
How Many Recursive Calls Does a
Recursive Function Make?

John S. Robertson
Department of Mathematics and Computer Science

Georgia College & State University
Milledgeville, Georgia 31061 USA

jroberts @ mail.gcsu.edu

Abstract
The calculation of the Fibonacci sequence using recursion gives rise to an interesting question: How many times
does a recursive function call itself? This paper presents one way to examine this question using difference
equations with initial conditions, or discrete dynamical systems (DDS). We show that there is a linear relationship
between the Fibonacci numbers themselves and the number of recursive calls. This relationship generalizes to any
type of DDS of second-order, and DDS of higher-order.

In troduc t ion
Sometimes interesting theoretical problems crop in the most
unlikely place. Recently I was introducing Computer Science
I students to recursive functions. One of the classic problems
encountered in this area is the calculation of the n-th Fibonacci
number.

The Fibonacci numbers are defined by the following
recurrence relation:

F(n) = F(n - 1) + F(n - 2), n = 2, 3 (1)
We define F(0) = F(1) = 1, which are called initial conditions.
Together with those conditions, we sometimes call Eq. (1) a
discrete dynamical system (DDS) [1]. It is straightforward to
implement a solution to this DDS using recursion.

One day, while my class was in the laboratory, one of my
students observed that her computer took an inordinate amount
of time to calculate F(30) using recursion (the machine was a
100 MHz Pentium) and she was concerned that something was
wrong with her code. There wasn't, of course, and I suggested
that she modify her program to print out not only the n-th
Fibonacci number, but also the number of times the function
defining the Fibonacci number was called. She used a global
variable to keep track of the calls and we show her code in
Figure 1.

#include <iostream.h>

long calls;

long F(long n) {

calls++;

if (n <= i)

return 1 ;

else

return F(n - i) + F(n - 2);
}

int main() {

long i, c, d;

for (i = 0; i <= 30; i++) (

calls = 0;

d = F(i) ;

c = calls;

cout << "i = " << i << " F(i) = "

<< d << " calls = " << c << endl;
)

return 0 ;

Figure 1. C++ code used to calculate the n-th Fibonacci
number and to track the number of recursive made to the
defining function.

Table 1 summarizes the output of the program. Quite
evidently, the number of calls that function makes to itself
grows much faster than n. Further, when n = 30, the program
makes over 2.6x106 recursive calls. That is a tall
computational order, even for a Pentium Processor.

i F(1) calls
0 1 1

1 1 1

2 2 3

3 3 5

4 5 9

5 8 15

6 13 25

7 21 41

8 34 67

9 55 109

I0 89 177

ii 144 287

12 233 465

13 377 753

14 610 1219

15 987 1973

16 1597 3193

17 2584 5167

18 4181 8361

19 6765 13529

20 10946 21891

21 17711 35421

22 28657 57313

23 46368 92735

24 75025 150049

25 121393 242785

26 196418 392835

27 317811 635621

28 514229 1028457

29 832040 1664079

30 1346269 2692537

Table 1: Summary of output of program given in Figure 1.

SIGCSE Bulletin ~ s 60 June 1999 Vol 31. No. 2

Introductory texts usually do not say much about the growth of
the number of recursive calls. Although it is not hard to
convince a student that the growth increases exponentially (i.e.
something like O(2n)), is it possible to calculate the exact
number of calls for a given n? This is what my student asked
me. The answer turns out to be yes, and the result is only
slightly more complicated than calculating the n-th Fibonacci
number.

Analysis
There are several ways to solve Eq. (1), i.e. to determine an
explicit function dependence of the n-th Fibonacci number.
The actual solution, which, if fairly complicated, is not
important to this discussion, but see [1, p. 212-215] and many
other sources for a description of the solution method.

