

Contact: pdfsupport@pdf-tools.com

Owner: PDF Tools AG

 Kasernenstrasse 1
 8184 Bachenbülach
 Switzerland

 http://www.pdf-tools.com

Copyright 2000-2018

PDF Prep Tool Suite
Version 4.11

User Manual

http://www.pdf-tools.com/
http://www.pdf-tools.com/

PDF Prep Tool Suite, Version 4.11 Page 2 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Table of Contents

1 Introduction .. 5
1.1 Functions ... 5
1.2 SDK .. 6

2 License Management ... 7
2.1 Graphical License Manager Tool .. 7

List all installed license keys.. 7
Add and delete license keys .. 7
Display the properties of a license ... 8
Select between different license keys for a single product 8

2.2 Command Line License Manager Tool .. 8
List all installed license keys.. 8
Add and delete license keys .. 8
Select between different license keys for a single product 8

2.3 License Key Storage .. 8
Windows... 9
Mac OS X.. 9
Unix / Linux .. 9

2.4 Setting the License Key via the API ... 9

3 Object Model .. 10

4 Processing Model ... 10

5 Language Bindings .. 11

6 Getting Started .. 12
6.1 Create a Document from Scratch .. 12
6.2 Add Content to an Existing Input File .. 12

7 Output PDF Creation .. 13
7.1 Set the PDF Version .. 13
7.2 Encryption ... 13
7.3 Disable Stream Compression .. 14
7.4 Font Renaming ... 14
7.5 Error Handling .. 15
7.6 Open a PDF File for Input ... 15
7.7 Attach an Input File... 16
7.8 Accessing the Current Input File ... 17
7.9 Set the Page Size and Orientation ... 17
7.10 Set the Crop Box .. 18
7.11 Adding a New Page ... 18
7.12 Accessing the Current Header or Background Content Layer 19

8 Retrieving File Information .. 20
8.1 Obtain the PDF Version .. 20
8.2 Obtain the File Name ... 20
8.3 Obtain the Keys List .. 20
8.4 Obtain Document Attributes ... 20
8.5 Get Meta Data .. 21
8.6 Get the Name and Current Data of a Form Field.. 21
8.7 Get the Position of a Form Field .. 21
8.8 Get Information about Pages .. 23
8.9 Retrieve Text from a PDF File ... 23

PDF Prep Tool Suite, Version 4.11 Page 3 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

8.10 Retrieve Bookmarks from a PDF File .. 24
8.11 Retrieve Annotations from a PDF File ... 25
8.12 Retrieve the Border Style from Annotations .. 26
8.13 Get List of Fonts ... 27
8.14 Get Color Information .. 27
8.15 Save File Attachment .. 27
8.16 Close the File ... 27
8.17 Get UserUnit .. 28
8.18 Set the Font for Text Output .. 29
8.19 Set Text Spacing .. 30
8.20 Set the Gray Level for Lines and Filling .. 30
8.21 Set the Color for Lines ... 31
8.22 Set the Color for Filling .. 31
8.23 Set the Alpha Transparency for Filling and Stroking 31
8.24 Using Color Spaces ... 32
8.25 Placement of Character Strings ... 32
8.26 Placement of a Logo .. 33
8.27 Placement of an Image .. 34
8.28 Embedding any PDF Text Operator .. 35
8.29 Set the Spacing of Text Lines ... 35
8.30 Set the Text Matrix ... 35
8.31 Set a Relative Starting Position for Text (Tab) .. 35
8.32 Calculate the Width for a Character String ... 35
8.33 Text Tables .. 36
8.34 Draw a Line or Polygon .. 36
8.35 Draw a Rectangle.. 37
8.36 Draw Curves .. 37
8.37 Area Filling and Clipping .. 37
8.38 Embedding any PDF Non-Text Commands .. 38

9 Form Fields, Annotations ... 39
9.1 Set the Data .. 39
9.2 Define a Custom Font .. 40
9.3 Get a Font Name .. 40
9.4 Delete a Form Field ... 40
9.5 Add a Text Form Field ... 40
9.6 Copy a Form Field ... 41
9.7 Form Flattening .. 41
9.8 Add a Text Annotations ... 42
9.9 Delete an Annotation ... 42
9.10 Delete Viewer Extension Rights... 42
9.11 Add an Image Annotation .. 43
9.12 Set the Line Spacing in a Form Field .. 43
9.13 Get the Name of the Font in a Form Field ... 44

10 Generate Output .. 46
10.1 Create Another Page ... 46
10.2 Copy Pages from the Input File ... 46
10.3 Copy Color Spaces from the Input File ... 47
10.4 Copy Named Destinations from the Input File ... 47
10.5 Copy Custom Objects from the Input File ... 47
10.6 Copy All Objects from the Input File .. 47
10.7 Import Bitmap Images .. 48
10.8 Add Page Numbers.. 48

PDF Prep Tool Suite, Version 4.11 Page 4 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

10.9 Change the Header or Background .. 49
10.10 Add Bookmarks .. 49
10.11 Add Links ... 51
10.12 Add File Attachments .. 51
10.13 Add Destination .. 52
10.14 Set Document Action ... 52
10.15 Set Form Fontsize Range ... 53
10.16 Document Open Settings ... 53
10.17 Set Document Information Attributes .. 54
10.18 Set Document Metadata .. 54
10.19 Close the Output File ... 55
10.20 Set the license key at runtime .. 55

11 Linearization .. 57

12 Return Codes C .. 59

PDF Prep Tool Suite, Version 4.11 Page 5 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

1 Introduction

The PDF Prep Tool Suite is a programming library for creating, splitting and merging
PDF documents. It can be used to add content such as text, images and vector
graphics. Interactive elements such as links, form fields and bookmarks can be added
and processed. The component is used for the following tasks:

 Assemble PDF documents

 Personalize documents

 Fill in form fields

PDF documents can be created from scratch – for instance on the basis of a template
to which data is added from a source such as a database.

Properties such as position, font, size and color are freely selectable. Once created,
PDF documents can be encrypted and optimized for fast web-based viewing.

1.1 Functions

 Merge any number of pages from one or multiple PDF documents

 Apply content to the background or foreground of an existing or new page

 Text (page number, address, customer number, etc.)

 Image (company logo, scanned signature)

 Vector graphic (line, square, curve)

 Extract text including font and positioning information

 Add, fill in, delete and read out form fields

PDF Prep Tool Suite, Version 4.11 Page 6 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

 Add internal and external links and comments

 Copy content from multiple pages to one page including positioning, scaling and
rotation

 Set and get outlines (bookmarks) in PDF documents

 Define and extract document properties such as title, author, date of creation,
etc.

 Read encrypted PDF documents

 Encrypt PDF documents with a password and set permission flags

 Optimize PDF files for fast web view (linearization)

 Set color as RGB or CMYK

 Set page size (media box) and visible area (crop box)

 Remove viewer access rights

1.2 SDK

The PDF Prep Tool Suite constitutes a specialized module based on the PDF Library
SDK. It facilitates the generation of PDF documents based on existing PDF files or parts
thereof, controlled by a simple API. It is also possible to create pages via API calls, and

to add header or footer text onto pages from input files.

To facilitate the use with Microsoft Visual Basic, a COM interface is available on
Windows platforms. Java applications can make use of the component via a Java
interface based on JNI via a Java API package.

This document is not an introduction to PDF. You will need to refer to ISO 32000 or an
Adobe PDF specification as a complementary source of information.

PDF Prep Tool Suite, Version 4.11 Page 7 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

2 License Management

There are three possibilities to pass the license key to the application:

1. The license key is installed using the GUI tool (Graphical user interface). This is
the easiest way if the licenses are managed manually. It is only available on
Windows.

2. The license key is installed using the shell tool. This is the preferred solution for

all non-Windows systems and for automated license management.

3. The license key is passed to the application at runtime via the “LicenseKey”
property. This is the preferred solution for OEM scenarios.

2.1 Graphical License Manager Tool

The GUI tool LicenseManager.exe is located in the bin directory of the product kit.

 List all installed license keys

The license manager always shows a list of all installed license keys in the left pane of
the window. This includes licenses of other PDF Tools products.

The user can choose between:

 Licenses available for all users. Administrator rights are needed for modifications.

 Licenses available for the current user only.

 Add and delete license keys

License keys can be added or deleted with the “Add Key” and “Delete” buttons in the
toolbar.

 The “Add key” button installs the license key into the currently selected list.

 The “Delete” button deletes the currently selected license keys.

PDF Prep Tool Suite, Version 4.11 Page 8 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

 Display the properties of a license

If a license is selected in the license list, its properties are displayed in the right pane
of the window.

 Select between different license keys for a single product

More than one license key can be installed for a specific product. The checkbox on the
left side in the license list marks the currently active license key.

2.2 Command Line License Manager Tool

The command line license manager tool licmgr is available in the bin directory for all
platforms except Windows.

A complete description of all commands and options can be obtained by running the
program without parameters:

licmgr

 List all installed license keys

licmgr list

The currently active license for a specific product ist marked with a star ‘*’ on the left
side.

 Add and delete license keys

Install new license key

licmgr store X-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX

Delete old license key

licmgr delete X-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX

Both commands have the optional argument -s that defines the scope of the action:

 g: For all users

 u: Current user

 Select between different license keys for a single product

licmgr select X-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX

2.3 License Key Storage

Depending on the platform the license management system uses different stores for
the license keys.

PDF Prep Tool Suite, Version 4.11 Page 9 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

 Windows

The license keys are stored in the registry:

 HKLM\Software\PDF Tools AG (for all users)

 HKCU\Software\PDF Tools AG (for the current user)

 Mac OS X

The license keys are stored in the file system:

 /Library/Application Support/PDF Tools AG (for all users)

 ~/Library/Application Support/PDF Tools AG (for the current user)

 Unix / Linux

The license keys are stored in the file system:

 /etc/opt/pdf-tools (for all users)

 ~/.pdf-tools (for the current user)

Note: The user, group and permissions of those directories are set explicitly by the
license manager tool.

It may be necessary to change permissions to make the licenses readable for all users.
Example:

chmod -R go+rx /etc/opt/pdf-tools

2.4 Setting the License Key via the API

When deploying applications that use the PrepTool API, you may prefer to pass the
license key at runtime, rather than register the key on all potential target systems. The
typical call sequence in the application will be as follows:

 /* Initialize; this will load a license key stored on the computer */

 PTInitialize();

 /* Set the license key */

 PTSetLicenseKey("0-12345-ABCDE-67890-FGHIJK-12345-ABCDE");

 /* License check */

 if (!PTGetLicenseIsValid())

 {

 printf("no valid license found.\n");

 PTUninitialize();

 return 10;

 }

Note: the COM and Java bindings automatically perform the “PTInitialize()” function. If
a license key is installed on the computer, the application can detect that by directly
calling “PTLib.getLicenseIsValid()” (Java) or querying the “LicenseIsValid” property of
an IDoc, PDoc or PDFLinearizer Object (COM).

PDF Prep Tool Suite, Version 4.11 Page 10 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

3 Object Model

The core entities in the PDF Prep Tool Suite are PDF files - either existing ones serving

for input, or new ones being created. In the COM interface, these are the IDoc and
PDoc types.

Another important entity for creating PDF files are content objects. A content object
represents a layer of text and graphics objects that is used to construct a PDF page.
The Prep Tool Suite uses content objects to construct PDF pages via API calls, and also
to put a layer containing text, images etc. on top selected pages that are copied from

existing PDF files.

Text content
analysis

page extraction

Content construction

PDoc

Content
(Backgrd.)

Content
(Page)

IDoc

TToken
Rectangle

Content
(Header)

There are also some auxiliary object types which are used to return structured
information about PDF files, like text tokens on a page, or rectangle coordinates of
media boxes or form field locations.

4 Processing Model

The processing model of the PDF Prep Tool Suite with regard to PDF creation is batch
oriented. Pages are written sequentially without much buffering in memory. Contrary
to interactive models where a document is opened, then modified randomly, and finally
saved, the Prep Tool Suite works differently: Any modifications to be made to existing
pages of PDF files are prepared either by reading the corresponding PDF objects into a
cache where they are modified, or by posting modifications that are to be made when
transferring PDF objects to output. After that, a copy operation saves the range of

pages to output.

The reason for this model is resource conservation and speed.

