache.

Example 12

Consider a processor with clock cycle per instruction (CPI) = 1.0 when all memory accesses hit
in the cache. The only data accesses are loads and stores, and these constitute 60% of all the

Page 338

Advance Computer Architecture - CS501

instructions. If the miss penalty is 30 clock cycles and the miss rate is 1.5%, how much faster
would the processor be if all instructions were cache hits?

Solution

Without any misses, the computer performance is

CPU execution time = (CPU clock cycles + Memory stall cycles) x Clock cycle =(IC x CPI+ 0)x
Clock cycle = IC x 1.0 x Clock cycle

Now for the computer with the real cache, first we compute the number of memory stall cycles:

Memory accesses = IC x Instruction x Miss Rate x Miss Penalty
Memory stall cycles

= IC x (1+0.6) x 0.015 x 30
= IC x 0.72

Where the middle term (1 + 0.6) represents one instruction access and 0.6 data accesses per
instruction. The total performance is thus

CPU execution time cache = (IC x 1.0 + IC x 0.72) x Clock cycle = 1.72 x IC x Clock cycles

The performance ratio is the inverse of the execution times

CPU execution time cache = 1.72 x IC x clock cycle
CPU execution time 1.0 x IC x clock cycle

The computer with no cache misses is 1.72 times faster
Example 13

Consider the above example but this time assume a miss rate of 20 per 1000 instructions. What is
memory stall time in terms of instruction count?

Solution

Re computing the memory stall cycles:

Memory stall cycles = Number of misses x Miss penalty

=IC*_Misses * Miss penalty
Instruction

=]IC /1000 * Misses * Miss penalty
Instruction * 1000

=1C /1000 * 20 * 30

=]1C /1000 * 600=1IC * 0.6

Example 14

What happens on a write miss?

Page 339

Advance Computer Architecture - CS501

Solution

The two options to handle a write miss are as follows:
Write Allocate

The block is allocated on a write miss, followed by the write hit actions. This is just like read
miss.

No-Write Allocate
Here write misses do not affect the cache. The block is modified only in the lower level memory.

Example 15

Assume a fully associative write-back cache with many cache entries that starts empty.
Below is a sequence of five memory operations (the address is in square brackets):

Write Mem [300];
Write Mem [300];
Read Mem [400];
Write Mem [400];
Write Mem [300];

What is the number of hits and misses when using no-write allocate versus write allocate?

Solution

For no-write allocate, the address 300 is not in the cache, and there is no allocation on write, so
the first two writes will result in misses. Address 400 is also not in the cache, so the read is also a
miss. The subsequent write to address 400 is a hit. The last write to 300 is still a miss. The result
for no-write allocate is four misses and one hit.

For write allocate, the first accesses to 300 and 400 are misses, and the rest are hits since 300 and
400 are both found in the cache. Thus, the result for write allocate is two misses and three hits.
Example 16

Which has the lower miss rate?

a 32 KB instruction cache with a 32 KB data cache or a 64 KB unified cache?
Use the following Miss per 1000 instructions.

Unified
cache

32 KB 1.5 40 42.2
64 KB 0.7 38.5 41.2

Instruction

cache Data cache

Size

Assumptions

Page 340

Advance Computer Architecture - CS501

The percentage of instruction references is about 75%.

Assume 40% of the instructions are data transfer instructions.

Assume a hit takes 1 clock cycle.

The miss penalty is 100 clock cycles.

A load or store hit takes 1 extra clock cycle on a unified cache if there is only one cache
port to satisfy two simultaneous requests.

Also the unified cache might lead to a structural hazard.

e Assume write-through caches with a write buffer and ignore stalls due to the write buffer.

What is the average memory access time in each case?

Solution

First let's convert misses per 1000 instructions into miss rates.

