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PREFACE

This book is a supplement to Principles of Econometrics, 4th Edition by R. Carter Hill, William E. 
Griffiths and Guay C. Lim (Wiley, 2011), hereinafter POE4. This book is not a substitute for the 
textbook, nor is it a stand alone computer manual. It is a companion to the textbook, showing how 
to perform the examples in the textbook using Stata Release 11. This book will be useful to 
students taking econometrics, as well as their instructors, and others who wish to use Stata for 
econometric analysis.  

Stata is a very powerful program that is used in a wide variety of academic disciplines. The 
website is http://www.stata.com. There you will find a great deal of documentation. One great 
and visual resource is at UCLA: http://www.ats.ucla.edu/stat/stata/.  We highly recommend 
this website. 

In addition to this computer manual for Stata, there are similar manuals and support for the 
software packages EViews, Excel, Gretl and Shazam. In addition, all the data for POE4 in 
various formats, including Stata, are available at http://www.wiley.com/college/hill.

Individual Stata data files, errata for this manual and the textbook can be found at 
http://www.principlesofeconometrics.com/.

The chapters in this book parallel the chapters in POE4. Thus, if you seek help for the examples 
in Chapter 11 of the textbook, check Chapter 11 in this book. However within a Chapter the 
sections numbers in POE4 do not necessarily correspond to the Stata manual sections. Data files 
and other resources for POE4 can be found at http://www.stata.com/texts/s4poe4.

We welcome comments on this book, and suggestions for improvement. We would like to 
acknowledge the help of the Stata Corporation, and in particular Bill Rising, for answering many 
of our questions and improving our prose and code. 

Lee C. Adkins 
Department of Economics 

Oklahoma State University 
Stillwater, OK 74078 

lee.adkins@okstate.edu

R. Carter Hill 
Economics Department 

Louisiana State University 
Baton Rouge, LA 70803 

eohill@lsu.edu
.
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1.1 STARTING STATA 

Stata can be started several ways. First, there may be shortcut on the desktop that you can double-
click. For the Stata/SE Release 11 it will look like 
 

 
 
Earlier versions of Stata have a similar looking Icon, but of course with a different number. 
Alternatively, using the Windows menu, click the Start > All Programs > Stata 11. 

A second way is to simply locate a Stata data file, with *.dta extension, and double-click. 

1.2 THE OPENING DISPLAY

Once Stata is started a display will appear that contains windows titled  
 

Command—this is where Stata commands are typed 
Results—output from commands, and error messages, appear here 
Review—a listing of commands recently executed 
Variables—names of variables in data and labels (if created) 
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Across the top are Stata pull-down menus. We will explore the use of many of these. In the 
lower left-hand corner is the current path to a working directory where Stata saves graphs, data 
files, etc. We will change this in a moment. 

1.3 EXITING STATA 

To end a Stata session click on File  
 

 
 
and the Exit on the pull-down menu 
 

 
 
We will denote sequential clicking commands like this as File > Exit. Alternatively, simply type  
 

exit  

 
in the Command window and press Enter.  
 

 

1.4 STATA DATA FILES FOR PRINCIPLES OF ECONOMETRICS

Stata data files have the extension *.dta. These files should not be opened with any program but 
Stata. If you locate a *.dta file using double-click it will also start Stata. 

For Principles of Econometrics, 4th Edition all of the data used in the book has been 
converted into Stata data files for your use. These files, in a format compatible with Stata Version 
9 and later can be found at 
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1. The John Wiley & Sons website for the book: http://www.wiley.com/college/hill. You 
can download the entire collection of Stata data files to your computer or a “memory 
stick” with adequate storage. 

2. Book data and other resources are available at the authors’ website 
http://www.principlesofeconometrics.com.  

3. Individual data files, and other book materials, can found at the Stata web site 
http://www.stata.com/texts/s4poe4/.  

1.4.1 A working directory 

You should copy the data into a convenient directory. How to accomplish this will depend on 
your computer system. In this Windows-based book we will use the subdirectory 
c:\data\poe4stata for all our data and result files. We are doing this for our convenience and if 
you are in a laboratory setting this is a bad choice. If you are working in a computer laboratory, 
you may want to have a storage device such as a “flash” or “travel” drive. These are large enough 
to hold the Stata data files and definition files. Make a subdirectory on the device. Calling it 
X:\DATA or X:\POE4, where X:\ is the path to your device, would be convenient. 

To change the working directory use the pull-down menu File > Change Working 
Directory. In the resulting dialog box navigate to your preferred location and click OK. to this 
location type  
 

   
 
Stata will show the implied command 

 
cd "C:\data\poe4stata" 

 
This can be entered into the Command window and press Enter.  
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The result of this command is 
 

 
 

Note that in the Results window the command is echoed, and it appears in the Review window as 
well. The new path is indicated at the bottom left of the screen. 

1.5 OPENING STATA DATA FILES 

There are several ways to open, or load, Stata data files. We will explain a couple of them. 

1.5.1 The use command 

With Stata started, change your working directory to the where you have stored the Stata data 
files. In the Command window type use cps4_small and press Enter. 
 

 
 
If you have a data file already open, and have changed it in some way, Stata will reply with an 
error message.  
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If you click on r(4); you will be able to read the error message in a Viewer box. Sometimes this 
is helpful. To close the Viewer box click the X.  

This feature will prevent you from losing changes to a data file you may wish to save. If this 
happens, you can either save the previous data file [more on this below], or enter the command 
 

clear 

 
The clear command will erase what is in Stata’s memory. If you want to open the data file and 
clear memory, enter 
 

use cps4_small, clear 

1.5.2 Using the toolbar 

To open a Stata data file using the tool bar click the Open (use) icon on the Stata toolbar. 
 

 
Locate the file you wish to open, select it, and click Open. In the Review window the implied 
Stata command is shown.  
 

use "C:\data\poe4stata\cps4_small.dta", clear 

 
In Stata opening a data file is achieved with the use command. The path of the data file is shown 
in quotes. The quotes are necessary if the path name has spaces included. The option clear 
indicates that any existing data is cleared from memory. 
 

 

1.5.3 Using files on the internet 

Stata offers a nice option if you are connected to the internet. Files can be loaded from a web site. 
The Stata data files are stored at http://www.stata.com/texts/s4poe4/. For example, to load 
cps4_small.dta, after saving previous data and/or clearing memory, enter in the Command 
window 
 

use http://www.stata.com/texts/s4poe4/cps4_small, clear 
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Once the data are loaded onto your machine, you can save it using File > Save as and filling in 
the resulting dialog box. 

1.5.4 Locating book files on the internet 

If you would like to browse the book data sets, use your internet browser to visit 
http://www.stata.com/texts/s4poe4 or http://www.principlesofeconometrics.com where you will 
find individual data files listed, along with other book materials. Double click on the Stata data 
file you wish to use and Stata will start and load the data file. Of course you must do this from a 
machine with Stata on it, and there may be a warning box to deal with. 

1.6 THE VARIABLES WINDOW 

In the Variables window the data file variables are listed. Also shown are variable Labels, if they 
are present, along with the Type of variable and its Format. We will only display the variable 
Name and Label in future screen shots. 
 

 
 
Labels are useful and can be easily added, changed or deleted.  

1.6.1 Using the data editor for a single label 

On the Stata pull-down menu select the Data Editor icon. 
 

 
 
In the resulting spread sheet view, right-click in the column defined by the variable and select 
Variable Properties. 
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Enter the modified variable Label and select Apply.  

1.6.2 Using the data utility for a single label 

On the Stata pull-down menu select Data > Data utilities > Label utilities > Label Variable. 
That is, 

 
 

 
Then 

       
 
In the resulting dialog box, you can alter the existing label by choosing Attach a label to a 
variable, choosing the variable from the Variable: pull-down list and typing in the New variable 
label. Click OK. 
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Instead of the dialog box approach, enter the Command 
 

label variable wage "earnings per hour" 

 
This will create the label, and it will write over an already existing label for wage. In the dialog 
box you can also choose to Remove a label.  

1.6.3 Using Variables Manager 

A one-stop place to manage your variables is the Variables Manager. On the Stata pull-down 
menu click the icon 
 

 
 
For extended help on the many features of Variables Manager enter the command help 
varmanage. In the resulting Viewer there is a link to the full documentation. 
 

