Updated Errata for "<u>CS402 - Theory of Automata</u>" Lecture Notes

Dear students,

If you have an older copy of cs402 handouts then there is possibility of below mentioned errors in them please change them accordingly in your printed copy. (Changes have been highlighted in bold font)

Lecture No: 2	
Page No: 8	
Old Text	New / Updated Text
N / A (Add it at the end of page 8.)	Defining the language L, of strings
	containing exactly two a's, defined over
	Σ={a, b}
	Step 1: a is in L
	Step 2: s(aa)s is also in L , where s belongs
	to b*
	Step 3: No strings except those
	constructed in above, are allowed to be in
	L

Lecture No: 8	
Page No: 20	
Old Text	New / Updated Text
Example	Correct TG is as below;
Consider the language L of strings, defined	∫ ^{a, b}
over ={a, b}, not ending in b. The	
language L may be expressed	
by RE + (a + b)*a, may be accepted by	a, b
the following TG	()
(Given TG is not correct)	a
	(+)

Errata for "Theory of Automata" Lecture Notes

Dear students if you have an older copy of cs402 handouts then there is possibility of below mentioned errors in them please change them accordingly in your printed copy. New copy of handouts is also available on course website. (Changes have been highlighted in bold font) **Lecture No. 1**

Page No. 4 Topic: Introduction to Computer Theory

Old Text	Change
Example:	Example:
$\Sigma = \{B, aB, bab, d\}$	$\Sigma = \{B, aB, bab, d\}$
s=BaBbabBd	s=BaBbab B d
Tokenizing=(B), (aB), (bab), (d)	Tokenizing=(B), (aB), (bab), (B) , (d)
s =4	s =5
Lecture No. 2	

Lecture No. 2			
Page No 7 Topic: Introduction to Computer Theory			
Old Text	Change		
Example: The language EQUAL , of strings	Example: The language EQUAL , of strings		
with number of a's equal to number of b's,	with number of a's equal to number of b's,		
defined over $\Sigma = \{a, b\}$, can be written as	defined over $\Sigma = \{a, b\}$, can be written as		
{Λ ,ab, aabb,abab,baba,abba,}	{Λ ,ab, ba, aabb,abab,baba,abba,}		

Page No 8 Topic: Introduction to Computer Theory

Old Text	Change
Defining the language L, of strings containing	Defining the language L, of strings containing
exactly one a, defined over $\Sigma = \{a, b\}$	exactly one a, defined over $\Sigma = \{a, b\}$
Step 1: a is in L	Step 1: a is in L
<u>Step 2:</u> $s(aa)s$ is also in L, where s belongs to b^*	<u>Step 2:</u> $s(\mathbf{a})s$ is also in L, where s belongs to b^*
Step 3: No strings except those constructed in above,	Step 3: No strings except those constructed in above,
are allowed to be in L	are allowed to be in L

Lecture No. 25 Page No. 68

-				
T !	Trada and a dia a	- f 4		1
LODIC	Intersection	OT TWO	regiliar	Ianoilages
ropic.	11110100001011	01 010	I US MIMI	I AILS AUS OU

Old Text	Change
Now FA accepting $L_1^c \cap L_2^c$, using the method described earlier, may be as follows	Now FA accepting $L_1^c \cup L_2^c$, using the method described earlier, may be as follows

Lecture No. 35

Page No. 100 Topic: Nullable Production

Old Text	Change
Consider the following CFG $S \rightarrow XaY YY aX ZYX$ $X \rightarrow Za bZ ZZ Yb$ $Y \rightarrow Ya XY ^$ $Z \rightarrow aX YYY$ It is to be noted that in the given CFG, the productions $S \rightarrow YY$, $X \rightarrow ZZ, Z \rightarrow YYY$ are Nullable productions, while $Y \rightarrow ^{$ is Null production.	Consider the following CFG $S \rightarrow XaY YY aX ZYX$ $X \rightarrow Za bZ ZZ Yb$ $Y \rightarrow Ya XY ^$ $Z \rightarrow aX YYY$ It is to be noted that in the given CFG, the productions $S \rightarrow YY$, $S \rightarrow ZYX$, $X \rightarrow ZZ$, $Z \rightarrow YYY$ are Nullable productions, while $Y \rightarrow ^$ is Null production.
Here the method of removing null productions, as discussed earlier, will be used along with replacing	Here the method of removing null productions, as discussed earlier, will be used along with replacing nonterminals corresponding to nullable productions

nonterminals corresponding to	like nonterminals for null productions are replaced
nonterminals corresponding to	like nonterininais for null productions are replaced.
nullable productions like	Thus the required CFG will be
nonterminals for null productions	$S \rightarrow XaY Xa aY a YY Y aX ZYX YX ZX ZY Z Y X$
are replaced.	$X \rightarrow Za a bZ b ZZ Z Yb$
Thus the required CFG will be	$Y \rightarrow Ya a XY X Y$
S→XaY Xa aY a YY Y aX ZYX	$Z \rightarrow aX a YYY YY Y,$
YX ZX ZY	
$X \rightarrow Za a bZ b ZZ Z Yb$	
$Y \rightarrow Ya a XY X Y$	
$Z \to aX a YYY YY Y,$	

Lecture No. 37 Page No. 107 Topic: POP and STAC