Misses
Miss rate = 1000 Instructions
Memory accesses
Instruction

Since every instruction access has exactly one memory access to fetch the instruction, the
instruction miss rate is

Miss rate32 KB instruction = 1.5/1000 = 0.0015
1.00

Since 40% of the instructions are data transfers, the data miss rate is

Miss Rate 32 kbdata= 40/1000 =0.1

0.4
The unified miss rate needs to account for instruction and data accesses:
Miss Rate 64 kb unified = 42.2 /1000 =0.031
1.00+ 0.4

As stated above, about 75% of the memory accesses are instruction references. Thus, the overall
miss rate for the split caches is
(75% x 0.0015) + (25% x 0.1) = 0.026125

Thus, a 64 KB unified cache has a slightly lower effective miss rate than two 16 KB caches. The
average memory access time formula can be divided into instruction and data accesses:
Average memory access time

= % instructions x (Hit time + Instruction miss rate x Miss Penalty) + % data x (Hit time + Data
miss rate X Miss Penalty)

Therefore, the time for each organization is:

Average memory access time split

Page 341

Advance Computer Architecture - CS501

= 75%x(1+0.0015x 100) + 25%x(1 +0.1x100)
= (75% x 1.15) + (25% x 11)
= 0.8625+2.75= 3.61

= 75% x (1+0.031 x 100) +25% x (1 + 1+0.031 x 100)
= (75% x 4.1) + (25% x 5.1) = 3.075+1.275
= 435

Hence split caches have a better average memory access time despite having a worse effective
miss rate. Split cache also avoids the problem of structural hazard present in a unified cache.

Page 342

Advance Computer Architecture - CS501

Lecture No. 42

Performance of I/0 Subsystems
Reading Material

Patterson, D.A. and Hennessy, J.L. Chapter 8
Computer Architecture -A Quantitative Approach

Summary
e Introduction
Performance of I/O Subsystems
Loss System
Single Server Model
Little’s Law
Server Utilization
Poisson distribution
Benchmarks programs
Asynchronous /O and operating system

Introduction

Consider a producer-server model. A buffer (or queue) is present between them. Tasks are being
received and when one task is finished (i.e. served) then the second task is taken up by the
server. Now latency and the response time depend upon how many tasks are present in the queue
and how quickly they are served. If there is no task, ahead in the queue the latency would be low
and response time would be shorter.

Through put depends upon the average number of calls and the service time taken by a particular
server.

Performance of I/O Subsystems

There are three methods to measure I/0O subsystem performance:
e Straight away calculations using execution time
e Simulation
¢ Queuing Theory

Loss System

Loss system is a simple system having no buffer so it does not have any provision for the
queuing. In a loss system, provision is time in term of how many switches we do need, then
provide some redundancy how many individuals I/O controllers we do need, then how many
CPUs are there. It is also called dimension of a loss system.

Delay System

This system provides additional facilities. If we find some call party busy, we can have provision
of call waiting. If we have more than one call waiting, then once we finish the first call, we may
receive the second call.

Single Server Model
Page 343

Advance Computer Architecture - CS501

Consider a black box. Suppose it represents an I/O controller. At the input, we have arrival of
different tasks. As one task is done, we have a departure at the output. So in the black box, we
have a server. Now if we expand and open-up the black box, we could see that incoming calls are
coming into the buffer and the output of the buffer is connected to the server. This is an example
of “single server model”.

Little’s Law

For a system with multiple independent requests for I/O service and input rate equal to output
rate, we use Little’s law to find the mean number of tasks in the system and Time sys such that

Mean number of tasks = Arrival Rate x Mean Response time
and
Timegys = Timeq + Time,
where
Time, = Average time to serve task
Timey = Average time per task in the queue
Timeg, = Aver time /task

Arrival Rate = A = Average number of arriving tasks
Length, = Average number of task in service
Lengthg = Average length of queue

and

Length,y.= Lengthy +Length,

Server Utilization
Server Utilization = Arrival Rate x Timeq

Server utilization is also called traffic intensity and its value must be between 0 and 1.
Server utilization depends upon two parameters:

1. Arrival Rate

2. Average time required to serve each task
So, we can say that it depends on the I/O bandwidth and arrival rate of calls into the system.