PDF Prep Tool Suite, Version 4.11 Page 11 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

5 Language Bindings

There are three different bindings to the Prep Tool Suite: A conventional native library
interface (DLL on Win32), a COM interface for Win32, and Java wrapper classes based
on JNI. The C++ classes of the implementation are not exposed directly in any API.

The native interface is most suitable for C/C++ applications on any platform (Windows
or Unix), but can also be used from Visual Basic on Win32.

The COM interface is most suitable for Visual Basic applications, but can also be used
by any other development environment that can make use of COM objects, such as
Delphi. Unlike the other APIs, COM allows for optional and default parameters. You will
get the appropriate hints in the Visual Basic development environment.

Object type/type of interface Native COM Java

Reference to PDF output file Handle PDoc PTDoc

Reference to PDF input file InputHandle IDoc PTInput

Reference to current page ContentHandle content PTContent

Reference to current header or
background layer

ContentHandle content PTContent

Reference to current outline BookmarkHandle Bookmark PTBookmark

Reference to current form field - FormField PTFormBox,

PTFormData

Reference to current linearized file - PDFLinearizer PTLinearizer

Reference to current text token PTTokenInfo TToken PTTextToken

The native binding uses the type VBSTR to return character strings from the Prep Tool
Suite to the application. VBSTR is compatible with Visual Basic, i. e. Visual Basic will
correctly free these strings again.

C applications need to explicitly free strings obtained from the Prep Tool Suite by

calling PTFreeVBSTR. This function will call the Win32 function SysFreeString().

On UNIX systems, PTFreeVBSTR simply calls the standard free() function from stdlib.h.

PDF Prep Tool Suite, Version 4.11 Page 12 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

6 Getting Started

This chapter gives a brief overview of how the PDF Prep Tool Suite can be used.
Important to know is:

 The PDF Prep Tool Suite never modifies an input file. Modifications are always
applied and visible in the created output.

 Only one output file can be opened at a time. Several input files can be opened
at once, but only one can be attached to an output file at a time.

 "Attached" means that when calling to InputCopyPages, or InputCopyAll, the
pages of the attached input file are copied to the output file.

There are basically two possibilities to create a document:

6.1 Create a Document from Scratch

The PDF Prep Tool is not intended to be used as a PDF Creator, even though it provides
the functionality to add text, raster graphics and vector graphics such as lines or
rectangles.

When creating a document from scratch, content is to be written on the Page layer.
The Header and Background layers cannot be used at this time.

In Visual Basic 6, creating a document from scratch could look like this:

Dim outdoc As New PREPTOOLLib.PDoc

outdoc.New "C:\temp\hello.pdf"

outdoc.Page.SetFont "Helvetica", 50

outdoc.Page.PrintText "Hello World.", 100, 300

outdoc.Close

6.2 Add Content to an Existing Input File

An input file can be opened by either creating an IDoc object, open a document and
attach the IDoc to the PDoc object, or by a call to InputOpen of the PDoc object.
Adding new content can be achieved by writing on the Header or Background layer.

After a call to InputCopyAll or InputCopyPages, the content of the pages of the input
document is merged with the Header and Background layers.

The Page layer cannot be used at this time to add content to the page. Writing on the
Page layer creates a new page.

Here is a Visual Basic 6 sample:
Dim outdoc As New PREPTOOLLib.PDoc

outdoc.New "C:\temp\output.pdf"

outdoc.InputOpen "C:\temp\hello.pdf"

outdoc.Header.SetFont "Helvetica", 50

outdoc.Header.PrintText "Hello again.", 100, 400

outdoc.InputCopyPages 1, 1

outdoc.Close

PDF Prep Tool Suite, Version 4.11 Page 13 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

7 Output PDF Creation

Creation of an PDF file for output is performed as shown in the table below. Note that
the COM interface requires two steps, because a COM object cannot be created with
parameters.

Native Handle PDocNew(const char* Filename, short PgWidth, short

PgHeight, PTError* err)

COM Dim Obj As New PDoc

Dim Obj As Object: Set Obj = CreateObject("PrepTool.PDoc")

New(Filename As String, Width As Integer, Height As Integer) As

 Boolean

Java new PTDoc(String Filename)

new PTDoc()

The procedure PDocNew creates a new PDF file that is initially empty. The pages
created and written to via the API will all have the specified page height and width.

Note that the PDF coordinate system has its origin at the left bottom of the page. The
European format A4 has a width of 595 (points) and a height of 842.
A return value of 0 for the Handle means that the output file could not be created. In
the native interface, you must use the PTError* parameter to obtain the error code
which is necessary to determine the reason why creation failed.

In the Java binding, the page format must be set by a separate method (setPageSize).

To create a PDF file in memory without writing it to disk, you can omit the file (i. e.
specify NULL / 0 for this parameter). The Java API exhibits a constructor with no

parameter for this.

The CloseB function will retrieve the byte array corresponding to the contents of the
PDF file.

7.1 Set the PDF Version

Native PTError PDocSetPDFVersion(Handle h, const char* version)

COM SetPDFVersion(Version As String)

Java void setPDFVersion(String Version)

This function sets the PDF version stored at the beginning of each PDF file. The default
value is "1.4".

Note that the PDF version must be set before writing anything else to the output file.

7.2 Encryption

To provide a certain protection of PDF files, Adobe has specified "Standard Security" in
the PDF specifications. This is based on encryption algorithms and is available in the

PDF Prep Tool Suite, Version 4.11 Page 14 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Prep Tool Suite.

Native PTError PDocSecurity(Handle h, const char* ownerPw, const char*

userPw, const char* flags)

COM SetSecurity(OwnerPassword As String, UserPassword As String,

Flags As String)

Java void SetSecurity(String Ownerpassword, String Userpassword,

String Flags)

This method will set the passwords and protection flags of the file to be created. It
must be called immediately after the New method (before any objects are written to
output).

The "Flags" parameter sets the protection attributes. It can contain a combination (or
none) of the following characters:

"p": do not print the document from Acrobat

"c": changing the document is denied in Acrobat

"s": selection and copying of text and graphics is denied

"a": adding or changing annotations or form fields is denied

The following flags are defined for 128 bit encryption (PDF 1.4, Acrobat 5.0):

"i": disable editing of form fields

"e": disable extraction of text and graphics

"d": disable document assembly

"q": disable high quality printing

The flag "5" can be used in combination with one of the "old" flags to force 128 bit
encryption without setting any of the i, e, d, or q flags. Note that using any of these
Acrobat 5 related flags will produce a file that cannot be opened with older versions of
Acrobat.

Omitting these flags will result in a PDF file that is fully usable when opened using the
user password.

7.3 Disable Stream Compression

Native void PDocCompress(Handle h, short Yes)

COM not available (default: compression enabled)

Java enabled if environment variable PDPREP_OPT_NC is defined

The function PDocCompress can be used to disable the compression of content streams
generated by Prep Tool. By default, compression is enabled.

7.4 Font Renaming

Acrobat viewers before 4.05 had the problem of incorrectly rendering text with fonts
that were multiply defined in a file. PDF Prep Tool automatically renames such fonts to
work around this viewer problem. This renaming can create new problems when

PDF Prep Tool Suite, Version 4.11 Page 15 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

printing the resulting file, and when the font is not embedded in the file. In these
cases, you should use SetPreserveFontNames method to disable the renaming feature.

Native PTError PDocSetPreserveFontNames(Handle h, short on)

COM SetPreserveFontNames(on As Boolean)

Java void setPreserveFontNames(boolean on)

7.5 Error Handling

Error handling is implemented via a "get last error" method for PDF input and output
objects.

Native int PDocLastError(Handle h)

COM ErrCode() As ErrorType

Java int getLastError()

The COM interface defines its own error codes which are defined in the COM interface.

The native interface returns the normal "errno" codes of the operating system where
appropriate, and a set of special Prep Tool errors that are defined in the include file.

NOTE: the "success" error code has been changed to conform with "errno", i.e. a value
of 0 (zero) corresponds to successful operation, rather than the value 1 which

previously was returned in most cases. Please refer to the file pdptdef.h.

The Java interface uses Java exceptions combined with the native error codes. Please
refer to the Java class definitions.

7.6 Open a PDF File for Input

You can open a PDF file to retrieve information from it via the API, or to use it as a
resource to copy pages to an output file, or both.

This is how to open the input file by referring to an output file object:

Native PTError PDocInputOpen(Handle h, const char* inputFile)

COM InputOpen(Filename As String) As Boolean

Java Boolean inputOpen(String Filename)

Boolean inputOpen(String URL)

A call to PDocInputOpen makes resources of an existing PDF file available - either to
copy a non built-in font into the output file, or to copy pages to the output file.

Only one input file can be active at a time. A subsequent call to PDocInputOpen will
automatically close the previous input file.

A return value of !=PTSuccess (Java/COM: false) means that the input file could not be
opened.

In Java it is possible to provide an URL instead of a file name.

If you want to open a PDF file for input without need to create some other PDF file, you

PDF Prep Tool Suite, Version 4.11 Page 16 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

can do this as follows:

Native InputHandle IDocOpen(const char* Filename, PTError* errCode)

InputHandle IDocMemOpen(const char* pdfBytes, int len, PTError*

errCode)

COM Dim Obj1 As New IDoc

Dim Obj2 As Object

Set Obj2 = CreateObject("PrepTool.IDoc")

Obj1.Open(Filename As String) As Boolean

Obj1.OpenMem(Bytes [As Byte()]) As Boolean

Java new PTInput(String Filename)

new PTInput(String URL)

new PTInput(byte[] pdfBytes)

It is possible to open a PDF "file" stored in memory rather than referring to the file
system using the MemOpen function. In Java, the PTInput constructor taking a byte
array can be used for this.

When using IDocMemOpen, the "pdfBytes" are copied during this call and can be
disposed of as needed (all language bindings).

In the COM interface the following construct can be used to ensure that the PDoc and
its corresponding IDoc are running in the same appartment:

COM Dim Obj1 as New PDoc

Dim Obj2 as IDoc

Set Obj2 = Obj1.CreateIDoc

To open a password protected (encrypted) PDF file, you need the following API calls:

Native InputHandle IDocOpenPw(const char* inputFile, const char*

password, PTError* errCode)

InputHandle IdocMemOpenPw(const char* pdfBytes, int len, const

char* password, PTError* errCode)

COM Open(Filename As String, Password As String) As Boolean

OpenMem(Bytes, Password As String) As Boolean

Java new PTInput(String Filename, String Password)

new PTInput(String URL, String Password)

new PTInput(byte[] pdfBytes, String Password)

The COM API uses the same methods to open encrypted and non-encrypted files. The
password parameter is optional.

7.7 Attach an Input File

When you have previously opened an existing PDF file using IDocOpen, you may later

PDF Prep Tool Suite, Version 4.11 Page 17 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

want to use it as a source for pages or other resources to create an output file.

Native PTError PDocAttach(Handle h, InputHandle hIDoc)

COM Attach(Input As IDoc) As Boolean

Java void attachInput(PTInput input)

Note: Once you have attached an input file to an output PDF, you must not attach it to
another output PDF file; also, you must not close it, because it will be closed
automatically when the output PDF is closed.

Attaching a new input file to an output PDF will also close the previous input file
(except when using the COM API).

7.8 Accessing the Current Input File

The make use of the full set of PDF file analysis features, you may want to know the
input file object reference of an output file object.

Native InputHandle PdocGetInputHandle(Handle h)

COM Input() As IDoc

Java PTInput getInput()

7.9 Set the Page Size and Orientation

Native PTError PDocPageSize (Handle h, short Width, short Height)

COM PageSize(Width As Integer, Height As Integer)

Java void setPageSize(short Width, short Height)

Use this function to set the dimension of pages to be created. The width and height are
specified in points corresponding to the standard PDF coordinate system. The
MediaBox of the page will be set as [0 0 <width> <height>]. The default values are
595 by 842, i. e. A4 portrait. There are minimum and maximum values that vary
between different versions of the Acrobat viewers.

If you want to create landscape pages, you can either set the width and height
accordingly, or turn the coordinate system by printing from bottom to top while
specifying a value of 90 for the Rotate attribute of the page. Please read the
explanations about the PDF and text coordinate system in the specifications.

Native PTError PDocPageRotate(Handle h, short orientation)

COM SetPageRotate(Orientation As Integer)

Java void setPageRotate(int Orientation)

The orientation for viewing the content of a page can be set using this function. Legal
values that can be specified are 0 (default) and multiples of 90 (e. g. 270, -90, 180,
etc.).

