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2 CHAPTER 1

THE DEVELOPMENT OF SEQUENCE ANALYSIS METHODS has depended on the contributions of
many individuals from varied scientific backgrounds. This chapter provides a brief histor-
ical account of the more significant advances that have taken place, as well as an overview
of the chapters of this book. Because many contributors cannot be mentioned due to space
constraints, additional references to earlier and current reference books, articles, reviews,
and journals provide a broader view of the field and are included in the reference lists to
this chapter.

THE FIRST SEQUENCES TO BE COLLECTED WERE THOSE OF PROTEINS

The development of protein-sequencing methods (Sanger and Tuppy 1951) led to the
sequencing of representatives of several of the more common protein families such as
cytochromes from a variety of organisms. Margaret Dayhoff (1972, 1978) and her collabo-
rators at the National Biomedical Research Foundation (NBRF), Washington, DC, were the
first to assemble databases of these sequences into a protein sequence atlas in the 1960s, and
their collection center eventually became known as the Protein Information Resource (PIR,
formerly Protein Identification Resource; http://watson.gmu.edu:8080/pirwww/index.
html). The NBRF maintained the database from 1984, and in 1988, the PIR-International
Protein Sequence Database (http://www-nbrf.georgetown.edu/pir) was established as a
collaboration of NBRF, the Munich Center for Protein Sequences (MIPS), and the Japan
International Protein Information Database (JIPID).

Dayhoff and her coworkers organized the proteins into families and superfamilies based
on the degree of sequence similarity. Tables that reflected the frequency of changes observed
in the sequences of a group of closely related proteins were then derived. Proteins that were
less than 15% different were chosen to avoid the chance that the observed amino acid
changes reflected two sequential amino acid changes instead of only one. From aligned
sequences, a phylogenetic tree was derived showing graphically which sequences were most
related and therefore shared a common branch on the tree. Once these trees were made,
they were used to score the amino acid changes that occurred during evolution of the genes
for these proteins in the various organisms from which they originated (Fig. 1.1).
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Figure 1.1. Method of predicting phylogenetic relationships and probable amino acid changes dur-
ing the evolution of related protein sequences. Shown are three highly conserved sequences (A, B, and
C) of the same protein from three different organisms. The sequences are so similar that each posi-
tion should only have changed once during evolution. The proteins differ by one or two substitu-
tions, allowing the construction of the tree shown. Once this tree is obtained, the indicated amino
acid changes can be determined. The particular changes shown are examples of two that occur much
more often than expected by a random replacement process.
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Subsequently, a set of matrices (tables)—the percent amino acid mutations accepted by
evolutionary selection or PAM tables—which showed the probability that one amino acid
changed into any other in these trees was constructed, thus showing which amino acids are
most conserved at the corresponding position in two sequences. These tables are still used
to measure similarity between protein sequences and in database searches to find
sequences that match a query sequence. The rule used is that the more identical and con-
served amino acids that there are in two sequences, the more likely they are to have been
derived from a common ancestor gene during evolution. If the sequences are very much
alike, the proteins probably have the same biochemical function and three-dimensional
structural folds. Thus, Dayhoff and her colleagues contributed in several ways to modern
biological sequence analysis by providing the first protein sequence database as well as
PAM tables for performing protein sequence comparisons. Amino acid substitution tables
are routinely used in performing sequence alignments and database similarity searches,
and their use for this purpose is discussed in Chapters 3 and 7.

DNA SEQUENCE DATABASES

af

Walter Goad

Many types of se-
quence databases are
described in the first
annual issue of the
journal Nucleic Acids
Research.

The growth of the
number of sequences
in GenBank can be
tracked at http://www.
ncbi.nlm.nih.gov/Gen
Bank/genebankstats.
html.

DNA sequence databases were first assembled at Los Alamos National Laboratory (LANL),
New Mexico, by Walter Goad and colleagues in the GenBank database and at the European
Molecular Biology Laboratory (EMBL) in Heidelberg, Germany. Translated DNA
sequences were also included in the Protein Information Resource (PIR) database at the
National Biomedical Research Foundation in Washington, DC. Goad had conceived of the
GenBank prototype in 1979; LANL collected GenBank data from 1982 to 1992. GenBank
is now under the auspices of the National Center for Biotechnology Information (NCBI)
(http://www.ncbi.nlm.nih.gov). The EMBL Data Library was founded in 1980
(http://www.ebi.ac.uk). In 1984 the DNA DataBank of Japan (DDBJ), Mishima, Japan,
came into existence (http://www.ddbj.nig.ac.jp). GenBank, EMBL, and DDBJ have now
formed the International Nucleotide Sequence Database Collaboration (http://www.
ncbi.nlm.nih.gov/collab), which acts to facilitate exchange of data on a daily basis. PIR has
made similar arrangements.

Initially, a sequence entry included a computer filename and DNA or protein sequence
files. These were eventually expanded to include much more information about the
sequence, such as function, mutations, encoded proteins, regulatory sites, and references.
This information was then placed along with the sequence into a database format that
could be readily searched for many types of information. There are many such databases
and formats, which are discussed in Chapter 2.

The number of entries in the nucleic acid sequence databases GenBank and EMBL has
continued to increase enormously from the daily updates. Annotating all of these new
sequences is a time-consuming, painstaking, and sometimes error-prone process. As time
passes, the process is becoming more automated, creating additional problems of acc-
uracy and reliability. In December 1997, there were 1.26 X 10° bases in GenBank; this
number increased to 2.57 X 10° bases as of April 1999, and 1.0 X 10'° as of September
2000. Despite the exponentially increasing numbers of sequences stored, the implementa-
tion of efficient search methods has provided ready public access to these sequences.

To decrease the number of matches to a database search, non-redundant databases that
list only a single representative of identical sequences have been prepared. However, many
sequence databases still include a large number of entries of the same gene or protein
sequences originating from sequence fragments, patents, replica entries from different
databases, and other such sequences.
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SEQUENCE RETRIEVAL FROM PUBLIC DATABASES

David Lipman

An important step in providing sequence database access was the development of Web
pages that allow queries to be made of the major sequence databases (GenBank, EMBL,
etc.). An early example of this technology at NCBI was a menu-driven program called GEN-
INFO developed by D. Benson, D. Lipman, and colleagues. This program searched rapidly
through previously indexed sequence databases for entries that matched a biologist’s query.
Subsequently, a derivative program called ENTREZ (http://www.ncbi.nlm.nih.gov/Entrez)
with a simple window-based interface, and eventually a Web-based interface, was developed
at NCBI. The idea behind these programs was to provide an easy-to-use interface with a
flexible search procedure to the sequence databases.

Sequence entries in the major databases have additional information about the
sequence included with the sequence entry, such as accession or index number, name and
alternative names for the sequence, names of relevant genes, types of regulatory
sequences, the source organism, references, and known mutations. ENTREZ accesses this
information, thus allowing rapid searches of entire sequence databases for matches to one
or more specified search terms. These programs also can locate similar sequences (called
“neighbors” by ENTREZ) on the basis of previous similarity comparisons. When asked to
perform a search for one or more terms in a database, simple pattern search programs will
only find exact matches to a query. In contrast, ENTREZ searches for similar or related
terms, or complex searches composed of several choices, with great ease and lists the
found items in the order of likelihood that they matched the original query. ENTREZ
originally allowed straightforward access to databases of both DNA and protein sequences
and their supporting references, and even to an index of related entries or similar
sequences in separate or the same databases. More recently, ENTREZ has provided access
to all of Medline, the full bibliographic database of the National Library of Medicine
(NLM), Washington, DC. Access to a number of other databases, such as a phylogenetic
database of organisms and a protein structure database, is also provided. This access is
provided without cost to any user—private, government, industry, or research—a deci-
sion by the staff of NCBI that has provided a stimulus to biomedical research that cannot
be underestimated. NCBI presently handles several million independent accesses to their
system each day.

A note of caution is in order. Database query programs such as ENTREZ greatly facili-
tate keeping up with the increasing number of sequences and biomedical journals.
However, as with any automated method, one should be wary that a requested database
search may not retrieve all of the relevant material, and important entries may be
missed. Bear in mind that each database entry has required manual editing at some
stage, giving rise to a low frequency of inescapable spelling errors and other problems.
On occasion, a particular reference that should be in the database is not found because
the search terms may be misspelled in the relevant database entry, the entry may not be
present in the database, or there may be some more complicated problem. If exhaustive
and careful attempts fail, reporting such problems to the program manager or system
administrator should correct the problem.
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SEQUENCE ANALYSIS PROGRAMS

Methods for DNA
sequencing were devel-
oped in 1977 by
Maxam and Gilbert
(1977) and Sanger et
al. (1977). They are
described in greater
detail at the beginning
of Chapter 2.

Because DNA sequencing involves ordering a set of peaks (A, G, C, or T) on a sequencing
gel, the process can be quite error-prone, depending on the quality of the data.

As more DNA sequences became available in the late 1970s, interest also increased in
developing computer programs to analyze these sequences in various ways. In 1982 and
1984, Nucleic Acids Research published two special issues devoted to the application of com-
puters for sequence analysis, including programs for large mainframe computers down to
the then-new microcomputers. Shortly after, the Genetics Computer Group (GCG) was
started at the University of Wisconsin by J. Devereux, offering a set of programs for analysis
that ran on a VAX computer. Eventually GCG became commercial (http://www.gcg.com/).
Other companies offering microcomputer programs for sequence analysis, including Intelli-
genetics, DNAStar, and others, also appeared at approximately the same time. Laboratories
also developed and shared computer programs on a no-cost or low-cost basis. For example,
to facilitate the collection of data, the programs PHRED (Ewing and Green 1998; Ewing et
al. 1998) and PHRAP were developed by Phil Green and colleagues at the University of
Washington to assist with reading and processing sequencing data. PHRED and PHRAP are
now distributed by CodonCode Corporation (http://www.codoncode.com).

These commercial and noncommercial programs are still widely used. In addition, Web
sites are available to perform many types of sequence analyses; they are free to academic
institutions or are available at moderate cost to commercial users. Following is a brief
review of the development of methods for sequence analysis.

THE DOT MATRIX OR DIAGRAM METHOD FOR COMPARING SEQUENCES

In 1970, A.]. Gibbs and G.A. McIntyre (1970) described a new method for comparing two
amino acid and nucleotide sequences in which a graph was drawn with one sequence writ-
ten across the page and the other down the left-hand side. Whenever the same letter
appeared in both sequences, a dot was placed at the intersection of the corresponding
sequence positions on the graph (Fig. 1.2). The resulting graph was then scanned for a
series of dots that formed a diagonal, which revealed similarity, or a string of the same
characters, between the sequences. Long sequences can also be compared in this manner
on a single page by using smaller dots.

The dot matrix method quite readily reveals the presence of insertions or deletions
between sequences because they shift the diagonal horizontally or vertically by the amount
of change. Comparing a single sequence to itself can reveal the presence of a repeat of the
same sequence in the same (direct repeat) or reverse (inverted repeat or palindrome) ori-
entation. This method of self-comparison can reveal several features, such as similarity
between chromosomes, tandem genes, repeated domains in a protein sequence, regions of
low sequence complexity where the same characters are often repeated, or self-comple-
mentary sequences in RNA that can potentially base-pair to give a double-stranded struc-
ture. Because diagonals may not always be apparent on the graph due to weak similarity,
Gibbs and MclIntyre counted all possible diagonals and these counts were compared to
those of random sequences to identify the most significant alignments.

Maizel and Lenk (1981) later developed various filtering and color display schemes that
greatly increased the usefulness of the dot matrix method. This dot matrix representation
of sequence comparisons continues to play an important role in analysis of DNA and pro-
tein sequence similarity, as well as repeats in genes and very long chromosomal sequences,
as described in Chapter 3 (p. 59).
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Figure 1.2. A simple dot matrix comparison of two DNA sequences, AGCTAGGA and GACTAG-
GC. The diagonal of dots reveals a run of similar sequence CTAGG in the two sequences.

ALIGNMENT OF SEQUENCES BY DYNAMIC PROGRAMMING

Although the dot matrix method can be used to detect sequence similarity, it does not
readily resolve similarity that is interrupted by regions that do not match very well or that
are present in only one of the sequences (e.g., insertions or deletions). Therefore, one
would like to devise a method that can find what might be a tortuous path through a dot
matrix, providing the very best possible alignment, called an optimal alignment, between
the two sequences. Such an alignment can be represented by writing the sequences on suc-
cessive lines across the page, with matching characters placed in the same column and
unmatched characters placed in the same column as a mismatch or next to a gap as an
insertion (or deletion in the other sequence), as shown in Figure 1.3. To find an optimal
alignment in which all possible matches, insertions, and deletions have been considered to
find the best one is computationally so difficult that for proteins of length 300, 10%® com-
parisons will have to be made (Waterman 1989).

To simplify the task, Needleman and Wunsch (1970) broke the problem down into a
progressive building of an alignment by comparing two amino acids at a time. They start-
ed at the end of each sequence and then moved ahead one amino acid pair at a time, allow-
ing for various combinations of matched pairs, mismatched pairs, or extra amino acids in
one sequence (insertion or deletion). In computer science, this approach is called dynam-
ic programming. The Needleman and Wunsch approach generated (1) every possible
alignment, each one including every possible combination of match, mismatch, and single
insertion or deletion, and (2) a scoring system to score the alignment. The object was to
determine which was the best alignment of all by determining the highest score. Thus,
every match in a trial alignment was given a score of 1, every mismatch a score of 0, and
individual gaps a penalty score. These numbers were then added across the alignment to
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Figure 1.3. An alignment of two sequences showing matches, mismatches, and gaps (A). The best
or optimal alignment requires that all three types of changes be allowed.
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obtain a total score for the alignment. The alignment with the highest possible score was
defined as the optimal alignment.

The procedure for generating all of the possible alignments is to move sequentially
through all of the matched positions within a matrix, much like the dot matrix graph (see
above), starting at those positions that correspond to the end of one of the sequences, as
shown in Figure 1.4. At each position in the matrix, the highest possible score that can be
achieved up to that point is placed in that position, allowing for all possible starting points
in either sequence and any combination of matches, mismatches, insertions, and deletions.
The best alignment is found by finding the highest-scoring position in the graph, and then
tracing back through the graph through the path that generated the highest-scoring posi-
tions. The sequences are then aligned so that the sequence characters corresponding to this
path are matched.

G
2 1
I a
G i
A 1 5 {mirves gan pensity)

Deduced stgrenent with gap A
G AT C T A

a A T & A A

Figure 1.4. Simplified example of Needleman-Wunsch alignment of sequences GATCTA and
GATCA. First, all matches in the two sequences are given a score of 1, and mismatches a score of 0
(not shown), chosen arbitrarily for this example. Second, the diagonal 1s are added sequentially, in
this case to a total score of 4. At this point the row cannot be extended by another match of 1 to a
total score of 5. However, an extension is possible if a gap is placed in GATCA to produce
GATC A A, where A is the gap. To add the gap, a penalty score is subtracted from the total match
score of 5 now appearing in the last row and column. The best alignment is found starting with the

sequence characters that correspond to the highest number and tracing back through the positions
that contributed to this highest score.
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FINDING LOCAL ALIGNMENTS BETWEEN SEQUENCES
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Temple Smith

The above method finds the optimal alignment between two sequences, including the
entirety of each of the sequences. Such an alignment is called a global alignment. Smith and
Waterman (1981a,b) recognized that the most biologically significant regions in DNA and
protein sequences were subregions that align well and that the remaining regions made up
of less-related sequences were less significant. Therefore, they developed an important
modification of the Needleman-Wunsch algorithm, called the local alignment or Smith-
Waterman (or the Waterman-Smith) algorithm, to locate such regions. They also recog-
nized that insertions or deletions of any size are likely to be found as evolutionary changes
in sequences, and therefore adjusted their method to accommodate such changes. Finally,
they provided mathematical proof that the dynamic programming method is guaranteed
to provide an optimal alignment between sequences. The algorithm is discussed in detail
in Chapter 3 (p. 64).

Two complementary measurements had been devised for scoring an alignment of two
sequences, a similarity score and a distance score. As shown in Figure 1.3, there are three
types of aligned pairs of characters in each column of an alignment—identical matches,
mismatches, and a gap opposite an unmatched character. Using as an example a simple
scoring system of 1 for each type of match, the similarity score adds up all of the matches
in the aligned sequences, and divides by the sum of the number of matches and mis-
matches (gaps are usually ignored). This method of scoring sequence similarity is the one
most familiar to biologists and was devised by Needleman and Wunsch and used by Smith
and Waterman. The other scoring method is a distance score that adds up the number of
substitutions required to change one sequence into the other. This score is most useful for
making predictions of evolutionary distances between genes or proteins to be used for phy-
logenetic (evolutionary) predictions, and the method was the work of mathematicians,
notably P. Sellers. The distance score is usually calculated by summing the number of
mismatches in an alignment divided by the total number of matches and mismatches. The
calculation represents the number of changes required to change one sequence into the
other, ignoring gaps. Thus, in the example shown in Figure 1.3, there are 6 matches and 1
mismatch in an alignment. The similarity score for the alignment is 6/7 = 0.86 and the dis-
tance score is 1/7 = 0.14, if the required condition is given a simple score of 1. With this
simple scoring scheme, the similarity and distance scores add up to 1. Note also the equiv-
alence that the sum of the sequence lengths is equal to twice the number of matches plus
mismatches plus the number of deletions or insertions. Thus, in our example, the calcula-
tionis 8 + 9 =2 X (6 + 1) + 3 = 17. Usually more complex systems of scoring are used
to produce meaningful alignments, and alignments are evaluated by likelihood or odds
scores (Chapter 3), but an inverse relationship between similarity and distance scores for
the alignment still holds.

A difficult problem encountered in aligning sequences is deciding whether or not a par-
ticular alignment is significant. Does a particular alignment score reveal similarity between
two sequences, or would the score be just as easily found between two unrelated sequences
(or random sequence of similar composition generated by the computer)? This problem
was addressed by S. Karlin and S. Altschul (1990, 1993) and is addressed in detail in Chap-
ter 3 (p. 96).

An analysis of scores of unrelated or random sequences revealed that the scores could
frequently achieve a value much higher than expected in a normal distribution. Rather, the
scores followed a distribution with a positively skewed tail, known as the extreme value dis-
tribution. This analysis provided a way to assess the probability that a score found between
two sequences could also be found in an alignment of unrelated or random sequences of
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the same length. This discovery was particularly useful for assessing matches between a
query sequence and a sequence database discussed in Chapter 7. In this case, the evalua-
tion of a particular alignment score must take into account the number of sequence com-
parisons made in searching the database. Thus, if a score between a query protein sequence
and a database protein sequence is achieved with a probability of 107 of being between
unrelated sequences, and 80,000 sequences were compared, then the highest expected
score (called the EXPECT score) is 1077 X 8 X 10* = 8 X 1072 = 0.008. A value of
0.02—-0.05 is considered significant. Even when such a score is found, the alignment must
be carefully examined for shortness of the alignment, unrealistic amino acid matches, and
runs of repeated amino acids, the presence of which decreases confidence in an alignment.

