
Combinations and Permutations 
What's the Difference? 
In English we use the word "combination" loosely, without thinking if the order of things is 
important. In other words: 

 

"My fruit salad is a combination of apples, grapes and bananas" We don't care what 
order the fruits are in, they could also be "bananas, grapes and apples" or "grapes, apples 
and bananas", its the same fruit salad. 

    

 

"The combination to the safe was 472". Now we do care about the order. "724" would 
not work, nor would "247". It has to be exactly 4-7-2. 

So, in Mathematics we use more precise language: 

 

If the order doesn't matter, it is a Combination. 
 

If the order does matter it is a Permutation. 
 

  

 

So, we should really call this a "Permutation Lock"! 

In other words: 

A Permutation is an ordered Combination. 

 

 

To help you to remember, think "Permutation ... Position" 

Permutations 
There are basically two types of permutation: 

1. Repetition is Allowed: such as the lock above. It could be "333". 
2. No Repetition: for example the first three people in a running race. You can't be first and 

second. 



  

1. Permutations with Repetition 

These are the easiest to calculate.  

When we have n things to choose from ... we have n choices each time!  

When choosing r of them, the permutations are: 

n × n × ... (r times) 

(In other words, there are n possibilities for the first choice, THEN there are n possibilites for the 
second choice, and so on, multplying each time.) 

Which is easier to write down using an exponent of r: 

n × n × ... (r times) = nr 

Example: in the lock above, there are 10 numbers to choose from (0,1,...9) and we choose 3 of 
them: 

10 × 10 × ... (3 times) = 103 = 1,000 permutations 

So, the formula is simply: 

nr

where n is the number of things to choose 
from, and we choose r of them 

(Repetition allowed, order matters)  

  

2. Permutations without Repetition 

In this case, we have to reduce the number of available choices each time. 

 

For example, what order could 16 pool balls be 
in? 

After choosing, say, number "14" we can't choose 
it again. 

So, our first choice would have 16 possibilites, and our next choice would then have 15 
possibilities, then 14, 13, etc. And the total permutations would be: 
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1    14    91    364  ... 
 

1    15    105   455   1365  ... 
 

1    16   120   560   1820  4368  ... 

  

1. Combinations with Repetition 

OK, now we can tackle this one ... 

 

Let us say there are five flavors of icecream: banana, chocolate, lemon, 
strawberry and vanilla. We can have three scoops. How many variations will 
there be? 

Let's use letters for the flavors: {b, c, l, s, v}. Example selections would be  

• {c, c, c} (3 scoops of chocolate) 
• {b, l, v} (one each of banana, lemon and vanilla) 
• {b, v, v} (one of banana, two of vanilla) 

(And just to be clear: There are n=5 things to choose from, and we choose r=3 of them. 
Order does not matter, and we can repeat!) 

Now, I can't describe directly to you how to calculate this, but I can show you a special 
technique that lets you work it out.  

 

Think about the ice cream being in boxes, we could say "move past 
the first box, then take 3 scoops, then move along 3 more boxes to 
the end" and we will have 3 scoops of chocolate!  

  So it is like we are ordering a robot to get our ice cream, but it 
doesn't change anything, we still get what we want. 

We could write this down as (arrow means move, circle means scoop). 

In fact the three examples above would be written like this: 

{c, c, c} (3 scoops of chocolate): 
 

{b, l, v} (one each of banana, lemon and vanilla): 
 

{b, v, v} (one of banana, two of vanilla): 
 

OK, so instead of worrying about different flavors, we have a simpler question: "how many 
different ways can we arrange arrows and circles?" 
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