
Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 1

Introduction to Web Services Development

CS311 – Handouts

Syed Nauman Ali Shah

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 2

Contents

Booklet of Introduction to Web Services Development ... 1

Contents .. 2

Module 1 (Object Oriented Paradigm) .. 3

Module 2: Basics of Java Programming ... 38

Module 3: (Program Control Flow) .. 46

Module 4: (Using Objects) .. 56

Module 5: (Primitive values as objects) ... 71

Module 6: (Arrays) .. 76

Module 7: (Classes) ... 82

Module 8 (Object Communication) ...118

Module 9: (Modifiers) ...129

Module 10: (Exception Handling) ...143

Module 11: (XML) ...153

Module 12: (XML) ...175

Module 13 :(XML DOM) ...197

Modue 14: Introduction to JAXP ..246

Module 15: (Servlets) ..263

Module-16: Java Database Connectivity (JDBC) ..327

Module 17 Introduction WebServices ...338

Module 18 Web Services Architecture ..345

Module 19 Web Services with JAX-WS ..353

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 3

Module 1 (Object Oriented Paradigm)

Objective:

In this lecture we will discuss Object Orientation in detail. It will be followed by discussion on

Data Modeling with reference to Abstraction, Inheritance, Encapsulation and Information

Hiding, what are the advantages and they are used in classes and their examples.

What is an Object Orientation?

In real world, object oriented approach focuses on objects that represents abstract or concrete

things.

What is a Model?

Modeling is an approach that is used at the beginning of software. The reasons to model a system

are:

Communication: Model diagrams before implementation can be more understandable and can

allow users to give developers feedback on the appropriate structure of the system.

Abstraction: The goal of the software methodology is to first what functionality is used and then

how to take this abstract description and refine it into an implementable design.

What is an Object?

For understanding an object orientation, you need to understand object first. Objects are key to

understand object-oriented. Look around yourself and you'll find many examples of real-world

objects: your dog, your desk, your television set, your bicycle. Object is something tangible.

Object has two characteristics; state and behavior. State is a noun, attribute, a well-defined

behavior and behavior is a certain operation. For example dog which is a tangible object, an

object which can be touched has a state of colour, name, and breed and has behavior of barking,

fetching.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 4

Object

"Object" can be a combination of variables and functions. You may also notice that some

objects, in turn, will also contain other objects. Relationships of identified objects are constructed

(such as relating a person's age to a specific person). For example there are several objects like

Ali, House, Car, and Tree. Relationships are built between these objects like; Ali lives in the

house and Ali drives a car. In these two sentences, Ali, house and car are objects which interact

with each other and form a certain relation.

Time is another example in which Hours, minutes and seconds are the objects and the operations

performed on time like set Hours, set minutes and set seconds are the behavior and operations

performed on the object.

Advantages:

In real world, we are surrounded by objects. Modeling picks up each thing/object in the real

world which is involved in the requirement. It makes the requirement simple and easily

understandable by representing simple diagrams.

What is Abstraction?

Abstraction is the process of taking out characteristics from something in order to reduce it into a

set of essential characteristics. Through the process of abstraction, a programmer hides all the

irrelevant data about an object in order to reduce complexity and increase efficiency.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 5

Examples:

Ali is a PhD student and teaches BS students. Below table shows the attributes of Ali as a student

and employee. When Ali is at university, then he is a "Student". When he is at work, he is an

"Employee".

Attributes:

Name Employee ID

Student Roll No Designation

Year of Study Salary

CGPA Age

Ali has different relationships in different roles. So it boils down to what in what context we are

looking at an entity/object. So if I am modelling a Payroll System, I will look at Ali as an

Employee (employee ID, name, designation, salary and age) shown in the table below.

Attributes:

Employee ID

Name

Designation

Salary

Age

If am modelling a Course Enrollment System, then I will consider Ali’s aspects and

characteristics as a Student (student roll number, name, year of study, cgpa, age) shown in the

table below.

Attributes:

Name

Student Roll No

Year of Study

CGPA

Age

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 6

Abstract class and abstract method.

Abstraction means putting all the variables and methods in a class which are necessary.

Abstraction is the common thing.

Example:

If somebody in your collage tell you to fill application form, you will fill your details like name,

address, data of birth, which semester, percentage you have got etc.

If some doctor gives you an application to fill the details, you will fill the details like name,

address, date of birth, blood group, height and weight.

See in the above example what is the common thing?

Age, name, address so you can create the class which consist of common thing that is called

abstract class.

That class is not complete and it can inherit by other class.

Graphical Representation of Classes

The class is represented as a rectangle, divided in 3 boxes one under another. The name of the

class is at the top. Next, there are the attributes of the class. At the very bottom are the operations

or methods. The plus/minus signs indicate whether an attribute / operation is visible (+ means

public) or not visible (- means private). Protected members are marked with #.

 Suppressed Form

 Normal Form

Abstraction in Programming:

(Class Name)

-(Attribute)

+(Operations)

(Class Name)

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 7

A Car has Engine, wheels and many other parts. When we write all the properties of the Car,

Engine, and wheel in a single class, it would look this way:

In the above example, the attributes of wheel and engine are added to the Car type. This will not

create any kind of issues programming. But it becomes more complex when it comes to

maintenance of the application.

Abstraction has three advantages:

 By using abstraction, we can separate the things that can be grouped to another type.

 Frequently changing properties and methods can be grouped to a separate type so that the

main type need not undergo changes.

 Simplifies the representation of the domain models.

public class Car {

 int price;

 String name;

 String color;

 int engineCapacity;

 int engineHorsePower;

 String wheelName;

 int wheelPrice;

 void move(){

 //move forward

 }

 void rotate(){

 //Wheels method

 }

 void internalCombustion(){

 //Engine Method

 }

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 8

Applying the abstraction with composition, the above example can be modified as given below:

public class Car {

 Engine engine = new En

gine();

 Wheel wheel = new Whee

l();

 int price;

 String name;

 String color;

 void move(){

 //move forward

 }

}

public class Engine {

 int engineCapacity;

 int engineHorsePower;

 void internalCombustion(

){

 //Engine Method

 }

}

public class Wheel {

 String wheelName;

 int wheelPrice;

 void rotate(){

 //Wheels method

 }

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 9

Engine and Wheel are referred from the Car type. Whenever an instance of Car is created, both

Engine and Wheel will be available for the Car and when there are changes to these Types

(Engine and Wheel), changes will only be confined to these classes and will not affect the Car

class.

What is Inheritance?

Inheritance enables new objects to take on the properties of existing objects. A class that is used

as the basis for inheritance is called a superclass or base class. A class that inherits from a

superclass is called a subclass or derived class. The terms parent class and child class are also

acceptable terms to use respectively. The parent class is called base class and the child class is

called derived class. A child inherits characteristics from its parent while adding additional

characteristics of its own.

Subclasses and superclasses can be understood in terms of the is a relationship. A subclass is a

more specific instance of a superclass. For example, orange is a fruit, parrot is a bird. An orange

is a fruit; so it is okay to write an Orange class is a subclass of a Fruit class.

Examples:

If a class B inherits from class A then it contains all the characteristics (information structure and

behaviour) of class A as shown in figure below.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 10

 Super Class

 Sub Class

In the example above, Class Student, Teacher and Doctor inherits from Class Person. Each child

class contain “is a” relation with parent class. Student “is a” person, Teacher “is a” person and

Doctor “is a” person. Each child contains all the characteristics of parent class.

Similarly:

A

B

"is a"

Person

Student Teacher Doctor

Shape

Line Circle Triangle

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 11

In the example above, Class Line, Circle and Triangle inherits from Class Shape. Each child

class contain “is a” relation with parent class. Line “is a” Shape, Circle “is a” shape and Triangle

“is a” Shape. Each child contains all the characteristics of parent class.

Generalization:

Generalization is the process of extracting shared characteristics from two or more classes, and

combining them into a generalized superclass. Shared characteristics can be attributes,

associations, or methods.

The classes Circle and Rectangle partially share the same attributes. From a domain perspective,

the two classes are also very similar.

During generalization, the shared characteristics are combined and used to create a new

superclass Shape. Circle and Rectangle become subclasses of the class Shape.

The shared attributes are only listed in the superclass, but also apply to the two subclasses, even

though they are not listed there.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 12

 Example of Generalization

Specialization:

In contrast to generalization, specialization means creating new subclasses from an existing

class. If it turns out that certain attributes, associations, or methods only apply to some of the

objects of the class, a subclass can be created. The most inclusive class in a

generalization/specialization is called the superclass and is generally located at the top of the

diagram. The more specific classes are called subclasses and are generally placed below the

superclass.

The class Freight has the attribute Degree of Hazardousness, which is needed only for cargo, but

not for passenger luggage. Obviously, here two similar but different domain concepts are

combined into one class. Through specialization the two special cases of freights are formed:

Piece of Cargo and Piece of Luggage. The attribute Degree of Hazardousness is placed where it

belongs—in Piece of Cargo. The attributes of the class Freight also apply to the two subclasses

Piece of Cargo and Piece of Luggage:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 13

 Example of specialization

Specialization & Extension:

As the name suggests, class extension is concerned with adding something to a class. We can add

both variables and operations.

These considerations lead us to the following definition of class extension.

 If class B is an extension of class A then

 B may add new variables and operations to A

 Operations and variables in A are also present in B

 B-objects are not necessarily conceptually related to A-objects

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 14

Here are the three classes given below that specialize the class BankAccount.

A specialization hierarchy of bank accounts

Figure below shows the extensions of the bank account classes. The specialized bank accounts

overlap in such a way that there can exist a bank account which is both a CheckAccount, a

SavingsAccount, and a LotteryAccount. An overlapping is the prerequisite for multiple

specialization.

 Possible extensions of the bank account classes

Specialization & Restriction:

Specialization means that derived class is behaviorally incompatible with the base class,

behaviorally incompatible means that base class can’t always be replaced by the derived class.

For example, new subclasses from an existing class. Through specialization, Person class is

formed: Age is an attribute which is common for every person but in subclass, a condition is

defined in which age of an adult should be above 18 otherwise, error will occur. So the subclass

was restricted to adult age which should be above 18.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 15

Advantages:

Main purpose of inheritance is reuse:

We can easily add new classes by inheriting from existing classes and can select an existing class

closer to the desired functionality. We can create a new class and inherit it from the selected

class. We can add to and/or modify the inherited functionality.

The classes Student and Teacher partially share the same attributes. From a domain perspective,

the two classes are also very similar.

During generalization, the shared characteristics are combined and used to create a new

superclass Person. Student and Teacher become subclasses of the class Person. The shared

attributes are only listed in the superclass like name, age and gender, but also apply to the two

subclasses, even though they are not listed there.

A new class of doctor has common attributes of class Teacher so the teacher class eventually

become the superclass of Doctor. As Teacher is a subclass of Person class so the Doctor class

will indirectly have the properties of Person class as well as shown in figure below.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 16

If the inheritance of Doctor Class is changed from Teacher class to Person class, there will be no

change in Teacher class. Doctor class will still be the same but only the functions of Teacher

class will be excluded.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 17

What is Encapsulation?

An object has to provide its users only with the essential information for manipulation, without

the internal details. A Secretary using a Laptop only knows about its screen, keyboard and

mouse. Everything else is hidden internally under the cover. She does not know about the inner

workings of Laptop, because she doesn’t need to. Therefore parts of the properties and methods

remain hidden to her.

The person writing the class has to decide what should be hidden and what not. When we

program, we must define as private every method or field which other classes should not be able

to access.

If a field is declared private, it cannot be accessed by anyone outside the class, thereby hiding the

fields within the class. For this reason, encapsulation is also referred to as data hiding (not data

security).

Thus encapsulation is said to be providing “access control” through which we can control which

parts of the program can access the members of any class and thus prevent misuse. Various

access controls are public, private and protected.

Real world Example of Encapsulation:-

Let's take example of Mobile Phone and Mobile Phone Manufacturer

Suppose you are a Mobile Phone Manufacturer and you designed and developed a Mobile Phone

design(class), now by using machinery you are manufacturing a Mobile Phone(object) for

selling, when you sell your Mobile Phone the user only learn how to use the Mobile Phone but

not that how this Mobile Phone works.

Another example is the TV operation. It is encapsulated with cover and we can operate with

remote and no need to open TV and change the channel.

Here everything is in private except remote so that anyone can access not to operate and change

the things in TV.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 18

Implementation:

Hide the data for security such as making the variables as private, and expose the property to

access the private data which would be public.

So, when you access the property you can validate the data and set it.

Example:

Advantages:

The main benefit of encapsulation is the ability to modify our implemented code without

breaking the code of others who use our code. With this feature Encapsulation gives

maintainability, flexibility and extensibility to our code.

What is Information Hiding?

Information hiding concept restricts direct exposure of data. All information should not be

accessible to all persons. Private information should only be accessible to its owner.

By Information Hiding we mean “Showing only those details to the outside world which are

necessary for the outside world and hiding all other details from the outside world.”

class Demo

{

 private int _mark;

 public int Mark

 {

 get { return _mark; }

 set { if (_mark > 0) _mark = value; else _mark = 0; }

 }

 }

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 19

Your name and other personal information is stored in your brain we can’t access this

information directly. For getting this information we need to ask you about it and it will be up to

you how much details you would like to share with us.

An email server may have account information of millions of people but it will share only our

account information with us if we request it to send anyone else accounts information our request

will be refused.

A phone SIM card may store several phone numbers but we can’t read the numbers directly from

the SIM card rather phone-set reads this information for us and if the owner of this phone has not

allowed others to see the numbers saved in this phone we will not be able to see those phone

numbers using phone.

Advantages of Information Hiding

 Information Hiding makes easier for everyone to understand object oriented model.

 It is a barrier against change propagation. As implementation of functions is limited to our

class and we have only given the name of functions to user along with description of

parameters so if we change implementation of function it doesn’t affect the object oriented

model.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 20

Types of Inheritance:

Single Inheritance:

It is the inheritance hierarchy wherein one derived class inherits from one base class. The below

flow diagram shows that class Circle extends only one class which is Shape. Here Shape is a parent

class of Circle and Circle would be a child class of Shape.

Multilevel Inheritance:

It is the inheritance hierarchy wherein subclass acts as a base class for other classes. In Multilevel

inheritance there is a concept of grandparent class. As you can see in below flow diagram

Semicircle is subclass or child class of Circle and Circle is a child class of Shape. So in this case

class Semicircle is implicitly inheriting the properties and method of class Shape along with Circle

that’s what is called multilevel inheritance.

Multiple Inheritance:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 21

It is the inheritance hierarchy wherein one derived class inherits from multiple base class (es).

The problem with “multiple inheritance” is that the derived class will have to manage the

dependency on two base classes. In figure below, Mermaid is child class of class Woman and

Fish. Mermaid will have all the properties of both Woman and Fish class.

There are problems in multiple inheritance. Both woman and Fish have the attribute of eat with

their aspects so duplicate attribute of eat in Mermaid will cause complexity in choosing which

property will Mermaid will follow as shown in figure below.

Links & Relationship:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 22

Simple Association

Association is a relationship between two objects. In other words, Two objects may depend on

each other but don’t interact directly (weak association). Association defines the multiplicity

between objects. For example, the project management system involves various general

relationships, including manage, lead, execute, input, and output between projects, managers,

teams, work products, requirements, and systems. Consider, for example, how a project manager

leads a team.

One Way Association:

Associations are generally assumed to be bi-directional i.e. a message can pass in both directions

between objects. However in implementation this doesn't have to be the Case as shown in the

example bellow:

Single directional arrow shows the message conveying from one object to other. For example:

Ali lies in house but house lives in Ali will be incorrect. Moreover, Remote operates TV and not

TV operates Remote so these both are one way Associations.

 and

Two Way Association:

Ali HouseLives Remote TVOperates

Association

Class Association Object Association

Simple Association Composition Aggregation Inheritance

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 23

This type of association is bi-directional i.e. a message can pass in both directions between

objects. It is usually donated by a single straight line or an arrow on both sides of the objects. For

example, Employee works for company and the company employs many employees.

Ternary Association

Any association may be drawn as a diamond with a solid line for exactly 3 associations end

connecting the diamond. For example, Teacher can teaches many courses, Many Students can

enroll many courses, each teacher can teaches many students.

N-ary association with more than two ends can only be drawn this way.

Composition:

Composition is specialized form of Aggregation. It is a strong type of Aggregation. Child object

does not have its lifecycle and if parent object is deleted, all child objects will also be deleted.

Let’s take again an example of relationship between House and Rooms. House can contain

multiple rooms - there is no independent life of room and any room cannot belong to two

different houses. If we delete the house - room will automatically be deleted. Let’s take another

example relationship between Questions and Options. Single questions can have multiple options

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 24

and option cannot belong to multiple questions. If we delete questions options will automatically

be deleted.

This is a strong type of relation because composed objects become the part of the composer. For

example, Ali is made of 1 Head, 2 Arm, 2 Leg and 1 Body. These four classes cannot exist

independently. If Ali is deleted, all four classes will automatically be removed because these

classes are dependent on Ali.

Aggregation:

Aggregation is a specialized form of Association where all objects have their own lifecycle, but

there is ownership and child objects can not belong to another parent object. Take an example of

Department and teacher. A single teacher cannot belong to multiple departments, but if we delete

the department teacher object will not be destroyed. We can think about it as a “has-a”

relationship. Aggregation is weaker relationship, because aggregate object is not a part of the

container, they can exist independently. Aggregation is represented by a line with unfilled-

diamond head towards the container. Direction between them specified which object contains the

other object.

In the example below, Room has 1 bed, 1 table, 1 cupboard and many chairs. Furniture is not the

intrinsic part of the composer. They are weak aggregation and can exist independently. Furniture

can shift to other room so they can exist independent of a particular room.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 25

Take another example of plant and garden. They are weak aggregation and can exist

independently. Plant is not the intrinsic part of the garden and can exist independently. They can

be planted to other garden and it is not dependent to the particular garden.

Abstract Class:

An abstract class is a class that is declared abstract—it may or may not include abstract methods.

Abstract classes cannot be instantiated, but they can be subclassed. An abstract method is a

method that is declared without an implementation. If a class includes abstract methods, then the

class itself must be declared abstract. When an abstract class is subclassed, the subclass usually

provides implementations for all of the abstract methods in its parent class. However, if it does

not, then the subclass must also be declared abstract.

For example, you can draw circles, rectangles, triangles and many other shapes. These objects all

have certain states (for example: center, orientation, line color, fill color) and behaviors (for

example: area, rotate, draw) in common. Some of these states and behaviors are the same for all

shapes (for example: center, area, and draw). All shapes must be able to draw themselves; they

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 26

just differ in how they do it. This is a perfect situation for an abstract superclass. You can take

advantage of the similarities and declare all the graphic objects to inherit from the same abstract

parent object (for example, Shape) as shown in the following figure. Classes Rectangle, triangle

and Circle Inherit from Shape.

Concrete Class:

A concrete class has concrete methods, i.e., with code and other functionality. This class may

extend an abstract class or implements an interface. The derived class is expected to provide

implementations for the methods that are not implemented in the base class. A derived class that

implements all the missing functionality is called a concrete class.

In example below, Student, Teacher and Doctor are concrete classes and Person is the Abstract

class.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 27

Interface (Java):

An interface is an elegant way of defining the public services that a class will provide without

being bogged down by implementation details.

An interface is used to define the public services of a class. The interface provides no

implementation details. Think of an interface as a business contract between two parties. The

class implementing the interface agrees to provide the services defined in that interface to other

classes. The other classes calling on the public services agree to abide by the semantics of the

interface.

In the diagram below, both the Professor and Student classes implement the Person interface and

do not inherit from it. We know this for two reasons:

1) The Person object is defined as an interface — it has the "«interface»" text in the object's

name area, and we see that the Professor and Student objects are class objects because they are

labeled according to the rules for drawing a class object.

2) We know inheritance is not being shown here, because the line with the arrow is dotted and

not solid. As shown in Figure, a dotted line with a closed, unfilled arrow means realization (or

implementation); a solid arrow line with a closed, unfilled arrow means inheritance.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 28

Overloading:

Overloading occurs when two or more methods in one class have the same method name but

different parameters.

An appropriate example would be a Print(object O) method. In this case one might like the

method to be different when printing, for example, text or pictures. The two different methods

may be overloaded as Print(text_object T); Print(image_object P). If we write the overloaded

print methods for all objects our program will "print", we should not have to worry about the

type of the object, and the correct function call again, the call is always: Print(something).

Rules:

The overloaded function must differ by data types...

The same function name is used for various instances of function call.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 29

Programming Example:

In the example below variables are added with two datatypes, int and double. Through datatype

int, out will be in real numbers and through double, the output will be in floating numbers as

shown below. The method is same of addition in both case but from different datatypes, the

output is different.

Run output

30

30.8

#include

#include

void add(int x, int y);

void add(double x, double y);

int main()

{

clrscr();

add(10,20);

add(10.4,20.4);

return(0);

}

void add(int x, int y)

{

cout

}

void add(double x,double y)

{

cout

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 30

Overriding:

Overriding means having two methods with the same method name and parameter. One of the

methods is in the parent class and the other is in the child class. Overriding allows a child class to

provide a specific implementation of a method that is already provided its parent class.

One of the simplest example – Here Boy class extends Human class. Both the classes have a

common method void eat(). Boy class is giving its own implementation to the eat() method or in

other words it is overriding the method eat().

Output:

Boy is eating.

class Human{

 public void eat()

 {

 System.out.println("Human is eating");

 }

}

class Boy extends Human{

 public void eat(){

 System.out.println("Boy is eating");

 }

 public static void main(String args[]) {

 Boy obj = new Boy();

 obj.eat();

 }

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 31

Here is another example of overriding. The dog variable is declared to be a Dog. During compile

time, the compiler checks if the Dog class has the bark() method. As long as the Dog class has

the bark() method, the code compilers. At run-time, a Hound is created and assigned to dog. Dog

is referring to the object of Hound, so it calls the bark() method of Hound.

Output:

Bowl

The main advantage of overriding is that the class can give its own specific implementation to an

inherited method without even modifying the parent class(base class).

class Dog{

 public void bark(){

 System.out.println("woof ");

 }

}

class Hound extends Dog{

 public void sniff(){

 System.out.println("sniff ");

 }

 public void bark(){

 System.out.println("bowl");

 }

}

public class OverridingTest{

 public static void main(String [] args){

 Dog dog = new Hound();

 dog.bark();

 }

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 32

Polymorphism:

"Poly" means "many" and "morph" means "form". Polymorphism is an object-oriented

programming concept that refers to the ability of a variable, function or object to take on

multiple forms.

There are two types of polymorphism one is compile time polymorphism and the other is run

time polymorphism. Compile time polymorphism is functions and operators overloading.

Runtime time polymorphism is done using inheritance and virtual functions. Here are some ways

how we implement polymorphism in Object Oriented programming languages.

Compile time polymorphism -> Operator Overloading, Function Overloading

Run time polymorphism -> Interface and abstract methods, Virtual member functions.

An example would be:

A "Shape" class can be a part of an inheritance hierarchy where derived classes are "Circle",

“Triangle” and "Rectangle". Derived from "Rectangle" could be "Square",

Now, using such an example, it is true that any object below in a hierarchy is also something that

is directly up in the hierarchy. Hence, Square “is a" Rectangle, and Rectangle "is a" Shape. Also,

Square "is a" Shape.

Each of these classes will have different underlying data. A point shape needs only two co-

ordinates (assuming it's in a two-dimensional space of course). A circle needs a center and

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 33

radius. A square or rectangle needs two co-ordinates for the top left and bottom right corners

(and possibly) a rotation.

And, by making the class responsible for its code as well as its data, you can achieve

polymorphism. In this example, every class would have its own Draw() function and the client

code could simply do: shape.Draw().

Hence, using pointers of Base classes (higher in an inheritance hierarchy) can be assigned to

objects of derived classes and can be used in a unified manner with the use of virtual functions.

Hence, Polymorphism.

(The plus "+" operator example used above would not be correct, as that is actually an

overloaded operator (in the case the last poster presumed) and not precisely polymorphism).

Dynamic Binding:

Late binding means the binding occurs at runtime, based on the type of the object. Late binding

is also called dynamic binding or runtime binding. When a language implements late binding,

there must be some mechanism to determine the type of the object at runtime and call the

appropriate member function. In the case of a compiled language, the compiler doesn’t know the

actual object type, but it inserts code that finds out and calls the correct function body.

An example of polymorphism is the technique by which a reference that is used to invoke a

method can actually invoke different methods at different times depending on what it is referring

to at the time. This can be illustrated by the following example.

In the for loop, the statement all[i].toString() will either invoke the definition in Student or

MScStudent depending on what type of object the polymorphic reference all[i] is pointing to at

the time.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 34

Up-casting:

In up-casting we convert a smaller datatype into a larger datatypes. Since converting a smaller

dataytype into a larger datatype does not cause any information loss therefore up-casting is

implicit (i.e. it occurs automatically and we do not have to write any extra piece of code)

In primitive datatypes such as int, float, double upcasting occurs when we convert a smaller data

type (in terms of size (bytes)) into a large data type. For example; converting int (4 bytes) to long

(8 bytes) or float (4 bytes) to double(8 bytes). This has been shown in the following code

fragment.

public class TestPoly2

{

 public static void main(String [] args)

{

 Student [] all= new Student[3];

 all[0]= new Student("kate");

 all[1]= new MScStudent("mike");

 all[2]= new Student("Jane");

 for (int i=0;i<3;i++)

 System.out.println(all[i].toString());

 }

}

int i = 4;

double d ;

d = i;

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 35

The diagram below is our polymorphism example.

Consider the following code:

Shape s = new Circle(100, 100);

We have cast Circle to the type Shape. This is possible, because Circle has been derived from

Shape and you expect all methods and properties of Shape to exist in Circle. Executing the Draw

method by doing s.Draw() gives the following output:

 Drawing a CIRCLE at 100,100

If we had declared the Draw method in Circle as follows, public new void Draw() the output

would have been:

Drawing a SHAPE at 100,100

As we have already mentioned, marking the method with new, tells the compiler that we are not

overriding the base class implementation of the method.

So why is this called up-casting?

Consider the diagram above. From Circle, we are moving up the object hierarchy to the type

Shape, so we are casting our object "upwards" to its parent type.

Up-casting is implicit and is safe. By mentioning “safe”, we can happily cast Circle to Shape and

expect all the properties and methods of Shape to be available.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 36

Down-Casting:

In down-casting we convert a larger datatype into a smaller datatype. Since converting a larger

dataytype into a smaller datatype may cause an information loss therefore down-casting is

explicit (i.e. it does not occur automatically and we have to tell compiler that we want to

downcast otherwise it won’t let us compile the code).

Since double is a bigger type, conversion is automatic but when we convert from double to int

there can be a loss of information and therefore explicit casting is required (i,e, we are telling the

compiler that we know what we are going to do, so do it.)

To help us better understand down-casting, we are going to add a new method to our Circle

class. This will be a simple method called FillCircle.

public void FillCircle()

{

 Console.WriteLine("Filling CIRCLE at {0},{1}", m_xpos, m_ypos);

}

Using the example from up-casting, we know that we are able to write the following:

Shape s = new Circle(100, 100);

We are then free to call the Draw method. Having added the FillCircle method to our Circle class

we are not able to call this method by doing the following:

s.FillCircle ();

Because we have cast Circle to the type Shape, we are only able to use methods found in Shape,

that is, Circle has inherited all the properties and methods of Shape. If we want to call FillCircle,

double d = 4;

int i ;

i =(int)d;

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 37

we need to down-cast our type to Circle. In down-casting, we are simply moving down the object

hierarchy, from Shape down to Circle. The code for doing this is quite simple:

Circle c;

c = (Circle)s;

Simply, we are declaring c as the type Circle and explicitly casting s to this type. We are now

able to call the FillCircle method by doing the following:

c.FillCircle();

This gives us the following output:

Drawing a CIRCLE at 100,100

Filling CIRCLE at 100,100

We could also write ((Circle)s).FillCircle() reducing the lines of code needed to down-cast our

type and call the required method.

Disadvantages:

Down-casting is potentially unsafe, because you could attempt to use a method that the derived

class does not actually implement. With this in mind, down-casting is always explicit, that is, we

are always specifying the type we are down-casting to.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 38

Module 2: Basics of Java Programming

There are three kinds of variables in Java:

 Local variables

 Instance variables

 Class/static variables

Local variables:

 Local variables are declared in methods, constructors, or blocks.

 Local variables are created when the method, constructor or block is entered and the variable

will be destroyed once it exits the method, constructor or block.

 Access modifiers cannot be used for local variables.

 Local variables are visible only within the declared method, constructor or block.

 Local variables are implemented at stack level internally.

 There is no default value for local variables so local variables should be declared and an

initial value should be assigned before the first use.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 39

Instance variables:

 Instance variables are declared in a class, but outside a method, constructor or any block.

 When a space is allocated for an object in the heap, a slot for each instance variable value is

created.

 Instance variables are created when an object is created with the use of the keyword 'new'

and destroyed when the object is destroyed.

 Instance variables hold values that must be referenced by more than one method, constructor

or block, or essential parts of an object's state that must be present throughout the class.

 Instance variables can be declared in class level before or after use.

 Access modifiers can be given for instance variables.

 The instance variables are visible for all methods, constructors and block in the class.

Normally, it is recommended to make these variables private (access level). However

visibility for subclasses can be given for these variables with the use of access modifiers.

 Instance variables have default values. For numbers the default value is 0, for Booleans it is

false and for object references it is null. Values can be assigned during the declaration or

within the constructor.

 Instance variables can be accessed directly by calling the variable name inside the class.

However within static methods and different class (when instance variables are given

accessibility) should be called using the fully qualified name .

ObjectReference.VariableName.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 40

Class/static variables:

 Class variables also known as static variables are declared with the static keyword in a class,

but outside a method, constructor or a block.

 There would only be one copy of each class variable per class, regardless of how many

objects are created from it.

 Static variables are rarely used other than being declared as constants. Constants are variables

that are declared as public/private, final and static. Constant variables never change from

their initial value.

 Static variables are stored in static memory. It is rare to use static variables other than

declared final and used as either public or private constants.

 Static variables are created when the program starts and destroyed when the program stops.

 Visibility is similar to instance variables. However, most static variables are declared public

since they must be available for users of the class.

 Default values are same as instance variables. For numbers, the default value is 0; for

Booleans, it is false; and for object references, it is null. Values can be assigned during the

declaration or within the constructor. Additionally values can be assigned in special static

initializer blocks.

 Static variables can be accessed by calling with the class name ClassName.VariableName.

 When declaring class variables as public static final, then variables names (constants) are all

in upper case. If the static variables are not public and final the naming syntax is the same as

instance and local variables.

JVM (Java Virtual Machine)

JVM (Java Virtual Machine) is an abstract machine. It is a specification that provides runtime

environment in which java bytecode can be executed.

JVMs are available for many hardware and software platforms.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 41

 A specification where working of Java Virtual Machine is specified. But implementation

provider is independent to choose the algorithm. Its implementation has been provided by

Sun and other companies.

 An implementation its implementation is known as JRE (Java Runtime Environment).

 Runtime Instance Whenever you write java command on the command prompt to run the

java class, and instance of JVM is created.

The JVM performs following operation:

 Loads code

 Verifies code

 Executes code

 Provides runtime environment

JVM provides definitions for the:

 Memory area

 Class file format

 Register set

 Garbage-collected heap

 Fatal error reporting etc.

Internal Architecture of JVM

Let's understand the internal architecture of JVM. It contains classloader, memory area,

execution engine etc.

Jvm Internal

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 42

Data Types in Java

In java, there are two types of data types

 primitive data types

 non-primitive data types

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 43

Java - Basic Operators

Java provides a rich set of operators to manipulate variables. We can divide all the Java operators

into the following groups:

 Arithmetic Operators

 Relational Operators

 Bitwise Operators

 Logical Operators

 Assignment Operators

 Misc Operators

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 44

The Arithmetic Operators:

Arithmetic operators are used in mathematical expressions in the same way that they are used in

algebra. The following table lists the arithmetic operators:

Assume integer variable A holds 10 and variable B holds 20, then:

Operator and Example

+ (Addition)

Adds values on either side of the operator

Example: A + B will give 30

- (Subtraction)

Subtracts right hand operand from left hand operand

Example: A - B will give -10

* (Multiplication)

Multiplies values on either side of the operator

Example: A * B will give 200

/ (Division)

Divides left hand operand by right hand operand

Example: B / A will give 2

% (Modulus)

Divides left hand operand by right hand operand and returns remainder

Example: B % A will give 0

++ (Increment)

Increases the value of operand by 1

Example: B++ gives 21

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 45

-- (Decrement)

Decreases the value of operand by 1

Example: B-- gives 19

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 46

Module 3: (Program Control Flow)

Control Flow:

The statements inside your source files are generally executed from top to bottom, in the order

that they appear. Control flow statements, however, break up the flow of execution by employing

decision making, looping, and branching, enabling your program to conditionally execute

particular blocks of code. This section describes the decision-making statements (if-then, if-then-

else, switch), the looping statements (for, while, do-while), and the branching statements (break,

continue, return) supported by the Java programming language.

Selection Statements:

The if-then Statement

The if-then statement is the most basic of all the control flow statements. It tells your program to

execute a certain section of code only if a particular test evaluates to true.

