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T
he pharmaceutical industry has embraced gen-
omics as a source of drug targets and, as a corol-
lary, has recognized that bioinformatics is crucial
to exploiting data produced on a genome-wide

scale. Bioinformatics is essentially a cross-disciplinary activ-
ity, and includes aspects of computer science, software
engineering, mathematics and molecular biology1–4. It is far
more than data management and has attained the status of
a new scientific discipline, much as computational physics
has become integral to progress in that field5. The lesson of
the early stages of the genomic era is that bioinformatics is
easily underestimated in both its 
cruciality and its resource requirements.

Bioinformatics

In target validation
In part, this is a consequence of the new paradigm of drug
discovery, which is characterized more than anything else
by huge leaps in scale. On the small-molecule side, combi-

natorial chemistry has vastly increased the diversity avail-
able, while laboratory automation has enabled high-
throughput screening at unprecedented rates. Genomics
has provided a corresponding increase in large-molecule
targets. In fact, the bottlenecks in drug discovery have shift-
ed remarkably to the point where the number of attractive
targets available is no longer rate limiting – it has actually
created the new problem of how to select the targets most
likely to succeed from an embarrassment of riches. This has
shifted the focus of bioinformatics from target identification
to target validation.

The challenge to bioinformatics is evolving from that of
creating long lists of genes to that of creating short lists of the
targets most likely to be crucial in disease and least likely to
fail for ‘developability’ reasons. There is a fundamental ten-
sion in the earliest stages of target selection between the
desire to study targets that already have a well-understood
role in disease and the desire to study those that might offer
a completely novel mode of action (with the competitive
advantage that this implies). Ideally, bioinformatics should
provide the bridge that reconciles these goals, primarily by
providing as many clues as possible to function and role.

In target selection
In addition to better filtration of targets in early discovery,
bioinformatics can also help with three aspects of target
selection:

• The characterization of targets, such as the classification
and subclassification of protein families

• The understanding of targets, such as their behavior in a
larger biochemical and/or cellular context

• The development of targets, such as making predictions
about uptake or reuptake, detoxification, the stratifica-
tion of patient populations and other gene-based 
variations.
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Bioinformatics has, out of necessity, become a key as-

pect of drug discovery in the genomic revolution, con-

tributing to both target discovery and target validation.

The author describes the role that bioinformatics has

played and will continue to play in response to the

waves of genome-wide data sources that have be-

come available to the industry, including expressed 

sequence tags, microbial genome sequences, model

organism sequences, polymorphisms, gene expres-

sion data and proteomics. However, these knowledge

sources must be intelligently integrated.



To the extent that this can be carried out far in advance of
key investment decisions, indeed before any significant
bench effort is expended, the reward of bioinformatics will
probably be enormous. In essence, this is the role that
bioinformatics must play in target validation.

Bioinformatics can also attempt to become integrated
more intimately into the discovery process itself by estab-
lishing ‘wet–dry cycles’. Such cycles occur whenever a
computational model can be linked to a biological one,
such that predictions from the former can be immediately
tested at the bench, with the results being fed back for pro-
ducing refinements of the model. Instead of simply handing
candidate genes to an independent bench validation
process, it is important for the bioinformatics function to
follow targets through the pipeline by, for instance, model-
ling biological systems, suggesting experiments, and using
the results from the bench to refine the models further. In
this way, bioinformatics can add more value by shortening
cycle times. Value can also be added to targets already in
development by continuing the search for homologs, both
orthologs (homologs in different species, presumed to have
similar function) and paraloges (homologs in the same
species, which might have diverged in function), that could

provide additional models in other
species and follow-on targets that can
use existing assays and compound
libraries.