These settings do not affect pages copied from existing PDF files, see SetInputRotate
(below) for this.

PDF Prep Tool Suite, Version 4.11 Page 18 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

To change the format or orientation of such pages, you can create empty pages of the
desired format and add the content of the existing file using the "Logo" functions. This
allows you to use arbitrary coordinate transformations for positioning and scaling the

page. This method will not work to copy annotations (such as form fields, links, etc.).

Native PTError PDocSetInputRotate(Handle h, short orientation)

PTError PDocClearInputRotate(Handle h)

COM SetInputRotate(Orientation As Integer)

ClearInputRotate

Java void setInputRotate (short Orientation)

void clearInputRotate()

SetPageRotate has the effect to replace the page rotation stored in input PDFs with the
value specified when copying pages into the output PDF. To restore the behavior of
keeping the value as in the input file, use ClearInputRotate.

7.10Set the Crop Box

The Crop Box is the displayed part of the PDF. This function allows the setting the Crop
Box for pages that are created or copied. The Crop Box must never be larger than the
Media Box.

Native PTError PDocSetCropBox(Handle h, float Left, float Bottom, float

Right, float Top)

COM SetCropBox(Left As Single, Bottom As Single, Right As Single, Top

As Single)

Java void setCropBox(float Left, float Bottom, float Right, float Top)

The crop box can be set for a newly created page. It is also applied to the pages that
are copied using InputCopyPages or InputCopyAll.

7.11Adding a New Page

A new page is automatically added to the output file when you request its handle for
the first time or after a call to PDocNewPage.

Native ContentHandle PDocGetContentHandle(Handle h)

COM Page() As content

Java PTContent getPageContent()

The content handle and the Java PTContent object are only valid as long as the page is
in construction. Once it is written to output, it is invalid and may no longer be used.

The COM object can be reused to access the next page after a call to the NewPage
method only. In all other cases, a new Content object reference must be obtained from
the PDoc object.

PDF Prep Tool Suite, Version 4.11 Page 19 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

7.12Accessing the Current Header or Background Content Layer

In order to construct the header content layer, you need the corresponding object
reference from the output file object.

Native ContentHandle PDocGetHeaderHandle(Handle h)

ContentHandle PDocGetBackgroundHandle(Handle h)

COM Header() As content

Background() As content

Java PTContent getHeaderContent()

PTContent getBackgroundContent()

A header (or background) content reference is valid as long as the header is not
cleared. After a call to HeaderClear or BackgroundClear, it becomes invalid and may no
longer be used.

The header content layer will be placed on top of pages copied into an output PDF
(using InputCopyPages), while the background layer will be placed behind. Note that
the background content may be hidden by non-transparent pages of an input file.

PDF Prep Tool Suite, Version 4.11 Page 20 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

8 Retrieving File Information

In the native interface, you refer to a handle of type "InputHandle".

In the COM interface, you refer to an object of type "IDoc".

In the Java binding, you refer to an object of class "PTInput".

You can obtain this kind of object reference in one of the ways described above.

8.1 Obtain the PDF Version

Native VBSTR IDocPDFVersion(InputHandle h)

COM GetVersion() As String

Java String getPDFVersion()

Returns the PDF version of the file, as stored in the file header.

8.2 Obtain the File Name

Native VBSTR IDocGetFileName(InputHandle h)

COM GetFileName() As String

Java String getFileName()

Retrieves the name of the PDF file. If the file was opened from memory, a unique
string is returned starting with "internal: ". If the file is not open, an empty string is
returned.

8.3 Obtain the Keys List

Native PTError IDocGetInfoKeys(InputHandle h, VBSTR* keys)

COM GetInfoKeys() As String

Java String getInfoKeys()

This function returns a carriage-return separated list of the keys that are present in the
/Info attribute of the PDF file. The keys are returned with the leading slash character –
e. g. /Author, /Title, etc.

8.4 Obtain Document Attributes

Native PTError IDocGetInfoAttr(InputHandle h, const char* key, VBSTR*

value)

PTError IDocGetInfoAttrU(InputHandle h, const char* key, PDBSTR

value)

PDF Prep Tool Suite, Version 4.11 Page 21 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

COM GetInfoAttr(ByVal Key As String) As String

Java String getInfoAttr(String Key)

This function returns the value of a document attribute stored in the /Info attribute of
the PDF file.

8.5 Get Meta Data

Native VBSTR IDocGetMetaData(InputHandle h)

COM GetMetaData() As String

Java String getMetaData()

GetMetaData returns the XML meta data stored in the PDF document.

8.6 Get the Name and Current Data of a Form Field

Native PTError IDocGetFormData(InputHandle h, short FieldNum, VBSTR*

Name, VBSTR* Data, VBSTR* Description, int* FormFlags, int*

AnnotFlags, VBSTR* FieldType)

COM GetFormData(ByVal FieldNum As Integer, Name As String, Data As

String, Descr As String, Multiline As Boolean) As Boolean

Java PTFormData getFormData(int FieldNum)

The parameter FieldNum (default=1) is an iterator by which you can obtain the names
and current data of all text form fields. FieldNum runs from 1 to the number of form

fields. A result of !=PTSuccess/False/null will be returned, if you go beyond the last
form field.

PTFormData.Name = Name as String

PTFormData.Data = Data as String

PTFormData.Description = Description as String

The native and the Java interface also supply type information (FieldType). This type
information is composed of the field type of the field itself, followed by the export
values (separated by new-line characters).

Note that there can be more than one instance of a form field. If this is the case, each
instance can have different flags, and you need to use GetFormBox to check the
individual settings.

8.7 Get the Position of a Form Field

Native PTError API IDocGetFormBox(InputHandle h, const char* fieldName,

float box[], short inst, int* page, short* fontID DEFAULT_NULL,

float* fs, short* al, int* formFlags, int* annotFlags)

COM GetFormBox(ByVal FieldName As String, ByVal Instance As Short, X

PDF Prep Tool Suite, Version 4.11 Page 22 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

As Single, Y As Single, W As Single, H As Single, Page As

Integer, FontID As PtFormFontType, Fontsize As Single, Alignment

As Short, Formflag As PTFormFlags, Annotflags As PTAnnotFlags) As

Boolean

Java PTFormBox getFormBox(String Fieldname, int Instance)

PTFormBox getFormBox(String Fieldname)

There can be more than one field occurrence with a certain name. All these
occurrences share the same data and also other attributes like description or multi-
line. Individual form fields have their own location, display text in a different font and
with different alignment. GetFormBox returns the latter information that belongs to
individual form fields. The "instance" parameter serves to distinguish different
occurrences. Instance numbers start at 1. The function will return a PTSuccess
(True/non-null) result if the instance is found.

The parameters are:

- Fieldname: the name of the form field (IN)

- Instance: a numerator to distinguish between form fields that have the same name
(IN)

- box,

box[0-3] =X/Y/W/H: the coordinates of the rectangle occupied by the form field

if (box.length > 4)

 Page = (int) box [4];

 if (box.length >= 10) {

 FontID = (int) box [5];

 FontSize = box [6];

 Alignment = (short) box [7];

 FormFlags = (short) box [8];

 AnnotFlags = (short) box [9];

- Page: the number of the page on which the field is located (1..number of pages)

- FontID: the identification of the font used to display text (e. g. Helvetica = 0, see
declaration of font constants)

- FontSize: the size of the text being displayed

- Alignment: the alignment for displaying the form text (0 = left, 1 = centered, 2 =
right)

- Formflags: the flags set for the form ("/Ff" entry in the form field’s dictionary, see
AddTextField)

- Annotflags: the general annotation flags ("/F") set for the field

The form specific flags being returned are described in the PDF specification:

- 1: read-only (flag & 1 != 0)

- 2: required (flag & 2 != 0)

PDF Prep Tool Suite, Version 4.11 Page 23 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

- 3: no export (flag & 4 != 0)

- 13: multi-line (flag & 4096 != 0), etc.

The general annotation flags are

- 1: invisible

- 2: hidden

- 3: printable, etc.

8.8 Get Information about Pages

Native int IDocNumPages(InputHandle h)

PTError IDocAcquirePage(InputHandle h, int Page)

PTError IDocPageBox(InputHandle h, float* X, float* Y, float*

Width, float* Height)

PTError IDocMediaBox(InputHandle h, float* X, float* Y, float*

Width, float* Height)

short IDocPageRotate(InputHandle h)

COM NumPages() As Long

GoPage(PageNum As Long) As Boolean

GetVisibleBox(Left, Bottom, Right, Top)

GetMediaBox(Left, Bottom, Right, Top)

GetRotate() As Integer

Java int getNumPages()

boolean acquirePage(int PageNumber)

PTRectangle getPageBox()

PTRectangle getMediaBox()

short getPageRotate()

This set of functions can be used to retrieve information about individual pages in a
PDF file.

The "visible box" corresponds to the crop box; if none is present, the media box is
returned.

The "Rotate" attribute of a page tells a viewer application that the page shall be
rotated for presentation.

8.9 Retrieve Text from a PDF File

Native PTError IDocReadText(InputHandle h, VBSTR* text, PTTokenInfo* m,

VBSTR* font)

PTError IDocReadTextU(InputHandle h, PDBSTR* text, PTTokenInfo*

PDF Prep Tool Suite, Version 4.11 Page 24 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

m, VBSTR* font)

COM GetToken() As TToken

Java PTTextToken readTextToken()

This function retrieves text fragments from a PDF file’s pages. The metrics structure
contains the coordinates, font size, width and orientation of the retrieved character
string. The page number is also contained, because ReadText passes automatically to
the next page when no more text is found on a page.

The PTTokenInfo structure contains a float array indicating to position of each
individual character of the retrieved string (CharRightPos). This float array is
dynamically allocated and must be initialized before calling IDocReadText and again
afterwards when not used any more. This is done with the functions PTInitToken() and
PTFreeToken(). For C++ programmers, the class CPTTokenInfo is available which takes
care of initializing the structure and freeing the allocated memory again.

8.10Retrieve Bookmarks from a PDF File

Native BookmarkHandle IDocGetBookmarkRoot(InputHandle h)

PTError PBMGoNext(BookmarkHandle h)

PTError PBMGoUp(BookmarkHandle h)

PTError PBMGoDown(BookmarkHandle h)

PTError PBMReset(BookmarkHandle h)

PTError PBMGetTitle(BookmarkHandle h, VBSTR* title)

PTError PBMGetTitleU(BookmarkHandle h, PDBSTR* title)

PTError PBMGetLevel(BookmarkHandle h, int* level)

PTError PBMGetNumChildren(BookmarkHandle h, int* numChildren)

PTError PBMKidsVisible(BookmarkHandle h, bool* kidsVisible)

PTError PBMGetInfo(BookmarkHandle h, VBSTR* info)

PTError PBMRelease(BookmarkHandle h)

BookmarkHandle API PBMClone(BookmarkHandle h)

COM GetBookmarkRoot() As Bookmark

Java PTBookmark getBookmarkRoot()

The bookmark root node can be retrieved trough the function GetBookmarkRoot. Java
and COM uses the classes PTBookmark and Bookmark to encapsulate the appropriate

native functions (GetTitle, GoNext, ..)

Navigate trough the tree by using the functions GoNext to go to the next bookmark,
GoDown to go one level deeper, GoUp to go one level up and reset to move to the root
bookmark. GoDown, GoUp and GoNext return false if there isn’t a next bookmark or
the node has no children (GoDown) or is no parent (GoUp).

To retrieve information about the current bookmark use the get functions. GetTitle

returns the bookmark title. The native method GetTitleU returns the title in Unicode.

PDF Prep Tool Suite, Version 4.11 Page 25 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Java and COM methods always return Unicode strings. GetLevel returns the current
level of the bookmark. The root level is –1. GetNumChildren returns the number of
children for the current bookmark. Use the Clone function to get a copy of the current

bookmark. For Java and the native API you have to release a bookmark to free the
memory. Use the release function to do this.

To release the title string in the native API, use the functions PTFreeVBSTR and
PTFreePDBSTR.

The GetInfo function returns additional information about a bookmark. This information
is returned in a character string. The string content depends on the type of action or

destination attached to the bookmark. The following types are supported:

GoTo: Go to a destination in the current document (Starting at 0).

GoToR: Go to a destination in another document.