MULTIPLE SEQUENCE ALIGNMENT

In addition to aligning a pair of sequences, methods have been developed for aligning three
or more sequences at the same time (for an early example, see Johnson and Doolittle 1986).
These methods are computer-intensive and usually are based on a sequential aligning of
the most-alike pairs of sequences. The programs commonly used are the GCG program
PILEUP (http://www.gcg. com/) and CLUSTALW (Thompson et al. 1994) (Baylor College
of Medicine, http://dot.imgen.bcm.tmc.edu:9331/multi-align/multi-align.html). Once the
alignment of a related set of molecular sequences (a family) has been produced, highly
conserved regions (Gribskov et al. 1987) can be identified that may be common to that
particular family and may be used to identify other members of the same family. Two
matrix representations of the multiple sequence alignment called a PROFILE and a
POSITION-SPECIFIC SCORING MATRIX (PSSM) are important computational tools
for this purpose.

Multiple sequence alignments can also be the starting point for evolutionary modeling.
Each column of aligned sequence characters is examined, and then the most probable phy-
logenetic relationship or tree that would give rise to the observed changes is identified.

Another form of multiple sequence alignment is to search for a pattern that a set of DNA
or protein sequences has in common without first aligning the sequences (Stormo et al. 1982;
Stormo and Hartzell 1989; Staden 1984, 1989; Lawrence and Reilly 1990). For proteins, these
patterns may define a conserved component of a structural or functional domain. For DNA
sequences, the patterns may specify the binding site for a regulatory protein in a promoter
region or a processing signal in an RNA molecule. Both statistical and nonstatistical methods
have been widely used for this purpose. In effect, these methods sort through the sequences
trying to locate a series of adjacent characters in each of the sequences that, when aligned,
provides the highest number of matches. Neural networks, hidden Markov models, and the
expectation maximization and Gibbs sampling methods (Stormo et al. 1982; Lawrence et al.
1993; Krogh et al. 1994; Eddy et al. 1995) are examples of methods that are used. Explana-
tions and examples of these methods are described in Chapter 4.

PREDICTION OF RNA SECONDARY STRUCTURE

In addition to methods for predicting protein structure, other methods for predicting
RNA secondary structure on computers were also developed at an early time. If the com-
plement of a sequence on an RNA molecule is repeated down the sequence in the opposite
chemical direction, the regions may base-pair and form a hairpin structure, as illustrated
in Figure 1.5.
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Figure 1.5. Folding of single-stranded RNA molecule into a hairpin secondary structure. Shown are
portions of the sequence that are complementary: They can base-pair to form a double-stranded
region. G/C base pairs are the most energetic due to 3 H bonds; A/U and G/U are next most ener-
getic with two and one H bonds, respectively.

Tinoco et al. (1971) generated these symmetrical regions in small oligonucleotide
molecules and tried to predict their stability based on estimates of the free energy associat-
ed with stacked base pairs in the model and of the destabilizing effects of loops, using a
table of energy values (Tinoco et al. 1971; Salser 1978). Single-stranded loops and other
unpaired regions decreased the predicted energy. Subsequently, Nussinov and Jacobson
(1980) devised a fast computer method for predicting an RNA molecule with the highest
possible number of base pairs based on the same dynamic programming algorithm used
for aligning sequences. This method was improved by Zuker and Stiegler (1981), who
added molecular constraints and thermodynamic information to predict the most ener-
getically stable structure.

Another important use of RNA structure modeling is in the construction of databases
of RNA molecules. One of the most significant of these is the ribosomal RNA database
prepared by the laboratory of C. Woese (1987) (http://www.cme.msu.edu/RDP
html/index.html). RNA secondary structure prediction is discussed in Chapter 5. Align-
ment, structural modeling, and phylogenetic analysis based on these RNA sequences have
made possible the discovery of evolutionary relationships among organisms that would
not have been possible otherwise.

DISCOVERY OF EVOLUTIONARY RELATIONSHIPS USING SEQUENCES

Variations within a family of related nucleic acid or protein sequences provide an invalu-
able source of information for evolutionary biology. With the wealth of sequence infor-
mation becoming available, it is possible to track ancient genes, such as ribosomal RNA
and some proteins, back through the tree of life and to discover new organisms based on
their sequence (Barns et al. 1996). Diverse genes may follow different evolutionary histo-
ries, reflecting transfers of genetic material between species. Other types of phylogenetic
analyses can be used to identify genes within a family that are related by evolutionary
descent, called orthologs. Gene duplication events create two copies of a gene, called par-
alogs, and many such events can create a family of genes, each with a slightly altered, or
possibly new, function. Once alignments have been produced and alignment scores found,
the most closely related sequence pairs become apparent and may be placed in the outer
branches of an evolutionary tree, as shown for sequences A and B in Figure 1.1 (p. 2). The
next most-alike sequence, sequence C in Figure 1.1, will be represented by the next branch
down on the tree. Continuing this process generates a predicted pattern of evolution for
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that particular gene. Once a tree has been found, the sequence changes that have taken
place in the tree branches can be inferred.

The starting point for making a phylogenetic tree is a sequence alignment. For each pair
of sequences, the sequence similarity score gives an indication as to which sequences are
most closely related. A tree that best accounts for the numbers of changes (distances)
between the sequences (Fitch and Margoliash 1987) of these scores may then be derived.
The method most commonly used for this purpose is the neighbor-joining method (Saitou
and Nei 1987) described in Chapter 6. Alternatively, if a reliable multiple sequence align-
ment is available, the tree that is most consistent with the observed variation found in each
column of the sequence alignment may be used. The tree that imposes the minimum num-
ber of changes (the maximum parsimony tree) is the one chosen (Felsenstein 1988).

In making phylogenetic predictions, one must consider the possibility that several trees
may give almost the same results. Tests of significance have therefore been derived to
determine how well the sequence variation supports the existence of a particular tree
branch (Felsenstein 1988). These developments are also discussed in Chapter 6.

IMPORTANCE OF DATABASE SEARCHES FOR SIMILAR SEQUENCES

As DNA sequencing became a common laboratory activity, genes with an important bio-
logical function could be sequenced with the hope of learning something about the bio-
chemical nature of the gene product. An example was the retrovirus-encoded v-sis and
v-src oncogenes, genes that cause cancer in animals. By comparing the predicted sequences
of the viral products with all of the known protein sequences at the time, R. Doolittle and
colleagues (1983) and W. Barker and M. Dayhoff (1982) both made the startling discovery
that these genes appeared to be derived from cellular genes. The Sis protein had a sequence
very similar to that of the platelet-derived growth factor (PDGF) from mammalian cells,
and Src to the catalytic chain of mammalian cAMP-dependent kinases. Thus, it appeared
likely that the retrovirus had acquired the gene from the host cell as some kind of genetic
exchange event and then had produced a mutant form of the protein that could compro-
mise the function of the normal protein when the virus infected another animal. Subse-
quently, as molecular biologists analyzed more and more gene sequences, they discovered
that many organisms share similar genes that can be identified by their sequence similarity.

These searches have been greatly facilitated by having genetic and biochemical informa-
tion from model organisms, such as the bacterium Escherichia coli and the budding yeast Sac-
charomyces cerevisiae. In these organisms, extensive genetic analysis has revealed the function
of genes, and the sequences of these genes have also been determined. Finding a gene in a new
organism (e.g., a crop plant) with a sequence similar to a model organism gene (e.g., yeast)
provides a prediction that the new gene has the same function as in the model organism.
Such searches are becoming quite commonplace and are greatly facilitated by programs such
as FASTA (Pearson and Lipman 1988) and BLAST (Altschul et al. 1990).

The methods used by BLAST and other additional powerful methods to perform
sequence similarity searching are described further in the next section and in Chapter 7.

THE FASTA AND BLAST METHODS FOR DATABASE SEARCHES

As the number of new sequences collected in the laboratory increased, there was also an
increased need for computer programs that provided a way to compare these new
sequences sequentially to each sequence in the existing database of sequences, as was done
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Figure 1.6. Rapid identification of sequence similarity by FASTA and BLAST. FASTA looks for
short regions in these two amino acid sequences that match and then tries to extend the alignment
to the right and left. In this case, the program found by a quick and simple indexing method that
W, I, and then V occurred in the same order in both sequences, providing a good starting point for
an alignment. BLAST works similarly, but only examines matched patterns of length 3 of the more
significant amino acid substitutions that are expected to align less frequently by chance alone.

to identify successfully the function of viral oncogenes. The dynamic programming
method of Needleman and Wunsch would not work because it was much too slow for the
computers of the time; today, however, with much faster computers available, this method
can be used. W. Pearson and D. Lipman (1988) developed a program called FASTA, which
performed a database scan for similarity in a short enough time to make such scans rou-
tinely possible. FASTA provides a rapid way to find short stretches of similar sequence
between a new sequence and any sequence in a database. Each sequence is broken down
into short words a few sequence characters long, and these words are organized into a table
indicating where they are in the sequence. If one or more words are present in both
sequences, and especially if several words can be joined, the sequences must be similar in
those regions. Pearson (1990, 1996) has continued to improve the FASTA method for sim-
ilarity searches in sequence databases.

An even faster program for similarity searching in sequence databases, called BLAST,
was developed by S. Altschul et al. (1990). This method is widely used from the Web site
of the National Center for Biotechnology Information at the National Library of Medicine
in Washington, DC (http://www.ncbi.nlm.nih.gov/BLAST). The BLAST server is probably
the most widely used sequence analysis facility in the world and provides similarity search-
ing to all currently available sequences. Like FASTA, BLAST prepares a table of short
sequence words in each sequence, but it also determines which of these words are most sig-
nificant such that they are a good indicator of similarity in two sequences, and then con-
fines the search to these words (and related ones), as described in Figure 1.6. There are ver-
sions of BLAST for searching nucleic acid and protein databases, which can be used to
translate DNA sequences prior to comparing them to protein sequence databases (Altschul
et al. 1997). Recent improvements in BLAST include GAPPED-BLAST, which is threefold
faster than the original BLAST, but which appears to find as many matches in databases,
and PSI-BLAST (position-specific-iterated BLAST), which can find more distant matches
to a test protein sequence by repeatedly searching for additional sequences that match an
alignment of the query and initially matched sequences. These methods are discussed in
Chapter 7.

PREDICTING THE SEQUENCE OF A PROTEIN BY TRANSLATION OF DNA SEQUENCES

Protein sequences are predicted by translating DNA sequences that are cDNA copies of
mRNA sequences from a predicted start and end of an open reading frame. Unfortunate-
ly, cDNA sequences are much less prevalent than genomic sequences in the databases. Par-
tial sequence (expressed sequence tags, or EST's) libraries for many organisms are available,
but these only provide a fraction of the carboxy-terminal end of the protein sequence and
usually only have about 99% accuracy. For organisms that have few or no introns in their
genomic DNA (such as bacterial genomes), the genomic DNA may be translated. For most
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eukaryotic organisms with introns in their genes, the protein-encoding exons must be pre-
dicted and then translated by methods described in Chapter 8. These genome-based pre-
dictions are not always accurate, and thus it remains important to have cDNA sequences
of protein-encoding genes. Promoter sequences in genomes may also be analyzed for com-
mon patterns that reflect common regulatory features. These types of analyses require
sophisticated approaches that are also discussed in Chapter 8 (Hertz et al. 1990).

PREDICTING PROTEIN SECONDARY STRUCTURE

There are a large number of proteins whose sequences are known, but very few whose
structures have been solved. Solving protein structures involves the time-consuming and
highly specialized procedures of X-ray crystallography and nuclear magnetic resonance
(NMR). Consequently, there is much interest in trying to predict the structure of a protein,
given its sequence. Proteins are synthesized as linear chains of amino acids; they then form
secondary structures along the chain, such as a helices, as a result of interactions between
side chains of nearby amino acids. The region of the molecule with these secondary struc-
tures then folds back and forth on itself to form tertiary structures that include a helices,
B sheets comprising interacting 3 strands, and loops (Fig. 1.7). This folding often leaves
amino acids with hydrophobic side chains facing into the interior of the folded molecule
and polar amino acids that can interact with water and the molecular environment facing
outside in loops. The amino acid sequence of the protein directs the folding pathway,
sometimes assisted by proteins called chaperonins. Chou and Fasman (1978) and Garnier
et al. (1978) searched the small structural database of proteins for the amino acids associ-
ated with each of the secondary structure types—a helices, turns, and 3 strands. Sequences
of proteins whose structures were not known were then scanned to determine whether the
amino acids in each region were those often associated with one type of structure. For
example, the amino acid proline is not often found in « helices because its side chain is not
compatible with forming a helix. This method predicted the structure of some proteins
well but, in general, was about as likely to predict a correct as an incorrect structure.

As more protein structures were solved experimentally, computational methods were
used to find those that had a similar structural fold (the same arrangement of secondary
structures connected by similar loops). These methods led to the discovery that as new
protein structures were being solved, they often had a structural fold that was already
known in a group of sequences. Thus, proteins are found to have a limited number of ~500
folds (Chothia 1992), perhaps due to chemical restraints on protein folding or to the exis-
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Figure 1.7. Folding of a protein from a linear chain of amino acids to a three-dimensional structure.
The folding pathway involves amino acid interactions. Many different amino acid patterns are found
in the same types of folds, thus making structure prediction from amino acid sequence a difficult
undertaking.
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tence of a single evolutionary pathway for protein structure (Gibrat et al. 1996). Further-
more, proteins without any sequence similarity could adopt the same fold, thus greatly
complicating the prediction of structure from sequence. Methods for finding whether or
not a given protein sequence can occupy the same three-dimensional conformation as
another based on the properties of the amino acids have been devised (Bowie et al. 1991).
Databases of structural families of proteins are available on the Web and are described in
Chapter 9.

Amos Bairoch (Bairoch et al. 1997) developed another method for predicting the bio-
chemical activity of an unknown protein, given its sequence. He collected sequences of
proteins that had a common biochemical activity, for example an ATP-binding site, and
deduced the pattern of amino acids that was responsible for that activity, allowing for some
variability. These patterns were collected into the PROSITE database (http://www.expasy.
ch/prosite). Unknown sequences were scanned for the same patterns. Subsequently, Steve
and Jorga Henikoff (Henikoff and Henikoff 1992) examined alignments of the protein
sequences that make up each MOTIF and discovered additional patterns in the aligned
sequences called BLOCKS (see http://www.blocks.thcrc.org/). These patterns offered an
expanded ability to determine whether or not an unknown protein possessed a particular
biochemical activity. The changes that were in each column of these aligned patterns were
counted and a new set of amino acid substitution matrices, called BLOSUM matrices, sim-
ilar to the PAM matrices of Margaret Dayhoff, were produced. One of these matrices,
BLOSUMBS62, is most often used for aligning protein sequences and searching databases for
similar sequences (Henikoff and Henikoff 1992) (see Chapter 7).

Sophisticated statistical and machine-training techniques have been used in more recent
protein structure prediction programs, and the success rate has increased. A recent
advance in this now active field of research is to organize proteins into groups or families
on the basis of sequence similarity, and to find consensus patterns of amino acid domains
characteristic of these families using the statistical methods described in Chapters 4 and 9.
There are many publicly accessible Web sites described in Chapter 9 that provide the lat-
est methods for identifying proteins and predicting their structures.

THE FIRST COMPLETE GENOME SEQUENCE

Although many viruses had already been sequenced, the first planned attempt to sequence
a free-living organism was by Fred Blattner and colleagues (Blattner et al. 1997) using the
bacterium E. coli. However, there was some concern over whether such a large sequence,
about 4 X 10° bp, could be obtained by the then-current sequencing technology. The first
published genome sequence was that of the single, circular chromosome of another bac-
terium, Hemophilus influenzae (Fleischmann et al. 1995), by The Institute of Genetics
Research (TIGR, at http://www.tigr.org/), which had been started by researcher Craig Ven-
ter. The project was assisted by microbiologist Hamilton Smith, who had worked with this
organism for many years. The speedup in sequencing involved using automated reading of
DNA sequencing gels through dye-labeling of bases, and breaking down the chromosome
into random fragments and sequencing these fragments as rapidly as possible without
knowledge of their location in the whole chromosome. Computer analysis of such shotgun
cloning and sequencing techniques had been developed much earlier by R. Staden at Cam-
bridge University and other workers, but the TIGR undertaking was much more ambi-
tious. In this genome project, newly read sequences were immediately entered into a com-
puter database and compared with each other to find overlaps and produce contigs of two
or more sequences with the assistance of computer programs. This procedure circumvent-
ed the need to grow and keep track of large numbers of subclones. Although the same
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sequence was often obtained up to 10 times, the sequence of the entire chromosome (2 X
10° bp), less a few gaps, was rapidly assembled in the computer over a 9-month period at
a cost of about $10°.

This success heralded a large number of other sequencing projects of various prokary-
otic and eukaryotic microorganisms, with a tremendous potential payoff in terms of uti-
lizable gene products and evolutionary information about these organisms. To date, com-
pleted projects include more than 30 prokaryotes, yeast S. cerevisiae (see Cherry et al.
1997), the nematode Caenorhabditis elegans (see C. elegans Sequencing Consortium 1998),
and the fruit fly Drosophila (see Adams et al. 2000). The plant Arabidopsis thaliana and the
human genome sequencing projects are ongoing and will be completed during 2000 or
shortly thereafter.

The Human Genome Project, a large, federally funded collaborative project, will com-
plete sequencing of the entire human genome by 2003. The project was developed from
an idea discussed at scientific meetings in 1984 and 1985, and a pilot project, the
Human Genome Initiative, was begun by the Department of Energy (DOE) in 1986.
National Institutes of Health funding of the project began in 1987 under the Office of
Genome Research. Currently, the project is constituted as the National Human
Genome Research Initiative. In 1998, a new commercial venture under the leadership
of Craig Venter was formed to sequence the majority of the human genome by 2001.
This group, which uses a whole genome shotgun cloning approach and intensive com-
puter processing of data, has already completed the Drosophila sequence and will
sequence the mouse genome following completion of the human genome. Both groups
simultaneously announced completion of the sequencing of the human genome in
2000.

ACEDB, THE FIRST GENOME DATABASE

As more genetic and sequence information became available for the model organisms,
interest arose in generating specific genome databases that could be queried to retrieve this
information. Such an enterprise required a new level of sharing of data and resources
between laboratories. Although there were initial concerns about copyright issues, credits,
accuracy, editorial review, and curating, eventually these concerns disappeared or became
resolved as resources on the Internet developed. The first genome database, called ACEDB
(a C. elegans database), and the methods to access this database were developed by Mike
Cherry and colleagues (Cherry and Cartinhour 1993). This database was accessible
through the internet and allowed retrieval of sequences, information about genes and
mutants, investigator addresses, and references. Similar databases were subsequently
developed using the same methods for A. thaliana and S. cerevisiae. Presently, there is a
large number of such publicly available databases. Web access to these databases is dis-
cussed in Chapter 10 (Table 10.1, p. 482).
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CHAPTER 2

THIS CHAPTER SUMMARIZES METHODS used to collect sequences of DNA molecules and
store them in computer files. Once in the computer, the sequences can be analyzed by a
variety of methods. Additionally, assembly of the sequences of large molecules from short
sequence fragments can readily be undertaken. Assembled sequences are stored in a com-
puter file along with identifying features, such as DNA source (organism), gene name, and
investigator. Sequences and accessory information are then entered into a database. This
procedure organizes them so that specific ones can be retrieved by a database query pro-
gram for subsequent use. Unfortunately, most sequence analysis programs require that the
information in a sequence file be stored in a particular format. To use these programs, it is
necessary to be aware of these formats and to be able to convert one format to another.
These programs are outlined in greater detail in Chapter 3.

