Lab Experiment # 13

Design and Implementation of Magnitude Comparator Objective

To design and implement

- (i) 2 Bit magnitude comparator using basic gates.
- (ii) 8 Bit magnitude comparator using IC 7485.

Parts Required

Sl.No.	COMPONENT	SPECIFICATION	QTY.
1.	AND GATE	IC 7408	2
2.	X-OR GATE	IC 7486	1
3.	OR GATE	IC 7432	1
4.	NOT GATE	IC 7404	1
5.	4-BIT MAGNITUDE	IC 7485	2
	COMPARATOR		

Theory:

The comparison of two numbers is an operator that determines one number is greater than, less than (or) equal to the other number. A magnitude comparator is combinational circuits that compares two numbers A and B and determine their relative magnitude. The outcome of the comparator is specified by three binary variables that indicate whether A>B, A=B or A<B.

A = A3 A2 A1 A0 B = B3 B2 B1 B0

The equality of the two numbers and B is displayed in a combinational circuit designated by the symbol (A=B).

This indicates A greater than B, then inspect the relative magnitude of pairs of significant digits starting from most significant position. A is 0 and that of B is 0.

We have A<B, the sequential comparison can be expanded as

 $A>B = A3B31 + X3A2B2 + X3X2A1B1 + X3X2X1A0B0 A \le B = A31B3 + X3A21B2 + X3X2A11B1 + X3X2X1A01B0$

The same circuit can be used to compare the relative magnitude of two BCD digits.

Where, A = B is expanded as,

A = B = (A3 + B3) (A2 + B2) (A1 + B1) (A0 + B0)

Logic Diagram: 2 Bit Magnitude Comparator

K MAP

Truth Table

А	А	В	В	A > B	$\mathbf{A} = \mathbf{B}$	A < B
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

Pin Diagram For IC 7485

		·		r
В3	_ 1	~	16 —	vcc
1(A <b)< td=""><td>- 2</td><td>I</td><td>15 —</td><td>A3</td></b)<>	- 2	I	15 —	A3
1(A=B)	_ 3	С	14 —	B2
1(A>B)	_ 4	7	13 —	A2
A>B	_ 5	4	12 —	A1
A=B	_ 6	8	11 —	B1
A <b< td=""><td>- 7</td><td>5</td><td>10 —</td><td>A0</td></b<>	- 7	5	10 —	A0
GND	- 8		9 —	В0

Logic Diagram 8 Bit Magnitude Comparator

Truth Table

Α	В	A>B	A=B	A <b< th=""></b<>
0000 0000	0000 0000	0	1	0
0001 0001	0000 0000	1	0	0
0000 0000	0001 0001	0	0	1

Procedure

- (i) Verify the gates
- (ii) Connections are given as per circuit diagram.
- (iii) Logical inputs are given as per circuit diagram.
- (iv) Observe the output and verify the truth table.