Example 1

Suppose an I/O system with a single disk gets (on average) 100 I/O requests/second. Assume that
average time for a disk to service an I/O request is Sms. What is the utilization of the I/O system?

Solution

Time for an I/O request = Sms
=0.005sec

Server utilization = 100 x 0.005
=0.5

Poisson distribution

In order to calculate the response time of an I/O system, we make the following assumptions:
1. Arrival is random

Page 344

Advance Computer Architecture - CS501

2. System is memory less. It means that incoming calls are not correlated.

For characterize random events, according to above two assumptions, we use Poisson
distribution:

Probability (k)= (e x a¥) /k!

a = Rate of events x Elapsed time
= Arrival rate x t also

Variance
C2 = -—

(Arithmetic mean time) 2

and
Average Residual Service Time = %2 x weighted mean time x (1+C2)

Example 2

For the system of previous example having server utilization of 0.5, what is the mean number of
I/O requests in the queue?

Solution

(Server utilization) >
Lengthg =

(1- Server utilization)
Lengthg = (0.5) 2/ (1-0.5) = 0.5

Assumptions about Queuing Model

1. Poisson distribution is assumed

2. The system is in equilibrium

3. The length of the queue is infinity

4. The system has only one server

5. The server will start the next task after finishing the previous one.
Example 3

Suppose a processor sends 10 disks I/O per second, these requests are exponentially distributed,
and the average service time of an older disk is 10ms. Answer the following questions:

e What is the number of requests in the queue?
e What is the average time a spent in the queue?
e What is the average response time for a disk request?

Solution

Average number of arriving tasks/second = 20
Average disk time = 10ms = 0.01sec

Sever utilization = 20 x 0.01=0.2

Timeq = 10ms x 0.2/(1-0.2) = 2.5ms

Page 345

Advance Computer Architecture - CS501

Average response time = 2.5+10=22.5ms

M/M/m model of queuing theory
A system which has multiple servers is called M/M/m model.
The following formulas are used for M/M/m model:

Arrival Rate x Times
Utilization = ===-m=meeeemmmmeemee e
N

Length, = Arrival Rate x Timeg

(Ti]ues X (Ptask*s}: Nsn
Timeg = ----mmmmmmmmmm oo
N; x (1-utilization)

N, x utilization
Probtasks:’: Ns — emessssssssscsscsssse————— x Pl‘obﬂrasks
Ns! x (1-utilization)

Example#4

Suppose instead of a new, faster disk, we add a second slow disk, and duplicate the data so that read
can be serviced by either disk. Let’s assume that the requests are all reads. Recalculate the answers to
the earlier questions, this time using an M/M/m queue.

Solution

The average utilization of the two disks is given as;

Arrival rate x Time,
Server utilization =
N;
={20x001)/2
=01
(2 x utilization) (2 x utilization)"
Probygs; =[1+ +] %
2! x (1- utilization) n!
(2x0.1)°
Proboss = [14+ ——— +@2x0)]?
Mx(l-01)

=(1+.022+02)"

122971

indods

Page 346

Advance Computer Architecture - CS501

(2 x utilization)
Probya.==N; = % Probgaa:
2! % (1- utilization)

(2x 0.1)°
- —~ x12221
2% (1-0.1)
— 0.018
Proby, g.>=N;

Time, =Time; x
N x (1- utilization)

=001x0018/{2x09)
= (. lmsec

Average response time = 10msec + 0. lmsec
= 10.01msec

Benchmarks programs

In order to measure the performance of real systems and to collect the values of parameters
needed for prediction, Benchmark programs are used.