Launch: Launch an application.

URI: Open an Internet link.

The action types have to be interpreted as follows:

Action type String

GoTo GoTo Destination

GoToR GoToR file Destination

Launch Launch file

URI URI web-link

A destination can be one of the following:

page /XYZ left top zoom
page /Fit
page /FitH top
page /FitV left
page /FitR left bottom right top
page /FitB
page /FitBH top
page /FitBV left

For more information about action types and destinations, refer to the PDF-Reference.

Use a parser to split up the string into the tokens. The separation between two
arguments is the blank character.

8.11Retrieve Annotations from a PDF File

Native PTError IDocGetAnnotation(InputHandle h, PTAnnotType*

AnnotType, float rect[], int* BorderStyle, int*

pIdentification)

PTError IDocGetAnnotationInfo(InputHandle h, VBSTR* AnnotInfo)

PTError IDocGetAnnotationInfoU(InputHandle h, PDBSTR*

AnnotInfo)

COM GetAnnotation(Type As PTAnnotType, Info As String, Left As

PDF Prep Tool Suite, Version 4.11 Page 26 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Single, Bottom As Single, Right As Single, Top As Single,

BorderStyle As Long, Identification As Long) As Boolean

Java PTAnnotData readAnnotation()

These functions are used to retrieve annotations from a PDF document. Two types of
annotations can be retrieved, text and link annotations. The type is retrieved through
the PTAnnotType structure.

The function GetAnnotation returns one annotation per call for the current page. Call
the function again to retrieve the next annotation. The function will return an error if it

has no next annotation.

Use the GetAnnotationInfo function in the native API to retrieve the info string from
the current annotation. The GetInfoAnnotationU function, retrieves the info string in
Unicode. Use PTFreeVBSTR and PTFreePDBSTR to free these strings.

The return values are interpreted as follows:

AnnotType: the type of the annotation (eText or eLink)

rect[]: the location of the annotation on the page (left, bottom, right, top)

Info: If it’s a text annotation this holds the text. If it’s a Link annotation this holds an
action or named destination. See ‘Retrieve Bookmarks from a PDF File’ for more
information about the structure of the info string in this case.
Java encapsulates the return values in the class PTAnnotData.

8.12Retrieve the Border Style from Annotations

Native n.a.

COM GetBorderStyle(ID As Long) As IBorderStyle

Java n.a.

If the annotation has a Border Style dictionary (entry BS), this function returns an
IBorderStyle interface, otherwise nothing is returned. ID is the identification of the
annotation which is received using the method GetAnnotation.

IBorderStyle has the following properties:

String BS Describes the border style. The following substrings are possible:
"S" (Solid), "D" (Dashed), "B" (Beveled), "I" (Inset), "U"
(Underline).

Long ColorRGB The color as RGB value. ColorRGB = red + 256 * green + 256 *
256 * blue. Where red, green and blue are values 0-255.

String DashArray A dash array defining a pattern of dashes and gaps to be used in
drawing a dashed border. The array is returned a string, the

separator is the blank. For example, a "1 2" string specifies a
border drawn with 1-point dashes alternating with 2-point gaps.

Integer DashOff The size of the gaps. See DashArray.

Integer DashOn The size of the dash. See DashArray.

Integer Width The border width in points. If this value is 0, no border is drawn.

PDF Prep Tool Suite, Version 4.11 Page 27 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

8.13Get List of Fonts

Native PTError IDocGetFonts(InputHandle h, int PageNumber, VBSTR* Fonts)

COM GetFonts(Optional ByVal PageNumber As Long) As String

Java String getFonts(int Page)

This function returns a "\r" (Chr$(13)) separated list of the fonts contained in the PDF
file. If the Page parameter is specified as 0, the whole document is searched for fonts.

8.14Get Color Information

Native short IDocNumColorSpaces(InputHandle h)

VBSTR IDocGetSeparation(InputHandle h, short index)

COM NumColors() As Long

GetColor(ByVal Index As Long) As String

Java int getNumColors()

String getColor(int Index)

These functions return information about ColorSpace entries in the resources dictionary
of the current page of the input file (AquirePage must previously be called).

The index to retrieve the names of the color space separation runs from 1 to the
number of colors.

8.15Save File Attachment

Native PTError IDocSaveAttachment(InputHandle h, const char* filename)

COM SaveFileAttachment(FileName As String) As Boolean

Java void saveAttachment(OutputStream os)

This function permits retrieval of the file that is embedded in a FileAttachment
annotation.

Note that SaveFileAttachment depends on the GetAnnotation function, and will only
work when the last annotation returned by GetAnnotation is a file attachment.

8.16Close the File

Native PTError IDocClose(InputHandle h)

COM Close() As Boolean

Java void close()

This function closes the input file and releases all resources associated with it. When
the COM object’s reference count goes to zero, an automatic close is performed.

When using the Java API, you must be careful: call "close" only, if you obtained the

PDF Prep Tool Suite, Version 4.11 Page 28 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

PTInput object using "new". If you obtained it via PTDoc.getInput(), the input file will
be closed when closing the PTDoc object.

8.17Get UserUnit

Native float IDocUserUnit(InputHandle h)

COM GetUserUnit() As Single

Java n.a.

Returns the UserUnit as float if defined in the PDF document. If no UserUnit is defined,
1 is returned.

PDF Prep Tool Suite, Version 4.11 Page 29 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Content Construction

The following methods refer to objects of type content, and can thus be equally applied
to "print" to a page or to construct the content layer of a header.

In the native interface, you refer to a handle of type "ContentHandle".

In the COM interface, you refer to an object of type "Content".

In the Java binding, you refer to an object of class "PTContent".

8.18Set the Font for Text Output

Native PTError PConSetFont(ContentHandle h, const char* fontName, float

fontSize)

COM SetFont(ByVal FontName As String, ByVal FontSize As Single) As

Boolean

Java boolean setFont(String Name, float Size)

boolean setFont(String Name)

boolean setFont(float Size)

In the native and COM interfaces, the parameters Name and Size are optional. Once
you have set the font’s name, it is possible to change its size by just passing the new

size. For missing arguments, you can specify 0.

The procedure PConSetFont must be called prior to PConPutText to set the font to be
used and its size. Only predefined Acrobat fonts can be specified here ("Helvetica",
"Helvetica-Bold", "Helvetica-Oblique", "Times-Roman", "Times-Italic", "Times-Bold",
"Courier", "Courier-Oblique", "Courier-Bold", "Symbol", "ZapfDingbats").

The fonts "Helvetica-BoldOblique", "Courier-BoldOblique" and "Times-BoldItalic" are
built in fonts, but cannot be used because their definition requires additional
information which is not yet supported. However, if these fonts or any other non
standard font is defined in the current input file, PT will copy that font to the output
file.

SetFont returns FALSE if the font cannot be set (i. e. is not a standard font and is not
found in the current input file).

Note the following issues about using fonts:

When there is no current input file (see PDocInputOpen), you must only use standard
built-in fonts like Helvetica, Times-Roman, etc. (see PConSetFont).

When there is a current input file, SetFont tries to find a font with this name in the
input file and copy the font data to the output file. It is then legal to use this font.

To use a non standard font, you can thus create a template file containing the font
data. As Acrobat optimizes the font data to what is actually necessary, make sure you
place the full variety of characters that you later need into the file. To refer to the font,
you specify its name in the "fontName" parameter. It is actually sufficient to specify
only a significant portion of the name (matching is case sensitive - check the spelling
of the font in the template file!).

PDF Prep Tool Suite, Version 4.11 Page 30 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Some fonts will have the effect that the encoding of individual characters in the PDF
file is different from the corresponding ASCII code. Currently, you can only use fonts
that conform to certain conventions. The standard fonts "Helvetica", "Helvetica-Bold",

"Helvetica-Oblique”, "Times-Roman", "Times-Italic", "Times-Bold", "Courier", "Courier-
Oblique", "Courier-Bold", "Symbol", "ZapfDingbats" should always work. Other fonts
will be embedded into the PDF file. Their encoding depends on the tool which produced
the PDF file. PDFWriter on Windows produces a standard ASCII encoding
(WinAnsiEncoding) for a font for which Distiller Assistant will create an encoding which
shifts codes by 29. (You will notice this also in Acrobat, when you select text, copy it to
the clipboard, and try to use it in another application).

The Prep Tool DLL uses a heuristic to determine if there is a code shift by evaluating
the "FirstChar" key of the font dictionary. It uses this value to shift the code, assuming
that this code corresponds to the first printable character which is a blank space (ASCII
32). When you prepare a template PDF, make sure it contains a blank space (plus all
other characters you want to have available).

8.19Set Text Spacing

Native PTError PConSetCharSpacing(ContentHandle h, float value)

PTError PConSetWordSpacing(ContentHandle h, float value)

PTError PConSetTz(ContentHandle h, float value)

COM SetCharSpacing(ByVal Value As Single)

SetWordSpacing(ByVal Value As Single)

SetTz(ByVal Value As Single)

Java void setCharSpacing(float value)

void setWordSpacing(float value)

void setTz(float value)

The character spacing (Tc) adds some space between each character of a text string.
The measure is in points. It does not scale with the text’s font size. The word spacing
is an additional spacing that is applied to space characters only.

The "Tz" value controls the horizontal scaling of text. The default value is 100.

8.20Set the Gray Level for Lines and Filling

Native PConSetGray(ContentHandle h, float line, float fill)

COM SetGrayLevel(ByVal GrayLine As Single, ByVal GrayFill As

Single)

Java void setGray(float line, float fill)

void setGrayLine(float value)

void setGrayFill(float value)

Text characters consist of a line shape (that is usually not drawn) and the fill area.
Thus, you can set the gray level of text by setting the gray level for filling (“g” operator

PDF Prep Tool Suite, Version 4.11 Page 31 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

in PDF).

.. etc.

8.21Set the Color for Lines

Native PTError PConLineColor(ContentHandle h, float red, float green,

float blue)

PTError PConLineColorCMYK(ContentHandle h, float cyan, float

magenta, float yellow, float black)

COM SetLineColor(ByVal red As Single, ByVal green As Single, ByVal

blue As Single)

SetLineColorCMYK(ByVal cyan As Single, ByVal magenta As Single,

ByVal yellow As Single, ByVal black As Single)

Java void setLineColor(float red, float green, float blue)

void setLineColorCMYK(float cyan, float magenta, float yellow,

float black)

This method sets the color of lines. The values of r, g, b must lie in the range of 0 and
1. They correspond to the contributions of red, green and blue. 0,0,0 corresponds to
black, 1,0,0 to red, etc. Alternatively the color can be set using CMYK (Cyan, Magenta,

Yellow, Black) parameters. The range of the CMYK color parameters lies between 0 and
1.

8.22Set the Color for Filling

Native PTError PConFillColor(ContentHandle h, float red, float green,

float blue)

PTError PConFillColorCMYK (ContentHandle h, float cyan, float

magenta, float yellow, float black)

COM SetFillColor(ByVal red As Single, ByVal green As Single, ByVal

blue As Single)

SetFillColorCMYK(ByVal cyan As Single, ByVal magenta As Single,

ByVal yellow As Single, ByVal black As Single)

Java void setFillColor(float red, float green, float blue)

void setFillColor(float cyan, float magenta, float yellow, float

black)

This method sets the color for filling shapes. It also affects the color of text.

8.23Set the Alpha Transparency for Filling and Stroking

Native PTError PConSetFillAlpha(ContentHandle h, float alpha)

PTError PConSetStrokeAlpha(ContentHandle, float alpha)

PDF Prep Tool Suite, Version 4.11 Page 32 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

COM SetFillAlpha(ByVal alpha b As Single) As Boolean

SetStrokeAlpha(ByVal alpha b As Single) As Boolean

Java n.a.

This method sets the alpha transparency for filling shapes and stroking lines. It also
affects text.

8.24Using Color Spaces

It is also possible to use color spaces to set the fill and line colors. In order to have a
specific color space available for use, it must be defined in the current input file, or it
must have been previously copied to the current output file from some other input file
(see PDocInputCopyColor).

Native PTError PConSetFillCS(ContentHandle h, const char* color, float

scn)

PTError PConSetLineCS(ContentHandle h, const char* color, float

scn)

COM SetFillCS(ByVal Color As String, ByVal scn As Single) As Boolean

SetLineCS(ByVal Color As String, ByVal scn As Single) As Boolean

Java void setFillCS(String Color, float scn)

void setFillCS(String Color)

void setLineCS(String Color, float scn)

void setLineCS(String Color)

These functions return a boolean indicating successful setting of the color. To obtain a
list of all available colors, you can use the functions IDocNumColorSpaces and
IDocGetSeparation.

