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The Neurobehavioral Unit of the Kennedy Krieger Institute has 16 hospital beds.
Most of the patients are children who have been diagnosed with autism, and most
engage in self-injurious behavior. They engage in self-biting, self-hitting, head-
banging, and other destructive behaviors. In most cases, we do not understand the
genetic contributions to such behaviors, limiting the available strategies for treat-
ment. In my research, I am motivated to understand molecular changes that underlie
childhood brain diseases. The field of bioinformatics provides tools we can use to
understand disease processes through the analysis of molecular sequence data.
More broadly, bioinformatics facilitates our understanding of the basic aspects of
biology including development, metabolism, adaptation to the environment, gen-
etics (e.g., the basis of individual differences), and evolution.

Since the publication of the first edition of this textbook in 2003, the fields of
bioinformatics and genomics have grown explosively. In the preface to the first edition
(2003) I noted that tens of billions of base pairs (gigabases) of DNA had been depos-
ited in GenBank. Now in 2009 we are reaching tens of trillions (terabases) of DNA,
presenting us with unprecedented challenges in how to store, analyze, and interpret
sequence data. In this second edition I have made numerous changes to the content
and organization of the book. All of the chapters are rewritten, and about 90% of the
figures and tables are updated. There are two new chapters, one on functional
genomics and one on the eukaryotic chromosome. I now focus on the globins as
examples throughout the book. Globins have a special place in the history of biology,
as they were among the first proteins to be identified (in the 1830s) and sequenced (in
the 1950s and 1960s). The first protein to have its structure solved by X-ray crystal-
lography was myoglobin (Chapter 11); molecular phylogeny was applied to the glo-
bins in the 1960s (Chapter 7); and the globin gene loci were among the first to be
sequenced (in the 1980s; see Chapter 16).

The fields of bioinformatics and genomics are far too broad to be understood by
one person. Thus many textbooks are written by multiple authors, each of whom
brings a deeper knowledge of the subject matter. I hope that this book at least
offers the benefit of a single author’s vision of how to present the material. This is
essentially two textbooks: one on bioinformatics (parts I and IT) and one on genomics
(part III). I feel that presenting bioinformatics on its own would be incomplete with-
out further applying those approaches to sequence analysis of genomes across the tree
of life. Similarly I feel that it is not possible to approach genomics without first treat-
ing the bioinformatics tools that are essential engines of that field.

As with the previous edition a companion website is available which provides
up-to-date web links referred to in the book and PowerPoint slides arranged by
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chapter (www.bioinfbook.org). A resource site for instructors is also available giving
detailed solutions to problems (www.wiley.com/go/pevsnerbioinformatics).

In preparing each edition of this book I read many papers and reviewed several
thousand websites. I sincerely apologize to those authors, researchers and others
whose work I did not cite. It is a great pleasure to acknowledge my colleagues who
have helped in the preparation of this book. Some read chapters including Jef
Boeke (Chapter 12), Rafael Irizarry (Chapter 9), Stuart Ray (Chapter 7), Ingo
Ruczinski (Chapter 11), and Sarah Wheelan (Chapters 3 and 5-7). I thank many
students and faculty at Johns Hopkins and elsewhere who have provided critical feed-
back, including those who have lectured in bioinformatics and genomics courses
(Judith Bender, Jef Boeke, Egbert Hoiczyk, Ingo Ruczinski, Alan Scott, David
Sullivan, David Valle, and Sarah Wheelan). Many others engaged in helpful discus-
sions including Charles D. Cohen, Bob Cole, Donald Coppock, Laurence Frelin,
Hugh Gelch, Gary W. Goldstein, Marjan Gucek, Ada Hamosh, Nathaniel Miller,
Akhilesh Pandey, Elisha Roberson, Kirby D. Smith, Jason Ting, and N. Varg.
I thank my wife Barbara for her support and love as I prepared this book.



erace to the Hrst edition

ORIGINS OF THIS Book

This book emerged from lecture notes I prepared several years ago for an
introductory bioinformatics and genomics course at the Johns Hopkins School of
Medicine. The first class consisted of about 70 graduate students and several hun-
dred auditors, including postdoctoral fellows, technicians, undergraduates, and fac-
ulty. Those who attended the course came from a broad variety of fields—students of
genetics, neuroscience, immunology or cell biology, clinicians interested in particular
diseases, statisticians and computer scientists, virologists and microbiologists. They
had a common interest in wanting to understand how they could apply the tools of
computer science to solve biological problems. This is the domain of bioinformatics,
which I define most simply as the interface of computer science and molecular
biology. This emerging field relies on the use of computer algorithms and computer
databases to study proteins, genes, and genomes. Functional genomics is the study of
gene function using genome-wide experimental and computational approaches.

COMPARISON

At its essence, the field of bioinformatics is about comparisons. In the first third of the
book we learn how to extract DNA or protein sequences from the databases, and then
to compare them to each other in a pairwise fashion or by searching an entire data-
base. For the student who has a gene of particular interest, a natural question is to
ask “what other genes (or proteins) are related to mine?”

In the middle third of the book, we move from DNA to RNA (gene expression)
and to proteins. We again are engaged in a series of comparisons. We compare gene
expression in two cell lines with or without drug treatment, or a wildtype mouse heart
versus a knockout mouse heart, or a frog at different stages of development. These
comparisons extend to the world of proteins, where we apply the tools of proteomics
to complex biological samples under assorted physiological conditions. The align-
ment of multiple, related DNA or protein sequences is another form of comparison.
These relationships can be visualized in a phylogenetic tree.

The last third of the book spans the tree of life, and this provides another level of
comparison. Which forms of human immunodeficiency virus threaten us, and how
can we compare the various HIV subtypes to learn how we might develop a vaccine?
How are a mosquito and a fruitfly related? What genes do vertebrates such as fish
and humans share in common, and which genes are unique to various phylogenetic
lineages?
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I believe that these various kinds of comparisons are what distinguish the newly
emerging fields of bioinformatics and genomics from traditional biology. Biology has
always concerned comparisons; in this book I quote 19th century biologists such as
Richard Owen, Ernst Haeckel, and Charles Darwin who engaged in comparative
studies at the organismal level. The problems we are trying to solve have not changed
substantially. We still seek a more complete understanding of the unifying concepts of
biology, such as the organization of life from its constituent parts (e.g., genes and pro-
teins), the behavior of complex biological systems, and the continuity of life through
evolution. What Zas changed is how we pursue this more complete understanding.
This book describes databases filled with raw information on genes and gene pro-
ducts and the tools that are useful to analyze these data.

THE CHALLENGE oF HumAN DISEASE

My training is as a molecular biologist and neuroscientist. My laboratory studies the
molecular basis of childhood brain disorders such as Down syndrome, autism, and
lead poisoning. We are located at the Kennedy Krieger Institute, a hospital for chil-
dren for developmental disorders. (You can learn more about this Institute at http://
www.kennedykrieger.org.) Each year over 10,000 patients visit the Institute. The
hospital includes clinics for children with a variety of conditions including language
disorders, eating disorders, autism, mental retardation, spina bifida, and traumatic
brain injury. Some have very common disorders, such as Down syndrome (affecting
about 1:700 live births) and mental retardation. Others have rare disorders, such as
Rett syndrome or adrenoleukodystrophy.

We are at a time when the number of base pairs of DNA deposited in the world’s
public repositories has reached tens of billions, as described in Chapter 2. We have
obtained the first sequence of the human genome, and since 1995 hundreds of gen-
omes have been sequenced. Throughout the book, you can follow the progress of
science as we learn how to sequence DNA, and study its RNA and protein products.
At times the pace of progress seems dazzling.

Yet at the same time we understand so little about human disease. For thousands
of diseases, a defect in a single gene causes a pathological effect. Even as we discover
the genes that are defective in diseases such as cystic fibrosis, muscular dystrophy,
adrenoleukodystrophy, and Rett syndrome, the path to finding an effective treatment
or cure is obscure. But single gene disorders are not nearly as common as complex
diseases such as autism, depression, and mental retardation that are likely due to
mutations in multiple genes. And all genetic disease is not nearly as common as infec-
tious disease. We know little about why one strain of virus infects only humans, while
another closely related species infects only chimpanzees. We do not understand why
one bacterial strain may be pathogenic, while another is harmless. We have not
learned how to develop an effective vaccine against any eukaryotic pathogen, from
protozoa (such as Plasmodium falciparum that causes malaria) to parasitic nematodes.

The prospects for making progress in these areas are very encouraging specifi-
cally because of the recent development of new bioinformatics tools. We are only
now beginning to position ourselves to understand the genetic basis of both
disease-causing agents and the hosts that are susceptible. Our hope is that the infor-
mation so rapidly accumulating in new bioinformatics databases can be translated
through research into insights into human disease and biology in general.



Note To READERS

This book describes over 1,000 websites related to bioinformatics and functional
genomics. All of these sites evolve over time (and some become extinct). In an
effort to keep the web links up-to-date, a companion website (http://www.
bioinfbook.org) maintains essentially all of the website links, organized by chapter
of the book. We try our best to maintain this site over time. We use a program to auto-
matically scan all the links each month, and then we update them as necessary.

An additional site is available to instructors, including detailed solutions to
problems (see http://www.wiley.com).

ACKNOWLEDGMENTS

Writing this book has been a wonderful learning experience. It is a pleasure to thank
the many people who have contributed. In particular, the intellectual environment at
the Kennedy Krieger Institute and the Johns Hopkins School of Medicine has been
extraordinarily rich. These chapters were developed from lectures in an introductory
bioinformatics course. The Johns Hopkins faculty who lectured during its first three
years were Jef Boeke (yeast functional genomics), Aravinda Chakravarti (human dis-
ease), Neil Clarke (protein structure), Kyle Cunningham (yeast), Garry Cutting
(human disease), Rachel Green (RNA), Stuart Ray (molecular phylogeny), and
Roger Reeves (the human genome). I have benefited greatly from their insights
into these areas.

I gratefully acknowledge the many reviewers of this book, including a group of
anonymous reviewers who offered extremely constructive and detailed suggestions.
Those who read the book include Russ Altman, Christopher Aston, David P.
Leader, and Harold LLehmann (various chapters), Conover Talbot (Chapters 2 and
18), Edie Sears (Chapter 3), Tom Downey (Chapter 7), Jef Boeke (Chapter 8 and
various other chapters), Michelle Nihei and Daniel Yuan (Chapter 8), Mario
Amzel and Ingo Ruczinski (Chapter 9), Stuart Ray (Chapter 11), Marie Hardwick
(Chapter 13), Yukari Manabe (Chapter 14), Kyle Cunningham and Forrest
Spencer (Chapter 15), and Roger Reeves (Chapter 16). Kirby D. Smith read
Chapter 18 and provided insights into most of the other chapters as well. Each of
these colleagues offered a great deal of time and effort to help improve the content,
and each served as a mentor. Of the many students who read the chapters I mention
Rong Mao, Ok-Hee Jeon, and Vinoy Prasad. I particularly thank Mayra Garcia and
Larry Frelin who provided invaluable assistance throughout the writing process. I am
grateful to my editor at John Wiley & Sons, Luna Han, for her encouragement.

I also acknowledge Gary W. Goldstein, President of the Kennedy Krieger Insti-
tute, and Solomon H. Snyder, my chairman in the Department of Neuroscience at
Johns Hopkins. Both provided encouragement, and allowed me the opportunity to
write this book while maintaining an academic laboratory.

On a personal note, I thank my family for all their love and support, as well as N.
Varg, Kimberly Reed, and Charles Cohen. Most of all, I thank my fiancée Barbara
Reed for her patience, faith, and love.

ACKNOWLEDGMENTS

XXV



il

sk 10 investigators in human genetics what resources they need most and it is highly

ikely that computational skills and tools will be at the top of the list. Genomics, with
its reliance on microarrays, genotyping, high throughput sequencing and the like, is
intensely data-rich and for this reason is impossible to disentangle from bioinfor-
matics. This text, with its clear descriptions, practical examples and focus on the
overlaps and interdependence of these two fields, is thus an essential resource for
students and practitioners alike.

Interestingly, bioinformatics and genomics are both relatively recent disciplines.
Each emerged in the course of the Human Genome Project (HGP) that was con-
ceived in the mid-1980s and began officially on October 1, 1990. As the HGP
matured from its initial focus on gene maps in model organisms to the massive efforts
to produce a reference human whole genome sequence, there was an increasing need
for computational biology tools to store, analyze and disseminate large amounts of
sequence data. For this reason, genomics increasingly relied on bioinformatics
and, in turn, the field of bioinformatics flourished. Today, no serious student of geno-
mics can imagine life without bioinformatics. This interdependence continues to
grow by leaps and bounds as the questions and activities of investigators in genomics
become bolder and more expansive; consider, for example, whole genome associ-
ation studies (GWAS), the ENCODE project, the challenge of copy number variants,
the 1000 Genomes project, epigenomics, and the looming growth of personal
genome sequences and their analysis.

This textbook provides a clear and timely introduction to both bioinformatics
and genomics. It is organized so that each chapter can correspond to a lecture for a
course on bioinformatics or genomics and, indeed, we have used it this way for our
students. Also, for readers not taking courses, the book provides essential
background material. For computer scientists and biologists alike the book offers
explanations of available methods and the kinds of problems for which they can be
used. The sections on bioinformatics in the first part of the book describe many of
the basic tools that are used to analyze and compare DNA and protein sequences.
The tone is inviting as the reader is guided to learn to use different software by
example. Multiple approaches for solving particular problems, such as sequence
alignment and molecular phylogeny, are presented. The middle part of the book
introduces functional genomics. Here again the focus is on helping the reader to
learn how to do analyses (such as microarray data analysis or protein structure
prediction) in a practical way. A companion website provides many data sets, so
the student can get experience in performing analyses. Chapter 12 provides a
roadmap to the very complicated topic of functional genomics, spanning a range
of techniques and model organisms used to study gene function. The last third of
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the book provides a survey of the tree of life from a genomics perspective. There is an
attempt to be comprehensive, and at the same time, to present the material in an
interesting way, highlighting the fascinating features that make each genome unique.

Far from being a dry account of the facts of genomics and bioinformatics, the
book offers many features that highlight the vitality of this field. There are discussions
throughout about how to critically evaluate the performance of different software.
For example, there are ‘competitions’ in which different research groups perform
computational analyses on data sets that have been validated with some ‘gold stan-
dard’, allowing false positive and false negative error rates to be determined. These
competitions are described in areas such as microarray data analysis (Chapter 9),
mass spectrometry (Chapter 10), protein structure prediction (Chapter 11), or
gene prediction (Chapter 16). The book also includes descriptions of important
movements in the fields of bioinformatics and genomics, ranging from the RefSeq
project for organizing sequences to the ENCODE and HapMap projects.
Similarly, there is a rich description of the historical context for different aspects of
bioinformatics and genomics, such as Garrod’s views on disease (Chapter 20);
Ohno’s classic 1970 book on genome duplication (Chapter 17); and, the earliest
attempts to create alignments and phylogenetic trees of the globins.

Where will the fields of bioinformatics and genomics go in the next five to 10
years? The opportunities are vast and any prediction will certainly be incomplete,
but it is certain that the rapid technological advances in sequencing will provide an
unprecedented view of human genetic variation and how this relates to phenotype.
In the area of human disease studies, genome-wide association studies can be
expected to lead to the identification of hundreds of genes underlying complex dis-
orders. Finally, our understanding of evolution and its relevance to medicine will
expand dramatically. Dr Pevsner’s valuable book will help the student or researcher
access the tools and learn the principles that will enable this exciting research.

David Valle, M.D.
Henry J. Knott Professor and Director McKusick-Nathans Institute of Genetic Medicine,
FJohns Hopkins University School of Medicine
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FIGURE 3.1. Three-dimensional structures of (a) myoglobin (accession 2MM1), (b) the tetrameric hemoglobin protein (2H35),
(c) the beta globin subunit of hemoglobin, and (d) myoglobin and beta globin superimposed. The images were generated with the
program Cn3D (see Chapter 11). These proteins are homologous (descended from a common ancestor), and they share very similar

three-dimensional structures. However, pairwise alignment of these proteins’ amino acid sequences reveals that the proteins share
very limited amino acid identity.
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FIGURE 4.7. Middle portion of a typical blastp output provides a graphical display of the results. Database matches are color coded to
indicate relatedness (based on alignment score), and the length of each line corresponds to the region in which that sequence aligns with
the query sequence. This graphic can be useful to summarize the regions in which database matches align to the query.
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FIGURE 6.10. Multiple sequence alignment of the human beta globin locus compared to other vertebrate genomic sequences. (a) A
view in the UCSC Genome Browser of the beta globin gene is indicated. Exons are represented by blocks (arrow 1) and tend to be
highly conserved among a group of vertebrate genomes. Additionally, several regions of high conservation occur in noncoding areas
(e.g, arrow 2). (b) A view of 55 base pairs at the beta globin locus. At this magnification (fewer than 30,000 base pairs), the
UCSC genome browser displays the nucleotides of genomic DNA in the multiple sequence alignment of a group of vertebrates. The
ATG codon (oriented from right to left) is indicated (three asterisks), and the human protein product is shown (amino acids from
right to left matching the start of protein NP_000509, MVHLTPEEKS).
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FIGURE 8.17. Owverview of the process of generating bigh throughput gene expression data using microarrays. In stage 1, biological
samples are selected for a comparison of gene expression. In stage 2, RNA is isolated and labeled, often with fluorescent dyes. These
samples are hybridized to microarrays, which are solid supports containing complementary DNA or oligonucleotides corresponding
to known genes or ESTS. In stage 4, image analysis is performed to evaluate signal intensities. In stage S, the expression data ave ana-
lyzed to identify differentially regulated genes (e.g., using ANOVA [Chapter 9] and scatter plots; stage 5, at left) or clustering of genes
and/or samples (right). Based on these findings, independent confirmation of microarray-based findings is performed (stage 6). The
microarray data are deposited in a database so that large-scale analyses can be performed.
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FIGURE 8.21. Microarray images. (a) A nitrocellulose filter is probed with [*°P]cDNA derived from the hippocampus of a postmortem
brain of an individual with Down syndrome. There are 5000 cDNAs spotted on the array. The pattern in which genes are represented on
any array is randomized. (b) Six of the signals are visualized using NIH Image software. Image analysis software must define the prop-
erties of each signal, including the likelibood that an intense signal (lower left) will “bleed” onto a weak signal (lower right). (c) A micro-
array from NEN Perkin-Elmer (representing 2400 genes) was probed with the same Rett syndrome and control brain samples used in
Fig. 8.20. This technology employs cDNA samples that are fluorescently labeled in a competitive hybridization.
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FIGURE 11.1. A bierarchy of protein structure. (a) The primary structure of a protein refers to the linear polypeptide chain of amino
acids. Here, human beta globin is shown (NP_000539). (b) The secondary structure includes elements such as alpha belices and beta
sheets. Here, beta globin protein sequence was input to the POLE server for secondary structure (™ bitp: / / pbil.univ-lyonl.fr/) where
three prediction algorithms were run and a consensus was produced. Abbreviations: b, alpha belix; c, random coil; e, extended strand.
(¢) The tertiary structure is the three-dimensional structure of the protein chain. Alpha belices are represented as thickened cylinders.
Arrows labeled N and C point to the amino- and carboxy-terminals, respectively. (d) The quarternary structure includes the inter-
actions of the protein with other subunits and heteroatoms. Here, the four subunits of bemoglobin are shown (with an o232 composition
and one beta globin chain highlighted) as well as four noncovalently attached beme groups. Panels (c) and (d) were produced using
Cn3D software from NCBI.
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FIGURE 11.3. Examples of secondary structure. (a) Myoglobin (Protein Data Bank ID 2MM]1) is composed of large regions of a
helices, shown as strands wrapped around barrel-shaped objects. By entering the accession 2MM1 into NCBI’s structure site, one
can view this three-dimensional structure using Cn3D software. The accompanying sequence viewer shows the primary amino acid
sequence. By clicking on a colored region (bracket) corresponding to an alpha belix, that structure is highlighted in the structure
viewer (arvow). (b) Human pepsin (PDB 1PSN) is an example of a protein primarily composed as 3 strands, drawn as large
arrows. Selecting a region of the primary amino acid sequence (bracket) results in a highlighting of the corresponding B strand.
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FIGURE 14.17. (a) The LANL website offers a map of HIV-1 protease mutations versus drugs. Each row represents a drug (labeled at
right). The wild-type (strain HXB2) HIV-1 protease sequence is listed at top and bottom (arrow 1). Dashes indicate wild-type amino
acid positions, while mutations that confer resistance to the drug ave indicated. An example of a K-to-R (lysine-to-arginine) mutation is
indicated (arrow 2). The small number (41) indicates the “fold resistance” of that particular mutation. Mutations that have a colored
shape pointing to them are also part of a synergistic combination of mutations. (b) By clicking on the position of a mutation (arrow 2),
the map links to a detailed report of the effects of that mutation.



FIGURE 18.8. Whole genome duplication in the ciliate Paramecium tetrauvelia is inferred by analysis of protein paralogs. The outer
circle displays all chromosome-sized scaffolds from the genome sequencing project. Lines link pairs of genes with a “best reciprocal bit”
match. The three interior circles show the reconstructed ancestral sequences obtained by combining the paired sequences from each
previous step. The inner circles are progressively smaller and reflect fewer conserved genes with a smaller average similarity. From

Aury et al. (2006). Used with permission.
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36 ANIMAL CHEMISTRY.

account of this very identity of composition. | In this condition, the uniform experience of
Hence the opinion is not unworthy of a practical physicians shows that gelatinous
closer investigation, that gelatine, when matters in a dissolved state exercise a most
taken in the dissolved state, is again con- decided influence on the state of the health,
verted, in the body, into cellular tissue, Given in a form adapted for assimilation,
membrane and cartilage; that it may serve | they serve to husband the vital force, just
for the reproduction of such parts of these  as may be done, in the ease of the stomach,
tissues as have been wasted, and for their by due preparation of the food in general.

wih. Dirittleness in the bones of graminivorous

And when the powers of nutrition in the animals is clearly owing to a weakness in
whole body are affected b{ a change of the | those parts of the organism whose function
health, then, even should the power of form- | it is to converl the constituents of the blood
ing blood remain the same, the organic force | into cellular tissue and membrane ; and if
by which the constituents of the blood are we can trust to the reports of physicians
transformed into cellular tissue and mem- | who have resided in the East, the Turkish
branes must necessarily be enfeebled by | women, in their diet of rice, and in the fre-
sickness. In the sick man, the intensity of | quent use of enemata of strong soup, have
the vital force, its power to produce meta- |united the conditions necessary if,l.-r the
morphoses, must be diminished as well in | formation both of cellular tissue and of
the stomach as in all other parnis of the body. | fat.

PART II.
THE METAMORPHOSIS OF TISSUES.

1. Tae absolute identity of composition | changed into acetic acid. This compound
in the chief constituents of blood and the ni- | cannot be preserved, even in close vessels;
genized pounds in vegetable food | for after some hours or days, its consistence,
would, some years ago, have furnished a |its volatility, and its power of absorbing
plausible reason for denying the accuracy of os].'fen, all are chauges. It deposits long,
the chemical analysis leading to such a re- | hard, needle-shaped crystals, which at 2129
sult. At that period, experiment had not as | are not volatilized, and the supernatant liquid
yet demonstrated the existence of numerous | is no longer aldehyde. It now boils at 1409, 1
compounds, both containing nitrogen and | cannot mixed with water, and when
devoid of that element, which with the |cooled to a moderate degree crystallizes in a
greatest diversity in external characters, yet | form like ice. Nevertheless, analysis has
possess the very same composition in [00 | proved, that these three bodies, so different
parts; nay, many of which even contain the | in their characters, are identical in composi-
same absolute amount of equivalents of each | tion. fl )
element. Such examples are now very fre-| 3. A similar group of three occurs in the
quent, and are known by the names of | case of albumen, fibrine, and caseine. ‘They <
#someric and polymeric compounds, 1 differ in external character, but contain
2. izgdvanunc acid, for example, is a nitro- | exactly the same proportions of organic ele-
nized compound which erystallizes in | ments.
utiful transparent octahedrons, easily so- | When animal albumen, fibrine, and ca-
luble in water and in acids, and very per- | seine are dissolved in a moderately strong
manent. Cyamelide is a second body, abso- | solution of caustic potash, and the solution
lutely insoluble in water and acids, white | is exposed for some time to a high tempera-
and opaque like porcelain or magnesia. | tre, these substances are decomposed. The
Hydrated cyanic acid is a third compound, | addition of acetic acid to the solution causes,
which is a liquid more volatile than pure | in all three, the separation of a gelatinous
acetic acid, which blisters the skin, and ean- | translncent precipitate, which has exactly
not be brought in contact with water with- | the same characters and composition, from
out being instantaneously resolved into new | whichever of the three substances above
products. These three substances not only | mentioned it has been obtained.
yield, on analysis, absolutely the same rela- | Mulder, to whom we owe the discovery
tive weights of the same elements, but they | of this compound, found, by exact and ecare-
may be converted and reconverted into one | ful analysis, that it contains the same organie
another, even in hermetically closed vessels | elements, and exactly in the same propor-
—that is, without the aid of any foreign | tion, as the animal matters from which it is
matter. (See Appendix, 21.) Again, among Slr:pared ; insomuch, that if we deduet from
those su ces which contain no nitrogen, analysis of albumen, fibrine, and caseine,
we have aldehyde, a combustible liquid mis- | the ashes they yield when incinerated, as
cible with water, which boils at the tempe- | well as the su!p{lur and phosphorus Ii:er
ratare of the hand, attracts oxy n from the | contain, and then ecaleulate the remainder
atmosphere with avidity, is thereby |for 100 parts, we obtain the same result as

The study of bioinformatics includes the analysis of proteins. In the first balf of the nineteenth century the Dutch researcher Gerardus
Johannes Mulder (1802—1880), advised by the Swedish chemist Jons Jacob Berzelius (1779—-1848), studied the “albuminous” sub-
stances or proteins fibrin, albumin from blood, albumin from egg (ovalbumin), and the coloring matter of blood (hemoglobin).
Mulder and others extracted and purified these proteins and believed that they all shared the same elemental composition
(C400H260N1000120), with varying amounts of phosphorus and sulfur. Justus Liebig (1803—-1873) believed that the composition of
protein was Cy3H34,Ns0 4. This page, from Liebig’s Animal Chemistry, or Organic Chemistry in its Applications to Physiology
and Pathology (1847, p. 36), discusses albumin, fibrin, and casein (see arrowhead).