 
 

There we also see syntax of the command varmanage. The underlined portion represents the 
minimal command required to open the Variables Manager. Near the bottom of the Viewer you 
will find a link to the Getting Started with Stata discussion of the Variables Manager. This is 
perhaps the best place, other than this manual, to “get started.” 
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Within the Variables Manager click a variable to open the Variable Properties. Here you can 
change the variable label, add notes, and manage both individual variables and groups of 
variables. 

 

 
 

Right-click the high-lighted variable to find more options 
 

 
 

The Variables Manager has become even more functional in Version 11 as it may be left open 
while working. 
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1.7 DESCRIBING DATA AND OBTAINING SUMMARY STATISTICS 

There are a few things you should do each time a data file is opened. First, enter the Command  
 

describe 

 
This produces a summary of the dataset in memory, including a listing of the variables, 
information about them, and their labels. A portion of the results is 
 

 
 
Next, enter the Command  
 

summarize  

 
In the Results window we find the summary statistics. A portion is 
 

 
 
Should you forget a Stata command the pull-down menus virtually assure that with enough 
clicking you can obtain the desired result. To illustrate, click on Statistics on the Stata menu list 

 
 

 
You will find a long list of possible statistical analyses, some of which we will use. For now 
select Summaries, tables, and tests. Select Summary and descriptive statistics, and then 
Summary statistics, as shown below.
 

 

female          byte   %8.0g                  = 1 if female
married         byte   %8.0g                  = 1 if married
hrswk           byte   %8.0g                  usual hours worked per week
exper           byte   %8.0g                  post education years experience
educ            byte   %8.0g                  years of education
wage            double %10.0g                 earnings per hour

variable name   type   format      label      variable label
              storage  display     value

 size:        23,000 (99.9% of memory free)
 vars:            12                          
  obs:         1,000                          
Contains data from cps4_small.dta

. describe

      female        1000        .514    .5000541          0          1

     married        1000        .581    .4936423          0          1
       hrswk        1000      39.952     10.3353          0         90
       exper        1000      26.508    12.85446          2         65
        educ        1000      13.799    2.711079          0         21
        wage        1000    20.61566    12.83472       1.97      76.39

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize                                       
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Recall that we will abbreviate such as path of commands as 
 

Statistics > Summaries, tables, and tests > Summary and descriptive 
 statistics > Summary statistics 

A dialog box will open that shows many options. For the basic summary statistics table no 
options are required. Select OK. Stata automatically will provide the summary statistics for all 
the variables in the data set. You can select individual variables by typing their names in the 
Variables box. The Standard display will produce the number of observations, the arithmetic 
mean, the standard deviation, the minimum and maximum of the data values. 
 

 

1.8 THE STATA HELP SYSTEM 

The Stata help system is one if its most powerful features. Click on Help on the Stata menu, then 
Contents. 
 

 
 
Each of the blue words is linked to further screens. You should explore these to get a feel for 
what is available.  
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1.8.1 Using keyword search 

Now click on Help > Search 
 

 
 
In the Dialog box that opens there are several search options. To search all the Stata 
documentation and Frequently Asked Questions (FAQs) simply type in phrase describing what 
you want to find. It does not have to be a specific Stata command. For example, let’s search for 
Summary Statistics. 
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The Command line entry is 
 

search summary statistics 

 
Up comes a list of topics that might be of interest. Once again blue terms are links. Click on 
Summarize. The resulting Viewer box shows the command syntax, which can be used when 
typing commands in the Command window, and many options.  
 

 
 

Tip: Note under the syntax that su is underlined. It is the minimum abbreviation. 
This means that the command summarize can be abbreviated as su or, say, summ.  

 
A broader keyword search uses the findit command. For example, enter the command 

 
findit mixed models 

 
For more on these search options use help search. 

1.8.2 Using command search 

If you know the name of the Stata command you want help with, click Help > Stata Command 
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In the resulting dialog box type in the name of the command and click OK. 
 

 
 
Alternatively, on the command line type  
 

help summarize  

 
and press Enter. 

1.8.3 Opening a dialog box 

If you know the name of the command you want, but do not recall details and options, a dialog 
box can be opened from the Command window. For example, if you wish to summarize the data 
using the dialog box, enter db summarize 
 

 
 
Or, enter help summarize, and click on the blue link to the dialog box. 
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1.8.4 Complete documentation in Stata manuals 

Stata has a complete set of reference manuals consisting of thousands of pages and about two feet 
of shelf space. Stata 11 installation comes with these manuals as PDF files. One way to access 
them is through the Viewer window from help. 

 

 
 
The [R] denotes Reference Manual, and the blue summarize is a link to the stored PDF 
documentation for the command summarize. Manual documentation is more complete than that 
in the Viewer from help summarize and usually has several examples.  

1.9 STATA COMMAND SYNTAX 

Stata commands have a common syntax. The name of the command, such as summarize is first. 
 

command [varlist] [if] [in] [weight] [, options] 

 
The terms in brackets [ ] are various optional command components that could be used. 
 

� [varlist] is the list of variables for which the command is used. 
� [if] is a condition imposed on the command.  
� [in] specifies range of observations for the command. 
� [weight] when some sample observations are to be weighted differently than others. 
� [, options] command options go here.  

 
For more on these options use a Keyword Search for Command syntax, then click Language. 
 

Remark: An important fact to keep in mind when using Stata is that its 
commands are case sensitive. This means that lower case and capital letters have 
different meanings. That is, Stata considers x to be different from X.  

1.9.1 Syntax of summarize 

Consider the following examples using the syntax features. In each case type the command into 
the Command window and press Enter. For example, 
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summarize wage, detail computes detailed summary statistics for the variable wage. The 
percentiles of wage from smallest to largest are shown, along with additional summary 
statistics (e.g., skewness and kurtosis) that you will learn about. Note that Stata echoes 
the command you have issued with a preceding period (.). 

 

 
 
summarize wage if female==1 computes the simple summary statistics for the females in the 

sample. The variable female is 1 for females and 0 for males. In the “if qualifier” 
equality is indicated by “==”.  

 
summarize if exper >= 10 computes simple summary statistics for those in the sample whose 

experience (exper) is greater than or equal to 10 years, or missing. 
 
summarize in 1/50 computes summary statistics for observations 1 through 50. 
 
summarize wage in 1/50, detail computes detailed summary statistics for the variable wage 

in the first 50 observations. 
 

If you notice at bottom left of the Results window —more—: when the Results 
window is full it pauses and you must click —more— in order for more results 
to appear, or press the space bar. 

1.9.2 Learning syntax using the review window 

At this point you are wondering “How am I supposed to know all this?” Luckily you do not have 
to know it all now, and learning comes with repeated use of Stata. One great tool is the 
combination of pull-down menus and the Review window. Suppose we want detailed summary 
statistics for female wages in the first 500 observations. While you may be able to guess from 
previous examples how to do this, let’s use the point and click approach. Select  
 

Statistics > Summaries, tables, and tests > Summary and descriptive 
 statistics > Summary statistics 
 

 

99%        70.44          76.39       Kurtosis       5.921362
95%       47.375          72.13       Skewness       1.583909
90%        37.55          72.13       Variance       164.7302
75%        25.63          72.13
                        Largest       Std. Dev.      12.83472
50%         17.3                      Mean           20.61566

25%        11.25           2.52       Sum of Wgt.        1000
10%        8.255            2.5       Obs                1000
 5%        7.495            2.3
 1%         5.53           1.97
      Percentiles      Smallest

                      earnings per hour

. summarize wage, detail          
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In the resulting dialog box we will specify which variables we want to include, and select the 
option providing more detailed statistics. Then click on the by/if/in tab at the top. 
 

 
 
In the new dialog box you can enter the if condition in a box. Click the box next to Use a range 
of observations. Use the selection boxes to choose observations 1 to 500. Then click OK. 
 

 
 
Stata echoes the command, and produces detailed summary statistics for the women in the first 
500 observations 
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Now look at the Review window 
 

 
 
In the Review window is the list of commands we have typed. You will also find the list of 
commands generated using the dialogs. Line 6 is the command you would enter into the 
Command window to achieve the results of all that pointing and clicking. After experimenting 
for just a few minutes you will learn the syntax for the command summarize. 

Suppose you want to change the last command to include observations 1 to 750. You can 
enter the command  
 

summarize wage if female == 1 in 1/750, detail  

 
into the Command window, but Stata offers us a much easier option. In the Review window, 
simply click on the command in line 6. 
 