Types of Benchmark programs

Two types of benchmark programs are used:
TPC-C
SPEC

Asynchronous I/0 and operating system
In order to improve the I/O performance, parallelism is used.
For this, two approaches are available:

e Synchronous I/O
e Asynchronous I/O

Synchronous I/0

In this approach, operating system requests data and switches to another process. Until the desire
data arrived. Then the operating system switches back to the requesting process.

Asynchronous I/0

This model is of the process to continue after making a request and it is not blocked until it tries
to read requested data.

Bus versus switches

Consider a LAN, using bus topology. If we replace the bus with a switch, the speed of the data
transfer will be improved to a great extent.

Page 347

Advance Computer Architecture - CS501

Lecture No. 43

Networks
Reading Material

Vincent P. Heuring & Harry F. Jordan
Computer Systems Design and Architecture

Patterson, D.A. and Hennessy, J.L. Chapter 8
Computer Architecture - A Quantitative Approach
Summary

e Introduction to computer network

e Difference between distributed computing and computer networks

e C(lassification of networks

e Interconnectivity in WAN

e Performance Issues

o Effective bandwidth versus Message size

e Physical Media

Introduction to Computer Networks
A computer architect should know about computer networks because of the two main reasons:

Connectivity

Connection of components with in a single computer follows the same principles used for the
connection of different computers. It is important for the computer architect to know about
connectivity for better sharing of bandwidth

Sharing of resources

Consider a lab with 50 computers and 2 printers using a network, all these 50 computers can
share these 2 printers.

Protocol

A set of rules followed by different components in a network. These rules may be defined for
hardware and software.

Host

It is a computer with a modem, LAN card and other network interfaces. Hosts are also called
nodes or end points. Each node is a combination of hardware and software and all nodes are
interconnected by means of some physical media.

Difference between Distributed Computing and Computer Networks

In distributed computing, all elements which are interconnected operate under one operating
system. To a user, it appears as a virtual uni-processor system.

In a computer network, the user has to specify and log in on a specific machine. Each machine
on the network has a specific address. Different machines communicate by using the network
which exists among them.

Classification of Networks
Page 348

Advance Computer Architecture - CS501

We can classify a network based on the following two parameters:
e The number and type of machines to be interconnected
e The distance between these machines

Based on these two parameters, we have the following type of networks:

SAN (System/Storage Area Network)

It refers to a cluster of machines where large disk arrays are present. Typical distances could be
tens of meters.

LAN (Local Area Network)

It refers to the interconnection of machines in a building or a campus. Distances could be in
Kilometers.

WAN (Wide Area Network)

It refers to the interconnection between LANS.

Interconnectivity in WAN

Two methods are used to interconnect WANSs:

1. Circuit switching
It is normally used in a telephone exchange. It is not an efficient way.

2. Packet switching

A block (an appropriate number of bits) of data is called a packet. Transfer of data in the form
packets through different paths in a network is called packet switching. Additional bits are
usually associated with each packet. These bits contain information about the packet. These
additional bits are of two types: header and trailer. As an example, a packet may have the form
shown below:

Header Word to be transferred Trailer

If we use a 1- bit header, we may have the following protocol:

Header = 0, it means it is a request

Header = 0, Reply

By reading these header bits, a machine becomes able to receive data or supply data.

To transfer data by using packets through hardware is very difficult. So all the transfer is done by
using software. By using more number of bits, in a header, we can send more messages. For
example if n bits are used as header then 2" is the number of messages that can be transmitted
over a network by using a single header. For a 2 bit header: we may have 4 types of messages:
00= Request

01= Reply

10= Acknowledge request

11= Acknowledge reply

Error detection

The trailer can be used for error detection. In the above example, a 4 bit checksum can be used to
detect any error in the packet. The errors in the message could be due to the long distance

Page 349

Advance Computer Architecture - CS501

transmission. If the error is found in some message, then this message will be repeated. For a
reliable data transmission, bit error rate should be minimum.

Software steps for sending a message:

e Copy data to the operating system buffer.
e (Calculate the checksum, include in trailer and star timer.
e Send data to the hardware for transmission.