(TRIY

Bioinformatics represents a new field at the interface of the twentieth-century revolu-
tions in molecular biology and computers. A focus of this new discipline is the use of
computer databases and computer algorithms to analyze proteins, genes, and the
complete collections of deoxyribonucleic acid (DNA) that comprises an organism
(the genome). A major challenge in biology is to make sense of the enormous quan-
tities of sequence data and structural data that are generated by genome-sequencing
projects, proteomics, and other large-scale molecular biology efforts. The tools of
bioinformatics include computer programs that help to reveal fundamental mechan-
isms underlying biological problems related to the structure and function of macro-
molecules, biochemical pathways, disease processes, and evolution.

According to a National Institutes of Health (NIH) definition, bioinformatics is
“research, development, or application of computational tools and approaches for
expanding the use of biological, medical, behavioral or health data, including those
to acquire, store, organize, analyze, or visualize such data.” The related discipline
of computational biology is “the development and application of data-analytical
and theoretical methods, mathematical modeling and computational simulation
techniques to the study of biological, behavioral, and social systems.”

While the discipline of bioinformatics focuses on the analysis of molecular
sequences, genomics and functional genomics are two closely related disciplines.
The goal of genomics is to determine and analyze the complete DNA sequence of
an organism, that is, its genome. The DNA encodes genes, which can be expressed
as ribonucleic acid (RNA) transcripts and then in many cases further translated into

Bioinformatics and Functional Genomics, Second Edition. By Jonathan Pevsner
Copyright © 2009 John Wiley & Sons, Inc.

The NIH Bioinformatics
Definition Committee findings are
reported at » http://www.bisti.
nih.gov/CompuBioDef.pdf. For
additional definitions of bioinfor-
matics and functional genomics,
see Boguski (1994), Luscombe

et al. (2001), Ideker et al. (2001),
and Goodman (2002).
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protein. Functional genomics describes the use of genomewide assays in the study of
gene and protein function.

The aim of this book is to explain both the theory and practice of bioinformatics
and genomics. The book is especially designed to help the biology student use com-
puter programs and databases to solve biological problems related to proteins, genes,
and genomes. Bioinformatics is an integrative discipline, and our focus on individual
proteins and genes is part of a larger effort to understand broad issues in biology, such
as the relationship of structure to function, development, and disease. For the com-
puter scientist, this book explains the motivations for creating and using algorithms
and databases.

ORaGANIZATION OF THE Book

There are three main sections of the book. The first part (Chapters 2 to 7) explains
how to access biological sequence data, particularly DNA and protein sequences
(Chapter 2). Once sequences are obtained, we show how to compare two sequences
(pairwise alignment; Chapter 3) and how to compare multiple sequences (primarily
by the Basic Local Alignment Search Tool [BLAST]; Chapters 4 and 5). We intro-
duce multiple sequence alignment (Chapter 6) and show how multiply aligned
sequences can be visualized in phylogenetic trees (Chapter 7). Chapter 7 thus
introduces the subject of molecular evolution.

The second part of the book describes functional genomics approaches to RNA
and protein and the determination of gene function (Chapters 8 to 12). The central
dogma of biology states that DNA is transcribed into RNA then translated into protein.
We will examine bioinformatic approaches to RNA, including both noncoding and
coding RNAs. We then describe the technology of DNA microarrays and examine
microarray data analysis (Chapter 9). From RNA we turn to consider proteins from
the perspective of protein families, and the analysis of individual proteins (Chapter
10) and protein structure (Chapter 11). We conclude the middle part of the book
with an overview of the rapidly developing field of functional genomics (Chapter 12).

Since 1995, the genomes have been sequenced for several thousand viruses, pro-
karyotes (bacteria and archaea), and eukaryotes, such as fungi, animals, and plants.
The third section of the book covers genome analysis (Chapters 13 to 20). Chapter
13 provides an overview of the study of completed genomes and then descriptions of
how the tools of bioinformatics can elucidate the tree of life. We describe bioinfor-
matics resources for the study of viruses (Chapter 14) and bacteria and archaea
(Chapter 15; these are two of the three main branches of life). Next we examine
the eukaryotic chromosome (Chapter 16) and explore the genomes of a variety of
eukaryotes, including fungi (Chapter 17), organisms from parasites to primates
(Chapter 18), and then the human genome (Chapter 19). Finally, we explore bioin-
formatic approaches to human disease (Chapter 20).

BioinNForRMmATICS: THE BiGg PICTURE

We can summarize the fields of bioinformatics and genomics with three perspectives.
The first perspective on bioinformatics is the cell (Fig. 1.1). The central dogma of
molecular biology is that DNA is transcribed into RNA and translated into protein.
The focus of molecular biology has been on individual genes, messenger RNA
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Central dogma of molecular biology

. cellular

DNA — RNA ——>  protein > phenotype
Central dogma of genomics

cellular

genome —> transcriptome —> proteome ———> phenotype

P protein

(mRNA) transcripts as well as noncoding RNAs, and proteins. A focus of the field of
bioinformatics is the complete collection of DNA (the genome), RNA (the transcrip-
tome), and protein sequences (the proteome) that have been amassed (Henikoff,
2002). These millions of molecular sequences present both great opportunities
and great challenges. A bioinformatics approach to molecular sequence data involves
the application of computer algorithms and computer databases to molecular and

AT,

i

s

time of
development

region of
body

physiological or
pathological state

FIGURE 1.1. The first perspective
of the field of bioinformatics is the
cell. Bioinformatics has emerged as
a discipline as biology has become
transformed by the emergence of
molecular sequence data. Databases
such as the European Molecular
Biology  Laboratory  (EMBL),
GenBank, and the DNA Database
of Japan (DDBJ) serve as reposi-
tories for bundreds of billions of
nucleotides of DNA sequence data
(see Chapter 2). Corresponding data-
bases of expressed genes (RNA) and
protein bave been established. A
main focus of the field of bioinfor-
matics is to study molecular sequence
data to gain insight into a broad
range of biological problems.

FIGURE 1.2. The second perspec-
tive of bioinformatics is the organ-
ism. Broadening our view from
the level of the cell to the organism,
we can consider the individual’s
genome  (collection of genes),
including the genes that are
expressed as RNA transcripts and
the protein products. Thus, for an
individual  organism  bioinfor-
matics tools can be applied to
describe changes through develop-
mental time, changes across body
regions, and changes in a variety
of physiological or pathological
states.
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FIGURE 1.3. The third perspec-
tive of the field of bioinformatics is
represented by the tree of life. The
scope of bioinformatics includes
all of life on Earth, including the
three major branches of bacteria,
archaea, and eukaryotes. Viruses,
which exist on the borderline of
the definition of life, are not
depicted here. For all species, the
collection and analysis of molecu-
lar sequence data allow us to
describe the complete collection of
DNA that comprises each organism
(the genome). We can further
learn the variations that occur
between species and among mem-
bers of a species, and we can
deduce the evolutionary history of
life on Earth. (After Barns et al.,
1996 and Pace, 1997.) Used with
permission.

cellular biology. Such an approach is sometimes referred to as functional genomics.
This typifies the essential nature of bioinformatics: biological questions can be
approached from levels ranging from single genes and proteins to cellular pathways
and networks or even whole genomic responses (Ideker et al., 2001). Our goals are
to understand how to study both individual genes and proteins and collections of
thousands of genes or proteins.

From the cell we can focus on individual organisms, which represents a second
perspective of the field of bioinformatics (Fig. 1.2). Each organism changes across
different stages of development and (for multicellular organisms) across different
regions of the body. For example, while we may sometimes think of genes as static
entities that specify features such as eye color or height, they are in fact dynamically
regulated across time and region and in response to physiological state. Gene
expression varies in disease states or in response to a variety of signals, both intrinsic
and environmental. Many bioinformatics tools are available to study the broad bio-
logical questions relevant to the individual: there are many databases of expressed
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genes and proteins derived from different tissues and conditions. One of the most
powerful applications of functional genomics is the use of DNA microarrays to
measure the expression of thousands of genes in biological samples.

At the largest scale is the tree of life (Fig. 1.3) (Chapter 13). There are many
millions of species alive today, and they can be grouped into the three major branches
of bacteria, archaea (single-celled microbes that tend to live in extreme environ-
ments), and eukaryotes. Molecular sequence databases currently hold DNA
sequences from over 150,000 different organisms. The complete genome sequences
of thousands of organisms are now available, including organellar and viral genomes.
One of the main lessons we are learning is the fundamental unity of life at the
molecular level. We are also coming to appreciate the power of comparative geno-
mics, in which genomes are compared. Through DNA sequence analysis we are
learning how chromosomes evolve and are sculpted through processes such as
chromosomal duplications, deletions, and rearrangements, as well as through
whole genome duplications (Chapters 16 to 18).

Figure 1.4 presents the contents of this book in the context of these three per-
spectives of bioinformatics.

Part 1: Analyzing DNA, RNA, and protein sequences

Chapter 1: Introduction

RNA————> protein  Chapter 2: How to obtain sequences

Chapter 3: How to compare two sequences

Chapters 4 and 5: How to compare a sequence

Molecular sequence to all other sequences in databases
database Chapter 6: How to multiply align sequences

Chapter 7: How to view multiply aligned sequences

as phylogenetic trees

Part 2: Genome-wide analysis of RNA and protein

Chapter 8: Bioinformatics approaches to RNA
Chapter 9: Microarray data analysis

Chapter 10: Protein analysis and protein families
Chapter 11: Protein structure

Chapter 12: Functional genomics

Part 3: Genome analysis

Chapter 13: The tree of life

Chapter 14: Viruses

Chapter 15: Prokaryotes

Chapter 16: The eukaryotic chromosome

Chapter 17: The fungi

Chapter 18: Eukaryotes from parasites to plants to primates
Chapter 19: The human genome

EUCARYA Chapter 20: Human disease

FIGURE 1.4. Overview
chapters in this book.

of the
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A ConsISTENT ExampPLE: HEMOGLOBIN

Throughout this book, we will focus on the globin gene family to provide a consistent
example of bioinformatics and genomics concepts. The globin family is one of the
best characterized in biology.

e Historically, hemoglobin was one of the first proteins to be studied, having
been described in the 1830s and 1840s by Mulder, Liebig, and others.

e Myoglobin, a globin that binds oxygen in the muscle tissue, was the first
protein to have its structure solved by x-ray crystallography (Chapter 11).

e Hemoglobin, a tetramer of four globin subunits (principally «,3, in adults), is
the main oxygen carrier in blood of vertebrates. Its structure was also one of the
earliest to be described. The comparison of myoglobin, alpha globin, and beta
globin protein sequences represents one of the earliest applications of multiple
sequence alignment (Chapter 6), and led to the development of amino acid
substitution matrices used to score protein relatedness (Chapter 3).

e In the 1980s as DNA sequencing technology emerged, the globin loci on
human chromosomes 16 (for « globin) and 11 (for 8 globin) were among
the first to be sequenced and analyzed. The globin genes are exquisitely regu-
lated across time (switching from embryonic to fetal to adult forms) and with
tissue-specific gene expression. We will discuss these loci in the description of
the control of gene expression (Chapter 16).

e While hemoglobin and myoglobin remain the best-characterized globins, the
family of homologous proteins extends to two separate classes of plant globins,
invertebrate hemoglobins (some of which contain multiple globin domains
within one protein molecule), bacterial homodimeric hemoglobins (consist-
ing of two globin subunits), and flavohemoglobins that occur in bacteria,
archaea, and fungi. Thus the globin family is useful as we survey the tree of
life (Chapters 13 to 18).

Another protein we will use as an example is retinol-binding protein (RBP4),
a small, abundant secreted protein that binds retinol (vitamin A) in blood
(Newcomer and Ong, 2000). Retinol, obtained from carrots in the form of vitamin
A, is very hydrophobic. RBP4 helps transport this ligand to the eye where it is used
for vision. We will study RBP4 in detail because it has a number of interesting
features:

e There are many proteins that are homologous to RBP4 in a variety of species,
including human, mouse, and fish (“orthologs”). We will use these as
examples of how to align proteins, perform database searches, and study
phylogeny.

e There are other human proteins that are closely related to RBP4 (“paralogs™).
Altogether the family that includes RBP4 is called the lipocalins, a diverse
group of small ligand-binding proteins that tend to be secreted into extracellu-
lar spaces (Akerstrom et al., 2000; Flower et al., 2000). Other lipocalins have
fascinating functions such as apoliprotein D (which binds cholesterol), a preg-
nancy-associated lipocalin, aphrodisin (an “aphrodisiac” in hamsters), and an
odorant-binding protein in mucus.
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e There are bacterial lipocalins, which could have a role in antibiotic resistance
(Bishop, 2000). We will explore how bacterial lipocalins could be ancient
genes that entered eukaryotic genomes by a process called lateral gene transfer.

e Because the lipocalins are small, abundant, and soluble proteins, their bio-
chemical properties have been characterized in detail. The three-dimensional
protein structure has been solved for several of them by x-ray crystallography
(Chapter 11).

e Some lipocalins have been implicated in human disease.

ORGANIZATION OF THE CHAPTERS

The chapters of this book are intended to provide both the theory of bioinformatics
subjects as well as a practical guide to using computer databases and algorithms. Web
resources are provided throughout each chapter. Chapters end with brief sections
called Perspective and Pitfalls. The perspective feature describes the rate of growth
of the subject matter in each chapter. For example, a perspective on Chapter 2
(access to sequence information) is that the amount of DNA sequence data deposited
in GenBank is undergoing an explosive rate of growth. In contrast, an area such as
pairwise sequence alignment, which is fundamental to the entire field of bioinfor-
matics (Chapter 3), was firmly established in the 1970s and 1980s. But even for
fundamental operations such as multiple sequence alignment (Chapter 6) and mol-
ecular phylogeny (Chapter 7) dozens of novel, ever-improving approaches are intro-
duced at a rapid rate. For example, hidden Markov models and Bayesian approaches
are being applied to a wide range of bioinformatics problems.

The pitfalls section of each chapter describes some common difficulties encoun-
tered by biologists using bioinformatics tools. Some errors might seem trivial, such as
searching a DNA database with a protein sequence. Other pitfalls are more subtle,
such as artifacts caused by multiple sequence alignment programs depending upon
the type of paramters that are selected. Indeed, while the field of bioinformatics
depends substantially on analyzing sequence data, it is important to recognize that
there are many categories of errors associated with data generation, collection,
storage, and analysis. We address the problems of false positive and false negative
results in a variety of searches and analyses.

Each chapter offers multiple-choice quizzes, which test your understanding of
the chapter materials. There are also problems that require you to apply the concepts
presented in each chapter. These problems may form the basis of a computer labora-
tory for a bioinformatics or genomics course.

The references at the end of each chapter are accompanied by an annotated list
of recommended articles. This suggested reading section includes classic papers
that show how the principles described in each chapter were discovered. Particularly
helpful review articles and research papers are highlighted.

A TexTtBOoOK FOR COURSES ON BIOINFORMATICS
AND GENOMICS

This is a textbook for two separate courses: one is an introduction to bioinformatics
(and uses Chapters 1 to 12 [Parts 1 and 2]), and one is an introduction to genomics
(and uses Chapters 13 to 20 [Part 3]). In a sense, the discipline of bioinformatics

9
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Web material for this book is
available at » http//www.wiley.
com/go/pevsnerbioinformatics.

serves biology, facilitating ways of posing and then answering questions about pro-
teins, genes, and genomes. The third part of this book surveys the tree of life from
the perspective of genes and genomes. Progress in this field could not occur at its cur-
rent pace without the bioinformatics tools described in the first parts of the book.

Often, students have a particular research area of interest, such as a gene, a phys-
iological process, a disease, or a genome. It is hoped that in the process of studying
globins and other specific proteins and genes throughout this book, students can
also simultaneously apply the principles of bioinformatics to their own research
questions.

In teaching courses on bioinformatics and genomics at Johns Hopkins, it has
been helpful to complement lectures with computer labs. These labs and many
other resources are posted on the website for this book (> http://www.bioinfbook.
org). That site contains many relevant URLs, organized by chapter. Each chapter
makes references to web documents posted on the site. For example, if you see a
figure of a phylogenetic tree or a sequence alignment, you can easily retrieve the
raw data and make the figure yourself.

Another feature of the Johns Hopkins bioinformatics course is that each student
is required to discover a novel gene by the last day of the course. The student must
begin with any protein sequence of interest and perform database searches to identify
genomic DNA that encodes a protein no one has described before. This problem is
described in detail in Chapter 5 (and summarized in web document 5.15 at » http://
www.bioinfbook.org/chapter5). The student thus chooses the name of the gene and
its corresponding protein and describes information about the organism and evi-
dence that the gene has not been described before. Then, the student creates a mul-
tiple sequence alignment of the new protein (or gene) and creates a phylogenetic tree
showing its relation to other known sequences.

Each year, some beginning students are slightly apprehensive about accomplish-
ing this exercise, but in the end all of them succeed. A benefit of this exercise is that it
requires a student to actively use the principles of bioinformatics. Most students
choose a gene (or protein) relevant to their own research area, while others find
new lipocalins or globins.

For a genomics course, students select a genome of interest and describe five
aspects in depth (described at the start of Chapter 13): (1) What are the basic feature
of the genome, such as its size, number of chromosomes, and other features? (2) A
comparative genomic analysis is performed to study the relation of the species to
its neighbors. (3) The student describes biological principles that are learned through
genome analysis. (4) The human disease relevance is described. (5) Bioinformatics
aspects are described, such as key databases or algorithms used for genome analysis.

Teaching bioinformatics and genomics is notable for the diversity of students
learning this new discipline. Each chapter provides background on the subject
matter. For more advanced students, key research papers are cited at the end of
each chapter. These papers are technical, and reading them along with the chapters
will provide a deeper understanding of the material. The suggested reading section
also includes review articles.

Key BioinFormATICS WEBSITES

The field of bioinformatics relies heavily on the Internet as a place to access sequence
data, to access software that is useful to analyze molecular data, and as a place to inte-
grate different kinds of resources and information relevant to biology. We will



describe a variety of websites. Initially, we will focus on the three main publicly acces-
sible databases that serve as repositories for DNA and protein data. In Chapter 2
we begin with the National Center for Biotechnology Information (NCBI), which
hosts GenBank. The NCBI website offers a variety of other bioinformatics-related
tools. We will gradually introduce the European Bioinformatics Institute (EBI)
web server, which hosts a complementary DNA database (EMBL, the European
Molecular Biology Laboratory database). We will also introduce the DNA
Database of Japan (DDB]J). The research teams at GenBank, EMBL, and DDB]J
share sequence data on a daily basis. Throughout this book we will highlight the
key genome browser hosted by the University of California, Santa Cruz (UCSC).
A general theme of the discipline of bioinformatics is that many databases are closely
interconnected. Throughout the chapters of this book we will introduce over 1,000
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additional websites that are relevant to bioinformatics.

SuGGESTED READING

Overviews of the field of bioinformatics have been written by Mark
Gerstein and colleagues (Luscombe et al., 2001), Claverie et al.
2001, and Yu et al. 2004. Kaminski 2000 also introduces bioinfor-
matics, with practical suggestions of websites to visit. Russ Altman
1998 discusses the relevance of bioinformatics to medicine, while
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Chapter 2 introduces ways to access molecular data, including information about DNA and proteins. One of the first scientists to
study proteins was lacopo Bartolomeo Beccari (1682—1776), an Italian philosopher and physician who discovered protein as a
component of vegetables. This image is from page 123 of the Bologna Commentaries, published in 1745 and written by a secretary
on the basis of a 1728 lecture by Beccari. Beccari separated gluten (plant proteins) from wheaten flour. The passage beginning
Res est parvi laboris (“u is a thing of Lrtle labor”; see solid arrowhead) is translated as follows (Beach, 1961, p. 362):

“It is a thing of little labor. Flour is taken of the best wheat, moderately ground, the bran not passing though the sieve, for it is
necessary that this be fully purged away, so that all traces of a mixture have been removed. Then it is mixed with pure water and
kneaded. What 1s left by this procedure, washing clarifies. Water carries off with itself all it is able to dissolve, the rest remains
untouched. After this, whar the water leaves is worked with the hands, and pressed upon in the water that has stayed. Slowly
it 1s drawn together in a doughy mass, and beyond what is possible to be believed, tenacious, a remarkable sort of glue, and
suited to many uses; and what is especially worthy of note, it cannot any longer be mixed with water. The other particles,
which water carries away with itself, for some time floar and render the water milky; but after a while they are carried to the
botrom and sink; nor in any way do they adhere to each other; but like powder they return upward on the lightest contact.
Nothing is more like this than starch, or rather this truly is starch. And these are manifestly the two sorts of bodies which
Beccari displayed through having done the work of a chemist and he distinguished them by their names, one being appropriately
called glutinous (see open arrowhead) and the other amylaceous.”

In addition ro purifying gluten, Beccari identified it as an “animal substance” in contrast to starch, a “vegetable substance,”
based on differences on how they decomposed with heat or distillation. A century later Fons Fakob Berzelius proposed the word
protein, and he also posited that plants form “animal materials” that are eaten by herbivorous animals.
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INTRODUCTION TO BioLoGgicaL DATABASES

All living organisms are characterized by the capacity to reproduce and evolve. The
genome of an organism is defined as the collection of DNA within that organism,
including the set of genes that encode proteins. In 1995 the complete genome of a
free-living organism was sequenced for the first time, the bacterium Haemophilus
influenzae (Fleischmann et al., 1995; Chapters 13 and 15). In the few years since
then the genomes of thousands of organisms have been completely sequenced, ush-
ering in a new era of biological data acquisition and information accessibility. Publicly
available databanks now contain billions of nucleotides of DNA sequence data col-
lected from over 260,000 different organisms (Kulikova et al., 2007). The goal of
this chapter is to introduce the databases that store these data and strategies to extract
information from them.

Three publicly accessible databases store large amounts of nucleotide and
protein sequence data: GenBank at the National Center for Biotechnology Infor-
mation (NCBI) of the National Institutes of Health (NIH) in Bethesda (Benson
et al., 2009), the DNA Database of Japan (DDB]) at the National Institute of
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GenBank is at » http://www.
ncbi.nlm.nih.gov/Genbank;
DDBJ is at » http://www.ddbj.
nig.ac.jp/; and EMBL/EBI is at
> http://www.ebi.ac.uk/. You can
visit the INSDC at »http://www.
insdc.org/. By November 2008
the total number of sequenced
bases had passed 97 billion.

Pfam (» http://www.sanger.ac.
uk/Software/Pfam/) and other
related databases are described in
Chapters 6 (multiple sequence
alignment) and 10 (protein
families).

Genetics in Mishima (Miyazaki et al., 2004), and the European Molecular Biology
Laboratory (EMBL) Nucleotide Sequence Database at the European Bioinformatics
Institute (EBI) in Hinxton, England (Kulikova et al., 2007). These three databases
share their sequence data daily. They are coordinated by the International Nucleotide
Sequence Database Collaboration (INSDC), which announced in August 2005 that
the total amount of sequenced DNA had reached 100 billion base pairs.

In addition to GenBank, DDB]J, and EBI, there are other categories of bioinfor-
matics databases that contain DNA and/or protein sequence data:

e Whole-genome shotgun (WGS) sequences and the Short Read Archive
(Chapter 13 and discussed below) are not formally part of GenBank, but con-
tain even more DNA sequences.

e Databases such as Ensembl, NCBI, and the genome browser at the University
of California, Santa Cruz (UCSC) provide annotation of the human genome
and other genomes (see below).

¢ Some contain nucleotide and/or protein sequence data that are relevant to a
particular gene or protein (such as kinases). Other databases are specific to
particular chromosomes or organelles (Chapters 16 to 18).

e Avariety of databases include information on sequences sharing common prop-
erties that have been grouped together. For example, the Protein Family (Pfam)
database consists of several thousand families of homologous proteins.

e Hundreds of databases contain sequence information related to genes that are
mutated in human disease. These databases are described in Chapter 20.

e Many specialized databases focus on particular organisms (such as yeast);
examples are listed in the section on genomes (Chapters 13 to 20).

e There are databases devoted to particular types of nucleic acids or proteins or
properties of these macromolecules. Examples are databases of gene expression
(see Chapters 8 and 9), databases of transfer RNA (tRNA) molecules, data-
bases of tissue-specific protein expression (see Chapter 10), or databases of
gene regulatory regions such as 3’-untranslated regions (see Chapter 16).

Some bioinformatics databases do not contain nucleotide or protein sequence
data as their main function. Instead, they contain information that may link to
individual genes or proteins.

e Literature databases contain bibliographic references relevant to biological
research and in some cases contain links to full-length articles. We will
describe two of these databases, PubMed and the Sequence Retrieval
System (SRS), in this chapter.

e Structure databases contain information on the structure of proteins and other
macromolecules. These databases are described in Chapter 10 (on proteins)
and Chapter 11 (on protein structure).

GenBaNnk: DataBase oF Most KNowN NUCLEOTIDE AND
PROTEIN SEQUENCES

While the sequence information underlying DDB]J, EBI, and GenBank is equivalent,
we begin our discussion with GenBank. GenBank is a database consisting of most
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known public DNA and protein sequences (Benson et al., 2009). In addition to stor-
ing these sequences, GenBank contains bibliographic and biological annotation.
Data from GenBank are available free of charge from the National Center for
Biotechnology Information (NCBI) in the National Library of Medicine at the
NIH (Wheeler et al., 2007).

Amount of Sequence Data

GenBank currently contains about 100 billion nucleotides from 100 million
sequences (release 168). The growth of GenBank in terms of both nucleotides of
DNA and number of sequences from 1982 to 2008 is summarized in Fig. 2.1a.
Over the period 1982 to the present, the number of bases in GenBank has doubled
approximately every 18 months.

The WGS division consists of sequences generated by high throughput sequen-
cing efforts. Since 2002, WGS sequences have been available at NCBI, but they are
not considered part of the GenBank releases. As indicated in Fig. 2.1, the number of
base pairs of DNA included among WGS sequences (136 billion base pairs in release
168, October 2008) is larger than the size of GenBank.

While the amount of sequence data in GenBank has risen rapidly, the arrival of
next-generation sequencing technology, described in Chapter 13, is instantly leading
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Between December 2007 and
December 2008, over 15 billion
base pairs (bp) of DNA were
added to GenBank, an average of
42 million bp per day. In com-
parison, the first eukaryotic
genome to be completed
(Saccharomyces cerevisiae; Chapter
17) is about 13 million bp in size.