 
 
Instantly, this command appears in the Command window 
 

 

99%        72.13          72.13       Kurtosis       6.640641
95%        43.25          72.13       Skewness        1.78174
90%        38.23          72.13       Variance       152.7318
75%        24.05          61.11
                        Largest       Std. Dev.      12.35847
50%        15.25                      Mean           18.98892

25%           10           6.35       Sum of Wgt.         269
10%            8           6.25       Obs                 269
 5%         7.25            5.2
 1%         6.25           1.97
      Percentiles      Smallest

                      earnings per hour

. summarize wage if female == 1 in 1/500, detail
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Edit this command, changing 500 to 750, then press Enter 
 

 
 
To edit a previously used command, click on that command in the Review window. The past 
command will zip to the Command window, where it can be edited and executed. Not only do 
you obtain new results, but the modified command now appears as the last item in the Review 
window. 

Stata Tip: Many commands will be too long to fit into the Review window. In 
the Command window use Page Up and Page Down to navigate through 
previous commands. 

1.10 SAVING YOUR WORK 

When you carry out a long Stata session you will want to save your work.  

1.10.1 Copying and pasting 

One option, though certainly not recommended as a general procedure, is to highlight the output 
the Results window, then right-click.  
 

 
 
This gives you options to copy (Ctrl+C) the output as text, and then paste it into a document using 
the shortcut (Ctrl+V) or by clicking the paste icon.  
 
If you paste into a word processing document you may find that the nicely arranged Stata results 
become a ragged, hard to read, mess. Part of the results might look like 
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. summarize 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
        wage |      1000    10.21302    6.246641       2.03      60.19 
        educ |      1000      13.285    2.468171          1         18 
       exper |      1000       18.78    11.31882          0         52 
      female |      1000        .494    .5002142          0          1 
       black |      1000        .088    .2834367          0          1 
 
This is due to the word processor changing the font. While you may be using Times New Roman 
font for standard text, use Courier New for Stata output. You may have to reduce the font size to 
8 or 9 to make it fit. A partial output is 
 
. summarize 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+--------------------------------------------------------
        wage |      1000    10.21302    6.246641       2.03      60.19 
        educ |      1000      13.285    2.468171          1         18 
       exper |      1000       18.78    11.31882          0         52 
      female |      1000        .494    .5002142          0          1 
       black |      1000        .088    .2834367          0          1 
 
Copying the highlighted material as a Picture places your selection into a graphic that makes for 
nice looking output that can be pasted into a document. As a graphic, though, it cannot be edited 
using a word processor. See the output from the describe command on page 11 of this manual. 

1.10.2 Using a log file 

Stata offers a better alternative. In addition to having results in the Results window in Stata, it is a 
very good idea to have all results written (echoed) to an output file, which Stata calls a log file. 
Enter the Stata command 
 

help log 

 
Log files come in two types: a text format, or a smcl format.  

1.10.2a Log files with text format 
 
The text format is a simple ASCII file. The advantage of text format is that the contents can be 
copied and pasted into, or opened with, a word processing software, or with a utility like Notepad. 
The text format also has the virtue of being usable on computers without Stata installed. To open 
a Stata log in text format, enter the command 

 
log using chap01, replace text 

 
In the Results window we find the echoed command and the full name of the file, chap01.log 
with path c:\data\poe4stata.  



22   Chapter 1 

 
 
If you wish to name the output file something including spaces, then quotes must be used, as 

 
log using "chapter 1 output", replace text 

 
The option replace will result in previous versions of the log file being written over, and the 
option text indicates that the log file is to be in ASCII or text format. After the log file is opened, 
all output written to the Results window will be echoed to the log file. To close the output file 
enter the command 

 
log close 

 
After closing the log file navigate to it and open it with Notepad or a word processor. 

1.10.2b Log files with smcl format 
 

The smcl format is a Stata Markup and Control Language format. This type of file cannot 
usefully be opened with a word or text file processor because like HTML code there is a great 
deal of coding that is incomprehensible to the uninitiated. However, like output in the Results 
window, portions of it can be highlighted and then copied using a right-click as a picture, then 
pasted into a word processing document. It will have the appearance of the output in the Results 
window, nicely formatted and spaced. It can be copied and pasted text or a table as well. To begin 
a log file in smcl format, enter the command 

 
log using chap01, replace 

 
Since smcl format is the Stata default, it is not necessary to indicate the format type. In the 
Results window we see 
 

 
 
To close the log file, enter log close. 

Stata is used to view a smcl log file. On the Stata menu choose File > View 

 
 

 opened on:   8 Dec 2010, 08:18:45
  log type:  text
       log:  c:\data\poe4stata\chap01.log
      name:  <unnamed>

. log using chap01, replace text

 opened on:   8 Dec 2010, 08:21:44
  log type:  smcl
       log:  c:\data\poe4stata\ch01.smcl
      name:  <unnamed>

(note: file c:\data\poe4stata\ch01.smcl not found)
. log using ch01, replace



Introducing Stata   23 

In the resulting dialog box enter the log file pathname, or use Browse to locate it, and then enter 
OK. 
 

 
 
The log file chap01.smcl opens in a new Viewer window. To print the smcl log file click the 
printer icon.  
 

 
A dialog box opens that allows you to enter header information, then select OK. 
 

 
 
Advantages of the smcl formatted log file include the ability to view the formatted output, and to 
easily print it. A disadvantage of *.smcl files is that they cannot be easily viewed without having 
Stata open. They are like *.html files in that while they are text files, they also include lots and 
lots of formatting commands. This means that if you want to work on the output on a machine 
without Stata you are out of luck. Stata allows you the best of both worlds. You can translate the 
Stata *.smcl log files into simple text files. 

On the Stata toolbar select File > Log > Translate. 
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Fill in the resulting dialog box. If the Output File named already exists, you will be queried if you 
want to replace it or not. Select Translate. 
 

 
 

Alternatively, enter the command 
 

translate chap01.smcl chap01.log, replace 

 
So that the file type will be recognized as a text file, you might instead use 

 
translate chap01.smcl chap01.txt, replace 

 

1.10.2c Log files summary 
 
To open a log file using the Command window, enter 
 

log using chap01 

 
This will open chap01.smcl in the current directory. Variations of this command are: 
 
log using chap01, replace will open the log file and replace one by the same name if it 

exists. 
 
log using chap01, append will open an existing log file and add new results at the end. 
 
log close closes a log file that is open. 
 
To translate the *.smcl to a text file, in the current directory, enter 
 

translate chap01.smcl chap01.txt 

If the text file already exists, and you wish to write over it, use 
 

translate chap01.smcl chap01.txt, replace 

 
To print directly from the Command window, enter 
 

print chap01.smcl 
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Using the pull-down menu approach, click on the Log Begin/Close/Suspend/Resume icon on the 
Stata toolbar. 

 

 

1.11 USING THE DATA BROWSER 

It is a good idea to examine the data to see the magnitudes of the variables and how they appear 
in the data file. On the Stata toolbar are a number of icons. Sliding the mouse pointer over each 
icon reveals its use. Click on Data Browser 
 

 
 
The browser allows you to scroll through the data, but not to edit any of the entries. This is a good 
feature that ensures you do not accidentally change a data value. Use the slide bar at the bottom 
(shown on next page) and the one on the right to view the entire data array. Alter the size of the 
spreadsheet by dragging the “window size” corner. In Stata 11 the Data Editor or Data Browser 
can be open while working without doing any harm. 
 

 

1.12 USING STATA GRAPHICS 

Stata does very nice graphics of high quality many tools for enhancing the figures. We encourage 
the use of dialog boxes when learning graphics, combined with careful reading of the Graphics 
Manual (help graph), to learn the scope of graphics features. We will illustrate a Histogram and 
a Scatter Plot. Later in this manual we will illustrate various options to the basic graphs. 

1.12.1 Histograms 

Select Graphics > Histogram on the Stata menu. 
 



26   Chapter 1 

 
 
In the resulting dialog box there are many options. For a simple histogram all you need to is 
select is the variable from the pull-down list. For illustration, we have entered a title and axis 
labels by clicking the Titles, Y axis and X axis tabs and filling in a boxes. Choose Percent to have 
histogram bin heights reflect percent of sample contained in the bin. Select OK. 
 