For example, the Bicycle class could allow the brakes to decrease the bicycle's speed only if the

bicycle is already in motion. One possible implementation of the applyBrakes method could be

as follows:

If this test evaluates to false (meaning that the bicycle is not in motion), control jumps to the end

of the if-then statement.

The if-then-else Statement

void applyBrakes()

{

 // the "if" clause: bicycle must be moving

 if (isMoving)

{

 // the "then" clause: decrease current speed

 currentSpeed--;

 }

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 47

The if-then-else statement provides a secondary path of execution when an "if" clause evaluates

to false. You could use an if-then-else statement in the applyBrakes method to take some action

if the brakes are applied when the bicycle is not in motion. In this case, the action is to simply

print an error message stating that the bicycle has already stopped.

Loop:

A loop is a sequence of instruction s that is continually repeated until a certain condition is

reached.

For Loop:

A for loop iterates over elements of a sequence. A variable is created to represent the object in

the sequence. Programmers often refer to it as the "for loop" because of the way in which it

repeatedly loops until a particular condition is satisfied. The general form of the for statement

can be expressed as follows:

void applyBrakes()

{

 if (isMoving)

{

 currentSpeed--;

 }

 else

{

 System.err.println("The bicycle has already stopped!");

 }

}

for (initialization; termination; increment)

{

 statement(s)

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 48

For example,

This will output:

100

200

300

The for loop loops over each of the elements of a list or iterator, assigning the current element to

the variable name given. In the example above, each of the elements in x is assigned to i.

While Loop:

The loop construct, found in nearly all procedural languages, that executes one or more

instructions (the "loop body") repeatedly so long as some condition evaluates to true. In contrast

to a repeat loop, the loop body will not be executed at all if the condition is false on entry to the

while.

For example, in C, a while loop is written

while () ;

Where is any expression and is any statement, including a compound statement within braces

"..".

Its syntax can be expressed as:

x = [100,200,300]

for i in x:

 print i

while (expression)

{

 statement(s)

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 49

For example:

Will output:

5

4

3

2

1

While loops can also have an 'else' clause, which is a block of statements that is executed (once)

when the while statement evaluates to false. The break statement inside the while loop will not

direct the program flow to the else clause. For example:

This will output:

5

4

3

2

1

5

x= 5

while x > 0:

 print x

 x = x - 1

x = 5

y = x

while y > 0:

 print y

 y = y - 1

else:

 print x

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 50

The Java programming language also provides a do-while statement, which can be expressed as

follows:

The difference between do-while and while is that do-while evaluates its expression at the

bottom of the loop instead of the top. Therefore, the statements within the do block are always

executed at least once, as shown in the following DoWhileDemo program:

do {

 statement(s)

} while

(expression);

class DoWhileDemo {

 public static void main(String[] args){

 int count = 1;

 do {

 System.out.println("Count is: " + count);

 count++;

 } while (count < 11);

 }

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 51

Nested Statement:

If variable “a” is equal to 100 then it will proceed to next statement. It will then check the next

condition, if “b” is equal to 200 then it will print the statement and the output is given below.

When the above code is compiled and executed, it produces the following result −

Value of a is 100 and b is 200

Exact value of a is: 100

Exact value of b is: 200

#include <stdio.h>

 int main ()

{

 /* local variable definition */

 int a = 100;

 int b = 200;

 /* check the boolean condition */

 if(a == 100)

{

 /* if condition is true then check the following */

 if(b == 200)

{

 /* if condition is true then print the following */

 printf("Value of a is 100 and b is 200\n");

 }

 }

 printf("Exact value of a is : %d\n", a);

 printf("Exact value of b is : %d\n", b);

 return 0;

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 52

If gas tank is less than 3/4 full then the system will check the next statement. Then check if it is

less than 1/4 full, it will then print "Low on gas!", otherwise it will print "At least 3/4 tank. Go

on!"

A Local Block:

Statements which are enclosed in left brace ({) and the right brace (}) forms a local Block. Local

Block can have any number of statements. Branching Statements or Conditional Statements,

Loop Control Statements such as if, else, switch, for, while forms a local block. These

Statements contain braces, so the portion of code between two braces would be considered a

local block. Variables declared in a local block have local scope i.e they can be accessed within

the block only.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 53

Output:

30 10

Statement terminator:

Semicolon (;) is used to terminate a statement in Java. A compound statement does not need a

semicolon to terminate it. A semicolon alone denotes the empty statement that does nothing.

The semicolon terminates a statement. Although by convention you should always end your

statements with semicolons, they are not strictly required in ActionScript. The interpreter

attempts to infer the end of a statement if the semicolon is omitted. For example:

#include<stdio.h>

int x = 40 ; // Scope(Life) : Whole Program

int main()

{

int x = 10 ; // Scope(Life) : In main

 {

 x = 30 ;

 printf("%d",x);

 }

printf("%d",x);

}

// These are preferred

 var x = 4;

 var y = 5;

 // But these are also legal

 var x = 4

 var y = 5

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 54

Java Program Structure

Let’s use example of HelloWorld Java program to understand structure and features of class.

This program is written on few lines, and its only task is to print “Hello World from Java” on the

screen. Refer the following picture.

1. “package sct”:

It is package declaration statement. The package statement defines a name space in which classes

are stored. Package is used to organize the classes based on functionality. If you omit the

package statement, the class names are put into the default package, which has no name. Package

statement cannot appear anywhere in program. It must be first line of your program or you can

omit it.

2. “public class HelloWorld”:

This line has various aspects of java programming.

a. public: This is access modifier keyword which tells compiler access to class.

b. class: This keyword used to declare class. Name of class (HelloWorld) followed by this

keyword.

3. Comments section:

We can write comments in java in two ways.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 55

a. Line comments: It start with two forward slashes (//) and continue to the end of the current

line. Line comments do not require an ending symbol.

b. Block comments start with a forward slash and an asterisk (/*) and end with an asterisk and a

forward slash (*/).Block comments can also extend across as many lines as needed.

4. “public static void main (String [] args)”:

Its method (Function) named main with string array as argument.

a. public : Access Modifier

b. static: static is reserved keyword which means that a method is accessible and usable even

though no objects of the class exist.

c. void: This keyword declares nothing would be returned from method. Method can return any

primitive or object.

d. Method content inside curly braces. { } asdfla;sd

5. System.out.println("Hello World from Java") :

a. System:It is name of Java utility class.

b. out:It is an object which belongs to System class.

c. println:It is utility method name which is used to send any String to console.

d. “Hello World from Java”:It is String literal set as argument to println method.

Download and Install JDK:

To develop and run any java program you need to install JDK in your system.

After selecting the Windows platform and clicking the Download button you’ll see a Login for

Download screen. Click Save File on the pop-up screen (the file name depends on the version of

JDK). Once download completes you can start installation.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 56

Sentinel Controlled Loop:

The type of loop where the number of execution of the loop is unknown, is termed by sentinel

controlled loop. The value of the control variable differs within a limitation and the execution

can be terminated at any moment as the value of the variable is not controlled by the loop. The

control variable in this case is termed by sentinel variable.

Example: The following do....while loop is an example of sentinel controlled loop.

 = = = = = =

 do

 {

 printf(“Input a number.\n”);

 scanf("%d", &num);

 }

 while(num>0);

 = = = = = =

In the above example, the loop will be executed till the entered value of the variable num is not 0

or less than 0. This is a sentinel controlled loop and here the variable num is a sentinel variable.

Module 4: (Using Objects)

Object Model:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 57

A collection of objects or classes through which a program can examine and manipulate some

specific parts of its world. Such an interface is said to be the object model of the represented

service or system.

For example, the Document Object Model (DOM) is a collection of objects that represent a page

in a web browser, used by script programs to examine and dynamically change the page. There is

a Microsoft Excel object model for controlling Microsoft Excel from another program, and the

ASCOM Telescope Driver is an object model for controlling an astronomical telescope.

Object Reference

Objects can be accessed via object references. To invoke a method in an object, the object

reference and method name are given, together with any arguments.

Important Aspects of Object Model:

1. Abstraction:

Abstraction is the process of taking away or removing characteristics from something in order to

reduce it to a set of essential characteristics. It provides a generalized view of your classes or

object by providing relevant information.

Example:

Suppose you have 3 mobile phones as following:-

Abstract information which are Necessary and Common Information for the object "Mobile

Phone" is make a call to any number and can send SMS." The abstract class for object mobile

phone is as follows:

Nokia 1400 (Features:- Calling, SMS)

Nokia 2700 (Features:- Calling, SMS, FM Radio, MP3, Camera)

Black Berry (Features:-Calling, SMS, FM Radio, MP3, Camera, Video Recording, Reading E-

mails)

abstract class MobilePhone{ public void Calling(); public void SendSMS(); }

 public class Nokia1400 : MobilePhone {

 }

 public class Nokia2700 : MobilePhone{

 public void FMRadio();

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 58

2. Encapsulation:

Encapsulation is a way to obtain "information hiding" so, following your example, you don't

"need to know the internal working of the mobile phone to operate" with it. You have an

interface to use the device behavior without knowing implementation details. Encapsulation is

like your bag in which you can keep your pen, book etc. It means this is the property of

encapsulating members and functions.

Example:

TV operation

It is encapsulated with cover and we can operate with remote and no need to open TV and

change the channel.

Realization of the Object Model:

1. Classes:

Class is a blueprint of an object that contains variables for storing data and functions to

performing operations on these data. Class will not occupy any memory space and hence it is

only logical representation of data.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 59

The class is represented as a rectangle, divided in 3 boxes one under another. The name of the

class is at the top. Next, there are the attributes of the class. At the very bottom are the operations

or methods. The plus/minus signs indicate whether an attribute / operation is visible (+ means

public) or not visible (- means private). Protected members are marked with #.

 Normal Form

To create a class, you simply use the keyword "class" followed by the class name:

Class Employee

{

}

2. Object:

Objects are the basic run-time entities in an object oriented system. They may represent a person,

a place or any item that the program has to handle.

"Object is a Software bundle of related variable and methods.”

“Object is an instance of a class”

Class will not occupy any memory space. To work with the data represented by the class a

variable must be created, which is called as an object.

When an object is created by using the keyword “new”, then memory will be allocated for the

class in heap memory area, which is called as an instance and its starting address will be stored

in the object in stack memory area.

(Class Name)

-(Attribute)

+(Operations)

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 60

Example:

class Employee

{

}

Syntax to create an object of class Employee:-

Employee objEmp = new Employee();

Class Declaration:

The class declaration component declares the name of the class along with other attributes such

as the class's superclass, and whether the class is public, final, or abstract.

The class body (the area between the braces) contains all the code that provides for the life cycle

of the objects created from the class: constructors for initializing new objects, declarations for

the fields that provide the state of the class and its objects, and methods to implement the

behavior of the class and its objects.

Class declaration must contain the class keyword and the name of the class that is being defined.

Thus the simplest class declaration looks like this:

Class declarations can include these components, in order:

1. Modifiers such as public, private, and a number of others that you will encounter later.

2. The class name, with the initial letter capitalized by convention.

class NameOfClass

{

 . . .

 }

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 61

3. The name of the class's parent (superclass), if any, preceded by the keyword extends. A

class can only extend (subclass) one parent.

4. A comma-separated list of interfaces implemented by the class, if any, preceded by the

keyword implements. A class can implement more than one interface.

5. The class body, surrounded by braces, {}.

Object Reference:

An "object reference" is a variable that acts as a handle/pointer/marker to a given object so that

its methods and fields maybe manipulated.

We can assign value of reference variable to another reference variable. Reference Variable is

used to store the address of the variable. By assigning Reference we will not create distinct

copies of Objects but all reference variables are referring to same Object.

Consider This Example –

Rectangle r1 = new Rectangle();

Rectangle r2 = r1;

 r1 is reference variable which contain the address of Actual Rectangle Object.

 r2 is another reference variable

 r2 is initialized with r1 means – “r1 and r2” both are referring same object , thus it does not

create duplicate object , nor does it allocate extra memory.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 62

[468×60]

String:

String is a contiguous sequence of symbols or values, such as a character string or a binary digit

string. It represents text as a series of Unicode characters. A string is generally understood as a

data type and is often implemented as an array of bytes that stores a sequence of elements,

typically characters, using some character encoding.

Java uses the 16-bit Unicode character set that contains the characters from the ISOLatin-1 and

the 7-bit ASCII character sets.

To standardize the storing of alphanumeric characters, the American Standard Code for

Information Interchange (ASCII) was created. It defined a unique binary 7-bits number for each

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 63

storable character to support the numbers from 0-9, the upper/lower case English alphabet (a-z,

A-Z), and some special characters like ! $ + - () @ < > .

Since ASCII used one byte (7 bits for the character, and one of bit for transmission parity

control), it could only represent 128 different characters. In addition 32 of these characters were

reserved for other control purposes.

Charsets are named by strings composed of the following characters:

 The uppercase letters 'A' through 'Z' ('\u0041' through '\u005a'),

 The lowercase letters 'a' through 'z' ('\u0061' through '\u007a'),

 The digits '0' through '9' ('\u0030' through '\u0039'),

 The dash character '-' ('\u002d', HYPHEN-MINUS),

 The plus character '+' ('\u002b', PLUS SIGN),

 The period character '.' ('\u002e', FULL STOP),

 The colon character ':' ('\u003a', COLON), and

 The underscore character '_' ('\u005f', LOW LINE).

String:

String is traditionally a sequence of characters, some kind of variable. A string is generally

understood as a data type and is often implemented as an array of bytes (or words) that stores a

sequence of elements, typically characters, using some character encoding.

String is designed to be immutable. That is, once a String is constructed, its contents cannot be

modified. Otherwise, the other String references sharing the same storage location will be

affected by the change. The original String object will be deallocated, once there is no more

references, and subsequently garbage-collected.

Because String is immutable, it is not efficient to use String if you need to modify your string

frequently (that would create many new Strings occupying new storage areas). For example,

// inefficient codes

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 64

String str = "Hello";

for (int i = 1; i < 1000; ++i) {

 str = str + i;

}

Creating a String object:

String can be created in number of ways, here are a few ways of creating string object.

1. String literal is a simple string enclosed in double quotes " ". A string literal is treated as a

String object.

 String str1 = "Hello";

2. String str2 = new String(str1);

3. Using + operator (Concatenation)

 String str4 = str1 + str2;

 or,

 String str5 = "hello"+"Java";

String object and How they are stored:

When we create a new string object using string literal, that string literal is added to the string

pool, if it is not present there already.

String str= "Hello";

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 65

And, when we create another object with same string, then a reference of the string literal already

present in string pool is returned.

String str2=str;

But if we change the new string, its reference gets modified.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 66

str2=str2.concat("world");

String Length:

Returns the length of the string, in terms of bytes. This is the number of actual bytes that

conform the contents of the string, which is not necessarily equal to its storage capacity.

Example

Return the number of characters in a string:

The result of n will be:

12

var str = "Hello World!";

var n = str.length;

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 67

charAt(int index):

The method charAt(int index) returns the character at the specified index. The index value

should lie between 0 and length()-1. For e.g. s.charAt(0) would return the first character of the

string “s”. It throws IndexOutOfBoundsException if the index is less than zero or greater than

equal to the length of the string (index<0|| index>=length()).

Concatenation:

This method concatenates the string str at the end of the current string.

For e.g. s1.contact("Hello"); would concatenate the String “Hello” at the end of the String s1.

This method can be called multiple times in a single statement like this

1. Using concat() method

String s1="Beginners";

s1= s1.contact("Book").contact(".").concat("com");

2. Using + operator

string str = "Rahul";

string str1 = "Dravid";

string str2 = str + str1;

string st = "Rahul"+"Dravid";

String Comparison:

This means that if you call the equals() method to compare 2 String objects, then as long as the

actual sequence of characters is equal, both objects are considered equal. The == operator checks

if the two strings are exactly the same object.

String comparison can be done in 3 ways.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 68

1. Using equals() method

2. Using == operator

3. By CompareTo() method

1. Using equals() method

Equals() method compares two strings for equality. Its general syntax is,

boolean equals (Object str)

It compares the content of the strings. It will return true if string matches, else returns false.

String s = "Hell";

String s1 = "Hello";

String s2 = "Hello";

s1.equals(s2); //true

s.equals(s1) ; //false

2. Using == operator

== operator compares two object references to check whether they refer to same instance. This

also, will return true on successful match.

String s1 = "Java";

String s2 = "Java";

String s3 = new string ("Java");

test(Sl == s2) //true

test(s1 == s3) //false

3. By compareTo() method

compareTo() method compares values and returns an int which tells if the string compared is less

than, equal to or greater than th other string. Its general syntax is,

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 69

int compareTo(String str)

To use this function you must implement the Comparable Interface. compareTo() is the only

function in Comparable Interface.

String s1 = "Abhi";

String s2 = "Viraaj";

String s3 = "Abhi";

s1.compareTo(S2); //return -1 because s1 < s2

s1.compareTo(S3); //return 0 because s1 == s3

s2.compareTo(s1); //return 1 because s2 > s1

Comparing Object references

The two operators that can be used with object references are comparing for equality (==) and

inequality (!=). These operators compare two values to see if they refer to the same object.

If the objects have the same value, and not whether two objects are a reference to the same

object. For example,

(Star == Singer)

This is true only if name is a reference to the same object that "Singer" refers to. This will be

false if the String in name was read from other object, even though name really does have

exactly those characters in it.

Comparing Object values

The equals() method returns a boolean value. The previous example can be fixed by writing:

if (Star.equals("Singer")) // Compares values, not references.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 70

(Star.equals("newSinger")) // Compares values, not references.

Because the equals() method makes a == test first, it can be fairly fast when the objects are

identical. It only compares the values if the two references are not identical.

More on Control Structures

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 71

Module 5: (Primitive values as objects)

A wrapper class is simply a class that encapsulates a single, immutable value.

Integer class wraps up an int value

Float class wraps up a float value.

Autoboxing and Unboxing

Autoboxing is the automatic conversion between the primitive types and their corresponding

object wrapper classes. For example, converting an int to an Integer, a double to a Double, and

so on. If the conversion goes the other way, this is called unboxing.

Converting an object of a wrapper type (Integer) to its corresponding primitive (int) value is

called unboxing.

Passed as a parameter to a method that expects a value of the corresponding primitive type.

Assigned to a variable of the corresponding primitive type.

Here is the simplest example of autoboxing and unboxing:

Integer iRef = 10; //Automatic boxing

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 72

Int j = iRef; // Automatic Unboxing

 Extending Assignment Operator:

+= assigns the result of the addition.

 -= assigns the result of the subtraction.

 *= assigns the result of the multiplication

 /= assigns the result of the division.

 %= assigns the remainder of the division.

 &= assigns the result of the logical AND.

 |= assigns the result of the logical OR.

 ^= assigns the result of the logical XOR.

 <<= assigns the result of the signed left bit shift.

 >>= assigns the result of the signed right bit shift.

 >>>= assigns the result of the unsigned right bit shift.

Examples:

To assign the result of an addition operation to a variable:

 //add 2 to the value of number

 number = number + 2;

Using the assignment operator "+=" to do the same thing:

 //add 2 to the value of number

 number += 2;

Unary increment & decrement operators:

Increment (++) and decrement (--) operators easily add 1 to, or subtract 1 from, a variable. For

example, using increment operators, you can add 1 to a variable named a like this:

a++;

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 73

An expression that uses an increment or decrement operator is a statement itself. That’s because

the increment or decrement operator is also a type of assignment operator because it changes the

value of the variable it applies to.

An increment or decrement can also be used as operator in an assignment statement:

int a = 5;

int b = a--; // both a and b are set to 4

Increment and decrement operators can be placed before (prefix) or after (postfix) the variable

they apply to. If an increment or decrement operator is placed before its variable, the operator is

applied before the rest of the expression is evaluated. If the operator is placed after the variable,

the operator is applied after the expression is evaluated.

For example:

int a = 5;

int b = 3;

int c = a * b++; // c is set to 15

int d = a * ++b; // d is set to 20

Counter-controlled loops: for loop

The general loop construction is mostly used for counter-controlled loops where the number of

iterations is known beforehand.

 for (initialization ; condition ; increment)

 statement

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 74

The initialization names the loops control variable and provides its initial value, condition

determines whether the loop should continue executing and increment modifies the control

variable's value so that the loop-continuation condition eventually becomes false.

All three expressions in a for statement are optional. If the condition is omitted, loop-continuation

condition is always true, thus creating an infinite loop. The initialization expression may be

omitted if the program initializes the control variable before the loop. The increment expression

may be omitted if the program calculates the increment with statements in the loop's body or if no

increment is needed.

Example:

public class ForCounter

{

 public static void main(String[] args)

 {

 // for statement header includes initialization,

 // loop-continuation condition and increment

 for (int counter = 1; counter <= 10; counter++)

 System.out.printf("%d ", counter);

 System.out.println(); // output a newline

 } // end main

} // end class ForCounter

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 75

A common logic error with counter-controlled repetition is an off-by-one error.

For example, if the above condition is changed to counter < 10, the loop would iterate only nine

times.

Nested Loop:

Nested repetition is when a control structure is placed inside of the body or main part of another

control structure. Put any construct inside of any other construct. However, you may not have

them partially overlap each other.

Example: Print the multiplication tables from 1 to 10.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 76

Module 6: (Arrays)

Arrays:

An array is an object containing a list of elements of the same data type.

We can create an array by:

 Declaring an array reference variable to store the address of an array object.

 Creating an array object using the new operator and assigning the address of the array to the

array reference variable.

Here is a statement that declares an array reference variable named dailySales:

double[] dailySales;

The brackets after the key word double indicate that the variable is an array reference variable.

This variable can hold the address of an array of values of type double. We say the data type of

dailySales is double array reference.

The second statement of the segment below creates an array object that can store seven values of

type double and assigns the address of the array object to the reference variable named

dailySales:

double[] dailySales;

dailySales = new double[7];

The operand of the new operator is the data type of the individual array elements and a bracketed

value that is the array size declarator. The array size declarator specifies the number of elements

in the array.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 77

It is possible to declare an array reference variable and create the array object it references in a

single statement.

Here is an example:

double[] dailySales = new double[7];

The statement below creates a reference variable named dailySales and an array object that can

store seven values of type double as illustrated below:

double[] dailySales = new double[7];

Initializing an Array:

Declare an array of 10 integer values.

This declaration declares an array named num that contains 10 integers. When the compiler

encounters this declaration, it immediately sets aside enough memory to hold all 10 elements.

addressdailySales

1st value 2nd value 3rd value 4th value 5th value 6th value 7th value

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 78

The square brackets ([]) after the "type" indicate that num is going to be an array of type int

rather than a single instance of an int. Since the new operator creates (defines) the array, it must

know the type and size of the array. The new operator locates a block of memory large enough

to contain the array and associates the array name, num, with this memory block.

A program can access each of the array elements (the individual cells) by referring to the name

of the array followed by the subscript denoting the element (cell). For example, the third

element is denoted num[2].

Storing Array Elements:

One dimensional arrays are stored in the memory in exactly the way you see them in your head.

In a line. The array gets stored in exactly that way in the memory.

Two-dimensional arrays are stored row wise, i.e. n elements of first row are stored in first n

locations, n elements of second row are stored in next n locations and so on.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 79

Multi-Dimensional Array:

Arrays can have more than one dimension, these arrays-of-arrays are called multidimensional

arrays.

Multi-Dimensional array reserves space (construct) for each array that will store the values;

because each array is processed separately, it is possible to set different sizes and create a zig-

zag, this is precisely the logic computer would use to understand any n-dimensional arrays, i.e.

each time as a single row of elements, where each element is itself an array of n-1 dimensions.

Keep doing till 0-dimensional array, or a single element.

Iterating over an array.

One-dimensional array

To walk through every element of a one-dimensional array, we use a for loop, that is:

 int[] myArray = new int[10];

for (int i = 0; i < myArray.length; i++) {

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 80

 myArray[i] = 0;

}

Two-dimensional array

For a two-dimensional array, in order to reference every element, we must use two nested loops.

This gives us a counter variable for every column and every row in the matrix.

int cols = 10;

int rows = 10;

int[][] myArray = new int[cols][rows];

// Two nested loops allow us to visit every spot in a 2D array.

// For every column I, visit every row J.

for (int i = 0; i < cols; i++) {

 for (int j = 0; j < rows; j++) {

 myArray[i][j] = 0;

 }

}

Multidimensional Array:

Simply use two nested for loops. To get the sizes of the dimensions, use GetLength():

for (int i = 0; i < arrayOfMessages.GetLength(0); i++)

{

 for (int j = 0; j < arrayOfMessages.GetLength(1); j++)

 {

 string s = arrayOfMessages[i, j];

 Console.WriteLine(s);

 }

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 81

This assumes you actually have string[,]. By using GetLowerBound() and GetUpperBound() the

get the bounds for each dimension.

To generate a random number we can use the class java.util.Random. Such number are called

pseudo-random numbers, as they are not really random.

If you wanted a random double between 0.0 and 10.0 here is how you would generate it.

// Generate random doubles 0.0 <= d < 10.0

import java.util.Random;

// ...

// This time, to get different results each run,

Random wheel = new Random();

//...

for (int i=0; i<100; i++){

 // generate a number between 0.0 <= x < 1.0, then scale

 double d = wheel.nextDouble() * 10.0d;

 out.println(d);

 }

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 82

Module 7: (Classes)

Class:

Class are templates that are used to create objects, and to define object data types and methods.

Core properties include the data types and methods that may be used by the object. All class

objects should have the basic class properties. Classes are categories, and objects are items

within each category.

Classes defined in the following way:

class MyClass {

 // field, constructor, and

 // method declarations

}

This is a class declaration. The class body (the area between the braces) contains all the code that

provides for the life cycle of the objects created from the class: constructors for initializing new

objects, declarations for the fields that provide the state of the class and its objects, and methods

to implement the behavior of the class and its objects.

Parameter Passing:

The terms "arguments" and "parameters" are used interchangeably; they mean the same thing.

We use the term formal parameters to refer to the parameters in the definition of the method. In

the example that follows, x and y are the formal parameters.

We use the term actual parameters to refer to the variables we use in the method call. In the

following example, length and width are actual parameters.

 // Method definition

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 83

 public int mult(int x, int y)

 {

 return x * y;

 }

 // Where the method mult is used

 int length = 10;

 int width = 5;

 int area = mult(length, width);

Pass-by-value means that when you call a method, a copy of each actual parameter (argument) is

passed. Copy inside the method is changed, but this will have no effect on the actual parameter.

Passing Arrays:

Arrays are references. This means that when we pass an arrays as a parameter, we are passing its

handle or reference. So, we can change the contents of the array inside the method.

 public static void tryArray(char[] b)

 {

 b[0] = 'x';

 b[1] = 'y';

 b[2] = 'z';

 }

When the following code is executed, the array a does indeed have the new values in the array.

 char[] a = {'a', 'b', 'c'};

 tryArray(a);

 System.out.println("a[0] = " + a[0] + ", a[1] = " + a[1] +

 ", a[2] =" + a[2]);

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 84

The print statements produces "a[0] = x, a[1] = y, a[2] = z".

Constructors:

Constructors are the methods which are used to initialize objects. Constructor method has the

same name as that of class, they are called or invoked when an object of class is created and can't

be called explicitly.

Constructor declarations look like method declarations—except that they use the name of the

class and have no return type. For example, Bicycle has one constructor:

public Bicycle(int startCadence, int startSpeed, int startGear) {

 gear = startGear;

 cadence = startCadence;

 speed = startSpeed;

}

To create a new Bicycle object called myBike, a constructor is called by the new operator:

Bicycle myBike = new Bicycle(30, 0, 8);

New Bicycle(30, 0, 8) creates space in memory for the object and initializes its fields.

Although Bicycle only has one constructor, it could have others, including a no-argument

constructor:

public Bicycle() {

 gear = 1;

 cadence = 10;

 speed = 0;

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 85

Bicycle yourBike = new Bicycle(); invokes the no-argument constructor to create a new Bicycle

object called yourBike.

In general, class declarations can include these components, in order:

 Modifiers such as public, private, and a number of others that you will encounter later.

 The class name, with the initial letter capitalized by convention.

 The name of the class's parent (superclass), if any, preceded by the keyword extends. A class

can only extend (subclass) one parent.

 A comma-separated list of interfaces implemented by the class, if any, preceded by the

keyword implements. A class can implement more than one interface.

 The class body, surrounded by braces, {}.

Object Creation and Referencing:

Object is something that has a state in memory.

When an object is created by using new operator, the space in memory is reserved and the

structure to hold variables is created. This would definitely like to create a handler (reference)

that would keep track of Meta information (like the memory address where the object memory is

reserved etc).

A class provides the blueprint for objects; you create an object from a class. Each of the

following statements taken from the CreateObjectDemo program creates an object and assigns it

to a variable:

Point originOne = new Point(23, 94);

Rectangle rectOne = new Rectangle(originOne, 100, 200);

Rectangle rectTwo = new Rectangle(50, 100);

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 86

The first line creates an object of the Point class, and the second and third lines each create an

object of the Rectangle class.

Each of these statements has three parts (discussed in detail below):

 Declaration: The code set in bold are all variable declarations that associate a variable name

with an object type.

 Instantiation: The new keyword is a Java operator that creates the object.

 Initialization: The new operator is followed by a call to a constructor, which initializes the

new object.

Instantiating a Class

The new operator instantiates a class by allocating memory for a new object and returning a

reference to that memory. The new operator also invokes the object constructor.

Note: The phrase "instantiating a class" means the same thing as "creating an object." When you

create an object, you are creating an "instance" of a class, therefore "instantiating" a class.

The new operator requires a single, postfix argument: a call to a constructor. The name of the

constructor provides the name of the class to instantiate.

The new operator returns a reference to the object it created. This reference is usually assigned to

a variable of the appropriate type, like:

Point originOne = new Point(23, 94);

The reference returned by the new operator does not have to be assigned to a variable. It can also

be used directly in an expression. For example:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 87

int height = new Rectangle().height;

Initializing an Object

The code for the Point class:

public class Point {

 public int x = 0;

 public int y = 0;

 //constructor

 public Point(int a, int b) {

 x = a;

 y = b;

 }

}

This class contains a single constructor. You can recognize a constructor because its declaration

uses the same name as the class and it has no return type. The constructor in the Point class takes

two integer arguments, as declared by the code (int a, int b). The following statement provides 23

and 94 as values for those arguments:

Point originOne = new Point(23, 94);

The result of executing this statement can be illustrated in the figure:

originOne now points to a Point object.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 88

The code for the Rectangle class, which contains four constructors:

public class Rectangle {

 public int width = 0;

 public int height = 0;

 public Point origin;

 // four constructors

 public Rectangle() {

 origin = new Point(0, 0);

 }

 public Rectangle(Point p) {

 origin = p;

 }

 public Rectangle(int w, int h) {

 origin = new Point(0, 0);

 width = w;

 height = h;

 }

 public Rectangle(Point p, int w, int h) {

 origin = p;

 width = w;

 height = h;

 }

 // a method for moving the rectangle

 public void move(int x, int y) {

 origin.x = x;

 origin.y = y;

 }

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 89

 // a method for computing the area of the rectangle

 public int getArea() {

 return width * height;

 }

}

Each constructor lets you provide initial values for the rectangle's origin, width, and height, using

both primitive and reference types. If a class has multiple constructors, they must have different

signatures.

Rectangle rectOne = new Rectangle(originOne, 100, 200);

This calls one of Rectangle's constructors that initializes origin to originOne. Also, the

constructor sets width to 100 and height to 200. There are two references to the same Point

object—an object can have multiple references to it.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 90

The following line of code calls the Rectangle constructor that requires two integer arguments,

which provide the initial values for width and height. If you inspect the code within the

constructor, you will see that it creates a new Point object whose x and y values are initialized to

0:

Rectangle rectTwo = new Rectangle(50, 100);

The Rectangle constructor used in the following statement doesn't take any arguments, so it's

called a no-argument constructor:

Rectangle rect = new Rectangle();

All classes have at least one constructor. If a class does not explicitly declare any, the compiler

automatically provides a no-argument constructor, called the default constructor. This default

constructor calls the class parent's no-argument constructor, or the Object constructor if the class

has no other parent. If the parent has no constructor (Object does have one), the compiler will

reject the program.

Declaring a Variable to Refer to an Object

1. Create Distinct Objects.

2. Allocate Memory

3. Create duplicate Copy

Consider This Example –

Rectangle r1 = new Rectangle();

Rectangle r2 = r1;

r1 is reference variable which contain the address of Actual Rectangle Object.

r2 is another reference variable

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 91

r2 is initialized with r1 means – “r1 and r2” both are referring same object , thus it does not

create duplicate object , nor does it allocate extra memory.

class Rectangle {

 double length;

 double breadth;

}

class RectangleDemo {

 public static void main(String args[]) {

 Rectangle r1 = new Rectangle();

 Rectangle r2 = r1;

 r1.length = 10;

 r2.length = 20;

 System.out.println("Value of R1's Length : " + r1.length);

 System.out.println("Value of R2's Length : " + r2.length);

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 92

 }

}

Output:

Value of R1's Length: 20.0

Value of R2's Length: 20.0

When variable is declared as field (static or instance variable inside class), then initialization of

that variable is optional. In other words, while declaring field variable you may or may not

initialize to its value.