DNA SEQUENCING

Sequencing DNA has become a routine task in the molecular biology laboratory. Purified
fragments of DNA cut from plasmid/phage clones or amplified by polymerase chain reac-
tion (PCR) are denatured to single strands, and one of the strands is hybridized to an
oligonucleotide primer. In an automated procedure, new strands of DNA are synthesized
from the end of the primer by heat-resistant Taq polymerase from a pool of deoxyribonu-
cleotide triphosphates (ANTPs) that includes a small amount of one of four chain-termi-
nating nucleotides (ddNTPs). For example, using ddATP, the resulting synthesis creates a
set of nested DNA fragments, each one ending at one of the As in the sequence through the
substitution of a fluorescent-labeled ddATP, as shown in Figure 2.1. A similar set of frag-
ments is made for each of the other three bases, but each is labeled with a different fluo-
rescent ddNTP.

The combined mixture of all labeled DNA fragments is electrophoresed to separate the
fragments by size, and the ladder of fragments is scanned for the presence of each of the
four labels, producing data similar to those shown in Figure 2.2. A computer program then
determines the probable order of the bands and predicts the sequence. Depending on the
actual procedure being used, one run may generate a reliable sequence of as many as 500
nucleotides. For accurate work, a printout of the scan is usually examined for abnormali-

Figure 2.1. Method used to synthesize a nested set of DNA fragments, each ending at a base position
complementary to one of the bases in the template sequence. To the left is a double-stranded DNA
molecule several kilobases in length. After denaturation, the DNA is annealed to a short primer oligonu-
cleotide primer (black arrow), which is complementary to an already sequenced region on the molecule.
New DNA is then synthesized in the presence of a fluorescently labeled chain-terminating ddN'TP or one
of the four bases. The reactions produce a nested set of labeled molecules. The resulting fragments are sep-
arated in order by length to give the sequence display shown in Fig. 2.2.
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631
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CGTCGTACAA
GAAGAAAATC
ATGCTAATAC
TTCTCCACAT
GAACATACAA
TACATTGGGA
AGCCGGATCA
ACTTTCTTAT
TTTTCATTCA
TTGANACAGA
TGNTAATTTT

TTTAGGTTAT
AATATGGGAA
TGGGGAARAT
GACTTTTTTT
AACGTTGAAG
ACAAAATTGA
TGGAAATAGG
CGCCATTGCT
TTTGGTACTA
AACTATCATC
NGGNAAATGA

GTGCGAATTC
ACGGTAATGG
GTTGATGTTT
ATTTATTAGG
ATTACTATGA
AATAGAATTT
CCTTTGTGGG
GAACCCGTTT
TTTCAGGCCT
TCTGGTTTGA
AATTGGGNTT

ACAAATTGAA
TCTCGAATCT
AGATGAAAGA
CTCTTCACTT
TGATGCTGAT
ATAATGGTTT
CTTGTGCTGA
GCAGGTTTGA
GANTCAATGC
ATAANCTNTC
TGAAAAAAAA

AATACAAGAG
CGATCGTACT
AAACGACCTA
CTAGTTAGTG
GAGGATTCTC
TTAAAGGTGA
TGGAAAGATT
TTTTGATTTG
CCNAGTTTAA
TAAGAACCAG
TCGGN

ARACAATCCC
GAGTTTTGAT
CAAAGAAGAT
TAATTGTACT
GTGATGGTAA
AGGAGAGGAG
TTCTTGGAGA
ATTATTATAT
TTAACCCCAC
CTTNCCCGGG

TAAAATCGAT
TCGTTTATTG
GAAGTACGGT
GTAAAAATCT
TATTGATTAC
AAGAGGAGAG
CATTTTCTCC
CAATGTNAAG
ACTCGTTGNA
GAGATCATTG

TTGATTAAGA
AATTATCCGG
GGGAAGGTTC
CAGGATGATC
TCTCGTATAA
ATTTTACTGA
TCTCTATAAA
TTATGATTTT
TGCTGCTGTT
GATTNAATNC

GGAGCGAAAA
TGAAAAGAGT
GTGTTGATTC
AAAAGATGAA
TTAACATAGA
TTTGAGTTGA
CAAGCTTATG
TGGTGGTGGA
TCCTTTGGTC
ATGCTTNTAC

Figure 2.2. Example of a DNA sequence obtained on an ABI-Prism 377 automated sequencer. The target DNA is denatured by heating and then annealed
to a specific primer. Sequencing reactions are carried out in a single tube containing Amplitaq (Perkin-Elmer), dNTPs, and four ddNTPs, each base labeled
with a different fluorescent dichloro-rhodamine dye. The polymerase extends synthesis from the primer, until a ddNTP is incorporated instead of ANTP,
terminating the molecule. The denaturing, reannealing, and synthesis steps are recycled up to 25 times, excess labeled ddNTPs are removed, and the
remaining products are electrophoresed on one lane of a polyacrylamide gel. As the bands move down the gel, the rhodamine dyes are excited by a laser
within the sequencer. Each of the four ddNTP types emits light at a different wavelength band that is detected by a digital camera. The sequence of changes
is plotted as shown in the figure and the sequence is read by a base-calling algorithm. More recently developed machines allow sequencing of 96 samples
at a time by capillary electrophoresis using more automated procedures. The accuracy and reliability of high-throughput sequencing have been much
improved by the development of the PHRED, PHRAP, and CONSED system for base-calling, sequence assembly, and assembled sequence editing (Ewing

and Green 1998; Gordon et al. 1998).
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Figure 2.3. Sequential sequencing of a DNA molecule using oligonucleotide primers. One of the
denatured template DNA strands is primed for sequencing by an oligonucleotide (yellow) comple-
mentary to a known sequence on the molecule. The resulting sequence may then be used to pro-
duce two more oligonucleotide primers downstream in the sequence, one to sequence more of the
same strand (purple) and a second (turquoise) that hybridizes to the complementary strand and pro-
duces a sequence running backward on this strand, thus providing a way to confirm the first
sequence obtained.

ties that decrease the quality of the sequence, and the sequence may then be edited manu-
ally. The sequence can also be verified by making an oligonucleotide primer complemen-
tary to the distal part of the readable sequence and using it to obtain the sequence of the
complementary strand on the original DNA template. The first sequence can also be
extended by making a second oligonucleotide matching the distal end of the readable
sequence and using this primer to read more of the original template. When the process is
fully automated, a number of priming sites may be used to obtain sequencing results that
give optimal separation of bands in each region of the sequence. By repeating this proce-
dure, both strands of a DNA fragment several kilobases in length can be sequenced
(Fig. 2.3).

GENOMIC SEQUENCING

To sequence larger molecules, such as human chromosomes, individual chromosomes are
purified and broken into 100-kb or larger random fragments, which are cloned into vec-
tors designed for large molecules, such as artificial yeast (YAC) or bacterial (BAC) chro-
mosomes. In a laborious procedure, the resulting library is screened for fragments called
contigs, which have overlapping or common sequences, to produce an integrated map of
the chromosome. Many levels of clone redundancy may be required to build a consensus
map because individual clones can have rearrangements, deletions, or two separate frag-
ments. These do not reflect the correct map and have to be eliminated. Once the correct
map has been obtained, unique overlapping clones are chosen for sequencing. However,
these molecules are too large for direct sequencing. One procedure for sequencing these
clones is to subclone them further into smaller fragments that are of sizes suitable for
sequencing, make a map of these clones, and then sequence overlapping clones (Fig. 2.4).
However, this method is expensive because it requires a great deal of time to keep track of
all the subclones.

An alternative method is to sequence all the subclones, produce a computer database of
the sequences, and then have the computer assemble the sequences from the overlaps that
are found. Up to 10 levels of redundancy are used to get around the problem of a small
fraction of abnormal clones. This procedure was first used to obtain the sequence of the 4-
Mb chromosome of the bacterium Haemophilus influenzae by The Institute of Genetics
Research (TIGR) team (Fleischmann et al. 1995). Only a few regions could not be joined
because of a problem subcloning those regions into plasmids, requiring manual sequenc-
ing of these regions from another library of phage subclones.
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Map fragments = =

fragments Sequence all fragments

l Sequence overlapping
— —_———— ——— and assemble

Assembled
sequence

sequence.

Figure 2.4. Methods for large-scale sequencing. A large DNA molecule 100 kb to several megabas-
es in size is randomly sheared and cloned into a cloning vector. In one method, a map of various-
sized fragments is first made, overlapping fragments are identified, and these are sequenced. In a
faster method that is computationally intense, fragments in different size ranges are placed in vec-
tors, and their ends are sequenced. Fragments are sequenced without knowledge of their chromoso-
mal location, and the sequence of the large parent molecule is assembled from any overlaps found.
As more and more fragments are sequenced, there are enough overlaps to cover most of the

Shotgun Sequencing

A controversy has arisen as to whether or not the above shotgun sequencing strategy
can be applied to genomes with repetitive sequences such as those likely to be
encountered in sequencing the human genome (Green 1997; Myers 1997). When
DNA fragments derived from different chromosomal regions have repeats of the
same sequence, they will appear to overlap. In a new whole shotgun approach, Cel-
era Genomics is sequencing both ends of DNA fragments of short (2 kb), medium
(10 kb), and long (BAC or ~100 kb) lengths. A large number of reads are then
assembled by computer. This method has been used to assemble the genome of the
fruit fly Drosophila melanogaster after removal of the most highly repetitive regions
(Myers et al. 2000) and also to assemble a significant proportion of the human

genome.

SEQUENCING cDNA LIBRARIES OF EXPRESSED GENES

Two common goals in sequence analysis are to identify sequences that encode proteins,
which determine all cellular metabolism, and to discover sequences that regulate the
expression of genes or other cellular processes. Genomic sequencing as described above
meets both goals. However, only a small percentage of the genomic sequence of many
organisms actually encodes proteins because of the presence of introns within coding
regions and other noncoding regions in the genome. Although there has been a great deal
of progress in developing computational methods for analyzing genomic sequences and
finding these protein-encoding regions (see Chapter 8), these methods are not completely
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reliable and, furthermore, such genomic sequences are often not available. Therefore,
cDNA libraries have been prepared that have the same sequences as the mRNA molecules
produced by organisms, or else cDNA copies are sequenced directly by RT-PCR (copying
of mRNA by reverse transcriptase followed by sequencing of the cDNA copy by the poly-
merase chain reaction). By using cDNA sequence with the introns removed, it is much
simpler to locate protein-encoding sequences in these molecules. The only possible diffi-
culty is that a gene of interest may be developmentally expressed or regulated in such a way
that the mRNA is not present. This problem has been circumvented by pooling mRNA
preparations from tissues that express a large proportion of the genome, from a variety of
tissues and developing organs or from organisms subjected to several environmental influ-
ences. An important development for computational purposes was the decision by Craig
Venter to prepare databases of partial sequences of the expressed genes, called expressed
sequence tags or ESTs, which have just enough DNA sequence to give a pretty good idea
of the protein sequence. The translated sequence can then be compared to a database of
protein sequences with the hope of finding a strong similarity to a protein of known func-
tion, and hence to identify the function of the cloned EST. The corresponding cDNA clone
of the gene of interest can then be obtained and the gene completely sequenced.

SUBMISSION OF SEQUENCES TO THE DATABASES

Investigators are encouraged to submit their newly obtained sequences directly to a
member of the International Nucleotide Sequence Database Collaboration, such as the
National Center for Biotechnology Information (NCBI), which manages GenBank
(http://www.ncbi.nlm.nih.gov); the DNA  Databank of Japan (DDB]J;
http://www.ddbj.nig.ac.jp); or the European Molecular Biology Laboratory (EMBL)/EBI
Nucleotide Sequence Database (http://www.embl-heidelberg.de). NCBI reviews new
entries and updates existing ones, as requested. A database accession number, which is
required to publish the sequence, is provided. New sequences are exchanged daily by the
GenBank, EMBL, and DDB]J databases.

The simplest and newest way of submitting sequences is through the Web site
http://www.ncbi.nlm.nih.gov/ on a Web form page called BankIt. The sequence can also be
annotated with information about the sequence, such as mRNA start and coding regions.
The submitted form is transformed into GenBank format and returned to the submitter
for review before being added to GenBank. The other method of submission is to use
Sequin (formerly called Authorin), which runs on personal computers and UNIX
machines. The program provides an easy-to-use graphic interface and can manage large
submissions such as genomic sequence information. It is described and demonstrated on
http://www.ncbi.nlm.nih.gov/Sequin/index.html and may be obtained by anonymous FTP
from ncbi.nlm.nih.gov/sequin/. Completed files can also be E-mailed to gb-
sub@ncbi.nlm.nih.gov or can be mailed on diskette to GenBank Submissions, National
Center for Biotechnology Information, National Library of Medicine, Bldg. 38A, Room
8N-803, Bethesda, Maryland 20894.

SEQUENCE ACCURACY

It should be apparent from the above description of sequencing projects that the higher the
level of accuracy required in DNA sequences, the more time-consuming and expensive the
procedure. There is no detailed check of sequence accuracy prior to submission to GenBank



COLLECTING AND STORING SEQUENCES IN THE LABORATORY 27

and other databases. Often, a sequence is submitted at the time of publication of the
sequence in a journal article, providing a certain level of checking by the editorial peer-
review process. However, many sequences are submitted without being published or prior
to publication. In laboratories performing large sequencing projects, such as those engaged
in the Human Genome Project or the genome projects of model organisms, the granting
agency requires a certain level of accuracy of the order of 1 possible error per 10 kb. This
level of accuracy should be sufficient for most sequence analysis applications such as
sequence comparisons, pattern searching, and translation. In other laboratories, such as
those performing a single-attempt sequencing of ESTs, the error rate may be much higher,
approximately 1 in 100, including incorrectly identified bases and inserted or deleted bases.
Thus, in translating EST sequences in GenBank and other databases, incorrect bases may
translate to the wrong amino acid. The worst problem, however, is that base insertions/dele-
tions will cause frameshifts in the sequence, thus making alignment with a protein sequence
very difficult. Another type of database sequence that is error-prone is a fragment of
sequence from the immunological variant of a pathogenic organism, such as the regions in
the protein coat of the human immunodeficiency virus (HIV). Although this low level of
accuracy may be suitable for some purposes such as identification, for more detailed analy-
ses, e.g., evolutionary analyses, the accuracy of such sequence fragments should be verified.

COMPUTER STORAGE OF SEQUENCES

Before using a sequence file in a sequence analysis program, it is important to ensure that
computer sequence files contain only sequence characters and not special characters used
by text editors. Editing a sequence file with a word processor can introduce such changes
if one is not careful to work only with text or so-called ASCII files (those on the typewrit-
er keyboard). Most text editors normally create text files that include control characters in
addition to standard ASCII characters. These control characters will only be recognized
correctly by the text editor program. Sequence files that contain such control characters
may not be analyzed correctly, depending on whether or not the sequence analysis pro-
gram filters them out. Editors usually provide a way to save files with only standard ASCII
characters, and these files will be suitable for most sequence analysis programs.

ASCII and Hexadecimal

Computers store sequence information as simple rows of sequence characters called
strings, which are similar to the sequences shown on the computer terminal. Each
character is stored in binary code in the smallest unit of memory, called a byte. Each
byte comprises 8 bits, with each bit having a possible value of 0 or 1, producing 255
possible combinations. By convention, many of these combinations have a specific
definition, called their ASCII equivalent. Some ASCII values are defined as keyboard
characters, others as special control characters, such as signaling the end of a line (a
line feed and a carriage return), or the end of a file full of text (end-of-file character).
A file with only ASCII characters is called an ASCII file. For convenience, all binary
values may be written in a hexadecimal format, which corresponds to our decimal
format 0, 1,...... 9 plus the letters A, B, . . . . E. Thus, hexadecimal OF corresponds
to binary 0000 1111 and decimal 15, and FF corresponds to binary 1111 1111 and
decimal 255. A DNA sequence is usually stored and read in the computer as a series
of 8-bit words in this binary format. A protein sequence appears as a series of 8-bit
words comprising the corresponding binary form of the amino acid letters.
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Sequence and other data files that contain non-ASCII characters also may not be transferred
correctly from one machine to another and may cause unpredictable behavior of the commu-
nications software. Some communications software can be set to ignore such control charac-
ters. For example, the file transfer program (FTP) has ASCII and binary modes, which may be
set by the user. The ASCII mode is useful for transferring text files, and the binary mode is use-
ful for transferring compressed data files, which also contain non-ASCII characters.

Most sequence analysis programs also require not only that a DNA or protein sequence
file be a standard ASCII file, but also that the file be in a particular format such as the
FASTA format (see below). The use of windows on a computer has simplified such prob-
lems, since one merely has to copy a sequence from one window, for example, a window
that is running a Web browser on the ENTREZ Web site, and paste it into another, for
example, that of a translation program.

In addition to the standard four base symbols, A, T, G, and C, the Nomenclature
Committee of the International Union of Biochemistry has established a standard code to
represent bases in a nucleic acid sequence that are uncertain or ambiguous. The codes are
listed in Table 2.1.

For computer analysis of proteins, it is more convenient to use single-letter than three-
letter amino acid codes. For example, GenBank DNA sequence entries contain a translat-
ed sequence in single-letter code. The standard, single-letter amino acid code was estab-
lished by a joint international committee, and is shown in Table 2.2. When the name of
only one amino acid starts with a particular letter, then that letter is used, e.g., C, cysteine.
In other cases, the letter chosen is phonetically similar (R, arginine) or close by in the
alphabet (K, lysine).

Table 2.1. Base—-nucleic acid codes

Symbol Meaning Explanation

G G Guanine

A A Adenine

T T Thymine

C C Cytosine

R Aor G puRine

Y CorT pYrimidine

M AorC aMino

K GorT Keto

S Cor G Strong interactions

3 h bonds
W AorT Weak interactions
2 h bonds

H A, CorT H follows G in
not G alphabet

B CGorT B follows A in
not A alphabet

A% A, Cor G V follows U in
not T (not U) alphabet

D A GorT D follows C in
not C alphabet

N ACGorT Any base

Adapted from NC-IUB (1984).
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Table 2.2. Table of standard amino acid code letters

1-letter code 3-letter code Amino acid
A? Ala alanine

C Cys cysteine

D Asp aspartic acid
E Glu glutamic acid
F Phe phenylalanine
G Gly glycine

H His histidine

I Ile isoleucine

K Lys lysine

L Leu leucine

M Met methionine
N Asn asparagine

P Pro proline

Q Gln glutamine

R Arg arginine

S Ser serine

T Thr threonine

\% Val valine

W Trp tryptophan

X Xxx undetermined amino acid
Y Tyr tyrosine

zP Glx either glutamic acid or glutamine

Adapted from IUPAC-IUB (1969, 1972, 1983).

