Lab Experiment \# 06

Simplification of Boolean expressions -II

Objectives

1- Study K-maps with 2, 3 and 4 inputs.
2- Simplify Boolean logic equations by using K-maps.

Lab Tasks

Task 1: Simplifying two-input Boolean functions

Simplify the following Boolean expression using a k-map of size 2×2.

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B})=(\mathrm{A} . \mathrm{B})+\mathrm{A}^{\prime}(\mathrm{A}+\mathrm{B})
$$

A.

Draw the simplified and the original Boolean expression using EWB and make sure that they are booth equivalent by filling-in the following truth table.

A	B	F (A, B) (original)	Y (Simplified)

0	0		
0	1		
1	0		
1	1		

Task 2: Simplifying three-input Boolean functions

Simplify the following Boolean expression F
$(\mathrm{A}, \mathrm{B}, \mathrm{C})=\left(\mathrm{A}+\mathrm{C}^{\prime}\right)+\mathrm{C}\left(\mathrm{C} . \mathrm{A}^{\prime}+(\mathrm{B} . \mathrm{A})+\mathrm{C}\right)$

Draw the simplified Boolean expression using EWB. Find out the truth table of the circuit.

	A	B	C	F
1	0	0	0	
2	0	0	1	
3	0	1	0	
4	0	1	1	
5	1	0	0	
6	1	0	1	
7	1	1	0	
8	1	1	1	

Task 3: Simplifying four-input Boolean functions

Simplify the following logic function using k-maps
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(6,8,9,10,11,12,13,14)$
Then draw the logic circuit that represents this function.

Fill the truth table of the circuit above.

	A	B	C	D	F
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
10	1	0	1	0	
11	1	0	1	1	
12	1	1	0	0	
13	1	1	0	1	
14	1	1	1	0	
15	1	1	1	1	