8.25Placement of Character Strings

Native PTError PConPutText(ContentHandle h, const char* text)

PTError PconPutTextU(ContentHandle h, const PDNSTR text)

PTError PConPutLn(ContentHandle h)

COM PrintText(Text As String, x As Single, y As Single)

PrintNewLine()

Java void putText(String Text)

void putLn()

Print a text string using the current font. You previously need to set the location (Text
Matrix).

The COM interface optionally accepts new coordinates for the text.

PutLn adds a T* operator to the stream.

PDF Prep Tool Suite, Version 4.11 Page 33 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

8.26Placement of a Logo

Native PTError PDocLogo(Handle h, const char* logoFile, short

backGround)

PTError PDocLogoFile(Handle h, const char* logoFile, PTClipType

ct)

PTError PDocLogoInput(Handle h, InputHandle hIDoc, PTClipType ct)

PTError PConPrintLogo(ContentHandle h, long id)

InputHandle PDocGetLogoHandle(Handle h)

COM {PDoc.}SetLogoFile(ByVal Filename As String, Optional Clipping As

PTClipType) As Boolean

{PDoc.}SetLogoInput(LogoInput As IDoc, Optional Clipping As

 PTClipType) As Boolean

{PContent.}PrintLogo(Num As Long) As ErrorType

{PDoc.}Logo() As IDoc

Java boolean {PTDoc.}setLogoFile(String Filename)

boolean {PTDoc.}setLogoFile(String Filename, int cliptype)

boolean {PTDoc.}setLogoFile(String URL)

boolean {PTDoc.}setLogoFile(PTInput input, int cliptype)

void {PTContent.}putLogo(int LogoPageNum)

PTInput {PTDoc.}getLogoFile()

First, you need to define which PDF file to extract logos from. Subsequently, you can
select any page of the logo file as the logo to be placed either on the page content or
on the header layer.

The box, which should be applied when copying the logo page can be set to any box
(pdClipTrimBox, pdClipCropBox, pdClipMediaBox, pdClipBleedBox). The default is the
TrimBox.

The native interface works slightly different for backward compatibility reasons:
PDocLogo implicitly also prints the logo from page one, and it is possible to put it in the
background. The new function PDocLogoFile only opens the file and leaves it up to
PConPrintLogo to use it.

A PTNullRef value returned by the PrintLogo function indicates that the page being
used as a logo does not contain any contents and thus has no effect on the output. The
Java function putLogo will not raise an exception in this case as it would when
encountering some other error (such as PTFailed when passing an invalid page
number).

Please note that pages merged from existing PDF files may not be transparent and
thus cover the background logo. On the other hand, the logo may not be transparent
and hide existing contents if placed in the foreground. The best technique is thus to
make sure the logo is transparent as required and place it in the foreground. As a help

to this, it is possible to apply a crop box to the logo file (see below). Unfortunately,

PDF Prep Tool Suite, Version 4.11 Page 34 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Acrobat insists on a minimal size for cropped pages. You may need other ways to
reduce the crop box further (the "pdcat" tool can do it). With Adobe Acrobat, you can
remove any background rectangles with the TouchUp Object Tool. PrepTool inspects

the logo’s content stream and removes a white background if it is the first object in the
stream.

There is no coordinate transformation when placing the logo, i. e. it will be shown at
the same offsets to the coordinate system origin (0,0 - left, bottom) as in the
uncropped logo file. You can use the DrawCmd function to set a coordinate system
transformation (PDF "cm" operator), if you want to set the position of the logo via the

API.

The bounding box (clip rectangle applied to the logo when being placed on a page) for
the logo corresponds to the TrimBox if specified - otherwise the MediaBox of the logo
file).

Note: the same logo can be applied to several PDF files to be merged.

Several logo files can be used to contribute to the construction of a PDF document. An
output document keeps the logo files open, and you can switch back to a previously
used logo file by setting it again. The PrintLogo (putLogo) method applies to the
currently active logo file.

8.27Placement of an Image

An image imported via CreateImage can be placed into a page (or header) content
using PrintImage.

The X/Y/W/H parameters can be omitted. In this case, no coordinate transformation to
place the image in the specified rectangle is generated. If you want to rotate the
image, it would be necessary that you explicitly generate the transformation matrix
before placing the image.

Native PTError PConPrintImage(ContentHandle h, int ident, float X, float

Y, float Width, float Height)

COM PrintImage(ByVal Ident As Long, ByVal X As Single, ByVal Y As

Single, ByVal Width As Single, ByVal Height As Single) As Boolean

Java void PintImage(int ident, float X, float Y, float Width, float

Height)

To place an image via a coordinate transformation, you need to issue the following PDF
operator sequence:

DrawCmd("q") save the current coordinate system state

DrawCmd("1 2 3 4 5 6 cm") set the coordinate transformation using the "cm"
operator

PrintImage(1) generate the XObject placement into the stream

DrawCmd("Q") restore to the saved coordinate system state

Note that (1, 2, 3, 4, 5, 6) is just an example showing the syntax of the command. The
actual numbers will be determined by the scaling, rotation, and positioning parameters
you have.

PDF Prep Tool Suite, Version 4.11 Page 35 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

8.28Embedding any PDF Text Operator

Native PTError PConTextOp(ContentHandle h, const char* command)

COM TextCmd(ByVal Command As String)

Java void putTextOp(String Command)

You can pass any legal PDF text operator directly to the PDF stream. Correctness of
the command is not checked. PT only makes sure that your command will be
surrounded by "BT" and "ET" operators.

8.29Set the Spacing of Text Lines

Native PTError PConSetLineSpacing (ContentHandle h, float value)

COM SetLineSpacing(TL As Single)

Java void setLineSpacing(float TL)

This function will send a "TL" operator to the PDF stream. A useful line spacing would
be equal to the current font size.

8.30Set the Text Matrix

Native PTError PConSetTm(ContentHandle h, float a, float b, float c,

float d, x float, y float)

COM SetTm(a As Single, b As Single, c As Single, d As Single, x As

Single, y As Single)

Java void setTm(float a, float b, float c, float d, float x, float y)

Set the text matrix. The default text matrix is [1 0 0 1 0 0]. The first 4 numbers
determine the orientation of the text being written subsequently. [1 0 0 1] means text
is written in increasing x direction and constant y coordinate. The last two numbers in
the text matrix define the coordinates of the starting point for text.

8.31Set a Relative Starting Position for Text (Tab)

Native PTError PConPutTab(ContentHandle h, float a, float b)

COM n.a.

Java void putTab(float a, float b)

Issues a “Td” operator with the specified arguments. (See PDF specification).

8.32Calculate the Width for a Character String

Native float PConGetTextWidth(ContentHandle h, const char* text)

float PConGetTextWidthU(ContentHandle h, const PDBSTR text)

PDF Prep Tool Suite, Version 4.11 Page 36 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

COM GetTextWidth(ByVal Text As String) As Single

Java float getTextWidth(String Text)

This function calculates the length that the specified text string would need with the
current font settings. You can use this to adjust the starting coordinates for center or
right alignment.

Please note that the function does not take into account any character or word spacing
that you might have set using the TextOp function.

8.33Text Tables

Native short PConTableHeight(ContentHandle h, short nrRows)

PTError PConTableDraw(ContentHandle h, short Left, short Top,

short NumRows, short NumCols, short ColumnWidths[])

PTError PConTableText(ContentHandle, short Row, short Column,

const char* Text, short Alignment)

PTError PConTableTextU(ContentHandle, short Row, short Column,

const PDBSTR Text, short Alignment)

COM GridHeight(nRows As Integer) As Integer

PrintGrid(x As Integer, y As Integer, nRows As Integer,

col1Width As Integer, col2Width As Integer, col3Width As

Integer, col4Width As Integer)

GridText(row As Integer, col As Integer, Text As String,

Alignment As Integer)

Java short calucateGridHeight(short nRows)

void drawGrid(short x, short y, short nRows, short colWidths[])

void putGridText(short row, short col, String text, short

Alignment)

This set of functions lets you draw the border lines of a simple table and fill the table
with text. You need to set the text font and size first. This setting will determine the
vertical dimensions of the table.

PrintGrid must always be called prior to printing text. If you do not want any grid lines
to be drawn, set the line width to zero (SetLineWidth(0)).

The column widths need to be specified explicitly. In the COM interface, you can have
at most 4 columns. The parameters are optional. You will get as many columns as you
specify widths.

8.34Draw a Line or Polygon

Native PTError PConSetLineWidth(ContentHandle h, float Width)

PTError PConMoveTo(ContentHandle h, float X, float Y)

PTError PConDrawTo(ContentHandle h, float X, float Y)

PDF Prep Tool Suite, Version 4.11 Page 37 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

COM SetLineWidth(Width As Single)

MoveTo(x As Single, y As Single)

DrawTo(x As Single, y As Single)

Java void setLineWidth(float Width)

void moveTo(float x, float y)

void drawTo(float x, float y)

Use these functions to draw a line or line polygon.

Note that there are different possible settings for line joins. Please refer to the PDF
specifications ("j" operator).

8.35Draw a Rectangle

Native PTError PConRectangle(ContentHandle h, float x, float y, float

width, float height, short how)

COM DrawRect(x As Single, y As Single, w As Single, h As Single, how

As ShapeFlags)

Java void drawRectangle(float Left, float Bottom, float Width, float

Height, int FillType)

Draw a rectangle with the specified location and dimensions. The parameter "how"
determines, if the rectangle is filled and if the border is drawn: 0=fill area only,
1=both, 2=border only

8.36Draw Curves

Native PTError PConCurveTo(ContentHandle h, float xy[], short type)

COM CurveTo(x1 As Single, y1 As Single, x2 As Single, y2 As Single,

Optional x3 As Single, Optional y3 As Single, type As

PTCurveType)

Java void curveTo(float xy[], char type)

Draw a Bézier curve of the specified type (‘c’, ‘v’, or ‘y’; see PDF specifications).

The ‘c’ type curve requires 3 coordinate pairs, the other types only 2.

This function can be used to extend the current path – just like drawTo.

8.37Area Filling and Clipping

Native PTError PConDrawArea(ContentHandle h, short clip)

COM DrawArea(Optional Clip As Boolean)

Java void drawArea()

void drawAndClipArea()

PDF Prep Tool Suite, Version 4.11 Page 38 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Close the path constructed with drawTo (and/or curveTo calls, and fill with the current
color. Optionally, the clip area is also set to this area.

8.38Embedding any PDF Non-Text Commands

Native PTError PConDrawOp(ContentHandle h, const char* command)

COM DrawCmd(ByVal Command As String)

Java void putDrawOp(String Command)

Pass the specified PDF command string as is to the content stream. You can use this to
make use of many PDF features that are not available by specific API calls.

PDF Prep Tool Suite, Version 4.11 Page 39 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

9 Form Fields, Annotations

9.1 Set the Data

Native PTError PDocInputSetFormData(Handle h, const char* fieldName,

const char* fieldData, short Formflags, short Annotflags)

COM InputSetFormData(Fieldname As String, Data As String, Ff As

PTFormFlag, Af as PTAnnotFlag) As Boolean

Java void inputSetFormData(String Fieldname, String Data)

void inputSetFormData(String Fieldname, String Data, boolean

noRO)

void inputSetFormData(String Fieldname, String Data, short

Formflags, short Annotflags)

Use this to populate the text fields of an input file with data, after opening the form
template using PDocInputOpen and before calling PDocInputCopyPages to generate the
output containing the new data.

This method is called in the context of the output file, because the data is not actually
set in the input file first, but rather added on the fly when the pages are copied to the
output file. You will not get an error when specifying an invalid field name or a field
name that is not copied, because the page containing the field is not in the range of
pages that you specify in InputCopyPages.

Note that it is possible to define multiple fields with the same name in Acrobat. All
these fields have the data in common, but may differ how they appear (placement,
font, alignment, etc.). PDocInputSetFormData will set the data in all instances,
respecting their individual appearance settings.

The NoReadOnly parameter allows you to leave the ReadOnly attribute of the fields
(use 1). Specifying a value of 0 will set all instances of the field to “read only“.

