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Abstract 
The calculation of the Fibonacci sequence using recursion gives rise to an interesting question: How many times 
does a recursive function call itself? This paper presents one way to examine this question using difference 
equations with initial conditions, or discrete dynamical systems (DDS). We show that there is a linear relationship 
between the Fibonacci numbers themselves and the number of recursive calls. This relationship generalizes to any 
type of DDS of second-order, and DDS of higher-order. 

In troduc t ion  
Sometimes interesting theoretical problems crop in the most 
unlikely place. Recently I was introducing Computer Science 
I students to recursive functions. One of the classic problems 
encountered in this area is the calculation of the n-th Fibonacci 
number. 

The Fibonacci numbers are defined by the following 
recurrence relation: 

F(n) = F(n - 1) + F(n - 2), n = 2, 3 . . . .  (1) 
We define F(0) = F(1) = 1, which are called initial conditions. 
Together with those conditions, we sometimes call Eq. (1) a 
discrete dynamical system (DDS) [1]. It is straightforward to 
implement a solution to this DDS using recursion. 

One day, while my class was in the laboratory, one of my 
students observed that her computer took an inordinate amount 
of time to calculate F(30) using recursion (the machine was a 
100 MHz Pentium) and she was concerned that something was 
wrong with her code. There wasn't, of course, and I suggested 
that she modify her program to print out not only the n-th 
Fibonacci number, but also the number of times the function 
defining the Fibonacci number was called. She used a global 
variable to keep track of the calls and we show her code in 
Figure 1. 

#include <iostream.h> 

long calls; 

long F(long n) { 

calls++; 

if (n <= i) 

return 1 ; 

else 

return F(n - i) + F(n - 2); 
} 

int main() { 

long i, c, d; 

for (i = 0; i <= 30; i++) ( 

calls = 0; 

d = F(i) ; 

c = calls; 

cout << "i = " << i << " F(i) = " 

<< d << " calls = " << c << endl; 
) 

return 0 ; 

Figure 1. C++ code used to calculate the n-th Fibonacci 
number and to track the number of recursive made to the 
defining function. 

Table 1 summarizes the output of the program. Quite 
evidently, the number of calls that function makes to itself 
grows much faster than n. Further, when n = 30, the program 
makes over 2.6x106 recursive calls. That is a tall 
computational order, even for a Pentium Processor. 

i F(1) calls 
0 1 1 

1 1 1 

2 2 3 

3 3 5 

4 5 9 

5 8 15 

6 13 25 

7 21 41 

8 34 67 

9 55 109 

I0 89 177 

ii 144 287 

12 233 465 

13 377 753 

14 610 1219 

15 987 1973 

16 1597 3193 

17 2584 5167 

18 4181 8361 

19 6765 13529 

20 10946 21891 

21 17711 35421 

22 28657 57313 

23 46368 92735 

24 75025 150049 

25 121393 242785 

26 196418 392835 

27 317811 635621 

28 514229 1028457 

29 832040 1664079 

30 1346269 2692537 

Table 1: Summary of output of program given in Figure 1. 
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Introductory texts usually do not say much about the growth of 
the number  of recursive calls. Although it is not hard to 
convince a student that the growth increases exponentially (i.e. 
something like O(2n)), is it possible to calculate the exact 
number  of  calls for a given n? This is what my student asked 
me. The answer turns out to be yes, and the result is only 
slightly more complicated than calculating the n-th Fibonacci 
number. 

Analysis 
There are several ways to solve Eq. (1), i.e. to determine an 
explicit function dependence of the n-th Fibonacci number. 
The actual solution, which, if fairly complicated, is not 
important to this discussion, but see [1, p. 212-215] and many 
other sources for a description of the solution method. 