 
 
The resulting figure is 
 

 



Introducing Stata   27 

On the graph toolbar you have several options. 
 

 
 
Click on the Save graph icon. The resulting dialog box shows that the graphics file will be saved 
into your working director, which for this book is c:\data\poe4stata. Attach a file name and 
choose the type of graphics file from the drop-down list. The default type *.gph is a Stata 
graphics format, which is convenient if you will do further editing in Stata. Other available 
formats, such as *.png files are widely used for images, like screen shots. If the graphs are to be 
included in document Microsoft Word use the *.emf format (Enhanced Metafile), or on a Mac 
use *.pdf.  
 

 
 
The corresponding Stata command is 
 

graph save Graph "C:\data\poe4stata\histogram of wages.gph", replace 

 
Quotes are required because the file name includes spaces. The replace option indicates that it is 
okay to replace a file with the same existing file name. This command can be shortened to 
 

graph save chap01hist, replace 

 
The file will be saved, in our case, as C:\data\poe4stata\chap01hist.gph.  

The saving process can be done in one step using 
 

histogram wage, percent title(Histogram of wage data)  

 saving(chap01hist,replace) 

 
The advantage of the two-step process is that you can edit the figure before saving. The one-step 
process ensures that you won’t forget. 

Having saved the file, in your word processor you can insert the image as a figure into a 
document. Alternatively, if you choose the Copy graph icon the figure will be copied to the 
clipboard, and then the figure can be pasted (Ctrl+V) into an open document. The figure below 
was saved in *.emf format and inserted as a picture. 
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Note that our pointing and clicking could have been replaced by the command 
 

histogram wage, percent ytitle(Percent) xtitle(wage) title(Histogram 

of wage data) saving(chap01hist, replace) 

 
Remark: Long lines—The command above is rather long. Stata has no trouble 
with long commands, but in our document and in do-files we will sometimes 
make the long command fit onto two, or more, lines using a “line-join indicator”, 
///. That is, the command in the do-file could be 

 
histogram wage, percent ytitle(Percent) xtitle(wage) /// 

title(Histogram of wage data) saving(chap01hist, replace) 

1.12.2 Scatter diagrams 

A scatter diagram is a Two-way Graph. From the graphics menu select this option 
 

 
 
In the dialog box, click Create. 
 

 
 
A dialog box opens. 
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Choose the Y variable (vertical axis) and X variable (horizontal axis). Select the Scatter plot, 
and click Submit. The resulting graph can be saved to a file, or copied and pasted into a 
document, as with the histogram. The result shows “dots” for each data pair (educ, wage), and by 
casual inspection we see that more education is associated with higher wages. Aren’t you glad? 
The Stata command used to create this scatter plot is (with saving option added) 
 

twoway (scatter wage educ), saving(wage_educ, replace) 

 

 

1.13 USING STATA DO-FILES 

While it is possible to point and click your way to success such an approach requires a new 
pointing and clicking odyssey each time you do a new problem. In our view it is more convenient 
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is to use Stata’s Do-files as a method for executing commands. These are files containing lists of 
commands that will be executed as a batch.  

Do-files are very convenient after having pointed and clicked enough so that the commands 
you want to execute appear in the Review window. If you have been carrying along on the 
computer with the examples we have been doing, then your Review window is a clutter of 
commands right now. Let’s take those commands to a new Do-file called chap01.do. The 
extension *.do is recognized by Stata and should be used. 

One way to retain a list of the commands you enter is to use a command log file, which is a 
simple text file containing a record of what you type during your Stata session. Since it contains 
only what you type it is a subset of the full log file. Open a command log file using 

 
cmdlog using filename [, append replace] 

 
where filename can be specified without an extension—Stata will add .txt. These ASCII files 
then can be turned into do-files. To close a command log, temporarily suspend logging, or resume 
logging use 

 
cmdlog {close|on|off} 

 
Alternatively, Right-click in the Review window, and on the pull-down menu click Select All. 
After all commands are selected right-click again and choose Send to Do-file Editor. 
 

 
 
The Do-file Editor is opened. To save this file click on File > Save, or the Save icon, 
 

 
 
and enter the file name ch01.do. The Stata Do-file editor is a simple text editor that allows you to 
edit the command list to include only those commands to keep. In the file below we have 
eliminated some commands, done some rearranging, and added some new commands. It also 
presumes that the log file is new, that you have saved and cleared any previous work, and that the 
working directory has been specified. Recall that comment lines are preceded with “*” and 
comments can be added in lines using “//”. Long lines can be split using “///”. 

 
* file ch01.do is a comment identifying the file when you open it 
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version 11.1 specifies the version used. This is quite useful because when Stata is installed, it 
includes previous versions. If you have a Do-file used with a previous version and wish 
to recreate the output, then you can specify instead version 10.1, or whatever. 

 
capture log close is protection against the error of trying to open a new log file while another 

is open. 
 
set more off prevents Stata from pausing when the Review window is full. 
log close should be included at the end. 

 
When using Do-files, which are collections of commands run together, or in “batch mode,” the 
replace option is used to write over old saved results and graphs with new ones. 

 

 
 
The remainder of the Do-file is from the list of commands we have explored. 

To execute this series of commands click the Do icon on the Do-file Editor toolbar.  
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The results appear in the Result window and will be written to the specified log file. 
The Do-file editor has some useful features. Several Do-files can be open at once, and the 

Do-file editor can be used to open and edit any text file. By highlighting several commands in the 
Do-file and selecting Do Selected Lines parts of the Do-file can be executed one after the other. 
Of course the data file cps4_small.dta must be open prior to attempting to execute the selected 
lines. 
 

 
 

Stata Tip: If the Do-file tab shows an asterisk (*) that means changes have been 
made to the file and the changes have not yet been saved. Be sure to Save the Do-
file! 

 

 
 

At the end of each chapter in this book we will present a Do-file summarizing the chapter. 

1.14 CREATING AND MANAGING VARIABLES 

Stata offers a wide variety of functions that can be used to create new variables, and commands 
that let you alter the variables you have created. In this section we examine some of these 
capabilities.  

1.14.1 Creating (generating) new variables 

To create a new variable use the generate command in Stata. Let’s start with the pull-down menu. 
Click on Data > Create or change variables > Create new variable on the Stata menu. 
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A dialog box will open. 

 

 
 
Alternatively, in the Command window, enter db generate to open the dialog box. In the dialog 
box you must fill in 
 
New variable name: choose something logical, informative and not too long. 
 
Contents of new variable: this is a formula (no equal sign required) that is a mathematical 

expression. In the example above wage2 is a new variable that will be the square of 
wage. The operator “^” is the symbol Stata uses for “raise to a power, so wage^2 is the 
square of wage, wage^3 would be wage cubed, and so on.  

 
Variable type: the default is float, which stands for floating point. This relates to the way in 

which the variable will be stored internally. Enter the command help data type if you 
are curious. 

 
Click OK. In the Results window (and Review window) we see that the command implied by the 
menu process is 
 

generate wage2 = wage^2 

 
The command can also be shortened to 
 

gen wage2 = wage^2 
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1.14.2 Using the expression builder 

Suppose in the process of creating a new variable you forget the exact name of the function. This 
happens all the time. To illustrate let us create a new variable lwage which will be the natural 
logarithm of WAGE. Go through the steps in Section 1.14.1 until to you reach the generate dialog 
box. Type in the name of the new variable, and then click Create, opening Expression builder. 
 

 
 
In the Expression builder dialog box you can locate a function by choosing a category, scrolling 
down the function list while keeping an eye on the definitions at the bottom until you locate the 
function you need. 
 

 
 
Double-click on the function ln(), and it will appear the Expression builder window 
 

 
 
Now fill in the name of the variable wage in place of “x” and click OK. 
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In the generate dialog box you will now find the correct expression for the natural logarithm of 
wage in the Contents of new variable space. Click OK. 
 

 
 
The command will be executed, creating the new variable lwage which shows up in the 
Variables window. Stata echoes the command to the Results window 
 

generate lwage = ln(wage) 

 
and to the Review window. The simple direct command is 
 

gen lwage = ln(wage) 

1.14.3 Dropping and keeping variables and observations 

Enter the command help drop. There you will find commands and variations for dropping 
variables, or observations.  

 
Drop variables: use drop varlist, where varlist is a list of variables. For example, drop 

wage2 lwage will drop these two variables. 
 