In data integration
Where bioinformatics offers the great-
est hope for the future, however, is in
data integration. The first wave of
genome-wide data was that arising
from expressed sequence tags (ESTs);
this required an infrastructure for
high-throughput data management
and basic analysis, as well as novel
algorithms for sequence assembly,
expression analysis and so on (Fig. 1).
This wave was followed by whole
microbial sequences, for which some
reuse of the infrastructure was pos-
sible but which also enabled some
unique forms of analysis by taking
advantage of the availability of com-
plete genomes and a wide phylo-
genetic distribution.

Even so, there was no pressing need
to integrate EST data and microbial
genomes. Now, however, the waves

of genomic data are coming in quick succession including,
in the immediate future, the human genomic sequence, a
profusion of single-nucleotide polymorphisms (SNPs) and
expression data from microarrays and related technology.
Not only must these waves be handled from the perspec-
tive of high-volume data management and application-spe-
cific analysis algorithms but there is also a new element: the
full value of all these technologies and data can only be
realized by relating them to each other – that is, by integra-
tion. For example, the high quality of the genomic
sequence will add tremendous value to the error-prone EST
data; at the same time, the ESTs are the single most power-
ful agent for identifying genes in the genomic sequence.
Similar correspondences are apparent in data on expression
and polymorphism.

Reviews of bioinformatics are most often technology cen-
tred, focusing on the techniques that have evolved rapidly
in this new discipline for ever-more-sophisticated analyses
of sequences, structures and phylogenies6. As an alterna-
tive, this article will examine the field from a data-centred
point of view, which also serves to recapitulate the major
phases of the role of bioinformatics in industry.
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Figure 1. The ultimate challenge to the bioinformatics community is the intelligent
integration of data from many interrelated sources, which will be necessary to take
greatest advantage of the knowledge available in the data. This figure attempts to
capture the complexity of this challenge by displaying the various domains of
bioinformatics that occur at many scales and embody many forms of data,
suggesting that every domain relates to every other. Thus, for example, it could be
used to examine how the expression pattern of a certain receptor varies with regard
to a coding-region polymorphism that might affect the binding site of the protein
and maps near a certain disease locus. How can this knowledge best be extracted
from the myriad data available?
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Expressed sequence tags

The beginning of the genome era in the pharmaceutical
industry can be traced back to the arrival of ESTs as a
source of truly large-scale gene-sequence data in 1993 (Refs
7,8). Before this, the available human gene-sequence data
had largely been the result of the academic investigation of
individual genes – just a few extended genomic regions
were available, awaiting the output of the nascent human
genome initiative. EST technology promised a shortcut to
most, if not all, genes, prompting a ‘gold rush’ by the phar-
maceutical industry and giving rise to the novel business
models of biotechnology companies such as Human
Genome Sciences (Rockville, MD, USA) and Incyte (Palo
Alto, CA, USA), which (in effect) marketed the human
genome en masse. Largely in response to this, a public EST
sequencing effort was undertaken with funding from
Merck9 (Whitehouse Station, NJ, USA).

The immediate challenge that faced the industry in mak-
ing use of these data was that of data management.
Because of the time-critical value of the information, it was
necessary to build a computational infrastructure that could
rapidly identify interesting homologues, generally by con-
ventional BLAST (Basic Local Alignment Search Tool) data-
base searches10, and then present the results to biologists
for evaluation. This was quickly followed by a recognition
that, in part because of the sheer volume of ESTs and in
part because they represented relatively short and error-
prone sub-sequences, it would be necessary to process
them further by clustering or (even better) by assembling
overlapping fragments to create a dataset that more closely
represented the actual underlying genes. This need gave
rise to the public Unigene resource11 at the US National
Centre for Biotechnology Information, which provides clus-
ters of ESTs likely to have arisen from the same genes, as
well as to several proprietary efforts with significantly
greater algorithmic and software engineering sophistica-
tion. In many companies, this corresponded to the transfer
of responsibility for the data from generic corporate IT
departments to new and growing bioinformatics groups
with specialized skills and biological backgrounds.