The attributes of the form fields can not be set via the API. Set font, font size,
alignment and so on using Acrobat Exchange in the template file.

Note that no text formatting is supported, and only the standard Acrobat fonts can be
used (unless the field has been created using AddTextField – see below).

Text wrapping will be performed automatically in multi-line fields. You may also supply
already formatted data (e. g. for numbers and dates). To explicitly mark a newline in
multi-line text, use "\r" (Chr$(13)). With this exception, you must use only printable
characters.

You can also print data on a page using output to the header layer. If you want to
place a bar code or image on the page, this is the way to do it.

PT allows you to re-use a specific page from the input file as a template that is filled
with data and copied to output many times. Please be aware of the fact that you have
form fields with identical names but different data in the output file. Once you open
this file in Acrobat, a change of the data of one field will affect all other fields with this
name. As a precaution, you may thus want to set these fields to read-only.

PDF Prep Tool Suite, Version 4.11 Page 40 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

The value of a check box is set using the export string (checked) or the constant string
"Off" (unchecked).

Radio buttons are set by specifying the export string (value of the button to be "on").
"Off" can be used to set all to the "off" state.

9.2 Define a Custom Font

Native PTError IDocSetFormFont(InputHandle h, short fontID, const char*

Basefont)

COM SetFormFont(FontID As PTFormFontType, ByVal BaseFontName As

String) As Boolean

Java void setFormFont(short fontID, String basefont)

This function defines a custom font that can be used for text form fields. This function
only applies to fonts of form fields.

9.3 Get a Font Name

Native PTError IDocGetFontName(InputHandle h, short fontID, VBSTR* name)

COM GetFontName(FontID As PTFormFontType) As String

Java String getFontName(short fontID)

This function returns the name of the base font that corresponds to the specified font
number. This function only applies to fonts of form fields.

9.4 Delete a Form Field

Native PTError IDocDeleteFormField(InputHandle h, const char* fieldName)

COM DeleteFormField(ByVal Fieldname As String) As Boolean

Java void deleteFormField(String Fieldname)

This function deletes all instances of a form field from a template file. Note that the

enumerator of the function IDocGetFormData is affected. When field 1 is deleted, field
2 becomes number 1 etc.

9.5 Add a Text Form Field

Native PTError IDocAddTextField(InputHandle h, const char* fieldName,

const char* fieldDescr, float box[], int page, short fontID,

float fontSize, short alignment, int FormFlags, int

AnnotFlags, int borderRGB, int backgroundRGB, int rotate, int

textRGB)

COM AddTextField(ByVal FieldName As String, ...) As Boolean

Java void addTextField(String fieldName, ...)

PDF Prep Tool Suite, Version 4.11 Page 41 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

void addTextFieldEX(String fieldName, ...)

This function adds a text form field to a PDF file. Note that this field is put into the
transient memory cache of an input file which cannot be saved as such, but must be
copied to an output file. To fill in data into a text field that is added this way, you can
use the SetFormData method. The name of the text field may not contain a "."
(period).

The colors (borderRGB, backgroundRGB) are encoded in the following way:

RGB = RED[0..255] + 256*GREEN[0..255] + 256*256*BLUE[0..255]

or as Hex numbers: RGB = 0xBBGGRR (&H00BBGGRR in Visual Basic)

For example: &H000000FF is red, &H0000FF00 is green, etc. (as in the Visual Basic
color settings)

9.6 Copy a Form Field

Native PTError PDocAddFieldFromLogo(Handle h, const char* fieldName, int

pageNumber, float X, float Y, float Width, float Height, const

char* newName)

COM AddFieldFromLogo(ByVal FieldName As String, PageNumber As Long

 Optional X As Single, Y As Single, Width As Single, Height As

Single, NewName As String) As Boolean

Java void addFieldFromLogo(String fieldName, int pageNumber)

void addFieldFromLogo(String fieldname, int pageNumber, float X,

float Y, float Width, float Height)

void addFieldFromLogo(String fieldname, int pageNumber, float X,

float Y, float Width, float Height, String newName)

This function copies a form field from an existing PDF document to an output PDF
document. The file where the field is taken from is the current logo file (s.
SetLogoFile). You cannot change anything about the field except the coordinates and
the name.

9.7 Form Flattening

Native PTError PDocSetFlatten(Handle h, short On, int mode)

COM SetFlatten(ByVal On As Boolean, Mode As PTFlattenMode)

Java void setFlatten(boolean on)

void setFlatten(Boolean on, int mode)

This output file setting has the effect that text fields are rendered into the page
content during subsequent InputCopyPages calls. This means that the form field is
eliminated, and its content now constitutes part of the page content.

PDF Prep Tool Suite, Version 4.11 Page 42 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

9.8 Add a Text Annotations

This function adds text annotations to an input handle.

Native PTError IDocAddTextAnnotation(InputHandle h, const char* label,

const char* content, float rect[X1, Y1, X2, Y2], int page, float

color[R, G, B], int annotFlags)

COM AddTextAnnotation(Name As String, Content As String, X As

Single, Y As Single, Width As Single, Height As Single, Page As

Long, R As Single, G As Single, B As Single, Flags As

PTAnnotFlags) As Boolean

Java void addTextAnnotation(String title, String content, PTRectangle

location, int colorRGB)

void addTextAnnotation(String title, String content, PTRectangle

location, int colorRGB, int annotFlags)

The "Name" is the title of the text annotation, the "Content" is the text that is visible
when the annotation is opened. The three values for the colors (R: Red, G: Green, B:
Blue) are in the range from 0 to 1. The text annotation is closed per default. The
default for the annotation flags is PTFlagAnnotPrintable.

Native: The four values of the position rectangle mark the lower left corner (X1, Y1)
and the upper right corner (X2, Y2), 0, 0 being in the lower left. The parameter of the
page number is zero based.

COM: The four values of the position mark the lower left corner (X, Y) and the width
and height of the opened text annotation, 0, 0 being in the lower left. The parameter
of the page number is non-zero based.

9.9 Delete an Annotation

This function deletes a text annotation.

Native PTError IDocDeleteAnnotation(InputHandle h, int Identification)

COM DeleteAnnotation(Identification As Long) As Boolean

Java boolean deleteAnnotation(int id)

The parameter Identification is the value that can be retrieved using the method
GetAnnotation.

9.10Delete Viewer Extension Rights

A PDF document can have so called Viewer Extension Rights, which allow the document
to be modified (do form filling) and save it with the Acrobat Reader. Modifying such a
document with the Prep Tool Suite will destroy the Viewer Extension Rights. A warning
message will therefore appear when the document is opened in Acrobat Reader. This
function deletes the Viewer Extension Rights and therefore there will be no warning
message when opened in Acrobat Reader.

Native int IDocDeleteViewerRights(InputHandle h)

PDF Prep Tool Suite, Version 4.11 Page 43 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

COM DeleteViewerRights() As Boolean

Java n.a.

9.11Add an Image Annotation

This function is only available for the COM interface. It adds an annotation containing
an image. It is applied to the output handle. The type of the annotation can be either a
standard stamp annotation or a custom stamp annotation. Prior to calling

AddImageAnnotation, it is required to create an image and get its ID using
CreateImage or CreateImageEx.

Native n.a.

COM {PDoc.}AddImageAnnotation(Page As Long, r1 As Single, r2 As

Single, r3 As Single, r4 As Single, ImageID As Long, Optional

SubType As Integer)

Java n.a.

Parameters:

Page The page number where the annotation is to be placed.

r1, r2, r3, r4 Positioning parameters in PDF points (left, bottom, width,
height), 0/0 at lower left.

ImageID The image ID which is returned from CreateImage or
CreateImageEx.

SubTypes (optional) The available sub types are:

0 = Standard Stamp Annotation

1 = CstmStamp Annotation

other = Unkown Subtype

9.12Set the Line Spacing in a Form Field

The spacing between the text lines in a form field can be defined by using the following
method.

Native void IDocSetFormLineSpacing(InputHandle h, float fLineSpacing)

COM InputSetFormLineSpacing(float LineSpacing)

Java void setFormLineSpacing(float value)

PDF Prep Tool Suite, Version 4.11 Page 44 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

9.13Get the Name of the Font in a Form Field

The name of the font used in a form field can be queried by using the following
method. The value of the id parameter can be retrieved by invoking the
IDocGetFormBox method.

Native PTError IDocGetFontName(InputHandle h, short id, VBSTR* name)

COM GetFontName(PTFormFontType FontID) As String

Java String getFontName(int FontID)

PDF Prep Tool Suite, Version 4.11 Page 45 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

PDF Prep Tool Suite, Version 4.11 Page 46 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

10 Generate Output

10.1Create Another Page

Native PTError PDocNewPage(Handle h)

COM NewPage()

Java void newPage()

A page is automatically create when you access the page object – either at the
beginning of a file, or after you copied pages from an input file. If you need a new
page (i.e. a page brake), you call the NewPage function. The dimensions of the page
are inherited from the last setting made (PDocNew, PDocPageSize).

10.2Copy Pages from the Input File

Native PTError PDocInputCopyPages(Handle h, int firstPage, int lastPage)

PTError PDocMerge(Handle h, const char* inputFile, int

firstPage, int lastPage)

COM InputCopyPages(FirstPage As Long, LastPage As Long) As Boolean

Merge(FileName As String, FirstPage As Integer, LastPage As

Integer) As Boolean

Java void inputCopyPages(int FirstPage, int LastPage)

void merge(String Filename, int Firstpage, int Lastpage)

InputCopyPages and Merge will copy the specified range of pages from the currently
open input file to output. If the file contains form fields, the field data will be set
according to previous PDocInputSetFormData calls. You can repeatedly call CopyPages
and change the header in between.

The pages being copied can be modified not only by setting form data prior to
InputCopyPages, but also by setting the new Rotate (page orientation) value (s.

SetInputRotate).

Note that you should copy all pages containing forms of an input file. Leaving away a
page with form fields will result in orphan entries; duplication of pages works for
viewing the resulting file, but Acrobat 4.0 may behave unexpectedly if you want to
modify a form field of a duplicated page.

Merge (add) pages from an existing PDF file into the output document. The range of
pages to be added is specified using the parameters firstPage and lastPage. The
current Header will be placed on all of these pages. PDocMerge works like
PDocInputOpen followed by PDocInputCopyPages.

PDocMerge returns FALSE (0), if the input file cannot be processed. PDocMerge will
automatically close the current input file, if one exists.

Be careful with repeated merging of PDF files. The font alias used for the header text is
determined before the file to be merged is known. Repeated merging in combination

PDF Prep Tool Suite, Version 4.11 Page 47 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

with placing header text will result in a name conflict. The alias used by Prep Tool is
"/FHdr". You can avoid this problem by using PDocInputOpen before setting the font,
and then copy the pages using PDocInputCopyPages. A potential conflict still remains

when you add further PDF files while keeping the header with its font.

10.3Copy Color Spaces from the Input File

Native PTError PDocInputCopyColor(Handle h, const char* Color)

COM InputCopyColor(ByVal Color As String) As Boolean

Java void inputCopyColor(String Color)

Use this function to copy a color space object from the current input file to the output
file. This feature is useful if you want to use Pantone colors: store the set of colors you
need in a PDF file, and use this file at runtime to provide the necessary color definition
objects. This function works in conjunction with the PConSetFillCS and PConSetLineCS
functions.

10.4Copy Named Destinations from the Input File

Native PTError PDocInputCopyDestNames(Handle h)

COM InputCopyDestNames()

Java void inputCopyDestNames()

This function will copy all named destination entries from the input to the output file. A
situation where this makes sense is when you have bookmarks and links that are also
to be copied. If you do not copy the named destinations, the bookmarks and links will
work, but loose the zoom level, because resolution only works on the page level. Not

copying the named destinations will save space in the resulting file.

10.5Copy Custom Objects from the Input File

Native PTErrpor PDocInputCopyCustObjs(Handle h)

COM InputCopyCustomObjs()

Java void inputCopyCustomObjs()

The input file may contain entries in the Catalog object that are not taken care of by
any of the existing copy functions. To copy these entries along with any referenced
objects, you can use this method. Note that it will copy e. g. also viewer settings or
open actions, if such settings are not specified explicitly for the output documents and

if present in the input file. This function can be used to merge JavaScript resources, it
returns the error pdAlreadyWritten when duplicate JavaScript names are encountered.