Following table shows variables types and their default values

data type Default value

boolean false

char \u0000

int,short,byte / long 0 / 0L

float /double 0.0f / 0.0d

any reference type null

Char primitive default value is \u0000, which means blank/space character.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 93

When you have the variable of reference types then it gets the null as default value.

When local/block variable is declared, they didn’t get the default values. They must assigned

some value before accessing it otherwise compiler will throw an error.

Declaration of Behaviors: methods

A method is a set of code which is referred to by name and can be called (invoked) at any point

in a program simply by utilizing the method's name.

Each method has its own name. When that name is encountered in a program, the execution of

the program branches to the body of that method. When the method is finished, execution

returns to the area of the program code from which it was called, and the program continues on

to the next line of code.

Example of a typical method declaration:

public double calculateAnswer(double wingSpan, int numberOfEngines,

 double length, double grossTons) {

 //do the calculation here

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 94

The only required elements of a method declaration are the method's return type, name, a pair of

parentheses, (), and a body between braces, {}.

More generally, method declarations have six components, in order:

 Modifiers—such as public, private, and others.

 The return type—the data type of the value returned by the method, or void if the method

does not return a value.

 The method name—the rules for field names apply to method names as well, but the

convention is a little different.

 The parameter list in parenthesis—a comma-delimited list of input parameters, preceded by

their data types, enclosed by parentheses, (). If there are no parameters, you must use empty

parentheses.

 The method body, enclosed between braces—the method's code, including the declaration of

local variables, goes here.

Access Modifiers

The access modifiers in java specifies accessibility (scope) of a data member, method,

constructor or class.

Private Access Modifier - private:

Methods, Variables and Constructors that are declared private can only be accessed within the

declared class itself. Private access modifier is the most restrictive access level. Class and

interfaces cannot be private. Variables that are declared private can be accessed outside the class

if public getter methods are present in the class. Using the private modifier is the main way that

an object encapsulates itself and hide data from the outside world.

Example:

The following class uses private access control:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 95

public class Logger {

 private String format;

 public String getFormat() {

 return this.format;

 }

 public void setFormat(String format) {

 this.format = format;

 }

}

Here, the format variable of the Logger class is private, so there's no way for other classes to

retrieve or set its value directly. So to make this variable available to the outside world, we

defined two public methods: getFormat(), which returns the value of format, and

setFormat(String), which sets its value.

Public Access Modifier - public:

A class, method, constructor, interface etc declared public can be accessed from any other class.

Therefore fields, methods, blocks declared inside a public class can be accessed from any class.

Because of class inheritance, all public methods and variables of a class are inherited by its

subclasses.

Example:

The following function uses public access control:

public static void main(String[] arguments) {

 // ...

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 96

The main() method of an application has to be public. Otherwise, it could not be called by a Java

interpreter (such as java) to run the class.

Return Value

The method's return type is an int type in the code above. After the method type, you need a

space followed by the name of method. In between a pair of round brackets we've method

variable called aNumber, and that it will be an integer.

To separate this method from any other code, a pair of curly brackets are needed. The return

value can't be a string if you started the method with int total.

A method that doesn't return any value at all can be set up with the word void. In which case, it

doesn't need the return keyword. Here's a method that doesn't return a value:

Parameter Names

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 97

A parameter is the technical term for the value between the round brackets of your method

headers.

The name of a parameter must be unique in its scope. It cannot be the same as the name of

another parameter for the same method or constructor.

A parameter can have the same name as one of the class's fields. If this is the case, the parameter

is said to shadow the field. Shadowing fields can make your code difficult to read and is

conventionally used only within constructors and methods that set a particular field. For

example, consider the following Circle class and its setOrigin method:

public class Circle {

 private int x, y, radius;

 public void setOrigin(int x, int y) {

 ...

 }

}

The Circle class has three fields: x, y, and radius. The setOrigin method has two parameters, each

of which has the same name as one of the fields. Each method parameter shadows the field that

shares its name. So using the simple names x or y within the body of the method refers to the

parameter, not to the field.

Method Body:

Method definition for setWidth():

public void setWidth(int newWidth)

{

 width = newWidth ;

}

There's only one assignment statement. The purpose of this method is to set the internal instance

variable, width, to the parameter, newWidth.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 98

The parameter is being provided to us from an object user. If the object user wants the width to

be 10, then the parameter variable newWidth is set to 10.

However, parameter variables disappear after the method called. Instance variables do not. So if

we want to record this information in the object, we must copy the value from the parameter

variable to the instance variable.

Thus, the assignment statement:

 width = newWidth ;

Return a Value

 Let's implement getWidth().

 Method definition for getWidth():

 public int getWidth()

 {

 return width ;

 }

These are the following steps for returning a value:

 Evaluates the (return) expression to a value

 Exits the method, providing the return value

If there are any statements after the return statement, it never gets run, assuming the return

statement ran.

 // Method definition for getWidth()

 // println() statement never runs

 public int getWidth()

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 99

 {

 return width ;

 System.out.println("NEVER GETS HERE") ;

 }

For example, this code never prints the message "NEVER GETS HERE". That's because running

the return statement exits the method with the return value. There's no reason to put code after a

return statement that definitely runs, since they have no purpose.

Local variables:

A local variable in Java is a variable that’s declared within the body of a method. Then you can

use the variable only within that method. Other methods in the class aren’t even aware that the

variable exists.

Local variables are created when the method, constructor or block is entered and the variable will

be destroyed once it exits the method, constructor or block.

Access modifiers cannot be used for local variables.

Local variables are visible only within the declared method, constructor or block.

Local variables are implemented at stack level internally.

There is no default value for local variables so local variables should be declared and an initial

value should be assigned before the first use.

Example:

Here, age is a local variable. This is defined inside pupAge() method and its scope is limited to

this method only.

public class Test{

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 100

 public void pupAge(){

 int age = 0;

 age = age + 7;

 System.out.println("Puppy age is : " + age);

 }

 public static void main(String args[]){

 Test test = new Test();

 test.pupAge();

 }

}

This would produce the following result:

Puppy age is: 7

Field Variables:

Variables outside of methods that all the methods in class can see. These are known as Field

variables (or Instance variables). You set them up in exactly the same way as any other variable.

We're setting up four string variables (four string fields). As the names of the fields suggest, the

string will hold a person's name, an exam name, a score, and a grade. These four fields will be

available to all the methods that we write in this class, and won't be local to any one method.

They are said to have global scope.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 101

Difference between a field variable and a local variable

Local Variables:

 Local variable’s scope is within the block in which they were defined.

Example:

if(x > 10) {

 String local = "Local value";

}

 They are alive as long as the block is executed.

 They can not have static access modifier

Field Variables:

 The life span is more than the local variables.

 The are alive as long as the instance of that class is active.

 They can have only ‘static’ access modifier.

 If I wanted to use it outside of the object, and it was not public, I would have to use getters

and/or setters.

Example:

public class Point {

 private int xValue; // xValue is a field

 public void showX() {

 System.out.println("X is: " + xValue);

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 102

 }

}

Mutator:

A mutator method is a method used to control changes to a variable. write-operations that change

the state of the object. They are also widely known as setter methods. Often a setter is

accompanied by a getter (also known as an accessor), which returns the value of the private

member variable. They are usually declared as public. e.g. switchOn().

Selectors:

Selectors read-operations that have access to the object state, but they do not change the state.

They are also usually declared as public. e.g. isOn() is a selector.

Utility Methods:

The operations used by other methods in the class to implement behavior of the class. They are

usually declared as private and are not part of the contract of the class, but the implementation.

Method Call

For using a method, it should be called. There are two ways in which a method is called i.e.

method returns a value or returning nothing (no return value).

The process of method calling is simple. When a program invokes a method, the program control

gets transferred to the called method. This called method then returns control to the caller in two

conditions, when:

 Return statement is executed.

 Reaches the method ending closing brace.

The methods returning void is considered as call to a statement. Consider an example:

System.out.println("This is tutorialspoint.com!");

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 103

The method returning value can be understood by the following example:

int result = sum(6, 9);

Example:

Following is the example to demonstrate how to define a method and how to call it:

This would produce the following result:

Minimum value = 6

Method with Parameter:

An example will help set the stage.

public class ExampleMinNumber{

 public static void main(String[] args) {

 int a = 11;

 int b = 6;

 int c = minFunction(a, b);

 System.out.println("Minimum Value = " + c);

 }

 /** returns the minimum of two numbers */

 public static int minFunction(int n1, int n2) {

 int min;

 if (n1 > n2)

 min = n2;

 else

 min = n1;

 return min;

 }

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 104

 // Method definition

 public int mult(int x, int y)

 {

 return x * y;

 }

 // Where the method mult is used

 int length = 10;

 int width = 5;

 int area = mult(length, width);

We use the term actual parameters to refer to variables in the method call, in this case length and

width. They are called ``actual'' because they determine the actual values that are sent to the

method.

You may have heard the term "argument" used, or just "parameter" (without specifying actual or

formal). You can usually tell by the context which sort of parameter is being referred to.

Pass a primitive data type by reference

When passing Java objects, you're passing an object reference, which makes it possible to

modify the object's member variables. If you want to pass a primitive data type by reference, you

need to wrap it in an object.

The easiest of all is to pass it as an array (or even a Vector). Your array only needs to contain a

single element, but wrapping it in an array means it can be changed by a function. Here's a

simple example of it in action.

public static void increment(int[] array, int amount)

{

 array[0] = array[0] + amount;

}

public static void main(String args[])

{

 int[] myInt = { 1 };

 increment (myInt, 5);

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 105

 System.out.println ("Array contents : " + myInt[0]);

}

If you're modifying the contents of parameters passed to a method, you really should try to avoid

this behavior. It increases the complexity of code, and really should be avoided. The preferred

way is to return a value from a method, rather than modifying parameter values directly.

Parameter Passing

Parameter passing methods are the ways in which parameters are transferred between methods

when one method calls another. Java provides only one parameter passing method--pass-by-

value.

Passing-by-value.

Copies of argument values are sent to the method, where the copy is manipulated and in certain

cases, one value may be returned. While the copied values may change in the method, the

original values in main did not change (unless purposely reassigned after the method).

 The situation, when working with arrays, is somewhat different. If we were to make copies of

arrays to be sent to methods, we could potentially be copying very large amounts of data.

Not very efficient!

Passing an array mimics a concept called "pass-by-reference", meaning that when an array is

passed as an argument, its memory address location (its "reference") is used. In this way, the

contents of an array can be changed inside of a method, since we are dealing directly with the

actual array and not with a copy of the array.

int [] num = {1, 2, 3};

testingArray(num); //Method call

System.out.println("num[0] = " + num[0] + "\n num[1] = " + num[1] + "\n num[2] =" + num[2]);

. . .

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 106

//Method for testing

public static void testingArray(int[] value)

{

 value[0] = 4;

 value[1] = 5;

 value[2] = 6;

}

Output:

num[0] = 4

num[1] = 5

num[2] = 6

(The values in the array have been changed.

Notice that nothing was "returned".)

Formal parameter — the identifier used in a method to stand for the value that is passed into

the method by a caller. Parameters in a subroutine definition are called formal parameters or

dummy parameters.

For example, amount is a formal parameter of processDeposit

Actual parameter — the actual value that is passed into the method by a caller. The value of the

actual parameter can be assigned to the formal parameter. Parameters are passed to a subroutine

when it is called. When a subroutine is called, the actual parameters in the subroutine call

statement are evaluated and the values are assigned to the formal parameters in the subroutine's

definition. Then the body of the subroutine is executed.

For example, the 200 used when processDeposit is called is an actual parameter.

Actual parameters are often called arguments

When a method is called, the formal parameter is temporarily "bound" to the actual parameter.

The method uses the formal parameter to stand for the actual value that the caller wants to be

used.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 107

For example, here the processDeposit method uses the formal parameter amount to stand for the

actual value used in the procedure call:

balance = balance + amount ;

Here is given the 6 usage of java this keyword.

1. this keyword can be used to refer current class instance variable.

2. this() can be used to invoke current class constructor.

3. this keyword can be used to invoke current class method (implicitly)

4. this can be passed as an argument in the method call.

5. this can be passed as argument in the constructor call.

6. this keyword can also be used to return the current class instance.

Suggestion: If you are beginner to java, lookup only two usage of this keyword.

Static Members in Class

Static variable’s value is same for all the object (or instances) of the class or in other words you

can say that all instances (objects) of the same class share a single copy of static variables.

Understand this with an example:

class VariableDemo

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 108

{

 static int count=0;

 public void increment()

 {

 count++;

 }

 public static void main(String args[])

 {

 VariableDemo obj1=new VariableDemo();

 VariableDemo obj2=new VariableDemo();

 obj1.increment();

 obj2.increment();

 System.out.println("Obj1: count is="+obj1.count);

 System.out.println("Obj2: count is="+obj2.count);

 }

}

Output:

Obj1: count is=2

Obj2: count is=2

As you can see in the above example that both the objects of class, are sharing a same copy of

static variable that’s why they displayed the same value of count.

 It is a method which belongs to the class and not to the object(instance)

 A static method can access only static data. It cannot access non-static data (instance

variables)

 A static method can call only other static methods and cannot call a non-static method from

it.

 A static method can be accessed directly by the class name and doesn’t need any object

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 109

Syntax: <class-name>.<method-name>

 A static method cannot refer to “this” or “super” keywords in anyway

In the code below we have declared a class named Vehicle, a class field member named

vehicleType and a method named getVehicleType(), both declared as static.

1 public class Vehicle {

2

3 private static String vehicleType;

4

5 public static String getVehicleType(){

6 return vehicleType;

7 }

8

9 }

The static modifier allows us to access the variable vehicleType and the method

getVehicleType() using the class name itself, as follows:

Vehicle.vehicleType

Vehicle.getVehicleType()

Static Methods and Variables:

Variables can be declared with the “static” keyword.

Example: static int y = 0;

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 110

When a variable is declared with the keyword “static”, it’s called a “class variable”. All instances

share the same copy of the variable. A class variable can be accessed directly with the class,

without the need to create an instance.

Static methods and variables can only be used with outer classes. Inner classes have no static

methods or variables. A static method or variable doesn’t require an instance of the class in order

to run.

Before an object of a class is created, all static member variables in a class are initialized, and all

static initialization code blocks are executed. These items are handled in the order in which they

appear in the class.

A static method is used as a utility method, and it never depends on the value of an instance

member variable. Because a static method is only associated with a class, it can’t access the

instance member variable values of its class.

Field Variables:

Variables outside of methods that all the methods in your class can see. These are known as Field

variables (or Instance variables). You set them up in exactly the same way as any other variable.

Field variables are local to an object, i.e. each object has its own copy of all the field variables.

Instance methods

Methods and variables that are not declared as static are known as instance methods and instance

variables. To refer to instance methods and variables, you must instantiate the class first means

you should create an object of that class first.

They’re associated with a particular object.

 They have no definition modifier.

 They’re created with every object instantiated from the class in which they’re declared.

Instance methods and member variables are used by an instance of a class, that is, by an object.

An instance member variable is declared inside a class, but not within a method. Instance

methods usually use instance member variables to affect the behavior of the method.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 111

Suppose that you want to have a class that collects two-dimensional points and plots them on a

graph. The following skeleton class uses member variables to hold the list of points and an inner

class to manage the two-dimensional list of points.

01 public class Plotter {

02

03 // This inner class manages the points

04 class Point {

05 Double x;

06 Double y;

07

08 Point(Double x, Double y) {

09 this.x = x;

10 this.y = y;

11 }

12 Double getXCoordinate() {

13 return x;

14 }

15

16 Double getYCoordinate() {

17 return y;

18 }

19 }

20

21 List<Point> points = new List<Point>();

22

23 public void plot(Double x, Double y) {

24 points.add(new Point(x, y));

25 }

26

27 // The following method takes the list of points and does something with them

28 public void render() {

29 }

30 }

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 112

Scope:

Scope is where in the source code a variable can be used directly with its simple name, without

indicating where it is declared.

Class Level Scope:
The scope of a variable is the part of the program over which the variable name can be

referenced.

You cannot refer to a variable before its declaration.

You can declare variables in several different places:

 In a class body as class fields. Variables declared here are referred to as class-level variables.

 As parameters of a method or constructor.

 In a method's body or a constructor's body.

 Within a statement block, such as inside a while or for block.

Variable scope refers to the accessibility of a variable.

Inside a Block:

The variables defined in a block are only accessible from within the block. The scope of the

variable is the block in which it is defined. For example, consider the following for statement.

public class MainClass {

 public static void main(String[] args) {

 for (int x = 0; x < 5; x++) {

 System.out.println(x);

 }

 }

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 113

Lifetime:

Life time of a variable declaration is the period the variables exists in the memory during

execution.

Different kinds of variables have different lifetimes. Parameter variables exist when the method

call is made, and lasts until the method call is complete. These parameter variables hold boxes to

values or handles. If the box holds handles (i.e., the parameter variable is an object variable),

then when the box disappears, the handle may still stay around. That's usually because you have

some variable around that holds the handle, and was passed to the method as an argument.

Lifetime for Local Variables:

Local variables also have a similar lifetime. The boxes are created when the declaration appears,

and lasts until you exit the method.

Lifetime for Instance Variables:

Instance variables have a much longer lifetime. They are created when the object is constructed,

and goes away when the object disappears. The object disappears when it is no longer being

used, which basically means that no variable has a handle to the object. When that happens, the

garbage collector gets rid of the object.

Lifetime for Static Variables:

Static variables are called class variable and in way of scope they loaded when the class is loaded

and unloaded when class is unloaded. For example a class variable like

private int classinVar;

is automatically initialized by its default value when class loaded, and same concept is with

signout when you get signout then that class would go out of context with its static field.

During loading of the class at runtime, the static variables are created and initialized only once.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 114

Lifetime for Field Variables:

Flied variables applies to all field variables in an object. Field variables exist as long as the

object they belong to exists. The field variables are allocated and automatically initialized to

default values when an object is created, if no explicit initialization is attempted by the program.

Constructors:

 Constructor is a special type of method that is used to initialize the object.

Constructor is invoked at the time of object creation. It constructs the values i.e. provides data

for the object that is why it is known as constructor.

Rules for creating constructor

There are basically two rules defined for the constructor.

 Constructor name must be same as its class name

 Constructor must have no explicit return type

Types of constructors

There are two types of constructors:

 Default constructor (no-arg constructor)

 Parameterized constructor

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 115

Default Constructor

A constructor that have no parameter is known as default constructor.

Syntax of default constructor:

 <class_name>(){}

Example of default constructor

In this example, we are creating the no-arg constructor in the Bike class. It will be invoked at the

time of object creation.

 class Bike1{

 Bike1(){System.out.println("Bike is created");}

 public static void main(String args[]){

 Bike1 b=new Bike1();

 }

 }

Output:

Bike is created

Default constructor provides the default values to the object like 0, null etc. depending on the

type.

Example of default constructor that displays the default values

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 116

 class Student3{

 int id;

 String name;

 void display(){System.out.println(id+" "+name);}

 public static void main(String args[]){

 Student3 s1=new Student3();

 Student3 s2=new Student3();

 s1.display();

 s2.display();

 }

 }

Output:

0 null

0 null

Explanation: In the above class, you are not creating any constructor so compiler provides you a

default constructor. Here 0 and null values are provided by default constructor.

Parameterized constructor

A constructor that have parameters is known as parameterized constructor.

Parameterized constructor is used to provide different values to the distinct objects.

Example of parameterized constructor

In this example, we have created the constructor of Student class that have two parameters. We

can have any number of parameters in the constructor.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 117

 class Student4{

 int id;

 String name;

 Student4(int i,String n){

 id = i;

 name = n;

 }

 void display(){System.out.println(id+" "+name);}

 public static void main(String args[]){

 Student4 s1 = new Student4(111,"Karan");

 Student4 s2 = new Student4(222,"Aryan");

 s1.display();

 s2.display();

 }

 }

Output:

111 Karan

222 Aryan

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 118

Module 8 (Object Communication)

Advantages of Abstraction:

 By using abstraction, we can separate the things that can be grouped to another type.

 Frequently changing properties and methods can be grouped to a separate type so that the

main type need not undergo changes.

 Simplifies the representation of the domain models.

 Abstraction makes the application extendable in much easier way. It makes refactoring much

easier.

 When developing with higher level of abstraction, you communicate the behavior and less

the implementation.

 Abstraction helps designers of all kinds in all fields focus on a set of relevant fundamentals.

It does not mean the details go away; instead they are layered and handled at an appropriate

level of focus. This approach isolates aspects of a complex design.

Abstraction Principles:

A good abstraction is when the programmers use abstractions whenever suitable in order to avoid

duplication (usually of code).

It is used merely for helping the programmer comprehend & modify programs faster to suit

different scenarios.

Abstraction is really the process of pulling out common pieces of functionality into re-usable

components (be it abstract classes, parent classes, interfaces, etc.)

A good practice is to determine which methods will be useful to have in order to manipulate the

fields of a Class.

Abstraction is to represent an object often comes before its implementation.

Structured Programming:

Methodology:

 Block:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 119

Block is a section of code which is grouped together. Blocks consist of one or more declarations

and statements. A programming language that permits the creation of blocks, including blocks

nested within other blocks, is called a block-structured programming language. Blocks are

fundamental to structured programming, where control structures are formed from blocks.

 Choice (conditional execution)

There are three major structures related to the conditional execution - the if statement, the if-else

statement, and the switch-case statement.

If Condition:

The if statement allows the program to execute a block of code, only if a certain condition is met.

The general structure for an if statement is given by:

1 if (conditional statement) {

2
 //conditionally executed

code

3 }//end if statement

The conditional expression in the if statement can be any statement that evaluates to a Boolean

true or false.

If-else condition:

else statement will be executed when a certain block of code in the event that the conditional in

an if statement is false. There is no alternate behavior when the expression evaluates to false. The

general form of an if-else statement is simply an extension of that for the if statement:

1

 if (conditional statement) {

2

 //conditionally executed code

3

 }//end if statement

4

 else {

5

 //alternate code if <conditional_expression> is false

6

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 120

 }//end else statement

Switch Condition:

Switch-case structures are used to execute alternate blocks of code based on the value of a single

variable. The general of the switch-case expression is given by:

01 switch (<test_variable>) {
02 case <test_value_1>: {

03 //statements to execute if test_variable is equal to test_value_1
04 break;

05 }

06

07 //... other case: test_value structures

08

09 default: {
10 //statements to execute if test_variable is not equal to

11 //any of the specified values
12 }

13 }

 Loop:

Loops are used to repeat a block of code. There are three types of loops: for, while, and

do..while. Each of them has their specific uses. They are all outlined below.

For Loop:

The For...Next construction performs the loop a set number of times. It uses a loop control

variable, also called a counter, to keep track of the repetitions. You specify the starting and

ending values for this counter, and you can optionally specify the amount by which it increases

from one repetition to the next.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 121

FOR - for loops are the most useful type. The syntax for a for loop is

for (variable initialization; condition; variable update) {

 Code to execute while the condition is true

}

While Loop:

The While...End While construction runs a set of statements as long as the condition specified

in the While statement is True.

WHILE - WHILE loops are very simple. The basic structure is

While condition

 [statements]

 [Continue While]

 [statements]

 [Exit While]

 [statements]

End While

Do. While Loop:

DO..WHILE - DO..WHILE loops are useful for things that want to loop at least once. The

structure is

do {

} while (condition);

The condition is tested at the end of the block instead of the beginning, so the block will be

executed at least once. If the condition is true, we jump back to the beginning of the block and

execute it again. A do..while loop is almost the same as a while loop except that the loop body is

guaranteed to execute at least once. A while loop says "Loop while the condition is true, and

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 122

execute this block of code", a do..while loop says "Execute this block of code, and then continue

to loop while the condition is true".

Advantages:

By using structured programming, the complexity is reduced. Also, using logical structures

ensures that the flow of control is clear.

Results in methods that are simpler to understand and can be re-used many times, which saves

time and reduces complexity, but also increases reliability. It is also easier to update or fix the

program by replacing individual modules rather than larger amounts of code.

Duplicate Program Code:

There are three basic types of duplication that we can eliminate from our code that successfully

build on each other.

 Data

 Type

 Algorithm

Most developers tend to get stuck at the data level, but in this post, I will show you how to

recognize type and algorithm duplication and refactor it out of your code.

Data duplication

The most basic type of duplication is that of data. It is also very easily recognizable.

Take a look at these methods:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 123

Pretty easy to see here what needs to be refactored.

public Position WalkNorth()

{

 var player = GetPlayer();

 player.Move("N");

 return player.NewPosition;

}

public Position WalkSouth()

{

 var player = GetPlayer();

 player.Move("S");

 return player.NewPosition;

}

public Position WalkEast()

{

 var player = GetPlayer();

 player.Move("E");

 return player.NewPosition;

}

public Position WalkWest()

{

 var player = GetPlayer();

 player.Move("W");

 return player.NewPosition;

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 124

Most developers don’t need any help to realize that you should probably refactor this code to a

method like the following:

Communication and cooperation:

Object communication and interaction

It is through interactions among objects that programmers get the behavior their programs were

designed for. Software objects communicate and interact with each other by calling (or

invoking) each other's methods.

Calling an instance method:

Object A calls a method implemented by object B to have it to perform some behavior or return

some value. This is also sometimes referred to as A sending a message to B. For example, when

the play button is pressed on the CD player application, the button object may call the "play"

method of the application object with the understanding that this means to play the current track.

Sometimes the called object's method needs additional information in order to perform its

task. If your CD player application had multiple buttons, each of which played a different track,

then the play method would also need the number of the track to play. This information would

be passed along as an argument (or parameter) when calling the method.

There are three parts to calling a method:

1. The object you are calling that implements the method (e.g., the CD app object)

2. The name of the method to perform (e.g., play)

3. Any arguments needed by the called object (e.g., the CD track #)

public Position Walk(string direction)

{

 var player = GetPlayer();

 player.Move(direction);

 return player.NewPosition;

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 125

The syntax for making a method call is to list the object to be called, followed by a period, then

the method name. Any arguments needed are enclosed in parentheses after the method name.

A line of Java code to have the cdApp object play track 3 might look like:

cdApp.play(3);

It is also very common for an object to call one of its own methods as part of the implementation

of another method. For example, suppose the CD player application was playing through a play

list and it was time to play the next song in the list. The application object would need to call its

own play() message, passing the number of the track to play next. Code to do this would look

like:

this.play(3);

or more commonly,

play(3);

The special keyword "this" always refers to the object whose code is currently executing. In

the second case there is no object specified.

Reference variable:

Reference Variable is used to store the address of the variable. In order to call a method on an

object, we need a reference to the object. Assigning Reference will not create distinct copies of

Objects but rather all reference variables are referring to same Object.

Rectangle r1 = new Rectangle();

Rectangle r2 = r1;

 r1 is reference variable which contain the address of Actual Rectangle Object.

 r2 is another reference variable

 r2 is initialized with r1 means – “r1 and r2” both are referring same object , thus it does not

create duplicate object , nor does it allocate extra memory.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 126

Types of Association:

 It is normally rendered as a solid line connecting two classifiers, or a solid line connecting a

single classifier to itself (the two ends are distinct).

Job and Year classifiers are associated

 A small solid triangle could be placed next to or in place of the name of binary association

(drawn as a solid line) to show the order of the ends of the association. The arrow points

along the line in the direction of the last end in the order of the association ends. This

notation also indicates that the association is to be read from the first end to the last end.

Order of the ends and reading: Car - was designed in - Year

 Aggregation (shared aggregation) is a "weak" form of aggregation when part instance is

independent of the composite:

 the same (shared) part could be included in several composites, and

 if composite is deleted, shared parts may still exist.

Shared aggregation is shown as binary association decorated with a hollow diamond as a

terminal adornment at the aggregate end of the association line.

Search Service has a Query Builder using shared aggregation

http://www.uml-diagrams.org/association.html#aggregation

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 127

 Composition (composite aggregation) is a "strong" form of aggregation. It is a whole/part

relationship,

 It is binary association,

 Part could be included in at most one composite (whole) at a time, and

 If a composite (whole) is deleted, all of its composite parts are "normally" deleted with it.

Composite aggregation is depicted as a binary association decorated with a filled black

diamond at the aggregate (whole) end.

Folder could contain many files, while each File has exactly one Folder parent.

If Folder is deleted, all contained Files are deleted as well.

Encapsulation:

Encapsulation is an Object Oriented Programming concept that binds together the data and

functions that manipulate the data, and that keeps both safe from outside interference and misuse.

Data encapsulation led to the important concept of data hiding.

Data encapsulation is a mechanism of bundling the data, and the functions that use them and

data abstraction is a mechanism of exposing only the interfaces and hiding the implementation

details from the user.

Abstraction represent taking out the behavior from How exactly its implemented, one example of

abstraction is interface while Encapsulation means hiding details of implementation from outside

world so that when things change nobody gets affected. One example of Encapsulation is private

methods; clients don't care about it, You can change, amend or even remove that method if that

method is not encapsulated and it were public all your clients would have been affected.

http://www.uml-diagrams.org/association.html#aggregation
http://www.uml-diagrams.org/association.html#binary-association

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 128

Encapsulation is a mechanism by which you restrict the access to some of the object's

components, as well as binding the data and methods operating on the data.

Now if we consider a laptop, as an end user I have access only to some features of the system. So

I could use the mouse to move the cursor, or the keyboard for typing text, but I would not have

access to the internal components of the laptop. Again the keyboard in turn is bound internally to

a set of methods that operate in response to a user action or an event.

Abstraction is the ability to define an object that can represent abstract entities which can work,

change state and communicate with other entities.

Let us take the example of our laptop Keyboard itself, here we have a number of Keys, each

performing some function dependent on the value given. Now all keys have a certain value that

is accepted by the CPU when you press it. So we create a common object called Key with

following methods.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 129

Module 9: (Modifiers)

There are two types of modifiers in java: access modifiers and non-access modifiers.

The access modifiers in java specifies accessibility (scope) of a data member, method,

constructor or class. There are many non-access modifiers such as static, abstract, synchronized,

native, volatile, transient etc.

There are 4 types of java access modifiers:

 Visible to the world (public).

 Visible to the package and all subclasses (protected).

 Visible to the package. The default. No modifiers are needed.

 Visible to the class only (private).

Visible to the world (public):

A class, method, constructor, interface etc declared public can be accessed from any other class.

Therefore fields, methods, blocks declared inside a public class can be accessed from any class

belonging to the Java Universe.

However if the public class we are trying to access is in a different package, then the public class

still need to be imported.

Because of class inheritance, all public methods and variables of a class are inherited by its

subclasses.

Example:

The following function uses public access control:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 130

The main() method of an application has to be public. Otherwise, it could not be called by a Java

interpreter (such as java) to run the class.

Example:

Two source files are shown. The package hierarchy defined by the source files is depicted,

showing the two packages packageA and packageB containing their respective classes. Classes

in package packageB use classes from package packageA. SuperclassA in packageA has two

subclasses: SubclassA in packageA and SubclassB in packageB.

Client 1: Client 1 is a subclass in the same package, which accesses an inherited field.

Client 2: Cliet 2 is a Non-subclass in the same package, which invokes a method on an instance

of the class AnyClassA.

Client 3: Client 3 is a subclass in another package, which invokes an inherited method.

SubclassB.

public static void main(String[] arguments) {

 // ...

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 131

Client 4: Client 4 is a non-subclass in another package, which accesses a field in an instance of

the class.

Protected Access Modifier - protected:

Variables, methods and constructors which are declared protected in a superclass can be accessed

only by the subclasses in other package or any class within the package of the protected

members' class.

The protected access modifier cannot be applied to class and interfaces. Methods, fields can be

declared protected, however methods and fields in an interface cannot be declared protected.

Protected access gives the subclass a chance to use the helper method or variable, while

preventing a nonrelated class from trying to use it.

Example:

The following parent class uses protected access control, to allow its child class override

Here, if we define openSpeaker() method as private, then it would not be accessible from any

other class other than AudioPlayer. If we define it as public, then it would become accessible to

openSpeaker() method:

class AudioPlayer {

 protected boolean openSpeaker(Speaker sp) {

 // implementation details

 }

}

class StreamingAudioPlayer {

 boolean openSpeaker(Speaker sp) {

 // implementation details

 }

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 132

all the outside world. But our intension is to expose this method to its subclass only, thats why

we used protected modifier.

Access Control and Inheritance:

The following rules for inherited methods are enforced:

 Methods declared public in a superclass also must be public in all subclasses.

 Methods declared protected in a superclass must either be protected or public in subclasses;

they cannot be private.

 Methods declared without access control (no modifier was used) can be declared more

private in subclasses.

 Methods declared private are not inherited at all, so there is no rule for them.

Example:

If the field superclassVarA and the method superclass MethodA have protected accessibility,

then they are accessible within package packageA, and only accessible by subclasses in any

other packages.

Client 1: From a subclass in the same package, which accesses an inherited field.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 133

Client 2: From a non-subclass in the same package, which invokes a method on an instance of

the class AnyClassA.

Client 3: From a subclass in another package, which invokes an inherited method SubclassB.

Client 4: From a non-subclass in another package, which cannot accesses a field in an instance

of the class.

Default Access Modifier - No keyword:

Default access modifier means we do not explicitly declare an access modifier for a class, field,

method, etc.

A variable or method declared without any access control modifier is available to any other class

in the same package. The fields in an interface are implicitly public static final and the methods

in an interface are by default public.