Software steps for message reception:

e Copy data to the operating system buffer.

e Calculate the checksum; if same, send acknowledge and copy data to the user area
otherwise discard the message.

Response of the sender to acknowledgment:

e Ifacknowledgment arrives, release copy of message from the system buffer.
e When timer expires, resend data and restart the time.

Performance Issues

1. Bandwidth
It is the maximum rate at which data could be transmitted through networks. It is measured in
bits/sec.

2. Latency
In a LAN, latency (or delay) is very low, but in a WAN, it is significant and this is due to the
switches, routers and other components in the network

3. Time of flight
It is the time for first bit of the message to arrive at the receiver including delays. Time of the
flight increases as the distance between the two machines increases.

4. Transmission time
The time for the message to pass through the network, not including the time of flight.

S. Transport latency
Transport latency= time of flight + transmission time

6. Sender overhead
It is the time for the processor to inject message in to the network.

7. Receiver overhead

It is the time for the processor to pull the message from the network.

8. Total latency
Total latency = Sender overhead + Time of flight + Message size/Bandwidth + Receiver overhead

9. Effective bandwidth

Effective bandwidth = Message size/Actual Bandwidth Actual bandwidth may be larger than the
effective bandwidth.

Example#1

Assume a network with a bandwidth of 1500Mbits/sec. It has a sending overhead of 100usec and
a receiving overhead of 120usec. Assume two machines connected together. It is required to

Page 350

Advance Computer Architecture - CS501

send a 15,000 byte message from one machine to the other (including header), and the message
format allows 15, 00 bytes in a single message. Calculate the total latency to send the message
from one machine to another assuming they are 20m apart (as in a SAN). Next, perform the same
calculation but assume the machines are 700m apart (as in a LAN). Finally, assume they are
1000Km apart (as in a WAN). Assume that signals propagate at 66% of the speed of light in a
conductor, and that the speed of light is 300,000Km/sec.

Solution

By using the assumption. we get:

Distance between two machines m Km
Time of flight = =mmmm e e
2/3 x 300.000Km/sec

Total Latency = Sender overhead + Time of flight + Message size/bandwidth
+ Receiver overhead
For SAN:

Total latency = 100usec
+ (0.020Km/(2/3 x 300.000Km/sec))
+ 15.000bytes/ 1500Mbits/sec
+ 120usec
= 100usec + 0. 1psec + 80usec + 120usec
= 300.1usec

For WAN

Total latency = 100usec
+ (1000Km/(2/3 x 300.000Km/sec))
+ 15.000bytes/ 1500Mbits/sec
+ 120psec
= 100psec + 5000usec + 80psec + 120usec
= 5300pnsec

Effective bandwidth versus Message size

Effective bandwidth is always less than the raw bandwidth. If the effective bandwidth is closer to
the raw bandwidth, the size of the message will be larger. If the message size is larger then
network will be more effective.

If large number of the messages are present then a queue will be formed, and the user has to face
delay. To minimize the delay, it is better to use packets of small size.

Physical Media

Page 351

Advance Computer Architecture - CS501

Copper

Twisted pair Co-axial cable

Twisted pair does not provide good quality of transmission and has less bandwidth. To get high
performance and larger bandwidth, we use co-axial cable. For increased performance, better
performance, we use fiber optic cables, which are usually made of glass. Data transmits through
the fiber in the form of light pulses. Photo diodes and sensors are used to produce and receive

electronic pulses.

Page 352

Advance Computer Architecture - CS501

Lecture No. 44

Communication Medium and Network Topologies
Reading Material

Patterson, D.A. and Hennessy, J.L. Chapter 8
Computer Architecture - A Quantitative Approach
Summary
e Physical Media (Continued)
e Shared Medium
e Switched Medium
e Connection Oriented vs. Connectionless Communication
e Network Topologies
e Seven-layer OSI Model
e Internet and Packet Switching
e Fragmentation
e Routing
Modem

To interconnect different computers by using twisted pair copper wire, an interface is used which
is called modem. Modem stands for modulation/demodulation. Modems are very useful to utilize
the telephone network (i.e. 4 KHz bandwidth) for data and voice transmission.

