Lab Experiment # 06 Simplification of Boolean expressions - II

Objectives

- 1- Study K-maps with 2, 3 and 4 inputs.
- 2- Simplify Boolean logic equations by using K-maps.

<u>Lab Tasks</u>

Task 1: Simplifying two-input Boolean functions

Simplify the following Boolean expression using a k-map of size 2x2.

F(A, B) = (A, B) + A'(A+B)

Draw the simplified and the original Boolean expression using EWB and make sure that they are booth equivalent by filling-in the following truth table.

A B F (A, B) (original) Y (Simpli	ied)
-----------------------------------	------

0	0	
0	1	
1	0	
1	1	

Task 2: Simplifying three-input Boolean functions

Simplify the following Boolean expression F

$$(A, B, C) = (A+C') + C (C.A' + (B.A) + C)$$

Draw the simplified Boolean expression using EWB. Find out the truth table of the circuit.

	А	В	С	F
1	0	0	0	
2	0	0	1	
3	0	1	0	
4	0	1	1	
5	1	0	0	
6	1	0	1	
7	1	1	0	
8	1	1	1	

Task 3: Simplifying four-input Boolean functions

Simplify the following logic function using k-maps

F (A, B, C, D) = Σ (6, 8, 9, 10, 11, 12, 13, 14)

Then draw the logic circuit that represents this function.

F

Fill the truth table of the circuit above.

	А	В	С	D	F
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
10	1	0	1	0	
11	1	0	1	1	
12	1	1	0	0	
13	1	1	0	1	
14	1	1	1	0	
15	1	1	1	1	