2 Letters not shown are not commonly used.

b Note that sometimes when computer programs translate DNA sequences, they will put a
“Z” at the end to indicate the termination codon. This character should be deleted from the
sequence.

SEQUENCE FORMATS

One major difficulty encountered in running sequence analysis software is the use of dif-
fering sequence formats by different programs. These formats all are standard ASCII files,
but they may differ in the presence of certain characters and words that indicate where dif-
ferent types of information and the sequence itself are to be found. The more commonly
used sequence formats are discussed below.

GenBank DNA Sequence Entry

The format of a database entry in GenBank, the NCBI nucleic acid and protein sequence
database, is as follows: Information describing each sequence entry is given, including lit-
erature references, information about the function of the sequence, locations of mRNAs
and coding regions, and positions of important mutations. This information is organized
into fields, each with an identifier, shown as the first text on each line. In some entries,
these identifiers may be abbreviated to two letters, e.g., RF for reference, and some identi-
fiers may have additional subfields. The information provided in these fields is described
in Figure 2.5 and the database organization is described in Figure 2.6. The CDS subfield in
the field FEATURES gives the amino acid sequence, obtained by translation of known and
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LOCUS name of locus, length and type of sequence,
classification of organism, data of entry
DEFINITION description of entry
ACCESSION accession numbers of original source
KEYWORDS key words for cross referencing this entry
SOURCE source organism of DNA
ORGANISM description of organism
REFERENCE
COMMENT biological function or database information
FEATURES information about sequence by base position or range of positions
source range of sequence, source organism
misc_signal range of sequence, type of function or signal
mRNA range of seguence, mRNA
CDS range of sequence, protein coding region
intron range of sequence, position of intron
mutation sequence position, change in sequence for mutation
BASE COUNT count of A, C, G, T and other symbols
ORIGIN text indicating start of sequence
1 gaattcgata aatctctggt ttattgtgca gtttatggtt ccaaaatcgce
51 atatactcac agcataactg tatatacacc cagggggcgg aatgaaagcg
// database symbol for end of sequence
Figure 2.5. GenBank DNA sequence entry.
potential open reading frames, i.e., a consecutive set of three-letter words that could be
codons specifying the amino acid sequence of a protein. The sequence entry is assumed by
computer programs to lie between the identifiers “ORIGIN” and “//”.

The sequence includes numbers on each line so that sequence positions can be located
by eye. Because the sequence count or a sequence checksum value may be used by the com-
puter program to verify the sequence composition, the sequence count should not be mod-
ified except by programs that also modify the count. The GenBank sequence format often
has to be changed for use with sequence analysis software.

Accession Organism Reference Name Reywords Sequence
no
..123 Escherichia. Medliinel,. LexA S0S regqulon, ATG. .
coli vasea protein repressor,
transcriptional
requlator, ..
..124 Escherichia Medline2,. UmubD S0S regulon,.. GTA..
coli e protein
..125 Saccharomyces. Medline3,. GAL4 transcriptional CAT..
cerevisiae ceeen protein regulator,..
..125 Homo. sapiens Medline4,. gluco- transcriptional TGT..
Caeen corticoid regulator, ..
receptor

Figure 2.6. Organization of the GenBank database and the search procedure used by ENTREZ. In this database format, each
row is another sequence entry and each column another GenBank field. When one sequence entry is retrieved, all of these
fields will be displayed, as in Fig. 2.5. Only a few fields and simple examples are shown for illustration. A search for the term
“SOS regulon and coli’
been made listing all of the sequences that have any given term, one index for each field. Similarly, a search for transcriptional
regulator will find three sequences.

’ in all fields will find two matching sequences. Finding these sequences is simple because indexes have




COLLECTING AND STORING SEQUENCES IN THE LABORATORY 31

European Molecular Biology Laboratory Data Library Format

The output of a DDBJ
DNA sequence entry is
almost identical to
that of GenBank.

The European Molecular Biology Laboratory (EMBL) maintains DNA and protein
sequence databases. The format for each entry in these databases is shown in Figure 2.7. As
with GenBank entries, a large amount of information describing each sequence entry is
given, including literature references, information about the function of the sequence,
locations of mRNAs and coding regions, and positions of important mutations. This infor-
mation is organized into fields, each with an identifier, shown as the first text on each line.
The meaning of each of these fields is explained in Figure 2.7. These identifiers are abbre-
viated to two letters, e.g., RF for reference, and some identifiers may have additional sub-
fields. The sequence entry is assumed by computer programs to lie between the identifiers
“SEQUENCE” and “//” and includes numbers on each line to locate parts of the sequence
visually. The sequence count or a checksum value for the sequence may be used by com-
puter programs to make sure that the sequence is complete and accurate. For this reason,
the sequence part of the entry should usually not be modified except with programs that
also modify this count. This EMBL sequence format is very similar to the GenBank format.
The main differences are in the use of the term ORIGIN in the GenBank format to indi-
cate the start of sequence; also, the EMBL entry does not include the sequence of any trans-
lation products, which are shown instead as a different entry in the database. This sequence
format often has to be changed for use with sequence analysis software.

SwissProt Sequence Format

The format of an entry in the SwissProt protein sequence database is very similar to the
EMBL format, except that considerably more information about the physical and bio-
chemical properties of the protein is provided.

FASTA Sequence Format

The FASTA sequence format includes three parts shown in Figure 2.8: (1) a comment line
identified by a “>” character in the first column followed by the name and origin of the

D
AC

DT

RW .
0s, oc

DR
cC
FH, FT

S0

RN, RP, RX, RA, RT, RL literature reference or source

gaattcgata aatctctggt ttattgtgca gtttatggtt ccaaaatcgce cttttgetgt 60
atatactcac agcataactg tatatacacc cagggggegg aatgaaageg ttaacggeca 120

// symbol to indicate end of sequence

identification code for sequence in the database
accession number giving origin of sequence

dates of entry and modification

key cross-reference words for lookup up this entry
source organism

i.d. in other databases

description of biological function

information about sequence by base position or range of positions
source range of sequence, source organism

misc_signal range of sequence, type of function or signal

mRNA range of sequence, mRNA

CDS range of sequence, protein coding region

intron range of sequence, position of intron

mutation sequence position, change in sequence for mutation
count of A, C, G, T and other symbols

Figure 2.7. EMBL sequence entry format.
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>¥YCZ2_YEAST protein in HMR 3' region
MRAVVIEDGKAVVKEGVPIPELEEGFV
GNPTDWAHIDYKVGPQGSILGCDAAGQ
IVKLGPAVDPKDFSIGDYIYGFIHGSS
VRFPSNGAFAEYSAISTVVAYKSPNEL
KFLGEDVLPAGPVRSLEGAATIPVSLT*

Figure 2.8. FASTA sequence entry format.

sequence; (2) the sequence in standard one-letter symbols; and (3) an optional “*” which
indicates end of sequence and which may or may not be present. The presence of “*” may
be essential for reading the sequence correctly by some sequence analysis programs. The
FASTA format is the one most often used by sequence analysis software. This format pro-
vides a very convenient way to copy just the sequence part from one window to another
because there are no numbers or other nonsequence characters within the sequence. The
FASTA sequence format is similar to the protein information resource (NBRF) format
except that the NBRF format includes a first line with a “>” character in the first column
followed by information about the sequence, a second line containing an identification
name for the sequence, and the third to last lines containing the sequence, as described
below.

National Biomedical Research Foundation/Protein Information Resource Sequence

Format

This sequence format, which is sometimes also called the PIR format, has been used by the
National Biomedical Research Foundation/Protein Information Resource (NBRF) and
also by other sequence analysis programs. Note that sequences retrieved from the PIR
database on their Web site (http://www-nbrf.georgetown.edu) are not in this compact for-
mat, but in an expanded format with much more information about the sequence, as
shown below. The NBRF format is similar to the FASTA sequence format but with signif-
icant differences. An example of a PIR sequence format is given in Figure 2.9. The first line
includes an initial “>” character followed by a two-letter code such as P for complete
sequence or F for fragment, followed by a 1 or 2 to indicate type of sequence, then a semi-
colon, then a four- to six-character unique name for the entry. There is also an essential
second line with the full name of the sequence, a hyphen, then the species of origin. In
FASTA format, the second line is the start of the sequence and the first line gives the
sequence identifier after a “>” sign. The sequence terminates with an asterisk.

>P1l;ILEC

lexA repressor - Escherichia coli
MEKALTARQQEVFDLIRDHISQTGMPPTRAE
TAQRLGFRSPNAAEEHLKALARKGVIEIVS
GASRGIRLLQEEEEGLPLVGRVAAGEPLLA
QOHIEGHYQVDPSLFRKPNADFLLRVSGMSM
KDIGIMDGDLLAVHKTQODVRNGQVVVARID
DEVTVRRLRKKQGNKVELLPENSEFKPIVVD
LRQOSFTIEGLAVGVIRNGDWL

Figure 2.9. NBRF sequence entry format.
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:YEAST protein in HMR 3' region
YCZ2
MKAVVIEDGKAVVKEGVPIPELEEGFV
GNPTDWAHIDYRVGPQGSILGCDAAGQ
IVRLGPAVDPKDFSIGDYIYGFIHGSS
VRFPSNGAFAEYSAISTVVAYKSPNEL
KFLGEDVLPAGPVRSLEGAATIPVSLT1

Figure 2.10. Intelligenetics sequence entry format.

Stanford University/Intelligenetics Sequence Format

Started by a molecular genetics group at Stanford University, and subsequently continued
by a company, Intelligenetics, the IG format is similar to the PIR format (Fig. 2.10), except
that a semicolon is usually placed before the comment line. The identifier on the second
line is also present. At the end of the sequence, a 1 is placed if the sequence is linear, and a
2 if the sequence is circular.

Genetics Computer Group Sequence Format

Earlier versions of the Genetics Computer Group (GCG) programs require a unique
sequence format and include programs that convert other sequence formats into GCG for-
mat. Later versions of GCG accept several sequence formats. A converted GenBank file is
illustrated in Figure 2.11. Information about the sequence in the GenBank entry is first
included, followed by a line of information about the sequence and a checksum value. This
value (not shown) is provided as a check on the accuracy of the sequence by the addition
of the ASCII values of the sequence. If the sequence has not been changed, this value
should stay the same. If one or more sequence characters become changed through error,
a program reading the sequence will be able to determine that the change has occurred
because the checksum value in the sequence entry will no longer be correct. Lines of infor-
mation are terminated by two periods, which mark the end of information and the start of
the sequence on the next line. The rest of the text in the entry is treated as sequence. Note
the presence of line numbers. Since there is no symbol to indicate end of sequence, no text
other than sequence should be added beyond this point. The sequence should not be
altered except by programs that will also adjust the checksum score for the sequence. The
GCG sequence format may have to be changed for use with other sequence analysis soft-
ware. GCG also includes programs for reformatting sequence files.

BASE COQUNT 215 A 224 C 263 G 250 T

ORIGIN

Filename, Length of sequence, Date, Checksum value, ..

1 GAATTCGATA AATCTCTGGT TTATTGTGCA GTTTATGGTT CCAAARATCGC
51 CTPTTGCTGT ATATACTCAC AGCATAACTG TATATACACC CAGGGGGCGG

Figure 2.11. GCG sequence entry format.
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Format of Sequence File Retrieved from the National Biomedical Research
Foundation/Protein Information Resource

The file format has approximately the same information as a GenBank or EMBL sequence
file but is formatted slightly differently, as in Figure 2.12. This format is presently called the
PIR/CODATA format.

Plain/ASCIl.Staden Sequence Format

This sequence format is a computer file that includes only the sequence with no other
accessory information. This particular format is used by the Staden Sequence Analysis pro-
grams (http://www/.mrc-lmb.com.ac.uk/pubseq) produced by Roger Staden at Cambridge
University (Staden et al. 2000). The sequence must be further formatted to be used for
most sequence analysis programs.

ENTRY ILEC
#type complete
TITLE lexA repressor - Escherichia coli
ORGANISM
#formal name Escherichia coli
DATE 29-Jul-1981
#sequence revision 0l1-Sep-1981
#text change 14-Nov-1997
ACCESSIONS A90808; A93734; S11945; B65212; A03569
REFERENCE A90808
#authors Horii, T.; Ogawa, T.; Ogawa, H.
#journal Cell (1981) 23:689-697
#title Nucleotide sequence of the lexA gene of Escherichia coli.
#cross-references MUID:81186269
#contents lexA
#accession AS0808
##molecule_type DNA
##residues 1-202
##label HOR
REFERENCE

COMMENTS
GENETICS
#gene lexA
#map_position 92 min
CLASSIFICATION
#superfamily lexa repressor
KEYWORDS DNA binding, repressor, transcription regulator
SUMMARY
#length 202
#molecular weight 22358
SEQUENCE
5 10 15 20 25 30
1MKALTARQOQEVFDLIRDHISQTGMPPTRAE

Figure 2.12. Protein Information Resource sequence format.
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Abstract Syntax Notation Sequence Format

Abstract Syntax Notation (ASN.1) is a formal data description language that has been
developed by the computer industry. ASN.1 (http://www-sop.inria.fr/rodeo/personnel/
hoschka/asn1.html; NCBI 1993) has been adopted by the National Center for Biotechnol-
ogy Information (NCBI) to encode data such as sequences, maps, taxonomic information,
molecular structures, and bibliographic information. These data sets may then be easily
connected and accessed by computers. The ASN.1 sequence format is a highly structured
and detailed format especially designed for computer access to the data. All the informa-
tion found in other forms of sequence storage, e.g., the GenBank format, is present. For
example, sequences can be retrieved in this format by ENTREZ (see below). However, the
information is much more difficult to read by eye than a GenBank formatted sequence.
One would normally not need to use the ASN.1 format except when running a computer
program that uses this format as input.

Genetic Data Environment Sequence Format

Genetic Data Environment (GDE) format is used by a sequence analysis system called the
Genetic Data Environment, which was designed by Steven Smith and collaborators (Smith
et al. 1994) around a multiple sequence alignment editor that runs on UNIX machines.
The GDE features are incorporated into the SEQLAB interface of the GCG software, ver-
sion 9. GDE format is a tagged-field format similar to ASN.1 that is used for storing all
available information about a sequence, including residue color. The file consists of vari-
ous fields (Fig. 2.13), each enclosed by brackets, and each field has specific lines, each with
a given name tag. The information following each tag is placed in double quotes or follows
the tag name by one or more spaces.

{
name "Short name for sequence"
longname "Long (more descriptive) name for sequence"

sequence-ID
creation-date

"Unique ID number"
"mm/dd/yy hh:mm:ss”

direction [-1]11]

strandedness [1]2]

type {DNA|RNA|PROTEIN | TEXT |MASK]

offset (~9299999,999999)

group-ID (0,999)

creator "Author's name"

descrip "Verbose description”

comments "Lines of comments about a sequence"

sequence "gctagctagectagectagetettagetgtagtegtagetgatgetag
ctgatgctagctagctagctagectgategatgetagetgategtag
ctgacggactgatgctagectagetagetagetgtctagtgtegtag
tgcttattge”

}

Figure 2.13. The Genetic Data Environment format.
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CONVERSIONS OF ONE SEQUENCE FORMAT TO ANOTHER

READSEQ to Switch between Sequence Formats

READSEQ is an extremely useful sequence formatting program developed by D. G. Gilbert
at Indiana University, Bloomington (gilbertd@bio.indiana.edu). READSEQ can recognize
a DNA or protein sequence file in any of the formats shown in Table 2.3, identify the for-
mat, and write a new file with an alternative format. Some of these formats are used for
special types of analyses such as multiple sequence alignment and phylogenetic analysis.
The appearance of these formats for two sample DNA sequences, seql and seq2, is shown
in Table 2.4. READSEQ may be reached at the Baylor College of Medicine site at
http://dot.imgen.bcm.tmc.edu:9331/seq-util/readseq.html and also by anonymous FTP
from ftp.bio.indiana.edu/molbio/readseq or ftp.bioindiana.edu/molbio/mac to obtain the
appropriate files.

Data files that have multiple sequences, such as those required for multiple sequence
alignment and phylogenetic analysis using parsimony (PAUP), are also converted. Exam-
ples of the types of files produced are shown in Table 2.4. Options to reverse-complement
and to remove gaps from sequences are included. SEQIO, another sequence conversion
program for a UNIX machine, is described at http://bioweb.pasteur.fr/docs/seqio/seqio.
html and is available for download at http://www.cs.ucdavis.edu/~gusfield/seqio.html.

Table 2.3. Sequence formats recognized by format conversion
program READSEQ

Abstract Syntax Notation (ASN.1)

DNA Strider

European Molecular Biology Laboratory (EMBL)
Fasta/Pearson

Fitch (for phylogenetic analysis)

GenBank

Genetics Computer Group (GCG)*?
Intelligenetics/Stanford

Multiple sequence format (MSF)

National Biomedical Research Foundation (NBRF)
. Olsen (in only)

. Phylogenetic Analysis Using Parsimony (PAUP) NEXUS format
Phylogenetic Inference package (Phylip v3.3, v3.4)
Phylogenetic Inference package (Phylip v3.2)

Plain text/Staden®

. Pretty format for publication (output only)

. Protein Information Resource (PIR or CODATA)

. Zuker for RNA analysis (in only)

PN LD

— = = e e e e e
N N -

 For conversion of single sequence files only. The other conversions can
be performed on files with single or multiple sequences.
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Table 2.4. Multiple sequence format conversions by READSEQ

1.  Fasta/Pearson format

>seql
agctagct agct agct
>seq?2
aactaact aact aact

2. Intelligenetics format

;seql, 16 bases, 2688 checksum.
seql

agctagctagctagctl

;seq2, 16 bases, 25C8 checksum.
seq?

aactaactaactaactl

3. GenBank format

LOCUS seql 16 bp
DEFINITION seqgl, 16 bases, 2688 checksum.
ORIGIN
1 agctagctag ctagct
//
LOCUS seq? 16 bp
DEFINITION seqg2, 16 bases, 25C8 checksum.
ORIGIN
1 aactaactaa ctaact
/7

4. NBRF format

>DL;seql

seql, 16 bases, 2688 checksum.
agctagctag ctagct*

>DL;seq?

seq?2, 16 bases, 25C8 checksum.
aactaactaa ctaact*

5. EMBL format

ID seql
DE seql, 16 bases, 2688 checksum.
SQ 16 BP
agctagctag ctagct
//
ID seq?
DE seq2, 16 bases, 25C8 checksum.
SQ 16 BP
aactaactaa ctaact
//

Continued.
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Table 2.4. Continued.