Now to determine the number of recursive calls needed to
calculate F(n), we let G(n) be the number of calls made by the
recursive program in calculating F(n). Examining the code we
see that G(0) = 1 since just one call to the function is needed
to compute F(0). Moreover, G(1) = t as well. Now, to
compute G(n), we will need to make an initial call, and then
G(n - 1) calls to calculate F(n - 1) as well as G(n - 2) calls to
calculate F(n - 2). In other words,

G(n) = G(n - 1) + G(n - 2) + 1 (2)
Together with the conditions G(0) = 1 and G(1) = 1, Eq. (2)
specifies another DDS. In fact, it is very similar to the DDS in
Eq. (1), with the addition of the constant term on the right-
hand side. (This is called a constant nonhomogeneous term.)
It is possible to solve this DDS using the same method as was
used to solve Eq. (1). The exact solution method is rather long
and intricate and, in any case, tends to obscure an interesting
relationship between G(n) and F(n). It turns out that we can
solve Eq. (2) in a much more elegant way.

Noting the form of the DDS, let us suppose that G(n)
depends on F(n) in some way; in other words, G(n) is a
function of F(n). A good first conjecture would be to assume
a linear dependence of G(n) on F(n), so that

G(n) = a F(n) + b (3)
where a and b are constants yet to be determined. Since we
know that G(0) = G(1) = 1, while F(0) = F(1) =1, this tells us
that 1 = a + b. Then by substituting Eq. (3) into (2) and using
the fact F(n) = F(n - 1) + F(n - 2), we obtain that b = -1 .
Therefore, a = 2 and we have the remarkable result that

G(n) = 2 F(n) - 1 (4)
In other words, the number of recursive calls required to
compute the n-th Fibonacci number is twice that number less
one, which Table 1 confirms. Since the Fibonacci numbers
grow exponentially (see [1]), we see that the number of
recursive calls grows exponentially as well (ample evidence
that recursion is not an efficient way to attack second order
DDS!).

Extensions
Our result is even more interesting when we note that G(n) in
no way depends on the coefficients of the difference equation
in general. In fact, if properly code the recursive function, the
same result will hold for any second order DDS----even
nonlinear ones ! In fact, the number of calls turns out to be an
upper bound for an arbitrary second-order DDS, since
difference equations of the form

H(n) = a H(n - 2) (5)
will evidently require less computational effort. In fact, in this
instance, the expression for the number of calls is simpler:

C (n) = f (n - 2) + 1
with C(0) = C(1) = 1. The solution is

C (n) = 3 1 4 + (- 1) n / 4 + n / 2
so that in this case, the number of recursive calls grows
linearly.

Higher-Order DDS
Similar results are obtainable for a third order DDS. In this
case, we first consider the third-order analog to Eq. (1):

T(n) = T (n - 1) + T (n - 2) + T (n - 3)
with T(0) = 1, T(1) = 1, and T(2) = 1, and suppose that we
code it in a manner analogous to the code given in Figure 1,
Then any third order DDS computed recursively (assuming no
coefficient vanishes) will have a growth function D(n) for
which D(0) = 1, D(1) = 1, D(2) = 1, and

D(n) = D(n - 1) + D(n - 2) + D(n - 3) + 1,
Not surprisingly, there is an intimate relationship between
D(n) and T(n). If we again suppose that

D(n) = a T(n) + b,
we find that

D(n) = 3 T(n) / 2 - 1/2
In fact, this type of relationship continues as the order of the
DDS takes on any value of n.

We see then that a straightforward question asked by a
student about a straightforward programming problem, one
routinely assigned, contains some quite beautiful mathematics.
Although we did not delve the techniques used to solve DDS
here, this mathematics is certainly within the grasp of first and
second year students. In any case, we hope that this discussion
might serve to encourage computer science majors to begin
explor ing the mathemat ics that lies at the theoretical
foundations of the discipline at an early stage.

Acknowledgment
A. del Portillo provided a number of useful suggestions about
this work.

References
[1] D.C. Arney, F.R. Giordano, and J.S. Robertson, Discrete
Dynamical Systems: Mathematics, Methods, and Models,
McGraw-Hill , New York, 1998.

Vol 31. No. 2 June 1999 61 ~ : 2 ' , 7 ~ SIGCSE Bul l e t in