Example:

Variables and methods can be declared without any modifiers, as in the following examples:

If the field superClassVarA and the method superClassMethodA have default accessibility, then

they are accessible within package packageA, and not accessible by subclasses or other classes in

any other packages.

String version = "1.5.1";

boolean processOrder() {

 return true;

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 134

Client 1: From a subclass in the same package, which accesses an inherited field. SubclassA is

such a client.

Client 2: From a non-subclass in the same package, which invokes a method on an instance of

the class AnyClassA is such a client.

Client 3: From a subclass in another package, which cannot invokes an inherited method.

SubclassB.

Client 4: From a non-subclass in another package, which cannot accesses a field in an instance

of the class. AnyClassB.

Private Access Modifier - private:

Methods, Variables and Constructors that are declared private can only be accessed within the

declared class itself.

Private access modifier is the most restrictive access level. Class and interfaces cannot be

private.

Variables that are declared private can be accessed outside the class if public getter methods are

present in the class.

Using the private modifier is the main way that an object encapsulates itself and hide data from

the outside world.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 135

Example:

The following class uses private access control:

Here, the format variable of the Logger class is private, so there's no way for other classes to

retrieve or set its value directly.

So to make this variable available to the outside world, we defined two public methods:

getFormat(), which returns the value of format, and setFormat(String), which sets its value.

Example:

If the field superClassVarA and the method superClassMethodA have private accessibility, then

they are not accessible within package packageA, and not accessible by subclasses or other

classes in any other packages.

public class Logger {

 private String format;

 public String getFormat() {

 return this.format;

 }

 public void setFormat(String format) {

 this.format = format;

 }

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 136

Client 1: From a subclass in the same package, which cannot accesses an inherited field.

SubclassA is not able to access any private members.

Client 2: From a non-subclass in the same package, private members are not accessible on an

instance of the class AnyClassA.

Client 3: From a subclass in another package, which cannot invokes a private members in

SubclassB.

Client 4: From a non-subclass in another package, which cannot accesses a field in an instance

of the class AnyClassB.

A brief summary of all access modifiers are given below:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 137

Non Access Modifiers

Java provides a number of non-access modifiers to achieve many other functionality.

 The static modifier for creating class methods and variables

 The final modifier for finalizing the implementations of classes, methods, and variables.

 The abstract modifier for creating abstract classes and methods.

 The synchronized and volatile modifiers, which are used for threads.

Static Modifier:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 138

Static Modifiers are used to create class variable and class methods which can be accessed

without instance of a class.

Static Variables:

The static key word is used to create variables that will exist independently of any instances

created for the class. Static variables are also known as class variables. Local variables cannot be

declared static. Static variables are defined as a class member that can be accessed without any

object of that class. Static variable has only one single storage. Only one copy of the static

variable exists regardless of the number of instances of the class. All the object of the class

having static variable will have the same instance of static variable. Static variables are

initialized only once.

Static variable are used to represent common property of a class. It saves memory. Suppose there

are 100 employee in a company. All employee have its unique name and employee id but

company name will be same all 100 employee. Here company name is the common property. So

if you create a class to store employee detail, company_name field will be mark as static.

Static Methods:

The static key word is used to create methods that will exist independently of any instances

created for the class.

Static methods do not use any instance variables of any object of the class they are defined in.

Static methods take all the data from parameters and compute something from those parameters,

with no reference to variables.

Class variables and methods can be accessed using the class name followed by a dot and the

name of the variable or method.

Main() method is the most common example of static method. Main() method is declared as

static because it is called before any object of the class is created.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 139

The final Modifier:

Final modifier is used to declare a field as final i.e. it prevents its content from being modified.

Final field must be initialized when it is declared.

Final Variables:

A final variable can be explicitly initialized only once. A reference variable declared final can

never be reassigned to refer to a different object.

However the data within the object can be changed. So the state of the object can be changed but

not the reference.

With variables, the final modifier often is used with static to make the constant a class variable.

Final Methods:

A final method cannot be overridden by any subclasses. As mentioned previously the final

modifier prevents a method from being modified in a subclass.

The main intention of making a method final would be that the content of the method should not

be changed by any outsider.

Final Classes:

The main purpose of using a class being declared as final is to prevent the class from being

subclassed. A final method in a class is complete and cannot be overridden in any subclass. If a

class is marked as final then no class can inherit any feature from the final class. A final class

and an interface represent two extremes when it comes to providing implementation.

The abstract Modifier:

Abstract Class:

An abstract class can never be instantiated. If a class is declared as abstract then the sole purpose

is for the class to be extended.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 140

A class cannot be both abstract and final. (Since a final class cannot be extended). If a class

contains abstract methods then the class should be declared abstract. Otherwise a compile error

will be thrown.

Abstract Methods:

An abstract method is a method declared without any implementation. The methods body

(implementation) is provided by the subclass. Abstract methods can never be final or strict.

Any class that extends an abstract class must implement all the abstract methods of the super

class unless the subclass is also an abstract class.

If a class contains one or more abstract methods then the class must be declared abstract. An

abstract class does not need to contain abstract methods.

The abstract method ends with a semicolon. Example: public abstract sample();

The synchronized Modifier:

The synchronized key word used to indicate that a method can be accessed by only one thread at

a time. Their execution is then mutually exclusive among all threads. The synchronized modifier

can be applied with any of the four access level modifiers.

Native Modifiers:

Native methods are also called foreign methods. It marks a method, that it will be implemented

in other languages, not in Java.

The transient Modifier:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 141

An instance variable is marked transient to skip the particular variable when serializing the

object containing it.

This modifier is included in the statement that creates the variable, preceding the class or data

type of the variable.

Objects can be stored using serialization. Serialization transforms objects into an output format

which is helpful for storing objects. Objects can later be retrieved in the same state as when they

were serialized, meaning that fields included in the serialization will have the same values at the

time of serialization. Such objects are said to be Persistent.

The fields are declared with keyword Transient in their class declaration if its value should not

be saved when objects of the class are written to persistent storage.

The volatile Modifier:

Volatile modifier tells the compiler that the volatile variable can be changed unexpectedly by

other parts of your program. The volatile modifier can be used to inform the compiler that it

should not attempt to perform optimizations on the field, which could cause unpredictable results

when the field is accessed by multiple threads. Volatile variables are used in case of

multithreading program. Accessing a volatile variable synchronizes all the cached copied of the

variables in the main memory. Volatile can only be applied to instance variables, which are of

type object or private. A volatile object reference can be null.

Summary:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 142

A brief summary of all non-access modifiers are given below:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 143

Module 10: (Exception Handling)

Exception Handling

An exception (or exceptional event) is a problem that arises during the execution of a program.

When an Exception occurs the normal flow of the program is disrupted and the

program/Application terminates abnormally, which is not recommended, therefore these

exceptions are to be handled.

An exception can occur for many different reasons, below given are some scenarios where

exception occurs.

 A user has entered invalid data.

 A file that needs to be opened cannot be found.

 A network connection has been lost in the middle of communications or the JVM has run out

of memory.

Some of these exceptions are caused by user error, others by programmer error, and others by

physical resources that have failed in some manner.

There are mainly two types of exceptions: checked and unchecked where error is considered as

unchecked exception:

1. Checked Exception

2. Unchecked Exception

3. Error

Checked Exception:

A checked exception is an exception that occurs at the compile time, these are also called as

compile time exceptions e.g. IOException, SQLException etc. These exceptions cannot simply

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 144

be ignored at the time of compilation, the Programmer should take care of (handle) these

exceptions.

Unchecked Exception:

An Unchecked exception is an exception that occurs at the time of execution, these are also

called as Runtime Exceptions, and these include programming bugs, such as logic errors or

improper use of an API. Runtime exceptions are ignored at the time of compilation. e.g.

Arithmetic Exception, Null Pointer Exception, Array Index Out Of Bounds Exception etc.

Errors:

These are not exceptions at all, but problems that arise beyond the control of the user or the

programmer. Errors are typically ignored in your code because you can rarely do anything about

an error. For example, if a stack overflow occurs, an error will arise. They are also ignored at the

time of compilation.

Exception Hierarchy:

All exception classes are subtypes of the java.lang.Exception class. The exception class is a

subclass of the Throwable class. Other than the exception class there is another subclass called

Error which is derived from the Throwable class.

Errors are abnormal conditions that happen in case of severe failures. Errors are generated to

indicate errors generated by the runtime environment. The Exception class has two main

subclasses: IOException class and RuntimeException Class.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 145

Try block

Try block is used to enclose the code that might throw an exception. It must be used within the

method.

Try block must be followed by either catch or finally block.

Syntax of try-catch

Syntax of try-finally block

try{

 //code that may throw exception

 }catch(Exception_class_Name

ref){}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 146

Catch block

Catch block is used to handle the Exception. It must be used after the try block only.

You can use multiple catch block with a single try.

A method catches an exception using a combination of the try and catch keywords. A try/catch

block is placed around the code that might generate an exception. Code within a try/catch block

is referred to as protected code, and the syntax for using try/catch looks like the following:

A catch statement involves declaring the type of exception you are trying to catch. If an

exception occurs in protected code, the catch block (or blocks) that follows the try is checked. If

the type of exception that occurred is listed in a catch block, the exception is passed to the catch

block much as an argument is passed into a method parameter.

Example:

The following is an array is declared with 2 elements. Then the code tries to access the 3rd

element of the array which throws an exception.

try {

 //Protected code

}catch(ExceptionName e1)

{

 //Catch block

}

 try{

 //code that may throw

exception

 }finally{}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 147

This would produce the following result:

Exception thrown :java.lang.ArrayIndexOutOfBoundsException: 3

Out of the block

Multiple catch Blocks:

A try block can be followed by multiple catch blocks. The syntax for multiple catch blocks looks

like the following:

// File Name : ExcepTest.java

import java.io.*;

public class ExcepTest{

 public static void main(String args[]){

 try{

 int a[] = new int[2];

 System.out.println("Access element three :" + a[3]);

 }catch(ArrayIndexOutOfBoundsException e){

 System.out.println("Exception thrown :" + e);

 }

 System.out.println("Out of the block");

 }

}

try

{

 //Protected code

}catch(ExceptionType1 e1)

{

 //Catch block

}catch(ExceptionType2 e2)

{

 //Catch block

}catch(ExceptionType3 e3)

{

 //Catch block

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 148

The previous statements demonstrate three catch blocks, but you can have any number of them

after a single try. If an exception occurs in the protected code, the exception is thrown to the first

catch block in the list. If the data type of the exception thrown matches ExceptionType1, it gets

caught there. If not, the exception passes down to the second catch statement. This continues

until the exception either is caught or falls through all catches, in which case the current method

stops execution and the exception is thrown down to the previous method on the call stack.

Example:

Here is code segment showing how to use multiple try/catch statements.

try

{

 file = new

FileInputStream(fileName);

 x = (byte) file.read();

}catch(IOException i)

{

 i.printStackTrace();

 return -1;

}catch(FileNotFoundException f)

//Not valid!

{

 f.printStackTrace();

 return -1;

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 149

The finally block

Finally block is a block that is used to execute important code such as closing connection, stream

etc.

The finally block follows a try block or a catch block. A finally block of code always executes,

irrespective of occurrence of an Exception.

Using a finally block allows you to run any cleanup-type statements that you want to execute, no

matter what happens in the protected code.

A finally block appears at the end of the catch blocks and has the following syntax:

try

{

 //Protected code

}catch(ExceptionType1 e1)

{

 //Catch block

}catch(ExceptionType2 e2)

{

 //Catch block

}catch(ExceptionType3 e3)

{

 //Catch block

}finally

{

 //The finally block always executes.

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 150

Example:

This would produce the following result:

Exception thrown: java.lang.ArrayIndexOutOfBoundsException: 3

First element value: 6

The finally statement is executed

public class ExcepTest{

 public static void main(String args[]){

 int a[] = new int[2];

 try{

 System.out.println("Access element three :" + a[3]);

 }catch(ArrayIndexOutOfBoundsException e){

 System.out.println("Exception thrown :" + e);

 }

 finally{

 a[0] = 6;

 System.out.println("First element value: " +a[0]);

 System.out.println("The finally statement is executed");

 }

 }

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 151

Important Statements:

 A catch clause cannot exist without a try statement.

 It is not compulsory to have finally clauses whenever a try/catch block is present.

 The try block cannot be present without either catch clause or finally clause.

 Any code cannot be present in between the try, catch, finally blocks.

Throw keyword

The Throw keyword is used to explicitly throw an exception.

The syntax of throw keyword is given below.

 throw exception;

If a method does not handle a checked exception, the method must declare it using the throws

keyword. The throws keyword appears at the end of a method's signature.

You can throw an exception, either a newly instantiated one or an exception by using the throw

keyword.

The following method declares that it throws a RemoteException:

import java.io.*;

public class className

{

 public void deposit(double amount) throws

RemoteException

 {

 // Method implementation

 throw new RemoteException();

 }

 //Remainder of class definition

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 152

A method can declare that it throws more than one exception, in which case the exceptions are

declared in a list separated by commas. For example, the following method declares that it

throws a RemoteException and an InsufficientFundsException:

import java.io.*;

public class className

{

 public void withdraw(double amount) throws

RemoteException,

 InsufficientFundsException

 {

 // Method implementation

 }

 //Remainder of class definition

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 153

Module 11: (XML)

XML

Extensible Markup Language (XML) is used to describe data. XML is a markup language much

like HTML. The XML standard is a flexible way to create information formats and electronically

share structured data via the public Internet, as well as via corporate networks.

The Difference between XML and HTML

XML and HTML were designed with different goals:

 HTML is about displaying information, XML is about describing information.

 XML was designed to carry data - with focus on what data is

 HTML was designed to display data - with focus on how data looks

 XML tags are not predefined like HTML tags are

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 154

Displaying XML

If you’ve ever tried to open an XML file and expected to view it like a typical HTML file,

chances are you were disappointed with the results. When you clicked that XML file open, you

probably saw something like this (sample code taken from the W3C):

<?xml version="1.0" encoding="ISO-8859-1"?>

<CATALOG>

 <CD>

 <TITLE>Empire Burlesque</TITLE>

 <ARTIST>Bob Dylan</ARTIST>

 <COUNTRY>USA</COUNTRY>

 <COMPANY>Columbia</COMPANY>

 <PRICE>10.90</PRICE>

 <YEAR>1985</YEAR>

 </CD>

 <CD>

 <TITLE>Hide your heart</TITLE>

 <ARTIST>Bonnie Tyler</ARTIST>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 155

 <COUNTRY>UK</COUNTRY>

 <COMPANY>CBS Records</COMPANY>

 <PRICE>9.90</PRICE>

 <YEAR>1988</YEAR>

 </CD>

That type of layout does you no good. You can read it, sure, but you’d have a very hard time

making sense of an entire report by reading it in this manner. XML files do not carry any

formatting information, therefore, you simply see a raw output. The W3C recommends

formatting an XML file either with CSS, XSLT or even JavaScript. If you use CSS, it’s as simple

as (from the W3C):

CATALOG

{

background-color: #ffffff;

width: 100%;

}

CD

{

display: block;

margin-bottom: 30pt;

margin-left: 0;

}

TITLE

{

color: #FF0000;

font-size: 20pt;

}

ARTIST

{

color: #0000FF;

font-size: 20pt;

}

COUNTRY,PRICE,YEAR,COMPANY

{

display: block;

color: #000000;

margin-left: 20pt;

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 156

XML Syntax

To link the XML file to the CSS, you use this code:

<?xml-stylesheet type="text/css" href="cd_catalog.css"?>

In XML, it is illegal to omit the closing tag. All elements must have a closing tag:

<p>This is a paragraph.</p>

XML tags are case sensitive. The tag <Letter> is different from the tag <letter>.

Opening and closing tags must be written with the same case:

<Message>This is incorrect</message>

<message>This is correct</message>

"Opening and closing tags" are often referred to as "Start and end tags". Use whatever you

prefer. It is exactly the same thing.

In XML, all elements must be properly nested within each other:

<i>This text is bold and italic</i>

In the example above, "Properly nested" simply means that since the <i> element is opened

inside the element, it must be closed inside the element.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 157

XML document

All XML documents must contain a single tag pair to define the root element. All other elements

must be nested within the root element. All elements can have sub (children) elements. Sub

elements must be in pairs and correctly nested within their parent element:

<root>

 <child>

 <subchild>

 </subchild>

 </child>

</root>

Example:

<Book>

<Title> </Title> <Chapter>

 <para> </para>

</Chapter>

</Book>

Syntax Rules for XML declaration

 The XML declaration is case sensitive and must begin with "<?xml>" where "xml" is written

in lower-case.

 If document contains XML declaration, then it strictly needs to be the first statement of the

XML document.

 The XML declaration strictly needs be the first statement in the XML document.

 An HTTP protocol can override the value of encoding that you put in the XML declaration.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 158

Syntax Rules for XML Attributes

 Attribute names in XML (unlike HTML) are case sensitive. That is, HREF and href are

considered two different XML attributes.

 Same attribute cannot have two values in a syntax. The following example shows incorrect

syntax because the attribute b is specified twice:

....

 Attribute names are defined without quotation marks, whereas attribute values must always

appear in quotation marks. Following example demonstrates incorrect xml syntax:

XML Text

 The names of XML-elements and XML-attributes are case-sensitive, which means the name

of start and end elements need to be written in the same case.

 To avoid character encoding problems, all XML files should be saved as Unicode UTF-8 or

UTF-16 files.

 Whitespace characters like blanks, tabs and line-breaks between XML-elements and between

the XML-attributes will be ignored.

 Some characters are reserved by the XML syntax itself. Hence, they cannot be used directly.

To use them, some replacement-entities are used, which are listed below:

not allowed character replacement-entity character description

< < less than

> > greater than

& & ampersand

' ' apostrophe

" " quotation mark

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 159

DTD

The purpose of a DTD (Document-Type-Information) is to define the legal building blocks of an

XML document. It defines the document structure with a list of legal elements. A DTD can be

declared inline in your XML document, or as an external reference.

Internal DTD

This is an XML document with a Document Type Definition:

<?xml version="1.0"?>

<!DOCTYPE note [

 <!ELEMENT note (to,from,heading,body)>

 <!ELEMENT to (#PCDATA)>

 <!ELEMENT from (#PCDATA)>

 <!ELEMENT heading (#PCDATA)>

 <!ELEMENT body (#PCDATA)>

]>

<note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

The DTD is interpreted like this:

!ELEMENT note (in line 2) defines the element "note" as having four elements:

"to,from,heading,body".

!ELEMENT to (in line 3) defines the "to" element to be of the type "CDATA".

!ELEMENT from (in line 4) defines the "from" element to be of the type "CDATA"

and so on.....

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 160

External DTD

This is the same XML document with an external DTD:

<?xml version="1.0"?>

<!DOCTYPE note SYSTEM "note.dtd">

<note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

This is a copy of the file "note.dtd" containing the Document Type Definition:

<?xml version="1.0"?>

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

Why use a DTD?

XML provides an application independent way of sharing data. With a DTD, independent groups

of people can agree to use a common DTD for interchanging data. Your application can use a

standard DTD to verify that data that you receive from the outside world is valid. You can also

use a DTD to verify your own data.

A lot of forums are emerging to define standard DTDs for almost everything in the areas of data

exchange.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 161

Unicode Characters:

The table below lists the five XML predefined entities. The "Name" column mentions the entity's

name. The "Character" column shows the character. To render the character, the format &name;

is used; for example, & renders as &. The "Unicode code point" column cites the character

with standard UCS/Unicode "U+" notation, which shows the character's code point in

hexadecimal. The decimal equivalent of the code point is then shown in parentheses. The

"Standard" column indicates the first version of XML that includes the entity. The "Description"

column cites the character with its UCS/Unicode name.

Name Character Unicode code point (decimal) Standard Description

quot " U+0022 (34) XML 1.0 double quotation mark

amp & U+0026 (38) XML 1.0 ampersand

apos ' U+0027 (39) XML 1.0 apostrophe (apostrophe-quote)

lt < U+003C (60) XML 1.0 less-than sign

gt > U+003E (62) XML 1.0 greater-than sign

XML Namespaces

XML Namespaces provide a method to avoid element name conflicts.

Name Conflicts

In XML, element names are defined by the developer. This often results in a conflict when trying

to mix XML documents from different XML applications.

This XML carries HTML table information:

<table>

 <tr>

 <td>Apples</td>

 <td>Bananas</td>

 </tr>

</table>

https://en.wikipedia.org/wiki/Quotation_mark
https://en.wikipedia.org/wiki/Ampersand
https://en.wikipedia.org/wiki/Apostrophe
https://en.wikipedia.org/wiki/Less-than_sign
https://en.wikipedia.org/wiki/Greater-than_sign

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 162

This XML carries information about a table (a piece of furniture):

<table>

 <name>African Coffee Table</name>

 <width>80</width>

 <length>120</length>

</table>

If these XML fragments were added together, there would be a name conflict. Both contain a

<table> element, but the elements have different content and meaning.

A user or an XML application will not know how to handle these differences.

Solving the Name Conflict Using a Prefix

Name conflicts in XML can easily be avoided using a name prefix.

This XML carries information about an HTML table, and a piece of furniture:

<h:table>

 <h:tr>

 <h:td>Apples</h:td>

 <h:td>Bananas</h:td>

 </h:tr>

</h:table>

<f:table>

 <f:name>African Coffee Table</f:name>

 <f:width>80</f:width>

 <f:length>120</f:length>

</f:table>

In the example above, there will be no conflict because the two <table> elements have different

names.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 163

XML usage:

XML allows sets of documents which are all the same type to be created and handled

consistently and without structural errors, because it provides a standardized way of describing,

controlling, or allowing/disallowing particular types of document structure.

XML provides a common syntax for messaging systems for the exchange of information

between applications. Previously, each messaging system had its own format and all were

different, which made inter-system messaging unnecessarily messy, complex, and expensive. If

everyone uses the same syntax it makes writing these systems much faster and more reliable.

XML is free. It doesn't belong to anyone, so it can't be hijacked or pirated. And you don't have to

pay a fee to use it.

XML information can be manipulated programmatically so XML documents can be pieced

together from disparate sources, or taken apart and re-used in different ways. They can be

converted into any other format with no loss of information.

XML can also be used to store data in files or in databases. Applications can be written to store

and retrieve information from the store, and generic applications can be used to display the data.

XML is Often a Complement to HTML

In many HTML applications, XML is used to store or transport data, while HTML is used to

format and display the same data.

XML Separates Data from HTML

When displaying data in HTML, you should not have to edit the HTML file when the data

changes.

With XML, the data can be stored in separate XML files.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 164

With a few lines of JavaScript code, you can read an XML file and update the data content of

any HTML page.

XML Tree Structure

XML documents form a tree structure that starts at "the root" and branches to "the leaves".

XML documents are formed as element trees.

An XML tree starts at a root element and branches from the root to child elements.

All elements can have sub elements (child elements):

The terms parent, child, and sibling are used to describe the relationships between elements.

<root>

 <child>

 <subchild>.....</subchild>

 </child>

</root>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 165

Parent have children. Children have parents. Siblings are children on the same level (brothers

and sisters).

XML Element

An XML element is everything from (including) the element's start tag to (including) the

element's end tag.

<price>29.99</price>

An element can contain:

 text

 attributes

 other elements

 or a mix of the above

<bookstore>

 <book category="children">

 <title>Harry Potter</title>

 <author>J K. Rowling</author>

 <year>2005</year>

 <price>29.99</price>

 </book>

 <book category="web">

 <title>Learning XML</title>

 <author>Erik T. Ray</author>

 <year>2003</year>

 <price>39.95</price>

 </book>

</bookstore>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 166

In the example above:

<title>, <author>, <year>, and <price> have text content because they contain text (like 29.99).

<bookstore> and <book> have element contents, because they contain elements.

<book> has an attribute (category="children").

Empty XML Elements

XML elements can be defined as building blocks of an XML. Elements can behave as containers

to hold text, elements, attributes, media objects or all of these.

Each XML document contains one or more elements, the scope of which are either delimited by

start and end tags, or for empty elements, by an empty-element tag.

An element with no content is said to be empty.

In XML, you can indicate an empty element like this:

<element></element>

You can also use a so called self-closing tag:

<element />

Syntax

Following is the syntax to write an XML element:

<element-name attribute1 attribute2>

....content

</element-name>

Where

 element-name is the name of the element. The name its case in the start and end tags must

match.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 167

 attribute1, attribute2 are attributes of the element separated by white spaces. An attribute

defines a property of the element. It associates a name with a value, which is a string of

characters. An attribute is written as:

 name = "value"

 name is followed by an = sign and a string value inside double(" ") or single(' ') quotes.

XML Elements Rules

Following rules are required to be followed for XML elements:

 An element name can contain any alphanumeric characters. The only punctuation mark

allowed in names are the hyphen (-), under-score (_) and period (.).

 Names are case sensitive. For example, Address, address, and ADDRESS are different

names.

 Start and end tags of an element must be identical.

 An element, which is a container, can contain text or elements as seen in the above example.

XML Attributes:

Attributes are part of the XML elements. An element can have multiple unique attributes.

Attribute gives more information about XML elements. To be more precise, they define

properties of elements. An XML attribute is always a name-value pair.

Syntax

An XML attribute has following syntax:

<element-name attribute1 attribute2 >

....content..

< /element-name>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 168

Where attribute1 and attribute2 has the following form:

name = "value"

Value has to be in double (" ") or single (' ') quotes. Here, attribute1 and attribute2 are unique

attribute labels.

Attributes are used to add a unique label to an element, place the label in a category, add a

Boolean flag, or otherwise associate it with some string of data. Following example demonstrates

the use of attributes:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE garden [

 <!ELEMENT garden (plants)*>

 <!ELEMENT plants (#PCDATA)>

 <!ATTLIST plants category CDATA #REQUIRED>

]>

<garden>

 <plants category="flowers" />

 <plants category="shrubs">

 </plants>

</garden>

Attributes are used to distinguish among elements of the same name. When you do not want to

create a new element for every situation. Hence, use of an attribute can add a little more detail in

differentiating two or more similar elements.

In the above example, we have categorized the plants by including attribute category and

assigning different values to each of the elements. Hence we have two categories of plants, one

flowers and other color. Hence we have two plant elements with different attributes.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 169

Element Attribute Rules

Following are the rules that need to be followed for attributes:

 An attribute name must not appear more than once in the same start-tag or empty-element

tag.

 An attribute must be declared in the Document Type Definition (DTD) using an Attribute-

List Declaration.

 Attribute values must not contain direct or indirect entity references to external entities.

 The replacement text of any entity referred to directly or indirectly in an attribute value must

not contain either less than sign <

Viewing XML Files

<?xml version="1.0" encoding="UTF-8"?>

 - <note>

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

 </note>

Look at the XML file above in your browser: note.xml

Most browsers will display an XML document with color-coded elements.

Often a plus (+) or minus sign (-) to the left of the elements can be clicked to expand or collapse

the element structure.

XSL = Style Sheets for XML

XSLT is the most important part of XSL.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 170

XSLT is used to transform an XML document into another XML document, or another type of

document that is recognized by a browser, like HTML and XHTML. Normally XSLT does this

by transforming each XML element into an (X)HTML element.

With XSLT you can add/remove elements and attributes to or from the output file. You can also

rearrange and sort elements, perform tests and make decisions about which elements to hide and

display, and a lot more.

A common way to describe the transformation process is to say that XSLT transforms an XML

source-tree into an XML result-tree.

XSL consists of four parts:

 XSLT - a language for transforming XML documents

 XPath - a language for navigating in XML documents

 XSL-FO - a language for formatting XML documents (discontinued in 2013)

 XQuery - a language for querying XML documents

Example:

This example demonstrates the basics of setting up an XSLT transformation in a browser. The

example will take an XML document that contains information (title, list of authors and body

text) about an article and present it in a human readable form.

Figure shows the source of the basic XSLT example. The XML document (example.xml)

contains the information about the article. Using the ?xml-stylesheet? processing instruction, it

links to the XSLT stylesheet (example.xsl) via its href attribute.

An XSLT stylesheet starts with the xsl:stylesheet element, which contains all the templates used

to create the final output. The example in Figure has two templates - one that matches the root

node and one that matches Author nodes. The template that matches the root node outputs the

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 171

article's title and then says to process all templates that match Author nodes which are children

of the Authors node.

Figure: Simple XSLT Example

XML Document (example.xml):

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="example.xsl"?>

<Article>

 <Title>My Article</Title>

 <Authors>

 <Author>Mr. Foo</Author>

 <Author>Mr. Bar</Author>

 </Authors>

 <Body>This is my article text.</Body>

</Article>

XSL Stylesheet (example.xsl):

<?xml version="1.0"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">

 Article - <xsl:value-of select="/Article/Title"/>

 Authors: <xsl:apply-templates select="/Article/Authors/Author"/>

 </xsl:template>

 <xsl:template match="Author">

 - <xsl:value-of select="." />

 </xsl:template>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 172

</xsl:stylesheet>

Browser Output:

Article - My Article

Authors:

- Mr. Foo

- Mr. Bar

XPath:

XPath is used to navigate through elements and attributes in an XML document.

XPath is a syntax for defining parts of an XML document. It uses path expressions to navigate in

XML documents. XPath contains a library of standard functions. XPath is a major element in

XSLT. XPath is a W3C recommendation

XPath uses path expressions to select nodes or node-sets in an XML document. These path

expressions look very much like the expressions you see when you work with a traditional

computer file system.

XPath is a major element in the XSLT standard. Without XPath knowledge you will not be able

to create XSLT documents.

XPath is also used in XQuery, XPointer and XLink

XLink:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 173

Xml linking language, or xlink is an xml markup language and w3c specification that provides

methods for creating internal and external links within xml documents, and associating metadata

with those links.

xlink provides a framework for creating both basic unidirectional links and more complex

linking structures.

Some important points about the xlink:

 xlink is short for the xml linking language

 xlink is a language for creating hyperlinks in xml documents

 xlink is similar to html links - but it is a lot more powerful

 xlink supports simple links(like html link system) and extended links (for linking

multiple"more then one" resources together)

 with xlink, the links can be defined outside of the linked files

 xlink is a 'w3c recommendation'

XLink Attribute

Attribute Value Description

xlink:actuate onLoad onRequest

other

none

Defines when the linked resource is read and shown:

 onLoad - the resource should be loaded and shown when

the document loads

 onRequest - the resource is not read or shown before the

link is clicked

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 174

xlink:href URL Specifies the URL to link to

xlink:show embed

new

replace

other

none

Specifies where to open the link. Default is "replace"

xlink:type simple

extended

locator

arc

resource

title

none

Specifies the type of link

Xpointer:

xpointer is a system for addressing components of xml base internet media.

xpointer language is divided among four specifications: a 'framework' which forms the basis for

identifying xml fragments, a positional element addressing scheme, a scheme for namespaces,

and a scheme for xpath-based addressing. There is no browser support for XPointer. But

XPointer is used in other XML languages.

Some important points about xpointer:

 xpointer is short for the xml pointer language

 xpointer uses xpath expressions to navigate in the xml document.

 xpointer is a w3c recommendation

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 175

Module 12: (XML)

XML Validator:

XML validation is the process of checking a document written in XML (eXtensible Markup

Language) to confirm that it is both well-formed and also "valid" in that it follows a defined

structure. An XML document is said to be valid if its contents match with the elements, attributes

and associated document type declaration (DTD), and if the document complies with the

constraints expressed in it. Validation is dealt in two ways by the XML parser. They are:

 Well-formed XML document

 Valid XML document

Well-formed XML document

An XML document is said to be well-formed if it adheres to the following rules:

 Non DTD XML files must use the predefined character entities for amp(&), apos(single

quote), gt(>), lt(<), quot(double quote).

 It must follow the ordering of the tag. i.e., the inner tag must be closed before closing the

outer tag.

 Each of its opening tags must have a closing tag or it must be a self ending

tag.(<title>....</title> or <title/>).

 It must have only one attribute in a start tag, which needs to be quoted.

 amp(&), apos(single quote), gt(>), lt(<), quot(double quote) entities other than these must be

declared.

Valid XML document

If an XML document is well-formed and has an associated Document Type Declaration (DTD),

then it is said to be a valid XML document. We will study more about DTD in the chapter XML

– DTDs

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 176

XML – DTDs

The XML Document Type Declaration, commonly known as DTD, is a way to describe XML

language precisely. DTDs check vocabulary and validity of the structure of XML documents

against grammatical rules of appropriate XML language.

An XML DTD can be either specified inside the document, or it can be kept in a separate

document and then liked separately.

Syntax

Basic syntax of a DTD is as follows:

<!DOCTYPE element DTD identifier

[

 declaration1

 declaration2

]>

In the above syntax,

 The DTD starts with <!DOCTYPE delimiter.

 An element tells the parser to parse the document from the specified root element.

 DTD identifier is an identifier for the document type definition, which may be the path to a

file on the system or URL to a file on the internet. If the DTD is pointing to external path, it

is called External Subset.

 The square brackets [] enclose an optional list of entity declarations called Internal Subset.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 177

DTD - XML Building Blocks

All XML documents are made up by the following building blocks:

 Elements

 Attributes

 Entities

 PCDATA

 CDATA

Elements

Elements are the main building blocks of both XML and HTML documents.