6. GCG format

seql
seql Length: 16 Check: 9864
1 agctagctag ctagct

seq?
seq?2 Length: 16 Check: 9672
1 aactaactaa ctaact

7.  Format for the Macintosh sequence analysis program DNA Strider

; JHHF from DNA Strider ;-)
; DNA sequence seql, 16 bases, 2688 checksum.

agctagctagctagct

//

; JHHFE from DNA Strider ;-)

; DNA sequence seq2, 16 bases, 25C8 checksum.

aactaactaactaact
!/

8.  Format for phylogenetic analysis programs of Walter Fitch

seql, 16 bases, 2688 checksum.
agc tag cta gct agc t

seq?2, 16 bases, 25C8 checksum.
aac taa cta act aac t

9.  Format for phylogenetic analysis programs PHYLIP of ]. Felsenstein v 3.3 and 3.4.

2 16
seql agctagctag ctagct
seq? aactaactaa ctaact

10.  Protein International Resource PIR/CODATA format

AR
ENTRY seql
TITLE seql, 16 bases, 2688 checksum.
SEQUENCE
5 10 15 20
25 30
1l agctagctagctagecect
/17
ENTRY seq?
TITLE seq?, 16 bases, 25C8 checksum.
SEQUENCE
5 10 15 20
25 30

1l aactaactaactaact
/17
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11. GCG multiple sequence format (MSF)

/tmp/readseq.in.2449 MSF: 16 Type: N January 01,
1776 12:00 Check: 9536

Name: seql Len: 16 Check: 9864
Weight: 1.00
Name: seq? Len: 16 Check: 9672

Weight: 1.00
//

seql agctagctag ctagct
seq? aactaactaa ctaact

12.  Abstract Syntax Notation (ASN.1) format

Bioseq-set ::= {
seq-set f
seq |

id { local id 1 },
descr { title “seql” },
inst {
repr raw, mol dna, length 16, topology linear,
seq-data
iupacna “agctagctagctagct”
b,
seq {
id { local id 2 },
descr { title “seq2” },
inst {
repr raw, mol dna, length 16, topology linear,
seq-data
iupacna “aactaactaactaact”
bl
bl

13.  NEXUS format used by the phylogenetic analysis program PAUP by David Swofford

FNEXUS

[/tmp/readseq.in.2506 -- data title]

[Name: seql Len: 16 Check: 2688]
[Name: seq? Len: 16 Check: 25C8]
pbegin data;

dimensions ntax=2 nchar=16;
format datatype=dna interleave missing=-;
matrix

seql agctagctagctagct

seq? aactaactaactaact

Two sequences in FASTA multiple sequence format (1) were used as input for the remainder of the for-

mat options (2-14).
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GCG Programs for Conversion of Sequence Formats

The “from” programs convert sequence files from GCG format into the named format,
and the “to” programs convert the alternative format into GCG format. Shown are the
actual program names, no spaces included. There are no programs to convert to GenBank
and EMBL formats.

FROMEMBL
FROMFASTA
FROMGENBANK
FROMIG
FROMPIR
FROMSTADEN
TOFASTA

TOIG

TOPIR
TOSTADEN

In addition, the GCG programs include the following sequence formatting programs: (1)
GETSEQ, which converts a simple ASCII file being received from a remote PC to GCG for-
mat; (2) REFORMAT, which will format a GCG file that has been edited, and will also per-
form other functions; and (3) SPEW, which sends a GCG sequence file as an ASCII file to
a remote PC.

MULTIPLE SEQUENCE FORMATS

Most of the sequence formats listed above can be used to store multiple sequences in tan-
dem in the same computer file. Exceptions are the GCG and raw sequence formats, which
are designed only for single sequences. GCG has an alternative multiple sequence format,
which is described below. In addition, there are formats especially designed for multiple
sequences that can also be used to show their alignments or to perform types of multiple
sequence analyses such as phylogenetic analysis. In the case of PAUP, the program will
accept MSA format and convert to the NEXUS format. These formats are illustrated below
using the same two short sequences.

1. Aligned sequences in FASTA format. The aligned sequence characters occupy the same
line and column, and gaps are indicated by a dash.

>gi 730305
MATHHTLWMGLALLGVLGDLOAAPEAQVSVQPNFQQDKFL
RTQTPRAELKEKFTAFCKAQGFTEDTIVFLPQTDKCMTEQ

>gi 404390
—————————————————————— APEAQVSVQPNFQPDKFL
RTQTPRAELKEKFTAFCKAQGFTEDSIVFLPQTDKCMTEQ
>gi 895868

MAALRMLWMGLVLLGLLGFPQTPAQGHDTVQPNFQQDKFL
RTQTLKDELKEKFTTFSKAQGLTEEDIVFLPQPDKCIQE-

represents the same alignment as:

MATHHTLWMGLALLGVLGDLQAAPEAQVSVQPNFQQDKFL
---------------------- APEAQVSVQPNFQPDKFL

RTQTPRAELKEKFTAFCKAQGFTEDTIVFLPQTDKCMTEQ
RTQTLKDELKEKFTTFSKAQGLTEEDIVFLPQPDKCIQE--
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2. GCG multiple sequence format (MSF) produced by the GCG multiple sequence align-
ment program PILEUP. The gap symbol is “~”. The length indicated is the length of the
alignment, which is the length of the longest sequence including gaps.

PileUp of: @list4
Symbol comparison table: GenRunData:blosum62.cmp CompCheck: 6430

GapWeight: 12
GapLengthWeight: 4

listd.msf MSF: 883 Type: P February 28, 1997 16:42 Check: 482

Name: haywire Len: 883 Check: 3979 Weight: 1.00
Name: xpb-human Len: 883 Check: 9129 Weight: 1.00
Name: rad2b Len: 883 Check: 5359 Weight: 1.00
Name: xpb-ara Len: 883 Check: 2015 Weight: 1.00
/]
1 50
haywire MGPPK
XP=MUDAN CTrrrrrrrs TTTTTTTTLY CTTTTTTTETT) CTTTTTTTTLD T LT T T T LT
rad25 MTDVEGYQPK SKGKIFPDMG ESFFSSDEDS PATDAEIDEN YDDNRETSEG
XPO-ARE crrrrrrrr crTrTrTrTrs CTTTTTTTLTD CTTTTETLTLD T
51 100

haywire KSRKDRSG.. GDKFGKKRRA EDEAFTQLVD DNDSLDATES EGIPGAASKN
xpb-human MGKRDRAD.. RDKKKSRKRH YED...EEDD EEDAPGNDPQ EAVPSAAGKQ
rad25 RGERDTGAMV TGLKKPRKKT KSSRHTAADS SMNQMDAKDK ALLQDTNSDI
XPD-ara  ~emmmmsn s M KYGGKDDQKM KNIQNAEDYY

3. ALN form produced by multiple sequence alignment program CLUSTALW (Thomp-
son et al. 1994). In addition to the alignment position, the program also shows the cur-
rent sequence position at the end of each row.

Page 1.1
1 15 16 30 31 45
1 gi|730305| MATHHTLWMGLALLG VLGDLQAAPEAQVSV QPNFQQDKFLGRWFS
23
2 91404390 --------------- ------- APEAQVSYV QPNFQPDKFLGRWFS
45

3 gi[895868 MAALRMLWMGLVLLG LLGFPQTPAQGHDTY QPNFQQDKFLGRWYS

4. Blocked alignment used by GDE and GCG SEQLAB (Fig. 2.14). Unlike the other exam-
ples shown, which are all simple text files of an alignment, the following figure is a
screen display of an alignment, using GDE and SEQLAB display programs. The under-
lying alignment in text format would be similar to the GCG multiple sequence align-
ment file shown above.
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Figure 2.14. A multiple sequence alignment editor for GCG MSF files. For information on using multiple sequence align-
ment editors and for examples of other editors, see Chapter 4.

5. Format used by Fitch phylogenetic analysis programs.

seql, 16 bases, 2688 checksum.
agc tag cta gct agc t
seq?2, 16 bases, 25C8 checksum.
aac taa cta act aac t

. Formats used by Felsenstein phylogenetic analysis programs PHYLIP (phylogenetic

inference package): 2 for two sequences, 16 for length of alignment.

a. version 3.2

2 16 YF
seql agctagctag ctagct
seq? aactaactaa ctaact

b. versions 3.3 and 3.4

2 16
seql agctagctag ctagct
seq? aactaactaa ctaact

. Format used by phylogenetic analysis program PAUP (phylogenetic analysis using par-

simony). ntax is number of taxa, nchar is the length of the alignment, and interleave
allows the alignment to be shown in readable blocks. The other terms describe the type
of sequence and the character used to indicate gaps.
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FNEXUS
[ comments ]
begin data;

dimensions ntax=4 nchar=100;
format datatype=protein interleave gap=-;

matrix
[ 1
501]
NOYWIP@ ==c=c=css= csosccscoscoc coocososos oososooooss oooos MGPPK
Xpb-human ---------- ---------- ---------"- -“--------- --------- -
rad25 MTDVEGYQPK SKGKIFPDMG ESFFSSDEDS PATDAEIDEN YDDNRETSEG
XPD=fFE m=c°cc=ccccs sccccocsossc SooooSoo0S S5oS0I0SSS SooSSSGoS S
[ 51
1001

haywire KSRKDRSG-- GDKFGKKRRA EDEAFTQLVD DNDSLDATES EGIPGAASKN
xpb-human MGKRDRAD-- RDKKKSRKRH YED---EEDD EEDAPGNDPQ EAVPSAAGKQ
rad25 RGERDTGAMV TGLKKPRKKT KSSRHTAADS SMNQMDAKDK ALLQDTNSDI
Xpb-ara --------o- s-soo----- oo M KYGGKDDQKM KNIQNAEDYY

endblock;

8. The Selex format used by hidden Markov program HMMER by Sean Eddy has been
used to keep track of the alignment of small RNA molecules.

# Example selex file

seql ACGACGACGACG.
seq? . . GGGAAAGG. GA
seq3 UUU. . AAAUUU . A
seql ..ACG
seq?2 AAGGG

seq3 AA...UUU

Each line contains a name, followed by the aligned sequence. A space, dash, underscore,
or period denotes a gap. Long alignments are split into multiple blocks and interleaved or
separated by blank lines. The number of sequences, their order, and their names must be
the same in every block, and every sequence must be represented even though there are no
residues present.

9. The block multiple sequence alignment format (see http://www.blocks.thcrc.org/).

Identification starts contain a short identifier for the group of sequences from which the
block was made and often is the original Prosite group ID. The identifier is terminated by
a semicolon, and “BLOCK” indicates the entry type.

AC contains the block number, a seven-character group number for sequences from
which the block was made, followed by a letter (A-Z) indicating the order of the block in
the sequences. The block number is a 5-digit number preceded by BL (BLOCKS database)
or PR (PRINTS database). min,max is the minimum,maximum number of amino acids
from the previous block or from the sequence start. DE describes sequences from which
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the block was made. BL contains information about the block: xxx is the amino acids in the
spaced triplet found by MOTIF upon which the block is based. w is the width of the
sequence segments (columns) in the block. s is the number of sequence segments (rows)
in the block. Other values (nl1, n2) describe statistical features of the block. Sequence_id is
a list of sequences. Each sequence line contains a sequence identifier, the offset from the
beginning of the sequence to the block in parentheses, the sequence segment, and a weight
for the segment.

ID short_identifier; BLOCK

AC block_number; distance from previous block = (min,max)
DE description

BL xxx motif; width=w; seqs=s; 99.5%=nl; strength=n2
sequence_id (offset) sequence_segment sequence_weight.

/1

ID  GLU_CARBOXYLATION; BLOCK
AC BLOOO11; distance from previous block=(1,64)
DE Vitamin K-dependent carboxylation domain proteins.
BL ECA motif; width=40; seqs=34; 99.5%=1833; strength=1412
FA10_BOVIN ( 45) LEEVKQGNLERECLEEACSLEEAREVFEDAEQTDEFWSKY 31

FAI0_CHICK ( 45) LEEMKQGNIERECNEERCSKEEAREAFEDNEKTEEFWNIY 46
FALI0_HUMAN ( 45) LEEMKKGHLERECMEETCSYEEAREVFEDSDKTNEFWNKY 33
FA7_BOVIN ( 5) LEELLPGSLERECREELCSFEEAHEIFRNEERTRQFWVSY 57
FA7_HUMAN (  65) LEELRPGSLERECKEEQCSFEEAREIFKDAERTKLFWISY 42
OSTC_CHICK ( 6) SGVAGAPPNPIEAQREVCELSPDCNELADELGFQEAYQRR 94

/1

STORAGE OF INFORMATION IN A SEQUENCE DATABASE

As shown by the above examples, each DNA or protein sequence database entry has much
information, including an assigned accession number(s); source organism; name of locus;
reference(s); keywords that apply to sequence; features in the sequence such as coding
regions, intron splice sites, and mutations; and finally the sequence itself. The above infor-
mation is organized into a tabular form very much like that found in a relational database.
(Additional information about databases is given in the box “Database Types.”) If one
imagines a large table with each sequence entry occupying one row, then each column will
include one of the above types of information for each sequence, and each column is called
a FIELD (see Fig. 2.6). The last column contains the sequences themselves. It is very easy
to make an index of the information in each of these fields so that a search query can locate
all the occurrences through the index. Even related sequences are cross-referenced. In
addition, the information in one database can be cross-referenced to that in another
database. The DNA, protein, and reference databases have all been cross-referenced so that
moving between them is readily accomplished (see ENTREZ section below, p. 45).

Database Types

There are several types of databases; the two principal types are the relational and
object-oriented databases. The relational database orders data in tables made up of
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rows giving specific items in the database, and columns giving the features as
attributes of those items. These tables are carefully indexed and cross-referenced with
each other, sometimes using additional tables, so that each item in the database has a
unique set of identifying features. A relational model for the GenBank sequence
database has been devised at the National Center for Genome Resources
(http://www.ncgr.org/research/sequence/schema.html).

The object-oriented database structure has been useful in the development of bio-
logical databases. The objects, such as genetic maps, genes, or proteins, each have an
associated set of utilities for analysis and display of the object and a set of attributes
such as identifying name or references. In developing the database, relationships
among these objects are identified. To standardize some commonly arising objects in
biological databases, e.g., maps, the Object Management Group (http://www.
omg.org) has formed a Life Science Research Group. The Life Science Research
Group is a consortium of commercial companies, academic institutions, and soft-
ware vendors that is trying to establish standards for displaying biological informa-
tion from bioinformatics and genomics analyses (http://www.omg.org/home
pages/lsr). The Common Object Request Broker Architecture (CORBA) is the Object
Management Group’s interface for objects that allows different computer applica-
tions to communicate with each other through a common language, Interface Defi-
nition Language (IDL). To plan an object-oriented database by defining the classes of
objects and the relationships among these objects, a specific set of procedures called
the Unified Modeling Language (UML) has been devised by the OMG group.

DNA sequence analysis software packages often include sequence databases that are
updated regularly. The organizations that manage sequence databases also provide public
access through the internet. Using a browser such as Netscape or Explorer on a local per-
sonal computer, these sites may be visited through the internet and a form can be filled out
with the sequence name. Once the correct sequence has been identified, the sequence is
delivered to the browser and may be saved as a local computer file, cut-and-pasted from
the browser window into another window of an analysis program or editor, or even past-
ed into another browser page for analysis at a second Web site. A useful feature of brows-
er programs for sequence analysis is the capability of having more than one browser win-
dow running at a time. Hence, one browser window may retrieve sequences from a
database and a second may analyze these sequences. At the time of retrieving the sequence,
several sequence formats may be available. The FASTA format, which is readily converted
into other formats and also is smaller and simpler, containing just a line of sequence iden-
tifiers followed by the sequence without numbers, is very useful for this purpose. A list of
sequence databases accessible through the internet is provided in Table 2.5.

USING THE DATABASE ACCESS PROGRAM ENTREZ

One straightforward way to access the sequence databases is through ENTREZ, a resource
prepared by the staff of the National Center for Biotechnology Information, National
Library of Medicine, Bethesda, Maryland, and available through their web site at
http://ncbi.nlm.nih.gov/Entrez. ENTREZ provides a series of forms that can be filled out
to retrieve a DNA or protein sequence, or a Medline reference related to the molecular
biology sequence databases. After search for either a protein or a DNA sequence is chosen
at the above address, another Web page is provided with a form to fill out for the search,
as shown in Figure 2.15.
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Biological databases
are beginning to use
“controlled vocabular-
ies” for entering data
so that these defined
terms can confidently
be used for database
subsequent searches.

Table 2.5. Major sequence databases accessible through the internet

1. GenBank at the National Center of Biotechnology Information, National Library of Medicine, Wash-
ington, DC accessible from:
http://www.ncbi.nlm.nih.gov/Entrez

2. European Molecular Biology Laboratory (EMBL) Outstation at Hixton, England
http://www.ebi.ac.uk/embl/index.html

3. DNA DataBank of Japan (DDBJ) at Mishima, Japan
http://www.ddbj.nig.ac.jp/

4. Protein International Resource (PIR) database at the National Biomedical Research Foundation in
Washington, DC (see Barker et al. 1998)
http://www-nbrf.georgetown.edu/pirwww/

5. The SwissProt protein sequence database at ISREC, Swiss Institute for Experimental Cancer Research
in Epalinges/Lausanne
http://www.expasy.ch/cgi-bin/sprot-search-de

6. The Sequence Retrieval System (SRS) at the European Bioinformatics Institute allows both simple and

complex concurrent searches of one or more sequence databases. The SRS system may also be used on

a local machine to assist in the preparation of local sequence databases.

http://srs6.ebi.ac.uk

The databases are available at the indicated addresses and return sequence files through an internet brows-
er. Many of the sites shown provide access to multiple databases. The first three database centers are updat-
ed daily and exchange new sequences daily, so that it is only necessary to access one of them. Additional Web
addresses of databases of protein families and structure, and genomic databases, are given in Chapter 9.
These databases can also provide access to sequence of a protein family or organism.

On the ENTREZ form, make a selection in the data entry window after the term
“Search,” then enter search terms in the longer data entry window after “for.” The database
will be searched for sequence database entries that contain all of these terms or related
ones. Using boolean logic, the search looks for database entries that include the first term
AND the second, and subsequent terms repeated until the last term. The “Limits” link on
the ENTREZ form page is used to limit the GenBank field to be searched, and various log-
ical combinations of search terms may be designed by this method. These fields refer to the
GenBank fields described above in Figure 2.5. When searching for terms in a particular
field, some knowledge of the terms that are in the database can be helpful. To assist in find-
ing suitable terms, for each field, ENTREZ provides a list of index entries.

For a protein search, for example, current choices for fields include accession (number),
all fields, author name, E. C. number, issue, journal name, keyword, modification date,
organism, page number, primary accession (number), properties, protein name, publica-
tion date (of reference), seqID string, sequence length, substance name, text word, title
word, volume, and sequence ID. Similar fields are shown for the DNA database search.
Later, the results of searches in separate fields may be combined to narrow down the
choices. The number of terms to be searched for and the field to be searched are the main
decisions to be made. In doing so, keep in mind that it is important to be as specific as pos-
sible, or else there may be a great many possibilities. Thus, knowing accession number,
protein name, or name of gene should be enough to find the required entry quickly. If the
same protein has been sequenced in several organisms, providing an organism name is also
helpful. When the chosen search terms and fields have been decided and submitted, a
database comprising all of the currently available sequences (called the nonredundant or
NR database) will be searched. Other database selections may also be made.