Quality of Telephone Line

Data transfer rate depends upon the quality of telephone line. If telephone line is of fine quality,
then data transfer rate will be sufficiently high. If the phone line is noisy then data transfer rate
will be decreased.

Classification of Fiber Optic Cables
Fiber optic cables can be classified into the following types.

Multimode fiber

This fiber has large diameter. When light is injected, it disperses, so the effective data rate
decreases.

Mono mode Fiber
Its diameter is very small. So dispersion is small and data rate is very high.

Wavelength —Division Multiplexing (WDM)

Waves of different wavelengths are simultaneously sent through fiber. So as a result, throughput
increases.

Wireless Transmission

This is another effective medium for data transfer. Data is transferred in the form of
electromagnetic waves. It has the following features:

Page 353

Advance Computer Architecture - CS501

e Data rate is in Mbits/Sec.
e Very effective because of flexibility.
e Band width is much less than fiber.

Example 1

Suppose we have 20 magnetic tapes, each containing 40GB. Assume that there are enough tape
readers to keep any network busy. How long will it take to transmit the data over a distance of
5Km? The choices are category 5 twisted-pair wires at 100Mbits/sec, multimode fiber at
1500Mbits/sec and single-mode fiber at 3000Mbits/sec. (Adapted from CA3: H&P)

Solution

The total amount of data
= total no. of mag. tapes x capacity of each tape
=20 x 40GB
=800GB

The time for each medium:

Twisted pair = 800GB/100Mbits/sec
= 65536 sec = 18.2 hr

Multimode Fiber = 800GB/1500Mbits/sec
=4369.06sec = 1.213 hr

Single mode Fiber = 800GB/3000Mbits/sec
=2184.55sec
=0.66hr

Car =time to load car + transport time + time to unload car
= 250sec + SKm/30Kph + 250sec
=500.16 sec = 0.13hr

Shared/Switched Medium

Shared Medium

If a number of computers are connected with a single physical medium (i.e. coaxial or fiber), this
situation is called shared medium. Because of many computers, collision takes place and affects
the data transfer rate. As the number of machines on a physical medium increases, the data
transfer rate decreases.

Switched Medium
To increase the throughput, a switched medium is used.

Example 2

Compare 20 nodes connected in three different ways: a single 100Mbits/sec shared medium; a
switch connected via cat5, each segment running at 100Mbits/sec; and a switch connected via
optical fiber, each segment running at 1500Mbits/sec. The shared medium is 700m long, and the

Page 354

Advance Computer Architecture - CS501

average length of each segment to a switch is 55m. Both switches can support full bandwidth.
Assume each switch adds 6usec to the latency, and the average message size is 200bytes. Ignore
the overhead of sending or receiving a message and contention for the network.

Solution

First we will calculate the aggregate bandwidth:
For shared medium

Aggregate bandwidth = 100Mbits/sec
For switched twisted pair

Aggregate bandwidth = 20 x 100Mbits/sec
= 2000Mbits/sec
For switched optical fiber

Aggregate bandwidth = 20 x 1500Mbit/sec
= 30,000Mbits/sec

Transport time = Time of flight + (message size/BW)
(700/1000)Km

Transport time shared = --------------- x 10%usec + (200 x 8bits / 100Mbits/sec)
(2/3 x 300,000)Km

=3.5usec + 16usec = 19.5usec

For the switches, the distance is twice the average segment. We must also add latency for the
switch.