Finally, in what might be called a scientific ‘aftermarket’
to the development of EST resources, a series of even more
sophisticated bioinformatic analyses were layered onto the
basic data and its clusters or assemblies. The most notable
such value-added analyses arose from the availability of
ESTs derived from a wide variety of cDNA libraries repre-
senting different tissues and states of disease and develop-
ment. This afforded the opportunity to view ESTs as sam-
plings of populations of transcripts and, by simply counting
the representation of different sources in any given cluster

or assembly, to infer relative levels of expression by tissue
or stage12,13. Other algorithmic extrapolations from the EST
data have included efforts at error correction, the analysis
of alternative splicing and the detection of putative SNPs
(Refs 14,15). Although much of this phase of computational
development occurred in academia, a few companies
established bioinformatics research groups at this time to
develop such approaches to extracting maximum value
from the data.

Microbial genomes

Beginning with the first publications of complete microbial
genome sequences16, pharmaceutical and biotechnology
companies with an interest in antibiotics began maneuver-
ing for access to genomic sequences from relevant
pathogens. These data had a much lower error rate than
EST sequences but did produce a fresh set of challenges to
the bioinformatics community. Once again, the first phase
was primarily concerned with data management; however,
during data production, the shotgun assembly of entire
genomes in the range of megabases required refined algo-
rithmic approaches17.

Hand in hand with the publication of the data came the
first efforts at large-scale annotation of genomes, identifying
genes (again by straightforward homology searches) and
other features of the genome that became apparent by pat-
tern matching using existing tools. A continuing theme has
been the surprising degree of diversity seen in each new
organism, with typically around 30% of open reading
frames showing no obvious similarity to other database
entries18. This lays great importance on one of the abiding
problems of structural biology and bioinformatics, that of
elucidating function and/or structure from the primary
sequence of novel gene products without a clearly signifi-
cant BLAST hit.

Again, subsequent efforts added more layers of value to
the data in ways that were sometimes unique to the nature
of the data and that often only became apparent once a
‘critical mass’ was available. Pharmaceutical companies
were particularly interested in the phylogenetic distribution
of genes: the most desirable target is one that maintains a
high degree of similarity across bacterial clades (thus
promising broad-spectrum antibiotics) while being highly
divergent from their homologs in humans, the pathogen’s
unwilling host. Furthermore, it has been suggested that pro-
filing the phylogenetic distribution of genes can be used to
cluster genes of similar function, offering clues to function
when this would otherwise be obscure19.

Putative targets must also be essential to the survival of
the pathogen and, on occasion, genes can be ruled out
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when there are obvious close homologues or other indi-
cations of redundant function. It is also possible to examine
the complement of genes within a certain pathway or dis-
crete cellular function to help judge the suitability of a tar-
get20. In many instances, this depends on the completeness
of the genome, to give more confidence that there are no
unknown components. On occasion, an apparently missing
component in a pathway might suggest a misclassification
or the need for a more sensitive search21.

A recent example demonstrating the advantages of whole
genomes is a study of the citric acid cycle in 19 complete
genomes22. Having complete genomes made it possible to
reason confidently about the presence or absence of the
different parts of the cycle and various shunts and branch-
es, and even about the overall metabolic schemes of the
organisms. With only fragmentary evidence, such infer-
ences are much more risky. When gaps are observed, they
can direct the search towards possibly overlooked open
reading frames or phenomena like gene displacements (dif-
ferent genes coding for proteins that perform the same
function in different organisms). Extending our under-
standing to entire pathways in this way has obvious bene-
fits for pharmaceutical target selection.

A unique aspect of microbial genomes is the ability to
observe operon structure and thus likely coexpressions
and/or co-regulations, and, more generally, gene clusters
that might imply common function23. Observations have
been made on chromosomal organization on a broader
scale that could also eventually give insights of pharmaceu-
tical relevance: for example, conservations of gene order as
well as compositional measures could suggest lateral gene
transfer24, which is vitally important to pharmaceutical com-
panies because of concerns about antibiotic resistance25.