The program returns the number of matches found and provides an opportunity to nar-
row this list by including more terms. When the number of matching sequences has been
narrowed to a reasonable number, the sequence may be retrieved in a chosen format in
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Figure 2.15. ENTREZ Web form for protein database search. The window shown is from the protein database search option
at http://www.ncbi.nlm.nih.gov/Entrez/. The search term input window is activated by clicking, one or more search terms are
typed, and the “Go” button is clicked (top window). Batch ENTREZ, available from the main ENTREZ Web page, provides
a method for retrieving large numbers of sequences at the same time. A particular field (e.g., gene name, organism, protein
name) in the GenBank entry can also be searched, by using the “Limits” option. The request is then sent to a server in which
all key words in the sequence entries have been indexed, as in looking up a word in the index of a book. GenBank entries with
all of the requested terms can be readily identified because the index will indicate in which entry they are all found. The
machine returns the number of matches found. Clicking on the retrieve button leads to a list of the found items. Those items
chosen are retrieved in a new window format.

several straightforward steps. It is important to look through the sequences to locate the
one intended. There may be several different copies of the sequence because it may have
been sequenced from more than one organism, or the sequence may be a mutant sequence,
a particular clone, or a fragment. There is no simple way to find the correct sequence with-
out manually checking the information provided in each sequence, but this usually takes
only a short time. Before leaving ENTREZ, it is often useful to check for sequence database
entries that are similar to the one of interest, called “neighbors” by ENTREZ. The expand-
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ed query searches other database entries of interest, such as the same protein in another
organism, a large chromosomal sequence that includes the gene, or members of the same
gene family. While visiting the site, note that ENTREZ has been adapted to search through
a number of other biological databases, and also through Medline, and these searches are
available from the initial ENTREZ Web page.

Retrieving a Specific Sequence

Even following the above instructions, it can be difficult to retrieve the sequence of a
specific gene or protein simply because of the sheer number of sequences in the Gen-
Bank database and the complex problem of indexing them. For projects that require
the most currently available sequences, the NR databases should be searched. Other
projects may benefit from the availability of better curated and annotated protein
sequence databases, including PIR and SwissProt. The genomic databases described
in Chapter 10 can also provide the sequence of a particular gene or protein. Protein
sequences in the Genpro database are generated by automatic translation of DNA
sequences. When read from cDNA copies of mRNA sequences, they provide a reli-
able sequence, given a certain amount of uncertainty as to the translational start site.
Many protein sequences are now predicted by translation of genomic sequences,
requiring a prediction of exons, a somewhat error-prone step described in more
detail in Chapter 8. The origin of protein sequence entries thus needs to be deter-
mined, and if they are not from a cDNA sequence, it may be necessary to obtain and
sequence a cDNA copy of the gene.
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INTRODUCTION

PAIR-WISE SEQUENCE ALIGNMENT IS a very large topic to cover as one chapter. Thus,
starting with this chapter, more detailed discussions of topics, and information on subjects
of more peripheral interest, will be available from the Web site for this book. This site is
organized according to the same subject headings as this chapter and can be found at
http://www.bioinformaticsonline.org. In addition, starting with this chapter, procedural
flowcharts will appear at the beginning of the Methods section of most chapters to provide
an overview of the methods of analysis. This chapter discusses pair-wise sequence align-
ment. Multiple sequence alignment is discussed in Chapter 4.

DEFINITION OF SEQUENCE ALIGNMENT

Sequence alignment is the procedure of comparing two (pair-wise alignment) or more
(multiple sequence alignment) sequences by searching for a series of individual characters
or character patterns that are in the same order in the sequences. Two sequences are aligned
by writing them across a page in two rows. Identical or similar characters are placed in the
same column, and nonidentical characters can either be placed in the same column as a mis-
match or opposite a gap in the other sequence. In an optimal alignment, nonidentical char-
acters and gaps are placed to bring as many identical or similar characters as possible into
vertical register. Sequences that can be readily aligned in this manner are said to be similar.

There are two types of sequence alignment, global and local, and they are illustrated
below in Figure 3.1. In global alignment, an attempt is made to align the entire sequence,
using as many characters as possible, up to both ends of each sequence. Sequences that are
quite similar and approximately the same length are suitable candidates for global align-
ment. In local alignment, stretches of sequence with the highest density of matches are
aligned, thus generating one or more islands of matches or subalignments in the aligned
sequences. Local alignments are more suitable for aligning sequences that are similar along
some of their lengths but dissimilar in others, sequences that differ in length, or sequences
that share a conserved region or domain.

Global Alignment

For the two hypothetical protein sequence fragments in Figure 3.1, the global alignment is
stretched over the entire sequence length to include as many matching amino acids as pos-
sible up to and including the sequence ends. Vertical bars between the sequences indicate

LGPSSKQTGKGS-SRIWDN

| | | | | | | Global alignment
LN-ITTKSAGKGAIMRLGDA

GKG
| | | Local alignment
GKG

Figure 3.1. Distinction between global and local alignments of two sequences.
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Local Alignment

the presence of identical amino acids. Although there is an obvious region of identity in
this example (the sequence GKG preceded by a commonly observed substitution of T for
A), a global alignment may not align such regions so that more amino acids along the
entire sequence lengths can be matched.

In a local alignment, the alignment stops at the ends of regions of identity or strong simi-
larity, and a much higher priority is given to finding these local regions (Fig. 3.1) than to
extending the alignment to include more neighboring amino acid pairs. Dashes indicate
sequence not included in the alignment. This type of alignment favors finding conserved
nucleotide patterns, DNA sequences, or amino acid patterns in protein sequences.

SIGNIFICANCE OF SEQUENCE ALIGNMENT

Sequence alignment is useful for discovering functional, structural, and evolutionary infor-
mation in biological sequences. It is important to obtain the best possible or so-called
“optimal” alignment to discover this information. Sequences that are very much alike, or
“similar” in the parlance of sequence analysis, probably have the same function, be it a reg-
ulatory role in the case of similar DNA molecules, or a similar biochemical function and
three-dimensional structure in the case of proteins. Additionally, if two sequences from
different organisms are similar, there may have been a common ancestor sequence, and the
sequences are then defined as being homologous. The alignment indicates the changes that
could have occurred between the two homologous sequences and a common ancestor
sequence during evolution, as shown in Figure 3.2.

With the advent of genome analysis and large-scale sequence comparisons, it becomes
important to recognize that sequence similarity may be an indicator of several possible

Sequence A Sequence B

X steps y steps

Figure 3.2. The evolutionary relationship between two similar sequences and a possible common
ancestor sequence that would make the sequences homologous. The number of steps required to
change one sequence to the other is the evolutionary distance between the sequences, and is also the
sum of the number of steps to change the common ancestor sequence into one of the sequences (x)
plus the number of steps required to change the common ancestor into the other (y). The common
ancestor sequence is not available, such that x and y cannot be calculated; only x + y is known. By
the simplest definition, the distance x + y is the number of mismatches in the alignment (gaps are
not usually counted), as illustrated in Fig. 1.3. In a phylogenetic analysis of three or more similar
sequences, the separate distances from the ancestor can be estimated, as discussed in Chapter 6.
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types of ancestor relationships, or there may be no ancestor relationship at all, as illustrat-
ed in Figure 3.3. For example, new gene evolution is often thought to occur by gene dupli-
cation, creating two tandem copies of the gene, followed by mutations in these copies. In
rare cases, new mutations in one of the copies provide an advantageous change in func-
tion. The two copies may then evolve along separate pathways. Although the resulting sep-
aration of function will generate two related sequence families, sequences among both
families will still be similar due to the single gene ancestor. In addition, genetic rearrange-

A.
Il
Gene
duplication |

/\EpeCiation Gene dup|ication

Species | Species Il

C. I D. "

Figure 3.3. Origins of genes having a similar sequence. Shown are illustrative examples of gene evo-
lution. In A, a duplication of gene a to produce tandem genes al and a2 in an ancestor of species I
and II has occurred. Separation of the duplicated region by speciation gives rise to two separate
branches, shown in B as blue and red. al in species I and al in species II are orthologous because
they share a common ancestor. Similarly, a2 in species I and a2 in species II are orthologous. How-
ever, the al genes are paralogous to the a2 genes because they arose from a gene duplication event,
indicated in A. If two or more copies of a gene family have been separated by speciation in this fash-
ion, they tend to all undergo change as a group, due to gene conversion-type mechanisms (Li and
Graur 1991). In C, a gene in species I and a different gene in species II have converged on the same
function by separate evolutionary paths. Such analogous genes, or genes that result from convergent
evolution, include proteins that have a similar active site but within a different backbone sequence.
In D, genes in species I and II are related through the transfer of genetic material between species,
even though the two species are separated by a long evolutionary distance. Although the transfer is
shown between outer branches of the evolutionary tree, it could also have occurred in lower-down
branches, thus giving rise to a group of organisms with the transferred gene. Such genes are known
as xenologous or horizontally transferred genes. Transfer of the P transposable elements between
Drosophila species is a prime example of such horizontal transfer (Kidwell 1983). Horizontal trans-
fer also is found in bacterial genomes and can be traced as a regional variation in base composition
within chromosomes. A similar type of transfer is that of the small ribosomal RNA subunits of mito-
chondria and chloroplasts, which originated from early prokaryotic organisms. Symbiotic relation-
ships between organisms may be a precursor event leading to such exchanges. Other rearrangements
within the genome (not shown) may produce chimeric genes comprising domains of genes that
were evolving separately.
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Genes that are descend-
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It is important to
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evolutionary origin.

ments can reassort domains in proteins, leading to more complex proteins with an evolu-
tionary history that is difficult to reconstruct (Henikoff et al. 1997).

Evolutionary theory provides terms that may be used to describe sequence relationships.
Homologous genes that share a common ancestry and function in the absence of any evi-
dence of gene duplication are called orthologs. When there is evidence for gene duplica-
tion, the genes in an evolutionary lineage derived from one of the copies and with the same
function are also referred to as orthologs. The two copies of the duplicated gene and their
progeny in the evolutionary lineage are referred to as paralogs. In other cases, similar
regions in sequences may not have a common ancestor but may have arisen independent-
ly by two evolutionary pathways converging on the same function, called convergent evo-
lution. There are some remarkable examples in protein structures. For instance, although
the enzymes chymotrypsin and subtilisin have totally different three-dimensional struc-
tures and folds, the active sites show similar structural features, including histidine (H),
serine (S), and aspartic acid (D) in the catalytic sites of the enzymes (for discussion, see
Branden and Tooze 1991). Additional examples are given in Chapter 10 (p. 509). In such
cases, the similarity will be highly localized. Such sequences are referred to as analogous
(Fitch 1970). A closer examination of alignments can help to sort out possible evolution-
ary origins among similar sequences (Tatusov et al. 1997).

As pointed out by Fitch and Smith (1983), sequences can be either homologous or non-
homologous, but not in between. The genetic rearrangements referred to above can give
rise to chimeric genes, in which some regions are homologous and others are not. Refer-
ring to the entire sequences as homologous in such situations leads to an inaccurate and
incomplete description of the sequence lineage.

Another complication in tracing the origins of similar sequences is that individual genes
may not share the same evolutionary origin as the rest of the genome in which they
presently reside. Genetic events such as symbioses and viral-induced transduction can
cause horizontal transfer of genetic material between unrelated organisms. In such cases,
the evolutionary history of the transferred sequences and that of the organisms will be dif-
ferent. Again, with the capability of detecting such events in the genomes of organisms
comes the responsibility to describe these changes with the correct evolutionary terminol-
ogy. In this case, the sequences are xenologous (Gray and Fitch 1983). Recently, Lawrence
and Ochman (1997) have shown that horizontal transfer of genes between species is as
common in enteric bacteria, if not more common, than mutation. Describing such
changes requires a careful description of sequence origins. As discussed in Chapters 6 and
10, phylogenetic and other types of sequence analyses help to uncover such events.

OVERVIEW OF METHODS OF SEQUENCE ALIGNMENT

Alignment of Pairs of Sequences

Alignment of two sequences is performed using the following methods:

1. Dot matrix analysis

2. The dynamic programming (or DP) algorithm

3. Word or k-tuple methods, such as used by the programs FASTA and BLAST, described
in Chapter 7.

Unless the sequences are known to be very much alike, the dot matrix method should
be used first, because this method displays any possible sequence alignments as diagonals
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on the matrix. Dot matrix analysis can readily reveal the presence of insertions/deletions
and direct and inverted repeats that are more difficult to find by the other, more automat-
ed methods. The major limitation of the method is that most dot matrix computer pro-
grams do not show an actual alignment.

The dynamic programming method, first used for global alignment of sequences by
Needleman and Wunsch (1970) and for local alignment by Smith and Waterman (1981a),
provides one or more alignments of the sequences. An alignment is generated by starting
at the ends of the two sequences and attempting to match all possible pairs of characters
between the sequences and by following a scoring scheme for matches, mismatches, and
gaps. This procedure generates a matrix of numbers that represents all possible alignments
between the sequences. The highest set of sequential scores in the matrix defines an opti-
mal alignment. For proteins, an amino acid substitution matrix, such as the Dayhoff per-
cent accepted mutation matrix 250 (PAM250) or blosum substitution matrix 62
(BLOSUMBS62) is used to score matches and mismatches. Similar matrices are available for
aligning DNA sequences.

The dynamic programming method is guaranteed in a mathematical sense to provide
the optimal (very best or highest-scoring) alignment for a given set of user-defined vari-
ables, including choice of scoring matrix and gap penalties. Fortunately, experience with
the dynamic programming method has provided much help for making the best choices,
and dynamic programming has become widely used. The dynamic programming method
can also be slow due to the very large number of computational steps, which increase
approximately as the square or cube of the sequence lengths. The computer memory
requirement also increases as the square of the sequence lengths. Thus, it is difficult to use
the method for very long sequences. Fortunately, computer scientists have greatly reduced
these time and space requirements to near-linear relationships without compromising the
reliability of the dynamic programming method, and these methods are widely used in the
available dynamic programming applications to sequence alignment. Other shortcuts have
been developed to speed up the early phases of finding an alignment.

The word or k-tuple methods are used by the FASTA and BLAST algorithms (see Chap-
ter 7). They align two sequences very quickly, by first searching for identical short stretch-
es of sequences (called words or k-tuples) and by then joining these words into an align-
ment by the dynamic programming method. These methods are fast enough to be suitable
for searching an entire database for the sequences that align best with an input test
sequence. The FASTA and BLAST methods are heuristic; i.e., an empirical method of com-
puter programming in which rules of thumb are used to find solutions and feedback is
used to improve performance. However, these methods are reliable in a statistical sense,
and usually provide a reliable alignment.

Multiple Sequence Alignment

From a multiple alignment of three or more protein sequences, the highly conserved
residues that define structural and functional domains in protein families can be identified.
New members of such families can then be found by searching sequence databases for
other sequences with these same domains. Alignment of DNA sequences can assist in find-
ing conserved regulatory patterns in DNA sequences. Despite the great value of multiple
sequence alignments, obtaining one presents a very difficult algorithmic problem. The
methods that have been devised are discussed in Chapter 4.
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DOT MATRIX SEQUENCE COMPARISON

A dot matrix analysis is primarily a method for comparing two sequences to look for pos-
sible alignment of characters between the sequences, first described by Gibbs and McIntyre
(1970). The method is also used for finding direct or inverted repeats in protein and DNA
sequences, and for predicting regions in RNA that are self-complementary and that, there-
fore, have the potential of forming secondary structure. Every laboratory that does
sequence analysis should have at least one dot matrix program available. In choosing a pro-
gram, look for as many of the features described below as possible. The dot matrix should
be visible on the computer terminal, thus providing an interactive environment so that dif-
ferent types of analyses may be tried. Use of colored dots can enhance the detection of
regions of similarity (Maizel and Lenk 1981). Additional descriptions of the dot matrix
method have appeared elsewhere (Doolittle 1986; States and Boguski 1991). The examples
given below use the dot matrix module of DNA Strider (version 1.3) on a Macintosh com-
puter. The program DOTTER has interactive features for the UNIX X-Windows environ-
ment (Sonnhammer and Durbin 1995; http://www.cgr.ki.se/cgr/groups/sonnhammer/
Dotter.html). The Genetics Computer Group programs COMPARE and DOTPLOT also
perform a dot matrix analysis. Although not a dot matrix method, the program PLALIGN
in the FASTA suite may be used to display the alignments found by the
dynamic programming method between two sequences on a graph (http://fasta.bioch.
virginia.edu/fasta/fasta_list.html; Pearson 1990). A dot matrix program that may be used
with a Web browser is described in Junier and Pagni (2000) (http://www.isrec.isb-
sib.ch/java/ dotlet/Dotlet.html).

1. This chart assumes that both sequences are protein sequences or that both are DNA sequences. If one
is a DNA sequence, that sequence should be translated and then aligned with the second, protein
sequence.

2. The local alignment program, e.g., LALIGN or BESTFIT, usually has a recommended scoring matrix
and gap penalty combination. It is important to make sure that the combination is one that is known
to produce a confined, local alignment with random (or scrambled) sequences. A global alignment
program may also be used with sequences of approximately the same length.

3. For protein sequences, a high-quality alignment is one that includes most of each sequence, a signifi-
cant proportion (e.g., 25%) of identities throughout the alignment, multiple examples of conservative
substitutions (chemically and structurally similar amino acids), and relatively few gaps confined to
specific regions of the alignment. A poor-quality alignment includes only a portion of the sequences,
has few and widely dispersed identities and conservative substitutions, tends to include regions of low
complexity (repeats of same amino acid), and includes gaps that are obviously necessary to obtain the
alignment. For DNA sequences, a significant alignment must include long runs of identities and few
gaps. For two random or unrelated DNA sequences of length 100 and normal composition (0.25 of
each base), the longest run of matches that can be expected is 6 or 7 (see text). A clue as to the signif-
icance of an alignment may also be obtained by using an alignment program that gives multiple alter-
native alignments, e.g., LALIGN. The first alignment found, which will be the highest scoring, should
have a much higher score than the following ones, which are designed so that the same sequence posi-
tions will not be aligned a second time. Hence, these subsequent alignments should usually be random.

4. The result of this analysis can be a guide for the test of significance that follows. In the test described
in this chapter, the second sequence is scrambled and realigned with the first sequence. Scrambling can
be done at the level of the individual nucleotide or amino acid, or at the level of words by keeping the
composition of short stretches of sequence intact.
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Pair-wise Sequence Comparison

The major advantage of the dot matrix method for finding sequence alignments is that all
possible matches of residues between two sequences are found, leaving the investigator the
choice of identifying the most significant ones. Then, sequences of the actual regions that
align can be detected by using one of two other methods for performing sequence align-
ments, e.g., dynamic programming. These methods are automatic and usually show one
best or optimal alignment, even though there may be several different, nearly alike align-
ments. Alignments generated by these programs can be compared to the dot matrix align-
ment to determine whether the longest regions are being matched and whether insertions
and deletions are located in the most reasonable places.

