Lab Experiment #10

Building digital logic circuits using Decoders

Objectives

• To learn how to build combinational logic circuits using decoders.

Background

In a **Combinational Logic Circuit**, the output is dependant at all times on the combination of its inputs. Some examples of a combinational circuit include **Multiplexers**, **De-multiplexers**, **Encoders**, **Full** and **Half Adders** etc.

A Decoder is a circuit with two or more inputs and one or more outputs. Its basic function is to accept a binary word (code) as an input and create a different binary word as an output.

Logic Functions Realized with Decoders:

Drawing Decoders using EWB:

Click on the button on the toolbar, then drag a 741xx digital IC into your workspace. From the list, select either 74138 (3-8 decoder) or 74154 (4-16 decoder) as shown next.

74138 (3-8 decoder)

The 3-to-8 decoder truth table is shown next:

			Sele	ct									
G2A'	G1	G2B'	С	В	A	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X	X	1	X	X	X	1	1	1	1	1	1	1	1
X	0	X	X	X	X	1	1	1	1	1	1	1	1
0	1	0	0	0	0	0	1	1	1	1	1	1	1
0	1	0	0	0	1	1	0	1	1	1	1	1	1
0	1	0	0	1	1	1	1	0	1	1	1	1	1
0	1	0	0	1	1	1	1	1	0	1	1	1	1
0	1	0	1	0	0	1	1	1	1	0	1	1	1
0	1	0	1	0	1	1	1	1	1	1	0	1	1
0	1	0	1	1	0	1	1	1	1	1	1	0	1
0	1	0	1	1	1	1	1	1	1	1	1	1	0
1	1	0	X	X	X	Outp other	ut con	respon	ding t	o store	ed add	ress 0;	all

74154 (4-16 decoder)

Example: drawing a 4-input function using 74154 (Sum of minterms)

Next is the function $F(D, C, B, A)=\Sigma 0$, 7, 8, 10, 13, 15

Example: drawing a 4-input function using 74154 (Product of maxterms)

Next is the function $F(D, C, B, A) = \Pi 11, 12, 13, 15$

Lab Tasks

Task 1: Implementing 3-variable Boolean expressions using 3-8 decoder

Implement the following function using 3-8 decoders.

	A	В	C	F
0	0	0	0	1
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	0

The above function can be implemented as shown next. Redraw this circuit using EWB.

Task 2: Implementing multiple 3-variable Boolean expressions using 3-8 decoder Implement the following three functions using 3-8 decoders.

	A	В	C	F1	F2	F3
0	0	0	0	0	1	1
1	0	0	1	1	1	0
2	0	1	0	0	0	1
3	0	1	1	1	1	0

4	1	0	0	0	1	1
5	1	0	1	1	0	0
6	1	1	0	1	0	0
7	1	1	1	0	0	1

Task 3: Problems with verbal description

Design a combinational circuit (using **one 4-16 decoder**) with four inputs, and one output to implement the following function.

	A	В	C	D	F
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	0
14	1	1	1	0	0

1.5	1	1	1	1	1
15	1	1	1	1	1

4 3 C 21 5 4 D 20 6 5 G2′ № 19 7 6 G1′ № 18	
2 1 A 23 3 2 B 22 4 3 C 21 5 4 D 20 6 5 G2' 19 7 6 G1' 18 8 7 15 17 9 8 14 16 10 9 13 15 11 10 12 14 12 GND 11 13	15 17 14 16 13 15 12 14

Task 4: Problems with verbal description

Design a combinational circuit (using **two 3-8 decoder**) with four inputs, and one output to implement the following function.

	A	В	C	D	F
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	1

16___ 1 VCC Α 2 15 В ΥŌ 3 14 Y1 4 13 G2A′ Y2 5 12 G2B'YЗ 6 11 G1 Y4 7 10 Y7. Y5 8 9 GND Y6. 74138