Instead of deleting variables using drop, you may wish to only keep certain variables or 
observations. 
 
Keep variables: use keep varlist, where varlist is a list of variables. For example, keep 

wage2 lwage will drop all variables except these two. 
 

Should you forget this, from the Stata menu choose Data > Variables Manager 
 

 
 
The Variables Manager window will open where you can change various aspects of the data. To 
drop or keep variables, highlight several and then right-click.  
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If you wish to drop or keep certain observations use the pull-down menu Data > Create or 
change data > Keep or drop observations. 

 

 
 
To drop all observations for which the variable wage is greater than 5.50, enter into the dialog 
box 
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Or, in the Command window: 
 

Drop observations: use drop if exp, where exp is a Stata expression. For example, drop if 
wage > 5.50 will drop all observations for which wage is greater than 5.50, or missing.  

 
Tip: The command drop if _n > 100 will drop all observations in data rows 
100 and above, keeping only the first 100 observations. The variable _n is the 
observation number in Stata, which is an automatic variable that is always 
present. 

 
Drop a range of observations: use drop in 1/50 to drop the first 50 observations.  
 
Keep observations: use keep if exp, where exp is a Stata expression. For example, keep if 

wage <= 5.50 will drop all observations for which wage is greater than 5.50.  
 
In passing we note that there are many other data utilities, such as for renaming variables. See the 
pull-down list 
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1.14.4 Using arithmetic operators 

The Arithemetic operators are: 
 

+ addition 
- subtraction (or create negative of value, or negation) 
* multiplication 
/ division 
^ raise to a power 

 
To illustrate these operators consider the following generate statements: 
 

generate wage1 = wage+1 (addition) 
generate negwage = -wage (negative or negation) 
generate blackeduc = black*educ (multiplication) 
generate blackeduc_south = black*educ*south (multiplication) 
generate blackeduc_west = blackeduc*west (multiplication with created variable) 
generate wage_yr = wage/educ (division) 
generate blackeduc_midwest = (black*educ)*midwest (multiplication) 

 
The last line shows the use of parentheses. Like regular algebra parentheses control the order of 
operations, with expressions in parentheses being performed first. 

Several of these constructions were for demonstration purposes only. We’ll drop them using  
 

drop blackeduc_west blackeduc_midwest wage1 negwage wage_yr 

 
Stata shortcut: With a list of variables to type it is easier to type the command 
name, here drop, and then click on the names of the variables in the Variables 
window. When selected they appear in the Command window. Another way to 
quickly enter a variable name is to take advantage of Stata’s variable name 
completion feature. Simply type the first few letters of the variable name in the 
Command window and press the Tab key. Stata will automatically type the rest 
of the variable name for you. If more than one variable name matches the letters 
you have typed, Stata will complete as much as it can and beep at you to let you 
know that you have typed a non-unique variable abbreviation. See Chapter 10 in 
Getting Started with Stata for other such shortcuts. 

1.14.5 Using Stata math functions 

Stata has a long list of mathematical and statistical functions that are easy to use. Type help 
functions in the Command window. We will be using math functions and density functions 
extensively. 
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Click on math functions. Scrolling down the list you will see many functions that are new to 
you. A few examples of the ones we will be using are: 
 

generate lwage = ln(wage) (natural logarithm) 
generate elwage = exp(lwage) (exponential function is antilog of natural log) 
generate rootexper = sqrt(exper) (square root) 

 
Note that the exponential function is xe . Use the Stata browser to compare the values of wage 
and elwage. These are identical because the exponential function is the antilog of the natural 
logarithm. The variable lwage is the logarithm of wage, and elwage is the antilog of lwage. The 
function ln(wage) is the natural logarithm and so is log(wage). In Principles of Econometrics 
the notation ln(x) is used to denote the natural logarithm. 

1.15 USING STATA DENSITY FUNCTIONS 

Enter help functions in the Command window. Click on density functions. There are many 
probability distributions available in Stata, such as the binomial, chi-square, F, normal and t. 
Stata provides several classes of functions for describing each probability distribution. We will 
discuss cumulative distribution functions, or cdfs, and a type of inverse function that permits 
calculation of distribution critical values. This section is for completeness and is meant to serve as 
a reference for when the distributions are encountered.  

1.15.1 Cumulative distribution functions 

If X is a random variable, and x is some particular value, we might like to compute the probability 
that X is less than or equal to x. If F(x) denotes the cumulative distribution function of X, then the 
desired probability is  
 

� �( )P X x F x� �  
 
The cdfs for key distributions are: 
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normal(z) returns the cumulative standard normal distribution for a given z. If X has a normal 
distribution with mean � and variance 2�  then Z = (X � �)/� is a standardized normal 
random variable, with mean 0 and variance 1. All normal probabilities are calculated in 
terms of the standard normal distribution. That is, 

 
� �� �( ) / ( ) ( )P X x P Z x F z z� � � �	 � � � 
  

 
where �(z) is the common symbol used for the standard normal cdf, rather than F. To use 
the function we must calculate z = (x � �)/�.  

 
For the chi-squared distribution we have two functions. One computes the usual cdf value and the 
other computes its complement. If the cdf value gives ( )P X x�  then complement function gives 
1 ( )P X x� �  
 
chi2(n,x) for a given value x > 0, returns the cumulative chi-squared distribution with n degrees 

of freedom. 
 
chi2tail(n,x) for a given value x > 0 returns the reverse cumulative (upper-tail) chi-squared 

distribution with n degrees of freedom. chi2tail(n,x) = 1 - chi2(n,x) 
 
For the F distribution we have two functions. One computes the usual cdf value and the other 
computes its complement. Recall that Stata is case sensitive, and the use of upper case F below is 
required. 
 
F(n1,n2,f) for a value f > 0 returns the cumulative F distribution with n1 numerator and n2 

denominator degrees of freedom. 
 
Ftail(n1,n2,f) for a value f > 0 returns the reverse cumulative (upper-tail) F distribution with 

n1 numerator and n2 denominator degrees of freedom. Ftail(n1,n2,f) = 1 - 

F(n1,n2,f) 
 
For the t distribution we have only the “tail” probability function.  
 
ttail(n,t) for a given t value, returns the reverse cumulative (upper-tail) Student's t distribution 

with n degrees of freedom; it returns the probability T > t 

1.15.2 Inverse cumulative distribution functions 

Cumulative Distribution Functions tell us the probability that a random variable X takes a value 
“less than or equal to” a specific value x. The opposite question is “What is the value of x such 
that p probability is to its left?” In this case we are given the probability p = P(X � x) and we wish 
to determine the value of x. These are actually percentiles of the distribution. Stata also provides 
the “tail probability” version that gives the value x such that the probability p = P(X > x). The 
statistical Tables 2-5 in Principles of Econometrics report selected percentile values p, which can 
be computed using these functions. 
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invnormal(p) for a given 0 < p < 1 returns the inverse cumulative standard normal distribution: 
if normal(z) = p, then invnormal(p) = z.  

 
invchi2(n,p) for a given 0 < p < 1 and degrees of freedom n, returns the inverse of chi2():  if 

chi2(n,x) = p, then invchi2(n,p) = x. 
 
invchi2tail(n,p) for a given 0 < p < 1 and degrees of freedom n, returns the inverse of 

chi2tail(): if chi2tail(n,x) = p, then invchi2tail(n,p) = x. 
 
invF(n1,n2,p) for a given 0 < p < 1, numerator degrees of freedom n1, and denominator degrees 

of freedom n2, returns the inverse cumulative F distribution: if F(n1,n2,f) = p, then 
invF(n1,n2,p) = f. 

 
invFtail(n1,n2,p) for a given 0 < p < 1, numerator degrees of freedom n1, and denominator 

degrees of freedom n2, returns the inverse reverse cumulative (upper-tail,) F distribution: 
if Ftail(n1,n2,f) = p, then invFtail(n1,n2,p) = f. 

 
invttail(n,p) for a given 0 < p < 1 and degrees of freedom n, returns the inverse reverse 

cumulative (upper-tail) Student's t distribution: if ttail(n,t) = p, then invttail(n,p) 
= t. 

1.16 USING AND DISPLAYING SCALARS 

When computing a probability or a percentile value we usually want a single value, rather than 
1000 values. Stata allows these single values or scalars [help scalar] to be computed and 
displayed [help display].  