FIGURE 2.1. (a) Growth of Gen-
Bank from release 3 (1982) to
release 168 (October 2008). Data
were plotted from the GenBank
release notes at ™ http:/ [www.ncbi.
nlm.nib.gov/Genbank /. Additional
DNA sequences from the whole
genome shotgun sequencing projects,
begun in 2002, are shown. (b) The
amount of sequenced DNA is vastly
increasing. Bar 1 indicates the
amount of DNA in GenBank plus
WGS as shown in panel (a). Bar 2
indicates the amount of DNA
sequence (492 gigabases) reported
in three research articles published
in a single issue of Nature (Bentley
et al., 2008; Wang et al., 2008; Ley
et al, 2008). Bar 3 indicates the
amount of DNA sequence (2 tera-
bases) expected to be generated by
the end of 2008 as part of the 1000
Genomes Project (Chapter 13); 1 ter-
abase was reported by the Wellcome
Trust Sanger Institute in a six-
month period in 2008. Bar 4 indi-
cates the amount of sequence data
(10 terabases) it is anticipated will
be generated in 2009 alone by a typi-
cal major genome sequencing center.
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You can download all of the
sequence data in GenBank at the
website » ftp://ftp.ncbi.nih.gov/
genbank. For release 158.0 in
February 2007, the total size of
these files is about 250 gigabytes
(250 x 10° bytes). By comparison,
all the words in the United States
Library of Congress add up to 20
terabytes (20 x 10'? bytes; 20 tril-
lion bytes). And the particle accel-
erator used by physicists at CERN
near Geneva (» http://public.web.
cern.ch/Public/) collects peta-
bytes of data each year (10'° bytes;
1 quadrillion bytes).

to a vast new influx of DNA sequence data (Fig. 2.15). Next-generation sequencing
involves the generation of massive amounts of sequence data, such as 1 billion bases
(1 Gb) in a single experiment that is completed in a matter of days. In a single issue of
the journal Nature in November 2008 Bentley et al. described the sequencing of an
individual of Nigerian ancestry, Wang et al. reported the DNA sequence of an
Asian individual, and Ley et al. analyzed the genome sequence of a tumor sample.
Together, these three papers involved the generation and analysis of 492 gigabases
(Gb) of DNA sequence. By the end of 2008 the 1000 Genomes Project generated
several terabases of data. For major sequencing centers (such as those at the
Wellcome Trust Sanger Institute, Beijing Genomics Institute Shenzhen, the Broad
Institute of MIT and Harvard, Washington University School of Medicine’s
Genome Sequencing Center, and Baylor College of Medicine’s Human Genome
Sequencing Center) it is estimated that each will generate approximately 10 terabases
in the year 2009. According to a Wellcome Trust Sanger Institute press release in
2008, that center now produces as much sequence data every 2 minutes as was gen-
erated in the first five years at GenBank. Thus the amount of DNA sequence gener-
ated by next-generation sequencing technologies has already dwarfed the amount of
sequence in GenBank. Such data are available through the Trace Archive at NCBI
and the Ensembl Trace Server at EBI, including the Short Read Archive that was
initiated in 2007.

Organisms in GenBank

Over 260,000 different species are represented in GenBank, with over 1000 new
species added per month (Benson et al., 2009). The number of organisms represented
in GenBank is shown in Table 2.1. We will define the bacteria, archaea, and eukaryotes
in detail in Chapters 13 to 18. Briefly, eukaryotes have a nucleus and are often multi-
cellular, whereas bacteria do not have a nucleus. Archaea are single-celled organisms,
distinct from eukaryotes and bacteria, which constitute a third major branch of life.
Viruses, which contain nucleic acids (DNA or RNA) but can only replicate in a host
cell, exist at the borderline of the definition of living organisms.

We have seen so far that GenBank is very large and growing rapidly. From
Table 2.1 we see that the organisms in GenBank consist mostly of eukaryotes. Of
the microbes, there are currently over 25 times more bacteria than archaea
represented in GenBank.

1):\:] NS I Taxa Represented in GenBank

Ranks: Higher Taxa Genus Species Lower Taxa Total

Archaea 89 106 502 105 802
Bacteria 996 1,857 13,973 4,973 21,799
Eukaryota 15,205 45,066 167,764 13,200 241,235
Fungi 1,096 3,307 18,699 1,058 24,160
Metazoa 11,113 27,222 73,062 6,643 118,040
Viridiplantae 1,849 12,557 69,729 4,869 89,004
Viruses 445 294 5,054 33,909 39,702
All taxa 16,756 47,331 191,956 52,217 308,260

Source: From » http://www.ncbi.nlm.nih.gov/Taxonomy/txstat.cgi (November 2008).
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):\:] W22 Twenty Most Sequenced Organisms in GenBank

Entries Bases Species Common Name
11,550,460 13,148,670,755 Homo sapiens Human
7,255,650 8,361,230,436 Mus musculus Mouse

1,757,685 6,060,823,765 Rartus norvegicus Rat

2,086,880 5,235,078,866 Bos taurus Cow

3,181,318 4,600,009,751 Zea mays Corn

2,489,204 3,551,438,061 Sus scrofa Pig

1,591,342 2,978,804,803 Danio rerio Zebrafish
1,205,529 1,533,859,717 Oryza sativa Rice

228,091 1,352,737,662 Strongylocentrotus purpuratus Purple sea urchin
1,673,038 1,142,531,302 Nicotiana tabacum Tobacco
1,413,112 1,088,892,839 Xenopus (Silurana) Western clawed frog
212,967 996,533,885 Pan troglodytes Chimpanzee
780,860 913,586,921 Drosophila melanogaster Fruit fly
2,211,104 912,500,625 Arabidopsis thaliana Thale cress
650,374 905,797,007 Vitis vinifera Wine grape
804,246 871,336,795 Gallus gallus Chicken

77,069 803,847,320 Macaca mulatta Rhesus macaque
1,215,319 748,031,972 Ciona intestinalis Sea squirt
1,224,224 744,373,069 Canis lupus Dog

1,725,913 680,988,452 Glycine max Soybean

Source: From » ftp://ftp.nebinith.gov/genbank/gbrel.txt (GenBank release 168.0, October 2008).

The number of entries and bases of DNA/RNA for the 20 most sequenced
organisms in GenBank is provided in Table 2.2 (excluding chloroplast and mitochon-

drial sequences). This list includes some of the most common model organisms that

are studied in biology. Notably, the scientific community is studying a series of mam-  various organisms are selected

mals (e.g., human, mouse, cow), other vertebrates (chicken, frog), and plants (corn,
rice, bread wheat, wine grape). Different species are useful for a variety of different

for complete sequencing in
Chapter 13.

studies. Bacteria, archaea, and viruses are absent from the list in Table 2.2 because

they have relatively small genomes.

To help organize the available information, each sequence name in a GenBank
record is followed by its data file division and primary accession number.
(Accession numbers are defined below.) The following codes are used to designate The International Human

We will discuss how genomes of

the data file divisions:

PRI: primate sequences

ROD: rodent sequences

MAM: other mammalian sequences
VRT: other vertebrate sequences

INV: invertebrate sequences

PLN: plant, fungal, and algal sequences
BCT: bacterial sequences

VRL.: viral sequences

© 0N Uk L=

PHG: bacteriophage sequences

Genome Sequencing Consortium
adopted the Bermuda Principles
in 1996, calling for the rapid
release of raw genomic sequence
data. You can read about recent
versions of these principles at

> http://www.genome.gov/
10506376.

The terms STS, GSS, EST, and
HTGS are defined bellow.
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Beta globin is sometimes called
hemoglobin-beta. In general, a
gene does not always have the
same name as the corresponding
protein. Indeed there is no such
thing as a “hemoglobin gene”
because globin genes encode
globin proteins, and the combi-
nation of these globins with heme
forms the various types of hemo-
globin. Often, multiple investi-
gators study the same gene or
protein and assign different
names. The human genome
organization (HUGO) Gene
Nomenclature Committee
(HGNC) has the critical task of
assigning official names to genes
and proteins. See » http://www.
gene.ucl.ac.uk/nomenclature//.

FIGURE 2.2. Types of sequence
data in GenBank and other data-
bases using human beta globin as
an example. Note that “globin”
may refer to a gene or other DNA
feature, an RNA transcript (or
its corresponding complementary
DNA), or a protein. There are
specialized databases correspond-
ing to each of these three levels.
See text for abbreviations. There
are many other databases (not
listed) that are wnot part of
GenBank and NCBL note that
SwissProt, PDB, and PIR are
protein databases that are indepen-
dent of GenBank. The raw nucleo-
tide sequence data in GenBank,
DDBJ, and EBI are equivalent.

10. SYN: synthetic sequences

11. UNA: unannotated sequences

12. EST: EST sequences (expressed sequence tags)

13. PAT: patent sequences

14. STS: STS sequences (sequence-tagged sites)

15. GSS: GSS sequences (genome survey sequences)

16. HTG: HTGS sequences (high throughput genomic sequences)
17. HTC: HTC sequences (high throughput cDNA sequences)

18. ENV: environmental sampling sequences

Types of Data in GenBank

There is an enormous number of molecular sequences in GenBank. We will next look
at some of the basic kinds of data present in GenBank. Afterward, we will address
strategies to extract the data you want from GenBank.

We start with an example. We want to find out the sequence of human beta
globin. A fundamental distinction is that DNA, RNA-based, and protein sequences
are stored in discrete databases. Furthermore, within each database, sequence
data are represented in a variety of forms. For example, beta globin may be described
at the DNA level (e.g. as a gene), at the RNA level (as a messenger RNA [mRNA]
transcript), and at the protein level (see Fig. 2.2). Because RNA is relatively
unstable, it is typically converted to complementary DNA (cDNA), and a variety

cDNA

GenBank DNA databases GenBank DNA databases, Protein databases
containing beta globin data derived from RNA, containing beta globin data
non-redundant (nr) containing beta globin data Entrez Protein
dbGSS Entrez Gene non-redundant (nr)
dbHTGS dbEST UniProt
dbSTS UniGene Protein Data Bank

Gene Expression Omnibus SCOP

CATH
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of databases contain cDNA sequences corresponding to RNA transcripts. Thus for
our example of beta globin, the various forms of sequence data include the following.

Genomic DNA Databases

e Beta globinis part of a chromosome. In the case of human RBP we will see that
its gene is situated on chromosome 11 (Chapter 16, on the eukaryotic
chromosome).

e Beta globin may be a part of a large fragment of DNA such as a cosmid, bac-
terial artificial chromosome (BAC), or yeast artificial chromosome (YAC) that
may contain several genes. A BAC is a large segment of DNA (typically about
200,000 base pairs [bp], or 200 kilobases [kb]) that is cloned into bacteria.
Similarly, YACs are used to clone large amounts of DNA into yeast. BACs
and YACs are useful vectors with which to sequence large portions of genomes.

o Beta globin is present in databases as a gene. The gene is the functional unit of
heredity (further defined in Chapter 16), and it is a DNA sequence that typi-
cally consists of regulatory regions, protein-coding exons, and introns. Often,
human genes are 10 to 100 kb in size.

e Beta globin is present as a sequence-tagged site (STS)—that is, as a small frag-
ment of DNA (typically 500 bp long) that is used to link genetic and physical
maps and which is part of a database of sequence-tagged sites (dbSTS).

cDNA Databases Corresponding to Expressed Genes

Beta globin is represented in databases as an expressed sequence tag (EST), that is, a
cDNA sequence derived from a particular cDNA library. If one obtains a tissue such
as liver, purifies RNA, then converts the RNA to the more stable form of cDNA,
some of the cDNA clones contained in that cDNA are likely to encode beta globin.

Expressed Sequence Tags (ESTs)

The database of expressed sequence tags (AbEST) is a division of GenBank that con-
tains sequence data and other information on “single-pass” cDNA sequences from a
number of organisms (Boguski et al., 1993). An EST is a partial DNA sequence of a
cDNA clone. All cDNA clones, and thus all ESTs, are derived from some specific
RNA source such as human brain or rat liver. The RNA is converted into a more
stable form, cDNA, which may then be packaged into a cDNA library (refer to
Fig. 2.2). ESTs are typically randomly selected cDNA clones that are sequenced
on one strand (and thus may have a relatively high sequencing error rate). ESTs
are often 300 to 800 bp in length. The earliest efforts to sequence ESTs resulted in
the identification of many hundreds of genes that were novel at the time (Adams
et al., 1991).

In November, 2008 GenBank had over 58,000,000 ESTs. We discuss EST's
further in Chapter 8.

Currently, GenBank divides ESTs into three major categories: human, mouse,
and other. Table 2.3 shows the 10 organisms from which the greatest number of
ESTs has been sequenced. Assuming that there are 22,000 human genes (see
Chapter 19) and given that there are about 8.1 million human ESTs, there is
currently an average of over 300 EST's corresponding to each human gene.

Human chromosome 11, which is
a mid-sized chromosome, con-
tains about 1800 genes and is
about 134,000 kilobases (kb) in
length.

In GenBank, the convention is to
use the four DNA nucleotides
when referring to DNA derived
from RNA.



2[] ACCESS TO SEQUENCE DATA AND LITERATURE INFORMATION

To find the entry for beta globin,
go to » http://www.ncbi.nlm.nih.
gov, select All Databases then click
UniGene, select human, then
enter beta globin or HBB. The
UniGene accession number is
Hs.523443; note that Hs refers to
Homo sapiens. To see the DNA
sequence of a typical EST, click on
an EST accession number from
the UniGene page (e.g.,
AA970968.1), then follow the link
to the GenBank entry in Entrez
Nucleotide.

We are using beta globin as a
specific example. If you want to
type “globin” as a query, you will
simply get more results from any
database—in UniGene, you will
find over 100 entries correspond-
ing to a variety of globin genes in
various species.

The UniGene project has become
extremely important in the effort
to identify protein-coding genes in
newly sequenced genomes. We
discuss this in Chapters 13 and 16.

/. N2 TopTen Organisms forWhich ESTs Have Been Sequenced

Organisms Common Name Number of EST's
Homo sapiens Human 8,138,094
Mus musculus + domesticus Mouse 4,850,602
Zea mays Maize 2,002,585
Arabidopsis thaliana Thale cress 1,526,133
Bos taurus Cattle 1,517,139
Sus scrofa Pig 1,476,546
Danio rerio Zebrafish 1,379,829
Glycine max Soybean 1,351,356
Xenopus (Silurana) tropicalis Western clawed frog 1,271,375
Oryza sativa Rice 1,220,908

Many thousand of cDNA libraries have been generated from a variety of organism, and the total number of
public entries is currently over 58 million.

Source:  »  http://www.nebi.nlm.nin.gov/dbEST/dbEST_summary.html
November 2008).

(dbEST release 022307,

ESTs and UniGene

The goal of the UniGene (unique gene) project is to create gene-oriented clusters by
automatically partitioning EST's into nonredundant sets. Ultimately there should be
one UniGene cluster assigned to each gene of an organism. There may be as few
as one EST in a cluster, reflecting a gene that is rarely expressed, to tens of thousands
of ESTs, associated with a highly expressed gene. We discuss UniGene clusters
further in Chapter 8 (on gene expression). There are over 100 organisms currently
represented in UniGene, 71 of which are listed in Table 2.4.

For human beta globin, there is only a single UniGene entry. This entry currently
has 2400 human EST's that match the beta globin gene. This large number of ESTs
reflects how abundantly the beta globin gene has been expressed in cDNA libraries
that have been sequenced. A UniGene cluster is a database entry for a gene contain-
ing a group of corresponding ESTs (Fig. 2.3).

There are now thought to be approximately 22,000 human genes (see Chapter
19). One might expect an equal number of UniGene clusters. However, in practice,
there are more UniGene clusters than there are genes—currently, there are about
120,000 human UniGene clusters. This discrepancy could occur for three reasons.
(1) Clusters of ESTs could correspond to distinct regions of one gene. In that case
there would be two (or more) UniGene entries corresponding to a single gene
(see Fig. 2.3). Two UniGene clusters may properly cluster into one, and the number
of UniGene clusters may collapse over time. (2) In the past several years it has
become appreciated that much of the genome is transcribed at low levels (see
Chapter 8). Currently, 40,000 human UniGene clusters consist of a single EST, and
over 76,000 UniGene clusters consist of just one to four ESTs. These could reflect
authentic genes that have not yet been appreciated by other means of gene identifi-
cation. Alternatively they may represent rare transcription events of unknown biological
relevance. (3) Some DNA may be transcribed during the creation of a cDNA library
without corresponding to an authentic transcript. Thus it is a cloning artifact. We dis-
cuss the criteria for defining a eukaryotic gene in Chapter 16. Alternative splicing
(Chapter 8) may introduce apparently new clusters of genes because the spliced
exon is not homologous to the rest of the sequence.
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1):\:] N2/ 0 Seventy-One Organisms Represented in UniGene

Group No. Species
Chordata: Mammalia 12 Bos taurus (cattle), Canis familiaris (dog), Equus caballus
(horse), Homo sapiens (human), Macaca fascicularis (crab-
eating macaque), Macaca mularta (rhesus monkey), Mus
musculus (mouse), Oryctolagus cuniculus (rabbit), Ovis
artes (sheep), Rattus norvegicus (Norway rat), Sus scrofa
(pig), Trichosurus vulpecula (silver-gray brushtail possum)
Chordata: 8  Danio rerio (zebrafish), Fundulus heteroclitus (Killifish),
Actinopterygii Gasterosteus aculeatus (three spined stickleback),
Oncorhynchus mykiss (rainbow trout), Oryzias latipes
(Japanese medaka), Pimephales promelas (fathead
minnow), Salmo salar (Atlantic salmon), Takifugu rubripes
(pufferfish)
Chordata: Amphibia 2 Xenopus laevis (African clawed frog), Xenopus tropicalis
(western clawed frog)
Chordata: Ascidiacea 3 Ciona wntestinalis, Ciona savignyi, Molgula tectiformis
Chordata: Aves 2 Gallus gallus (chicken), Taeniopygia guttata (zebra finch)
Chordata: 1 Branchiostoma floridae (Florida lancelet)
Cephalochordata
Chordata: Hyperoartia 1 Petromyzon marinus (sea lamprey)
Echinodermata: 1 Swrongylocentrotus purpuratus (purple sea urchin)
Echinoidea
Arthopoda: Insecta 6  Aedes aegypri (yellow fever mosquito), Anopheles gambiae
(African malaria mosquito), Apis mellifera (honey bee),
Bombyx mori (domestic silkworm), Drosophila
melanogaster (fruit fly), Tribolium castaneum (red flour
beetle)
Nematoda: 1 Caenorhabditis elegans (nematode)
Chromadorea
Platyhelminthes: 2 Schistosoma japonicum, Schistosoma mansoni
Trematoda
Cnidaria: Hydrozoa 1 Hydra magnipapillata
Streptophyta: Bryopsida 1 Physcomurrella patens
Streptophyta: 3 Picea glauca (white spruce), Picea sitchensis (Sitka spruce),
Coniferopsida Pinus taeda (loblolly pine)
Streptophyta: 18  Aquilegia formosa x Aquilegia pubescens, Arabidopsis thaliana
Eudicotyledons (thale cress), Brassica napus (rape), Citrus sinensis
(Valencia orange), Glycine max (soybean), Gossypium
hirsutum (upland cotton), Gossypium raimondii,
Helianthus annuus (sunflower), Lactuca sativa (garden
lettuce), Lotus japonicus, Malus x domestica (apple),
Medicago truncatula (barrel medic), Nicoriana tabacum
(tobacco), Populus tremula x Populus tremuloides, Populus
trichocarpa (western balsam poplar), Solanum
lycopersicum (tomato), Solanum tuberosum (potato), Vitis
vinifera (wine grape)
Streptophyta: Liliopsida 6  Hordeum vulgare (barley), Oryza sativa (rice), Saccharum
officinarum (sugarcane), Sorghum bicolor (sorghum),
Triticum aestivum (wheat), Zea mays (maize)
Chlorophyta: 1 Chlamydomonas reinharduii
Chlorophyceae
Dictyosteliida: 1 Dicryostelium discoideum (slime mold)
Dictyostelium
Apicomplexa: Coccidia 1 Toxoplasma gondii

Source: UniGene P http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?’db=unigene (November 2008).
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FIGURE 2.3. Schematic  descrip-
tion of UniGene clusters.
Expressed sequence tags (ESTs)
are mapped to a particular gene
and to each other. The number of
ESTs that constitute a UniGene
cluster ranges from 1 to tens of

sousands on awre thee o (RNOIVOPVUIIVOTVIOVITV -

Sometimes, as shown in the dia-
gram, separate UniGene clusters
correspond to distinct regions of a
gene. Eventually, as genome
sequencing increases our ability to —  ESTs

define and annotate full-length ESTs

genes, these two UniGene clusters

would be collapsed into one single

cluster. Ultimately, the number of

UniGene clusters should equal the — UniGene UniGene
cluster cluster

number of genes in the genome.

Sequence-Tagged Sites (STSs)

As of November 2008 there are The dbSTS is an NCBI site containing STSs, which are short genomic landmark

1.3 million STSs, derived from sequences for which both DNA sequence data and mapping data are available

300 organisms. (Olson et al., 1989). STSs have been obtained from several hundred organisms,
including primates and rodents (Table 2.5). A typical STS is approximately the
size of an EST. Because they are sometimes polymorphic, containing short sequence
repeats (Chapter 16), STSs can be useful for mapping studies.

Genome Survey Sequences (GSSs)

There are currently 24 million The GSS division of GenBank is similar to the EST division, except that its
GSS entries from over 800 organ-  sequences are genomic in origin, rather than cDNA (mRNA). The GSS division con-

isms (November 2008). The top  aing the following types of data (see Chapters 13 and 16):
four organisms (Table 2.6)
account for about a third of all
entries. This database is accessed
via » http://www.ncbi.nlm.nih.
gov/projects/dbGSS/.

Random “single-pass read” genome survey sequences
Cosmid/BAC/YAC end sequences

e Exon-trapped genomic sequences

The Alu polymerase chain reaction (PCR) sequences

1)V N2 Organisms from Which STSs Have Been Ohtained

Organism Approximate Number of STSs
Homo sapiens 324,000
Pan troglodytes 161,000
Macaca mulatta 72,000
Mus musculus 56,000
Rattus norvegicus 50,000

These are the organisms with the most UniSTS entries.
Source: » http://www.ncbi.nlm.nih.gov/genome/sts/unists_stats.html (November 2008).
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)M Al Selected Organisms from Which GSSs Have Been Obtained. For a discussion of
Metagenomes see Chapter 13

Organism Approximate Number of Sequences
Marine metagenome 2,643,000
Zea mays + subsp. mays (maize) 2,091,000
Mus musculus + domesticus (mouse) 1,864,000
Nicotiana tabacum (tobacco) 1,421,000
Homo sapiens (human) 1,214,000
Canis lupus familiaris (dog) 854,000

Source: » http:/ /www.ncbi.nlm.nih.gov/dbGSS/dbGSS_summary.html (November 2008).

All searches of the Entrez Nucleotide database provide results that are divided
into three sections: GSS, ESTs, and “CoreNucleotide” (that is, the remaining
nucleotide sequences). Recent holdings of the GSS database are listed in Table 2.6.

High Throughput Genomic Sequence (HTGS)

The HTGS division was created to make “unfinished” genomic sequence data
rapidly available to the scientific community. It was done in a coordinated effort
between the three international nucleotide sequence databases: DDBJ, EMBL,
and GenBank. The HT'GS division contains unfinished DNA sequences generated
by the high throughput sequencing centers.

Protein Databases

The name beta globin may refer to the DNA, the RNA, or the protein. As a protein,
beta globin is present in databases such as the nonredundant (nr) database of
GenBank (Benson et al., 2009), the SwissProt database (Boeckmann et al., 2003),
UniProt (UniProt Consortium 2007), and the Protein Data Bank (Kouranov
et al., 20006).

We have described some of the basic kinds of sequence data in GenBank. We will
next turn our attention to Entrez and the other programs in NCBI and elsewhere,
which allow you to access GenBank, EMBL, and DDB]J data and related literature
information. In particular, we will introduce the NCBI website, one of the main
web-based resources in the field of bioinformatics.

NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION

Introduction to NCBI: Home Page

The NCBI creates public databases, conducts research in computational biology,
develops software tools for analyzing genome data, and disseminates biomedical
information (Wheeler et al., 2007). The NCBI home page is shown in Fig. 2.4.
Across the top bar of the website, there are seven categories: PubMed, Entrez,
BLAST, OMIM, Books, Taxonomy, and Structure.

PubMed

PubMed is the search service from the National Library of Medicine (NLM) that
provides access to over 18 million citations in MEDLINE (Medical Literature,

The HTGS home page is

> http://www.ncbi.nlm.nih.gov/
HTGS/ and its sequences can be
searched via BLAST (see
Chapters 4 and 5).

Extremely useful tutorials are avail-
able for Entrez, PubMed, and other
NCBI resources at » http://www.
ncbi.nlm.nih.gov/Education/.

You can also access this from the
education link on the NCBI home
page (» http://www.ncbi.nlm.
nih.gov).
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FIGURE 2.4. The main page of
the National Center for Biotechnol-
ogy Information (NCBI) website
> http: | |www.nchi.nlm.nib.
gov). Across the top bar, sections
include PubMed, Entrez and
Books (described in this chapter),
BLAST (Chapters 3-5),
Taxonomy (Chapters 13-19),
Structure  (Chapter 11), and
Online Mendelian Inberitance in
Man (OMIM, Chapter 20). Note
that the left sidebar includes tutor-
ials within the Education section.

-
<3 NCBI

PubMed

Search | All Databases | for

Genomic biol
The hurman genome,
whole genomes,
and related
resources

mining

rch at

National Center for Biotechnology Information

National Library of Medicine
B CMIM B Tax
Go ]

National Institutes of Healih

Structure

» What does NCBI do?

Established in 1988 as a national resource for
molecular biology information, NCEBI creates
public databases, conducts research in
computational biology, develops software tools
for analyzing genome data, and disseminates
biomedical information - all for the better
understanding of molecular processes
affecting human health and disease. More. .

dbGaky \
i .

