Lecture 42

Polymerization

Methods of Polymerization:

There are four types of polymerization reactions Addition or chain growth polymerization, Coordination polymerization, Condensation or step growth polymerization and Copolymerization.

Addition Polymerization:

In this type of polymerisation, the molecules of the same monomer or different monomers add together on a large scale to form a polymer. The monomers normally employed in this type of polymerization contain a carbon-carbon double bond (unsaturated compounds, e.g., alkenes and their derivatives) that can participate in a chain reaction.

Condensation Polymerization:

This type of polymerization generally involves a repetitive condensation reaction (two molecules join together, resulting loss of small molecules) between two bi-functional monomers. These polycondensation reactions may result in the loss of some simple molecules as water, alcohol, etc., and lead to the formation of high molecular mass condensation polymers.

Thermodynamics of Reaction:

Thermodynamics of polymerization determines the position of the equilibrium between polymer and monomer(s). The well-known thermodynamic expression is

$$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$$

It yields the basis for understanding polymerization/depoly- merization behavior. Where ' Δ S' is the disorder of the system, ' Δ H' is heat energy and 'T' is temperature. For polymerization to occur (i.e., to be thermodynamically feasible), the Gibbs free energy of polymerization $\Delta G_p < 0$. If $\Delta G_p > 0$, then depolymerization will be favored.

Enthalpy and Entropy:

Standard enthalpy and entropy changes $\Delta H^{\circ}p$ and $\Delta S^{\circ}p$ are reported for reactants and products when Temperature is 25°C or 298K then the Monomer is Pure, bulk monomer or 1 M solution and Polymer is Solid amorphous or slightly crystalline.

Thermodynamics of Depolymerization:

Change in entropy is always less than zero ($\Delta Sp < 0$) for nearly all polymerization processes. Since depolymerization is almost always *entropically* favored. So change in heat energy ΔH_p must then be sufficiently *negative* to compensate the unfavorable entropic term. Only then polymerization will be thermodynamically favored by the resulting ΔGp value.

Temperature and Thermodynamics:

Polymerization is favored at low temperatures T Δ Sp is small and Depolymerization is favored at high temperatures when T Δ Sp is large. When $T\Delta S_p$ overrides then ΔH_p and thus $\Delta G_p > 0$ thermal instability of polymers results due to which the system to depolymerize.

Activation Energy:

It is a minimum amount of energy required to start a chemical reaction. The activation energy for the de-propagation reaction is higher as Compared to depropagation reaction. The rate of depropagation reaction increases with increase in temperature.

Ceiling Temperature:

Ceiling temperature is a measure of the tendency of polymers to revert to their monomers. When a polymer is at its ceiling temperature, the rate of polymerization and depolymerization of the polymer are equal. Generally, the ceiling temperature of a given polymer is correlated to the steric hindrance of the polymer's monomers. Polymers with high ceiling temperatures are often commercially useful.

References:

http://www.ncbi.nlm.nih.gov/pubmed/24825826

http://matse1.matse.illinois.edu/polymers/prin.html

http://cuiet.info/download/chemistry/Types%20of%20Polymerization%20&%20Techiniques.pdf