1.16.1 Example of standard normal cdf 

To illustrate, lets compute the probability that a standard normal random variable Z takes a values 
less than or equal to 1.27. This is computed using the cdf normal. Enter the following commands 
into the Command window. 
 
scalar phi = normal(1.27) computes a scalar variable that is the desired probability. 
 
display phi reports the value of the computed probability on the next line. 
 .89795768 

 
display "Prob (Z <= 1.27) = " phi illustrates inserting text into display. 
 Prob (Z <= 1.27) = .89795768 

 
di "Prob (Z <= 1.27) = " phi shows that display can be abbreviated di. 
 Prob (Z <= 1.27) = .89795768 

 
We do not have to first create phi at all. We can simply display the value by including the 
function to be evaluated in the display statement. 
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di "Prob (Z <= 1.27) = " normal(1.27) 

 Prob (Z <= 1.27) = .89795768 

1.16.2 Example of t-distribution tail-cdf 

Compute the probability that a t-random variable with n = 20 degrees of freedom takes a value 
greater than 1.27. 
 

scalar p = ttail(20,1.27) 

 
di "Prob (t(20) > 1.27) = " p 

 Prob (t(20) > 1.27) = .1093311 

 
or  
 

di "Prob (t(20) > 1.27) = " ttail(20,1.27) 

 Prob (t(20) > 1.27) = .1093311 

1.16.3 Example computing percentile of the standard normal 

Compute the value of the standard normal distribution z such that p = 0.90 of the probability falls 
to its left, so that P(Z < z) = 0.90. In this case z is the 90th percentile of the standard normal 
distribution. 
 

scalar z = invnormal(.90) 

di "90th percentile value of standard normal is " z 

 90th percentile value of standard normal is 1.2815516 

1.16.4 Example computing percentile of the t-distribution 

Compute the value t of the t-distribution with n = 20 degrees of freedom such that p = 0.90 of the 
probability falls to its left, so that P(t(20) < t) = 0.90. In this case t is the 90th percentile of the t 
distribution with 20 degrees of freedom. This problem is complicated by the fact that Stata 
provides only the “tail” function for the t-distribution, so the 90th percentile value is found by 
locating the point such that p = 0.10 of the probability lies in the upper-tail of the distribution, 
that is P(t(20) > t) = 0.10. 
 

scalar t = invttail(20,.10) 

di "90th percentile value of t(20) distribution is " t 

 90th percentile value of t(20) distribution is 1.3253407 

 
You will note that the 90th percentile of the t(20) distribution is larger than the 90th percentile of 
the standard normal distribution. This is as it should be, as the t-distribution is “wider” than the 
standard normal. As noted earlier the invttail function can go into the display statement 
 

di "90th percentile value of t(20) distribution is " invttail(20,.10) 
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 90th percentile value of t(20) distribution is 1.3253407 

1.17 A SCALAR DIALOG BOX 

We will be using scalar functions frequently, yet there is no pull-down menu access to them. 
However there is a trick that can be used. Enter  
 

help scalar 

 
The help Viewer opens. Click on define. 
 

 
 
Alternatively enter db scalardefine in the Command window. A dialog box opens in which 
you can enter the scalar name and a function expression. For example let us find a percentile from 
the t-distribution with 20 degrees of freedom. For the 95th percentile we will find the value, say 
t95, of t such that P(t(20) > t) = 0.05 using invttail(20,.05). In the dialog box we would enter 
the following, and click OK. 
 

 
 
However the important advantage of this dialog box is if you forget the name of the function you 
seek. Click on Create in the scalar define dialog box, which opens an Expression builder 
dialog box. 



44   Chapter 1 

 
 
Choose a category of functions, scroll down the function list, using the definition appearing at the 
bottom of the dialog box. Now double-click on invttail(). The function then goes to the 
Expression builder window 
 

 
 
Fill in the values for n and p that you desire, here n = 20 (degrees of freedom) and p = 0.05 (upper 
tail probability), then click OK. 

 

 
 
In the scalar define dialog box invttail(20,.05) appears, leaving you only the task of naming 
the scalar and clicking OK. In the Command window appears the implied command 
 

scalar define t95 = invttail(20,0.05) 

 
Here define is optional and can be omitted if desired. The results can be displayed using 
 

di "95th percentile of t(20) is " t95 

 95th percentile of t(20) is 1.7247182 

 
While the process of using Create and the Expression builder looks tedious, it is sometimes 
quicker than looking up the required function using the Help menu, unless of course you 
remember the name of the function, which we often do not. 

Close the log file. You may wish to translate it into a text file. 
 

log close 
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If you use the smcl format of log file (log using chap01, replace) at this point you may wish 
to translate it to a text file 

 
translate chap01.smcl chap01.txt 

1.18 USING FACTOR VARIABLES 

In Stata Version 11 a new feature has been added for use with categorical variables and discrete, 
binary or indicator variables. A categorical variable is one that identifies a group. Individuals 
might be categorized into groups according to where they live (North, South, Midwest, etc.) or 
their profession (White collar, Blue collar, etc.) or race/ethnicity (White, Black, Asian, Native 
American, etc.). Variables such as a woman’s number of children, or a household’s number of 
computers, is a count variable (a nonnegative integer) which can also be thought of as 
categorizing individuals. A special case of a categorical variable is an indicator variable, which 
has only two categories: male or female, for example. Another name for indicator variable is a 
dummy variable. The term “dummy” is meant to convey the idea that we are using a numerical 
value, such as 0 or 1, to represent a qualitative characteristic such as gender. 

Stata treats categorical variables as factor variables. They are designated in operations with 
an “i.” prefix, such as i.female or i.black. To designate a variable as continuous use the 
prefix “c.”, as in c.wage. Variables such as years of education or experience can be treated as 
either. This designation can be used in statistical analyses by using these prefixes. See help 
factor variables. For example, 

 
summarize i.female 

 

 
 

The results are shown for the females (if female = 1) in the sample. The base category in this 
case is males (if female = 0), which is not shown. To show the base level use 

 
summarize i.female, allbaselevels 

 
 

To define female = 1 (males) to be the base group use 
 

summarize ib1.female 

    1.female        1000        .514    .5000541          0          1

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize i.female

          1         1000        .514    .5000541          0          1
          0         1000   (base)
      female  

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize i.female, allbaselevels
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To show summary statistics for all levels (no base group is omitted) use 
 

summarize ibn.female 

 

 
 
Factor variables and continuous variables can be interacted with each using the operator “#”  

 
summarize c.wage#i.female i.female#i.married 

 

 
 

The interaction of the continuous variable wage and the indicator variable female reveals that the 
average wage of males is $10.76 and the average value of females is $9.85. The interaction of the 
two indicator variables female and married shows that in this sample of 1000 29.6% of males 
are married, 22.9% of females are not married, and 28.5% of females are married. The remaining 
category, unmarried males, makes up the remainder. 

A “fully interacted” set of variables can be created using the operator “##”. The notation A##B 
is interpreted by Stata as A and B and A#B. For example, and showing all groups, 

 
summarize ibn.female##(c.wage ibn.married) 

    0.female        1000        .486    .5000541          0          1

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize ib1.female 

          1         1000        .514    .5000541          0          1
          0         1000        .486    .5000541          0          1
      female  

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize ibn.female

        1 1         1000        .285    .4516403          0          1

        1 0         1000        .229    .4203995          0          1
        0 1         1000        .296    .4567194          0          1
     married  
      female# 
              
          1         1000     9.85443    13.25106          0      76.39
          0         1000    10.76123    14.19308          0      72.13
      c.wage  
      female# 

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize c.wage#i.female i.female#i.married
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1.18.1 Creating indicator variables using a logical operator 

To create an indicator variable we use the generate command with a condition to be satisfied. If 
the condition is true, then the variable is assigned the value 1 and if it is not true the variable is 
assigned the value 0. For example, if we wish to create an indicator variable for a person who has 
an education level of between 9 and 12 years, use 

 
generate hs = (9 <= educ)&(educ <=12) 

 
The cps4_small data does not include any missing values. If the dataset contains missing values 
you may wish to make sure that they are propagated properly by adding the if qualifier shown 
below 

 
generate hs = (9 <= educ)&(educ <=12) if !missing(educ) 

 
If the variable educ takes a value greater than or equal to 9, or less than or equal to 12, then the 
variable hs is assigned the value 1, and otherwise hs = 0.  