New
NCBI's dbGaP

NCEBI's dbGaP (datab of G type and Ph ypel
P les data from G Wide Association (GWA)
di The & is intended to help elucidate the
link between genes and disease. For each study, users
have access to detailed information about the

d

» Assembly Archive

» Clusters of
orthologous groups

P Coffee Break,
Genes & Disease,
NCBI Handbook

» Electronic PCR
» Entrez Home

» Entrez Tools

» Gene expression

P ¥P d and pre-comp
associations between subjects’ phenotypes and
genotypes. Click here to read the press release. To
read more about GW A projects, see NCBI's GWA
ISSOUNCE DSOS

100 Gigabases

GenBank and its collaborating databases, the

European Molecular Biology Laboratory and

the DNA Data Bank of Japan, have reached a

milestone of 100 billion bases from over

165,000 organisms. See the press release or find
| more information on GenBank.

ibus (GEO)

» Human genome
resources

» Influenza Virus
Resource

| » Map Viewer
| » dbMHC

| » Mouse genome

es

'E PubMed Central
Bn archivwe of biomedical and life sciences journals ™
@ Fiee fulltext

@ Over 900,000 a ticles fiom over 300 journals
@ Linked to Publded and fully searchable

Use of PubMed Central requires no registration or fee.
Access it from any computer with an Internet connection.

» My NCBI
» ORF finder

» Rat genome
resources

P Ref

sequence project

Analysis, and Retrieval System Online) and other related databases, with links to
participating online journals.

Entrez

Entrez integrates the scientific literature, DNA and protein sequence databases,
three-dimensional protein structure data, population study data sets, and assemblies
of complete genomes into a tightly coupled system. PubMed is the literature
component of Entrez.



THE EUROPEAN BIOINFORMATICS INSTITUTE (EBI) 25

BLAST

BLAST (Basic Local Alignment Search Tool) is NCBI’s sequence similarity search
tool designed to support analysis of nucleotide and protein databases (Altschul
etal., 1990, 1997). BLAST is a set of similarity search programs designed to explore
all of the available sequence databases regardless of whether the query is protein or
DNA. We explore BLAST in Chapters 3 to 5.

OMIM

Online Mendelian Inheritance in Man (OMIM) is a catalog of human genes and gen-
etic disorders. It was created by Victor McKusick and his colleagues and developed
for the World Wide Web by NCBI (Hamosh et al., 2005). The database contains
detailed reference information. It also contains links to PubMed articles and
sequence information. We describe OMIM in Chapter 20 (on human disease).

Books

NCBI offers several dozen books online. These books are searchable, and are linked
to PubMed.

Taxonomy

The NCBI taxonomy website includes a taxonomy browser for the major divisions of
living organisms (archaea, bacteria, eukaryota, and viruses). The site features taxon-
omy information such as genetic codes and taxonomy resources and additional infor-
mation such as molecular data on extinct organisms and recent changes to
classification schemes. We will visit this site in Chapters 7 (on evolution) and 13 to
18 (on genomes and the tree of life).

Structure

The NCBI structure site maintains the Molecular Modelling Database (MMDB), a
database of macromolecular three-dimensional structures, as well as tools for their
visualization and comparative analysis. MMDB contains experimentally determined
biopolymer structures obtained from the Protein Data Bank (PDB). Structure
resources at NCBI include PDBeast (a taxonomy site within MMDB), Cn3D (a
three-dimensional structure viewer), and a vector alignment search tool (VAST)
which allows comparison of structures. (See Chapter 11, on protein structure.)

THE EuroPEAN BioiNFoRMATICS INsTiTUTE (EBI)

The EBI website is comparable to NCBI in its scope and mission, and it represents a
complementary, independent resource. EBI features six core molecular databases
(Brooksbank et al., 2003), as follows. (1) EMBL-Bank is the repository of DNA
and RNA sequences that is complementary to GenBank and DDBJ (Kulikova
et al., 2007). (2) SWISS-PROT and (3) TrEMBL are two protein databases that
are described further below. (4) MSD is a protein structure database (see Chapter
11). (5) Ensembl is one of the three main genome browsers (described below). (6)
ArrayExpress is one of the two main worldwide repositories for gene expression

The Protein Data Bank (> http://
www.rcsb.org/pdb/) is the single
worldwide repository for the pro-
cessing and distribution of bio-
logical macromolecular structure
data. We explore the PDB in
Chapter 11.

You can access EBI at »EBI at
http://www.ebi.ac.uk/.
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DNA is usually sequenced on both
strands. However, EST's are often
sequenced on one strand only, and
thus they have a high error rate. We
will discuss sequencing error rates
in Chapter 13.

data, along with the Gene Expression Omnibus at NCBI; both are described in
Chapter 8.

Throughout this book we will focus on both the NCBI and EBI websites. In
many cases those sites begin with similar raw data and then provide distinct ways
of organizing, analyzing, and displaying data across a broad range of bioinformatics
applications. When you work on a problem, such as studying the structure or function
of a particular gene, it is often helpful to explore the wealth of resources on both these
sites. For example, each offers expert functional annotation of particular sequences
and expert curation of the database. The NCBI and EBI websites increasingly
offer an integration of their database resources so that one can link to information
between the two sites with reasonable effort.

Access 10 INFORMATION: AccessioN NuMmBERs TO LABEL
AND IDENTIFY SEQUENCES

When you have a problem you are studying that involves any gene or protein, it is
likely that you will need to find information about some database entries. You may
begin your research problem with information obtained from the literature or you
may have the name of a specific sequence of interest. Perhaps you have raw amino
acid and/or nucleotide sequence data; we will explore how to analyze these (e.g.
Chapters 3 to 5). The problem we will address now is how to extract information
about your gene or protein of interest from databases.

An essential feature of DNA and protein sequence records is that they are tagged
with accession numbers. An accession number is a string of about 4 to 12 numbers
and/or alphabetic characters that are associated with a molecular sequence record.
An accession number may also label other entries, such as protein structures or the
results of a gene expression experiment (Chapters 8 and 9). Accession numbers
from molecules in different databases have characteristic formats (Box 2.1). These
formats vary because each database employs its own system. As you explore databases
from which you extract DNA and protein data, try to become familiar with the
different formats for accession numbers. Some of the various databases (Fig. 2.2)
employ accession numbers that tell you whether the entry contains nucleotide or
protein data.

For a typical molecule such as beta globin there are thousands of accession num-
bers (Fig. 2.5). Many of these correspond to ESTs and other fragments of DNA that
match beta globin. How can you assess the quality of sequence or protein data? Some
sequences are full-length, while others are partial. Some reflect naturally occurring
variants such as single nucleotide polymorphisms (SNPs; Chapter 16) or alternatively
spliced transcripts (Chapter 8). Many of the sequence entries contain errors, particu-
larly in the ends of EST reads. When we compare beta globin sequences derived from
mRNA and from genomic DNA, we may expect them to match perfectly (or nearly so),
but as we will see, discrepancies routinely occur.

In addition to accession numbers, NCBI also assigns unique sequence identification
numbers that apply to the individual sequences within a record. GI numbers are assigned
consecutively to each sequence that is processed. For example, the human beta
globin DNA sequence associated with the accession number NM_000518.4 has a
gene identifier GI:28302128. The suffix .4 on the accession number refers to a version
number; NM_000518.3 has a different gene identifier, GI: 13788565.
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BOX 2-1
Types of Accession Numbers

Type of Record

Sample Accession Format

GenBank/EMBL/DDB]J nucleotide
sequence records

GenPept sequence records (which
contain the amino acid translations
from GenBank/EMBL/DDB]
records that have a coding region
feature annotated on them)

Protein sequence records from
SwissProt and PIR

Protein sequence records from the
Protein Research Foundation

RefSeq nucleotide sequence records

One letter followed by five digits, e.g.,
X02775

Two letters followed by six digits, e.g.,
AF025334

Three letters and five digits, e.g.,
AAA12345

Usually one letter and five digits, e.g.,
P12345. SwissProt numbers may also
be a mixture of numbers and letters.

A series of digits (often six or seven)
followed by a letter, e.g., 1901178A

Two letters, an underscore bar, and six

or more digits, e.g., mRNA records
(NM_"): NM_006744; genomic
DNA contigs (NT_*): NT_008769

Two letters (NP), an underscore bar, and
six or more digits, e.g., NP_006735

RefSeq protein sequence records

Protein structure records PDB accessions generally contain one
digit followed by three letters, e.g.,
1TUP. They may contain other
mixtures of numbers and letters (or
numbers only). MMDB ID numbers

generally contain four digits, e.g., 3973.

The Reference Sequence (RefSeq) Project

One of the most important recent developments in the management of molecular
sequences is RefSeq. The goal of RefSeq is to provide the best representative
sequence for each normal (i.e., nonmutated) transcript produced by a gene and for
each normal protein product (Pruitt et al., 2009; Maglott et al., 2000). There may
be hundreds of GenBank accession numbers corresponding to a gene, since
GenBank is an archival database that is often highly redundant. However, there
will be only one RefSeq entry corresponding to a given gene or gene product, or sev-
eral RefSeq entries if there are splice variants or distinct loci.

Consider human myoglobin as an example. There are three RefSeq entries
(NM_005368, NM_203377, and NM_203378), each corresponding to a distinct
splice variant. Each splice variant involves the transcription of different exons from
a single gene locus. In this example, all three transcripts happen to encode an iden-
tical protein having the same amino acid sequence. Because the source of the tran-
script varies distinctly, each identical protein sequence is assigned its own protein
accession number (NP_005359, NP_976311, and NP_976312, respectively).

To see and compare the three
myoglobin RefSeq entries at the
DNA and the protein levels, visit
> http://www.bioinfbook.org/
chapter2 and select webdocument
2.1.

Allelic variants, such as single base
mutations in a gene, are not
assigned different RefSeq acces-
sion numbers. However, OMIM
and dbSNP (Chapters 16 and 20)
do catalog allelic variants.
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FIGURE 2.5. There are thousands
of accession numbers correspond-
ing to many genes and proteins. A
search with the query “beta
globin” from the main page of
NCBI shows the results across the
databases of the Entrez search
engine. There are over 1000 each
of core nucleotide sequences,
expressed sequence tags (ESTS),
and proteins. The RefSeq project
is particularly important in trying
to provide the best representative
sequence of each normal (nonmu-
tated) transcript produced by a
gene and of each distinct, normal
protein sequence.

A GenBank or RefSeq accession
number refers to the most recent
version of a given sequence. For
example NM_000558.3 is cur-
rently a RefSeq identifier for
human alpha globin. The
suffix“.3” is the version number.
By default, if you do not specify a
version number then the most
recent version is provided. Try
doing an Entrez nucleotide search
for NM_000558.1 and you can
learn about the revision history of
that accession number. In Chapter
3 we will learn how to compare
two sequences; you can blast
NM_000558.1 against
NM_000558.3 to see the differ-
ences, or view the results in web
document 2.2 at » http://www.
bioinfbook.org/chapter2.
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RefSeq entries are curated by the staff at NCBI, and are nearly nonredundant.
However, there can be two proteins encoded by distinct genes sharing 100% amino
acid identity. Each is assigned its own unique RefSeq identifier. For example, the
alpha-1 globin and alpha-2 globin genes in human are physically separate genes that
encode proteins with identical sequences. The encoded alpha-1 globin and alpha-2
globin proteins are assigned the RefSeq identifiers N>_000549 and NP_000508.

Refseq entries have different status levels (predicted, provisional, and reviewed),
but in each case the RefSeq entry is intended to unify the sequence records. You can
recognize a RefSeq accession by its format, such as NP_000509 (P stands for
beta globin protein) or NM_006744 (for beta globin mRNA). A variety of RefSeq
identifiers are shown in Table 2.7, and examples of beta globin identifiers are given
in Table 2.8.

1)\ R S Formats of Accession Numbers for RefSeq Entries

Molecule Accession Format Genome
Complete NC_123456 Complete genomic molecules, including
genome genomes, chromosomes, organelles, and
plasmids
Genomic NW_123456 Intermediate genomic assemblies
DNA NW_123456789
Genomic NZ_ABCD12345678 Collection of whole genome shotgun sequence
DNA data
Genomic NT_123456 Intermediate genomic assemblies (BAC and/
DNA or WGS sequence data)
mRNA NM_123456 or Transcript products; mature mRNA protein-
NM_123456789 coding transcripts
Protein NP_123456 or Protein products (primarily full-length)
NM_123456789
RNA NR_123456 Noncoding transcripts (e.g. structural RNAs,

transcribed pseudogenes)

There are currently 21 different RefSeq accession formats. The methods include expert manual curation,
automated curation, or a combination. Abbreviations: BAC, bacterial artificial chromosome; WGS, whole
genome shotgun (see Chapter 13).

Source: Adapted from P http://www.ncbi.nlm.nih.gov/RefSeq/key. html#accessions (March 2007).



ACCESS TO INFORMATION VIA ENTREZ GENE AT NCBI 29

1):\: W32 RefSeqAccession Numbers Corresponding to Human Beta Glohin

Category Accession Size Description

DNA NC_000011 134,452,384 bp Genomic contig

DNA NM_000518.4 626 bp DNA corresponding to mRNA
DNA NG_000007.3 81,706 bp Genomic reference

DNA NW_925006.1 1,606 bp Alternate assembly

Protein NP_000509.1 147 amino acids Protein

The Consensus Coding Sequence (CCDS) Project

The Consensus Coding Sequence (CCDS) project was established to identify a
core set of protein coding sequences that provide a basis for a standard set of gene
annotations. The CCDS project is a collaboration between four groups (EBI,
NCBI, the Wellcome Trust Sanger Institute, and the University of California,
Santa Cruz [UCSC]). Currently, the CCDS project has been applied to the
human and mouse genomes, and thus its scope is considerably more limited
than RefSeq.

Access 1o INFORMATION VIA ENTREZ GENE AT NCBI

How can one navigate through the bewildering number of protein and DNA
sequences in the various databases? An emerging feature is that the various databases
are increasingly interconnected, providing a variety of convenient links to each other
and to algorithms that are useful for DNA, RNA, and protein analysis. Entrez Gene
(formerly LocusLinKk) is particularly useful as a major portal. It is a curated database
containing descriptive information about genetic loci (Maglott et al., 2007). You can
obtain information on official nomenclature, aliases, sequence accessions, pheno-
types, EC numbers, OMIM numbers, UniGene clusters, HomoloGene (a database
that reports eukaryotic orthologs), map locations, and related websites.

To illustrate the use of Entrez Gene we will search for human myoglobin. The
result of entering an Entrez Gene search is shown in Fig. 2.6. Note that in performing
this search, it can be convenient to restrict the search to a particular organism of
interest. (This can be done using the “limits” tab on the Entrez Gene page.) The
“Links” button (Fig. 2.6, top right) provides access to various other database entries
on myoglobin. Clicking on the main link to the human myoglobin entry results in the
following information (Fig. 2.7):

e At the top right, there is a table of contents for the Entrez Gene myoglobin
entry. Below it are further links to myoglobin entries in NCBI databases
(e.g. protein and nucleotide databases and PubMed), as well as external
databases (e.g. Ensembl and UCSC; see below and Chapter 16).

e Entrez Gene provides the official symbol and name for human myoglobin, MB.

e A schematic overview of the gene structure is provided, hyperlinked to the
Map Viewer (see below).

e There is a brief description of the function of MB, defining it as a carrier
protein of the globin family.

You can learn about the CCDS
project at » http://www.ncbi.
nlm.nih.gov/projects/CCDS/.

Entrez Gene is accessed from the
main NCBI web page (by clicking
All Databases). Currently
(November 2008), Entrez Gene
encompasses about 5,700 taxa
and 4.6 million genes. We will
explore many of the resources
within Entrez Gene in later
chapters.
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FIGURE 2.6. Result of a search
for “myoglobin” in Entrez Gene.
Information is provided for a
variety of organisms, including
Homo sapiens, Mus musculus,
and Rattus norvegicus. The links
button (top right) provides access
to information on myoglobin from
a variety of other databases.

FIGURE 2.7. Portion  of  the
Entrez Gene entry for human myo-
globin. Information is provided on
the gene structure, chromosomal
location, as well as a summary of
the protein’s function. RefSeq
accession numbers are also pro-
vided (not shown); you can access
them by clicking “Reference
sequences” in the table of contents
(top right). The menu (right side-
bar) provides extensive links to
additional  databases, including
PubMed, OMIM, UniGene, a
variation  database  (dbSNP),
HomoloGene (with information
on homologs), a gene ontology
database, and Ensembl viewers at
EBIL. We will describe these
resources in later chapters.
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e The Reference Sequence (RefSeq) accession numbers are provided:
NM_005368 for the DNA sequence encoding the longest myoglobin tran-
script and NP_005359 for the protein entry. GenBank accession numbers
corresponding to myoglobin (both nucleotide and protein) are also provided.

Figure 2.8 shows the standard, default form of a typical Entrez Protein record

(for myo
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globin). It is simple to obtain a variety of formats by changing the Entrez
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FIGURE 2.8. Display of an Entrez
Protein record for human myoglo-
bin. This is a typical entry for any
protein. (a) Top portion of the
record. Key information includes
the length of the protein (154
amino acids), the division (PRI,
or primate), the accession number
(NP_005359), the organism
(H. sapiens), literature references,
comments on the function of glo-
bins, and many links to other data-
bases (right side). At the top of the
page, the display option allows
you to obtain this record in a
variety of formats, such as FASTA
(Figure 2.9). (b) Bottom portion
of the record. This includes features
such as the coding sequence (CDS).
The amino acid sequence is pro-
vided at the bottom in the single
letter amino acid code.
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FIGURE 2.9. The protein entry
for buman myogobin can be dis-
played in the FASTA format. This
is easily accomplished by adjusting
the “Display”  pull-down menu
from an Entrez protein record.
The FASTA format is used in a var-
iety of software programs that we
will use in later chapters.

FASTA is both an alignment pro-
gram (described in Chapter 3) and
a commonly used sequence format
(further described in Chapter 4).

Entrez Gene now has about
40,000 human gene entries (as of
November 2008).
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the commonly used FASTA format for protein (or DNA) sequences, as shown in
Fig. 2.9. Note also that by clicking the CDS (coding sequence) link of an Entrez
Protein or Entrez Nucleotide record (shown in Fig. 2.8b), you can obtain the nucleo-
tides that encode a particular protein, typically beginning with a start methionine
(ATG) and ending with a stop codon (TAG, TAA, or TGA). This can be useful
for a variety of applications including multiple sequence alignment (Chapter 6)
and molecular phylogeny (Chapter 7).

Relationship of Entrez Gene, Entrez Nucleotide, and Entrez Protein

If you are interested in obtaining information about a particular DNA or protein
sequence, it is reasonable to visit Entrez Nucleotide or Entrez Protein and do a
search. A variety of search strategies are available, such as limiting the output to a
particular organism or taxonomic group of interest, or limiting the output to
RefSeq entries.

There are also many advantages to beginning your search through Entrez Gene.
There, you can identify the official gene name, and you can be assured of the chro-
mosomal location of the gene (thus providing unambigous information about
which particular gene you are studying). Furthermore, each Entrez Gene entry
includes a section of reference sequences that provides all the DNA and protein
variants that are assigned RefSeq accession numbers.

Comparison of Entrez Gene and UniGene

As described above, the UniGene project assigns one cluster of sequences to one
gene. For example, for RBP4 there is one UniGene entry with the UniGene acces-
sion number Hs.50223. This UniGene entry includes a list of all the GenBank
entries, including ESTs, that correspond to the RBP4 gene. The UniGene entry
also includes mapping information, homologies, and expression information (i.e.,
a list of the tissues from which cDNA libraries were generated that contain EST's
corresponding to the RBP gene).

UniGene and Entrez Gene have features in common, such as links to OMIM,
homologs, and mapping information. They both show RefSeq accession numbers.
There are four main differences between UniGene and Entrez Gene:

1. UniGene has detailed expression information; the regional distributions of
cDNA libraries from which particular EST's have been sequenced are listed.
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2. UniGene lists ESTs corresponding to a gene, allowing one to study them in
detail.

3. Entrez Gene may provide a more stable description of a particular gene; as
described above, UniGene entries may be collapsed as genome-sequencing
efforts proceed.

4. Entrez Gene has fewer entries than UniGene, but these entries are better
curated.

Entrez Gene and HomoloGene

The HomoloGene database provides groups of annotated proteins from a set of com-
pletely sequenced eukaryotic genomes. Proteins are compared (by blastp; see
Chapter 4), placed in groups of homologs, and then the protein alignments are
matched to the corresponding DNA sequences. This allows distance metrics to be
calculated such as Ka/Ks, the ratio of nonsynonymous to synonymous mutations
(see Chapter 7). You can find a HomoloGene entry for a gene/protein of interest
by following a link on the Entrez Gene page.

A search of HomoloGene with the term hemoglobin results in dozens of matches
for myoglobin, alpha globin, and beta globin. By clicking on the beta globin group
one gains access to a list of proteins with RefSeq accession numbers from human,
chimpanzee, dog, mouse, and chicken. The pairwise alignment scores (see
Chapter 3) are summarized and linked to, and the sequences can be displayed as a
multiple sequence alignment (Chapter 6), or in the FASTA format.

Access TO INFORMATION: PROTEIN DATABASES

In many cases you are interested in obtaining protein sequences. The Entrez Protein

database at NCBI consists of translated coding regions from GenBank as well as
sequences from external databases (the Protein Information Resource [PIR],
SWISS-PROT, Protein Research Foundation [PRF], and the Protein Data Bank
[PDB]). The EBI also provides information on proteins via these major databases.
We will next explore ways to obtain protein data through UniProt, an authoritative
and comprehensive protein database.

UniProt

The Universal Protein Resource (UniProt) is the most comprehensive, centralized
protein sequence catalog (UniProt Consortium, 2009). Formed as a collaborative
effort in 2002, it consists of a combination of three key databases. (1) Swiss-Prot is
considered the best-annotated protein database, with descriptions of protein struc-
ture and function added by expert curators. (2) The translated EMBL (TrEMBL)
Nucleotide Sequence Database Library provides automated (rather than manual)
annotations of proteins not in Swiss-Prot. It was created because of the vast
number of protein sequences that have become available through genome sequencing
projects. (3) PIR maintains the Protein Sequence Database, another protein database
curated by experts.

UniProt is organized in three database layers. (1) The UniProt Knowledgebase
(UniProtKB) is the central database that is divided into the manually annotated
UniProtKB/Swiss-Prot and the computationally annotated UniProtKB/TrEMBL.

HomoloGene is available by
clicking All Databases from the
NCBI home page, or at » http://
www.ncbi.nlm.nih.gov/entrez/
query.fcgiz7db=homologene.
Release 53 (March 2007) has over
170,000 groups. We will define
homologs in Chapter 3.

EBI offers access to over a dozen
different protein databases, listed
at » http://www.ebi.ac.uk/
Databases/protein.html.

The European Bioinformatics
Institute (EBI) in Hinxton and the
Swiss Institute of Bioinformatics
(SIB) in Geneva created Swiss-
Prot and TrEMBL. PIR is a div-
ision of the National Biomedical
Research Foundation (» http://
pir.georgetown.edu/) in
Washington, D.C. PIR was
founded by Margaret Dayhoff,
whose work is described in
Chapter 3. The UniProt web site
is P http://www.uniprot.org. It
contains over 7 million entries
(release 14.4, November 2008).
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To access UniProt from EBI, visit
> http://www.ebi.ac.uk/uniprot/.
To access UniProt from ExPASy,
visit » http://www.expasy.org/
sprot/.

ExPASy is a proteomics server of
the Swiss Institute of
Bioinformatics (» http://www.
expasy.ch/), another portal from
which the Sequence Retrieval
System (SRS) is accessed. From
» http://www.expasy.ch/srs5/,
click “Start a new SRS session,”
then click “continue.” SRS was
created by Lion Biosciences, and a
list of several dozen publicly avail-
able SRS servers is at » http://
downloads.lionbio.co.uk/
publicsrs.html.

FIGURE 2.10. Format of a query
at the Sequence Retrieval System
(SRS) of the Expert Protein
Analysis  System  (ExPASy)
(™ http:/ jwww.expasy.ch/srs5/).
This website provides one of the
most useful resources for protein
analysis. You can also access the
SRS through other sites such as the
European Bioinformatics Institute

(™ hitp:/ /srs6.ebi.ac.uk/).

(2) The UniProt Reference Clusters (UniRef) offer nonredundant reference clusters
based on UniProtKB. UniRef clusters are available with members sharing at least
50%, 90%, or 100% identity. (3) The UniProt Archive, UniParc, consists of a
stable, nonredundant archive of protein sequences from a wide variety of sources
(including model organism databases, patent offices, RefSeq, and Ensembl).

You can access UniProt directly from its website, or from EBI or ExPASy.

The Sequence Retrieval System at ExPASy

One of the most useful resources available to obtain protein sequences and associated
data is provided by ExPASy, the Expert Protein Analysis System. The ExPASy server
is a major resource for proteomics-related analysis tools, software, and databases. In
addition to providing access to the UniProt database, ExPASy serves as a portal for
the Sequence Retrieval System (SRS). The query page has four rectangular boxes
(Fig. 2.10). Each has an associated pull-down menu, and as a default condition each
says “All'Text.” In the first box, type “retinol-binding.” (Note that queries should consist
of one word.) In the second box, type “human,” change the corresponding pull-down
menu to “organism,” then click “do query.” You see 10 entries listed. Click the link in
which we are interested (SWISS_PROT: RETB_HUMAN P02753).

An output consists of a SwissProt record. This provides very useful, well-
organized information, including alternative names and accession numbers; litera-
ture links; functional data and information about cellular localization; links to
GenBank and other database records for both the RBP protein and gene; and links
to many databases such as OMIM, InterPro, Pfam, Prints, GeneCards,
PROSITE, and two-dimensional protein gel databases. We will describe these
resources later (Chapters 6 and 10). The record includes features; note that by click-
ing on any of the linked features, you can see the protein sequence with that feature
highlighted in color. While we have mentioned several key ways to acquire sequence
data, there are dozens of other useful servers. As an example, the Protein Information
Resource (PIR) provides access to sequences (Wu et al., 2002). PIR is especially
useful for its efforts to annotate functional information on proteins.
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Access 10 INFORMATION: THE THREE MAIN GENOME
BROWSERS

Genome browsers are databases with a graphical interface that presents a represen-
tation of sequence information and other data as a function of position across the
chromosomes. We will focus on viral, prokaryotic, and eukaryotic chromosomes in
Chapters 14 to 19. Genome browsers have emerged as an essential tool for organizing
information about genomes. We will now briefly introduce the three principal
genome browsers and describe how they may be used to acquire information about
a gene or protein of interest.

The Map Viewer at NCBI

The NCBI Map Viewer includes chromosomal maps (both physical maps and gen-
etic maps; see Chapter 16) for a variety of organisms, including metazoans (animals),
fungi, and plants. Map Viewer allows text-based queries (e.g., “beta globin”) or
sequence-based queries (e.g., BLAST; see Chapter 4). For each genome, four
levels of detail are available: (1) the home page of an organism; (2) the genome
view, showing ideograms (representations of the chromosomes); (3) the map view,
allowing you to view regions at various levels of resolution; and (4) the sequence
view, displaying sequence data as well as annotation of interest such as the location
of genes.