10.6Copy All Objects from the Input File

Native PTError PDocInputCopyAll(Handle h)

PDF Prep Tool Suite, Version 4.11 Page 48 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

COM InputCopyAll() As Boolean

Java void inputCopyAll()

This method is equivalent to InputCopyPages (for all pages), InputCopyDestNames,
InputCopyBookmarks, and InputCopyCustomObjs. In other words, it copies the whole
file content from input to output.

10.7Import Bitmap Images

Native short PDocCreateImage(Handle h, int Width, int Height, short

bits, short color, char* imageData, int imageSize, char*

palette, short compression, char* mask)

COM CreateImage(ByVal Width As Long, ByVal Height As Long,

ByVal Bits As Integer, ByVal Color As Boolean, ByVal ImageData As

Byte(), Optional ByVal Palette As Byte(), Optional ByVal IsJPEG

as Boolean, Optional Mask As Byte(), Optional Softmask As Byte())

As Long

CreateImageEx (ByVal Width As Long, ByVal Height As Long, ByVal

Bits As Integer, ByVal Color As Boolean, ByVal ImageData As

Byte(), Optional ByVal Palette As Byte(), Optional Mask As

Byte(), Optional CompressionType As Integer) As Long

Java int createImage(int Width, int Height, short bits, boolean color,

byte[] image, byte[] palette)

int createJPEGImage(int Width, int Height, ..)

int createImage(int Width, int Height, short bits, boolean color,

byte[] image, byte[] palette, boolean isJPEG)

int createImage(int w, int h, short bits, boolean color, byte[]

image, byte[] palette, byte[] mask, int image_type)

final static image_type_standard = 0

final static image_type_JPEG = 1

The CreateImage function creates an image XObject according to the data provided.
The format of the data must correspond to one of the PDF standards for color,
grayscale or bi-level images. Color images have a palette. The palette size in PDF must
be 768. If the effective palette is smaller, the unused part must be set to zero in the
native interface. The COM interface will automatically handle smaller palette sizes.

A positive number value returned by CreateImage identifies the XObject for reference
in PrintImage calls. A value of zero indicates failure to create the image.

10.8Add Page Numbers

Native PTError PDocPutPageNumbers(Handle h, float X, float Y, const

char* Format, long StartPage, short Orientation)

COM PutPageNumbers(Format As String, X As Single, Y As Single,

PDF Prep Tool Suite, Version 4.11 Page 49 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Startpage As Long, Orientation As Integer)

Java void putPageNumbers(String Format, float X, float Y, int

StartPage, int Orientation)

Expand the page marker "%p" in the format string to reflect the current page number
and put this string on each page just like other header text. With the firstPgNr
parameter, you specify where page numbers should start. The page numbering string
will appear on each header that is displayed, starting with the next PDocMerge. The
first time the page numbering string is displayed, it will carry the page number
specified in firstPgNr. Note that the header or the page numbering string may be
created after having copied some pages to the output file. Any previously set format
string will be removed. To stop putting page numbers on a page, you can thus call this
function with an empty format string.

The font used for the page number text is the same as for the header. Do not forget to
specify a font. If you work with different font sizes, then the last setting will be the one
used for the page number string, e. g. if PDocHeaderFont was called after

PDocHeaderPgInfo. The font of page numbers is unpredictable if you do not have a
header layer!

Example: PDocHeaderPgInfo(h, 10, 10, "Page %p of 10", 2);

10.9Change the Header or Background

Native PTError PDocHeaderClear(Handle h)

PTError PdocBackgroundClear(Handle h)

COM HeaderClear()

BackgroundClear()

Java void clearHeader()

void clearBackground()

When you want to change the text, graphics objects or logo added to merged pages,
call PDocHeaderClear and build the new header as desired. You cannot continue to add
anything (text, graphics, logos) to a header stream, once it is applied to pages (i.e.
after calling CopyPages or Merge). This is because the header stream is written to the

output file at this point, and any changes that you make after that are ignored.

After calling PDocHeaderClear, you need to set the font for header text again. It is
possible to re-use the last font imported from an input file by specifying the same
name again.

10.10 Add Bookmarks

Native PTError PDocInputCopyBookmarks(Handle h, int level)

PTError PDocAddWebBookmark(Handle h, int level, const char*

title, const char* URL, int kidsVisible)

PTError PDocAddGoToBookmark(Handle h, int level, const char*

title, int page, short X, short Y, int kidsVisible, float zoom)

PDF Prep Tool Suite, Version 4.11 Page 50 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

PTError PDocAddGoToBookmarkU(Handle h, int level, const PDBSTR,

int page, short X, short Y, int kidsVisible, float zoom)

PTError PDocAddGoToRBookmark(Handle h, int level, const char*

title, const char *destFile, int destPage, short X, short Y, int

kidsVisible, float zoom)

PTError PDocAddGoToRBookmarkU(Handle h, int level, const PDBSTR

title, const char *destFile, int destPage, short X, short Y, int

kidsVisible, float zoom)

PTError PDocAddOpenFileBookmark(Handle h, int level, const char*

title, const char* destFile, int kidsVisible)

PTError PDocAddOpenFileBookmarkU(Handle h, int level, const

PDBSTR title, const char* destFile, int kidsVisible)

PTError PDocAddNullBookmark(Handle h, int level, const char*

title, int kidsVisible)

PTError PDocAddNullBookmarkU(Handle h, int level, const PDBSTR

title, int kidsVisible)

PTError PDocAddJavaScriptBookmark(Handle h, int level, const

char* title, const char* script, int kidsVisible)

PTError PDocAddJavaScriptBookmarkU(Handle h, int level, const

PDBSTR title, const char* script, int kidsVisible)

COM AddWebBookmark(Title As String, Level As Integer, URL As String,

ShowKits As Boolean)

etc.

Java void addWebBookmark(String Title, int Level, String URL)

etc.

All these methods have optionally a further parameter for specifying that bookmarks
on lower levels shall be visible.

The bookmark tree of the output file can be constructed using the above functions. The
first bookmark must be placed on level zero. Subsequent bookmarks can be placed at
most one level above the previous level.

An URL is something like "http://www.pdf-tools.com", but it is also possible to put
relative links like "../index.html".

"GoTo" targets are pages in the same document as the one being created. “page” is
the page number (starting at 1). The "x" and "y" parameters can be used to set the
view window according to the /XYZ entry in link annotations (see PDF specification).
Specify zero values to disable this feature. The "z" parameter describes the zoom
value. 1 stands for 100%, 1.1 for 110%, etc, 0 for keep the current zoom value.

"GoToR" targets are "remote" links, i. e. links to another PDF file (you will note the
extra file name parameter).

"OpenFile" targets are files that represent a document or application that is to be
launched. Document files are opened with the application that is registered for the
document type. On Windows systems, the file extension is used for this.

A Java Script added to a bookmark will be executed when the bookmark is selected.

PDF Prep Tool Suite, Version 4.11 Page 51 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

If bookmarks refer to named destinations, they will be resolved to avoid conflicts
between names in different files.

10.11 Add Links

Native PTError PDocAddWebLink(Handle h, int page, const float rect[],

const char* URL, int style)

PTError PDocAddGoToLink(Handle h, int page, const float rect[],

int destPage, short x, short y, int style, float zoom)

PTError PDocAddGoToRLink(Handle h, int page, const float rect[],

const char* destFile, int destPage, short X, short Y, int style,

float zoom)

PTError PDocAddJavaScriptLink(Handle h, int page, const float

rect[], const char* script, int style)

PTError PdocAddNamedDestLink(Handle h, int page, const float

rect[], int style, const char* destName)

COM AddWebLink(Page As Long, Left As Single, Bottom As Single, Right

As Single, ByVal URL As String, Optional Style)

etc.

Java void addWebLink(PTRectangle Rect, String URL)

etc.

The action behavior of links corresponds to that of bookmarks. Links are located as an
annotation on a page. Therefore, you need to specify the page number and coordinate
rectangle where to put the link instead of the hierarchy level in the bookmark tree.

The Prep Tool Suite supports several border styles; the value –1 will suppress the
border, 0 will result in a solid black border, 1 is dotted red, 2 red solid, 3 green
dashed, 4 green solid, 5 blue dashed, 6 blue solid.

10.12 Add File Attachments

Native PTError AddFileAttachment(Handle h, int page, float* rect, const

char* filepath, const char* icontype, const char* description,

const char* author, const char* subject, int rgb, int opacity)

COM AddFileAttachment(Page As Long, Left As Single, Bottom As

Single, Right As Single, Top As Single, Filepath As String,

IconType As String, Description As String, Optional Author As

String, Optional Subject As String, Optional ColorRGB As Long,

Optional Opacity As Long)

Java void addFileAttachment(PTRectangle rect, InputStream is, String

iconType, String description, String author, String subject, int

rgb, int opacity)

This function adds a file attachment annotation to a PDF file.

Parameters:

PDF Prep Tool Suite, Version 4.11 Page 52 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

- page: the page number (first page is 1)

- Left, Bottom, Right, Top: the annotation's rectangle on the page

- Filepath: the name of the file to be attached

- IconType: the icon's type name ("PushPin","Graph","Paperclip", or "Tag")

- Description: the description field (used as default for the file name when extracting
the attachment)

- Author: the author field (optional)

- Subject: the subject field(optional)

- ColorRGB: the RGB value of the color for the icon

- Opacity: the opacity value in percent (0..100); 0 means transparent; 100 means
opaque (default)

Note that each standard icon type has its specific rectangle width and height in the
Acrobat viewer. Setting other values has the effect that Acrobat viewers will change
the appearance when clicking on the icon.

Paperclip size: 7/17

PushPin size: 14/20

Graph size: 20/20

Tag size: 20/16

Implementation restriction:

Creation of the icon appearance stream is not supported when Using opacity less than
100. Acrobat viewers will correctly display these icons, but third party viewers that
depend on the appearance stream may not show the icon.

10.13 Add Destination

Native PTError AddGotoDestination(Handle h, const char* name, int page,

short X, short Y, float Z)

COM AddGotoDestination(Name As String, Page As Long, X As Integer, Y

As Integer, Z As Single) As Boolean

Java void addGotoDestination(String name, int page)

void addGotoDestination(String name, int page, int X, int Y,

float zoom)

This function adds a Named Destination to the document. A named destination points
to a certain location (e.g. the beginning of a chapter) in the PDF. The location is
defined by the page number and the X, Y and Z (Zoom) position.

10.14 Set Document Action

Native PTError PDocSetDocumentAction(Handle h, PTDocumentAction

documentaction, const char* Script)

COM SetDocumentAction(ActionType As PTDocumentActionType, Script As

String) As Boolean

PDF Prep Tool Suite, Version 4.11 Page 53 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Java boolean setDocumentAction(int DocumentAction, String Script)

This function adds a JavaScript to a document action. The five document actions are: 0
on close, 1 before save, 2 after save, 3 before print and 4 after print.

10.15 Set Form Fontsize Range

Native PTError PDocSetFormFontSizeRange(Handle h, float Max, float Min)

COM SetFormFontSizeRange(Max As Single, As Single)

Java boolean setFormFontSizeRange(float Max, float Min)

With SetFormFontSizeRange it is possible to limit the font sizes for auto-sized form
fields. The default values are Max = 12 and Min = 5.

10.16 Document Open Settings

The following group of functions facilitates the setting of the page layout and mode and
how the first page shall be displayed when opening the document in a viewer (as
offered in the "Document Info"-> "Open.. " dialogue of Acrobat).

Native PTError PDocSetPageMode(Handle h, const char* Mode)

COM SetPageMode(ByVal Mode As String)

Java void setPageMode(String Mode)

The page modes currently supported by Acrobat viewers are "UseNone", "UseOutlines",
"UseThumbs", and "/FullScreen". The SetPageMode function will override any settings
from input files that would otherwise be copied during InputCopyCustomObjs.

Native PTError PDocSetPageLayout(Handle h, const char* Layout)

COM SetPageLayout(ByVal Layout As String)

Java void setPageLayout(String Layout)

The following layouts can be specified: "SinglePage", "OneColumn", "TwoColumnLeft",
"TwoColumnRight".