The “&” represents an operator. It is the logical equivalent of “and.” For other operators, and 
the order of precedence, enter help operators. 

 

        1 1         1000        .285    .4516403          0          1

        1 0         1000        .229    .4203995          0          1
        0 1         1000        .296    .4567194          0          1
        0 0         1000         .19    .3924972          0          1
     married  
      female# 
              
          1         1000     9.85443    13.25106          0      76.39
          0         1000    10.76123    14.19308          0      72.13
      c.wage  
      female# 
              

          1         1000        .581    .4936423          0          1
          0         1000        .419    .4936423          0          1
     married  
              
        wage        1000    20.61566    12.83472       1.97      76.39
              
          1         1000        .514    .5000541          0          1
          0         1000        .486    .5000541          0          1
      female  

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize ibn.female##(c.wage ibn.married)
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1.18.2 Creating indicator variables using tabulate 

To create a separate indicator variable for each level of a categorical variable, the tabulate 
command is convenient. For example, suppose we wanted a separate 0-1 variable for each 
possible year of education.  

 
tabulate educ, gen(ed) 

This command counts the number of observations in each education level 
 

 
 

The option gen(ed) generates a series of 13 indicator variables, ed1-ed13, for each possible 
value of the variable educ. We see the listing of these variables in the Variables window. 

 

      Total        1,000      100.00

         21           26        2.60      100.00
         18           88        8.80       97.40
         16          217       21.70       88.60
         14          109       10.90       66.90
         13          171       17.10       56.00
         12          328       32.80       38.90
         11           16        1.60        6.10
         10           11        1.10        4.50
          9            8        0.80        3.40
          8           11        1.10        2.60
          6            8        0.80        1.50
          3            6        0.60        0.70
          0            1        0.10        0.10

  education        Freq.     Percent        Cum.
   years of  

. tabulate educ, gen(ed)
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KEY TERMS1

arithmetic operators factor variables scalar dialog box 
categorical variable generate scatter diagram 
cd help search 
cdf help command search command 
clear histogram smcl format 
command syntax if  standard normal distribution 
command window in summarize 
cumulative distribution function indicator variable summarize variable
current path inverse cdf summarize, detail 
data browser keep syntax 
data utilities keywork search text format 
definition files label translate 
density functions log close two-way graph 
describe log file use
dialog box, db log using use "data file", clear 
display logical operators variable manager 
do selected math functions variables window 
do-file operators varmanage 
do-file editor options working directory 
drop results window  
exit review window  
expression builder scalar  

 
1 Stata terms in bold font 
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CHAPTER 1 DO-FILE [CHAP01.DO] 

The following code includes most of the commands used in the chapter. 
 

* file chap01.do for Using Stata for Principles of Econometrics, 4e 

cd c:\data\poe4stata 

* Stata do-file  

* copyright C 2011 by Lee C. Adkins and R. Carter Hill  

* used for "Using Stata for Principles of Econometrics, 4e"  
* by Lee C. Adkins and R. Carter Hill (2011) 

* John Wiley and Sons, Inc. 

* setup 

version 11.1 

capture log close // this is a comment too  
set more off 

* open log file 
log using chap01, replace text 

* open data 
use cps4_small, clear 

describe 

* assign or modify label 

label variable wage "earnings per hour" 

*-------------------------------------------------------------- 

* this is a comment 

*
/* this type of comment "/*  */" can contain other comments  */ 

*

* these commands presume you have changed to the working  
* directory. To change to a working directory enter 

*    

* cd c:\data\poe4 
*

* use the clear option if previous work in memory can be erased 

*-------------------------------------------------------------- 

/* 

 With few exceptions, the basic language syntax is 

        [prefix :] command [varlist] [=exp] [if] [in] [weight] 

                           [using filename] [, options] 

    see                language element      description 
    ------------------------------------------------------------------------- 

    help prefix        prefix :              prefix command 

    help command       command               Stata command 
    help varlist       varlist               variable list 

    help exp           =exp                  expression 

    help if            if                    if exp qualifier 
    help in            in                    in range qualifier 

    help weight        weight                weight 

    help using         using filename        using filename modifier 
    help options       options               options 

    ------------------------------------------------------------------------- 

*/ 
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* summarize and variations 

summarize  
summarize wage, detail 

summarize if exper >= 10 

summarize in 1/50 
summarize wage in 1/50, detail 

summarize wage if female == 1 in 1/500, detail 

*-------------------------------------------------------------- 

* path to dialog box via pull-down menu 

*
* Statistics > Summaries, tables, and tests > Summary and descriptive 

*        statistics > Summary statistics 

*
* or enter: db summarize 

*

* or enter: help summarize 
*-------------------------------------------------------------- 

* illustrating help commands 
help viewer 

search mixed model 

findit mixed model 

* histogram menu: Graphics > Histogram 

help histogram 
db histogram 

histogram wage, percent title(Histogram of wage data) 

more 

*------------------------------------------------------ 

* the above command -more- causes execution of 
* the Do-file to pause so that the histogram can 

* be inspected before the next command is carried out 

* Press the space bar to continue 
*------------------------------------------------------ 

* saving graphs 
graph save Graph "C:\data\poe4stata\histogram of wages.gph", replace 

* alternative saving option 
graph save chap01hist, replace 

* one-part construction 
histogram wage, percent title(Histogram of wage data) 

 saving(chap01hist,replace) 

more 

* enhanced figure with long lines indicator "///" 

histogram wage, percent ytitle(Percent) xtitle(wage) title(Histogram of wage data) /// 
 saving(chap01hist, replace) 

* scatter diagram 

twoway (scatter wage educ), saving(wage_educ, replace) 

more 

* creating new variables 

generate lwage = ln(wage) 
label variable lwage "ln(wage)" 

generate exper2 = exper^2 

label variable exper2 "experience squared" 
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*------------------------------------------------------- 

* Note: to drop variables use command: drop lwage exper2 
*------------------------------------------------------- 

* Computing normal probabilities 
help functions 

help normal 

scalar phi = normal(1.27) 
di phi 

display phi 

display "Prob (Z <= 1.27) = " phi 
di "Prob (Z <= 1.27) = " phi 

di "Prob (Z <= 1.27) = " normal(1.27) 

* Computing percentile values 

scalar z = invnormal(.90) 

di "90th percentile value of standard normal is " z 

* factor variables 

help factor variables 
summarize i.female 

summarize i.female, allbaselevels    // identify base level 

summarize ib1.female    // change base level, omitted group, to female=1 
summarize ibn.female // show summarize statistics for all levels (no omitted group) 

* interacting factor variables 
summarize c.wage#i.female i.female#i.married 

* fully interacted or full factorial 
summarize ibn.female##(c.wage ibn.married) 

* create indicator variables 
generate hs = (9 <= educ)&(educ <=12) 

label variable hs "=1 if 9<=educ<=12" 

tabulate educ, gen(ed) 

log close 
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CHAPTER 2

The Simple Linear Regression 
Model 

CHAPTER OUTLINE 
2.1 The food expenditure data 
     2.1.1 Starting a new problem 
     2.1.2 Starting a log file 
     2.1.3 Opening a Stata data file 
     2.1.4 Browsing and listing the data 
2.2 Computing summary statistics 
2.3 Creating a scatter diagram 
     2.3.1 Enhancing the plot 
2.4 Regression 
     2.4.1 Fitted values and residuals 
     2.4.2 Computing an elasticity 
     2.4.3 Plotting the fitted regression line 
     2.4.4 Estimating the variance of the error term 
     2.4.5 Viewing estimated variances and 
              covariance  

2.5 Using Stata to obtain predicted values  
     2.5.1 Saving the Stata data file  
2.6 Estimating nonlinear relationships  
     2.6.1 A quadratic model  
     2.6.2 A log-linear model  
2.7 Regression with indicator variables
Appendix 2A Average marginal effects  
     2A.1 Elasticity in a linear relationship  
     2A.2 Elasticity in a quadratic relationship  
     2A.3 Slope in a log-linear model  
Appendix 2B A simulation experiment  
Key Terms  
Chapter 2 Do-file 

2.1 THE FOOD EXPENDITURE DATA 

An example that recurs in the first few chapters of Principles of Econometrics, 4th edition 
(abbreviated as POE4) is an economic model of the relationship between weekly household food 
expenditure and weekly household income. First, start Stata and change the working directory. 
How this is done depends on your computer hardware and operating system. 