The University of California, Santa Cruz (UCSC) Genome Browser

The UCSC browser currently supports the analysis of three dozen vertebrate and
invertebrate genomes, and it is perhaps the most widely used genome browser for
human and other prominent organisms such as mouse. The Genome Browser pro-
vides graphical views of chromosomal locations at various levels of resolution (from
several base pairs up to hundreds of millions of base pairs spanning an entire chromo-
some). Each chromosomal view is accompanied by horizontally oriented annotation
tracks. There are hundreds of available tracks in categories such as mapping
and sequencing, phenotype and disease associations, genes, expression, comparative
genomics, and genomic variation. These annotation tracks offer the Genome Browser
tremendous depth and flexibility. The Genome Browser has a complementary, inter-
connected Table Browser that provides tabular output of information.

As an example of how to use the browser, go the UCSC bioinformatics site, click
Genome Browser, set the clade (group) to Vertebrate, the genome to human, the
assembly to March 2006 (or any other build date), and under “position or search
term” type beta globin (Fig. 2.11a). Click submit and you will see a list of known
genes and a RefSeq gene entry for beta globin on chromosome 11 (Fig. 2.11b). By
following this RefSeq link you will view the beta globin gene (spanning about 1600
base pairs) on chromosome 11, and can perform detailed analyses of the beta
globin gene (including neighboring regulatory elements), the messenger RNA (see
Chapter 8), and the protein (Fig. 2.11c).

The Ensemhl Genome Browser

The Ensembl project offers a series of comprehensive websites for a variety of eukary-
otic organisms (Hubbard et al., 2007). The project’s goals are to automatically ana-
lyze and annotate genome data (see Chapter 13) and to present genomic data via its

Genomes are analyzed over time
in assemblies (see Chapter 13).
The main human genome brow-
sers share the same underlying
assemblies, and differ in the ways
they annotate and present infor-
mation. NCBI Build 36
(November, 2005) is an example
of a human assembly.

The Map Viewer is accessed from
the main page of NCBI or via

» http://www.ncbi.nlm.nih.gov/
mapview/. Records in Entrez
Gene, Entrez Nucleotide, and
Entrez Protein also provide direct
links to the Map Viewer.

The UCSC genome browser is
available from the UCSC bioin-
formatics site at » http://genome.
ucsc.edu. You can see examples of
it in Figs. 5.17, 5.20, 6.10, 8.8,
12.8, 16.4, and 9.20.
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FIGURE 2.11. Using the UCSC
Genome Browser. (a) One can
select from dozens of organisms
(mostly vertebrates) and assem-
blies, then enter a query such as
“beta globin” (shown here) or an
accession number or chromosomal
position. (b) By clicking submit, a
list of known genes as well as
RefSeq genes is displayed. (c)
Following the link to the RefSeq
gene for beta globin, a browser
window is opened showing 1606
base pairs on human chromosome
11. A series of horizontal tracks is
displayed  including a list of
RefSeq genes and Ensembl gene
predictions; exons are displayed as
thick bars, and arrows indicate
the direction of transcription
(from right to lefi, toward the telo-
mere or end of the short arm of
chromosome 11). See » http://
genome.ucsc.edu.

Ensembl (> http://www.ensembl.
org) is supported by EMBL and
the EBI (> http://www.ebi.ac.uk/)
in cooperation with the Wellcome
Trust Sanger Institute (WTSI;

> http://www.sanger.ac.uk/).
Ensembl focuses on vertebrate
genomes, although its genome
browser format is being adopted
for the analysis of many additional
eukaryotic genomes.

We explore bioinformatics
approaches to HIV-1 in detail in
Chapter 14 on viruses.

As of November 2008 there are
about 250,000 entries in Entrez
Nucleotide for the query “hiv-1.”
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web browser. Ensembl is in some ways comparable in scope to the UCSC Genome
Browser, although the two offer distinct resources.

We can begin to explore Ensembl from its home page by selecting Homo sapiens and
doing a text search for “hbb,” the gene symbol for beta globin. This yields a link to the
beta globin protein and gene; we will return to the Ensembl resource in later chapters.
This entry contains a large number of features relevant to HBB, including identifiers,
the DNA sequence, and convenient links to many other database resources.

ExampLes oF How 10 Access SEQUENCE DATA

We will next explore two practical problems in accessing data: the human immuno-
deficiency virus-1 (HIV-1) pol protein, and human histones. Each presents distinct
challenges.

HIV pol

Consider reverse transcriptase, the RNA-dependent DNA polymerase of HIV-1
(Frankel and Young, 1998). The gene-encoding reverse transcriptase is called po/
(for polymerase). How do you obtain its DNA and protein sequence?

From the home page of NCBI enter “hiv-1” (do not use quotation marks; the use
of capital letters is optional). All Entrez databases are searched. Under the Nucleotide
category, there are several hundred thousand entries. Click Nucleotide to see these
entries. Over 800 entries have RefSeq identifiers; while this narrows the search con-
siderably, there are still too many matches to easily find HIV-1 pol. One reason for
the large number of entries in Entrez Nucleotide is that the HIV-1 genome has been
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resequenced thousands of times in efforts to identify variants. Another reason for the
many hits is that entries for a variety of organisms, including mouse and human,
refer to HIV-1 and thus are listed in the output. Performing a search with the query
“hiv-1 pol” further reduces the number of matches, but there are still several thousand.

A useful alternate strategy is to limit the search to the organism you are interested
in. Begin the search again from the home page of NCBI by clicking “Taxonomy
Browser” (along the top bar), and entering Hiv-1. Next follow the link to the taxon-
omy page specific to HIV-1 (Fig. 2.12). Here you will find the taxonomy identifier for
HIV-1; each organism or group in GenBank (e.g., kingdom, phylum, order, genus,
species) is assigned a unique identifier. Also, there is an extremely useful table of
links to Entrez records. By clicking on the link to Entrez Nucleotide (Fig. 2.11,
right side), you will find all the records of sequences from HIV-1, but no records
from any other organisms. There is now only one RefSeq entry (NC_001802).
This entry refers to the 9181 bases that constitute HIV-1, encoding just nine genes
including gag-pol. Given the thousands of HIV-1 pol variants that exist, this example
highlights the usefulness of the RefSeq project, allowing the research community to
have a common reference sequence to explore.

As an alternative strategy, from the Entrez table on the HIV-1 taxonomy page one
can link to the single Entrez Genome record for HIV-1, and find a table of the nine
genes (and nine proteins) encoded by the genome. Each of these nine Entrez
Genome records contains detailed information on the genes; in the case of
gag-pol, there are seven separate RefSeq entries, including one for the gag-pol pre-
cursor (NP_057849, 1435 amino acids in length) and one for the mature HIV-1
pol protein (NP_789740, 995 amino acids).

Note that other NCBI databases are not appropriate for finding the sequence of a
viral reverse transcriptase: UniGene does not incorporate viral records, while OMIM
is limited to human entries. UniGene and OMIM, however, do have links to genes
that are related to HIV, such as eukaryotic reverse transcriptases.
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We will see that BLAST searches
(Chapter 4) can be limited by any
Entrez query; you can enter the
taxonomy identifier into a BLAST
search to restrict the output to any
organism or taxonomic group of
interest.

From the Entrez Genome or other
Entrez pages, try exploring the
various options under the Display
pull-down menu. For example, for
the Entrez Genome entry for
NC_001802 you can display a
convenient protein table; from
Entrez Nucleotide or Entrez
Protein you can select Graph to
obtain a schematic view of the
HIV-1 genome and the genes and
proteins it encodes.

FIGURE 2.12. The entry for
human immunodeficiency virus 1
(HIV-1) at the NCBI Taxonomy
Browser  displays  information
about the genus and species as
well as a wvariety of links to
Entrez records. By following these
links, one can obtain a list of pro-
teins, genes, DNA sequences, struc-
tures, or other data types that are
restricted to this organism. This
can be a useful strategy to find a
protein or gene from a particular
organism (e.g., a species or subspe-
cies of interest), excluding data
from all other species. By following
the Entrez Genome Sequences link,
one can access a list of nine known
HIV-1 protein-coding genes.
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By clicking the Details tab on an
Entrez Protein search, you can see
that the command is interpreted as
“txid9606[Organism:exp] AND
histone[All Fields]”. The Boolean
operator AND is included
between search terms by default.

The Histone Sequence Database
is available at » http://research.
nhgri.nih.gov/histones/ (Sullivan
et al., 2002). It was created by
David Landsman, Andy
Baxevanis, and colleagues at the
National Human Genome
Research Institute.

You can find links to a large col-
lection of specialized databases at
> http://www.expasy.org/links.
html, the Life Science Directory at
the ExPASy (Expert Protein
Analysis System) proteomics
server of the Swiss Institute of
Bioinformatics (SIB).

The NLM website is » http://
www.nlm.nih.gov/.

In a separate approach, one can obtain the HIV-1 reverse transcriptase sequence
from SRS. Select the SwissProt database to search. In the four available dialog
boxes, set one row to “organism” and “HIV-1,” then set another row to “AllText”
and “reverse.” Upon clicking “Do query,” a list of several dozen entries is returned;
many of these are identified as fragments and may be ignored. One entry is
SWISS_PROT:POL_ HV1A2 (SWISS-PROT accession P03369), a protein of 1437
amino acids. Following the SwissProt link, one finds the “NiceProt” for this database
entry. This information includes entry and modification dates, names of this protein
and synonyms, references (with PubMed links), comments (including a brief func-
tional description), cross-references to over a dozen other useful databases, a keyword
listing, features such as predicted secondary structure, and finally, the amino acid
sequence in the single-letter amino acid code and the predicted molecular weight of
the protein. For this case, the gene encodes a protein as an unprocessed precursor
that is further cleaved to generate many smaller proteins, including matrix protein
pl7, capsid protein p24, nucleocapsid protein p7, a viral protease, a reverse transcrip-
tase/ribonuclease H multifunctional protein, and an integrase. These features are
clearly described in the UniProtKB/Swiss-Prot entry for P03369.

Histones

The biological complexity of proteins can be astonishing, and accessing information
about some proteins can be extraordinarily challenging. Histones are among the most
familiar proteins by name. They are small proteins (12 to 20 kilodaltons) that are
localized to the nucleus where they interact with DNA. There are five major histone
subtypes as well as additional variant forms; the major forms serve as core histones
(the H2A, H2B, H3, and H4 families) which ~147 base pairs of DNA wrap
around, and linker histones (the H1 family). Suppose you want to inspect a typical
human histone for the purpose of understanding the properties of a representative
gene and its corresponding protein. A challenge is that there are currently 80,000 his-
tone entries in Entrez Protein (November 2008). Restricting the output to human
histone proteins (using the command “txid9606[Organism:exp] histone”) there
are currently 5000 human histone proteins, of which 1200 have RefSeq accession
numbers. Some of these are histone deacetylases and histone acetyltransferases; by
expanding the query to “txid9606[Organism:exp] AND histone[All Fields] NOT
deacetylase NOT acetyltransferase” there are 800 proteins with RefSeq accession
numbers. There are many additional strategies for limiting Entrez searches (Box 2.2).

How can the search be further pursued? (1) You may select a histone at random
and study it although you may not know whether it is representative. (2) There are
specialized, expert-curated databases available online for many genes, proteins, dis-
eases, and other molecular features of interest. The Histone Sequence Database
(Sullivan et al., 2002) shows that the human genome has about 86 histone genes,
including a cluster of 68 adjacent genes on chromosome 6p. This information is
useful to understand the scope of the family. (3) There are databases of protein families,
including Pfam and InterPro. We will introduce these in Chapters 6 (multiple sequence
alignment) and 10 (proteomics). Such databases offer succinct descriptions of protein
and gene families and can orient you toward identifying representative members.

Access To BiomEDICAL LITERATURE

The NLM is the world’s largest medical library. In 1971 the NLM created
MEDLINE (Medical Literature, Analysis, and Retrieval System Online), a



ACCESS TO BIOMEDICAL LITERATURE 39

BOX 2-2
Tips for Using Entrez Databases

The Boolean operators AND, OR, and NOT must be capitalized. By default,
AND is assumed to connect two terms; subject terms are automatically
combined.

You can perform a search of a specific phrase by adding quotation marks. This
may potentially restrict the output, so it is a good idea to repeat a search with
and without quotation marks.

Boolean operators are processed from left to right. If you add parentheses, the
enclosed terms will be processed as a unit rather than sequentially. A search of
Entrez Gene with the query “globin AND promoter OR enhancer” yields 4800
results; however, by adding parentheses, the query “globin AND (promoter or
enhancer)” yields just 70 results.

If you are interested in obtaining results from a particular organism (or from any
taxonomic group such as the primates or viruses), try beginning with
TaxBrowser to select the organism first. See Fig. 2—11 for a detailed
explanation. Adding the search term human[ORGN] will restrict the output to
human. Alternatively, you can use the taxonomy identifier for human, 9606, as
follows: txid9606[Organism:exp]

A variety of limiters can be added. In Entrez Protein, the search
500000:999999 [Molecular weight] will return proteins having a molecular
weight from 500,000 to 1 million daltons. If you would like to see proteins
between 10,000 and 50,000 daltons that I have worked on, enter
010000:050000[Molecular weight] pevsner j (or, equivalently,
010000[MOLWTT]: 050000[MOLWT] AND pevsner j[Author]).

By truncating a query with an asterisk, you can search for all records that begin
with a particular text string. For example, a search of Entrez Nucleotide with
the query “globin” returns 5800 results; querying with “glob*” returns 8.2
million results. These include entries with the species Chaetomium globosum or
the word global.

Keep in mind that any Entrez query can be applied to a BLAST search to restrict

its output (Chapter 4).

bibliographic database. MEDLINE currently contains over 18 million references to
journal articles in the life sciences with citations from over 4300 biomedical journals
in 70 countries. Free access to MEDLINE is provided on the World Wide Web
through PubMed (» http://www.ncbi.nlm.nih.gov/PubMed/), which is developed
by NCBI. While MEDLINE and PubMed both provide bibliographic citations,
PubMed also contains links to online full-text journal articles. PubMed also provides
access and links to the integrated molecular biology databases maintained by NCBI.
These databases contain DNA and protein sequences, genome-mapping data, and
three-dimensional protein structures.

PubMed Central and Movement toward Free Journal Access

The biomedical research community has steadily increased access to literature

information. Groups such as the Association of Research Libraries (ARL) monitor

the migration of publications to an electronic form. Thousands of journals
are currently available online. Increasingly, online versions of articles include
supplementary material such as molecular data (e.g., the sequence of complete

MEDLINE is also accessible
through the SRS at the European
Bioinformatics Instititute via

» http://srs.ebi.ac.uk/. A
PubMed tutorial is offered at

» http://www.nlm.nih.gov/bsd/
pubmed_tutorial/m1001.html.
The growth of MEDLINE is
described at » http://www.nlm.
nih.gov/bsd/medline_growth.
html. Despite the multinational
contributions to MEDLINE, the
percentage of articles written in
English has risen from 59% at its
inception in 1966 to 92% in the
year 2008 (» http://www.nlm.
nih.gov/bsd/medline_lang_distr.
html).
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The National Library of Medicine
also offers access to PubMed
through NLM Gateway (» http://
gateway.nlm.nih.gov). This com-
prehensive service includes access
to a variety of NLM databases not
offered through PubMed, such as
meeting abstracts and a medical
encyclopedia.

The ARL website is » http://
www.arl.org/index.shtml.

genomes, or gene expression data) or videotapes illustrating an article. PubMed
Central provides a central repository for biological literature (Roberts, 2001).
All these articles have been peer reviewed and published simultaneously in
another journal. As of 2008, publications resulting from research funded by the
NIH, Wellcome Trust, and Medical Research Council must be made freely available
in PubMed Central.

Example of PubMed Search: RBP

A search of PubMed for information about “RBP” yields 1700 entries. Box 2.3
describes the basics of using Boolean operators in PubMed. There are many
additional ways to limit this search. Press “limits” and try applying features such as
restricting the output to articles that are freely available through PubMed Central.

BOX 2-3
Venn Diagrams of Boolean Operators AND, OR, and NOT for
Hypothetical Search Terms 1 and 2

globin AND disease
1 AND 2 1461 results in PubMed

globin OR disease
10R2 2,087,446 results in PubMed

globin NOT disease
1 NOT 2 13,640 results in PubMed

The AND command restricts the search to entries that are both present in a
query. The OR command allows either one or both of the terms to be present.
The NOT command excludes query results. The shaded areas represent search
queries that are retrieved. Examples are provided for the queries “lipocalin” or
“retinol-binding protein” in PubMed. The Boolean operators affect the searches
as indicated.
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The Medical Subject Headings (MeSH) browser provides a convenient way to
focus or expand a search. MeSH is a controlled vocabulary thesaurus containing
25,000 descriptors (headings). From PubMed, click “MeSH Database” on the left
sidebar and enter “retinol-binding protein.” The result suggests a series of possibly
related topics. By adding MeSH terms, a search can be focused and structured
according to the specific information you seek. Lewitter (1998) and Fielding and
Powell (2002) discuss strategies for effective MEDLINE searches, such as avoiding
inconsistencies in MeSH terminology and finding a balance between sensitivity
(i.e., finding relevant articles) and specificity (i.e., excluding irrelevant citations).
For example, for a subject that is not well indexed, it is helpful to combine a text key-
word with a MeSH term. It can also be helpful to use truncations; for example, the
search “therap*” introduces a wildcard that will retrieve variations such as therapy,
therapist, and therapeutic. Figure 2.13 provides an example of sensitivity and
specificity in a PubMed search for articles on hemoglobin.

True positives
199,000 articles
identified as on globins
truly are on globins

200,000 articles Sensitivity:
1 on hemoglobin | 199,000/200,000
(PubMed result) =0.995

False positives
1,000 articles
identified as on globins
are not on globins

18,000,000 articles
in PubMed

False negatives
200 articles identified
as not on globins
truly are on globins

17,800,000 articles o
“—  not on hemoglobin | — Specificity:
(PubMed result) 17,799,800/17,800,800
=0.999

True negatives
17,799,800 articles
identified as not on

globins are not on globins

The MeSH website at NLM is
> http://www.nlm.nih.gov/
mesh/meshhome.html; you can
also access MeSH via the NCBI
website including its PubMed

page.

FIGURE 2.13. Sensitivity ~ and
specificity in a database search.
We will describe sensitivity and
specificity in  Chapter 3 (see
Fig. 3.27) but can begin thinking
about those concepts in terms of a
hypotbetical search of PubMed for
hemoglobin. Each search of a data-
base yields results that are reported
(positives) or not (negatives).
According to some “gold standard”
or objective measure of the truth,
these results may be true positives
(e.g, a search for globins does
return literature citations on glo-
bins) or false positives (eg., a
search for glob* returns infor-
mation about the species C. globo-
sum but those citations are
irrelevant to globins). The sensi-
tivity is defined as the proportion
of true positives relative to true
plus false positives. There also will
be many negative results (lower
portion of figure). These may
include true negatives (e.g., articles
that do not describe globins and are
not included in the search results)
and false negatives (e.g., articles
that do discuss globins but are not
part of the search results; this
might occur if the title and abstract
do not mention globins but the
body of the article does).
Specificity may be defined as the
proportion of true negative results
divided by the sum of true negative
and false positive results.



42

ACCESS TO SEQUENCE DATA AND LITERATURE INFORMATION

PERSPECTIVE

Bioinformatics is a young, emerging field whose defining feature is the accumulation
of biological information in databases. The three major DNA databases—GenBank,
EMBL, and DDBJ—are adding several million new sequences each year as well as
billions of nucleotides. Beginning in 2008, terabases (thousands of gigabases) of
DNA sequence are arriving.

In this chapter, we described ways to find information on the DNA and/or
protein sequence of globins, RBP4, and the HIV pol gene. In addition to the three
major databases, a variety of additional resources are available on the web.
Increasingly, there is no single correct way to find information—many approaches
are possible. Moreover, resources such as those described in this chapter—NCBI,
ExPASy, EBI/EMBL, and Ensembl—are closely interrelated, providing links
between the databases.

PiTFALLS

There are many pitfalls associated with the acquisition of both sequence and litera-
ture information. In any search, the most important first step is to define your
goal: for example, decide whether you want protein or DNA sequence data. A
common difficulty that is encountered in database searches is receiving too much
information; this problem can be addressed by learning how to generate specific
searches with appropriate limits.

WEeB RESOURCES

You can visit the website for this book (» http://www.bioinfbook.

org)

to find many of the URLs, organized by chapter. The

DiscussioN QUESTIONS

[2-1] What categories of errors occur in databases? How are these

errors assessed?

PROBLEMS

(2-1]

[2-2]

In this chapter we explored histones as an example of a protein
that can be challenging to study because it is part of a large
gene family. Another challenging example is ubiquitin.
How many ubiquitins are there in the human genome, and
what is the sequence of a prototypical (that is, representative)
ubiquitin?

How many human proteins are bigger than 300,000 daltons?
Hints: Try to first limit your search to human by using
TaxBrowser. Then follow the link to Entrez Protein, where all
the results will be limited to human. Enter a command in the
format xxxxxx:yyyyyy[molwt] to restrict the output to a certain

Wiley-Blackwell website for this book is http://www.wiley.com/
go/pevsnerbioinformatics.

[2-2] How is quality control maintained in GenBank, given that

(2-3]

[2-4]

thousands of individual investigators submit data?

number of daltons; for example, 002000:010000[molwt] will
select proteins of molecular weight 2,000 to 10,000.

You are interested in learning about genes involved in breast
cancer. Which genes have been implicated? What are the DNA
and protein accession numbers for several of these genes? Try
all of these approaches: PubMed, Entrez, OMIM, and SRS at
ExPASYy.

An ATP (adenosine triphosphate) binding cassette (ABC) is an
example of a common protein domain that is found in many so-
called ABC transporter proteins. However, you are not familiar
with this motif and would like to learn more. Approximately



[2-5]

[2-6]

how many human proteins have ABC domains? Approximately
how many bacterial proteins have ABC domains? Which of the
resources you used in problem 2.3 is most useful in providing
you a clear definition of an ABC motif ? (We will discuss
additional resources to solve this problem in Chapter 10.)

Find the accession number of a lipocalin protein (e.g., retinol-
binding protein, lactoglobulin, any bacterial lipocalin, glycode-
lin, or odorant-binding protein). First, use Entrez, then
UniGene, then OMIM. Which approach is most effective?
What is the function of this protein?

Three prominent tools for zexz-based searching of molecular
information are:

e the National Center for Biotechnology Information’s
PubMed, Entrez, and OMIM tools (> http://www.ncbi.
nlm.nih.gov),

SELF-TEST Quiz

[2-1]

(2-2]

[2-3]

(2-4]

[2-5]

Which of the following is a RefSeq accession number corre-
sponding to an mRNA?

(a) J01536

(b) NM_15392
(c) NP_52280

(d) AAB134506

Approximately how many human clusters are currently in
UniGene?

(a) About 8,000
(b) About 25,000
(c) About 100,000
(d) About 300,000

You have a favorite gene, and you want to determine in what tis-
sues it is expressed. Which one of the following resources is likely
the most direct route to this information?

(a) UniGene
(b) Entrez
(c) PubMed
(d) PCR

Is it possible for a single gene to have more than one UniGene
cluster?

(a) Yes
(b) No

Which of the following databases is derived from mRNA
information?

(a) dbEST
(b) PBD

(c) OMIM
(d) HTGS

[2-7]

[2-6]

(2-7]

(2-8]

[2-9]

SELF-TEST auiz 43

e the European Bioinformatics Institute (EBI) Sequence
Retrieval System (SRS) (> http://srs.ebi.ac.uk) or its related
SRS site (P http://www.expasy.ch/srs5/), and

e DBGET, the GenomeNet tool of Kyoto University, and the
University of Tokyo (» http://www.genome.ad.jp/dbget/
dbget2.html) literature database LitDB.

You are interested in learning more about West Nile virus. What
happens when you use that query to search each of these three
resources?

You would like to know what articles about viruses have been
published in the journal BMC Bioinformatics. Do this search
using PubMed.

Which of the following databases can be used to access text
information about human diseases?

(a) EST

(b) PBD

(¢) OMIM

(d) HTGS

What is the difference between RefSeq and GenBank?

(a) RefSeq publicly available DNA sequences
submitted from individual laboratories and sequencing
projects.

includes

(b) GenBank provides nonredundant curated data.
(c) GenBank sequences are derived from RefSeq.

(d) RefSeq sequences are derived from GenBank and provide
nonredundant curated data.

If you want literature information, what is the best website to

visit?

(a) OMIM

(b) Entrez

(c) PubMed

(d) PROSITE

Compare the use of Entrez and ExPASy to retrieve information
about a protein sequence.

(a) Entrezis likely to yield a more comprehensive search because
GenBank has more data than EMBL.

(b) The search results are likely to be identical because the
underlying raw data from GenBank and EMBL are the

same.

(c) The search results are likely to be comparable, but the
SwissProt record from ExPASy will offer a different output
format with distinct kinds of information.
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SuGGESTED READING

Bioinformatics databases are evolving extremely rapidly. Each
January, the first issue of the journal Nucleic Acids Research includes
nearly 100 brief articles on databases. These include descriptions
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Adrenocorticotropin (ACTH)

The complete amino acid sequences are known for corticotropins
isolated from the anterior pituitary glands of three different species,
pig, beef, and sheep. The structure of sheep ACTH was discussed
in the last chapter, and the sequences shown in Table 9 include only
those areas of the three molecules where differences are to be found.
Although some difference between the content of amide nitrogen
groups has been reported for the three species, these are not included
in the figure since it has not been possible to rule out, with certainty,
the possibility that these variations are due, in part, to the rigors of
the isolation and purification techniques employed.

TABLE 9
Variations in Amino Acid Sequences Among Different Preparations of
ACTH

Residue No.

Preparation Species 25 26 27 28 29 30 31 32 383

B-Corticotropin ;};:;.p} Ala.Gly.Glu.Asp.Asp.Glu Ala.Ser.Glu.NH,

Corticotropin A  pig Asp.Gly.Ala.Glu.Asp.Glu Leu.Ala.Glu

* Identity with sheep hormone not absolutely certain but very probable as
judged from the nearly complete sequence analysis by J. S. Dixon and C. H. Li
(personal communication to the author).