Genomic sequence

Although significant human genomic sequencing has been
under way in one form or another for over a decade, with
concomitant bioinformatics support for physical mapping
and sequence-data management, rates of sequence produc-
tion have increased markedly in just the past year. This is a
result of improving technology and accelerating schedules,
owing in part to new competition in the private sector26.
This has generated considerable interest in this genomic
sequence as a source of new or refined targets for the phar-
maceutical industry, for several reasons.

By various estimates9, it seems likely that 10–20% of
genes are missing from EST collections, because they have
either a very low abundance when expressed or a highly
specific pattern of expression, confined to a narrow cell or
tissue type, or to a specific time of expression (perhaps

alternatively spliced in those contexts). These ‘missing’
genes might make the best drug targets precisely because
they are likely to be highly directed to tissues or disease
processes of interest, and to offer high specificity and thus
few side effects. Moreover, even though a large proportion
of genes have been ‘touched’ by ESTs, the coverage of cod-
ing regions is far from complete and is, in any case, very
error prone, based as it is on single-pass sequences.

With the genomic sequence, there is at least the potential
to predict more full-length genes on a ‘dry’ basis (i.e. by
computational methods alone). When this can be done, not
only high-quality sequences but also the structure of the
genes (the alternating arrangement of exons and introns)
are immediately available; this is useful, for example, in
screening for mutations, which is usually done by extend-
ing primers from the introns (not seen in ESTs) at either end
of an exon. The flanking genomic sequence may also be
available, which could enable the analysis of promoters
and regulatory regions, to predict the expression contexts
of genes, including nuclear-hormone receptor and other
transcriptional-control sites of immediate interest to phar-
maceutical companies. The genomic context also provides
useful information on clusters of related genes, syntenic
(that is, common gene ordering within broad chromosomal
regions) relationships in model-organism genomes and
candidate genes from mapping studies. Finally, the gen-
omic framework offers the best possible scaffold for cluster-
ing, assembling and resolving errors in ESTs; conversely,
one of the greatest assets of using ESTs might prove to be
their contribution to the elucidation of gene structures in
the genomic sequence27–29.

However, the effective use of genome-sequence data is
not without very serious bioinformatics challenges. The data
are more numerous and complex than the EST data; the
sources of these data are highly varied and dynamic, includ-
ing FTP and WWW sites in addition to GenBank. Accurately
reconstructing gene structures is a difficult computational
task, especially given the emerging prevalence of alternative
splicing, pseudogenes and other artifacts. The technology of
gene finding has evolved considerably, having been one of
the major areas of bioinformatics research, but it must still
be considered to be an open problem, in particular for long
genomic sequences that might contain multiple genes30,31. In
this case, the problem becomes one of not only accurately
assembling exons, which are often numerous and widely-
separated, but also properly segmenting the genes and, in
particular, determining the 59 ends (generally under-repre-
sented in EST databases). Despite the difficulties, bioinfor-
matics approaches to gene finding in genomic sequences
might yet be preferable to ongoing bench efforts to extend
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cDNAs to full length (which is laborious and expensive) as a
means of determining complete and accurate gene
sequences.

Model organisms

With the effective completion of the genomes of the yeast
Saccharomyces cerevisiae in 1997 (Ref. 32) and the nema-
tode worm Caenorhabditis elegans in 1998 (Ref. 33), new
approaches were opened up to functional genomics in the
human genome (Fig. 2). Not only did many more informa-
tive homologies become apparent with human genes but
access was also gained through them to biotechnology that
could rapidly elucidate the pathways, interactions and so
on in which they participated. Thus, the genomic connec-
tion to model organisms has brought the notion of the
‘wet–dry cycle’ to the forefront in requiring close interac-
tions between bioinformatics groups and bench activities.