Now to determine the number  of recursive calls needed to 
calculate F(n), we let G(n) be the number  of calls made by the 
recursive program in calculating F(n). Examining the code we 
see that G(0) = 1 since just  one call to the function is needed 
to compute F(0). Moreover, G(1) = t as well. Now, to 
compute G(n), we will need to make an initial call, and then 
G(n - 1) calls to calculate F(n  - 1) as well as G(n - 2) calls to 
calculate F(n - 2). In other words, 

G(n) = G(n - 1) + G(n - 2) + 1 (2) 
Together with the conditions G(0) = 1 and G(1) = 1, Eq. (2) 
specifies another DDS. In fact, it is very similar to the DDS in 
Eq. (1), with the addition of the constant term on the right- 
hand side. (This is called a constant nonhomogeneous  term.) 
It is possible to solve this DDS using the same method as was 
used to solve Eq. (1). The exact solution method is rather long 
and intricate and, in any case, tends to obscure an interesting 
relationship between G(n) and F(n). It turns out that we can 
solve Eq. (2) in a much more elegant way. 

Noting the form of the DDS, let us suppose that G(n) 
depends on F(n) in some way; in other words, G(n) is a 
function of F(n). A good first conjecture would be to assume 
a linear dependence of G(n) on F(n), so that 

G(n) = a F(n) + b (3) 
where a and b are constants yet to be determined. Since we 
know that G(0) = G(1) = 1, while F(0) = F(1) =1, this tells us 
that 1 = a + b. Then by substituting Eq. (3) into (2) and using 
the fact F(n) = F(n - 1) + F(n - 2), we obtain that b = -1 .  
Therefore, a = 2 and we have the remarkable result that 

G(n) = 2 F(n) - 1 (4) 
In other words, the number  of recursive calls required to 
compute the n-th Fibonacci number  is twice that number  less 
one, which Table 1 confirms. Since the Fibonacci  numbers 
grow exponentially (see [1]), we see that the number  of 
recursive calls grows exponentially as well (ample evidence 
that recursion is not an efficient way to attack second order 
DDS!). 

Extensions 
Our result is even more interesting when we note that G(n) in 
no way depends on the coefficients of the difference equation 
in general. In fact, if  properly code the recursive function, the 
same result will hold for any second order DDS----even 
nonlinear  ones ! In fact, the number  of calls turns out to be an 
upper  bound  for an arbitrary second-order  DDS, since 
difference equations of the form 

H(n) = a H(n - 2) (5) 
will evidently require less computational effort. In fact, in this 
instance, the expression for the number  of calls is simpler: 

C ( n ) = f ( n - 2 ) +  1 
with C(0) = C(1) = 1. The solution is 

C ( n ) = 3 1 4 + ( - 1 ) n / 4 +  n / 2  
so that in this case, the number  of recursive calls grows 
linearly. 

Higher-Order DDS 
Similar results are obtainable for a third order DDS. In this 
case, we first consider the third-order analog to Eq. (1): 

T(n) = T ( n - 1 ) + T ( n - 2 ) + T ( n - 3 )  
with T(0) = 1, T(1) = 1, and T(2) = 1, and suppose that we 
code it in a manner  analogous to the code given in Figure 1, 
Then any third order DDS computed recursively (assuming no 
coefficient vanishes) will have a growth function D(n) for 
which D(0) = 1, D(1) = 1, D(2) = 1, and 

D(n) = D(n - 1) + D(n - 2) + D(n - 3) + 1, 
Not surprisingly, there is an intimate relationship between 
D(n) and T(n). If we again suppose that 

D(n) = a T(n) + b, 
we find that 

D(n) = 3 T(n) / 2 - 1/2 
In fact, this type of relationship continues as the order of the 
DDS takes on any value of n. 

We see then that a straightforward question asked by a 
student about a straightforward programming problem, one 
routinely assigned, contains some quite beautiful mathematics. 
Although we did not delve the techniques used to solve DDS 
here, this mathematics is certainly within the grasp of first and 
second year students. In any case, we hope that this discussion 
might serve to encourage computer science majors to begin 
explor ing the mathemat ics  that lies at the theoretical  
foundations of the discipline at an early stage. 
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