Two points are of particular interest in regard to the sequences
shown. First, the corticotropins of sheep and beef are identical and
differ from that of the pig. This finding is consonant with the
closer phylogenetic relationship of sheep and cows to each other than
of either to pigs. Second, chemical differences are found only in that
portion of the ACTH molecule which has been shown to be unessen-
tial for hormonal activity. Genetic mutations leading to such differ-
ences might, therefore, not be expected to impose significant disad-
vantages in terms of survival, and these genes could become estab-
lished in the gene pools of the species.

Melanotropin (MSH)

Melanotropin, like the other hormones considered in this chapter,
is a typically chordate polypeptide. Indeed, the demonstration of
melanocytu-stimulating activity in extracts of tunicates constitutes an

152 THE MOLECULAR BASIS OF EVOLUTION

Pairwise alignment involves matching rwo protein or DNA sequences. The first proteins that were sequenced include insulin (by
Frederick Sanger and colleagues; see fig. 7.1) and globins. This figure is from The Molecular Basis of Evolution by the Nobel
laureate Christian Anfinsen (1959, p. 153). It shows the results of a pairwise alignment of a portion of adrenocorticotropic hor-
mone (ACTH) from sheep or cow (top) with that of pig (below). Such alignments, performed manually, led to the realization that
amino acid sequences of proteins reflect the phylogenetic relatedness of different species. Furthermore, pairwise alignments reveal
the portions of a protein that may be important for its biological function. Used with permission.
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INTRODUCTION

One of the most basic questions about a gene or protein is whether it is related to any
other gene or protein. Relatedness of two proteins at the sequence level suggests that Two genes (or proteins) are hom-
they are homologous. Relatedness also suggests that they may have common func- ologous if they have evolved from a
tions. By analyzing many DNA and protein sequences, it is possible to identify =~ COMMmON ancestor.
domains or motifs that are shared among a group of molecules. These analyses of
the relatedness of proteins and genes are accomplished by aligning sequences. As
we complete the sequencing of many organisms’ genomes, the task of finding out
how proteins are related within an organism and between organisms becomes
increasingly fundamental to our understanding of life.
In this chapter we will introduce pairwise sequence alignment. We will adopt an
evolutionary perspective in our description of how amino acids (or nucleotides) in
two sequences can be aligned and compared. We will then describe algorithms and
programs for pairwise alignment.

Protein Alignment: Often More
Informative Than DNA Alignment

Given the choice of aligning a DNA sequence or the sequence of the protein it
encodes, it is often more informative to compare protein sequences. There
are several reasons for this. Many changes in a DNA sequence (particularly at

Bioinformatics and Functional Genomics, Second Edition. By Jonathan Pevsner
Copyright © 2009 John Wiley & Sons, Inc.
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Some researchers use the term
analogous to refer to proteins that
are not homologous, but share
some similarity by chance. Such
proteins are presumed to have not
descended from a common
ancestor.

the third position of a codon) do not change the amino acid that is specified.
Furthermore, many amino acids share related biophysical properties (e.g., lysine
and arginine are both basic amino acids). The important relationships between
related (but mismatched) amino acids in an alignment can be accounted for
using scoring systems (described in this chapter). DNA sequences are less informa-
tive in this regard. Protein sequence comparisons can identify homologous
sequences from organisms that last shared a common ancestor over 1 billion
years ago (BYA) (e.g., glutathione transferases) (Pearson, 1996). In contrast,
DNA sequence comparisons typically allow lookback times of up to about 600
million years ago (MYA).

When a nucleotide coding sequence is analyzed, it is often preferable to study
its translated protein. In Chapter 4 (on BLAST searching), we will see that we
can move easily between the worlds of DNA and protein. For example, the tblastn
tool from the National Center for Biotechnology Information (NCBI) BLAST
website allows one to search with a protein sequence for related proteins derived
from a DNA database (see Chapter 4). This query option is accomplished
by translating each DNA sequence into all of the six proteins that it potentially
encodes.

Nevertheless, in many cases it is appropriate to compare nucleotide sequences.
This comparison can be important in confirming the identity of a DNA sequence
in a database search, in searching for polymorphisms, in analyzing the identity of a
cloned cDNA fragment, or in many other applications.

Definitions: Homology, Similarity, Identity

Let us consider the globin family of proteins. We will begin with human myoglobin
(accession number NP_005359) and beta globin (accession number NP_000509)
as two proteins that are distantly but significantly related. The accession numbers
are obtained from Entrez Gene (Chapter 2). Myoglobin and the hemoglobin
chains (alpha, beta, and other) are thought to have diverged some 600 million
years ago, near the time the vertebrate and insect lineages diverged.

Two sequences are homologous if they share a common evolutionary ancestry.
There are no degrees of homology; sequences are either homologous or not
(Reecket al., 1987; Tautz, 1998). Homologous proteins almost always share a signifi-
cantly related three-dimensional structure. Myoglobin and beta globin have very
similar structures as determined by x-ray crystallography (Fig. 3.1). When two
sequences are homologous, their amino acid or nucleotide sequences usually share
significant identity. Thus, while homology is a qualitative inference (sequences are
homologous or not), identity and similarity are quantities that describe the related-
ness of sequences. Notably, two molecules may be homologous without sharing stat-
istically significant amino acid (or nucleotide) identity. For example, in the globin
family, all the members are homologous, but some have sequences that have diverged
so greatly that they share no recognizable sequence identity (e.g., human beta globin
and human neuroglobin share only 22% amino acid identity). Perutz, Kendrew and
others demonstrated that individual globin chains share the same overall shape as
myoglobin (see Ingram, 1963), even though the myoglobin and alpha globin proteins
share only about 26% amino acid identity. In general, three-dimensional structures
diverge much more slowly than amino acid sequence identity between two proteins



(d)

(Chothia and Lesk, 1986). Recognizing this type of homology is an especially chal-
lenging bioinformatics problem.

Proteins that are homologous may be orthologous or paralogous. Orthologs are
homologous sequences in different species that arose from a common ancestral
gene during speciation. Figure 3.2 shows a tree of myoglobin orthologs. There is a
human myoglobin gene and a rat gene. Humans and rodents diverged about 80
MYA (see Chapter 18), at which time a single ancestral myoglobin gene diverged
by speciation. Orthologs are presumed to have similar biological functions; in this
example, human and rat myoglobins both transport oxygen in muscle cells.
Paralogs are homologous sequences that arose by a mechanism such as gene
duplication. For example, human alpha-1 globin (NP_000549) is paralogous to
alpha-2 globin (NP_000508); indeed, these two proteins share 100% amino acid
identity. Human alpha-1 globin and beta globin are also paralogs (as are all the
proteins shown in Fig. 3.3). All of the globins have distinct properties, including
regional distribution in the body, developmental timing of gene expression, and
abundance. They are all thought to have distinct but related functions as oxygen
carrier proteins.
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FIGURE 3.1. Three-dimensional
structures of (a) myoglobin (acces-
sion 2MM1), (b) the tetrameric
hemoglobin protein (2H3S5), (c)
the beta globin subunit of hemo-
globin, and (d) myoglobin and
beta globin superimposed. The
images were generated with the
program Cn3D (see Chapter 11).
These proteins are homologous (des-
cended from a common ancestor),
and they share very similar three-
dimensional structures. However,
pairwise alignment of these pro-
teins’ amino acid sequences reveals
that the proteins share very limited
amino acid identity.

You can see the protein sequences
used to generate Figs. 3.2 and 3.3
in web documents 3.1 and 3.2 at
» http://www.bioinfbook.org/
chapter3.

In general when we consider other
paralogous families they are pre-
sumed to share common func-
tions. Consider the lipocalins: all
are about 20 kilodalton proteins
that have a hydrophobic binding
pocket that is thought to be used to
transport a hydrophobic ligand.
Members include retinol binding
protein (a retinol transporter),
apolipoprotein D (a cholesterol
transporter), and odorant-binding
protein (an odorant transporter
secreted from a nasal gland).
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We thus define homologous genes
within the same organism as
paralogous. But consider further
the case of globins. Human
a-globin and B-globin are para-
logs, as are mouse a-globin and
mouse B-globin. Human a-globin
and mouse a-globin are orthologs.
What is the relation of human
a-globin to mouse -globin?
These could be considered para-
logs, because a-globin and
B-globin originate from a gene
duplication event rather than from
a speciation event. However, they
are not paralogs because they do
not occur in the same species. It
may thus be most appropriate to
simply call them “homologs,”
reflecting their descent from a
common ancestor. Fitch (1970,
p- 113) notes that phylogenies
require the study of orthologs (see
also Chapter 7).

Richard Owen (1804—1892) was
one of the first biologists to use the
term homology. He defined hom-
ology as “the same organ in differ-
ent animals under every variety of
form and function” (Owen, 1843,
p- 379). Charles Darwin (1809—
1882) also discussed homology in
the sixth edition of The Origin of
Species by means of Natural Selection
or, The Preservation of Favoured Races
n the Struggle for Life (1872). He
wrote: “That relation between parts
which results from their develop-
ment from corresponding embryo-
nic parts, either in different animals,
as in the case of the arm of man, the
foreleg of a quadruped, and the
wing of a bird; or in the same indi-
vidual, as in the case of the fore and
hind legs in quadrupeds, and the
segments or rings and their appen-
dages of which the body of a worm,
a centipede, &c., is composed. The
latter is called serial homology. The
parts which stand in such a relation
to each other are said to be hom-
ologous, and one such part or organ
is called the homologue of the other.
In different plants the parts of the
flower are homologous, and in
general these parts are regarded as
homologous with leaves.”

Walter M. Fitch (1970, p. 113) defined these terms. He wrote:

there should be two subclasses of homology. Where the homology is the result
of gene duplication so that both copies have descended side by side during the
history of an organism (for example, a and 3 hemoglobin) the genes should be
called paralogous (para = in parallel). Where the homology is the result of spe-
ciation so that the history of the gene reflects the history of the species (for
example o hemoglobin in man and mouse) the genes should be called ortholo-
gous (ortho = exact).

Notably, orthologs and paralogs do not necessarily have the same function.
We will provide various definitions of gene and protein function in Chapter 10.
Later we will explore genomes across the tree of life (Chapters 13 to 19). In
all genome sequencing projects, orthologs and paralogs are identified based on
database searches. Two DNA (or protein) sequences are defined as homologous
based on achieving significant alignment scores, as discussed below and in
Chapter 4. However, homologous proteins do not necessarily share the same
function.

We can assess the relatedness of any two proteins by performing a pairwise align-
ment. In this procedure, we place the two sequences directly next to each other. One
practical way to do this is through the NCBI pairwise BLAST tool (Tatusova and
Madden, 1999) (Fig. 3.4). Perform the following steps:

1. Choose the protein BLAST program and select “BLLAST 2 sequences” for
our comparison of two proteins. An alternative is to select blastn (for
“BLAST nucleotides”) for DNA—-DNA comparison.

2. Enter the sequences or their accession numbers. Here we use the sequence of
human beta globin in the fasta format, and for myoglobin we use the accession
number (Fig. 3.4).

3. Select any optional parameters.

e You can choose from five scoring matrices: BLOSUM62, BLOSUMA45,
BLOSUMS80, PAM70, and PAM30. Select PAM250.

e You can change the gap creation penalty and gap extension penalty.
e For blastn searches you can change reward and penalty values.

e There are other parameters you can change, such as word size, expect value,
filtering, and dropoff values. We will discuss these more in Chapter 4.

4. Click “BLAST.” The output includes a pairwise alignment using the single-
letter amino acid code (Fig. 3.5a).

Note that the fasta format uses the single-letter amino acid code; those abbreviations
are shown in Box 3.1.

It is extremely difficult to align proteins by visual inspection. Also, if we allow
gaps in the alignment to account for deletions or insertions in the two sequences,
the number of possible alignments rises exponentially. Clearly, we will need a com-
puter algorithm to perform an alignment (see Box 3.2). In the pairwise alignments
shown in Fig. 3.5a, beta globin is on top (on the line labeled query) and myoglobin
is below (on the subject line). An intermediate row indicates the presence of identical
amino acids in the alignment. For example, notice that near the beginning of the
alignment the residues WGKYV are identical between the two proteins. We can
count the total number of identical residues; in this case, the two proteins share
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FIGURE 3.2. A group of myoglobin orthologs, visualized by multiply aligning the sequences
(Chapter 6) then creating a phylogenetic tree by neighbor-joining (Chapter 7). The accession
numbers and species names are as follows: human, NP_005359 (Homo sapiens); chimpanzee,
XP_001156591 (Pan troglodytes); orangutan, P02148 (Pongo pygmaeus); rhesus monkey,
XP_001082347 (Macaca mulatta); pig, NP_999401 (Sus scrofa); common tree shrew,
P02165 (Tupaia glis); horse, P68082 (Equus caballus); zebra, P68083 (Equus burchellii);
dog, XP_850735 (Canis familiaris); sperm whale, P02185 (Physeter catodon ); sheep, P02190
(Ovis aries); rat, NP_067599 (Rattus novvegicus); mouse, NP_038621 (Mus musculus);
cow, NP_776306 (Bos tawrus); chicken XP_ 416292 (Gallus gallus). The sequences are
shown in web document 3.1 (™ http://www.bioinfbook.org/chapter3). In this tree, sequences
that are more closely related to each other are grouped closer together. Note that as entire gen-
omes continue to be sequenced (Chapters 13 to 19), the number of known orthologs will grow
rapidly for most families of orthologous proteins.

25% identity (37 of 145 aligned residues). Identity is the extent to which two amino
acid (or nucleotide) sequences are invariant. Note that this particular alignment is
called local because only a subset of the two proteins is aligned: the first and last
few amino acid residues of each protein are not displayed. A global pairwise align-
ment includes all residues of both sequences.

Another aspect of this pairwise alignment is that some of the aligned residues are
similar but not identical; they are related to each other because they share similar bio-
chemical properties. Similar pairs of residues are structurally or functionally related.
For example, on the first row of the alignment we can find threonine and serine (T'and
S connected by a + sign in Fig. 3.5a); nearby we can see a leucine and a valine residue
that are aligned. These are conservarive substiturions. Amino acids with similar prop-
erties include the basic amino acids (K, R, H), acidic amino acids (D, E), hydroxyl-
ated amino acids (S, T), and hydrophobic amino acids (W, F, Y, L, I, V, M, A). Later
in this chapter we will see how scores are assigned to aligned amino acid residues.
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You can access the pairwise
BLAST program at the NCBI
blast site, » http://www.ncbi.
nlm.nih.gov/BLAST /. We
discuss various options for using
the Basic Local Alignment Search
Tool (BLAST) in Chapter 4.

We discuss global and local align-
ments below.
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FIGURE 3.3. Paralogous human
globins: Each of these proteins is
human, and each is a member of
the globin family. This unrooted
tree was generated using the neigh-
bor-joining algorithm in MEGA
(see Chapter 7). The proteins and
their RefSeq accession numbers
(also shown in web document 3.2)
are delta globin (NP_000510),
G-gamma globin (NP_000175),
beta  globin  (NP_000509),
A-gamma  globin (NP_000550),
epsilon globin (NP_005321), zeta
globin  (NP_005323), alpha-1
globin  (NP_000549),  alpha-2
globin  (NP_000508),  theta-1
globin (NP_005322), hemoglobin
mu chain (NP_001003938), cyto-
globin (NP_599030), myoglobin
(NP_005359), and neuroglobin
(NP_067080). A Poisson correc-
tion model was used (see Chapter 7).

FIGURE 3.4. The BLAST pro-
gram at the NCBI website allows
the comparison of two DNA or
protein  sequences. Here the
program is set to blastp for
the comparison of two proteins
(arrow 1). Human beta globin
(NP_000509) is input in the
fasta  format (arrow 2), while
human myoglobin (NP_005359)
is input as an accession number
(arrow 3).
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Score = 43.9 bits (102), Expect = 1le-09, Method: Composition-based stats.
Identities = 37/145 (25%), Positives = 57/145 (39%), Gaps = 2/145 (1%)
\ \J
Query 4 LTPEEKSAVTALWGKVNVD--EVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV 61
L+ E V.  +WGKV D G E L RL +P T F+ F L + D + + +
Sbjct 3 LSDGEWQLVLNVWGKVEADI PGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASEDL 62
Query 62 KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK 121
K HG VL A L + + L++ H K + + + ++ VL
Sbjct 63 KKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPVKYLEFISECIIQVLQSKHPG 122
Query 122 EFTPPVQAAYQKVVAGVANALAHKY 146
+F QA K + +A Y
Sbjct 123 DFGADAQGAMNKALELFRKDMASNY 147
(b)
Score = 18.1 bits (35), Expect = 0.015, Method: Composition-based stats.
Identities = 11/24 (45%), Positives = 12/24 (50%), Gaps = 2/24 (8%)
Query 12 |[VTALWGKVNVD--EVGGEALIGRLL 33
IV +WGKV [D G E I RL
Sbjct 11 |[VLNVWGKVEADIPGHGQEVLIRLF 34
match 4 11 5 6 6 5 45 sum of matches: +60
6 4 4
mismatch -1 1 0 -21-2 44 0 sum of mismatches: -13
-2 0) -3 0
gap open -1l sum of gap penalties: -12
gap extend -1

total raw score: 60 - 13 - 12 = 35

In the pairwise alignment of a segment of HBB and myoglobin, you can see that each
pair of residues is assigned a score that is relatively high for matches, and often nega-
tive for mismatches.

The percent similarity of two protein sequences is the sum of both identical and
similar matches. In Fig. 3.5a, there are 57 aligned amino acid residues that are simi-
lar. In general, it is more useful to consider the identity shared by two protein
sequences, rather than the similarity, because the similarity measure may be based
on a variety of definitions of how related (similar) two amino acid residues are to
each other.

In summary, pairwise alignment is the process of lining up two sequences to
achieve maximal levels of identity (and maximal levels of conservation in the case
of amino acid alignments). The purpose of a pairwise alignment is to assess the
degree of similarity and the possibility of homology between two molecules. We
may say that two proteins share, for example, 25% amino acid identity and 39% simi-
larity. If the amount of sequence identity is sufficient, then the two sequences are
probably homologous. It is never correct to say that two proteins share a certain per-
cent homology, because they are either homologous or not. Similarly, it is not appro-
priate to describe two sequences as “highly homologous™; instead one can say that
they share a high degree of similiarity. We will discuss the statistical significance of
sequence alignments below, including the use of expect values to assess whether
an alignment of two sequences is likely to have occurred by chance (Chapter 4).
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FIGURE 3.5. Pairwise alignment
of buman beta globin (the
“query”) and myoglobin (the “sub-
ject”). Pamel (a) shows the align-
ment from the search shown in
Fig. 3.4. Note that this alignment
is local (i.e., the entire lengths of
each protein are not compared),
and there are mamny positions of
identity between the two sequences
(indicated with amino acids inter-
vening between the query and sub-
ject lines). The alignment contains
an internal gap (indicated by two
dashes). Panel (b) illustrates how
raw scoves are calculated, using
the result of a separate search with
just amino acids 10-34 of HBB
(corresponding to the region
between the arrowbeads in panel
a). The raw score is 35; this rep-
resents the sum of the match scores
(from a BLOSUMG62 matrix in
this case), the mismatch scores, the
gap opening penalty (set to —11
for this search), and the gap exten-
sion penalty (set to —1).

Two proteins could have similar
structures due to convergent evol-
ution. Molecular evolutionary
studies are essential (based on
sequence analyses) to assess this
possibility.
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Box 3.1
Structures and One- and Three-Letter Abbreviations of Twenty Common

Amino Acids

It is very helpful to memorize these abbreviations and to become familiar with
the physical properties of the amino acids. The percentages refer to the relative
abundance of each amino acid in proteins.

Such analyses provide evidence to assess the hypothesis that two proteins are
homologous. Ultimately the strongest evidence to determine whether two proteins
are homologous comes from structural studies in combination with evolutionary
analyses.



Box 3.2
Algorithms and Programs

An algorithm is a procedure that is structured in a computer program (Sedgewick,
1988). For example, there are many algorithms used for pairwise alignment. A
computer program is a set of instructions that uses an algorithm (or multiple
algorithms) to solve a task. For example, the BLAST program (Chapters 3 to
5) uses a set of algorithms to perform sequence alignments. Other programs
that we introduce in Chapter 7 use algorithms to generate phylogenetic trees.

Computer programs are essential to solve a variety of bioinformatics
problems because millions of operations may need to be performed. The
algorithm used by a program provides the means by which the operations of
the program are automated. Throughout this book, note how many hundreds
of programs have been developed using many hundreds of different algorithms.
Each program and algorithm is designed to solve a specific task. An algorithm
that is useful to compare one protein sequence to another may not work in a
comparison of one sequence to a database of 10 million protein sequences.

Why is it that an algorithm that is useful for comparing two sequences cannot
be used to compare millions of sequences? Some problems are so inherently
complex that an exhaustive analysis would require a computer with enormous
memory or the problem would take an unacceptably long time to complete. A
heuristic algorithm is one that makes approximations of the best solution without
exhaustively considering every possible outcome. The 13 proteins in Fig. 3.2
can be arranged in a tree over a billion distinct ways (see Chapter 7)—and
finding the optimal tree is a problem that a heuristic algorithm can solve in a
second.

Gaps

Pairwise alignment is useful as a way to identify mutations that have occurred during
evolution and have caused divergence of the sequences of the two proteins we are
studying. The most common mutations are substitutions, insertions, and deletions. In
protein sequences, substitutions occur when a mutation results in the codon for
one amino acid being changed into that for another. This results in the alignment
of two nonidentical amino acids, such as serine and threonine. Insertions and del-
etions occur when residues are added or removed and are typically represented by
dashes that are added to one or the other sequence. Insertions or deletions (even
those just one character long) are referred to as gaps in the alignment.

In our alignment of human beta globin and myoglobin there is one gap (Fig. 3.5a,
between the D and E residues of the query). Gaps can occur at the ends of the proteins
or in the middle. Note that one of the effects of adding gaps is to make the overall
length of each alignment exactly the same. The addition of gaps can help to create
an alignment that models evolutionary changes that have occurred. In a typical scoring
scheme there are two gap penalties: one for creating a gap (—11 in the example of
Fig. 3.5b) and one for each additional residue that a gap extends (—1 in Fig. 3.5b).

Pairwise Alignment, Homology, and Evolution of Life

If two proteins are homologous, they share a common ancestor. Generally, we
observe the sequence of proteins (and genes) from organisms that are extant. We

INTRODUCTION
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It is possible to infer the sequence
of the common ancestor (see
Chapter 7).

Databases such as Pfam (Chapter
6) and COGS (Chapter 15)
summarize the phylogenetic
distribution of gene/protein
families across the tree of life.

The GAPDH sequences used to
generate Fig. 3.7 and the kappa
casein sequences used to generate
fig. 3.8 are shown in web docu-
ments 3.3 and 3.4 at » http://
www.bioinfbook.org/chapter3.

FIGURE 3.6. Overview of the bis-
tory of life on Earth. See Chapter
13 for details. Gene/protein
sequences are analyzed in the con-
text of evolution: Which organisms
have orthologous genes? When did
these organisms evolve? How
related are human and bacterial
globins?

can compare myoglobins from species such as human, horse, and chicken, and see
that the sequences are homologous (Fig. 3.2). This implies that an ancestral organ-
ism had a myoglobin gene and lived sometime before the divergences of the lineages
that gave rise to human and chicken (over 300 MYA; see Chapter 18). Descendants
of that ancestral organism include many vertebrate species. The study of homologous
protein (or DNA) sequences by pairwise alignment involves an investigation of the
evolutionary history of that protein (or gene).

For a brief overview of the time scale of life on Earth, see Fig. 3.6 (refer to
Chapter 13 for a more detailed discussion). The divergence of different species is
established through the use of many sources of data, especially the fossil record.
Fossils of prokaryotes have been discovered in rocks 3.5 billion years old or even
older (Schopf, 2002). Fossils of methane-producing archaea, representative of a
second domain of life, are found in rocks over 3 billion years old. The other main
domain of life, the eukaryotes, emerged soon after. In the case of globins, in addition
to the vertebrate proteins represented in Fig. 3.2, there are plant globins that must
have shared a common ancestor with the metazoan (animal) globins some 1.5 billion
years ago. There are also many bacterial and archaeal globins suggesting that the
globin family arose earlier than two billion years ago.

As we examine a variety of homologous protein sequences, we can observe a wide
range of conservation between family members. Some are very ancient and well con-
served, such as the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
A multiple sequence alignment, which is essentially a series of pairwise alignments
between a group of proteins, reveals that GAPDH orthologs are extraordinarily
well conserved (Fig. 3.7). Such highly conserved proteins may have any degree of rep-
resentation across the tree of life, from being present in most known species to only a
select few.

Orthologous kappa caseins from various species provide an example of a less
well-conserved family (Fig. 3.8). Some columns of residues in this alignment are per-
fectly conserved among the selected species, but most are not, and many gaps needed
to be introduced. Several positions at which four or even five different residues occur
in an aligned column are indicated.

We can see from the preceding examples that pairwise sequence alignment
between any two proteins can exhibit widely varying amounts of conservation. We
will next examine how the information in such alignments can be used to decide
how to quantitate the relatedness of any two proteins.