As always, the initial phase of simple data management
was the first concern but the multiplicity of model organ-
isms quickly brought into focus the upcoming problem of
intelligent integration of data. With the need to identify
links between corresponding genes and gene families in
various organisms, a whole series of challenges became
apparent. First, extensive, cross-referencing, genome-wide
searches of different organisms were required, identifying
orthologs as far as possible. Much of this repeated work
that was first done with the microbial genomes34. To make
best use of the resulting links, it also became necessary to
take advantage of the annotations to be found in numerous
specialized databases that had long been established
around individual organisms by their research communities
[e.g. FlyBase35, YPD (Ref. 36)]. (In fact, these formerly pure-
ly academic databases have recently taken on such value
that they are now successfully charging licence fees for
their commercial use, which is particularly interesting to
pharmaceutical companies.) This raised the technical issue
of simultaneously querying multiple heterogeneous data-
bases to new prominence37, as this will be necessary to
ensure that users are not limited to simple browsing as an
exploration paradigm. This problem is being addressed in
several ways38.

The availability of whole-model-organism genomes for
comparative purposes should provide advantages for bioin-
formatics in many novel ways39,40. For example, a recent
study suggests that protein–protein interactions and func-
tions can be predicted on a large scale by cross-referencing
genes that are separate in one organism but fused in anoth-
er41. Complete sets of gene families in model organisms
might also reveal new branches to search for in the human
sequence. For example, recent work indicates that the

nuclear receptor (NR) superfamily, which includes some
important drug targets, is surprisingly diverse in C. elegans,
with substantially more than 200 members detected thus
far42. Although this explosion of diversity might be limited
to nematodes, it does at least suggest that there are many
new examples yet to be found in humans and also promis-
es to help guide the search.

As the mouse genome has been completed, there is every
reason to expect even greater rewards from comparative
genomics. The mouse has useful syntenic relationships with
humans more so than with more distantly related organ-
isms43. Homologies with yeast and nematodes have been
useful for identifying the broad biochemical function of
human genes and their position in pathways (e.g. signal-
transduction schemes). However, with the mouse, there is a
much greater chance of identifying 
phenotypes that are also directly relevant in humans44.
Already, the extensive collection of mouse ESTs has proved
to be a rich source of useful human homologs45.

Polymorphisms

Among the latest waves of data beginning to wash over the
drug-discovery enterprise is that deriving from genetic
markers in the human genome. Genetic maps based on
microsatellite markers have been available for several years
and have been useful in genetic mapping and helping to
localize disease genes through family studies, in many cases
leading to candidate genes. However, a new wave of much
more densely spaced SNPs is now becoming available,
which promises to allow association studies that will be
effective even without carefully defined family studies for
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Figure 2. An important point at which knowledge must be
integrated is during the functional assignment of a new
putative target, in order to validate it. The traditional
sequence–structure–function approach can be supplemented
by, for example, the results of comparative genomics and
new scaled-up experimental techniques to greater appreciate
the role of the target in a particular context.
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disease-related traits. So important is this thought to be that
a consortium of pharmaceutical companies has been estab-
lished that is financing the identification of up to 300,000
SNPs and the mapping of half of them
(http://snp.cshl.org/).

SNPs are expected to be the mainstay of efforts not only
in the mapping of disease associations but also in pharma-
cogenetics, which is attempting to identify the genetic
determinants of the different reactions to drugs across a
population (owing, for example, to differences in drug
metabolism or perhaps even variations in target molecules
themselves). The so-called coding SNPs (cSNPs) are the
most interesting to pharmaceutical companies. These occur
in coding regions and thus can themselves be responsible
for either disease or a different drug response when they
cause non-synonymous changes to proteins. However,
these will represent a tiny minority of all SNPs and there is
evidence that their allele frequencies are lower, probably
because of selection46.