In the dot matrix method of sequence comparison, one sequence (A) is listed across the
top of a page and the other sequence (B) is listed down the left side, as illustrated in Fig-
ures 3.4 and 3.5. Starting with the first character in B, one then moves across the page keep-
ing in the first row and placing a dot in any column where the character in A is the same.
The second character in B is then compared to the entire A sequence, and a dot is placed
in row 2 wherever a match occurs. This process is continued until the page is filled with
dots representing all the possible matches of A characters with B characters. Any region of
similar sequence is revealed by a diagonal row of dots. Isolated dots not on the diagonal
represent random matches that are probably not related to any significant alignment.

Detection of matching regions may be improved by filtering out random matches in a
dot matrix. Filtering is achieved by using a sliding window to compare the two sequences.
Instead of comparing single sequence positions, a window of adjacent positions in the two
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Figure 3.4. Dot matrix analysis of DNA sequences encoding phage N\ cI (vertical sequence) and
phage P22 ¢2 (horizontal sequence) repressors. This analysis was performed using the dot matrix dis-
play of the Macintosh DNA sequence analysis program DNA Strider, vers. 1.3. The window size was
11 and the stringency 7, meaning that a dot is printed at a matrix position only if 7 out of the next
11 positions in the sequences are identical.
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Figure 3.5. Dot matrix analysis of the amino acid sequences of the phage A ¢I (horizontal sequence)
and phage P22 2 (vertical sequence) repressors performed as described in Fig. 3.4. The window size
and stringency were both 1.

sequences is compared at the same time, and a dot is printed on the page only if a certain
minimal number of matches occur. The window starts at the positions in A and B to be
compared and includes characters in a diagonal line going down and to the right, compar-
ing each pair in turn, as in making an alignment. A larger window size is generally used for
DNA sequences than for protein sequences because the number of random matches is
much greater due to the use of only four DNA symbols as compared to 20 amino acid sym-
bols. A typical window size for DNA sequences is 15 and a suitable match requirement in
this window is 10. For protein sequences, the matrix is often not filtered, but a window size
of 2 or 3 and a match requirement of 2 will highlight matching regions. If two proteins are
expected to be related but to have long regions of dissimilar sequence with only a small
proportion of identities, such as similar active sites, a large window, e.g., 20, and small
stringency, e.g., 5, should be useful for seeing any similarity. Identification of sequence
alignments by the dot matrix method can be aided by performing a count of dots in all pos-
sible diagonal lines through the matrix to determine statistically which diagonals have the
most matches, and by comparing these match scores with the results of random sequence
comparisons (Gibbs and McIntyre 1970; Argos 1987).

An example of a dot matrix analysis between the DNA sequences that encode the
Escherichia coli phage N cI and phage P22 c2 repressor proteins is shown in Figure 3.4. With
a window of 1 and stringency of 1, there is so much noise that no diagonals can be seen,
but, as shown in the figure, with a window of 11 and a stringency of 7, diagonals appear in
the lower right. The analysis reveals that there are regions of similarity in the 3" ends of the
coding regions, which, in turn, suggests similarity in the carboxy-terminal domains of the
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encoded repressors. Note that sequential diagonals in matrix C do not line up exactly, indi-
cating the presence of extra nucleotides in one sequence (the lambda cI gene on the verti-
cal scale). The diagonals shown in the lower part of the matrix reveal a region of sequence
similarity in the carboxy-terminal domains of the proteins. A small insertion in the cI pro-
tein that is approximately in the middle of this region and shifts the diagonal slightly
downward accounts for this pattern.

An example of a dot matrix analysis between the amino acid sequences of the same two
E. coli phage lambda cI and phage P22 c2 repressor proteins is shown in Figure 3.5. This
matrix was filtered by a window of 1 and a stringency of 1. As found with the DNA
sequence alignment of the corresponding genes, diagonals shown in the lower part of the
matrix reveal a region of sequence similarity in the carboxy-terminal domains of the pro-
teins. The small insertion in the cI protein approximately in the middle of this region
which shifts the diagonal slightly downward and which is also observed in the DNA align-
ment of these corresponding genes is also visible. Note that these windows are much small-
er than required for DNA sequence comparisons due to the greater number of possible
symbols (20 amino acids) and therefore fewer random matches.

In conclusion, for DNA sequence dot matrix comparisons, use long windows and high
stringencies, e.g., 7 and 11, 11 and 15. For protein sequences, use short windows, e.g., 1 and
1, for window and stringency, respectively, except when looking for a short domain of par-
tial similarity in otherwise not-similar sequences. In this case, use a longer window and a
small stringency, e.g., 15 and 5, for window and stringency, respectively.

There are three types of variations in the analysis of two protein sequences by the dot
matrix method. First, chemical similarity of the amino acid R group or some other feature
for distinguishing amino acids may be used to score similarity. Second, a symbol compar-
ison table such as the PAM250 or BLOSUMG62 tables may be used (States and Boguski
1991). These tables provide scores for matches based on their occurrence in aligned pro-
tein families. These tables are discussed later in this chapter (pages 78 and 85, respective-
ly). When these tables are used, a dot is placed in the matrix only if a minimum similarity
score is found. These table values may also be used in a sliding window option, which aver-
ages the score within the window and prints a dot only above a certain average score. Final-
ly, several different matrices can be made, each with a different scoring system, and the
scores can be averaged. This method should be useful for aligning more distantly related
proteins. The scores of each possible diagonal through the matrix are then calculated, and
the most significant ones are identified and shown on a computer screen (Argos 1987).

Sequence Repeats

Dot matrix analysis can also be used to find direct and inverted repeats within sequences.
Repeated regions in whole chromosomes may be detected by a dot matrix analysis, and an
interactive Web-based program has been designed for showing these regions at increasing
levels of detail (http://genome-www.stanford.edu/Saccharomyces/SSV/viewer_start.html).
Direct repeats may also be found by performing sequence alignments with dynamic pro-
gramming methods (see next section). When used to align a sequence with itself, the pro-
gram LALIGN will show alternative possible alignments between the repeated regions;
PLALIGN will plot these alignments on a graph similar in appearance to a dot matrix (see
http://fasta.bioch.virginia.edu/fasta/fasta-list.html; Pearson 1990). Here, the sequence is
analyzed against itself and the presence of repeats is revealed by diagonal rows of dots. A
Bayesian method for finding direct repeats is described on page 122. Inverted repeats
require special handling and are discussed in Chapters 5 and 8. In Figure 3.6, an example
of such an analysis for direct repeats in the amino acid sequence of the human low-densi-
ty lipoprotein (LDL) receptor is shown. A list of additional proteins with direct repeats is
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Figure 3.6. Dot matrix analysis of the human LDL receptor against itself using DNA Strider, vers. 1.3, on a Macintosh com-
puter. (A) Window 1, Stringency 1. There is a diagonal line from upper left to lower right due to the fact that the same
sequence is being compared to itself. The rest of the graph is symmetrical about this line. Other (quite hard to see) lines on
either side of this diagonal are also present. These lines indicate repeated sequences perhaps 50 or so long. Patches of high-
density dots, e.g., at the position corresponding to position 800 in both sequences representing short repeats of the same
amino acid, are also seen. (B) Window 23, Stringency 7. The occurrence of longer repeats may be found by using this sliding
window. In this example, a dot is placed on the graph at a given position only if 7/23 of the residues are the same. These choic-
es are arbitrary and several combinations may need to be tried. Many repeats are seen in the first 300 positions. A pattern of
approximate length 20 and at position 30 is repeated at least six times at positions 70, 100, 140, 180, 230, and 270. Two longer,
overlapping repeats of length 70 are also found in this same region starting at positions 70 and 100, and repeated at position
200. Since few of these diagonals remain in new analyses at 11/23 (stringency/window) and all disappear at 15/23, they are not
repeats of exactly the same sequence but they do represent an average of about 7/23 matches with no deletions or insertions.
The information from the above dot matrix may be used as a basis for listing the actual amino acid repeats themselves by one
of the other methods for sequence alignment described below.
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given in Doolittle (1986, p. 50), and repeats are also discussed in States and Boguski (1991,
p-109). As discussed in Chapters 9 and 10, there are many examples of proteins composed
of multiple copies of a single domain.

Repeats of a Single Sequence Symbol

A dot matrix analysis can also reveal the presence of repeats of the same sequence charac-
ter many times. These repeats become apparent on the dot matrix of a protein sequence
against itself as horizontal or vertical rows of dots that sometimes merge into rectangular
or square patterns. Such patterns are particularly apparent in the right and lower regions
of the dot matrix of the human LDL receptor shown in Figure 3.6 but are also seen
throughout the rest of the matrix. The occurrence of such repeats of the same sequence
character increases the difficulty of aligning sequences because they create alignments with
artificially high scores. A similar problem occurs with regions in which only a few sequence
characters are found, called low-complexity regions. Programs that automatically detect
and remove such regions from the analysis so that they do not interfere with database sim-
ilarity searches are discussed in Chapter 7.

DYNAMIC PROGRAMMING ALGORITHM FOR SEQUENCE ALIGNMENT

Dynamic programming is a computational method that is used to align two protein or
nucleic acid sequences. The method is very important for sequence analysis because it pro-
vides the very best or optimal alignment between sequences. Programs that perform this
analysis on sequences are readily available, and there are Web sites that will perform the
analysis. However, the method requires the intelligent use of several variables in the pro-
gram. Thus, it is important to understand how the program works in order to make
informed choices of these variables.

The method compares every pair of characters in the two sequences and generates an
alignment. This alignment will include matched and mismatched characters and gaps in
the two sequences that are positioned so that the number of matches between identical or
related characters is the maximum possible. The dynamic programming algorithm pro-
vides a reliable computational method for aligning DNA and protein sequences. The
method has been proven mathematically to produce the best or optimal alignment
between two sequences under a given set of match conditions. Optimal alignments provide
useful information to biologists concerning sequence relationships by giving the best pos-
sible information as to which characters in a sequence should be in the same column in an
alignment, and which are insertions in one of the sequences (or deletions on the other).
This information is important for making functional, structural, and evolutionary predic-
tions on the basis of sequence alignments.

Both global and local types of alignments may be made by simple changes in the basic
dynamic programming algorithm. A global alignment program is based on the Needle-
man-Wunsch algorithm, and a local alignment program on the Smith-Waterman algo-
rithm, described below (p. 72). The predicted alignment will be given a score that gives the
odds of obtaining the score between sequences known to be related to that obtained by
chance alignment of unrelated sequences. There is a method to calculate whether or not an
alignment obtained this way is statistically significant. One of the sequences may be scram-
bled many times and each randomly generated sequence may be realigned with the second
sequence to demonstrate that the original alignment is unique. The statistical significance
of alignment scores is discussed in detail below (p. 96).
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Another feature of the dynamic programming algorithm is that the alignments obtained
depend on the choice of a scoring system for comparing character pairs and penalty scores
for gaps. For protein sequences, the simplest system of comparison is one based on iden-
tity. A match in an alignment is only scored if the two aligned amino acids are identical.
However, one can also examine related protein sequences that can be aligned easily and
find which amino acids are commonly substituted for each other. The probability of a sub-
stitution between any pair of the 20 amino acids may then be used to produce alignments.
Recent improvements and experience with the dynamic programming programs and the
scoring systems have greatly simplified their use. These enhancements are discussed below
and at http://www.bioinformaticsonline.org.

It is important to recognize that several different alignments may provide approximate-
ly the same alignment score; i.e., there are alignments almost as good as the highest-scor-
ing one reported by the alignment program. Some programs, e.g., LALIGN, provide sever-
al entirely different alignments with different sequence positions matched that can be
compared to improve confidence in the best-scoring one. Alignment programs have also
been greatly improved in algorithmic design and performance. With the advent of faster
machines, it is possible to do a dynamic programming alignment between a query
sequence and an entire sequence database and to find the similar sequences in several min-
utes. Dynamic programming has also been used to perform multiple sequence alignment,
but only for a small number of sequences because the complexity of the calculations
increases substantially for more than two sequences. Sequence alignment programs are
available as a part of most sequence analysis packages, such as the widely used Genetics
Computer Group GAP (global alignment) and BESTFIT (local alignment) programs.
Sequences can also be pasted into a text area on a guest Web page on a remote host
machine that will perform a dynamic programming alignment, and there are also versions
of alignment programs that will run on a microcomputer (Table 3.1).

In deciding to perform a sequence alignment, it is important to keep the goal of the
analysis in mind. Is the investigator interested in trying to find out whether two proteins
have similar domains or structural features, whether they are in the same family with a
related biological function, or whether they share a common ancestor relationship? The
desired objective will influence the way the analysis is done. There are several decisions to
be made along the way, including the type of program, whether to produce a global or local
alignment, the type of scoring matrix, and the value of the gap penalties to be used. There
are a very large number of amino acid scoring matrices in use (see book Web site), some
much more popular than others, and these scoring matrices are designed for different pur-
poses. Some, such as the Dayhoff PAM matrices, are based on an evolutionary model of
protein change, whereas others, such as the BLOSUM matrices, are designed to identify
members of the same family. Alignments between DNA sequences require similar kinds of
considerations. It is often worth the effort to try several approaches to find out which
choice of scoring system and gap penalty give the most reasonable result. Fortunately, most
alignment programs come with a recommended scoring matrix and gap penalties that are
useful for most situations. A more recent development (see Bayesian methods discussed on
p. 124) is the simultaneous use of a set of scoring matrices and gap penalties by a method
that generates the most probable alignments (see Table 3.1). The final choice as to the most
believable alignment is up to the investigator, subject to the condition that reasonable deci-
sions have been made regarding the methods used.

For sequences that are very similar, e.g., >95%, the sequence alignment is usually quite
obvious, and a computer program may not even be needed to produce the alignment. As
the sequences become less and less similar, the alignment becomes more difficult to pro-
duce and one is less confident of the result. For protein sequences, similarity can still be
recognized down to a level of approximately 25% amino acid identity. At this level of iden-



66 = CHAPTER 3

Table 3.1. Web sites for alignment of sequence pairs

Name of site Web address Reference
Bayes block aligner http://www.wadsworth.org/res&res/bioinfo Zhu et al. (1998)
BCM Search Launcher:
Pairwise sequence alignment® http://dot.imgen.bcm.tmc.edu:9331/seq- see Web site
search/alignment.html
SIM—Local similarity program for finding  http://www.expasy.ch/tools/sim.html Huang et al. (1990);
alternative alignments Huang and Miller (1991);
Pearson and Miller (1992)
Global alignment programs (GAP, NAP) http://genome.cs.mtu.edu/align/align.html Huang (1994)
FASTA program suite” http://fasta.bioch.virginia.edu/fasta/fasta_list.html ~ Pearson and Miller (1992);
Pearson (1996)
BLAST 2 sequence alignment (BLASTN, http://www.ncbi.nlm.nih.gov/gorf/bl2.html Altschul et al. (1990)
BLASTP)*
Likelihood-weighted sequence alignment http://www.ibc.wustl.edu/servive/lwa.html see Web site
(lwa)?

* This server provides access to a number of Web sites offering pair-wise alignments between nucleic acid sequences, protein
sequences, or between a nucleic acid and a protein sequence.

The FASTA algorithm normally used for sequence database searches (see Chapter 7) provides an alternative method to dynamic
programming for producing an alignment between sequences. Briefly, all short patterns of a certain length are located in both
sequences. If multiple patterns are found in the same order in both sequences, these provide the starting point for an alignment by the
dynamic programming algorithm. Older versions of FASTA performed a global alignment, but more recent versions perform a local
alignment with statistical evaluations of the scores. The program PLFASTA in the FASTA program suite provides a plot of the best
matching regions, much like a dot matrix analysis, and thus gives an indication of alternative alignments. The FASTA suite is also avail-
able from Genestream at http://vega.igh.cnrs.fr/. Programs include ALIGN (global, Needleman-Wunsch alignment), LALIGN (local,
Smith-Waterman alignment), LALIGNO (Smith-Waterman alignment, no end gap penalty), FASTA (local alignment, FASTA
method), and PRSS (local alignment with scrambled copies of second sequence to do statistical analysis). Versions of these programs
that run with a command-line interface on MS-DOS and Macintosh microcomputers are available by anonymous FTP from ftp.vir-
ginia.edu/pub/fasta.

¢ The BLAST algorithm normally used for database similarity searches (Chapter 7) can also be used to align two sequences.
4 A description of the probabilistic method of aligning two sequences is described in Durbin et al. (1998) and Chapter 4. A related
topic, hidden Markov models for multiple sequence alignments, is discussed in Chapter 4.

tity, the relative numbers of mismatched amino acids and gaps in the alignment have to be
decided empirically and a decision made as to which gap penalties work the best for a given
scoring matrix. Alignment of sequences at this level of identity is called the “twilight zone”
of sequence alignment by Doolittle (1981). The alignment program may provide a quite
convincing alignment, which suggests that the two sequences are homologous. The statis-
tical significance of the alignment score may then be evaluated, as described later in this
chapter.

Description of the Algorithm

Alignment of two sequences without allowing gaps requires an algorithm that performs a
number of comparisons roughly proportional to the square of the average sequence length,
as in a dot matrix comparison. If the alignment is to include gaps of any length at any posi-
tion in either sequence, the number of comparisons that must be made becomes astro-
nomical and is not achievable by direct comparison methods. Dynamic programming is a
method of sequence alignment that can take gaps into account but that requires a man-
ageable number of comparisons.

The method of sequence alignment by dynamic programming and the proof that the
method provides an optimal (highest scoring) alignment are illustrated in Figures 3.7 and
3.8. To understand how the method works, we must first recall what is meant by an align-
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sequence 1 VvV D S - C Y

sequence 2 V E S5 L C Y

SCORE 4 2 4 -11 9 7 SCORE = SUM OF AMINO ACID PAIR SCORES
(26) MINUS SINGLE GAP PENALTY (11) = 15

Figure 3.7. Example of scoring a sequence alignment with a gap penalty. The individual alignment scores are taken from an
amino acid substitution matrix.

ment, using the two protein sequences shown in Figure 3.7 as an example. The two
sequences will be written across the page, one under the other, the object being to bring as
many amino acids as possible into register. In some regions, amino acids in one sequence
will be placed directly below identical amino acids in the second. In other regions, this pro-
cess may not be possible and nonidentical amino acids may have to be placed next to each
other, or else gaps must be introduced into one of the sequences. Gaps are added to the
alignment in a manner that increases the matching of identical or similar amino acids at
subsequent portions in the alignment. Ideally, when two similar protein sequences are
aligned, the alignment should have long regions of identical or related amino acid pairs
and very few gaps. As the sequences become more distant, more mismatched amino acid
pairs and gaps should appear.