Origin Origin Eukaryotes/ Plants/ Invertebrates/
of Earth of life bacteria animals vertebrates
1 1 1 1
| | | |
4 3 2 1

Billions of years ago (BYA)
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NP 002037.2 164 IHDNFGIVEGLMTTVHATITATQRTVDGP SGKLWRDGRGALONIT 207
Xp 0011e20357.1 le64 IHDNFGIVEGLMTTVHAITATQRTVDGP 3GRLWRDGRGALQNIT 207
NP 001003142.1 162 IHDHFGIVEGLMTTVHAITATQRKTVDGE SGEMWRDGRGAAQNIT 205
Xp 893121.1 148 IHDNFGIMEGLMTTVHATTATQRKTVDGP SGKLWRDGRGAAQNTT 211
iP 5763%94.1 162 IHDNFGIVEGIMTTVHAITATQRTVDGE SGRLWRDGRGAAQNIT 205
NP 058704.1 162 IHDNFGIVEGLMTTVHAITATQRKTVDGE SGKLWRDGRGAAQNIT z0s

XP 001070653.1 162  IHDNFGIVEGLMTTVHAITATQRTVDGPSGKLWRDGRGAAQNII 205
XP 001062726.1 162  IHDNFGIVEGLMTTVHAITATQRTVDGPSGKLWRDGRGAAQNII 205
NP 989636.1 162  IHDNFGIVEGLMTTVHAITATQRTVDGPSGKLWRDGRGAAQNII 205
NP 525091.1 161  INDNFEIVEGLMTTVHATTATQKTVDGPSGKLWRDGRGAAQNIT 204
XP 318655.2 161  INDNFGILEGLMTTVHATTATQRTVDGPSGKLWRDGRGAAQNIT 204
NP 508535.1 170  INDNFGIIEGLMTTVHAVTATQKTVDGP3IGKLWRDGRGAGQNII 213
NP 595236.1 164  INDTFGIEEGLMTTVHATTATQKTVDGPSKKDWRGGRGASANIT 207
NP 011708.1 162  INDAFGIEEGLMTTVHSLTATQRTVDGPSHKDWRGGRTASGNII 205

Z.1 161  INDEFGIDEALMTTVHSITATQKTVDGPSHKDWRGGRTASGNII 204

XP 456022,
NP 00 i 2 166 IHDNFGITIEGLMTTVHAITATQRKTVDGE S3KDWRGGRAASFNIT 20s

FIGURE 3.7. Multiple sequence alignment of a portion of the glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) protein from thirteen organisms: Homo sapiens (human), Pan troglodytes
(chimpanzee), Canis lupus (dog), Mus musculus (mouse), Rattus norvegicus (rat; four variants),
Gallus gallus (chicken), Drosophila melanogaster (fruit fly), Anopheles gambiae (mosquito),
Caenorhabditis elegans (worm), Schizosaccharomyces pombe ( fission yeast), Saccharomyces cer-
evisiae (baker’s yeast), Klwyveromyces lactis (a fungus), and Oryza sativa (rice). Columns in the
alignment having even a single amino acid change are indicated with arrowheads. The accession
numbers are given in the figure. The alignment was created by searching HomoloGene at NCBI
with the term gapdh. The full alignment is given in Web Document 3.3 at » bttp://www.
bioinfbook.org/ chapter3.

v v v vy v v
mouse AIPNPSFLAMPTNENQDNTAIPTIDPITPIVST--PVPTM------— ESIVNTVANPEAST
rabbit S--HPFFMAILPNKMOQDKAVTPTTNTIAAVEPT--PIPTT-----— EPVVSTEVIAEASP
sheep PHPHLSFMAIPPKKDOQDKTEIPAINTIASAEPTVHSTPTT-----— EAVVNAVDNPEASS
cattle PHPHLSFMAIPPKKNQDKTEIPTINTIASGEPT--STPTT-----— EAVESTVATLEDSP
pig PRPHASFIAIPPKKNQDKTAIPAINSIATVEPT--IVPATEPIVNAEPIVNAVVTPEASS
human PNLHPSFIAIPPKKIQDKITIIPTINTIATVEPT--PAPAT------ EPTVDSVVTPEAFS
horse PCPHPSFIAIPPKKLOQEITVIPKINTIATVEPT--PIPTP------ EPTVNNAVIPDASS

Kook . e K. * . k. * * . *

FIGURE 3.8. Multiple sequence alignment of seven kappa caseins, representing a protein
family that is relatively poorly conserved. Only a portion of the entire alignment is shown.
Note that just eight columns of vesidues are perfectly conserved (indicated with asterisks), and
gaps of varying length form part of the alignment. In several columns, there are four different
aligned amino acids (arrowbeads); in two instances there are five different vesidues (double
arrowheads). The sequences were aligned with MUSCLE 3.6 (see Chapter 6) and were
buman (NP_005203), equine (Equus caballus; NP_001075353), pig (Sus scrofa
NP_001004026), ovine (Ovis aries NP_001009378), rabbit (Oryctolagus cuniculus
P33618), bovine (Bos taurus NP_776719), and mouse (Mus musculus NP_031812). The
full alignment is available as web document 3.3 at ™ http://www.bioinfbook.org/chapter3.

ScorING MATRICES

When two proteins are aligned, what scores should they be assigned? For the align-
ment of beta globin and myoglobin in Fig. 3.5a there were specific scores for matches
and mismatches; how were they derived? Margaret Dayhoff (1978) provided a model
of the rules by which evolutionary change occurs in proteins. We will now examine
the Dayhoff model, which provides the basis of a quantitative scoring system for
pairwise alignments. This system accounts for scores between any proteins, whether
they are closely or distantly related. We will then describe the BLOSUM matrices of

SCORING MATRICES
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The Dayhoff (1978) reference is to
the Atlas of Protein Sequence and
Structure, a book with 25 chapters
(and various coauthors) describ-
ing protein families. The 1966
version of the Arlas described the
sequences of just several dozen
proteins (cytochromes c, other
respiratory proteins, globins, some
enzymes such as lysozyme and
ribonucleases, virus coat proteins,
peptide hormones, kinins, and
fibrinopeptides). The 1978 edi-
tion included about 800 protein
sequences.

Dayhoff et al. (1972) focused on
proteins sharing 85% or more
identity. Thus, they could con-
struct their alignments with a high
degree of confidence. Later in this
chapter, we will see how the
Needleman and Wunsch algor-
ithm (described in 1970) permits
the optimal alignment of protein
sequences.

Steven Henikoff and Jorja G. Henikoff (1992). Next, we will discuss the two main
kinds of pairwise sequence algorithms, global and local. Many database searching
methods such as BLAST (Chapters 4 and 5) depend in some form on the evolution-
ary insights of the Dayhoff model.

Dayhoff Model: Accepted Point Mutations

Dayhoff and colleagues considered the problem of how to assign scores to aligned
amino acid residues. Their approach was to catalog thousands of proteins and com-
pare the sequences of closely related proteins in many families. They considered the
question of which specific amino acid substitutions are observed to occur when two
homologous protein sequences are aligned. They defined an accepted point mutation as
a replacement of one amino acid in a protein by another residue that has been
accepted by natural selection. Accepted point mutation is abbreviated PAM (which
is easier to pronounce than APM). An amino acid change that is accepted by natural
selection occurs when (1) a gene undergoes a DNA mutation such that it encodes a
different amino acid and (2) the entire species adopts that change as the predominant
form of the protein.

Which point mutations are accepted in protein evolution? Intuitively, conserva-
tive replacements such as serine for threonine would be most readily accepted. In
order to determine all possible changes, Dayhoff and colleagues examined 1572
changes in 71 groups of closely related proteins (Box 3.3). Thus, their definition of
“accepted” mutations was based on empirically observed amino acid substitutions.
Their approach involved a phylogenetic analysis: rather than comparing two amino
acid residues directly, they compared them to the inferred common ancestor of
those sequences (Fig. 3.9 and Box 3.4).

For the PAMI1 matrix, the proteins have undergone 1% change (that is, 1
accepted point mutation per 100 amino acid residues). The results are shown in
Fig. 3.10, which describes the frequency with which any amino acid pairs i, 7 are
aligned. Inspection of this table reveals which substitutions are unlikely to occur
(for example, cysteine and tryptophan have noticeably few substitutions), while
others such as asparagine and serine tolerate replacements quite commonly. Today,
we could generate a table like this with vastly more data (refer to Fig. 2.1 and the
explosive growth of GenBank). Several groups have produced updated versions of
the PAM matrices (Gonnet et al., 1992; Jones et al., 1992). Nonetheless the findings
from 1978 are essentially correct.

The main goal of Dayhoff’s approach was to define a set of scores for the com-
parison of aligned amino acid residues. By comparing two aligned proteins, one can
then tabulate an overall score, taking into account identities as well as mismatches,
and also applying appropriate penalties for gaps. A scoring matrix defines
scores for the interchange of residues 7 and ;. It is given by the probability ¢; ; of align-
ing original amino acid residue j with replacement residue ¢ relative to the likelihood
of observing residues ¢ by chance (p;). The scoring matrix further incorporates
a logarithm to generate log-odds scores. For the Dayhoff matrices, this takes the

following form:
q<’ .
s;i; =10 x log<;:)

Here the score s; jrefers to the score for aligning any two residues (including an amino
acid with itself) along the length of a pairwise alignment. The probability g ; is the

(3.1)



Box 3.3
Dayhoff’s Protein Superfamilies

Dayhoff (1978, p. 3) and colleagues studied 34 protein “superfamilies” grouped
into 71 phylogenetic trees. These proteins ranged from some that are very well
conserved (e.g., histones and glutamate dehydrogenase; see Fig. 3.7) to others
that have a high rate of mutation acceptance (e.g., immunoglobulin [Ig] chains
and kappa casein; see Fig. 3.8). Protein families were aligned (compare Fig.
3.7); then they counted how often any one amino acid in the alignment was
replaced by another. Here is a partial list of the proteins they studied, including
the rates of mutation acceptance. For a more detailed list, see Table 11.1.
There is a range of almost 400-fold between the families that evolve fastest and
slowest, but within a given family the rate of evolution (measured in PAMs per
unit time) varies only two- to threefold between species. Used with permission.

Protein PAMs per 100 million years
Immunoglobulin (Ig) kappa chain C region 37
Kappa casein 33
Epidermal growth factor 26
Serum albumin 19
Hemoglobin alpha chain 12
Myoglobin 8.9
Nerve growth factor 8.5
Trypsin 5.9
Insulin 4.4
Cytochrome ¢ 2.2
Glutamate dehydrogenase 0.9
Histone H3 0.14
Histone H4 0.10

observed frequency of substitution for each pair of amino acids. The values for q;; are
called the “target frequencies,” and they are estimated in reference to a particular
amount of evolutionary change. For example, in a comparison of human beta
globin versus the closely related chimpanzee beta globin, the likelihood of any par-
ticular residue matching another in a pairwise alignment is extremely high, while
in a comparison of human beta globin and a bacterial globin the likelihood of a
match is low. If in a particular comparison of closely related proteins an aligned
serine were to change to a threonine 5% of the time, then that target frequency
gs,r would be 0.05. If in a different comparison of differently related proteins
serine were to change to threonine more often, say 40% of the time, then that
target frequency qs,rwould be 0.4.

Equation 3.1 describes an odds ratio (Box 3.5). For the numerator, Dayhoff et al.
(1972) considered an entire spectrum of models for evolutionary change in deter-
mining target frequencies. We begin with the PAM1 matrix, which describes substi-
tutions that occur in very closely related proteins. For the denominator of Equation
3.1, ppj is the probability of amino acid residues 7 and j occurring by chance. We will

SCORING MATRICES
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(a)
beta globin MVHLTPEEKSAVTALWGKV
delta globin MVHLTPEEKTAVNALWGKV
alpha-1 globin MV.LSPADKTNVKAAWGKV

myoglobin -MGLSDGEWQLVLNVWGKV
5 MVHLSPEEKTAVNALWGKY
6 MVHLTPEEKTAVNALWGKY
b .
(b) ®) beta globin (NP_000509) (1)
® | delta globin (NP_000510) (2)

alpha-1 globin (NP_000549) @
myoglobin (NP_000539) (4)

FIGURE 3.9. Dayhoff’s approach to determining amino acid substitutions. Panel (a) shows a
partial multiple sequence alignment of human alpha-1 globin, beta globin, delta globin, and
myoglobin. Four columns in which alpha-1 globin and myoglobin have different amino acid vesi-
dues are indicated in red. For example, A is aligned with G (arrow). Panel (b) shows a phylo-
genetic tree that shows the four extant sequences (labeled 1 to 4), as well as two internal
nodes that represent the ancestral sequences (labeled 5 and 6). The inferred ancestral sequences
were identified by maximum parsimony analysis using the software PAUP (Chapter 7), and are
displayed in panel (a). From this analysis it is apparent that at each of the columns labeled in red,
there was not a direct interchange of two amino acids between alpha-1 globin and myoglobin.
Instead, an ancestral residue diverged. For example, the arrow in panel (a) indicates an ances-
tral glutamate that evolved to become alanine or glycine, but it would not be correct to suggest
that alanine had been converted directly to glycine.

Box 3.4
A Phylogenetic Approach to Aligning Amino Acids

Dayhoff and colleagues did not compare the probability of one residue mutating
directly into another. Instead, they constructed phylogenetic trees using
parsimony analysis (see Chapter 7). Then, they described the probability that
two aligned residues derived from a common ancestral residue. With this
approach, they could minimize the confounding effects of multiple
substitutions occurring in an aligned pair of residues. As an example, consider
an alignment of the four human proteins alpha-1 globin, beta globin, delta
globin, and myoglobin. A direct comparison of alpha-1 globin to myoglobin
would suggest several amino acid replacements, such as ala < gly, asn < leu,
lys «<— leu, and ala < val (Fig. 3.9a, residues highlighted in red). However, a
phylogenetic analysis of these four proteins results in the estimation of internal
nodes that represent ancestral sequences. In Fig. 3.9b the external nodes
(corresponding to the four existing proteins) are labeled, as are internal nodes
5 and 6, which correspond to inferred ancestral sequences. In one of the four
cases that are highlighted in Fig. 3.9a, the ancestral sequences suggest that a
glu residue changed to ala and gly in alpha-1 globin and myoglobin, but ala
and gly never directly interchanged (Fig. 3.9a, arrow). Thus, the Dayhoff
approach was more accurate by taking an evolutionary perspective.

In a further effort to avoid the complicating factor of multiple substitutions
occurring in alignments of protein families, Dayhoff et al. also focused on
using multiple sequence alignments of closely related proteins. Thus, for
example, their analysis of globins considered the alpha globins and beta globins
separately.
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You can look up a recent estimate
of the frequency of occurrence of
each amino acid at the SwissProt
website » http://www.expasy.ch/
sprot/relnotes/relstat.html. From
the UniProtKB/Swiss-Prot
protein knowledgebase (release
51.7), the amino acid composition
of all proteins is shown in web
document 3.5 (> http://www.
bioinfbook.org/chapter3).

Box 3.5
Statistical Concept: The Odds Ratio

Dayhoff et al. (1972) developed their scoring matrix by using odds ratios. The
mutation probability matrix has elements M, that give the probability that
amino acid j changes to amino acid 7 in a given evolutionary interval. The
normalized frequency f; gives the probability that amino acid ¢ will occur at that
given amino acid position by chance. The relatedness odds matrix in Equation
3.1 may also be expressed as follows:

M

Ry ==

Here, R;; is the relatedness odds ratio. Equation 3.1 may also be represented:

ligned | authenti
Probability of an authentic alignment = p(aligned |authentic)

p(aligned | random)

The right side of this equation can be read, “the probability of an alignment given
that it is authentic (i.e. the substitution of amino acid j with amino acid 7) divided
by the probability that the alignment occurs given that it happened by chance. An
odds ratio can be any positive ratio. The probabiliry that an event will occur is the
fraction of times it is expected to be observed over many trials; probabilities have
values ranging from 0 to 1. Odds and probability are closely related concepts. A
probability of 0 corresponds to an odds of 0; a probability of 0.5 corresponds to an
odds of 1.0; a probability of 0.75 corresponds to odds of 75:25 or 3. Odds and
probabilities may be converted as follows:

probabiliry odds

dds = 21 d probability = —2%%
04 =T probabitiy "¢ PO = T s

next explain how they calculated these values, resulting in the creation of an entire
series of scoring matrices.

Dayhoff et al. calculated the relative mutabilities of the amino acids (Table 3.1).
This simply describes how often each amino acid is likely to change over a short evol-
utionary period. (We note that the evolutionary period in question is short because
this analysis involves protein sequences that are closely related to each other.) To cal-
culate relative mutability, they divided the number of times each amino acid was
observed to mutate by the overall frequency of occurrence of that amino acid.
Table 3.2 shows the frequency with which each amino acid is found.

Why are some amino acids more mutable than others? The less mutable residues
probably have important structural or functional roles in proteins, such that the
consequence of replacing them with any other residue could be harmful to the
organism. (We will see in Chapter 20 that many human diseases, from cystic fibrosis
to the autism-related Rett syndrome to hemoglobinopathies, can be caused by a
single amino acid substitution in a protein.) Conversely, the most mutable amino
acids—asparagine, serine, aspartic acid, and glutamic acid—have functions in pro-
teins that are easily assumed by other residues. The most common substitutions
seen in Fig. 3.10 are glutamic acid for aspartic acid (both are acidic), serine for



Y\ WS B Relative Mutabilities of Amino Acids

Asn 134 His 66
Ser 120 Arg 65
Asp 106 Lys 56
Glu 102 Pro 56
Ala 100 Gly 49
Thr 97 Tyr 41
Ile 96 Phe 41
Met 94 Leu 40
Gln 93 Cys 20
Val 74 Trp 18

The value of alanine is arbitrarily set to 100.
Source: From Dayhoff (1978). Used with permission.

1. M 3B Normalized Frequencies of Amino Acid
Gly

0.089 Arg 0.041
Ala 0.087 Asn 0.040
Leu 0.085 Phe 0.040
Lys 0.081 Gln 0.038
Ser 0.070 Ile 0.037
Val 0.065 His 0.034
Thr 0.058 Cys 0.033
Pro 0.051 Tyr 0.030
Glu 0.050 Met 0.015
Asp 0.047 Trp 0.010

These values sum to 1. If the 20 amino acids were equally rep-
resented in proteins, these values would all be 0.05 (i.e., 5%);
instead, amino acids vary in their frequency of occurrence
Source: From Dayhoff (1978). Used with permission.

alanine, serine for threonine (both are hydroxylated), and isoleucine for valine (both
are hydrophobic and of a similar size).

The substitutions that occur in proteins can also be understood with reference to
the genetic code (Box 3.6). Observe how common amino acid substitutions tend to
require only a single nucleotide change. For example, aspartic acid is encoded by
GAU or GAC, and changing the third position to either A or G causes the codon to
encode a glutamic acid. Also note that four of the five least mutable amino acids (trypto-
phan, cysteine, phenylalanine, and tyrosine) are specified by only one or two codons. A
mutation of any of the three bases of the W codon is guaranteed to change that amino
acid. The low mutability of this amino acid suggests that substitutions are not tolerated
by natural selection. Of the eight least mutable amino acids (Table 3.1), only one (leu-
cine) is specified by six codons, and only two (glycine and proline) are specified by four
codons. The others are specified by one or two codons.

PAM1 Matrix

Dayhoff and colleagues next used the data on accepted mutations (Fig. 3.10) and the
probabilities of occurrence of each amino acid to generate a mutation probability

SCORING MATRICES
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Box 3.6
The Standard Genetic Code

Second nucleotide

-
©
U A
G
T
©
c
o A 8
e 3
o S
[$] [«
2 T ©
B B =
= BEA [
- A
G
T
©
G
A
G

In this table, the 64 possible codons are depicted along with the frequency of
codon utilization and the three-letter code of the amino acid that is specified.
There are four bases (A, C, G, U) and three bases per codon, so there are
4> = 64 codons.

Several features of the genetic code should be noted. Amino acids may be
specified by one codon (M, W), two codons (C, D, E, F, H, K, N, Q, Y), three
codons (I), four codons (A, G, P, T, V), or six codons (L, R, S). UGA is rarely
read as a selenocysteine (abbreviated sec, and the assigned single-letter
abbreviations is U).

For each block of four codons that are grouped together, one is often used
dramatically less frequently. For example, for F, L, I, M, and V (i.e., codons
with a U in the middle, occupying the first column of the genetic code),
adenine is used relatively infrequently in the third-codon position. For codons
with a cytosine in the middle position, guanine is strongly underrepresented in
the third position.

Also note that in many cases mutations cause a conservative change (or no
change at all) in the amino acid. Consider threonine (ACX). Any mutation in
the third position causes no change in the specified amino acid, because of
“wobble.” If the first nucleotide of any threonine codon is mutated from A to
U, the conservative replacement to a serine occurs. If the second nucleotide C
is mutated to a G, a serine replacement occurs. Similar patterns of conservative
substitution can be seen along the entire first column of the genetic code,
where all of the residues are hydrophobic, and for the charged residues D, E
and K, R as well.

Codon usage varies between organisms and between genes within organisms.

Note also that while this is the standard genetic code, some organisms use




alternate genetic codes. A group of two dozen alternate genetic codes are listed
at the NCBI Taxonomy website, » http://www.ncbi.nlm.nih.gov/Taxonomy/
taxonomyhome.html/. As an example of a nonstandard code, vertebrate
mitochondrial genomes use AGA and AGG to specify termination (rather than
arg in the standard code), ATA to specify met (rather than ile), and TGA to
specify trp (rather then termination).

Source: Adapted from the International Human Genome Sequencing
Consortium (2001), fig. 34. Used with permission.

marrix M (Fig. 3.11). Each element of the matrix M;; shows the probability that an
original amino acid j (see the columns) will be replaced by another amino acid
(see the rows) over a defined evolutionary interval. In the case of Fig. 3.11 the interval
is one PAM, which is defined as the unit of evolutionary divergence in which 1% of
the amino acids have been changed between the two protein sequences. Note that the
evolutionary interval of this PAM matrix is defined in terms of percent amino acid
divergence and not in units of years. One percent divergence of protein sequence
may occur over vastly different time frames for protein families that undergo substi-
tutions at different rates.

Examination of Fig. 3.11 reveals several important features. The highest scores
are distributed in a diagonal from top left to bottom right. The values in each
column sum to 100%. The value 98.67 at the top left indicates that when the original
sequence consists of an alanine there is a 98.67% chance that the replacement amino
acid will also be an alanine over an evolutionary distance of one PAM. There is a
0.28% chance that it will be changed to serine. The most mutable amino acid
(from Table 3.1), asparagine, has only a 98.22% chance of remaining unchanged; the
least mutable amino acid, tryptophan, has a 99.76% chance of remaining the same.

For each original amino acid, it is easy to observe the amino acids that are most
likely to replace it if a change should occur. These data are very relevant to pairwise
sequence alignment because they will form the basis of a scoring system (described
below) in which reasonable amino acid substitutions in an alignment are rewarded
while unlikely substitutions are penalized. These concepts are also relevant to data-
base searching algorithms such as BLAST (Chapters 4 and 5) which depend on
rules to score the relatedness of molecular sequences.

Almost all molecular sequence data are obtained from extant organisms. We can
infer ancestral sequences, as described in Box 3.4 and Chapter 7. But in general, for
an aligned pair of residues 7, j we do not know which one mutated into the other.
Dayhoff and colleagues used the assumption that accepted amino acid mutations
are undirected, that is, they are equally likely in either direction. In the PAMI1
matrix, the close relationship of the proteins makes it unlikely that the ancestral
residue is entirely different than both of the observed, aligned residues.

PAM250 and Other PAM Matrices

The PAM1 matrix was based on the alignment of closely related protein sequences,
all of which were at least 85% identical within a protein family. We are often interested
in exploring the relationships of proteins that share far less than 85% amino acid iden-
tity. We can accomplish this by constructing probability matrices for proteins that
share any degree of amino acid identity. Consider closely related proteins, such as
the GAPDH proteins shown in Fig. 3.7. A mutation from one residue to another
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is a relatively rare event, and a scoring system used to align two such closely related
proteins should reflect this. In the PAM1 mutation probability matrix (Fig. 3.11)
some substitutions such as tryptophan to threonine are so rare that they are never
observed in the data set. But next consider two distantly related proteins, such as
the kappa caseins shown in Fig. 3.8. Here, substitutions are likely to be very
common. PAM matrices such as PAM100 or PAM250 were generated to reflect
the kinds of amino acid substitutions that occur in distantly related proteins.

How are PAM matrices other than PAMI1 derived? Dayhoff et al. multiplied
the PAM1 matrix by itself, up to hundreds of times, to obtain other PAM matrices
(see Box 3.7). Thus they extrapolated from the PAM1 matrix.

To make sense of what different PAM matrices mean, consider the extreme cases.
When PAM equals zero, the matrix is a unit diagonal (Fig. 3.12), because no amino
acids have changed. PAM can be extremely large (e.g., PAM greater than 2000, or the
matrix can even be multiplied against itself an infinite number of times). In the result-
ing PAMoo matrix there is an equal likelihood of any amino acid being present and all
the values consist of rows of probabilities that approximate the background prob-
ability for the frequency of occurrence of each amino acid (Fig. 3.12, lower panel).
We described these background frequencies in Table 3.2.

The PAM250 matrix is of particular interest (Fig. 3.13). It is produced when the
PAMI matrix is multiplied against itself 250 times, and it is one of the common
matrices used for BLAST searches of databases (Chapter 4). This matrix applies

Box 3.7
Matrix Multiplication

A matrix is an orderly array of numbers. An example of a matrix with rows 7 and
columns j is:

1 2 4
2 0 -3
4 -3 6

In a symmetric matrix, such as the one above, a; = a;;. This means that all the
corresponding nondiagonal elements are equal. Matrices may be added,
subtracted, or manipulated in a variety of ways. Two matrices can be multiplied
together provided that the number of columns in the first matrix M; equals the
number of rows in the second matrix M,. Following is an example of how to
multiply M, by M.

Successively multiply each row of M; by each column of M,:

3 4 5 =2
w=lo o) we=lz 7]
0 2 2 1

_ {<3><5>+<4><2> <3><—2>+<4><1>} _ {23 —2]
27 L06) + @)@) (0)(=2) + @)1) 4 2

If you want to try matrix multiplication yourself, enter the PAM1 mutation
probability matrix of Fig. 3.11 into a program such as MATLAB®
(Mathworks), divide each value by 10,000, and multiply the matrix times itself
250 times. You will get the PAM250 matrix of Fig. 3.13.

SCORING MATRICES
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FIGURE 3.12. Portion of the
matrices for a zero PAM wvalue original amino acid

(PAMO; upper panel) or for an T [PAMO A 9 N 5 o 3 3 3
infinite  PAMoo  value (lower S A 100 0 0 0 0 0 o o
panel). At PAMo (ie., if the £ R 0 100 0 0 0 0 0 0
PAM1 matrix is multiplied against ~ N 0 0 100 0 0 0 0 0
irsel . . b 5 € D 0 0 0 100 0 0 0 0
itself an mﬁm.e number of times), 2 C o 5 5 o 100 o o o
all the entries in each row converge @ Q 0 0 0 0 0 100 0 0
on the normalized frequency of the & E 0 0 0 0 0 0 100 0
replacement amino acid (see Table e 0 0 0 0 0 0 0 100
3.2). A PAM2000 matrix has simi- P ”
original amino aci

lar values that tend to converge on g
these same limits. In a PAM2000 g (—PAM= L A R N D C 9 E G

. . . o A 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7
mairix, the proteins being com- & R 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1
pared are at an extreme of unrelat-  § N 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
edness. In constrast, at PAMO, no ~ § 8 iz ‘31; ‘31; ‘31; ‘31; i; i; ;1;

. E - - . . - - - .
mutations are tolemt.ed, and the 8 Q 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8
residues of the proteins are per- S E 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
fectly conserved. 9] G 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9

to an evolutionary distance where proteins share about 20% amino acid identity.
Compare this matrix to the PAM1 matrix (Fig. 3.11) and note that much of the infor-
mation content is lost. The diagonal from top left to bottom right tends to contain
higher values than elsewhere in the matrix, but not in the dramatic fashion of the
PAMI1 matrix. As an example of how to read the PAM250 matrix, if the original
amino acid is an alanine, there is just a 13% chance that the second sequence will
also have an alanine. In fact, there is a nearly equal probability (12%) that the alanine
will have been replaced by a glycine. For the least mutable amino acids, tryptophan
and cysteine, there is more than a 50% probability that those residues will remain
unchanged at this evolutionary distance.