Several systematic attempts have been made to identify
putative SNPs electronically from EST data47,48, in which
cSNPs might be expected to be found most readily. Howev-
er, this is susceptible to the high sequencing error rate of
ESTs and other difficulties49. The major contribution that
bioinformatics will make to SNP studies begins, as always,
with data management. The long-standing discipline of
population genetics will provide the primary data-analysis
techniques and will also help to establish the parameters of
large-scale efforts to accumulate SNPs (Ref. 50), but bioin-
formatics will provide a key link to the underlying genes
and the interpretation of associations.

Gene expression

Tissue localization of gene expression is an increasingly
important aspect of target validation. With genomic initia-
tives providing putative targets in profusion, some notion of
function beyond what can be discerned from homology is
crucial to the decision to continue with a target. Knowing
when and where a gene is expressed can be an important
input to this process.

The first contribution bioinformatics made to this ques-
tion was, as noted above, through counting the ESTs con-
tributing to given transcripts from different libraries. This
method has proved to be useful in detecting abundantly
expressed genes that are restricted to certain tissues. For
example, cathepsin-K expression was highly localized to
osteoclasts, the cell type responsible for bone resorption,
because approximately 4% of ESTs from a human osteo-
clastoma cDNA library came from this one transcript51. This
was apparent after sequencing only a few thousand ESTs

but this is an inefficient and probably inaccurate means of
routinely assessing transcription levels, especially given that
not every pattern can be expected to be so pronounced.
Many biotechnologies have become available for this pur-
pose52, with those that appear to be the most scaleable and
adaptable being oligonucleotide-array DNA chips53,54 and
microarray grids55.

As before, bioinformatics is most immediately concerned
with data-management issues56, although, in this case, the
line between bioinformatics and conventional laboratory-
information-management systems (LIMS) can become
blurred because of the novelty of the technology and the
need for close integration. The volume of data expected
from microarray experiments will be enormous, given that
these systems have now been scaled up to accommodate
tens of thousands of targets, in many cases with several
conditions and replicates (or even extensive time series57,58)
for each experiment. In addition, there is a backlog of inter-
esting experiments to attempt. The interest in this technolo-
gy within pharmaceutical companies is by no means limited
to the characterization of putative drug targets; microarrays
are also being actively investigated as an aid to studying
molecular toxicology, for example, in what has been
termed toxicogenomics59. In fact, the uses are not limited to
the analysis of gene expression. For example, oligonu-
cleotide arrays can be used for the rapid screening of SNPs
and thus for exploring variation60,61.

With the advent of techniques for assessing the expres-
sion of unheard-of numbers of genes (and potentially the
entire genome) at once, it has become possible to detect
clusters of genes exhibiting co-expression under varying
conditions or between normal and abnormal tissues62,63.
Given the signal-to-noise ratios historically available with
these techniques and the ambiguity of interpretation of
some patterns, it is clear that one of the challenges to bioin-
formatics in this area is the establishment of consistent ana-
lytical and statistical techniques for these experiments64,65.
Novel techniques for the visualization and data-mining of
results are now being actively explored66,67 and a proposal
has been made for a central repository of array results that
will enable the meta-analyses of thousands of experi-
ments68.

When co-regulation schemes have been suggested and
the genomic sequence is available (as is already the case for
yeast), it will be possible to examine the upstream regions
of putatively co-regulated genes for indications of common
sequence elements69,70. This should add impetus to bioin-
formatics approaches to understanding the genetic code of
gene regulation. Although methods for characterizing and
recognizing transcription factor binding sites have not been
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impressively useful to date, recent
approaches combining more sophisti-
cated statistical techniques and phylo-
genetic footprinting (comparing the
genomic sequence from model organ-
isms to detect conserved regions) have
recently shown promise71. The ulti-
mate hope of all these approaches, of
course, is to discern genetic networks
or circuits that control the overall
expressed genome72.