(55/1000)Km

Transport time switch = 2x x 10° us
(2/3 x 300,000)Km

+ 6usec + (200 x 8bits / 100Mbits/sec)

=0.55usec + 6usec +16usec

=22.55usec
(55/1000)Km
Transport time fiber =2x -- X 106us
(2/3 x 300,000)Km

+ 6usec + (200 x 8bits / 1500Mbits/sec)
= 0.55usec + 6pusec +1.06usec
=7.61usec

Although the bandwidth of the switch is many times that of the shared medium, the latency for
unloaded networks is comparable.

Connection Oriented vs. Connection less Communication

Connection Oriented Communication
Page 355

Advance Computer Architecture - CS501

¢ In this method, same path is always taken for the transfer of messages.

e [t reserves the bandwidth until the transfer is complete. So no other server could use that
path until it becomes free.

e Telephone exchange and circuit switching is the example of connection oriented
communication.

Connection less Communication
e Here message is divided into packets with each packet having destination address.

e FEach packet can take different path and reach the destination from any route by looking
at its address.

e Postal system and packet switching are examples of connection less communication.

Network Topologies

Computers in a network can be connected together in different ways. The following three
topologies are commonly used:

e Bus topology
e Star topology
¢ Ring topology

Three Network Topologies

Bus Topology
In this arrangement, computers are connected via a single shared physical medium.

Star topology

Computers are connected through a hub. All messages are broad cast because the hub is not an
intelligent device.

Ring Topology
All computers are connected through a ring. Only one computer can transmit data at one time,
having a pass called “Token”.

Seven Layer OSI Model

There are seven layers in this model.
1. Physical Layer

2. Data Layer

3. Network Layer

4. Transport Layer

5. Session Layer

6. Presentation Layer

7. Application Layer

Page 356

Advance Computer Architecture - CS501

7-Layer OSI1 Model

Apphcasion Appdication
1 *
* T
S resentation Presentation
1 £}
T
Saecsion Seccion
} £
I
Transport Transport
1 £}
£ T
FMetwork Metrork
[F)
* T
Crata link Data link
1 LY
T
=hysical Plnysical

= ’ -‘___'H-.,_\::
Internet -,

OSI Model Characteristics

An interface is present between any two layers.

A layer may use the data present in another layer.

Each layer is abstracted from other layers.

The service provided by one layer can be used by the other layer.

e Two layers can provide same service e.g. Check Sum calculated at different layers.

¢ On two machines, six layers are logically connected except the physical layer. The
physical layers of two machines are physically connected.

Internet and Packet Switching

Internet works on the concept of packet switching. Application layer passes data to the lower
layer and that lower layer passes data to the next lower layer and on so on. In this data passing
process through different layers, different headers are attached with the data which shows the
source and destination addresses, number of data bytes in packet, type of message etc. At
physical layer, this packet is transmitted into the network. At reception, reverse procedure is
adopted.

Fragmentation

When a packet is lost in the network, it is re-transmitted. If the size of the packet is large then
retransmission of packet is wastage of resources and it also increases the delay in the network.
To minimize this delay, a large packet is divided into small fragments. Each fragment contains a
separate header having destination address and fragment number. This fragmentation effectively
reduces the queuing delay. At destination, these fragments are re-assembled and data is sent to
the application layer.

Routing

Routing works on store-and-forward policy. There are three methods used for routing:
e Source-based routing
e Virtual Circuit
e Destination-based routing

Page 357

Advance Computer Architecture - CS501

TCP/IP

Internet uses TCP/IP protocol. In the TCP/IP model, session and presentation layers are not
present, so Store-Forward routing is used.

TCP/IP vs. OS] Model

OS|I model TCPAP model
At [Mail] [fip | [Tenet] [ons]
FPresentation o
= Transmission
Session
control protocaol
Transport (TCP)
¥
Metwork Internet protocol
(1P)
Data link
- Ethernet T oo LocalTalk
Physical nng

Page 358

Advance Computer Architecture - CS501

Lecture No. 45

Review
Reading Material

Handouts Slides

Review of all lectures (i.e. Lecture # 1 to 44)

Page 359