A|R|IN[D|C|Q|E|G|H]|I LIK|M|F [P |S|T|W|Y|V

A 13|66 |9 |9 |5 |8 |9 |12|6|8 |6 |7 |7 |4 |22 ]11]|22]| 2| 4]0

R([3 [17]a |3 |25 |3 |2|6|3 |29 a1 |a|a|3]|]7]2]2

N |4 |a |6 |7 ]|2]|5|6|a|e6|3|2|5]3]2|a|5]4a]2 303

D |5 |4 |8 122|212 |7 |05 | 6|3 |2|5]3 |1 |a|5]|5]1]|2]3

Clz2 |1 |2 |afs2|a|a]|2]z2|2|2|2|21|1 |2 |3]|2]1|4a]2

Q|3 |5 |5 |6 |1 |ao|7 | 3| 7|2 |35 |31 |a|3]|3]1]2]3

E 5 4 7 11 1 9 12 5 6 3 2 5 3 1 4 5 5 1 2 3

FIGURE 3.13. The PAM250 G |12 |5 |10 [10 | 4 7 9 | 27| 5|5 4|6 5 |3 8 [11 ] 9 2| 3 |7
. e . H 2 |5 |5 a2 |7 |a]2]15|2]2]3 2|23 ]3]2]2]|3]2
mutation probability matrix. From " P IPU P U I R o B e A R O R I Ry I R BRI Y
Dflyboﬁ(1?78’ p- 359’ ﬁg‘ 83)' At L |6 [4 |4 ]3 |2 6 | 4 | 3| 5|15 (34 ] 4 [20]13 |5 4 6 6| 7 |13
this evolutionary distance, only [T "175 (10 |5 |2 |10] 5 | 5| 8|5 |4 26|09 ]2 |6 |8]s]| a]3s]s
one in five amino acid residues M1 11 11011 1o lalelailalalslalsela 11121111l
remains unchanged ﬁ om an orig- Fl2 |1 |2 |1 |1 |22 |21]|3|5 |6 |1 ]|al32|1|2]2]4a|20]3
inal amino acid sequence (COl- P 7 5 5 4 3 5 4 5 5 3 3 4 3 2 20 6 5 1 2 | 4
umns) to a replacement amino S|lo |6 |8 |7 |7 |6 |7]|9]|6|5 |a|7]|5 |3 |9 |10]9]| a|ale
acid (rows). Note that the scale |T |8 |5 |6 |6 |4 |5 |5 | 6| 4|6 |4a|6 |5 |3 |6 |8 11| 2]|3]s
has changed relative to Fig. 3.11, |W o |2 |o |o o o o o 1)o |1 o o 1 [o |21 |O0]551]0
dnd the Columns sum to 100. Y 1 1 2 1 3 1 1 1 3 2 2 1 2 |15 1 2 2 3 31| 2
Used with permission. V|7 (4 |a|a|a|a|a]|s]|afis|io|a]|10]|s5 |5 |5 | 7] 2] 4|17



From a Mutation Probability Matrix to a Log-Odds
Scoring Matrix

Our goal in studying PAM matrices is to derive a scoring system so that we can assess
the relatedness of two sequences. When we perform BLAST searches (Chapters 4
and 5) or pairwise alignments, we employ a scoring matrix, but it is not in the
form we have described so far. The PAM250 mutation probability matrix (Fig.
3.13) is useful because it describes the frequency of amino acid replacements
between distantly related proteins. We next need to convert the elements of a PAM
mutation probability matrix into a scoring matrix, also called a log-odds matrix or
relatedness odds matrix.

The cells in a log-odds matrix consist of scores as defined in Equation 3.1 above.
The target frequencies g; are derived from a mutation probability matrix, such as
those shown in Figs. 3.11 (for PAM1) and 3.13 (for PAM250). These values consist
of positive numbers that sum to 1. The background frequencies p;p; reflect the inde-
pendent probabilities of each amino acid 7, occurring in this position. Its values were
given in Table 3.2.

For this scoring system Dayhoff and colleagues took 10 times the base 10 logar-
ithm of the odds ratio (Equation 3.1). Using the logarithm here is helpful because it
allows us to sum the scores of the aligned residues when we perform an overall align-
ment of two sequences. (If we did not take the logarithm, we would need to multiply
the ratios at all the aligned positions, and this is computationally more cumbersome.)

A log-odds matrix for PAM250 is shown in Fig. 3.14. The values have been
rounded off to the nearest integer. Try using Equation 3.1 to make sure you
understand how the mutation probability matrix (Fig. 3.13) is converted into
the log-odds scoring matrix (Fig. 3.14). As an example, to determine the score
assigned to two aligned tryptophan residues, the PAM250 mutation probability
matrix value is 0.55 (Fig. 3.13), and the normalized frequency of tryptophan is
0.010 (Table 3.2). Thus,

0.55
S(nypmphan,nypmphan) =10 x 10g10 (001> =+17.4 (32)

A2

R [-2]| 6

N lo|lo]fo2

D|o|-1]2

C [-2|-4 |-4 -5 |12

Q 1|1 -5 | 4

E|lo|-1]1]|3[-5]|2]4

G|l1]-3]0 -3|-1]0]s

Hl-1|2]2|1]|-3][3]1]|=2]%

|l |-1 |2 |-2|2 |-2]-2[|2 |3 [-2 5

L|-2|3|-3|4]|-6|2]|3]|-4]|2]-2]€%

Kl-1|3]1]lo|-5]1]0]=2]0]-2[-3]S5

M|-1]o0]|=2]3]|-5]-1]=2]3|=2]2]4]0]cs

Fl-3[-4|-3|-6|-4|-5]|-5|5|-2]1]2]|-5]0]29

P 0| o|-1|-3]0 |-1 0 |-2|-3|-1]-2]-5]%6

S|12|lo|l1|lo0o]lo|-12|]o|1|-1|-1|3|]o0|2]|3|]1]2

T|1|-1|o0o|lo|-—2|-1]|]o0o|lo|-1|]o0o|-2|]o0|-1]|-3]|0 3

W|-6|2|-4|-7|-8|-5|-7|-7|-3|-5]|-2|-3|-4| o]|-6|-2 |-5 |17

Y [-3[-4|2[-4|] of-4[-4]|5]0]|-1]-1]-4]2] 7|53 [3] 0]10

Vi]io|2]|—2]|-—2|—2]|2]2]1]|2]4]2]2]2]-1]-1]-1]0]|-6|-2]4
A|/R|IN|ID|C|Q|E|G|H]|I |[L|K|MI|F |[P|S|T|W]|Y |V
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Note that this scoring matrix is
symmetric, in contrast to the
mutation probability matrix in
Fig. 3.13. In a comparison of two
sequences it does not matter
which is given first. In problem
[3-6] of this chapter we will cal-
culate the likelihood of changing
cys to glu, then of changing glu
to cys.

FIGURE 3.14. Log-odds  matrix
for PAM250. High PAM values
(e.g, PAMZ250) are useful for
aligning very divergent sequences.
Avariety of algorithms for pairwise
alignment,  multiple  sequence
alignment, and database searching
(e.g, BLAST) allow you to select
an assortment of PAM matrices
such as PAM250, PAM70, and
PAM30.
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We state that a score of +17 for
tryptophan indicates that the cor-
respondence of two tryptophans
in an alignment of homologous
proteins is 50 times more likely
than a chance alignment of two
tryptophan residues. How do we
derive the number 50? From
Equation 3.1, let S; ;= +17 and let
the probability of replacement
g;i/pi = x. Then +17 = 10log,, x,
+1.7 = log; x, and 1017 =

x = 50.

This value is rounded off to 17 in the PAM250 log-odds matrix (Fig. 3.14). What do
the scores in the PAM250 matrix signify? A score of —10 indicates that the correspon-
dence of two amino acids in an alignment that accurately represents homology (evol-
utionary descent) is one-tenth as frequent as the chance alignment of these amino
acids. This assumes that each was randomly selected from the background amino
acid frequency distribution. A score of zero is neutral. A score of +17 for tryptophan
indicates that this correspondence is 50 times more frequent than the chance align-
ment of this residue in a pairwise alignment. A score of +2 indicates that the amino
acid replacement occurs 1.6 times as frequently as expected by chance. The highest
values in this particular matrix are for tryptophan (17 for an identity) and cysteine
(12), while the most severe penalties are associated with substitutions for those
two residues. When two sequences are aligned and a score is given, that score is
simply the sum of the scores for all the aligned residues across the alignment.

It is easy to see how different PAM matrices score amino acid substitutions by
comparing the PAM250 matrix (Fig. 3.14) with a PAM10 matrix (Fig. 3.15). In
the PAM10 matrix, identical amino acid residue pairs tend to produce a higher
score than in the PAM250 matrix; for example, a match of alanine to alanine
scores 7 versus 2, respectively. The penalties for mismatches are greater in the
PAMI10 matrix; for example, a mutation of aspartate to arginine scores —17
(PAM10) versus —1 (PAM250). PAMI10 even has negative scores for substitutions
(such as glutamate to asparagine, —5) that are scored positively in the PAM250
matrix (+1).

Practical Usefulness of PAM Matrices in Pairwise Alignment

We can demonstrate the usefulness of PAM matrices by performing a series of global
pairwise alignments of both closely related proteins and distantly related proteins.
For the closely related proteins we will use human beta globin (NP_000509) and
beta globin from the chimpanzee Pan troglodytes (XP_508242); these proteins
share 100% amino acid identity. The bit scores proceed in a fairly linear, decreasing
fashion from about 590 bits using the PAM10 matrix to 200 bits using the PAM250
matrix and 100 bits using the PAM500 matrix (Fig. 3.16, black line). In this pairwise
alignment there are no mismatches or gaps, and the high bit scores associated with
low PAM matrices (such as PAM10) are accounted for by the lower relative entropy
(defined below). The PAM10 matrix is thus appropriate for comparisons of closely
related proteins. Next consider pairwise alignments of two relatively divergent
proteins, human beta globin and alpha globin (NP_000549) (Fig. 3.16, red line).
The PAM70 matrix yields the highest score. Lower PAM matrices (e.g., PAMI10 to
PAMG60) produce lower bit scores because the sequences share only 42% amino
acid identity, and mismatches are assigned large negative scores. We conclude that
different scoring matrices vary in their sensitivity to protein sequences (or DNA
sequences) of varying relatedness. When you compare two sequences you may
need to repeat the search using several different scoring matrices. Alignment pro-
grams cannot be preset to choose the right matrix for each pair of sequences.
Instead they begin with the most broadly useful scoring matrix such as
BLOSUMG62, which we describe next.

Important Alternative to PAM: BLOSUM Scoring Matrices

In addition to the PAM matrices, another very common set of scoring matrices is the
blocks substitution matrix (BLOSUM) series. Henikoff and Henikoff (1992, 1996)
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FIGURE 3.16. Global  pairwise
alignment scores using a series of
PAM matrices. Two closely related
globins (human and chimpanzee
beta globin; black line) were
aligned using a series of PAM
matrices (x axis) and the bit
scores were measured (y axis).
For two distantly related globins
(human alpha versus beta globin;
red line) the bit scores are smaller
for low PAM matrices (such as
PAM1 to PAM20) because mis-
matches are severely penalized.

The PAM matrix is given as 10
times the log base 10 of the odds
ratio. The BLOSUM matrix is
given as 2 times the log base 2 of
the odds ratio. Thus, BLOSUM
scores are not quite as large as they
would be if given on the same scale
as PAM scores. Practically, this
difference in scales is not import-
ant because alignment scores are
typically converted from raw
scores to normalized bit scores
(Chapter 4).

600 T T T T

Human vs. Chimpanzee
HBA vs. HBB

500

400

300

Score (bits)

200

100

200 300 400
PAM matrix

100 500

used the BLOCKS database, which consisted of over 500 groups of local multiple
alignments (blocks) of distantly related protein sequences. Thus the Henikoffs
focused on conserved regions (blocks) of proteins that are distantly related to
each other. The BLOSUM scoring scheme employs a log-odds ratio using the base

2 logarithm:
q;
s; = 2 x log, (p—;)

Equation 3.3 resembles Equation 3.1 in its format. Karlin and Altschul (1990) and
Altschul (1991) have shown that substitution matrices can be described in general in

-0
A bib;

Here s;; refers to the score of amino acid 7 aligning with j. g; are the positive target
frequencies; these sum to 1. A is a positive parameter that provides a scale for the
matrix. We will again encounter A when we describe the basic statistical measure of
a BLAST result (Chapter 4, Equation 4.5).

The BLOSUMG62 matrix is the default scoring matrix for the BLAST protein
search programs at NCBI. It merges all proteins in an alignment that have 62%
amino acid identity or greater into one sequence. If a block of aligned globin ortho-
logs includes several that have 62%, 80%, and 95% amino acid identity, these would
all be weighted (grouped) as one sequence. Substitution frequencies for the
BLOSUMG62 matrix are weighted more heavily by blocks of protein sequences
having less than 62% identity. (Thus, this matrix is useful for scoring proteins that
share less than 62% identity.) The BLOSUMG62 matrix is shown in Fig. 3.17.

Henikoff and Henikoff (1992) tested the ability of a series of BLOSUM and
PAM matrices to detect proteins in BLAST searches of databases. They found that

(3.3)

a log-odds form as follows:

3.4)



A 4

R [-1 5

N [-2 0| 6

D |[-2]-2] 1

C|lo|-3]-3]- 9

Q |[-1]| 1] 0 -3

E |[-1 ol o| 2|-4| 2| 5

G 0| -2 0o|-1|-3|-2]|-2]| 6

H [-2 0| 1]|-1/[-3 oo |-2] 8

| -1 | -3|-3|-3|-1|-3|-3|-4|-3]| 4

L |-1|-2|-3|-4|-1|-2|-3]|-4]|-3]| 2| 4

K |[-1 2l of|-1]|-1| 1| 1]|-2|-1]-3]|-2| 5

M |[-1]|-2[-2|-3|-1| o|-2|-3|-2] 1| 2|-1]| 5

F|l-2|-3|-3|-3|-2]|-3|-3|-3|-1] o] o|-3] 0]

P |-1|-2|-2|-1|-3|-1|-1]|]-2|-2|-3]-3|-1|-2]-4]7

S 1| -1 1] o|-1| o] ol of|-1|-2]-2] 0|-1]|-2|-1]4

T 0| -1f of|-1|-1|-1]|-1]|-2|-=2|-1]-2|-1]-1|-=2]-1]1 5

W|-3|-3[-4|-4|2|-2|-3|-2|-2|-3|-2]-3|-1]1]-4][3][-2]11

Y |-2| -2[-2|-3[-2[-1|-2]-3 -1 -1|-2|-1]3|-3[-2[-2]2

V 0| -3|-3[-3|-1|-2]|-2|-3|-3| 3| 1|-2] 1[-1[-2]-2 0[-3[-1]4
A|I/RIN|IDI[C|Q|E|G|H|I|LIKIM|F|P[S|T|W Y|V

BLOSUMG62 performed slightly better than BLOSUMG60 or BLOSUM70 and
dramatically better than PAM matrices at identifying various proteins. Their matrices
were especially useful for identifying weakly scoring alignments. BLOSUMS50 and
BLOSUMO90 are other commonly used scoring matrices in BLAST searches. (For
an alignment of two proteins sharing about 50% identity, try using the
BLOSUMS50 matrix. The fasta family of sequence comparison programs use
BLOSUMS5O as a default.)

The relationships of the PAM and BLOSUM matrices are outlined in Fig. 3.18.
To summarize, BLOSUM and PAM matrices both use log-odds values in their scor-
ing systems. In each case, when you perform a pairwise sequence alignment (or when
you search a query sequence against a database), you specify the exact matrix to use
based on the suspected degree of identity between the query and its matches. PAM
matrices are based on data from the alignment of closely related protein families, and
they involve the assumption that substitution probabilities for highly related proteins
(e.g., PAMA40) can be extrapolated to probabilities for distantly related proteins (e.g.,
PAM250). In contrast, the BLOSUM matrices are based on empirical observations
of more distantly related protein alignments. Note that a PAM30 matrix, which is
available as an option on standard blastp searches at NCBI (Chapter 4), may be

BLOSUM90
PAM30

BLOSUM62
PAM120

BLOSUM45
PAM250

Less divergent > |\|ore divergent

Human versus
chimpanzee beta globin

Human versus
bacterial globins

FIGURE 3.18. Summary of PAM and BLOSUM matrices. High-value BLOSUM matrices and
low-value PAM matrices are best suited to study well-conserved proteins such as mouse and rat
globins. BLOSUM matrices with low numbers (e.g, BLOSUMAS5) or high PAM numbers
are best suited to detect distantly related proteins. Remember that in a BLOSUMA4S matrix
all members of a protein family with greater than 45% amino acid identity are grouped together,
allowing the matrix to focus on proteins with less than 45% identity.
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FIGURE 3.17. The BLOSUMG62
scoring matrix of Henikoff and
Henikoff (1992). This matrix
merges all proteins in an align-
ment that have 62% amino acid
identity or greater into one
sequence. BLOSUMG62 performs
better than alternative BLOSUM
matrices or a variety of PAM
matrices at detecting  distant
relationships between proteins. It
is thus the default scoring matrix
for most database search programs
such as BLAST (Chapter 4). Used
with permission.
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A hit is a change in an amino acid
residue that occurs by mutation.
We discuss mutations (including
multiple hits at a nucleotide pos-
ition) in Chapter 7 (see Fig. 7.11).
We discuss mutations associated
with human disease in Chapter 20.

The plot in Fig. 3.19 reaches an
asymptote below about 15%
amino acid identity. This asymp-
tote would reach about 5% (or the
average background frequency of
the amino acids) if no gaps were
allowed in the comparison
between the proteins.

FIGURE 3.19. Two randomly
diverging protein sequences change
in a negatively exponential fashion.
This  plot  shows the observed
number of amino acid identities per
100 residues of two sequences (y
axis) versus the number of changes
that must have occurred (the evol-
utionary distance in PAM units).
The twilight zone (Doolittle, 1987)
refers to the evolutionary distance
corresponding to about 20% identity
between two proteins. Proteins with
this degree of amino acid sequence
identity may be homologous, but
such homology is difficult to
detect. This figure was constructed
using MATLAB® software with
data from Dayhoff (1978) (see
Table 3.3).

useful for identifying significant conservation between two closely related proteins.
However, a BLOSUM matrix with a high value (such as the BLOSUMS80 matrix
that is available at the NCBI blastp site) is not necessarily suitable for scoring closely
related sequences. This is because the BLOSUMS80 matrix is adapted to regions of
sequences that share up to 80% identity, but beyond that limited region two proteins
may share dramatically less amino acid identity (Pearson and Wood, 2001).

Pairwise Alignment and Limits of Detection:
The “Twilight Zone”

When we compare two protein sequences, how many mutations can occur between
them before their differences make them unrecognizable? When we compared
glyceraldehyde-3-phosphate dehydrogenase proteins, it was easy to see their relation-
ship (Fig. 3.7). However, when we compared human beta globin and myoglobin, the
relationship was much less obvious (Fig. 3.5). Intuitively, at some point two homolo-
gous proteins are too divergent for their alignment to be recognized as significant.
The best way to determine the detection limits of pairwise alignments is through
statistical tests that assess the likelihood of finding a match by chance. These are
described below, and in Chapter 4. In particular we will focus on the expect (E)
value. It can also be helpful to compare the percent identity (and percent divergence)
of two sequences versus their evolutionary distance. Consider two protein sequences,
each 100 amino acids in length, in which various numbers of mutations are intro-
duced. A plot of the two diverging sequences has the form of a negative exponential
(Fig. 3.19) (Doolittle, 1987; Dayhoff, 1978). If the two sequences have 100% amino
acid identity, they have zero changes per 100 residues. If they share 50% amino acid
identity, they have sustained an average of 80 changes per 100 residues. One might
have expected 50 changes per 100 residues in the case of two proteins that share
50% amino acid identity. However, any position can be subject to multiple hits.
Thus, percent identity is not an exact indicator of the number of mutations that
have occurred across a protein sequence. When a protein sustains about 250 hits
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LV CIN B Relationship between Observed Number of Amino Acid Differences

per 100 Residues of Two Aligned Protein Sequences and Evolutionary Difference®

Observed
Differences in

Evolutionary Distance

100 Residues in PAMs
1.0
5 5.1
10 10.7
15 16.6
20 23.1
25 30.2
30 38.0
35 47
40 56
45 67
50 80
55 94
60 112
65 133
70 159
75 195
80 246

“The number of changes that must have occurred, in PAM units.
Source: Adapted from Dayhoff (1978, p. 375). Used with permission.

per 100 amino acids, it may have about 20% identity with the original protein, and it
can still be recognizable as significantly related. If a protein sustains 360 changes
per 100 residues, it evolves to a point at which the two proteins share about 15%
amino acid identity and are no longer recognizable as significantly related in a
direct, pairwise comparison.

The PAM250 matrix assumes the occurrence of 250 point mutations per 100
amino acids. As shown in Fig. 3.19, this corresponds to the “twilight zone.” At
this level of divergence, it is usually difficult to assess whether the two proteins are
homologous. Other techniques, including multiple sequence alignment (Chapter
6) and structural predictions (Chapter 11), are often very useful to assess homology
in these cases. PAM matrices are available from PAMI1 to PAM250 or higher, and a
specific number of observed amino acid differences per 100 residues is associated
with each PAM matrix (Table 3.3 and Fig. 3.19). Consider the case of the human
alpha globin compared to myoglobin. These proteins are approximately 150 amino
acid residues in length, and they may have undergone over 300 amino acid substi-
tutions since their divergence (Dayhoff et al., 1972, p. 19). If there were 345 changes
(corresponding to 230 changes per 100 amino acids), then an additional 100 changes
would result in only 10 more observable changes (Dayhoff et al., 1972; Table 3.3).

ALIGNMENT ALGORITHMS: GLoBAL AND LocAL

Our discussion so far has focused on matrices that allow us to score an alignment
between two proteins. This involves the generation of scores for identical matches, mis-
matches, and gaps. We also need an appropriate algorithm to perform the alignment.
When two proteins are aligned, there is an enormous number of possible alignments.

There are about 22%//7n possible
global alignments between two
sequences of length # (Durbin

et al., 2000; Ewens and Grant,
2001). For two sequences of
length 1000, there are about 1
possible alignments. For two pro-
teins of length 200 amino acid
residues, the number of possible
alignments is over 6 x 10°%,

600
0
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This algorithm is also sometimes
called the Needleman—Wunsch—
Sellers algorithm. Sellers (1974)
provided a related alignment
algorithm (one that focuses on
minimizing differences, rather
than on maximizing similarities).
Smith et al. (1981) showed that
the Needleman—Wunsch and
Sellers approaches are mathemat-
ically equivalent.

There are two main types of alignment: global and local. We will explore these
approaches next. A global alignment such as one produced by the method of
Needleman and Wunsch (1970) contains the entire sequence of each protein or
DNA sequence. A local alignment such as the method of Smith and Waterman
(1981) focuses on the regions of greatest similarity between two sequences. We
saw a local alignment of human beta globin and myoglobin in Fig. 3.5. For many pur-
poses, a local alignment is preferred, because only a portion of two proteins aligns.
(We will study the modular nature of proteins in Chapter 10.) Most database
search algorithms, such as BLAST (Chapter 4), use local alignments.

Each of these methods is guaranteed to find one or more optimal solutions to the
alignment of two protein or DNA sequences. We will then describe two rapid-search
algorithms, BLAST and FASTA. BLAST represents a simplified form of local align-
ment that is popular because the algorithm is very fast and easily accessible.

Global Sequence Alignment: Algorithm of Needleman
and Wunsch

One of the first and most important algorithms for aligning two protein sequences
was described by Saul Needleman and Christian Wunsch (1970), with subsequent
modifications by Sellers (1974), Gotoh (1982), and others. This algorithm is import-
ant because it produces an optimal alignment of two protein or DNA sequences, even
allowing the introduction of gaps. The result is optimal, but nonetheless not all possi-
ble alignments need to be evaluated. The Needleman—Wunsch (sometimes called
Needleman—Wunsch—Sellers) algorithm is an example of dynamic programming
in which the optimal alignment is identified by reducing the problem to a series of
smaller alignments on a residue-by-residue basis. An exhaustive pairwise comparison
would be too computationally expensive to perform.

We can describe the Needleman—Wunsch approach to global sequence align-
ment in three steps: (1) setting up a matrix, (2) scoring the matrix, and (3) identifying
the optimal alignment. We will illustrate this process using two globin sequences.

Step 1: Setting Up a Matrix

First, we compare two sequences in a two-dimensional matrix (Fig. 3.20 and follow-
ing figures). The first sequence, of length m, is listed vertically along the y axis, with its
amino acid residues corresponding to rows. The second sequence, of length 7, is listed
horizontally along the x axis so that its amino acid residues correspond to the columns.

In our two-dimensional matrix, a perfect alignment between two identical
sequences is represented by a diagonal line extending from the top left to the
bottom right (Fig. 3.20a). Any mismatch between two sequences is still represented
on this diagonal path (Fig. 3.20b). In the example of Fig. 3.20b, the mismatch of L.
and M residues might be assigned a score lower than the perfect match of L. and L
shown in Fig. 3.20a. Gaps are represented in this matrix using horizontal or vertical
paths, as shown in Fig. 3.20¢,d. Any gap in the second sequence is represented as a
vertical line (Fig. 3.20c), while any gap in the first sequence is drawn as a horizontal
line (Fig. 3.20d). These gaps can be of any length, and gaps can be internal or term-
inal. Sellers (1974) introduced a modification to allow linear gap penalties, while
Gotoh (1982) allowed affine gap penalties in which there is a large penalty for intro-
ducing a gap and a small penalty for each position that the gap is extended (see
Chapter 4).
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We will use a specific example of globally aligning a portion of human cytoglobin
(sequence 1 in Figs. 3.20e,f and 3.21) and a honeybee globin (sequence 2).