Examples of HTML elements are "body" and "table". Examples of XML elements could be

"note" and "message". Elements can contain text, other elements, or be empty. Examples of

empty HTML elements are "hr", "br" and "img".

Examples:

<body>some text</body>

<message>some text</message>

Attributes

Attributes provide extra information about elements.

Attributes are always placed inside the opening tag of an element. Attributes always come in

name/value pairs. The following "img" element has additional information about a source file:

The name of the element is "img". The name of the attribute is "src". The value of the attribute is

"computer.gif". Since the element itself is empty it is closed by a " /".

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 178

Entities

Some characters have a special meaning in XML, like the less than sign (<) that defines the start

of an XML tag.

Most of you know the HTML entity: " ” This "no-breaking-space" entity is used in HTML

to insert an extra space in a document. Entities are expanded when a document is parsed by an

XML parser.

The following entities are predefined in XML:

Entity References Character

< <

> >

& &

" "

' '

PCDATA

PCDATA means parsed character data.

Think of character data as the text found between the start tag and the end tag of an XML

element.

PCDATA is text that WILL be parsed by a parser. The text will be examined by the parser for

entities and markup.

Tags inside the text will be treated as markup and entities will be expanded.

However, parsed character data should not contain any &, <, or > characters; these need to be

represented by the & < and > entities, respectively.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 179

CDATA

CDATA means character data.

CDATA is text that will NOT be parsed by a parser. Tags inside the text will NOT be treated as

markup and entities will not be expanded.

DTD Elements:

In a DTD, elements are declared with an ELEMENT declaration.

In a DTD, XML elements are declared with the following syntax:

<!ELEMENT element-name category>

or

<!ELEMENT element-name (element-content)>

Empty Elements

Empty elements are declared with the category keyword EMPTY:

<!ELEMENT element-name EMPTY>

Example:

<!ELEMENT br EMPTY>

XML example:

Elements with Parsed Character Data

Elements with only parsed character data are declared with #PCDATA inside parentheses:

<!ELEMENT element-name (#PCDATA)>

Example:

<!ELEMENT from (#PCDATA)>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 180

Elements with any Contents

Elements declared with the category keyword ANY, can contain any combination of parsable

data:

<!ELEMENT element-name ANY>

Example:

<!ELEMENT note ANY>

Elements with Children (sequences)

Elements with one or more children are declared with the name of the children elements inside

parentheses:

<!ELEMENT element-name (child1)>

or

<!ELEMENT element-name (child1,child2,...)>

Example:

<!ELEMENT note (to,from,heading,body)>

When children are declared in a sequence separated by commas, the children must appear in the

same sequence in the document. In a full declaration, the children must also be declared, and the

children can also have children. The full declaration of the "note" element is:

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 181

Declaring Only One Occurrence of an Element

<!ELEMENT element-name (child-name)>

Example:

<!ELEMENT note (message)>

The example above declares that the child element "message" must occur once, and only once

inside the "note" element.

Declaring Minimum One Occurrence of an Element

<!ELEMENT element-name (child-name+)>

Example:

<!ELEMENT note (message+)>

The + sign in the example above declares that the child element "message" must occur one or

more times inside the "note" element.

Declaring Zero or More Occurrences of an Element

<!ELEMENT element-name (child-name*)>

Example:

<!ELEMENT note (message*)>

The * sign in the example above declares that the child element "message" can occur zero or

more times inside the "note" element.

Declaring Zero or One Occurrences of an Element

<!ELEMENT element-name (child-name?)>

Example:

<!ELEMENT note (message?)>

The ? sign in the example above declares that the child element "message" can occur zero or one

time inside the "note" element.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 182

Declaring either/or Content

<!ELEMENT note (to,from,header,(message|body))>

The example above declares that the "note" element must contain a "to" element, a "from"

element, a "header" element, and either a "message" or a "body" element.

Declaring Mixed Content

<!ELEMENT note (#PCDATA|to|from|header|message)*>

The example above declares that the "note" element can contain zero or more occurrences of

parsed character data, "to", "from", "header", or "message" elements.

DTD – Attributes

In a DTD, attributes are declared with an ATTLIST declaration.

Declaring Attributes

An attribute declaration has the following syntax:

<!ATTLIST element-name attribute-name attribute-type attribute-value>

DTD example:

<!ATTLIST payment type CDATA "check">

XML example:

<payment type="check" />

The attribute-type can be one of the following:

Type Description

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 183

CDATA The value is character data

(en1|en2|..) The value must be one from an enumerated list

ID The value is a unique id

IDREF The value is the id of another element

IDREFS The value is a list of other ids

NMTOKEN The value is a valid XML name

NMTOKENS The value is a list of valid XML names

ENTITY The value is an entity

ENTITIES The value is a list of entities

NOTATION The value is a name of a notation

xml: The value is a predefined xml value

The attribute-value can be one of the following:

Value Explanation

Value The default value of the attribute

#REQUIRED The attribute is required

#IMPLIED The attribute is optional

#FIXED value The attribute value is fixed

A Default Attribute Value

DTD:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 184

<!ELEMENT square EMPTY>

<!ATTLIST square width CDATA "0">

Valid XML:

<square width="100" />

In the example above, the "square" element is defined to be an empty element with a "width"

attribute of type CDATA. If no width is specified, it has a default value of 0.

#REQUIRED

Syntax

<!ATTLIST element-name attribute-name attribute-type #REQUIRED>

Example

DTD:

<!ATTLIST person number CDATA #REQUIRED>

Valid XML:

<person number="5677" />

Invalid XML:

<person />

Use the #REQUIRED keyword if you don't have an option for a default value, but still want to

force the attribute to be present.

#IMPLIED

Syntax

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 185

<!ATTLIST element-name attribute-name attribute-type #IMPLIED>

Example

DTD:

<!ATTLIST contact fax CDATA #IMPLIED>

Valid XML:

<contact fax="555-667788" />

Valid XML:

<contact />

Use the #IMPLIED keyword if you don't want to force the author to include an attribute, and you

don't have an option for a default value.

#FIXED

Syntax

<!ATTLIST element-name attribute-name attribute-type #FIXED "value">

Example

DTD:

<!ATTLIST sender company CDATA #FIXED "Microsoft">

Valid XML:

<sender company="Microsoft" />

Invalid XML:

<sender company="BNU" />

Use the #FIXED keyword when you want an attribute to have a fixed value without allowing the

author to change it. If an author includes another value, the XML parser will return an error.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 186

Enumerated Attribute Values

Syntax

<!ATTLIST element-name attribute-name (en1|en2|..) default-value>

Example

DTD:

<!ATTLIST payment type (check|cash) "cash">

XML example:

<payment type="check" />

or

<payment type="cash" />

Enumerated attribute values are used when you want the attribute value to be one of a fixed set

of legal values.

XML Elements vs. Attributes

Data can be stored in child elements or in attributes.

Examples:

<person sex="female">

 <firstname>Anna</firstname>

 <lastname>Smith</lastname>

</person>

<person>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 187

 <sex>female</sex>

 <firstname>Anna</firstname>

 <lastname>Smith</lastname>

</person>

In the first example sex is an attribute. In the last, sex is a child element. Both examples provide

the same information.

There are no rules about when to use attributes, and when to use child elements. My experience

is that attributes are handy in HTML, but in XML you should try to avoid them. Use child

elements if the information feels like data.

My Favorite Way

I like to store data in child elements.

The following three XML documents contain exactly the same information:

A date attribute is used in the first example:

<note date="12/11/2002">

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>

A date element is used in the second example:

<note>

 <date>12/11/2002</date>

 <to>Tove</to>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 188

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>

An expanded date element is used in the third: (THIS IS MY FAVORITE):

<note>

 <date>

 <day>12</day>

 <month>11</month>

 <year>2002</year>

 </date>

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>

Some of the problems with attributes are:

 attributes cannot contain multiple values (child elements can)

 attributes are not easily expandable (for future changes)

 attributes cannot describe structures (child elements can)

 attributes are more difficult to manipulate by program code

 attribute values are not easy to test against a DTD

If attributes as containers for data are used, you end up with documents that are difficult to read

and maintain. Try to use elements to describe data. Use attributes only to provide information

that is not relevant to the data.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 189

DTD – Entities

Entities are used to define shortcuts to special characters.

Entities can be declared internal or external.

An Internal Entity Declaration

Syntax

<!ENTITY entity-name "entity-value">

Example

DTD Example:

<!ENTITY writer "Donald Duck.">

<!ENTITY copyright "Copyright BNU.">

XML example:

<author>&writer;©right;</author>

An entity has three parts: an ampersand (&), an entity name, and a semicolon (;).

An External Entity Declaration

Syntax

<!ENTITY entity-name SYSTEM "URI/URL">

DTD Example:

<!ENTITY writer SYSTEM "http://www.nouman.com/entities.dtd">

<!ENTITY copyright SYSTEM "http://www.vu.edu.pk/entities.dtd">

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 190

XML example:

<author>&writer;©right;</author>

XML Schema

An XML Schema describes the structure of an XML document.

The purpose of an XML Schema is to define the legal building blocks of an XML document:

 the elements and attributes that can appear in a document

 the number of (and order of) child elements

 data types for elements and attributes

 default and fixed values for elements and attributes

The <schema> Element

The <schema> element is the root element of every XML Schema:

<?xml version="1.0"?>

<xs:schema>

...

...

</xs:schema>

The <schema> element may contain some attributes. A schema declaration often looks

something like this:

<?xml version="1.0"?>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 191

<xs:schema xmlns:xs="http://www.vu.edu.pk/XMLSchema"

targetNamespace="http://www.vu.edu.pk"

xmlns="http://www.vu.edu.pk"

elementFormDefault="qualified">

...

...

</xs:schema>

The following fragment:

xmlns:xs="http://www.vu.edu.pk/XMLSchema"

Indicates that the elements and data types used in the schema come from the

“http://www.vu.edu.pk/XMLSchema" namespace. It also specifies that the elements and data

types that come from the “http://www.vu.edu.pk/XMLSchema"namespace should be prefixed

with xs:

This fragment:

targetNamespace=" http://www.vu.edu.pk"

Indicates that the elements defined by this schema (note, to, from, heading, body.) come from the

“http://www.vu.edu.pk"namespace.

This fragment:

xmlns="http://www.vu.edu.pk"

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 192

Indicates that the default namespace is “http://www.vu.edu.pk".

This fragment:

elementFormDefault="qualified"

Indicates that any elements used by the XML instance document which were declared in this

schema must be namespace qualified.

XML on the Server

XML can easily be stored and generated by a standard web server.

XML files can be stored on an Internet server exactly the same way as HTML files.

Start Windows Notepad and write the following lines:

<?xml version="1.0" encoding="UTF-8"?>

<note>

 <from>Jani</from>

 <to>Tove</to>

 <message>Remember me this weekend</message>

</note>

Generating XML with PHP

XML can be generated on a server without any installed XML software.

To generate an XML response from the server using PHP, use following code:

<?php

header("Content-type: text/xml");

echo "<?xml version='1.0' encoding='UTF-8'?>";

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 193

echo "<note>";

echo "<from>Jani</from>";

echo "<to>Tove</to>";

echo "<message>Remember me this weekend</message>";

echo "</note>";

?>

The content type of the response header must be set to "text/xml".

Generating XML with ASP

To generate an XML response from the server - simply write the following code and save it as an

ASP file on the web server:

<%

response.ContentType="text/xml"

response.Write("<?xml version='1.0' encoding='UTF-8'?>")

response.Write("<note>")

response.Write("<from>Jani</from>")

response.Write("<to>Tove</to>")

response.Write("<message>Remember me this weekend</message>")

response.Write("</note>")

%>

The content type of the response must be set to "text/xml".

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 194

Generating XML from a Database

XML can be generated from a database without any installed XML software.

To generate an XML database response from the server, simply write the following code and

save it as an ASP file on the web server:

<%

response.ContentType = "text/xml"

set conn=Server.CreateObject("ADODB.Connection")

conn.provider="Microsoft.Jet.OLEDB.4.0;"

conn.open server.mappath("/datafolder/database.mdb")

sql="select fname,lname from tblGuestBook"

set rs=Conn.Execute(sql)

response.write("<?xml version='1.0' encoding='UTF-8'?>")

response.write("<guestbook>")

while (not rs.EOF)

response.write("<guest>")

response.write("<fname>" & rs("fname") & "</fname>")

response.write("<lname>" & rs("lname") & "</lname>")

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 195

response.write("</guest>")

rs.MoveNext()

wend

rs.close()

conn.close()

response.write("</guestbook>")

%>

Transforming XML with XSLT on the Server

This ASP transforms an XML file to XHTML on the server:

<%

'Load XML

set xml = Server.CreateObject("Microsoft.XMLDOM")

xml.async = false

xml.load(Server.MapPath("simple.xml"))

'Load XSL

set xsl = Server.CreateObject("Microsoft.XMLDOM")

xsl.async = false

xsl.load(Server.MapPath("simple.xsl"))

'Transform file

Response.Write(xml.transformNode(xsl))

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 196

%>

Example explained

 The first block of code creates an instance of the Microsoft XML parser (XMLDOM), and

loads the XML file into memory.

 The second block of code creates another instance of the parser and loads the XSL file into

memory.

 The last line of code transforms the XML document using the XSL document, and sends the

result as XHTML.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 197

Module 13 :(XML DOM)

DOM:

Document Object Model (DOM) is a platform and language-neutral interface that allows

programs and scripts to dynamically access and update the content, structure, and style of a

document like HTML and XML.

DOM defines the objects and properties and methods (interface) to access all XML elements.

The DOM is separated into 3 different parts:

 Core DOM - standard model for any structured document

 XML DOM - standard model for XML documents

 HTML DOM - standard model for HTML documents

HTML DOM

The HTML DOM defines a standard way for accessing and manipulating HTML documents. All

HTML elements can be accessed through the HTML DOM. The HTML DOM defines the

objects, properties and methods of all HTML elements.

Change the Value of an HTML Element

This example changes the value of an HTML element with id="demo":

Example

<h1 id="demo">This is a Heading</h1>

<script>

document.getElementById("demo").innerHTML = "Hello World!";

</script>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 198

This example changes the value of the first <h1> element in an HTML document:

Example

<h1>This is a Heading</h1>

<h1>This is a Heading</h1>

<script>

document.getElementsByTagName("h1")[0].innerHTML = "Hello World!";

</script>

Even if the HTML document containes only ONE <h1> element you still have to specify the

array index [0], because the getElementsByTagName() method always returns an array.

XML DOM

XML DOM is a standard object model for XML. XML documents have a hierarchy of

informational units called nodes; DOM is a standard programming interface of describing those

nodes and the relationships between them.

As XML DOM also provides an API that allows a developer to add, edit, move or remove nodes

at any point on the tree in order to create an application.

The XML DOM presents an XML document as a tree-structure. The HTML DOM presents an

HTML document as a tree-structure.

Below is the diagram for the DOM structure which depicts that parser evaluates an XML

document as a DOM structure by traversing through each nodes.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 199

Loading an XML File

The XML file used in the examples below is books.xml.

This example reads "books.xml" into xmlDoc and retrieves the text value of the first <title>

element in books.xml:

Example

<!DOCTYPE html>

<html>

<body>

<p id="demo"></p>

<script>

var xhttp = new XMLHttpRequest();

xhttp.onreadystatechange = function() {

 if (xhttp.readyState == 4 && xhttp.status == 200) {

 myFunction(xhttp);

 }

};

xhttp.open("GET", "books.xml", true);

xhttp.send();

function myFunction(xml) {

 var xmlDoc = xml.responseXML;

 document.getElementById("demo").innerHTML =

 xmlDoc.getElementsByTagName("title")[0].childNodes[0].nodeValue;

}

</script>

http://www.w3schools.com/xml/books.xml

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 200

</body>

</html>

Example Explained

 xmlDoc - the XML DOM object created by the parser.

 getElementsByTagName("title")[0] - get the first <title> element

 childNodes[0] - the first child of the <title> element (the text node)

 nodeValue - the value of the node (the text itself)

Loading an XML String

This example loads a text string into an XML DOM object, and extracts the info from it with

JavaScript:

Example

<html>

<body>

<p id="demo"></p>

<script>

var text, parser, xmlDoc;

text = "<bookstore><book>" +

"<title>Everyday Italian</title>" +

"<author>Giada De Laurentiis</author>" +

"<year>2005</year>" +

"</book></bookstore>";

parser = new DOMParser();

xmlDoc = parser.parseFromString(text,"text/xml");

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 201

document.getElementById("demo").innerHTML =

xmlDoc.getElementsByTagName("title")[0].childNodes[0].nodeValue;

</script>

</body>

</html>

Programming Interface

The DOM models XML as a set of node objects. The nodes can be accessed with JavaScript or

other programming languages. In this tutorial we use JavaScript.

The programming interface to the DOM is defined by a set standard properties and methods.

Properties are often referred to as something that is (i.e. nodename is "book").

Methods are often referred to as something that is done (i.e. delete "book").

XML DOM Properties

These are some typical DOM properties:

 x.nodeName - the name of x

 x.nodeValue - the value of x

 x.parentNode - the parent node of x

 x.childNodes - the child nodes of x

 x.attributes - the attributes nodes of x

In the list above, x is a node object.

XML DOM Methods

 x.getElementsByTagName(name) - get all elements with a specified tag name

 x.appendChild(node) - insert a child node to x

 x.removeChild(node) - remove a child node from x

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 202

Advantages

 XML DOM is language and platform independent.

 XML DOM is traversable - Information in XML DOM is organized in a hierarchy which

allows developer to navigate around the hierarchy looking for specific information.

 XML DOM is modifiable - It is dynamic in nature providing developer a scope to add, edit,

move or remove nodes at any point on the tree.

Disadvantages

 It consumes more memory (if the XML structure is large) as program written once remains in

memory all the time until and unless removed explicitly.

 Due to the larger usage of memory its operational speed, compared to SAX is slower.

XML DOM Nodes

A DOM document is a collection of nodes or pieces of information, organized in a hierarchy.

Some types of nodes may have child nodes of various types and others are leaf nodes that cannot

have anything below them in the document structure. Below is a list of the node types, and which

node types they may have as children:

 Document -- Element (maximum of one), ProcessingInstruction, Comment,

DocumentType (maximum of one)

 DocumentFragment -- Element, ProcessingInstruction, Comment, Text,

CDATASection, EntityReference

 EntityReference -- Element, ProcessingInstruction, Comment, Text, CDATASection,

EntityReference

 Element -- Element, Text, Comment, ProcessingInstruction, CDATASection,

EntityReference

 Attr -- Text, EntityReference

 ProcessingInstruction -- no children

 Comment -- no children

 Text -- no children

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 203

 CDATASection -- no children

 Entity -- Element, ProcessingInstruction, Comment, Text, CDATASection,

EntityReference

 Notation -- no children

Example

Consider the DOM representation of the following XML document node.xml.

<?xml version="1.0"?>

<Company>

 <Employee category="technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 </Employee>

 <Employee category="non-technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 </Employee>

</Company>

The Document Object Model of the above XML document would be as follows:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 204

From the above diagram we can interface:

 Node object can have only one parent node object. This occupies the position above all the

nodes. Here it is Company.

 The parent node can have multiple nodes called as child nodes. These child nodes can have

additional node called as attribute node. In the above example we have two attribute nodes

Technical and Non-Technical. The attribute node is not actually a child of the element node,

but is still associated with it.

 These child nodes in turn can have multiple child nodes. The text within the nodes is called

as text node.

 The node objects at the same level are called as siblings.

XML DOM Node Relationship

• Top node is the root

• Every node, except the root, has exactly one parent node

• A node can have multiple children

• A leaf node with no children

• Siblings have same parent

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 205

First Child - Last Child

Look at the following XML fragment:

<bookstore>

 <book category="cooking">

 <title lang="en">Everyday Italian</title>

 <author>Giada De Laurentiis</author>

 <year>2005</year>

 <price>30.00</price>

 </book>

</bookstore>

In the XML above, the <title> element is the first child of the <book> element, and the <price>

element is the last child of the <book> element.

Furthermore, the <book> element is the parent node of the <title>, <author>, <year>, and

<price> elements.

The DOM Identifies:

 The objects to represent the interface and manipulate the document.

 The relationship among the objects and interfaces.

The XMLHttpRequest Object

All modern browsers have a built-in XMLHttpRequest object to request data from a server. All

major browsers have a built-in XML parser to access and manipulate XML.

The XMLHttpRequest Object

 The XMLHttpRequest object can be used to request data from a web server.

 The XMLHttpRequest object is a developers dream, because you can:

 Update a web page without reloading the page

 Request data from a server - after the page has loaded

 Receive data from a server - after the page has loaded

 Send data to a server - in the background

Sending an XMLHttpRequest

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 206

All modern browsers have a built-in XMLHttpRequest object.

Example

var xhttp = new XMLHttpRequest();

xhttp.onreadystatechange = function() {

 if (xhttp.readyState == 4 && xhttp.status == 200) {

 // Action to be performed when the document is read;

 }

};

xhttp.open("GET", "filename", true);

xhttp.send();

}

Creating an XMLHttpRequest Object

The first line in the example above creates an XMLHttpRequest objet:

var xhttp = new XMLHttpRequest();

The onreadystatechange Event

The readyState property holds the status of the XMLHttpRequest. The onreadystatechange event

is triggered every time the readyState changes.

During a server request, the readyState changes from 0 to 4:

0: request not initialized

1: server connection established

2: request received

3: processing request

4: request finished and response is ready

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 207

In the onreadystatechange property, specify a function to be executed when the readyState

changes:

xhttp.onreadystatechange = function()

When readyState is 4 and status is 200, the response is ready:

if (xhttp.readyState == 4 && xhttp.status == 200)

XMLHttpRequest Properties and Methods

Method Description

new

XMLHttpRequest()
Creates a new XMLHttpRequest object

open(method, url,

async)

Specifies the type of request

method: the type of request: GET or POST

url: the file location

async: true (asynchronous) or false (synchronous)

send() Sends a request to the server (used for GET)

send(string) Sends a request string to the server (used for POST)

onreadystatechange A function to be called when the readyState property changes

readyState

The status of the XMLHttpRequest

0: request not initialized

1: server connection established

2: request received

3: processing request

4: request finished and response is ready

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 208

status
200: OK

404: Page not found

responseText The the response data as a string

responseXML The response data as XML data

Access Across Domains

For security reasons, modern browsers do not allow access across domains.

This means that both the web page and the XML file it tries to load, must be located on the same

server.

The response Text Property

The responseText property returns the response as a string. If you want to use the response as a

text string, use the responseText property:

Example

document.getElementById("demo").innerHTML = xmlhttp.responseText;

The response XML Property

The responseXML property returns the response as an XML DOM object. If you want to use the

response as an XML DOM object, use the responseXML property:

Example

Request the file cd_catalog.xml and use the response as an XML DOM object:

xmlDoc = xmlhttp.responseXML;

txt = "";

x = xmlDoc.getElementsByTagName("ARTIST");

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 209

for (i = 0; i < x.length; i++) {

 txt += x[i].childNodes[0].nodeValue + "
";

}

document.getElementById("demo").innerHTML = txt;

GET or POST

GET is simpler and faster than POST, and can be used in most cases.

However, always use POST requests when:

 A cached file is not an option (update a file or database on the server)

 Sending a large amount of data to the server (POST has no size limitations)

 Sending user input (which can contain unknown characters), POST is more robust and secure

than GET

The url - A File On a Server

The url parameter of the open() method, is an address to a file on a server:

xmlhttp.open("GET", "xmlhttp_info.txt", true);

The file can be any kind of file, like .txt and .xml, or server scripting files like .asp and .php

(which can perform actions on the server before sending the response back).

Asynchronous - True or False

To send the request asynchronously, the async parameter of the open() method has to be set to

true:

xmlhttp.open("GET", "xmlhttp_info.txt", true);

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 210

Sending asynchronously requests is a huge improvement for web developers. Many of the tasks

performed on the server are very time consuming.

By sending asynchronously, the JavaScript does not have to wait for the server response, but can

instead:

 Execute other scripts while waiting for server response

 Deal with the response when the response is ready

Async = true

When using async = true, specify a function to execute when the response is ready in the

onreadystatechange event:

Example

xmlhttp.onreadystatechange = function() {

 if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

 document.getElementById("demo").innerHTML = xmlhttp.responseText;

 }

};

xmlhttp.open("GET", "xmlhttp_info.txt", true);

xmlhttp.send();

Async = false

To use async = false, change the third parameter in the open() method to false:

xmlhttp.open("GET", "xmlhttp_info.txt", false);

Using async = false is not recommended, but for a few small requests this can be ok.

When you use async = false, do NOT write an onreadystatechange function - just put the code

after the send() statement:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 211

Example

xmlhttp.open("GET", "xmlhttp_info.txt", false);

xmlhttp.send();

document.getElementById("demo").innerHTML = xmlhttp.responseText;

XML Parser

All modern browsers have a built-in XML parser. The XML Document Object Model (the XML

DOM) contains a lot of methods to access and edit XML. However, before an XML document

can be accessed, it must be loaded into an XML DOM object. An XML parser can read plain text

and convert it into an XML DOM object.

Parsing a Text String

This example parses a text string into an XML DOM object, and extracts the information from it

with JavaScript:

Example

<html>

<body>

<p id="demo"></p>

<script>

var text, parser, xmlDoc;

text = "<bookstore><book>" +

"<title>Everyday Italian</title>" +

"<author>Giada De Laurentiis</author>" +

"<year>2005</year>" +

"</book></bookstore>";

parser = new DOMParser();

xmlDoc = parser.parseFromString(text,"text/xml");

document.getElementById("demo").innerHTML =

xmlDoc.getElementsByTagName("title")[0].childNodes[0].nodeValue;

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 212

</script>

</body>

</html>

Accessing Nodes

You can access a node in three ways:

1. By using the getElementsByTagName() method

2. By looping through (traversing) the nodes tree.

3. By navigating the node tree, using the node relationships.

The getElementsByTagName() Method

getElementsByTagName() returns all elements with a specified tag name.

Syntax

node.getElementsByTagName("tagname");

Example

The following example returns all <title> elements under the x element:

x.getElementsByTagName("title");

The example above only returns <title> elements under the x node. To return all <title> elements

in the XML document use:

xmlDoc.getElementsByTagName("title");

where xmlDoc is the document itself (document node).

DOM Node List

The getElementsByTagName() method returns a node list. A node list is an array of nodes.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 213

x = xmlDoc.getElementsByTagName("title");

The <title> elements in x can be accessed by index number. To access the third <title> you can

write:

y = x[2];

The index starts at 0.

DOM Node List Length

The length property defines the length of a node list (the number of nodes).

You can loop through a node list by using the length property:

Example

var x = xmlDoc.getElementsByTagName("title");

for (i = 0; i <x.length; i++) {

 // do something for each node

 }

Node Types

The documentElement property of the XML document is the root node.

The nodeName property of a node is the name of the node.

The nodeType property of a node is the type of the node.

Traversing Nodes

The following code loops through the child nodes, that are also element nodes, of the root node:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 214

Example

txt = "";

x = xmlDoc.documentElement.childNodes;

for (i = 0; i <x.length; i++) {

 // Process only element nodes (type 1)

 if (x[i].nodeType == 1) {

 txt += x[i].nodeName + "
";

 }

}

Example explained:

 Suppose you have loaded "books.xml" into xmlDoc

 Get the child nodes of the root element (xmlDoc)

 For each child node, check the node type. If the node type is "1" it is an element node

 Output the name of the node if it is an element node

Navigating Node Relationships

The following code navigates the node tree using the node relationships:

Example

x = xmlDoc.getElementsByTagName("book")[0];

xlen = x.childNodes.length;

y = x.firstChild;

txt = "";

for (i = 0; i <xlen; i++) {

 // Process only element nodes (type 1)

 if (y.nodeType == 1) {

 txt += y.nodeName + "
";

 }

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 215

 y = y.nextSibling;

}

Example explained:

 Suppose you have loaded "books.xml"into xmlDoc

 Get the child nodes of the first book element

 Set the "y" variable to be the first child node of the first book element

 For each child node (starting with the first child node "y"):

 Check the node type. If the node type is "1" it is an element node

 Output the name of the node if it is an element node

 Set the "y" variable to be the next sibling node, and run through the loop again

Node Properties

In the XML DOM, each node is an object. Objects have methods and properties that can be

accessed and manipulated by JavaScript.

Three important node properties are:

 nodeName

 nodeValue

 nodeType

The node Name Property

The nodeName property specifies the name of a node.

 nodeName is read-only

 nodeName of an element node is the same as the tag name

 nodeName of an attribute node is the attribute name

 nodeName of a text node is always #text

 nodeName of the document node is always #document

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 216

The node Value Property

The nodeValue property specifies the value of a node.

 nodeValue for element nodes is undefined

 nodeValue for text nodes is the text itself

 nodeValue for attribute nodes is the attribute value

Get the Value of an Element

The following code retrieves the text node value of the first <title> element:

Example

var x = xmlDoc.getElementsByTagName("title")[0].childNodes[0];

var txt = x.nodeValue;

Result: txt = "Everyday Italian"

Example explained:

 Suppose you have loaded "books.xml" into xmlDoc

 Get text node of the first <title> element node

 Set the txt variable to be the value of the text node

Change the Value of an Element

The following code changes the text node value of the first <title> element:

Example

var x = xmlDoc.getElementsByTagName("title")[0].childNodes[0];

x.nodeValue = "Easy Cooking";

Example explained:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 217

 Suppose you have loaded "books.xml" into xmlDoc

 Get text node of the first <title> element node

 Change the value of the text node to "Easy Cooking"

The nodeType Property

The nodeType property specifies the type of node. nodeType is read only.

The most important node types are:

Node type NodeType

Element 1

Attribute 2

Text 3

Comment 8

Document 9

Node List

When using properties or methods like childNodes or getElementsByTagName(), a node list

object is returned. A node list object represents a list of nodes, in the same order as in the XML.

Nodes in the node list are accessed with index numbers starting from 0.

The following image represents a node list of the <title> elements in "books.xml":

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 218

Suppose "books.xml" is loaded into the variable xmlDoc.

This code fragment returns a node list of title elements in "books.xml":

x = xmlDoc.getElementsByTagName("title");

After the execution of the statement above, x is a node list object.

The following code fragment returns the text from the first <title> element in the node list (x):

Example

var txt = x[0].childNodes[0].nodeValue;

Node List Length

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 219

A node list object keeps itself up-to-date. If an element is deleted or added, the list is

automatically updated. The length property of a node list is the number of nodes in the list.

This code fragment returns the number of <title> elements in "books.xml":

x = xmlDoc.getElementsByTagName('title').length;

After the execution of the statement above, the value of x will be 4. The length of the node list

can be used to loop through all the elements in the list.

This code fragment uses the length property to loop through the list of <title> elements:

Example

x = xmlDoc.getElementsByTagName('title');

xLen = x.length;

for (i = 0; i <xLen; i++) {

 txt += x[i].childNodes[0].nodeValue) + " ";

}

Output:

Everyday Italian

Harry Potter

XQuery Kick Start

Learning XML

Example explained:

1. Suppose "books.xml" is loaded into xmlDoc

2. Set the x variable to hold a node list of all title elements

3. Collect the text node values from <title> elements

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 220

DOM Attribute List (Named Node Map)

The attributes property of an element node returns a list of attribute nodes. This is called a named

node map, and is similar to a node list, except for some differences in methods and properties. A

attribute list keeps itself up-to-date. If an attribute is deleted or added, the list is automatically

updated.

This code fragment returns a list of attribute nodes from the first <book> element in

"books.xml":

x = xmlDoc.getElementsByTagName('book')[0].attributes;

After the execution of the code above, x.length = is the number of attributes and

x.getNamedItem() can be used to return an attribute node.

This code fragment gets the value of the "category" attribute, and the number of attributes, of a

book:

Example

x = xmlDoc.getElementsByTagName("book")[0].attributes;

txt = x.getNamedItem("category").nodeValue + " " + x.length);

Output:

cooking 1

Example explained:

 Suppose "books.xml" is loaded into xmlDoc

 Set the x variable to hold a list of all attributes of the first <book> element

 Get the value of the "category" attribute and the length of the attribute list

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 221

Traverse Node Tree

Traversing means looping through or traveling across the node tree.

Often you want to loop an XML document, for example: when you want to extract the value of

each element. This is called "Traversing the node tree".

The example below loops through all child nodes of <book>, and displays their names and

values:

Example

<!DOCTYPE html>

<html>

<body>

<p id="demo"></p>

<script>

var x, i ,xmlDoc;

var txt = "";

var text = "<book>" +

"<title>Everyday Italian</title>" +

"<author>Giada De Laurentiis</author>" +

"<year>2005</year>" +

"</book>";

parser = new DOMParser();

xmlDoc = parser.parseFromString(text,"text/xml");

// documentElement always represents the root node

x = xmlDoc.documentElement.childNodes;

for (i = 0; i < x.length ;i++) {

 txt += x[i].nodeName + ": " + x[i].childNodes[0].nodeValue + "
";

}

document.getElementById("demo").innerHTML = txt;

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 222

</script>

</body>

</html>

Output:

title: Everyday Italian

author: Giada De Laurentiis

year: 2005

Example explained:

 Load the XML string into xmlDoc

 Get the child nodes of the root element

 For each child node, output the node name and the node value of the text node

Browser Differences in DOM Parsing

All modern browsers support the W3C DOM specification. However, there are some differences

between browsers. One important difference is:

The way they handle white-spaces and new lines

DOM - White Spaces and New Lines

XML often contains new line, or white space characters, between nodes. This is often the case

when the document is edited by a simple editor like Notepad.