The quality of the alignment between two sequences is calculated using a scoring system
that favors the matching of related or identical amino acids and penalizes for poorly
matched amino acids and gaps. To decide how to score these regions, information on the
types of changes found in related protein sequences is needed. These changes may be
expressed by the following probabilities: (1) that a particular amino acid pair is found in
alignments of related proteins; (2) that the same amino acid pair is aligned by chance in
the sequences, given that some amino acids are abundant in proteins and others rare; and
(3) that the insertion of a gap of one or more residues in one of the sequences (the same as
an insertion of the same length in the other sequence), thus forcing the alignment of each
partner of the amino acid pair with another amino acid, would be a better choice. The ratio
of the first two probabilities is usually provided in an amino acid substitution matrix. Each

1. SCORE OF NEW SCORE OF PREVIOUS + SCORE OF NEW

ALIGNMENT ALIGNMENT (A) AT.IGNED PAIR
vV b 8 -~ C ¥ v b 8§ - C Y
V E 8 L C ¥ vV E 8§ L ¢ Y
15 = 8 + 7

II. SCORE OF SCORE OF PREVIOUS + SCORE OF NEW

ALIGNMENT (A) ALIGNMENT (B) ALIGNED PAIR
v b 8§ - C v D § - C
vV E 85 L C V E 8§ L C
8 = -1 + 9

ITI. REPEAT REMOVING ALIGNED PAIRS UNTIL END OF ALIGNMENT IS REACHED.

Figure 3.8. Derivation of the dynamic programming algorithm.
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table entry gives the ratio of the observed frequency of substitution between each possible
amino acid pair in related proteins to that expected by chance, given the frequencies of the
amino acids in proteins. These ratios are called odds scores. The ratios are transformed to
logarithms of odds scores, called log odds scores, so that scores of sequential pairs may be
added to reflect the overall odds of a real to chance alignment of an alignment. Examples
are the Dayhoff PAM250 and BLOSUMS62 substitution matrices described below (p. 76).
These matrices contain positive and negative values, reflecting the likelihood of each amino
acid substitution in related proteins. Using these tables, an alignment of a sequential set of
amino acid pairs with no gaps receives an overall score that is the sum of the positive and
negative log odds scores for each individual amino acid pair in the alignment. The higher
this score, the more significant is the alignment, or the more it resembles alignments in
related proteins. The score given for gaps in aligned sequences is negative, because such
misaligned regions should be uncommon in sequences of related proteins. Such a score
will reduce the score obtained from an adjacent, matching region upstream in the
sequences. The score of the alignment in Figure 3.7, using values from the BLOSUM62
amino acid substitution matrix and a gap penalty score of —11 for a gap of length 1, is 26
(the sum of amino acid pair scores) —11 =15. The value of —11 as a penalty for a gap of
length 1 is used because this value is already known from experience to favor the alignment
of similar regions when the BLOSUM62 comparison matrix is used. Choice of the gap
penalty is discussed further below where a table giving suitable choices is presented (see
Table 3.10 on p. 113). As shown in the example, the presence of the gap decreases signifi-
cantly the overall score of the alignment.

Calculating the Odds Score of an Alignment from the Odds Scores of Individual
Amino Acid Pairs

Sequence alignment scores are based on the individual scores of all amino acid pairs
in the alignment. The odds score for an amino acid pair is the ratio of the observed
frequency of occurrence of that pair in alignments of related proteins over the expect-
ed frequency based on the proportion of amino acids in proteins. Alignments are
built by making possible lists of amino acid pairs and by finding the most likely list
using odds scores. To calculate the odds score for an alignment, the odds scores for
the individual pairs are multiplied. This calculation is similar to finding the proba-
bility of one event AND also a second independent event by multiplying the proba-
bilities (if one event OR another is the choice, then the probabilities are added). Thus,
if the odds score of C/C is 7/1 and that of W/W is 50/1, then the probability of C/C
and W/W being in the alignment is 7/1 X 50/1 = 350/1 (note that the order or posi-
tion in the alignment does not matter). Usually, log odds scores are used in these cal-
culations, and these scores are added to produce an overall log odds score for the
alignment. To perform this optimal alignment using odds scores, the method
assumes that the odds score for matching a given pair of sequence positions is not
influenced by the odds score of any other matching pair; i.e., that there are no corre-
lations expected among the amino acids found at various sequence positions. Anoth-
er way of describing this assumption is that the sequences are each being modeled as
a Markov chain, with the amino acid found at each position not being influenced by
other amino acids in the sequence. Although correlations among sequence positions
are expected, since they give rise to structure and function in molecules, this simpli-
fying assumption allows the determination of a reasonable alignment between the
sequences.
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Although one may be able to align the two short sequences in Figure 3.7 by eye and to
place the gap where shown, the dynamic programming algorithm will automatically place
gaps in much longer sequence alignments so as to achieve the best possible alignment. The
derivation of the dynamic programming algorithm is illustrated in Figure 3.8, using the
above alignment as an example. Consider building this alignment in steps, starting with an
initial matching aligned pair of characters from the sequences (V/V) and then sequential-
ly adding a new pair until the alignment is complete, at each stage choosing a pair from all
the possible matches that provides the highest score for the alignment up to that point. If
the full alignment finally reached on the left side of Figure 3.8 (I) has the highest possible
or optimal score, then the old alignment from which it was derived (A) by addition of the
aligned Y/Y pair must also have been optimal up to that point in the alignment. If this were
incorrect, and a different preceding alignment other than A was the highest scoring one,
then the alignment on the left would also not be the highest scoring alignment, and we
started with that as a known condition. Similarly, in Figure 3.8 (II), alignment A must also
have been derived from an optimal alignment (B) by addition of a C/C pair. In this man-
ner, the alignment can be traced back sequentially to the first aligned pair that was also an
optimal alignment. One concludes that the building of an optimal alignment in this step-
wise fashion can provide an optimal alignment of the entire sequences.

The example in Figure 3.8 also illustrates two of the three choices that can be made in
adding to an alignment between two sequences: Match the next two characters in the next
positions in each sequence, or match the next character to a gap in the upper sequence. The
last possibility, not illustrated, is to add a gap to the lower sequence. This situation is anal-
ogous to performing a dot matrix analysis of the sequences, and of either continuing a
diagonal or of shifting the diagonal sideway or downward to produce a gap in one of the
sequences. An example of using the dynamic programming algorithm to align two short
protein sequences is illustrated in Figure 3.9.

Formal Description of the Dynamic Programming Algorithm

The algorithm (Fig. 3.9) may be written in mathematical form, as shown in Figure 3.10.
The diagram indicates the moves that are possible to reach a certain matrix position (i)
starting from the previous row and column at position (i — 1, j — 1) or from any position
in the same row and column.

The following equation describes the algorithm that was illustrated in Figure 3.9. There
are three paths in the scoring matrix for reaching a particular position, a diagonal move
from position i — 1, j — 1 to position 7, j with no gap penalties, or a move from any other
position from column j or row i, with a gap penalty that depends on the size of the gap. For
two sequencesa = a;a,...a,and b =b; b,...b,, where S;; = S(aja; . . . a;, b;b,..b;) then
(Smith and Waterman 1981a,b)

Sij=max { S;_y ;1 + s(aby),

max
x = I(Sifx,j - Wx))
max
)’Z I(Sijfy - Wy)
} (1)

where Sj; is the score at position 7 in sequence a and position j in sequence b, s(a,b;) is the
score for aligning the characters at positions 7 and j, w, is the penalty for a gap of length x
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in sequence a, and w, is the penalty for a gap of length y in sequence b. Note that S;; is a
type of running best score as the algorithm moves through every position in the matrix.
Eventually, when all of the matrix positions (all S;;) have been filled, the best score of the
alignment will be found as the highest scoring position in the last row and column (for a
global alignment), after correcting for any remaining gap penalties to align the sequence
ends, if applicable. To determine an optimal alignment of the sequences from the scoring
matrix, a second matrix called the trace-back matrix is used (Fig. 3.9). The trace-back
matrix keeps track of the positions in the scoring matrix that contributed to the highest
overall score found. The sequence characters corresponding to these high scoring positions
may align or may be next to a gap, depending on the information in the trace-back matrix.
An example of this procedure can be found on the book Web site.

Use of the dynamic programming method requires a scoring system for the comparison of
symbol pairs (nucleotides for DNA sequences and amino acids for protein sequences), and a
scheme for insertion/deletion (GAP) penalties. Once those parameters have been set, the
resulting alignment for two sequences should always be the same. Scoring matrices are

Y

Figure 3.9. Example of using the dynamic programming algorithm to align sequences al a2 a3 a4 and b1 b2 b3 b4.

1.

3.

The sequences are written across the top and down the left side of a matrix, respectively, similar to that done in the dot
matrix analysis, except that an extra row and column labeled “gap” are added to allow the alignment to begin with a gap
of any length in either sequence. The gap rows are filled with penalty scores for gaps of increasing lengths, as indicated. A
zero is placed in the upper right box corresponding to no gaps in either sequence.

Maximum possible values are calculated for all other boxes below and to the right of the top row and left column, taking
into account any sized gap or no gap, using the steps listed in a through d below. The scores for individual matches al-b1,
al-b2, etc., are obtained from a scoring matrix (symbol comparison table). To calculate the value for a particular matrix
position, trial values are calculated from all moves into that position allowed by the algorithm. The allowed moves are from
any position above or to the left of the current position, in the same column or row, or from the upper left diagonal posi-
tion. The diagonal move attempts to align the sequence characters without introducing a gap. Thus, there is no gap penal-
ty in this case. However, moves from above and to the left will introduce gaps, and thus will require one or more gap penal-
ties to be used. (a) sl11 is the score for an al-bl match added to 0 in the upper left position. According to the algorithm,
there are two other possible paths to this position shown by the vertical and horizontal arrows, but they would probably
have to give a lower score because they start at a gap penalty and must include an additional gap penalty. (b) Trial values
for s12 are calculated and the maximum score is chosen. Trial 1 is to add the score for the al-b2 match to s11 and subtract
a penalty for a gap of size 1. The other three trials shown by arrows include gap penalties and so likely cannot yield a high-
er score than trial 1. (c) All possible scores for s21 are calculated by the trial moves indicated. The best score should be
obtained by adding the score of an a2-b1 match to s11 since all other moves include gap penalties. (d) Trial values of s22
are calculated by considering moves from s11, s21, and s12, and from the top row and left end column. s22 will be the best
score of several possible choices, including adding the score for an a2-b2 match to s11, or to s21 less a single gap penalty.
Other trials will normally be attempted from other positions above and to the left of this position, but in this case, they will
probably not provide a higher score for s22 because they include multiple gap penalties.

As the maximum scores for each matrix position are calculated, a record of the paths that produced the highest scores to
reach each matrix position is kept. These short paths, which represent extending the alignment to another matching pair,
with or without gaps, are recorded in another matrix called the trace-back matrix, illustrated below. For example, if mov-
ing from s11 to s21 gave the highest score of all moves to s21, then the corresponding region of the matrix will appear as
shown.

The paths in the trace-back matrix are joined to produce an alignment. In the example shown, the highest-scoring matrix
position in the sequence comparison matrix is located, in this case s44, and the arrows are then traced back as far as pos-
sible, generating the path shown. The corresponding alignment A is shown below the matrix. More than one alignment
may be possible if there is more than one path from the highest scoring matrix position. As an example, s43 could also be
a high-scoring position, generating trace-back alignment B, an alignment that includes a gap opposite a2. Another gap may
also be placed opposite b4, which has no matching symbol. Scoring end gaps is optional in the alignment programs. If

Legend continues.
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gap al a2 a3 a4 gap ail a2 a3 a4

gap 0 1 gap |2 gaps |3 gaps |4 gaps gap 0 1gap |2 ggps 3 gaps |4 gaps
\l

b1 1 gap b1 1gap s11::: s21
b2 |2 gaps b2 |2gaps| s12
b3 |3 gaps b3 |3 gaps
b4 |4 gaps b4 |4 gaps
2a. 2d.
gap al a2 a3 a4 gap al a2 a3 a4
gap 0\ 1 gap(|2 gaps |3 gaps |4 gaps gap 0 1 gap |2 gaps |3 gaps |4 gaps
b1 1 gap-’ltsﬂ Y b1 1gap | s11 531
b2 |2 gaps b2 |2 gaps s12:l|; séZ
b3 |3 gaps b3 |3 gaps
b4 |4 gaps b4 |4 gaps
2b. 3. Part of trace back matrix
gap al a2 a3 a4 gap al a2 a3 a4
gap 0 1 gap, |2 gaps |3 gaps |4 gaps gap 0 1 gap |2 gaps |3 gaps |4 gaps
b1 1gap 531 b1 1gap | s11 -4 s21 s31 s41
b2 |2 gapsk- s1v2 b2 |2gaps| s12 s22 s32 s42
b3 |3 gaps b3 |[3gaps| s13 s23 s33 s43
b4 |4 gaps b4 |4gaps| s14 s24 s34 s44

4, Trace back matrix

gap al a2 a3 a4

gap 0 1 gap |2 gaps |3 gaps |4 gaps
b1 |1gap | s11 ¥ s21B| s31 | s41

b2 |2gaps| s12 s22 s32 s42

b3 [3gaps| s13 | s23A| s33_| s43 f
b4 |4 gaps| s14 s24 s34 s44

Alignment A: al a2 a3 a4
b1 b2 b3 b4

Alignment B: al a2 a3 a4 -
bt - b2 b3 b4

included in this case, alignment B would be disfavored by an additional gap penalty. In addition to this series of alignments,
or so-called clump of alignments starting from the highest scoring position, there will be other possible alignments start-
ing from other high-scoring matrix positions, and these may also have multiple pathways through the scoring matrix, each

representing a different alignment. Note that these alignments are global alignments because they include the entire
sequences.
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Figure 3.10. Formal description of the dynamic programming algorithm.

described below. The most commonly used ones for protein sequence alignments are the log
odds form of the PAM250 matrix and the BLOSUMSG62 matrix. However, a number of other
choices are available.

Dynamic Programming Can Provide Global or Local Sequence Alignments

Global Alignment: Needleman-Wunsch Algorithm

The dynamic programming method as described above gives a global alignment of
sequences, as described by Needleman and Wunsch (1970), but was also proven mathe-
matically and extended to include an improved scoring system by Smith and Waterman
(1981a,b). The optimal score at each matrix position is calculated by adding the current
match score to previously scored positions and subtracting gap penalties, if applicable.
Each matrix position may have a positive or negative score, or 0. The Needleman-Wunsch
algorithm will maximize the number of matches between the sequences along the entire
length of the sequences. Gaps may also be present at the ends of sequences, in case there is
extra sequence left over after the alignment. These end gaps are often, but not always, given
a gap penalty. The effect of these penalties is illustrated below. An example of a global
alignment of two short sequences calculated by hand using the algorithm is shown on the
book Web site. The example also reveals that more than one alignment may be equally as
likely.

Local Alignment: Smith-Waterman Algorithm

A modification of the dynamic programming algorithm for sequence alignment provides
a local sequence alignment giving the highest-scoring local match between two sequences
(Smith and Waterman 1981a,b). Local alignments are usually more meaningful than glob-
al matches because they include patterns that are conserved in the sequences. They can also
be used instead of the Needleman-Wunsch algorithm to match two sequences that may
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have a matched region that is only a fraction of their lengths, that have different lengths,
that overlap, or where one sequence is a fragment or subsequence of the other. The rules
for calculating scoring matrix values are slightly different, the most important differences
being (1) the scoring system must include negative scores for mismatches, and (2) when a
dynamic programming scoring matrix value becomes negative, that value is set to zero,
which has the effect of terminating any alignment up to that point. The alignments are pro-
duced by starting at the highest-scoring positions in the scoring matrix and following a
trace path from those positions up to a box that scores zero. The mathematical formula-
tion of the dynamic programming algorithm is revised to include a choice of zero as the
minimum value at any matrix position. For two sequencesa = a;a,...a,andb=Db;b,...
b,, where H;; = H(a,a; . . . a;, b;b,..b;), then (Smith and Waterman 1981a)

Hjj = max { Hj— j— 1+ s(ajbj),

max (H,' —xj Wx)>
x=1
max (Hj -, — w,),
y=1
0
} (2)

where Hj; is the score at position 7 in sequence a and position j in sequence b, s(a;b;) is the
score for aligning the characters at positions 7 and j, w, is the penalty for a gap of length x
in sequence a, and w,, is the penalty for a gap of length y in sequence b.

To illustrate the difference between the Needleman-Wunsch and Smith-Waterman
methods, a local alignment of the same two sequences is shown on the book Web site.

Does a Local Alignment Program Always Produce a Local Alignment and a Global
Alignment Program Always Produce a Global Alignment?

Although a computer program that is based on the above Smith-Waterman local align-
ment algorithm is used for producing an optimal alignment, this feature alone does not
assure that a local alignment will be produced. The scoring matrix or match and mismatch
scores and the gap penalties chosen also influence whether or not a local alignment is
obtained. Similarly, a program based on the Needleman-Wunsch algorithm can also
return a local alignment depending on the weighting of end gaps and on other scoring
parameters. Often, one can simply inspect the alignment obtained to see how many gaps
are present. If the matched regions are long and cover most of the sequences and obvious-
ly depend on the presence of many gaps, the alignment is global. A local alignment, on the
other hand, will tend to be shorter and not include many gaps, just as in the example given
on the book Web site. However, these tests are quite subjective, and a more precise method
of knowing whether a given program and set of scoring parameters will provide a local or
global alignment is required. Looking ahead in the chapter for a moment, the best way of
knowing is by looking at what happens when many random or completely unrelated
sequences are aligned under the chosen conditions. As the length of the random sequences
being aligned increases, the score of a global alignment will just increase proportionally.
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This is easy to see. Because a global alignment matches most of the sequence, and the neg-
ative mismatch score and gap penalties are deliberately chosen to be small in comparison
to match scores in order to provide a long alignment, only matches count and the score has
to be proportional to the length.

If using a scoring matrix, a matrix that gives on the average a positive score to each
aligned position, combined with a small enough gap penalty to allow extension of the
alignment through poorly matched regions, will give a global alignment. Conversely, for
the local alignment, a negative mismatch score and gap penalties are chosen to balance the
positive score of a match and to prevent the alignment growing into regions that do not
match very well. The scoring matrix in this case will on the average give a negative value to
the matched positions, and the gap penalty will be large enough to prevent gaps from
extending the alignment. The local alignment score of random sequences does not increase
proportionally to sequence length, because the positive score of matches is offset by the
mismatch and penalty scores. In this case, it may be shown by theory and experiment that
the score of local random alignments increases much more slowly, and proportionally to
the logarithm of the product of the sequence lengths. It is this different behavior of the
alignment score of random sequences with length that distinguishes global and local align-
ments.

One may well ask, Does it really matter whether I use a sequence alignment program
based on the global alignment algorithm or one based on the local alignment algorithm?
The answer is that sometimes both methods will provide the same alignment with the same
scoring system and sometimes they will not. The most reasonable approach is to use a pro-
gram based on the appropriate algorithm for the analysis at hand, and then to choose the
scoring system carefully. Small changes in the scoring system can abruptly change an align-
ment from a local to a global one. There are even examples in the bioinformatics literature
where this feature of alignment scoring systems has been overlooked. The rest of this chap-
ter is designed to provide a suitable guide for making the right choices.

Additional Development and Use of the Dynamic Programming Algorithm for Sequence

Alignments

Use of Distance Scores for Sequence Alignment

As originally designed by Needleman and Wunsch and Smith and Waterman, the dynam-
ic programming algorithm was used for sequence alignments scored on the basis of the
similarity or identity of sequence characters. An alternative method is to score alignments
based on differences between sequences and sequence characters; i.e., how many changes
are required to change one sequence into another. Using this m