A recent example of such an
approach involved the use of data on
gene expression during the cell cycle
in yeast73. Genes were first clustered
based on common periodic patterns of
expression in the cell cycle. Upstream
regions of the clustered genes were
then aligned using a method called
Gibbs sampling74, which is well suited
to finding common short motifs in sets
of sequences. The resulting motifs
were then tested against all the clus-
ters and, in many instances, a high
degree of specificity was observed for
the original clusters, suggesting bio-
logical relevance. When such techniques can be applied to
human genomic sequences and expression data, it could be
possible to understand regimes of gene regulation at
unprecedented levels of detail.

Proteomics and beyond

Many believe that the proteome is the next frontier at which
bioinformatics will crucially contribute (Fig. 3). Computa-
tional methods have already contributed to the large-scale
identification of proteins from two-dimensional gel elec-
trophoresis and mass spectrometry75, and protein microar-
rays are currently being explored76. Structural 
genomics promises, via high-throughput structure deter-
mination, to produce a quantum leap in the number of
available protein folds, making fold recognition and com-
parative protein modelling efforts much more effective77.
This will undoubtedly be complemented by improved tech-
niques for protein alignment and distant-homologue detec-
tion78,79, creating the strongest connection yet between the
sequence-oriented world of bioinformatics and the struc-
ture-oriented world of proteins and, hence, with the realm
of small molecules and putative drugs. As the ‘post-gen-
omic’ era ushers in entirely new biotechnologies in increas-
ingly diverse areas, it becomes more crucial than ever to

emphasize the integration of these various knowledge
sources for functional prediction80 and, beyond that, for a
‘wet–dry cycle’ spanning the entire drug discovery process.

Indeed, this must be seen as the greatest challenge facing
bioinformatics for the future. The days of target discovery
when promising new targets were being generated in pro-
fusion have now given way to the urgencies of target vali-
dation and a need to reorient bioinformatics efforts to this
end. It is not enough to say that, with the easy-to-reach tar-
gets gone, bioinformatics must shift its attention to the twi-
light zone of more distant homologues, because the func-
tional assignment of such targets is often more problematic,
and thus they tend to be even further from validation.
Rather, it is important for bioinformatics to find ways to
extend its useful reach further into the discovery process
itself. Some ways to accomplish this are suggested in the
introduction. At SmithKline Beecham, these have been
manifested in so-called Target Validation Checklists, which
are associated with every target in, or about to enter, the
pipeline. These checklists consist of a standard template of
detailed information on sequences, homologues, variants,
mapping information, disease associations, expression data,
citations and more, and are updated regularly at each major
checkpoint in the progression of a target. In this way, pro-
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Figure 3. The concern of bioinformatics in the new, integrative, post-genomic
world is shifting from dealing solely with primary sequences to dealing with
structural information and, hence, to pathway-oriented knowledge of cellular and
organismal physiology. In so doing, the focus of bioinformatics will shift from the
genome per se to the proteome and even higher-order notions of the physiome. As
has been noted, it also entails the transition from target identification to validation
or functional genomics and concern for the role of targets in much larger contexts.
Finally, the techniques brought to bear by bioinformatics will change; for example,
graph algorithms will be of primary importance, together with machine learning,
data mining, database integration and advanced representation techniques for the
more complex integrative biology of the future.
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ject teams are kept up-to-date on the full range of bioinfor-
matics-derived information available about a target in a
constantly changing, data-intensive universe.

This is a first step in, but by no means the culmination of,
efforts to achieve the sort of intelligent integration of all
sources of knowledge useful in decision support, eventual-
ly extending to and incorporating clinical evidence that
must ultimately validate any target. From the technological
perspective, this will also challenge bioinformatics to 
create database systems capable of integrating knowledge
from multiple sources, in fact from multiple heterogeneous
databases, in order to span the domains of biological,
chemical and clinical data. The acknowledged difficulty of
achieving such an integration of diverse database-manage-

ment systems, schemas, data models and so on, at the level
of database technology, is a reflection of the underlying
challenge of integrating these world views in the pharma-
ceutical discovery enterprise itself.
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