The following example (edited by Notepad) contains CR/LF (new line) between each line and

two spaces in front of each child node:

<book>

 <title>Everyday Italian</title>

 <author>Giada De Laurentiis</author>

 <year>2005</year>

 <price>30.00</price>

</book>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 223

Internet Explorer 9 and earlier do NOT treat empty white-spaces, or new lines as text nodes,

while other browsers do.

The following example will output the number of child nodes the root element (of books.xml)

has. IE9 and earlier will output 4 child nodes, while IE10 and later versions, and other browsers

will output 9 child nodes:

Example

function myFunction(xml) {

var xmlDoc = xml.responseXML;

 x = xmlDoc.documentElement.childNodes;

 document.getElementById("demo").innerHTML =

 "Number of child nodes: " + x.length;

}

PCDATA - Parsed Character Data

XML parsers normally parse all the text in an XML document. When an XML element is parsed,

the text between the XML tags is also parsed:

<message>This text is also parsed</message>

The parser does this because XML elements can contain other elements, as in this example,

where the <name> element contains two other elements (first and last):

<name><first>Bill</first><last>Gates</last></name>

and the parser will break it up into sub-elements like this:

<name>

 <first>Bill</first>

 <last>Gates</last>

</name>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 224

Parsed Character Data (PCDATA) is a term used about text data that will be parsed by the XML

parser.

CDATA - (Unparsed) Character Data

The term CDATA is used about text data that should not be parsed by the XML parser.

Characters like "<" and "&" are illegal in XML elements.

"<" will generate an error because the parser interprets it as the start of a new element.

"&" will generate an error because the parser interprets it as the start of a character entity.

Some text, like JavaScript code, contains a lot of "<" or "&" characters. To avoid errors script

code can be defined as CDATA. Everything inside a CDATA section is ignored by the parser.

A CDATA section starts with "<![CDATA[" and ends with "]]>":

<script>

<![CDATA[

function matchwo(a,b) {

 if (a < b && a < 0) {

 return 1;

 } else {

 return 0;

 }

}

]]>

</script>

In the example above, everything inside the CDATA section is ignored by the parser. A CDATA

section cannot contain the string "]]>". Nested CDATA sections are not allowed. The "]]>" that

marks the end of the CDATA section cannot contain spaces or line breaks.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 225

Navigating Nodes

Nodes can be navigated using node relationships. Accessing nodes in the node tree via the

relationship between nodes, is often called "navigating nodes".

In the XML DOM, node relationships are defined as properties to the nodes:

 parentNode

 childNodes

 firstChild

 lastChild

 nextSibling

 previousSibling

The following image illustrates a part of the node tree and the relationship between nodes in

books.xml:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 226

Parent Node

All nodes have exactly one parent node. The following code navigates to the parent node of

<book>:

Example

function myFunction(xml) {

var xmlDoc = xml.responseXML;

 var x = xmlDoc.getElementsByTagName("book")[0];

 document.getElementById("demo").innerHTML = x.parentNode.nodeName;

}

Example explained:

1. Load "books.xml" into xmlDoc

2. Get the first <book> element

3. Output the node name of the parent node of "x"

Avoid Empty Text Nodes

Firefox, and some other browsers, will treat empty white-spaces or new lines as text nodes,

Internet Explorer will not. This causes a problem when using the properties: firstChild, lastChild,

nextSibling, previousSibling. To avoid navigating to empty text nodes (spaces and new-line

characters between element nodes), we use a function that checks the node type:

function get_nextSibling(n) {

 var y = n.nextSibling;

 while (y.nodeType! = 1) {

 y = y.nextSibling;

 }

 return y;}

javascript:void(0)

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 227

The function above allows you to use get_nextSibling(node) instead of the property

node.nextSibling.

Code explained:

Element nodes are type 1. If the sibling node is not an element node, it moves to the next nodes

until an element node is found. This way, the result will be the same in both Internet Explorer

and Firefox.

Get the First Child Element

The following code displays the first element node of the first <book>:

Example

<!DOCTYPE html>

<html>

<body>

<p id="demo"></p>

<script>

var xhttp = new XMLHttpRequest();

xhttp.onreadystatechange = function() {

 if (xhttp.readyState == 4 && xhttp.status == 200) {

 myFunction(xhttp);

 }

};

xhttp.open("GET", "books.xml", true);

xhttp.send();

function myFunction(xml) {

 var xmlDoc = xml.responseXML;

 var x = get_firstChild(xmlDoc.getElementsByTagName("book")[0]);

 document.getElementById("demo").innerHTML = x.nodeName;

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 228

}

//check if the first node is an element node

function get_firstChild(n) {

 var y = n.firstChild;

 while (y.nodeType != 1) {

 y = y.nextSibling;

 }

 return y;

}

</script>

</body>

</html>

Output:

Title

Example explained:

1. Load "books.xml" into xmlDoc

2. Use the get_firstChild function on the first <book> element node to get the first child node

that is an element node

3. Output the node name of first child node that is an element node

javascript:void(0)

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 229

Get Node Values

The nodeValue property is used to get the text value of a node. The getAttribute() method returns

the value of an attribute.

Get the Value of an Element

In the DOM, everything is a node. Element nodes do not have a text value. The text value of an

element node is stored in a child node. This node is called a text node.

The getElementsByTagName Method

The getElementsByTagName() method returns a node list of all elements, with the specified tag

name, in the same order as they appear in the source document.

For example: "books.xml" has been loaded into xmlDoc.

This code retrieves the first <title> element:

var x = xmlDoc.getElementsByTagName("title")[0];

The ChildNodes Property

The childNodes property returns a list of an element's child nodes.

The following code retrieves the text node of the first <title> element:

x = xmlDoc.getElementsByTagName("title")[0];

y = x.childNodes[0];

The nodeValue Property

The nodeValue property returns the text value of a text node. The following code retrieves the

text value of the text node of the first <title> element:

Example

x = xmlDoc.getElementsByTagName("title")[0];

y = x.childNodes[0];

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 230

z = y.nodeValue;

Resul in z: "Everyday Italian"

Get the Value of an Attribute

In the DOM, attributes are nodes. Unlike element nodes, attribute nodes have text values. The

way to get the value of an attribute, is to get its text value. This can be done using the

getAttribute() method or using the nodeValue property of the attribute node.

Get an Attribute Value - getAttribute()

The getAttribute() method returns an attribute's value. The following code retrieves the text value

of the "lang" attribute of the first <title> element:

Example

x = xmlDoc.getElementsByTagName("title")[0];

txt = x.getAttribute("lang");

Get an Attribute Value - getAttributeNode()

The getAttributeNode() method returns an attribute node. The following code retrieves the text

value of the "lang" attribute of the first <title> element:

Example

x = xmlDoc.getElementsByTagName("title")[0];

y = x.getAttributeNode("lang");

txt = y.nodeValue;

Change Node Values

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 231

The nodeValue property is used to change a node value. The setAttribute() method is used to

change an attribute value.

Change the Value of an Element

Element nodes do not have a text value. The text value of an element node is stored in a child

node. This node is called a text node.

Change the Value of a Text Node

The nodeValue property can be used to change the value of a text node. For Example:

"books.xml" has been loaed into xmlDoc. This code changes the text node value of the first

<title> element:

Example

xmlDoc.getElementsByTagName("title")[0].childNodes[0].nodeValue = "new content"

Example explained:

 Suppose "books.xml" is loaded into xmlDoc

 Get the first child node of the <title> element

 Change the node value to "new content"

Change the Value of an Attribute

Attributes are nodes. Unlike element nodes, attribute nodes have text values. The way to change

the value of an attribute, is to change its text value. This can be done using the setAttribute()

method or setting the nodeValue property of the attribute node.

Change an Attribute Using setAttribute()

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 232

The setAttribute() method changes the value of an attribute. If the attribute does not exist, a new

attribute is created. This code changes the category attribute of the <book> element:

Example

xmlDoc.getElementsByTagName("book")[0].setAttribute("category","food");

Example explained:

 Suppose "books.xml" is loaded into xmlDoc

 Get the first <book> element

 Change the "category" attribute value to "food"

Change an Attribute Using nodeValue

The nodeValue property is the value of an attribute node. Changing the value property changes

the value of the attribute.

Example

xmlDoc.getElementsByTagName("book")[0].getAttributeNode("category").nodeValue = "food";

Example explained:

 Suppose "books.xml" is loaded into xmlDoc

 Get the "category" attribute of the first <book> element

 Change the attribute node value to "food"

Remove Nodes

The removeChild() method removes a specified node. The removeAttribute() method removes a

specified attribute.

Remove an Element Node

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 233

The removeChild() method removes a specified node. When a node is removed, all its child

nodes are also removed. This code will remove the first <book> element from the loaded xml:

Example

y = xmlDoc.getElementsByTagName("book")[0];

xmlDoc.documentElement.removeChild(y);

Example explained:

 Suppose "books.xml" is loaded xmlDoc

 Set the variable y to be the element node to remove

 Remove the element node by using the removeChild() method from the parent node

Remove Myself - Remove the Current Node

The removeChild() method is the only way to remove a specified node. When you have

navigated to the node you want to remove, it is possible to remove that node using the

parentNode property and the removeChild() method:

Example

x = xmlDoc.getElementsByTagName("book")[0];

x.parentNode.removeChild(x);

Example explained:

 Suppose "books.xml" is loaded into xmlDoc

 Set the variable y to be the element node to remove

 Remove the element node by using the parentNode property and the removeChild() method

Remove a Text Node

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 234

The removeChild() method can also be used to remove a text node:

Example

x = xmlDoc.getElementsByTagName("title")[0];

y = x.childNodes[0];

x.removeChild(y);

Example explained:

 Suppose "books.xml" is loaded into xmlDoc

 Set the variable x to be the first title element node

 Set the variable y to be the text node to remove

 Remove the element node by using the removeChild() method from the parent node

It is not very common to use removeChild() just to remove the text from a node. The nodeValue

property can be used instead.

Clear a Text Node

The nodeValue property can be used to change the value of a text node:

Example

xmlDoc.getElementsByTagName("title")[0].childNodes[0].nodeValue = "";

Example explained:

 Suppose "books.xml" is loaded into xmlDoc

 Get the first title element's first child node.

 Use the nodeValue property to clear the text from the text node

Remove an Attribute Node by Name

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 235

The removeAttribute() method removes an attribute node by its name.

Example: removeAttribute('category')

This code removes the "category" attribute in the first <book> element:

Example

x = xmlDoc.getElementsByTagName("book");

x[0].removeAttribute("category");

Example explained:

 Suppose "books.xml" is loaded into xmlDoc

 Use getElementsByTagName() to get book nodes

 Remove the "category" attribute form the first book element node

Remove Attribute Nodes by Object

The removeAttributeNode() method removes an attribute node, using the node object as

parameter.

Example: removeAttributeNode(x)

This code removes all the attributes of all <book> elements:

Example

x = xmlDoc.getElementsByTagName("book");

for (i = 0; i < x.length; i++) {

 while (x[i].attributes.length > 0) {

 attnode = x[i].attributes[0];

 old_att = x[i].removeAttributeNode(attnode);

 }

}

Example explained:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 236

 Suppose "books.xml" is loaded into xmlDoc

 Use getElementsByTagName() to get all book nodes

 For each book element check if there are any attributes

 While there are attributes in a book element, remove the attribute

Replace Nodes

The replaceChild() method replaces a specified node. The nodeValue property replaces text in a

text node.

Replace an Element Node

The replaceChild() method is used to replace a node. The following code fragment replaces the

first <book> element:

Example

xmlDoc=loadXMLDoc("books.xml");

x=xmlDoc.documentElement;

//create a book element, title element and a text node

newNode=xmlDoc.createElement("book");

newTitle=xmlDoc.createElement("title");

newText=xmlDoc.createTextNode("A Notebook");

//add the text node to the title node,

newTitle.appendChild(newText);

//add the title node to the book node

newNode.appendChild(newTitle);

y=xmlDoc.getElementsByTagName("book")[0]

//replace the first book node with the new node

x.replaceChild(newNode,y);

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 237

Example explained:

 Load "books.xml" into xmlDoc

 Create a new element node <book>

 Create a new element node <title>

 Create a new text node with the text "A Notebook"

 Append the new text node to the new element node <title>

 Append the new element node <title> to the new element node <book>

 Replace the first <book> element node with the new <book> element node

Replace Data In a Text Node

The replaceData() method is used to replace data in a text node. The replaceData() method has

three parameters:

 offset - Where to begin replacing characters. Offset value starts at zero

 length - How many characters to replace

 string - The string to insert

Example

xmlDoc=loadXMLDoc("books.xml");

x=xmlDoc.getElementsByTagName("title")[0].childNodes[0];

x.replaceData(0,8,"Easy");

Example explained:

 Load "books.xml" into xmlDoc

 Get the text node of the first <title> element node

 Use the replaceData method to replace the eight first characters from the text node with

"Easy"

Use the nodeValue Property Instead

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 238

It is easier to replace the data in a text node using the nodeValue property. The following code

fragment will replace the text node value in the first <title> element with "Easy Italian":

Example

xmlDoc=loadXMLDoc("books.xml");

x=xmlDoc.getElementsByTagName("title")[0].childNodes[0];

x.nodeValue="Easy Italian";

Example explained:

 Load "books.xml" into xmlDoc

 Get the text node of the first <title> element node

 Use the nodeValue property to change the text of the text node

Create a New Element Node

The createElement() method creates a new element node:

Example

newElement = xmlDoc.createElement("edition");

xmlDoc.getElementsByTagName("book")[0].appendChild(newElement);

Example explained:

 Suppose "books.xml" is loaded into xmlDoc

 Create a new element node <edition>

 Append the element node to the first <book> element

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 239

Create a New Attribute Node

The createAttribute() is used to create a new attribute node:

Example

newAtt = xmlDoc.createAttribute("edition");

newAtt.nodeValue = "first";

xmlDoc.getElementsByTagName("title")[0].setAttributeNode(newAtt);

Example explained:

 Suppose "books.xml" is loaded into xmlDoc

 Create a new attribute node "edition"

 Set the value of the attribute node to "first"

 Add the new attribute node to the first <title> element

Create an Attribute Using setAttribute()

Since the setAttribute() method creates a new attribute if the attribute does not exist, it can be

used to create a new attribute.

Example

exmlDoc.getElementsByTagName('book')[0].setAttribute("edition","first");

Example explained:

 Suppose "books.xml" is loaded into xmlDoc

 Set the attribute "edition" value to "first" for the first <book> element

Create a Text Node

The createTextNode() method creates a new text node:

Example

newEle = xmlDoc.createElement("edition");

newText = xmlDoc.createTextNode("first");

newEle.appendChild(newText);

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 240

xmlDoc.getElementsByTagName("book")[0].appendChild(newEle);

Example explained:

 Suppose "books.xml" is loaded into xmlDoc

 Create a new element node <edition>

 Create a new text node with the text "first"

 Append the new text node to the element node

 Append the new element node to the first <book> element

Create a CDATA Section Node

The createCDATASection() method creates a new CDATA section node.

Example

newCDATA = xmlDoc.createCDATASection("Special Offer & Book Sale");

xmlDoc.getElementsByTagName("book")[0].appendChild(newCDATA);

Example explained:

 Suppose "books.xml" is loaded into xmlDoc

 Create a new CDATA section node

 Append the new CDATA node to the first <book> element

Loop through, and add a CDATA section, to all <book> elements: Try it yourself

Create a Comment Node

The createComment() method creates a new comment node.

Example

newComment = xmlDoc.createComment("Revised March 2015");

xmlDoc.getElementsByTagName("book")[0].appendChild(newComment);

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 241

Example explained:

 Suppose "books.xml" is loaded into xmlDoc using

 Create a new comment node

 Append the new comment node to the first <book> element

Add a Node - appendChild()

The appendChild() method adds a child node to an existing node. The new node is added

(appended) after any existing child nodes.

This code fragment creates an element (<edition>), and adds it after the last child of the first

<book> element:

Example

newEle = xmlDoc.createElement("edition");

xmlDoc.getElementsByTagName("book")[0].appendChild(newEle);

Example explained:

 Suppose "books.xml" is loaded into xmlDoc

 Create a new node <edition>

 Append the node to the first <book> element

This code fragment does the same as above, but the new element is added with a value:

Example

newEle = xmlDoc.createElement("edition");

newText=xmlDoc.createTextNode("first");

newEle.appendChild(newText);

xmlDoc.getElementsByTagName("book")[0].appendChild(newEle);

Example explained:

 Suppose "books.xml" is loaded into xmlDoc

 Create a new node <edition>

 Create a new text node "first"

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 242

 Append the text node to the <edition> node

 Append the <addition> node to the <book> element

Insert a Node - insertBefore()

The insertBefore() method inserts a node before a specified child node. This method is useful

when the position of the added node is important:

Example

newNode = xmlDoc.createElement("book");

x = xmlDoc.documentElement;

y = xmlDoc.getElementsByTagName("book")[3];

x.insertBefore(newNode,y);

Example explained:

 Suppose "books.xml" is loaded into xmlDoc

 Create a new element node <book>

 Insert the new node in front of the last <book> element node

If the second parameter of insertBefore() is null, the new node will be added after the last

existing child node.

x.insertBefore(newNode,null) and x.appendChild(newNode) will both append a new child node

to x.

Add a New Attribute

The setAttribute() method sets the value of an attribute.

Example

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 243

xmlDoc.getElementsByTagName('book')[0].setAttribute("edition","first");

Example explained:

 Suppose "books.xml" has been loaded into xmlDoc

 Set the value of the attribute "edition" to "first" for the first <book> element

If the attribute already exists, the setAttribute() method will overwrite the existing value.

Add Text to a Text Node - insertData()

The insertData() method inserts data into an existing text node. The insertData() method has two

parameters:

 offset - Where to begin inserting characters (starts at zero)

 string - The string to insert

The following code fragment will add "Easy" to the text node of the first <title> element of the

loaded XML:

Example

xmlDoc.getElementsByTagName("title")[0].childNodes[0].insertData(0,"Easy ");

Copy a Node

The cloneNode() method creates a copy of a specified node. The cloneNode() method has a

parameter (true or false). This parameter indicates if the cloned node should include all attributes

and child nodes of the original node. The following code fragment copies the first <book> node

and appends it to the root node of the document:

Example

oldNode = xmlDoc.getElementsByTagName('book')[0];

newNode = oldNode.cloneNode(true);

xmlDoc.documentElement.appendChild(newNode);

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 244

Result:

Everyday Italian

Harry Potter

XQuery Kick Start

Learning XML

Everyday Italian

Example explained:

 Suppose "books.xml" is loaded into xmlDoc

 Get the node to copy (oldNode)

 Clone the node into "newNode"

 Append the new node to the the root node of the XML document

Node Types

The following table lists the different W3C node types, and which node types they may have as

children:

Node Type Description Children

Document
Represents the entire document (the

root-node of the DOM tree)

Element (max. one),

ProcessingInstruction,

Comment, DocumentType

DocumentFragment

Represents a "lightweight" Document

object, which can hold a portion of a

document

Element,

ProcessingInstruction,

Comment, Text,

CDATASection,

EntityReference

DocumentType
Provides an interface to the entities

defined for the document
None

ProcessingInstruction Represents a processing instruction None

EntityReference Represents an entity reference

Element,

ProcessingInstruction,

Comment, Text,

CDATASection,

EntityReference

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 245

Element Represents an element

Element, Text, Comment,

ProcessingInstruction,

CDATASection,

EntityReference

Attr Represents an attribute Text, EntityReference

Text
Represents textual content in an

element or attribute
None

CDATASection

Represents a CDATA section in a

document (text that will NOT be

parsed by a parser)

None

Comment Represents a comment None

Entity Represents an entity

Element,

ProcessingInstruction,

Comment, Text,

CDATASection,

EntityReference

Notation
Represents a notation declared in the

DTD
None

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 246

Modue 14: Introduction to JAXP

The Java API for XML Processing (JAXP) is for processing XML data using applications

written in the Java programming language. JAXP leverages the parser standards Simple API for

XML Parsing (SAX) and Document Object Model (DOM) so that you can choose to parse your

data as a stream of events or to build an object representation of it. JAXP also supports the

Extensible Stylesheet Language Transformations (XSLT) standard, giving you control over the

presentation of the data and enabling you to convert the data to other XML documents or to other

formats, such as HTML. JAXP also provides namespace support, allowing you to work with

DTDs that might otherwise have naming conflicts. Finally, as of version 1.4, JAXP implements

the Streaming API for XML (StAX) standard.

Designed to be flexible, JAXP allows you to use any XML-compliant parser from within your

application. It does this with what is called a pluggability layer, which lets you plug in an

implementation of the SAX or DOM API. The pluggability layer also allows you to plug in an

XSL processor, letting you control how your XML data is displayed.

Overview of the Packages

The SAX and DOM APIs are defined by the XML-DEV group and by the W3C, respectively.

The libraries that define those APIs are as follows:

 javax.xml.parsers: The JAXP APIs, which provide a common interface for different

vendors' SAX and DOM parsers.

 org.w3c.dom: Defines the Document class (a DOM) as well as classes for all the

components of a DOM.

 org.xml.sax: Defines the basic SAX APIs.

 javax.xml.transform: Defines the XSLT APIs that let you transform XML into other forms.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 247

 javax.xml.stream: Provides StAX-specific transformation APIs.

SAX Packages

The Simple API for XML (SAX) is the event-driven, serial-access mechanism that does element-

by-element processing. The API for this level reads and writes XML to a data repository or the

web. For server-side and high-performance applications, you will want to fully understand this

level. But for many applications, a minimal understanding will suffice.

DOM Packages

The DOM API is generally an easier API to use. It provides a familiar tree structure of objects.

You can use the DOM API to manipulate the hierarchy of application objects it encapsulates.

The DOM API is ideal for interactive applications because the entire object model is present in

memory, where it can be accessed and manipulated by the user.

Comparison:

On the other hand, constructing the DOM requires reading the entire XML structure and holding

the object tree in memory, so it is much more CPU- and memory-intensive. For that reason, the

SAX API tends to be preferred for server-side applications and data filters that do not require an

in-memory representation of the data.

The XSLT APIs defined in javax.xml.transform let you write XML data to a file or convert it

into other forms. As shown in the XSLT section of this tutorial, you can even use it in

conjunction with the SAX APIs to convert legacy data to XML.

Finally, the StAX APIs defined in javax.xml.stream provide a streaming Java technology-based,

event-driven, pull-parsing API for reading and writing XML documents. StAX offers a simpler

programming model than SAX and more efficient memory management than DOM.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 248

Simple API for XML APIs

The basic outline of the SAX parsing APIs is shown below. To start the process, an instance of

the SAXParserFactory class is used to generate an instance of the parser.

The parser wraps a SAXReader object. When the parser's parse() method is invoked, the reader

invokes one of several callback methods implemented in the application. Those methods are

defined by the interfaces ContentHandler, ErrorHandler, DTDHandler, and EntityResolver.

Summary of the key SAX APIs:

SAX Parser Factory

A SAXParserFactory object creates an instance of the parser determined by the system

property, javax.xml.parsers.SAXParserFactory.

SAX Parser

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 249

The SAXParser interface defines several kinds of parse() methods. In general, you pass

an XML data source and a DefaultHandler object to the parser, which processes the XML

and invokes the appropriate methods in the handler object.

SAX Reader

The SAXParser wraps a SAXReader. It is the SAXReader that carries on the

conversation with the SAX event handlers you define.

Default Handler

A DefaultHandler implements the ContentHandler, ErrorHandler, DTDHandler, and

EntityResolver interfaces (with null methods), so you can override only the ones you are

interested in.

Content Handler

Methods such as startDocument, endDocument, startElement, and endElement are

invoked when an XML tag is recognized. This interface also defines the methods

characters() and processingInstruction(), which are invoked when the parser encounters

the text in an XML element or an inline processing instruction, respectively.

Error Handler

Methods error(), fatalError(), and warning() are invoked in response to various parsing

errors. The default error handler throws an exception for fatal errors and ignores other

errors (including validation errors). Sometimes, the application may be able to recover

from a validation error. Other times, it may need to generate an exception. To ensure the

correct handling, you will need to supply your own error handler to the parser.

DTD Handler

Defines methods you will generally never be called upon to use. Used when processing a

DTD to recognize and act on declarations for an unparsed entity.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 250

Entity Resolver

The resolveEntity method is invoked when the parser must identify data identified by a

URI. In most cases, a URI is simply a URL, which specifies the location of a document,

but in some cases the document may be identified by a URN - a public identifier, or

name, that is unique in the web space. The public identifier may be specified in addition

to the URL. The EntityResolver can then use the public identifier instead of the URL to

find the document-for example, to access a local copy of the document if one exists.

A typical application implements most of the ContentHandler methods, at a minimum. Because

the default implementations of the interfaces ignore all inputs except for fatal errors, a robust

implementation may also want to implement the ErrorHandler methods.

SAX Packages

The SAX parser is defined in the packages listed in the following Table.

Packages Description

org.xml.sax Defines the SAX interfaces. The name org.xml is the package prefix that

was settled on by the group that defined the SAX API.

org.xml.sax.ext Defines SAX extensions that are used for doing more sophisticated SAX

processing-for example, to process a document type definition (DTD) or to

see the detailed syntax for a file.

org.xml.sax.helpers Contains helper classes that make it easier to use SAX-for example, by

defining a default handler that has null methods for all the interfaces, so

that you only need to override the ones you actually want to implement.

https://docs.oracle.com/javase/tutorial/jaxp/intro/simple.html#gceyy

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 251

javax.xml.parsers Defines the SAXParserFactory class, which returns the SAXParser. Also

defines exception classes for reporting errors.

Document Object Model APIs

Figure DOM APIs

javax.xml.parsers.DocumentBuilderFactory class is used to get a DocumentBuilder instance, and

that instance can also be used to produce a Document object that conforms to the DOM

specification. The builder which is get, in fact, is determined by the system property

javax.xml.parsers.DocumentBuilderFactory, which selects the factory implementation that is

used to produce the builder.

DocumentBuilder newDocument() method can also be used to create an empty Document that

implements the org.w3c.dom.Document interface. Alternatively, you can use one of the builder's

parse methods to create a Document from existing XML data.

Although they are called objects, the entries in the DOM tree are actually fairly low-level data

structures. For example, consider this structure: <color>blue</color>. There is an element node

for the color tag, and under that there is a text node that contains the data, blue!

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 252

The Document Object Model implementation is defined in the packages listed in the following

Table.

Package Description

org.w3c.dom Defines the DOM programming interfaces for XML (and, optionally, HTML)

documents, as specified by the W3C.

javax.xml.parsers Defines the DocumentBuilderFactory class and the DocumentBuilder class,

which returns an object that implements the W3C Document interface. The

factory that is used to create the builder is determined by the

javax.xml.parsers system property, which can be set from the command line

or overridden when invoking the new Instance method. This package also

defines the ParserConfigurationException class for reporting errors.

Overview

SAX (the Simple API for XML) is an event-based parser for xml documents. Unlike a DOM

parser, a SAX parser creates no parse tree. SAX is a streaming interface for XML, which means

that applications using SAX receive event notifications about the XML document being

processed an element, and attribute, at a time in sequential order starting at the top of the

document, and ending with the closing of the ROOT element.

 Reads an XML document from top to bottom, recognizing the tokens that make up a well-

formed XML document

 Tokens are processed in the same order that they appear in the document

 Reports the application program the nature of tokens that the parser has encountered as they

occur

 The application program provides an "event" handler that must be registered with the parser

 As the tokens are identified, callback methods in the handler are invoked with the relevant

information

https://docs.oracle.com/javase/tutorial/jaxp/intro/dom.html#gcezo

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 253

Content Handler Interface

This interface specifies the callback methods that the SAX parser uses to notify an application

program of the components of the XML document that it has seen.

 void startDocument() - Called at the beginning of a document.

 void endDocument() - Called at the end of a document.

 void startElement(String uri, String localName, String qName, Attributes atts) -

Called at the beginning of an element.

 void endElement(String uri, String localName,String qName) - Called at the end of

an element.

 void characters(char[] ch, int start, int length) - Called when character data is

encountered.

 void ignorableWhitespace(char[] ch, int start, int length) - Called when a DTD is

present and ignorable whitespace is encountered.

 void processingInstruction(String target, String data) - Called when a processing

instruction is recognized.

 void setDocumentLocator(Locator locator)) - Provides a Locator that can be used to

identify positions in the document.

 void skippedEntity(String name) - Called when an unresolved entity is encountered.

 void startPrefixMapping(String prefix, String uri) - Called when a new namespace

mapping is defined.

 void endPrefixMapping(String prefix) - Called when a namespace definition ends its

scope.

JDOM

JDOM is an open source, java based library to parse XML document and it is typically java

developer friendly API. It has a straightforward API, is a lightweight and fast, and is optimized

for the Java programmer. It is java optimized, it uses java collection like List and Arrays. It

works with DOM and SAX APIs and combines the better of the two. It is of low memory

footprint and is nearly as fast as SAX.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 254

Advantages

JDOM gives java developers flexibility and easy maintainability of xml parsing code. It is light

weight and quick API.

JDOM classes

The JDOM defines several Java classes. Here are the most common classes:

 Document - Represents the entire XML document. A Document object is often referred

to as a DOM tree.

 Element - Represents an XML element. Element object has methods to manipulate its

child elements,its text, attributes and namespaces.

 Attribute Represents an attribute of an element. Attribute has method to get and set the

value of attribute. It has parent and attribute type.

 Text Represents the text of XML tag.

 Comment Represents the comments in a XML document.

Steps to Using JDOM

Following are the steps used while parsing a document using JDOM Parser.

 Import XML-related packages.

 Create a SAXBuilder

 Create a Document from a file or stream

 Extract the root element

 Examine attributes

 Examine sub-elements

Import XML-related packages

import java.io.*;

import java.util.*;

import org.jdom2.*;

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 255

Create a DocumentBuilder

SAXBuilder saxBuilder = new SAXBuilder();

Create a Document from a file or stream

File inputFile = new File("input.txt");

SAXBuilder saxBuilder = new SAXBuilder();

Document document = saxBuilder.build(inputFile);

Extract the root element

Element classElement = document.getRootElement();

Examine attributes

//returns specific attribute

getAttribute("attributeName");

Examine sub-elements

//returns a list of subelements of specified name

getChildren("subelementName");

//returns a list of all child nodes

getChildren();

//returns first child node

getChild("subelementName");

JDOM XML parser modify an existing XML file:

• Add a new element

• Update existing element attribute

• Update existing element value

• Delete existing element

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 256

Example

• Add a new “age” element under staff

• Update the staff attribute id = 2

• Update salary value to 7000

• Delete “firstname” element under staff

Introduction to JAXB

Java Architecture for XML Binding (JAXB) provides a fast and convenient way to bind XML

schemas and Java representations, making it easy for Java developers to incorporate XML data

and processing functions in Java applications. As part of this process, JAXB provides methods

for unmarshalling (reading) XML instance documents into Java content trees, and then

marshalling (writing) Java content trees back into XML instance documents. JAXB also provides

a way to generate XML schema from Java objects.

JAXB 2.0 includes several important improvements to JAXB 1.0:

 Support for all W3C XML Schema features. (JAXB 1.0 did not specify bindings for some of

the W3C XML Schema features.)

 Support for binding Java-to-XML, with the addition of the javax.xml.bind.annotation

package to control this binding. (JAXB 1.0 specified the mapping of XML Schema-to-Java,

but not Java-to-XML Schema.)

 A significant reduction in the number of generated schema-derived classes.

 Additional validation capabilities through the JAXP 1.3 validation APIs.

 Smaller runtime libraries.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 257

Architectural Overview

The following figure shows the components that make up a JAXB implementation.

Figure: JAXB Architectural Overview

A JAXB implementation consists of the following architectural components:

 Schema compiler: Binds a source schema to a set of schema-derived program elements.

The binding is described by an XML-based binding language.

 Schema generator: Maps a set of existing program elements to a derived schema. The

mapping is described by program annotations.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 258

 Binding runtime framework: Provides unmarshalling (reading) and marshalling

(writing) operations for accessing, manipulating, and validating XML content using

either schema-derived or existing program elements.

The JAXB Binding Process

The following figure shows what occurs during the JAXB binding process.

Figure: Steps in the JAXB Binding Process

The general steps in the JAXB data binding process are:

1. Generate classes: An XML schema is used as input to the JAXB binding compiler to

generate JAXB classes based on that schema.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 259

2. Compile classes: All of the generated classes, source files, and application code must be

compiled.

3. Unmarshal: XML documents written according to the constraints in the source schema

are unmarshalled by the JAXB binding framework. Note that JAXB also supports

unmarshalling XML data from sources other than files and documents, such as DOM

nodes, string buffers, SAX sources, and so forth.

4. Generate content tree: The unmarshalling process generates a content tree of data

objects instantiated from the generated JAXB classes; this content tree represents the

structure and content of the source XML documents.

5. Validate (optional): The unmarshalling process involves validation of the source XML

documents before generating the content tree. Note that if you modify the content tree in

Step 6, you can also use the JAXB Validate operation to validate the changes before

marshalling the content back to an XML document.