Native PTError PDocSetOpenAction(Handle h, int Page, const char*

Magnification)

COM SetOpenAction(ByVal Page As Long, ByVal Magnification As

String)

Java void setOpenAction(int Page, String Magnification)

The page to be shown initially when a file is opened can be specified using this
function. At the same time, the zoom factor or type of "fit" can be specified. Legal
values for page numbers are 1 through the number of pages that the file contains; the
magnification can be a positive integer number representing the zoom factor in percent
(100 = normal 100% zoom). The minimum and the maximum is viewer dependent
(currently 25 – 1600). Other legal "magnifications" are "Window" for "Fit Window",
"Width" for "Fit Width", and "Visible" for "Fit Visible". Any other value will be mapped
to "Default".

PDF Prep Tool Suite, Version 4.11 Page 54 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Native PTError PDocClearViewerPreferences(Handle h)

PTError PDocAddViewerPreference(Handle h, const char* Key, const

char* Value)

COM AddViewerPreference(ByVal Key As String, ByVal Value As String,

Optional ClearExisting As Boolean)

Java void clearViewerPreferences()

void addViewerPreference(String Key, String Value)

The viewer preferences entries can be created (or suppressed) by these functions. For
a complete listing of all possible settings, please refer to the PDF specifications.

Viewer preferences are stored in a dictionary. The AddViewerPreferences function adds
a pair of values consisting of the dictionary key and its associated value. Examples are
"/HideToolbar true", "/FitWindow true", "/CenterWindow true",
"/NonFullScreenPageMode /UseThumbs".

10.17 Set Document Information Attributes

Several document attribute values can be set via the following methods. Note that the
value string will be re-encoded from WinAnsiEncoding to PDFEncoding (see Adobe PDF
Reference Manual). This means that only characters existing in both encodings may be

contained.

Native void PDocSetInfo(Handle h, const char* Title, const char*

Subject, const char* Author, const char* Keywords)

COM SetInfo(ByVal Title As String, ByVal Subject As String,

ByVal Author As String, ByVal Keywords As String)

Java void setInfo(String Title, string Subject, string Author, String

Keywords)

SetInfo allows you to set some of the document attributes in the information object.

Native void PDocSetAttr(Handle h, const char* Key, const char* Value)

void PDocSetAttrU(Handle h, const char* Key, const PDBSTR Value)

COM SetAttr(ByVal Key As String, ByVal Value As String)

Java void setInfoAttr(String Key, String Value)

SetAttr permits to set (and add) any value in the information object of the PDF file.

10.18 Set Document Metadata

Native PTError PDocSetMetaData(Handle h, const char* data)

COM SetMetaData(Data As String)

Java void setMetaData(String data)

SetMetaData sets the meta data in the root object of the PDF file. Note that the data

string should constitute a valid XML expression.

PDF Prep Tool Suite, Version 4.11 Page 55 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

10.19 Close the Output File

Native PTError PDocClose(Handle h)

PTError PDocRelease(Handle h)

COM Close() As Boolean

Java void close()

Close the output document. This procedure writes out any pending output and closes
the file.

PDocRelease releases the handle and all memory resources associated with it. No
further calls are allowed with this handle.

If you want to verify that the file has been successfully closed, you first want to call
PDocClose, and then PDocRelease. If PDocClose fails, you can still use the handle to
retrieve error information.

In the Java binding, the close method also releases the associated resources. If an
error occurs during the close operation, an exception is signaled carrying the error
code.

In the COM binding, releasing the last object reference will automatically close the file
and release all associated resources.

To retrieve the bytes of a memory resident PDF file, use the following functions:

Native VBSTR PDocCloseB(Handle h, int* length)

COM bytes = CloseB()

Java void close()

byte[] getBytes()

The CloseB functions perform a normal close and return the bytes of the memory
resident PDF file. Note that the memory buffer of the file is disposed on close. The
memory buffer returned by these functions must be freed by the application.

In Java, the byte array is remains stored with the Java wrapper object and can be
multiply accessed through getBytes() (until the Java object is "finalized").

10.20 Set the license key at runtime

Set the license key programmatically at runtime instead of installing it on the system.

Native int PTSetLicenseKey(const char* szLicenseKey)

COM SetLicenseKey(bstrLicenseKey As String) As Boolean

Java boolean setLicenseKey(String szLicenseKey)

Parameters: The license key

Return value: True: The license key is valid.

PDF Prep Tool Suite, Version 4.11 Page 56 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Check whether a valid license key has been installed in the system or passed at
runtime.

Native int PTGetLicenseIsValid()

COM LicenseIsValid() As Boolean

Java boolean getLicenseIsValid()

Return value: True: A valid license was found.

PDF Prep Tool Suite, Version 4.11 Page 57 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

11 Linearization

Linearization is the processing performed on a PDF file to optimize it for viewing in a
web browser. The elements of the PDF file are regrouped, so that all information
necessary to display the first page is located at the beginning of the file. Furthermore,
information about file offsets is stored in the header of the file and in the so called hint
tables.

Due to the nature of linearization, this process can begin only when a PDF file is

created completely. The functions supporting linearization are thus separate from other
PDF Prep Tool functions.

Native PTError PDLinearize(const char* Input, int Length, const char*

 InputPassword, const char* OutputFileName, const char*

OwnerPassword, const char* UserPassword, const char*

Permissions)

PTError PDLinearizeMem(const char* Input, int Length, const char*

 InputPassword, VBSTR* OutputBuffer, int* OutputLength, const

char* OwnerPassword, const char* UserPassword, const char*

outPermissions)

The native interface offers just these two functions. Input can be provided either as the
file name of the input file when specifying a length of 0, or as the memory buffer

containing the PDF "file" along with the length of that buffer.

The first function writes the linearized PDF to a file, while the second returns it in a
memory buffer. This memory buffer must be freed using PTFreeVBSTR.

The return result of these function is a PTError.

COM Dim tool As New PDFLinearizer

Dim tool As Object

Set tool = CreateObject("PrepTool.PDFLinearizer")

SetSecurity(ByVal OwnerPassword As String, ByVal UserPassword

As String, ByVal Permissions As String)

OpenInput(ByVal Filename As String, Optional ByVal Password As

String) As ErrorType

OpenMem(ByVal PDFBytes As Variant, Optional ByVal Password As

String) As ErrorType

SaveFile(ByVal Filename As String) As ErrorType

SaveMem(Optional Result As ErrorType) As Variant

The COM interface for linearizing PDF files is also quite straight forward. A call of
SetSecurity is optional and will only be used if the resulting file shall be encrypted.

The COM object can be reused for several linearizations. As the input file resources will
be freed on SaveFile or SaveMem, it is necessary to re-open a file before linearization
can be performed again during one of the "Save.. " functions. Password and permission
settings are preserved.

PDF Prep Tool Suite, Version 4.11 Page 58 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Java PTLinearizer tool = new ..

 PTLinearizer(String Filename, String Password)

 PTLinearizer(String Filename)

 PTLinearizer(byte[] PDFBytes, String Password)

 PTLinearizer(byte[] PDFBytes)

void setSecurity(String Ownerpassword, String Userpassword,

String Flags)

byte[] getLinearizedBytes()

void doLinearization(String Filename)

The Java API is similar to the COM interface with the difference that no reuse of the
PTLinearizer object is permitted. Once linearization has been performed, all resources
are freed.

PDF Prep Tool Suite, Version 4.11 Page 59 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

12 Return Codes C

0 Success

1001 PTNotPDF the file does not start with %PDF

1002 PTTrailer the trailer of the PDF file could not be found

1003 PTXref the XRef table could not be found as defined in trailer

these two errors indicate that the PDF file has been

corrupted as sometimes happens when copied in ASCII mode

by FTP

1004 PTNullRef an object reference could not be resolved (object missing

in file)

1005 PTBadParamValue an illegal parameter value was specified in a method

1006 PTObjRead a particular PDF object could not be read from the file

1007 PTAlreadyWritten a particular PDF object was attempted to write twice

1008 PTBadCallSequence a particular function was called in an inappropriate

context

1009 PTInternal an unexpected situation was encountered that could not be

handled

1010 PTUnexpectedVal an unexpected value was encountered in a PDF object

1011 PTIO an input/output error was encountered

1012 PTInvalidHandle the handle specified is not valid

1013 PTDuplicate an attempt to create a duplicate object is made

1014 PTIllegalFont an invalid font name was specified

1015 PTNoSuchPage an invalid page number was specified

1016 PTNotFound requested information not found for specified criteria

1017 PTFailed License key invalid or generic error

1018 PTEncrypted input file is encrypted (password protected)

1019 PTInvalidPassword the password supplied is not correct

	1 Introduction
	1.1 Functions
	1.2 SDK

	2 License Management
	2.1 Graphical License Manager Tool
	List all installed license keys
	Add and delete license keys
	Display the properties of a license
	Select between different license keys for a single product

	2.2 Command Line License Manager Tool
	List all installed license keys
	Add and delete license keys
	Select between different license keys for a single product

	2.3 License Key Storage
	Windows
	Mac OS X
	Unix / Linux

	2.4 Setting the License Key via the API

	3 Object Model
	4 Processing Model
	5 Language Bindings
	6 Getting Started
	6.1 Create a Document from Scratch
	6.2 Add Content to an Existing Input File

	7 Output PDF Creation
	7.1 Set the PDF Version
	7.2 Encryption
	7.3 Disable Stream Compression
	7.4 Font Renaming
	7.5 Error Handling
	7.6 Open a PDF File for Input
	7.7 Attach an Input File
	7.8 Accessing the Current Input File
	7.9 Set the Page Size and Orientation
	7.10 Set the Crop Box
	7.11 Adding a New Page
	7.12 Accessing the Current Header or Background Content Layer

	8 Retrieving File Information
	8.1 Obtain the PDF Version
	8.2 Obtain the File Name
	8.3 Obtain the Keys List
	8.4 Obtain Document Attributes
	8.5 Get Meta Data
	8.6 Get the Name and Current Data of a Form Field
	8.7 Get the Position of a Form Field
	8.8 Get Information about Pages
	8.9 Retrieve Text from a PDF File
	8.10 Retrieve Bookmarks from a PDF File
	8.11 Retrieve Annotations from a PDF File
	8.12 Retrieve the Border Style from Annotations
	8.13 Get List of Fonts
	8.14 Get Color Information
	8.15 Save File Attachment
	8.16 Close the File
	8.17 Get UserUnit
	8.18 Set the Font for Text Output
	8.19 Set Text Spacing
	8.20 Set the Gray Level for Lines and Filling
	8.21 Set the Color for Lines
	8.22 Set the Color for Filling
	8.23 Set the Alpha Transparency for Filling and Stroking
	8.24 Using Color Spaces
	8.25 Placement of Character Strings
	8.26 Placement of a Logo
	8.27 Placement of an Image
	8.28 Embedding any PDF Text Operator
	8.29 Set the Spacing of Text Lines
	8.30 Set the Text Matrix
	8.31 Set a Relative Starting Position for Text (Tab)
	8.32 Calculate the Width for a Character String
	8.33 Text Tables
	8.34 Draw a Line or Polygon
	8.35 Draw a Rectangle
	8.36 Draw Curves
	8.37 Area Filling and Clipping
	8.38 Embedding any PDF Non-Text Commands

	9 Form Fields, Annotations
	9.1 Set the Data
	9.2 Define a Custom Font
	9.3 Get a Font Name
	9.4 Delete a Form Field
	9.5 Add a Text Form Field
	9.6 Copy a Form Field
	9.7 Form Flattening
	9.8 Add a Text Annotations
	9.9 Delete an Annotation
	9.10 Delete Viewer Extension Rights
	9.11 Add an Image Annotation
	9.12 Set the Line Spacing in a Form Field
	9.13 Get the Name of the Font in a Form Field

	10 Generate Output
	10.1 Create Another Page
	10.2 Copy Pages from the Input File
	10.3 Copy Color Spaces from the Input File
	10.4 Copy Named Destinations from the Input File
	10.5 Copy Custom Objects from the Input File
	10.6 Copy All Objects from the Input File
	10.7 Import Bitmap Images
	10.8 Add Page Numbers
	10.9 Change the Header or Background
	10.10 Add Bookmarks
	10.11 Add Links
	10.12 Add File Attachments
	10.13 Add Destination
	10.14 Set Document Action
	10.15 Set Form Fontsize Range
	10.16 Document Open Settings
	10.17 Set Document Information Attributes
	10.18 Set Document Metadata
	10.19 Close the Output File
	10.20 Set the license key at runtime

	11 Linearization
	12 Return Codes C