6. Process content: The client application can modify the XML data represented by the

Java content tree by using interfaces generated by the binding compiler.

7. Marshal: The processed content tree is marshalled out to one or more XML output

documents. The content may be validated before marshalling.

More about Unmarshalling

Unmarshalling provides a client application the ability to convert XML data into JAXB-derived

Java objects.

More about Marshalling

Marshalling provides a client application the ability to convert a JAXB-derived Java object tree

into XML data.

By default, the Marshaller uses UTF-8 encoding when generating XML data.

Client applications are not required to validate the Java content tree before marshalling. There is

also no requirement that the Java content tree be valid with respect to its original schema to

marshal it into XML data.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 260

More about Validation

Validation is the process of verifying that an XML document meets all the constraints expressed

in the schema. JAXB 1.0 provided validation at unmarshal time and also enabled on-demand

validation on a JAXB content tree. JAXB 2.0 only allows validation at unmarshal and marshal

time. A web service processing model is to be lax in reading in data and strict on writing it out.

To meet that model, validation was added to marshal time so users could confirm that they did

not invalidate an XML document when modifying the document in JAXB form.

XML Binding:

XML data binding refers to a means of representing information in an XML document as a

business object in computer memory. This allows applications to access the data in the XML

from the object rather than using the DOM or SAX to retrieve the data from a direct

representation of the XML itself.

An XML data binder accomplishes this by automatically creating a mapping between elements

of the XML schema of the document we wish to bind and members of a class to be represented

in memory.

When this process is applied to convert an XML document to an object, it is called

unmarshalling. The reverse process, to serialize an object as XML, is called marshalling.

JAXB is Java Architecture for XML Binding

JAXB, stands for Java Architecture for XML Binding, using JAXB annotation to convert Java

object to / from XML file.

• Marshalling – Convert a Java object into a XML file.

• Unmarshalling – Convert XML content into a Java Object.

Annotations

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 261

JAXB uses Java's annotations for augmenting the generated classes with additional information

that bridges the gap between what is described by an XML schema and the information available

from a set of Java class definitions. Adding such annotations to existing Java classes prepares

them for being used by JAXB's runtime.

The Java code generated by the JAXB schema compiler contains annotations providing metadata

on packages, classes, fields and methods. Together, this metadata is intended to reflect the

information contained in an XML schema.

Annotations can be easily retrieved from their target construct with methods contained in classes

such as java.lang.Class or java.lang.reflect.Field. Each annotation type has its own set of

attributes, which are accessed in the usual way. Given some class, an annotation of type

XmlType can be retrieved with

Class clazz = ...;

XmlType typeAnn = clazz.getAnnotation(XmlType.class);

If the result of the annotation getter is not null, annotation element values may be obtained by

calling methods on the returned XmlType object. To retrieve the name of the corresponding

XML Schema type you would write

String schemaName = typeAnn.name();

Classes that can be used for marshalling and unmarshalling XML need not be generated by the

JAXB schema compiler. It is equally possible to write these classes by hand, adding the JAXB

annotations.

Marshalling

Marshalling is the process of transforming the memory representation of an object to a data

format suitable for storage or transmission, and it is typically used when data must be moved

between different parts of a computer program or from one program to another. It simplifies

complex communication, using custom/complex objects to communicate instead of primitives.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 262

Unmarshalling

A simple approach for unmarshalling an XML document consists of the creation of a JAXB

context and the call to unmarshal the document. A JAXBContext object provides the entry point

to the JAXB API and maintains the binding information between XML and Java. One way of

creating a context instance is by calling the static method newInstance with a list of colon

separated names of the packages containing the JAXB schema-derived classes. From this

context, an Unmarshaller object is obtained, which functions as the driver for processing an

XML text to create the equivalent set of Java objects. It offers several unmarshal methods,

accepting a wide range of object types as the source for XML text data. The method shown

below illustrates this with a single package containing the class of the type defining the top level

element of the XML document.

public <T> T unmarshal(Class<T> docClass, InputStream inputStream)

 throws JAXBException {

 String packageName = docClass.getPackage().getName();

 JAXBContext jc = JAXBContext.newInstance(packageName);

 Unmarshaller u = jc.createUnmarshaller();

 JAXBElement<T> doc = (JAXBElement<T>)u.unmarshal(inputStream);

 return doc.getValue();

}

The return value of the call to JAXB's unmarshal is a representation of the root node of the

parsed XML document in an instance of JAXBElement<T>. If we're not interested in the tag of

the root element we might just as well return the extracted content value.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 263

Module 15: (Servlets)

Servlet technology is used to create web application (resides at server side and generates

dynamic web page).

Servlet technology is robust and scalable because of java language. Before Servlet, CGI

(Common Gateway Interface) scripting language was popular as a server-side programming

language. But there was many disadvantages of this technology. We have discussed these

disadvantages below.

There are many interfaces and classes in the servlet API such as Servlet, GenericServlet,

HttpServlet, ServletRequest, ServletResponse etc.

Servlet can be described in many ways, depending on the context.

 Servlet is a technology i.e. used to create web application.

 Servlet is an API that provides many interfaces and classes including documentations.

 Servlet is an interface that must be implemented for creating any servlet.

 Servlet is a class that extend the capabilities of the servers and respond to the incoming

request. It can respond to any type of requests.

 Servlet is a web component that is deployed on the server to create dynamic web page.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 264

What is web application?

A web application is an application accessible from the web. A web application is composed of

web components like Servlet, JSP, Filter etc. and other components such as HTML. The web

components typically execute in Web Server and respond to HTTP request.

CGI (Common Gateway Interface)

CGI technology enables the web server to call an external program and pass HTTP request

information to the external program to process the request. For each request, it starts a new

process.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 265

The basic benefits of servlet are as follows:

 Better performance: because it creates a thread for each request not process.

 Portability: because it uses java language.

 Robust: Servlets are managed by JVM so no need to worry about momory leak, garbage

collection etc.

 Secure: because it uses java language..

The basic terminology used in servlet are given below:

 HTTP

 HTTP Request Types

 Difference between Get and Post method

 Container

 Server and Difference between web server and application server

 Content Type

 Introduction of XML

 Deployment

HTTP (Hyper Text Transfer Protocol)

 Http is the protocol that allows web servers and browsers to exchange data over the web.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 266

 It is a request response protocol.

 Http uses reliable TCP connections by default on TCP port 80.

 It is stateless means each request is considered as the new request. In other words, server

doesn't recognize the user by default.

Http Request Methods

Every request has a header that tells the status of the client. There are many request methods. Get

and Post requests are mostly used.

The http request methods are:

 GET

 POST

 HEAD

 PUT

 DELETE

 OPTIONS

 TRACE

HTTP

Request

Description

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 267

GET Asks to get the resource at the requested URL.

POST
Asks the server to accept the body info attached. It is like GET request with

extra info sent with the request.

HEAD
Asks for only the header part of whatever a GET would return. Just like GET but

with no body.

TRACE Asks for the loopback of the request message, for testing or troubleshooting.

PUT Says to put the enclosed info (the body) at the requested URL.

DELETE Says to delete the resource at the requested URL.

OPTIONS
Asks for a list of the HTTP methods to which the thing at the request URL can

respond

Get Request

Data is sent in request header in case of get request. It is the default request type. Let's see what

information are sent to the server.

Post Request

In case of post request original data is sent in message body. Let's see how information are

passed to the server

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 268

A servlet life cycle can be defined as the entire process from its creation till the destruction. The

following are the paths followed by a servlet

 The servlet is initialized by calling the init () method.

 The servlet calls service() method to process a client's request.

 The servlet is terminated by calling the destroy() method.

 Finally, servlet is garbage collected by the garbage collector of the JVM.

Now let us discuss the life cycle methods in details.

The init() method :

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 269

The init method is designed to be called only once. It is called when the servlet is first created,

and not called again for each user request. So, it is used for one-time initializations, just as with

the init method of applets.

The servlet is normally created when a user first invokes a URL corresponding to the servlet, but

you can also specify that the servlet be loaded when the server is first started.

When a user invokes a servlet, a single instance of each servlet gets created, with each user

request resulting in a new thread that is handed off to doGet or doPost as appropriate. The init()

method simply creates or loads some data that will be used throughout the life of the servlet.

The init method definition looks like this:

public void init() throws ServletException {

 // Initialization code...

}

The service() method :

The service() method is the main method to perform the actual task. The servlet container (i.e.

web server) calls the service() method to handle requests coming from the client(browsers) and

to write the formatted response back to the client.

Each time the server receives a request for a servlet, the server spawns a new thread and calls

service. The service() method checks the HTTP request type (GET, POST, PUT, DELETE, etc.)

and calls doGet, doPost, doPut, doDelete, etc. methods as appropriate.

Here is the signature of this method:

public void service(ServletRequest request,

 ServletResponse response)

 throws ServletException, IOException{

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 270

}

The service () method is called by the container and service method invokes doGe, doPost,

doPut, doDelete, etc. methods as appropriate. So you have nothing to do with service() method

but you override either doGet() or doPost() depending on what type of request you receive from

the client.

The doGet() and doPost() are most frequently used methods with in each service request. Here is

the signature of these two methods.

The doGet() Method

A GET request results from a normal request for a URL or from an HTML form that has no

METHOD specified and it should be handled by doGet() method.

public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 // Servlet code

}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 271

The doPost() Method

A POST request results from an HTML form that specifically lists POST as the METHOD and it

should be handled by doPost() method.

public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 // Servlet code

}

The destroy() method :

The destroy() method is called only once at the end of the life cycle of a servlet. This method

gives your servlet a chance to close database connections, halt background threads, write cookie

lists or hit counts to disk, and perform other such cleanup activities.

After the destroy() method is called, the servlet object is marked for garbage collection. The

destroy method definition looks like this:

 public void destroy() {

 // Finalization code...

 }

Architecture Diagram:

The following figure depicts a typical servlet life-cycle scenario.

 First the HTTP requests coming to the server are delegated to the servlet container.

 The servlet container loads the servlet before invoking the service() method.

 Then the servlet container handles multiple requests by spawning multiple threads, each thread

executing the service() method of a single instance of the servlet.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 272

Steps to create a servlet example

There are given 6 steps to create a servlet example. These steps are required for all the servers.

The servlet example can be created by three ways:

 By implementing Servlet interface,

 By inheriting GenericServlet class, (or)

 By inheriting HttpServlet class

The mostly used approach is by extending HttpServlet because it provides http request specific

method such as doGet(), doPost(), doHead() etc.

Here, we are going to use apache tomcat server in this example. The steps are as follows:

 Create a directory structure

 Create a Servlet

 Compile the Servlet

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 273

 Create a deployment descriptor

 Start the server and deploy the project

 Access the servlet

1) Create a directory structures

The directory structure defines that where to put the different types of files so that web container

may get the information and respond to the client.

The Sun Microsystem defines a unique standard to be followed by all the server vendors. Let's

see the directory structure that must be followed to create the servlet.

Servlet class file must be in the classes folder. The web.xml file must be under the WEB-INF

folder.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 274

2) Create a Servlet

There are three ways to create the servlet.

 By implementing the Servlet interface

 By inheriting the GenericServlet class

 By inheriting the HttpServlet class

The HttpServlet class is widely used to create the servlet because it provides methods to handle

http requests such as doGet(), doPost, doHead() etc.

In this example we are going to create a servlet that extends the HttpServlet class. In this

example, we are inheriting the HttpServlet class and providing the implementation of the doGet()

method. Notice that get request is the default request.

DemoServlet.java

1. import javax.servlet.http.*;

2. import javax.servlet.*;

3. import java.io.*;

4. public class DemoServlet extends HttpServlet{

5. public void doGet(HttpServletRequest req,HttpServletResponse res)

6. throws ServletException,IOException

7. {

8. res.setContentType("text/html");//setting the content type

9. PrintWriter pw=res.getWriter();//get the stream to write the data

10.
11. //writing html in the stream

12. pw.println("<html><body>");

13. pw.println("Welcome to servlet");

14. pw.println("</body></html>");

15.
16. pw.close();//closing the stream

17. }}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 275

3) Compile the servlet

For compiling the Servlet, jar file is required to be loaded. Different Servers provide different jar

files:

Jar file Server

1) servlet-api.jar Apache Tomcat

2) weblogic.jar Weblogic

3) javaee.jar Glassfish

4) javaee.jar JBoss

Two ways to load the jar file

 set classpath

 paste the jar file in JRE/lib/ext folder

Put the java file in any folder. After compiling the java file, paste the class file of servlet in

WEB-INF/classes directory.

4) Create the deployment descriptor (web.xml file)

The deployment descriptor is an xml file, from which Web Container gets the information about

the servet to be invoked.

The web container uses the Parser to get the information from the web.xml file. There are many

xml parsers such as SAX, DOM and Pull.

There are many elements in the web.xml file. Here is given some necessary elements to run the

simple servlet program.

web.xml file

 <web-app>

 <servlet>

 <servlet-name>sonoojaiswal</servlet-name>

 <servlet-class>DemoServlet</servlet-class>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 276

 </servlet>

 <servlet-mapping>

 <servlet-name>sonoojaiswal</servlet-name>

 <url-pattern>/welcome</url-pattern>

 </servlet-mapping>

 </web-app>

Description of the elements of web.xml file

There are too many elements in the web.xml file. Here is the illustration of some elements that is

used in the above web.xml file. The elements are as follows:

<web-app> represents the whole application.

<servlet> is sub element of <web-app> and represents the servlet.

<servlet-name> is sub element of <servlet> represents the name of the servlet.

<servlet-class> is sub element of <servlet> represents the class of the servlet.

<servlet-mapping> is sub element of <web-app>. It is used to map the servlet.

<url-pattern> is sub element of <servlet-mapping>. This pattern is used at client side to invoke

the servlet.

5) Start the Server and deploy the project

To start Apache Tomcat server, double click on the startup.bat file under apache-tomcat/bin

directory.

One Time Configuration for Apache Tomcat Server

You need to perform 2 tasks:

 set JAVA_HOME or JRE_HOME in environment variable (It is required to start server).

 Change the port number of tomcat (optional). It is required if another server is running on

same port (8080).

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 277

1) How to set JAVA_HOME in environment variable?

To start Apache Tomcat server JAVA_HOME and JRE_HOME must be set in Environment

variables.

Go to My Computer properties -> Click on advanced tab then environment variables -> Click on

the new tab of user variable -> Write JAVA_HOME in variable name and paste the path of jdk

folder in variable value -> ok -> ok -> ok.

Go to My Computer properties:

Click on advanced system settings tab then environment variables:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 278

Click on the new tab of user variable or system variable:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 279

Write JAVA_HOME in variable name and paste the path of jdk folder in variable value:

There must not be semicolon (;) at the end of the path.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 280

After setting the JAVA_HOME double click on the startup.bat file in apache tomcat/bin.

Note: There are two types of tomcat available:

 Apache tomcat that needs to extract only (no need to install)

 Apache tomcat that needs to install

It is the example of apache tomcat that needs to extract only.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 281

Now server is started successfully.

2) How to change port number of apache tomcat

Changing the port number is required if there is another server running on the same system with

same port number.Suppose you have installed oracle, you need to change the port number of

apache tomcat because both have the default port number 8080.

Open server.xml file in notepad. It is located inside the apache-tomcat/conf directory . Change

the Connector port = 8080 and replace 8080 by any four digit number instead of 8080. Let us

replace it by 9999 and save this file.

5) How to deploy the servlet project

Copy the project and paste it in the webapps folder under apache tomcat.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 282

But there are several ways to deploy the project. They are as follows:

 By copying the context(project) folder into the webapps directory

 By copying the war folder into the webapps directory

 By selecting the folder path from the server

 By selecting the war file from the server

Here, we are using the first approach.

You can also create war file, and paste it inside the webapps directory. To do so, you need to use

jar tool to create the war file. Go inside the project directory (before the WEB-INF), then write:

 projectfolder> jar cvf myproject.war *

Creating war file has an advantage that moving the project from one location to another takes

less time.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 283

6) How to access the servlet

Open browser and write http://hostname:portno/contextroot/urlpatternofservlet. For example:

 http://localhost:9999/demo/welcome

RequestDispatcher in Servlet:

The RequestDispatcher interface provides the facility of dispatching the request to another

resource it may be html, servlet or jsp. This interface can also be used to include the content of

another resource also. It is one of the way of servlet collaboration.

There are two methods defined in the RequestDispatcher interface.

Methods of RequestDispatcher interface

The RequestDispatcher interface provides two methods. They are:

 public void forward(ServletRequest request,ServletResponse response)throws

ServletException,java.io.IOException:Forwards a request from a servlet to another resource

(servlet, JSP file, or HTML file) on the server.

 public void include(ServletRequest request,ServletResponse response)throws

ServletException,java.io.IOException:Includes the content of a resource (servlet, JSP page,

or HTML file) in the response.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 284

As in the above figure, response of second servlet is sent to the client. Response of the first

servlet is not displayed to the user.

As you can see in the above figure, response of second servlet is included in the response of the

first servlet that is being sent to the client.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 285

How to get the object of RequestDispatcher

The getRequestDispatcher() method of ServletRequest interface returns the object of

RequestDispatcher. Syntax:

Syntax of getRequestDispatcher method

 public RequestDispatcher getRequestDispatcher(String resource);

Example of using getRequestDispatcher method

 RequestDispatcher rd=request.getRequestDispatcher("servlet2");

 //servlet2 is the url-pattern of the second servlet

 rd.forward(request, response);//method may be include or forward

Example of RequestDispatcher interface

In this example, we are validating the password entered by the user. If password is servlet, it will

forward the request to the WelcomeServlet, otherwise will show an error message: sorry

username or password error!. In this program, we are cheking for hardcoded information. But

you can check it to the database also that we will see in the development chapter. In this

example, we have created following files:

 index.html file: for getting input from the user.

 Login.java file: a servlet class for processing the response. If password is servet, it will

forward the request to the welcome servlet.

 WelcomeServlet.java file: a servlet class for displaying the welcome message.

 web.xml file: a deployment descriptor file that contains the information about the servlet.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 286

index.html

 <form action="servlet1" method="post">

 Name:<input type="text" name="userName"/>

 Password:<input type="password" name="userPass"/>

 <input type="submit" value="login"/>

 </form>

Login.java

 import java.io.*;

 import javax.servlet.*;

 import javax.servlet.http.*;

 public class Login extends HttpServlet {

 public void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 287

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");

 String p=request.getParameter("userPass");

 if(p.equals("servlet"){

 RequestDispatcher rd=request.getRequestDispatcher("servlet2");

 rd.forward(request, response);

 }

 else{

 out.print("Sorry UserName or Password Error!");

 RequestDispatcher rd=request.getRequestDispatcher("/index.html");

 rd.include(request, response);

 }

 }

 }

WelcomeServlet.java

 import java.io.*;

 import javax.servlet.*;

 import javax.servlet.http.*;

 public class WelcomeServlet extends HttpServlet {

 public void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 288

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");

 out.print("Welcome "+n);

 }

 }

web.xml

 <web-app>

 <servlet>

 <servlet-name>Login</servlet-name>

 <servlet-class>Login</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>WelcomeServlet</servlet-name>

 <servlet-class>WelcomeServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>Login</servlet-name>

 <url-pattern>/servlet1</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>WelcomeServlet</servlet-name>

 <url-pattern>/servlet2</url-pattern>

 </servlet-mapping>

 <welcome-file-list>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 289

 <welcome-file>index.html</welcome-file>

 </welcome-file-list>

 </web-app>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 290

ServletContext Interface

An object of ServletContext is created by the web container at time of deploying the project.

This object can be used to get configuration information from web.xml file. There is only one

ServletContext object per web application.

If any information is shared to many servlet, it is better to provide it from the web.xml file using

the <context-param> element.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 291

Advantage of ServletContext

Easy to maintain if any information is shared to all the servlet, it is better to make it available for

all the servlet. We provide this information from the web.xml file, so if the information is

changed, we don't need to modify the servlet. Thus it removes maintenance problem.

Usage of ServletContext Interface

There can be a lot of usage of ServletContext object. Some of them are as follows:

 The object of ServletContext provides an interface between the container and servlet.

 The ServletContext object can be used to get configuration information from the web.xml

file.

 The ServletContext object can be used to set, get or remove attribute from the web.xml file.

 The ServletContext object can be used to provide inter-application communication.

Commonly used methods of ServletContext interface

There is given some commonly used methods of ServletContext interface.

 public String getInitParameter(String name):Returns the parameter value for the specified

parameter name.

 public Enumeration getInitParameterNames():Returns the names of the context's

initialization parameters.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 292

 public void setAttribute(String name,Object object):sets the given object in the application

scope.

 public Object getAttribute(String name):Returns the attribute for the specified name.

 public Enumeration getInitParameterNames():Returns the names of the context's

initialization parameters as an Enumeration of String objects.

 public void removeAttribute(String name):Removes the attribute with the given name from

the servlet context.

How to get the object of ServletContext interface

 getServletContext() method of ServletConfig interface returns the object of ServletContext.

 getServletContext() method of GenericServlet class returns the object of ServletContext.

Syntax of getServletContext() method

 public ServletContext getServletContext()

Example of getServletContext() method

 //We can get the ServletContext object from ServletConfig object

 ServletContext application=getServletConfig().getServletContext();

 //Another convenient way to get the ServletContext object

 ServletContext application=getServletContext();

Session Tracking in Servlets

Session simply means a particular interval of time.

Session Tracking is a way to maintain state (data) of an user. It is also known as session

management in servlet.

Http protocol is a stateless so we need to maintain state using session tracking techniques. Each

time user requests to the server, server treats the request as the new request. So we need to

maintain the state of a user to recognize to particular user.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 293

HTTP is stateless that means each request is considered as the new request. It is shown in the

figure given below:

Session Tracking Techniques

There are four techniques used in Session tracking:

 Cookies

 Hidden Form Field

 URL Rewriting

 HttpSession

Cookies in Servlet

A cookie is a small piece of information that is persisted between the multiple client requests.

A cookie has a name, a single value, and optional attributes such as a comment, path and domain

qualifiers, a maximum age, and a version number.

How Cookie works

By default, each request is considered as a new request. In cookies technique, we add cookie

with response from the servlet. So cookie is stored in the cache of the browser. After that if

request is sent by the user, cookie is added with request by default. Thus, we recognize the user

as the old user.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 294

Types of Cookie

There are 2 types of cookies in servlets.

 Non-persistent cookie

 Persistent cookie

Non-persistent cookie

It is valid for single session only. It is removed each time when user closes the browser.

Persistent cookie

It is valid for multiple session . It is not removed each time when user closes the browser. It is

removed only if user logout or signout.

Advantage of Cookies

 Simplest technique of maintaining the state.

 Cookies are maintained at client side.

Disadvantage of Cookies

 It will not work if cookie is disabled from the browser.

 Only textual information can be set in Cookie object.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 295

Cookie class

javax.servlet.http.Cookie class provides the functionality of using cookies. It provides a lot of

useful methods for cookies.

Constructor of Cookie class

Constructor Description

Cookie() constructs a cookie.

Cookie(String name, String value) constructs a cookie with a specified name and value.

Useful Methods of Cookie class

There are given some commonly used methods of the Cookie class.

Method Description

public void setMaxAge(int

expiry)
Sets the maximum age of the cookie in seconds.

public String getName()
Returns the name of the cookie. The name cannot be changed

after creation.

public String getValue() Returns the value of the cookie.

public void setName(String

name)
changes the name of the cookie.

public void setValue(String

value)
changes the value of the cookie.

Other methods required for using Cookies

For adding cookie or getting the value from the cookie, we need some methods provided by

other interfaces. They are:

 public void addCookie(Cookie ck):method of HttpServletResponse interface is used to add

cookie in response object.

 public Cookie[] getCookies():method of HttpServletRequest interface is used to return all the

cookies from the browser.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 296

How to create Cookie?

Let's see the simple code to create cookie.

 Cookie ck=new Cookie("user","sonoo jaiswal");//creating cookie object

 response.addCookie(ck);//adding cookie in the response

How to delete Cookie?

Let's see the simple code to delete cookie. It is mainly used to logout or signout the user.

 Cookie ck=new Cookie("user","");//deleting value of cookie

 ck.setMaxAge(0);//changing the maximum age to 0 seconds

 response.addCookie(ck);//adding cookie in the response

How to get Cookies?

Let's see the simple code to get all the cookies.

 Cookie ck[]=request.getCookies();

 for(int i=0;i<ck.length;i++){

 out.print("
"+ck[i].getName()+" "+ck[i].getValue());//printing name and value of cookie

 }

Simple example of Servlet Cookies

In this example, we are storing the name of the user in the cookie object and accessing it in

another servlet. As we know well that session corresponds to the particular user. So if you access

it from too many browsers with different values, you will get the different value.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 297

In case of Hidden Form Field a hidden (invisible) textfield is used for maintaining the state of an

user.

In such case, we store the information in the hidden field and get it from another servlet. This

approach is better if we have to submit form in all the pages and we don't want to depend on the

browser.

Let's see the code to store value in hidden field.

 <input type="hidden" name="uname" value="Vimal Jaiswal">

Here, uname is the hidden field name and Vimal Jaiswal is the hidden field value.

Real application of hidden form field

It is widely used in comment form of a website. In such case, we store page id or page name in

the hidden field so that each page can be uniquely identified.

Advantage of Hidden Form Field

 It will always work whether cookie is disabled or not.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 298

Disadvantage of Hidden Form Field:

 It is maintained at server side.

 Extra form submission is required on each pages.

 Only textual information can be used.

Example of using Hidden Form Field

In this example, we are storing the name of the user in a hidden textfield and getting that value

from another servlet.

URL Rewriting

In URL rewriting, we append a token or identifier to the URL of the next Servlet or the next

resource. We can send parameter name/value pairs using the following format:

url?name1=value1&name2=value2&??

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 299

A name and a value is separated using an equal = sign, a parameter name/value pair is separated

from another parameter using the ampersand(&). When the user clicks the hyperlink, the

parameter name/value pairs will be passed to the server. From a Servlet, we can use

getParameter() method to obtain a parameter value.

Advantage of URL Rewriting

 It will always work whether cookie is disabled or not (browser independent).

 Extra form submission is not required on each pages.

Disadvantage of URL Rewriting

 It will work only with links.

 It can send Only textual information.

HttpSession interface

In such case, container creates a session id for each user.The container uses this id to identify the

particular user.An object of HttpSession can be used to perform two tasks:

 bind objects

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 300

 view and manipulate information about a session, such as the session identifier, creation

time, and last accessed time.

How to get the HttpSession object ?

The HttpServletRequest interface provides two methods to get the object of HttpSession:

 public HttpSession getSession():Returns the current session associated with this request, or if

the request does not have a session, creates one.

 public HttpSession getSession(boolean create):Returns the current HttpSession associated

with this request or, if there is no current session and create is true, returns a new session.

Commonly used methods of HttpSession interface

 public String getId():Returns a string containing the unique identifier value.

 public long getCreationTime():Returns the time when this session was created, measured in

milliseconds since midnight January 1, 1970 GMT.

 public long getLastAccessedTime():Returns the last time the client sent a request associated

with this session, as the number of milliseconds since midnight January 1, 1970 GMT.

 public void invalidate():Invalidates this session then unbinds any objects bound to it.

SendRedirect in servlet

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 301

The sendRedirect() method of HttpServletResponse interface can be used to redirect response to

another resource, it may be servlet, jsp or html file.

It accepts relative as well as absolute URL.

It works at client side because it uses the url bar of the browser to make another request. So, it

can work inside and outside the server.

Difference between forward() and sendRedirect() method

There are many differences between the forward() method of RequestDispatcher and

sendRedirect() method of HttpServletResponse interface. They are given below:

forward() method sendRedirect() method

The forward() method works at server side.
The sendRedirect() method

works at client side.

It sends the same request and response objects to another

servlet.
It always sends a new request.

It can work within the server only.
It can be used within and

outside the server.

Example:

request.getRequestDispacher("servlet2").forward(request,respo

nse);

Example:

response.sendRedirect("servlet

2")

Syntax of sendRedirect() method

 public void sendRedirect(String URL)throws IOException;

Full example of sendRedirect method in servlet

In this example, we are redirecting the request to the google server. Notice that sendRedirect

method works at client side that is why we can our request to anywhere. We can send our request

within and outside the server.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 302

DemoServlet.java

 import java.io.*;

 import javax.servlet.*;

 import javax.servlet.http.*;

 public class DemoServlet extends HttpServlet{

 public void doGet(HttpServletRequest req,HttpServletResponse res)

 throws ServletException,IOException

 {

 res.setContentType("text/html");

 PrintWriter pw=res.getWriter();

 response.sendRedirect("http://www.google.com");

 pw.close();

 }}

Creating custom google search using sendRedirect

In this example, we are using sendRedirect method to send request to google server with the

request data.

index.html

 <!DOCTYPE html>

 <html>

 <head>

 <meta charset="ISO-8859-1">

 <title>sendRedirect example</title>

 </head>

 <body>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 303

 <form action="MySearcher">

 <input type="text" name="name">

 <input type="submit" value="Google Search">

 </form>

 </body>

 </html>

MySearcher.java

 import java.io.IOException;

 import javax.servlet.ServletException;

 import javax.servlet.http.HttpServlet;

 import javax.servlet.http.HttpServletRequest;

 import javax.servlet.http.HttpServletResponse;

 public class MySearcher extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 String name=request.getParameter("name");

 response.sendRedirect("https://www.google.co.in/#q="+name);

 }

 }

Output

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 304

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 305

Servlet Login and Logout Example using Cookies

A cookie is a kind of information that is stored at client side.

Here, we are going to create a login and logout example using servlet cookies.

In this example, we are creating 3 links: login, logout and profile. User can't go to profile page

until he/she is logged in. If user is logged out, he need to login again to visit profile.

In this application, we have created following files.

 index.html

 link.html

 login.html

 LoginServlet.java

 LogoutServlet.java

 ProfileServlet.java

 web.xml

File: index.html

 <!DOCTYPE html>

 <html>

 <head>

 <meta charset="ISO-8859-1">

 <title>Servlet Login Example</title>

 </head>

 <body>

 <h1>Welcome to Login App by Cookie</h1>

 Login|

 Logout|

 Profile

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 306

 </body>

 </html>

File: link.html

 Login |

 Logout |

 Profile

 <hr>

File: login.html

 <form action="LoginServlet" method="post">

 Name:<input type="text" name="name">

 Password:<input type="password" name="password">

 <input type="submit" value="login">

 </form>

File: LoginServlet.java

 package com.javatpoint;

 import java.io.IOException;

 import java.io.PrintWriter;

 import javax.servlet.ServletException;

 import javax.servlet.http.Cookie;

 import javax.servlet.http.HttpServlet;

 import javax.servlet.http.HttpServletRequest;

 import javax.servlet.http.HttpServletResponse;

 public class LoginServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 307

 PrintWriter out=response.getWriter();

 request.getRequestDispatcher("link.html").include(request, response);

 String name=request.getParameter("name");

 String password=request.getParameter("password");

 if(password.equals("admin123")){

 out.print("You are successfully logged in!");

 out.print("
Welcome, "+name);

 Cookie ck=new Cookie("name",name);

 response.addCookie(ck);

 }else{

 out.print("sorry, username or password error!");

 request.getRequestDispatcher("login.html").include(request, response);

 }

 out.close();

 }

 }

File: LogoutServlet.java

 package com.javatpoint;

 import java.io.IOException;

 import java.io.PrintWriter;

 import javax.servlet.ServletException;

 import javax.servlet.http.Cookie;

 import javax.servlet.http.HttpServlet;

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 308

 import javax.servlet.http.HttpServletRequest;

 import javax.servlet.http.HttpServletResponse;

 public class LogoutServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out=response.getWriter();

 request.getRequestDispatcher("link.html").include(request, response);

 Cookie ck=new Cookie("name","");

 ck.setMaxAge(0);

 response.addCookie(ck);

 out.print("you are successfully logged out!");

 }

 }

File: ProfileServlet.java

 package com.javatpoint;

 import java.io.IOException;

 import java.io.PrintWriter;

 import javax.servlet.ServletException;

 import javax.servlet.http.Cookie;

 import javax.servlet.http.HttpServlet;

 import javax.servlet.http.HttpServletRequest;

 import javax.servlet.http.HttpServletResponse;

 public class ProfileServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 309

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out=response.getWriter();

 request.getRequestDispatcher("link.html").include(request, response);

 Cookie ck[]=request.getCookies();

 if(ck!=null){

 String name=ck[0].getValue();

 if(!name.equals("")||name!=null){

 out.print("Welcome to Profile");

 out.print("
Welcome, "+name);

 }

 }else{

 out.print("Please login first");

 request.getRequestDispatcher("login.html").include(request, response);

 }

 out.close();

 }

 }

File: web.xml

 <?xml version="1.0" encoding="UTF-8"?>

 <web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" id="WebApp_ID" version="2.5">

 <servlet>

 <description></description>

 <display-name>LoginServlet</display-name>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 310

 <servlet-name>LoginServlet</servlet-name>

 <servlet-class>com.javatpoint.LoginServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>LoginServlet</servlet-name>

 <url-pattern>/LoginServlet</url-pattern>

 </servlet-mapping>

 <servlet>

 <description></description>

 <display-name>ProfileServlet</display-name>

 <servlet-name>ProfileServlet</servlet-name>

 <servlet-class>com.javatpoint.ProfileServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>ProfileServlet</servlet-name>

 <url-pattern>/ProfileServlet</url-pattern>

 </servlet-mapping>

 <servlet>

 <description></description>

 <display-name>LogoutServlet</display-name>

 <servlet-name>LogoutServlet</servlet-name>

 <servlet-class>com.javatpoint.LogoutServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>LogoutServlet</servlet-name>

 <url-pattern>/LogoutServlet</url-pattern>

 </servlet-mapping>

 </web-app>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 311

Hidden Form Field

In case of Hidden Form Field a hidden (invisible) textfield is used for maintaining the state of an

user.

In such case, we store the information in the hidden field and get it from another servlet. This

approach is better if we have to submit form in all the pages and we don't want to depend on the

browser.

Let's see the code to store value in hidden field.

 <input type="hidden" name="uname" value="Vimal Jaiswal">

Here, uname is the hidden field name and Vimal Jaiswal is the hidden field value.

Real application of hidden form field

It is widely used in comment form of a website. In such case, we store page id or page name in

the hidden field so that each page can be uniquely identified.

Advantage of Hidden Form Field

 It will always work whether cookie is disabled or not.

Disadvantage of Hidden Form Field:

 It is maintained at server side.

 Extra form submission is required on each pages.

 Only textual information can be used.

Example of using Hidden Form Field

In this example, we are storing the name of the user in a hidden textfield and getting that value

from another servlet.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 312

index.html

 <form action="servlet1">

 Name:<input type="text" name="userName"/>

 <input type="submit" value="go"/>

 </form>

FirstServlet.java

 import java.io.*;

 import javax.servlet.*;

 import javax.servlet.http.*;

 public class FirstServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response){

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 313

 out.print("Welcome "+n);

 //creating form that have invisible textfield

 out.print("<form action='servlet2'>");

 out.print("<input type='hidden' name='uname' value='"+n+"'>");

 out.print("<input type='submit' value='go'>");

 out.print("</form>");

 out.close();

 }catch(Exception e){System.out.println(e);}

 }

 }

SecondServlet.java

 import java.io.*;

 import javax.servlet.*;

 import javax.servlet.http.*;

 public class SecondServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 //Getting the value from the hidden field

 String n=request.getParameter("uname");

 out.print("Hello "+n);

 out.close();

 }catch(Exception e){System.out.println(e);}

 }

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 314

 }

web.xml

 <web-app>

 <servlet>

 <servlet-name>s1</servlet-name>

 <servlet-class>FirstServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>s1</servlet-name>

 <url-pattern>/servlet1</url-pattern>

 </servlet-mapping>

 <servlet>

 <servlet-name>s2</servlet-name>

 <servlet-class>SecondServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>s2</servlet-name>

 <url-pattern>/servlet2</url-pattern>

 </servlet-mapping>

 </web-app>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 315

URL Rewriting

In URL rewriting, we append a token or identifier to the URL of the next Servlet or the next

resource. We can send parameter name/value pairs using the following format:

url?name1=value1&name2=value2&??

A name and a value is separated using an equal = sign, a parameter name/value pair is separated

from another parameter using the ampersand(&). When the user clicks the hyperlink, the

parameter name/value pairs will be passed to the server. From a Servlet, we can use

getParameter() method to obtain a parameter value.

Advantage of URL Rewriting

 It will always work whether cookie is disabled or not (browser independent).

 Extra form submission is not required on each pages.

Disadvantage of URL Rewriting

 It will work only with links.

 It can send Only textual information.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 316

HttpSession interface

In such case, container creates a session id for each user.The container uses this id to identify the

particular user.An object of HttpSession can be used to perform two tasks:

 bind objects

 view and manipulate information about a session, such as the session identifier, creation

time, and last accessed time.

How to get the HttpSession object ?

The HttpServletRequest interface provides two methods to get the object of HttpSession:

 public HttpSession getSession():Returns the current session associated with this request, or if

the request does not have a session, creates one.

 public HttpSession getSession(boolean create):Returns the current HttpSession associated

with this request or, if there is no current session and create is true, returns a new session.

Commonly used methods of HttpSession interface

 public String getId():Returns a string containing the unique identifier value.

 public long getCreationTime():Returns the time when this session was created, measured in

milliseconds since midnight January 1, 1970 GMT.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 317

 public long getLastAccessedTime():Returns the last time the client sent a request associated

with this session, as the number of milliseconds since midnight January 1, 1970 GMT.

 public void invalidate():Invalidates this session then unbinds any objects bound to it.

Servlet HttpSession Login and Logout Example

We can bind the objects on HttpSession instance and get the objects by using setAttribute and

getAttribute methods.

Here, we are going to create a real world login and logout application without using database

code. We are assuming that password is admin123.

Visit here for login and logout application using cookies only servlet login and logout example

using cookies

In this example, we are creating 3 links: login, logout and profile. User can't go to profile page

until he/she is logged in. If user is logged out, he need to login again to visit profile.

In this application, we have created following files.

 index.html

 link.html

 login.html

 LoginServlet.java

 LogoutServlet.java

 ProfileServlet.java

 web.xml

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 318

File: index.html

 <!DOCTYPE html>

 <html>

 <head>

 <meta charset="ISO-8859-1">

 <title>Servlet Login Example</title>

 </head>

 <body>

 <h1>Login App using HttpSession</h1>

 Login|

 Logout|

 Profile

 </body>

 </html>

File: link.html

 Login |

 Logout |

 Profile

 <hr>

File: login.html

 <form action="LoginServlet" method="post">

 Name:<input type="text" name="name">

 Password:<input type="password" name="password">

 <input type="submit" value="login">

 </form>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 319

File: LoginServlet.java

 import java.io.IOException;

 import java.io.PrintWriter;

 import javax.servlet.ServletException;

 import javax.servlet.http.HttpServlet;

 import javax.servlet.http.HttpServletRequest;

 import javax.servlet.http.HttpServletResponse;

 import javax.servlet.http.HttpSession;

 public class LoginServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out=response.getWriter();

 request.getRequestDispatcher("link.html").include(request, response);

 String name=request.getParameter("name");

 String password=request.getParameter("password");

 if(password.equals("admin123")){

 out.print("Welcome, "+name);

 HttpSession session=request.getSession();

 session.setAttribute("name",name);

 }

 else{

 out.print("Sorry, username or password error!");

 request.getRequestDispatcher("login.html").include(request, response);

 }

 out.close();

 }

 }

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 320

File: LogoutServlet.java

 import java.io.IOException;

 import java.io.PrintWriter;

 import javax.servlet.ServletException;

 import javax.servlet.http.HttpServlet;

 import javax.servlet.http.HttpServletRequest;

 import javax.servlet.http.HttpServletResponse;

 import javax.servlet.http.HttpSession;

 public class LogoutServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out=response.getWriter();

 request.getRequestDispatcher("link.html").include(request, response);

 HttpSession session=request.getSession();

 session.invalidate();

 out.print("You are successfully logged out!");

 out.close();

 }

 }

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 321

File: ProfileServlet.java

 import java.io.IOException;

 import java.io.PrintWriter;

 import javax.servlet.ServletException;

 import javax.servlet.http.HttpServlet;

 import javax.servlet.http.HttpServletRequest;

 import javax.servlet.http.HttpServletResponse;

 import javax.servlet.http.HttpSession;

 public class ProfileServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out=response.getWriter();

 request.getRequestDispatcher("link.html").include(request, response);

 HttpSession session=request.getSession(false);

 if(session!=null){

 String name=(String)session.getAttribute("name");

 out.print("Hello, "+name+" Welcome to Profile");

 }

 else{

 out.print("Please login first");

 request.getRequestDispatcher("login.html").include(request, response);

 }

 out.close();

 }

 }

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 322

File: web.xml

 <?xml version="1.0" encoding="UTF-8"?>

 <web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" id="WebApp_ID" version="2.5">

 <servlet>

 <description></description>

 <display-name>LoginServlet</display-name>

 <servlet-name>LoginServlet</servlet-name>

 <servlet-class>LoginServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>LoginServlet</servlet-name>

 <url-pattern>/LoginServlet</url-pattern>

 </servlet-mapping>

 <servlet>

 <description></description>

 <display-name>ProfileServlet</display-name>

 <servlet-name>ProfileServlet</servlet-name>

 <servlet-class>ProfileServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>ProfileServlet</servlet-name>

 <url-pattern>/ProfileServlet</url-pattern>

 </servlet-mapping>

 <servlet>

 <description></description>

 <display-name>LogoutServlet</display-name>

 <servlet-name>LogoutServlet</servlet-name>

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 323

 <servlet-class>LogoutServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>LogoutServlet</servlet-name>

 <url-pattern>/LogoutServlet</url-pattern>

 </servlet-mapping>

 </web-app>

Output

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 324

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 325

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 326

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 327

Module-16: Java Database Connectivity (JDBC)

Java JDBC

Java JDBC is a java API to connect and execute query with the database. JDBC API uses jdbc

drivers to connect with the database.

Why use JDBC

Before JDBC, ODBC API was the database API to connect and execute query with the database.

But, ODBC API uses ODBC driver which is written in C language (i.e. platform dependent and

unsecured). That is why Java has defined its own API (JDBC API) that uses JDBC drivers

(written in Java language).

What is API

API (Application programming interface) is a document that contains description of all the

features of a product or software. It represents classes and interfaces that software programs can

follow to communicate with each other. An API can be created for applications, libraries,

operating systems, etc

JDBC Driver

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 328

JDBC Driver is a software component that enables java application to interact with the

database.There are 4 types of JDBC drivers:

 JDBC-ODBC bridge driver

 Native-API driver (partially java driver)

 Network Protocol driver (fully java driver)

 Thin driver (fully java driver)

1) JDBC-ODBC bridge driver

The JDBC-ODBC bridge driver uses ODBC driver to connect to the database. The JDBC-ODBC

bridge driver converts JDBC method calls into the ODBC function calls. This is now

discouraged because of thin driver.

Advantages:

 Easy to use.

 Can be easily connected to any database.

Disadvantages:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 329

 Performance degraded because JDBC method call is converted into the ODBC function calls.

 The ODBC driver needs to be installed on the client machine.

2) Native-API driver

The Native API driver uses the client-side libraries of the database. The driver converts JDBC

method calls into native calls of the database API. It is not written entirely in java.

Advantage:

 Performance upgraded than JDBC-ODBC bridge driver.

Disadvantage:

 The Native driver needs to be installed on the each client machine.

 The Vendor client library needs to be installed on client machine.

3) Network Protocol driver

The Network Protocol driver uses middleware (application server) that converts JDBC calls

directly or indirectly into the vendor-specific database protocol. It is fully written in java.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 330

Advantage:

 No client side library is required because of application server that can perform many tasks

like auditing, load balancing, logging etc.

Disadvantages:

 Network support is required on client machine.

 Requires database-specific coding to be done in the middle tier.

 Maintenance of Network Protocol driver becomes costly because it requires database-specific

coding to be done in the middle tier.

4) Thin driver

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 331

The thin driver converts JDBC calls directly into the vendor-specific database protocol. That is

why it is known as thin driver. It is fully written in Java language.

Advantage:

 Better performance than all other drivers.

 No software is required at client side or server side.

Disadvantage:

 Drivers depends on the Database.

5 Steps to connect to the database in java

There are 5 steps to connect any java application with the database in java using JDBC. They are

as follows:

 Register the driver class

 Creating connection

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 332

 Creating statement

 Executing queries

 Closing connection

1) Register the driver class

The forName() method of Class class is used to register the driver class. This method is used to

dynamically load the driver class.

Syntax of forName() method

 public static void forName(String className)throws ClassNotFoundException

Example to register the OracleDriver class

 Class.forName("oracle.jdbc.driver.OracleDriver");

2) Create the connection object

The getConnection() method of DriverManager class is used to establish connection with the

database.

Syntax of getConnection() method

 1) public static Connection getConnection(String url)throws SQLException

 2) public static Connection getConnection(String url,String name,String password)

 throws SQLException

Example to establish connection with the Oracle database

 Connection con=DriverManager.getConnection(

 "jdbc:oracle:thin:@localhost:1521:xe","system","password");

3) Create the Statement object

The createStatement() method of Connection interface is used to create statement. The object of

statement is responsible to execute queries with the database.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 333

Syntax of createStatement() method

 public Statement createStatement()throws SQLException

Example to create the statement object

 Statement stmt=con.createStatement();

4) Execute the query

The executeQuery() method of Statement interface is used to execute queries to the database.

This method returns the object of ResultSet that can be used to get all the records of a table.

Syntax of executeQuery() method

 public ResultSet executeQuery(String sql)throws SQLException

Example to execute query

 ResultSet rs=stmt.executeQuery("select * from emp");

 while(rs.next()){

 System.out.println(rs.getInt(1)+" "+rs.getString(2));

 }

5) Close the connection object

By closing connection object statement and ResultSet will be closed automatically. The close()

method of Connection interface is used to close the connection.

Syntax of close() method

 public void close()throws SQLException

Example to close connection

 con.close();

Example to connect to the mysql database

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 334

For connecting java application with the mysql database, you need to follow 5 steps to perform

database connectivity.

In this example we are using MySql as the database. So we need to know following informations

for the mysql database:

 Driver class: The driver class for the mysql database is com.mysql.jdbc.Driver.

 Connection URL: The connection URL for the mysql database is

jdbc:mysql://localhost:3306/sonoo where jdbc is the API, mysql is the database, localhost is

the server name on which mysql is running, we may also use IP address, 3306 is the port

number and sonoo is the database name. We may use any database, in such case, you need to

replace the sonoo with your database name.

 Username: The default username for the mysql database is root.

 Password: Password is given by the user at the time of installing the mysql database. In this

example, we are going to use root as the password.

Let's first create a table in the mysql database, but before creating table, we need to create

database first.

 create database sonoo;

 use sonoo;

 create table emp(id int(10),name varchar(40),age int(3));

Example to Connect Java Application with mysql database

In this example, sonoo is the database name, root is the username and password.

 import java.sql.*;

 class MysqlCon{

 public static void main(String args[]){

 try{

 Class.forName("com.mysql.jdbc.Driver");

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 335

 Connection con=DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/sonoo","root","root");

 //here sonoo is database name, root is username and password

 Statement stmt=con.createStatement();

 ResultSet rs=stmt.executeQuery("select * from emp");

 while(rs.next())

 System.out.println(rs.getInt(1)+" "+rs.getString(2)+" "+rs.getString(3));

 con.close();

 }catch(Exception e){ System.out.println(e);}

 }

 }

DriverManager class:

The DriverManager class acts as an interface between user and drivers. It keeps track of the

drivers that are available and handles establishing a connection between a database and the

appropriate driver. The DriverManager class maintains a list of Driver classes that have

registered themselves by calling the method DriverManager.registerDriver().

Commonly used methods of DriverManager class:

1) public static void registerDriver(Driver driver): is used to register the given driver with

DriverManager.

2) public static void deregisterDriver(Driver driver): is used to deregister the given driver (drop

the driver from the list) with DriverManager.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 336

3) public static Connection getConnection(String url): is used to establish the connection

with the specified url.

4) public static Connection getConnection(String url,String userName,String password): is used

to establish the connection with the specified url, username and password.

Connection interface:

A Connection is the session between java application and database. The Connection interface is a

factory of Statement, PreparedStatement, and DatabaseMetaData i.e. object of Connection can be

used to get the object of Statement and DatabaseMetaData. The Connection interface provide

many methods for transaction management like commit(),rollback() etc.

By default, connection commits the changes after executing queries.

Commonly used methods of Connection interface:

1) public Statement createStatement(): creates a statement object that can be used to execute

SQL queries.

2) public Statement createStatement(int resultSetType,int resultSetConcurrency): Creates a

Statement object that will generate ResultSet objects with the given type and concurrency.

3) public void setAutoCommit(boolean status): is used to set the commit status.By default it is

true.

4) public void commit(): saves the changes made since the previous commit/rollback permanent.

5) public void rollback(): Drops all changes made since the previous commit/rollback.

6) public void close(): closes the connection and Releases a JDBC resources immediately.

Statement interface

The Statement interface provides methods to execute queries with the database. The statement

interface is a factory of ResultSet i.e. it provides factory method to get the object of ResultSet.

Commonly used methods of Statement interface:

The important methods of Statement interface are as follows:

1) public ResultSet executeQuery(String sql): is used to execute SELECT query. It returns the

object of ResultSet.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 337

2) public int executeUpdate(String sql): is used to execute specified query, it may be create,

drop, insert, update, delete etc.

3) public boolean execute(String sql): is used to execute queries that may return multiple results.

4) public int[] executeBatch(): is used to execute batch of commands.

Example of Statement interface

Let’s see the simple example of Statement interface to insert, update and delete the record.

 import java.sql.*;

 class FetchRecord{

 public static void main(String args[])throws Exception{

 Class.forName("oracle.jdbc.driver.OracleDriver");

 Connection

con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe","system","oracle");

 Statement stmt=con.createStatement();

 //stmt.executeUpdate("insert into emp765 values(33,'Irfan',50000)");

 //int result=stmt.executeUpdate("update emp765 set name='Vimal',salary=10000 where

id=33");

 int result=stmt.executeUpdate("delete from emp765 where id=33");

 System.out.println(result+" records affected");

 con.close();

 }}

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 338

Module 17 Introduction WebServices

Web Services

Web services are open standard (XML, SOAP, HTTP etc.) based Web applications that interact

with other web applications for the purpose of exchanging data.

WSDL

WSDL stands for Web Services Description Language. It is an XML-based language for

describing Web services.

SOAP

SOAP stands for Simple Object Access Protocol. SOAP is an XML based protocol for accessing

Web Services. It is based on XML.

RDF

RDF stands for Resource Description Framework. RDF is a framework for describing resources

on the web. It is written in XML

RSS

RSS stands for Really Simple Syndication. RSS allows you to syndicate your site content. It

defines an easy way to share and view headlines and content. RSS files can be automatically

updated and allows personalized views for different sites. RSS is written in XML

How Does a Web Service Work?

A web service enables communication among various applications by using open standards such

as HTML, XML, WSDL, and SOAP. A web service takes the help of:

 XML to tag the data

 SOAP to transfer a message

 WSDL to describe the availability of service.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 339

Example

Consider a simple account-management and order processing system. The accounting personnel

use a client application built with Visual Basic or JSP to create new accounts and enter new

customer orders.

The processing logic for this system is written in Java and resides on a Solaris machine, which

also interacts with a database to store information.

The steps to perform this operation are as follows:

 The client program bundles the account registration information into a SOAP message.

 This SOAP message is sent to the web service as the body of an HTTP POST request.

 The web service unpacks the SOAP request and converts it into a command that the

application can understand.

 The application processes the information as required and responds with a new unique

account number for that customer.

 Next, the web service packages the response into another SOAP message, which it sends

back to the client program in response to its HTTP request.

 The client program unpacks the SOAP message to obtain the results of the account

registration process.

Why Web Services:

Exposing the Existing Function on the network

A web service is a unit of managed code that can be remotely invoked using HTTP, that is, it can

be activated using HTTP requests. Web services allows you to expose the functionality of your

existing code over the network. Once it is exposed on the network, other application can use the

functionality of your program.

Interoperability

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 340

Web services allow various applications to talk to each other and share data and services among

themselves. Other applications can also use the web services. For example, a VB or .NET

application can talk to Java web services and vice versa. Web services are used to make the

application platform and technology independent.

Standardized Protocol

Web services use standardized industry standard protocol for the communication. All the four

layers (Service Transport, XML Messaging, Service Description, and Service Discovery layers)

use well-defined protocols in the web services protocol stack. This standardization of protocol

stack gives the business many advantages such as a wide range of choices, reduction in the cost

due to competition, and increase in the quality.

Low Cost of Communication

Web services use SOAP over HTTP protocol, so you can use your existing low-cost internet for

implementing web services. This solution is much less costly compared to proprietary solutions

like EDI/B2B. Besides SOAP over HTTP, web services can also be implemented on other

reliable transport mechanisms like FTP.

Web Services - Characteristics

Web services have the following special behavioral characteristics:

XML-Based

Web Services uses XML at data representation and data transportation layers. Using XML

eliminates any networking, operating system, or platform binding. Web Services based

applications are highly interoperable application at their core level.

Loosely Coupled

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 341

A consumer of a web service is not tied to that web service directly. The web service interface

can change over time without compromising the client's ability to interact with the service. A

tightly coupled system implies that the client and server logic are closely tied to one another,

implying that if one interface changes, the other must be updated. Adopting a loosely coupled

architecture tends to make software systems more manageable and allows simpler integration

between different systems.

Coarse-Grained

Object-oriented technologies such as Java expose their services through individual methods. An

individual method is too fine an operation to provide any useful capability at a corporate level.

Building a Java program from scratch requires the creation of several fine-grained methods that

are then composed into a coarse-grained service that is consumed by either a client or another

service.

Businesses and the interfaces that they expose should be coarse-grained. Web services

technology provides a natural way of defining coarse-grained services that access the right

amount of business logic.

Ability to be Synchronous or Asynchronous

Synchronicity refers to the binding of the client to the execution of the service. In synchronous

invocations, the client blocks and waits for the service to complete its operation before

continuing. Asynchronous operations allow a client to invoke a service and then execute other

functions.

Asynchronous clients retrieve their result at a later point in time, while synchronous clients

receive their result when the service has completed. Asynchronous capability is a key factor in

enabling loosely coupled systems.

Supports Remote Procedure Calls (RPCs)

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 342

Web services allow clients to invoke procedures, functions, and methods on remote objects using

an XML-based protocol. Remote procedures expose input and output parameters that a web

service must support.

Component development through Enterprise JavaBeans (EJBs) and .NET Components has

increasingly become a part of architectures and enterprise deployments over the past couple of

years. Both technologies are distributed and accessible through a variety of RPC mechanisms.

A web service supports RPC by providing services of its own, equivalent to those of a traditional

component, or by translating incoming invocations into an invocation of an EJB or a .NET

component.

Supports Document Exchange

One of the key advantages of XML is its generic way of representing not only data, but also

complex documents. These documents can be as simple as representing a current address, or they

can be as complex as representing an entire book or Request for Quotation (RFQ). Web services

support the transparent exchange of documents to facilitate business integration.

Over the past few years, three primary technologies have emerged as worldwide standards that

make up the core of today's web services technology. These technologies are discussed below.

XML-RPC

This is the simplest XML-based protocol for exchanging information between computers.

 XML-RPC is a simple protocol that uses XML messages to perform RPCs.

 Requests are encoded in XML and sent via HTTP POST.

 XML responses are embedded in the body of the HTTP response.

 XML-RPC is platform-independent.

 XML-RPC allows diverse applications to communicate.

 A Java client can speak XML-RPC to a Perl server.

 XML-RPC is the easiest way to get started with web services.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 343

SOAP

SOAP is an XML-based protocol for exchanging information between computers.

 SOAP is a communication protocol.

 SOAP is for communication between applications.

 SOAP is a format for sending messages.

 SOAP is designed to communicate via Internet.

 SOAP is platform independent.

 SOAP is language independent.

 SOAP is simple and extensible.

 SOAP allows you to get around firewalls.

 SOAP will be developed as a W3C standard.

WSDL

WSDL is an XML-based language for describing web services and how to access them.

 WSDL stands for Web Services Description Language.

 WSDL was developed jointly by Microsoft and IBM.

 WSDL is an XML based protocol for information exchange in decentralized and

distributed environments.

 WSDL is the standard format for describing a web service.

 WSDL definition describes how to access a web service and what operations it will

perform.

 WSDL is a language for describing how to interface with XML-based services.

 WSDL is an integral part of UDDI, an XML-based worldwide business registry.

 WSDL is the language that UDDI uses.

 WSDL is pronounced as 'wiz-dull' and spelled out as 'W-S-D-L'.

UDDI

UDDI is an XML-based standard for describing, publishing, and finding web services.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 344

 UDDI stands for Universal Description, Discovery, and Integration.

 UDDI is a specification for a distributed registry of web services.

 UDDI is platform independent, open framework.

 UDDI can communicate via SOAP, CORBA, and Java RMI Protocol.

 UDDI uses WSDL to describe interfaces to web services.

 UDDI is seen with SOAP and WSDL as one of the three foundation standards of web

services.

 UDDI is an open industry initiative enabling businesses to discover each other and define

how they interact over the Internet.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 345

Module 18 Web Services Architecture

Web Services – Architecture

There are two ways to view the web service architecture:

 The first is to examine the individual roles of each web service actor.

 The second is to examine the emerging web service protocol stack.

Web Service Roles

There are three major roles within the web service architecture:

Service Provider

This is the provider of the web service. The service provider implements the service and makes it

available on the Internet.

Service Requestor

This is any consumer of the web service. The requestor utilizes an existing web service by

opening a network connection and sending an XML request.

Service Registry

This is a logically centralized directory of services. The registry provides a central place where

developers can publish new services or find existing ones. It therefore serves as a centralized

clearing house for companies and their services.

Web Service Protocol Stack

A second option for viewing the web service architecture is to examine the emerging web service

protocol stack. The stack is still evolving, but currently has four main layers.

Service Transport

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 346

This layer is responsible for transporting messages between applications. Currently, this layer

includes Hyper Text Transport Protocol (HTTP), Simple Mail Transfer Protocol (SMTP), File

Transfer Protocol (FTP), and newer protocols such as Blocks Extensible Exchange Protocol

(BEEP).

XML Messaging

This layer is responsible for encoding messages in a common XML format so that messages can

be understood at either end. Currently, this layer includes XML-RPC and SOAP.

Service Description

This layer is responsible for describing the public interface to a specific web service. Currently,

service description is handled via the Web Service Description Language (WSDL).

Service Discovery

This layer is responsible for centralizing services into a common registry and providing easy

publish/find functionality. Currently, service discovery is handled via Universal Description,

Discovery, and Integration (UDDI).

As web services evolve, additional layers may be added and additional technologies may be

added to each layer.

Hyper Text Transfer Protocol (HTTP)

Currently, HTTP is the most popular option for service transport. HTTP is simple, stable, and

widely deployed. Furthermore, most firewalls allow HTTP traffic. This allows XML-RPC or

SOAP messages to masquerade as HTTP messages. This is good if you want to integrate remote

applications, but it does raise a number of security concerns.

Blocks Extensible Exchange Protocol (BEEP)

This is a promising alternative to HTTP. BEEP is a new Internet Engineering Task Force (IETF)

framework for building new protocols. BEEP is layered directly on TCP and includes a number

of built-in features, including an initial handshake protocol, authentication, security, and error

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 347

handling. Using BEEP, one can create new protocols for a variety of applications, including

instant messaging, file transfer, content syndication, and network management.

SOAP is not tied to any specific transport protocol. In fact, you can use SOAP via HTTP, SMTP,

or FTP. One promising idea is therefore to use SOAP over BEEP.

What is REST?

REST stands for REpresentational State Transfer. REST is web standards based architecture and

uses HTTP Protocol for data communication. It revolves around resource where every

component is a resource and a resource is accessed by a common interface using HTTP standard

methods.

In REST architecture, a REST Server simply provides access to resources and REST client

accesses and presents the resources. Here each resource is identified by URIs/ global IDs. REST

uses various representations to represent a resource like text, JSON and XML. Now a days JSON

is the most popular format being used in web services.

HTTP Methods

Following well known HTTP methods are commonly used in REST based architecture.

 GET - Provides a read only access to a resource.

 PUT - Used to create a new resource.

 DELETE - Used to remove a resource.

 POST - Used to update a existing resource or create a new resource.

 OPTIONS - Used to get the supported operations on a resource.

RESTFul Web Services

A web service is a collection of open protocols and standards used for exchanging data between

applications or systems. Software applications written in various programming languages and

running on various platforms can use web services to exchange data over computer networks like

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 348

the Internet in a manner similar to inter-process communication on a single computer. This

interoperability (e.g., between Java and Python, or Windows and Linux applications) is due to

the use of open standards.

Web services based on REST Architecture are known as RESTful web services. These web

services use HTTP methods to implement the concept of REST architecture. A RESTful web

service usually defines a URI, Uniform Resource Identifier a service, provides resource

representation such as JSON and set of HTTP Methods.

SOAP vs RESTful Web Services

SOA - Introduction:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 349

Service-Oriented Architecture (SOA) is a new way of thinking about enterprise IT Architecture.

SOA is about associating business process with IT. SOA represents a natural evolution of proven

software architectural principles or design patterns commonly implemented in object-oriented

systems.

No. SOAP REST

1) SOAP is a protocol. REST is an architectural style.

2) SOAP stands for Simple

Object Access Protocol.

REST stands for REpresentational State Transfer.

3) SOAP can't use

REST because it is a

protocol.

REST can use SOAP web services because it is a

concept and can use any protocol like HTTP, SOAP.

4) SOAP uses services

interfaces to expose the

business logic.

REST uses URI to expose business logic.

5) JAX-WS is the java API for

SOAP web services.

JAX-RS is the java API for RESTful web services.

6) SOAP defines standards to

be strictly followed.

REST does not define too much standards like

SOAP.

7) SOAP requires more

bandwidth and resource

than REST.

REST requires less bandwidth and resource than

SOAP.

8) SOAP defines its own

security.

RESTful web services inherits security

measures from the underlying transport.

9) SOAP permits XML data

format only.

REST permits different data format such as Plain

text, HTML, XML, JSON etc.

10) SOAP is less preferred than

REST.

REST more preferred than SOAP.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 350

In short SOA is the concept that defines an architecture which gives a conduit to deliver business

processes as services and increase the growth for business applications.

Service

A service is well-defined, self-contained function that represents unit of functionality. A service

can exchange information from another service. It is not dependent on the state of another

service.

Over the past few years, three primary technologies have emerged as worldwide standards that

make up the core of today's web services technology. These technologies are discussed below.

XML-RPC

This is the simplest XML-based protocol for exchanging information between computers.

 XML-RPC is a simple protocol that uses XML messages to perform RPCs.

 Requests are encoded in XML and sent via HTTP POST.

 XML responses are embedded in the body of the HTTP response.

 XML-RPC is platform-independent.

 XML-RPC allows diverse applications to communicate.

 A Java client can speak XML-RPC to a Perl server.

 XML-RPC is the easiest way to get started with web services.

SOAP

SOAP is an XML-based protocol for exchanging information between computers.

 SOAP is a communication protocol.

 SOAP is for communication between applications.

 SOAP is a format for sending messages.

 SOAP is designed to communicate via Internet.

 SOAP is platform independent.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 351

 SOAP is language independent.

 SOAP is simple and extensible.

 SOAP allows you to get around firewalls.

 SOAP will be developed as a W3C standard.

WSDL

WSDL is an XML-based language for describing web services and how to access them.

 WSDL stands for Web Services Description Language.

 WSDL was developed jointly by Microsoft and IBM.

 WSDL is an XML based protocol for information exchange in decentralized and

distributed environments.

 WSDL is the standard format for describing a web service.

 WSDL definition describes how to access a web service and what operations it will

perform.

 WSDL is a language for describing how to interface with XML-based services.

 WSDL is an integral part of UDDI, an XML-based worldwide business registry.

 WSDL is the language that UDDI uses.

 WSDL is pronounced as 'wiz-dull' and spelled out as 'W-S-D-L'.

UDDI

UDDI is an XML-based standard for describing, publishing, and finding web services.

 UDDI stands for Universal Description, Discovery, and Integration.

 UDDI is a specification for a distributed registry of web services.

 UDDI is platform independent, open framework.

 UDDI can communicate via SOAP, CORBA, and Java RMI Protocol.

 UDDI uses WSDL to describe interfaces to web services.

 UDDI is seen with SOAP and WSDL as one of the three foundation standards of web

services.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 352

 UDDI is an open industry initiative enabling businesses to discover each other and define

how they interact over the Internet.

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 353

Module 19 Java Web Services

Web Services with JAX-WS

Java API for XML Web Services (JAX-WS) is a technology for building web services and

clients that communicate using XML. JAX-WS allows developers to write message-oriented as

well as Remote Procedure Call-oriented (RPC-oriented) web services.

In JAX-WS, a web service operation invocation is represented by an XML-based protocol, such

as SOAP. The SOAP specification defines the envelope structure, encoding rules, and

conventions for representing web service invocations and responses. These calls and responses

are transmitted as SOAP messages (XML files) over HTTP.

JAX-WS provides concepts and examples of JAX-WS API.

This JAX-WS is designed for beginners and professionals.

There are two ways to develop JAX-WS example.

 RPC style

 Document style.

Difference between RPC and Document web services:

Introduction to Web Services Development (CS311)

© Copyright Virtual University of Pakistan 354

Difference between RPC and Document web services

There are many differences between RPC and Document web services. The important

differences between RPC and Document are given below:

RPC Style

1) RPC style web services use method name and parameters to generate XML structure.

2) The generated WSDL is difficult to be validated against schema.

3) In RPC style, SOAP message is sent as many elements.

4) RPC style message is tightly coupled.

5) In RPC style, SOAP message keeps the operation name.

6) In RPC style, parameters are sent as discrete values.

Document Style

1) Document style web services can be validated against predefined schema.

2) In document style, SOAP message is sent as a single document.

3) Document style message is loosely coupled.

4) In Document style, SOAP message loses the operation name.

5) In Document style, parameters are sent in XML format.

--