In this Windows-based book we use the working directory c:\data\poe4stata, and to change 
the working directory type  
 

cd c:\data\poe4stata 
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on the command line and press Enter. Or follow the path File > Change Working Directory on 
the Stata pull-down menu. 

2.1.1 Starting a new problem 

If you are beginning a new problem you must start by closing any log file that is open and 
clearing any data from memory. To Begin or Close a Stata log file click on the toolbar icon.  

 

 
 
If you have a log file open, a dialog box will appear giving you some options. Before beginning a 
new log file you must close the old one.  Or, in the Command window enter 
 

log close 

 
To clear Stata’s memory enter  
 

clear 

2.1.2 Starting a log file 

To Begin or Close a Stata log file click on the toolbar icon, or enter the command  
 

log using chap02, replace text 

 
This will open the log file in a text format in the current directory. The option replace will cause 
any previous version of chap02.log to be written over, and erased. 

 
Remark: Users should open a log file for each chapter, or part of a chapter. We 
will remind you to Begin and Close log files in the early chapters, but will not 
thereafter. Make it a habit to use log files. 

2.1.3 Opening a Stata data file 

The data for the food expenditure example is in the Stata data file food.dta and the definition file 
is food.def. To open the Stata data file click on Open (use) on the toolbar 

 

 
 
Locate food.dta, select it, and click Open. In the Command window, to open the data file in the 
current directory, enter 
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use food 

 
If you wish to clear Stata’s memory at the same time the new data file is opened, enter 
 

use food, clear 

 
The clear option clears any previously opened data set from memory. However, it is safer to carry 
out data file “housekeeping” prior to opening a new data file. 

To load the data from the Stata internet site, enter 
 

use http://www.stata.com/texts/s4poe4/food 

 
In the Variables window two variables are listed, food_exp and income, along with their labels. 
Other information about the variable Type and Format may also appear. We have chosen to cover 
up those columns. 

 

 

2.1.4 Browsing and listing the data 

At the start of each new problem, it is prudent to examine the data. Enter into the command line 
 

describe 

 
For more on these options enter help describe in the Command window. None are required for 
a simple summary, so click OK. 

 

 
 
The output is general information about the data file food.dta.  

One good motto for studying econometrics is the X-files mantra “Trust No One!” So we will 
check our data. Use the Data Browser. 

 

income          double %10.0g                 weekly household income
food_exp        double %10.0g                 household food expenditure per week

variable name   type   format      label      variable label
              storage  display     value

 size:           800 (99.9% of memory free)
 vars:             2                          
  obs:            40                          
Contains data from food.dta

. describe
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The spreadsheet view opens that allows you to see the data values 
 

 
 
Close the Data Browser by clicking the “x”  

If you wish to “print” or list some of the data lines, on the pull-down menu click Data > 
Describe data > List data 
 

 
 
In the dialog box that opens simply click OK to list all the data to the Results window. The Stata 
command is list. The syntax of the list command is 
 

list [varlist] [if] [in] [, options] 

 
To list the values of specific variables, enter the variable names. The range of values to be listed 
can be modified using the logical “if” or “in” to denote specific lines. For example 
 

list in 1/5 

list food_exp in 1/5 

list food_exp if income <= 10 

 
The Results window shows 
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If the Results window fills, you may find �more� at the bottom. This indicates a pause. Either 
click �more� or press the space bar. The Stata command set more off will turn off the pause 
feature. 

2.2 COMPUTING SUMMARY STATISTICS 

Now, check to determine if the data have the same summary statistic values as reported in the 
definition file. Using the pull-down menu, click on  
 

Statistics > Summaries, tables, and tests > Summary and descriptive 
 statistics > Summary statistics 

 
In the resulting dialog box simply click OK for summary statistics on all the variables in the data 
set. You can also enter into the command line db summarize or db su to open the dialog box. 
The Command window equivalent is to enter 
 

summarize 

 
The syntax of the summarize command is 
 

summarize [varlist] [if] [in] [weight] [, options] 

      
  5.     187.05    12.47  
  4.     114.96     6.03  
  3.     119.34     4.75  
  2.     135.98     4.39  
  1.     115.22     3.69  
      
       food_exp   income  
      

. list in 1/5

      
  5.     187.05  
  4.     114.96  
  3.     119.34  
  2.     135.98  
  1.     115.22  
      
       food_exp  
      

. list food_exp in 1/5

      
  4.     114.96  
  3.     119.34  
  2.     135.98  
  1.     115.22  
      
       food_exp  
      

. list  food_exp if income <= 10
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A key option allows us to obtain more detailed summary statistics. The Stata command is 
 

summarize food_exp, detail 

 

 
 
In the Results window the Percentiles of the data are shown, as are the Smallest and Largest 
observations, the number of observations (Obs) and Sum of Wgt that you can ignore. Stata will 
report many things you do not understand. The trick is to be able to identify what you do know. 
For example, the results include 
 

Mean           283.5735 

Std. Dev.      112.6752 

Variance        12695.7 

 
These are summary statistics for the variable food_exp. 
 

� Mean is the sample mean, /iy y N� �  
� Std. Dev. is the sample standard deviation, which is the square root of the Variance 
� Variance is the sample variance, � � � �2var 1iy y y N� � �� . 

 
The values of Skewness and Kurtosis will be discussed later. 

2.3 CREATING A SCATTER DIAGRAM 

In the simple regression model it is important to plot the data values in a Scatter Diagram. On 
the Stata pull-down menu choose Graphics > Twoway graph (scatter, line, etc.). For the details 
enter help twoway. 

99%       587.66         587.66       Kurtosis       2.851522
95%      471.455         482.55       Skewness       .4920827
90%      443.025         460.36       Variance        12695.7
75%       367.46         447.76
                        Largest       Std. Dev.      112.6752
50%       264.48                      Mean           283.5735

25%      199.245         119.34       Sum of Wgt.          40
10%       127.66         115.22       Obs                  40
 5%       115.09         114.96
 1%       109.71         109.71
      Percentiles      Smallest

             household food expenditure per week

. summarize food_exp, detail

. * summarize food expenditure with detail

.

      income          40    19.60475    6.847773       3.69       33.4
    food_exp          40    283.5735    112.6752     109.71     587.66

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize
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In the dialog box click Create 
 

 
 
In the resulting dialog box choose Basic plots, Scatter then choose the Y variable (vertical axis) 
and the X variable (horizontal axis) using the pull-down arrows.  
 

 
 
If you click Submit the scatter diagram will be created.  The Stata command is 
 

twoway (scatter food_exp income) 

 
If you select Accept Plot 1 will appear in the Plot definitions window and the graph will be 
created when you click OK.  

To save the graph to disk to the default directory with the Stata graph extension *.gph use 
 

graph save food1, replace 

 
Graphing and saving to disk can be accomplished in one-step using the saving option 

 
twoway (scatter food_exp income), saving(food1, replace) 
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Instead of saving to disk, you can save to memory using the name option. This may be handy if 
you are in a lab environment  

 
twoway (scatter food_exp income), name(food1, replace) 

2.3.1 Enhancing the plot

To enhance the plot, in the Plot 1 dialog box, click Accept. In the Graphics dialog box this 
creates a Plot definition, or profile, called Plot 1.  
 

 
 
Click the tab Y axis. In the resulting dialog box select 
 

 
 
There are several options, but let us specify the range of the vertical axis. 
 

 
 
Click the Range/Delta option. From the data summary statistics we know the minimum and 
maximum values of food_exp. So that we can view the entire range of data select Minimum 
value 0 and Maximum value 600. Delta is the units of measure for the axis—the space between 
tick marks. Set this value to 100. Click Accept.  

Repeat this process for the X axis, using as Maximum value 35 and a Delta of 5. Click 
Accept 
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To add a title click the Titles tab in the Twoway Graph Dialog Box. 
 

 
 
Click OK to create the graph and close the window. This produces a nice plot with Y-axis and X-
axis labeled with the Variable labels in the data set. 

 

 
 
The Stata command used to create this figure is 
 

twoway (scatter food_exp income), ///  /* basic plot control          */ 

 ylabel(0(100)600)          ///  /* Y axis 0-600 & ticks at 100 */ 

 xlabel(0(5)35)             ///  /* X axis 0-35 & ticks each 5  */ 

 title(Food Expenditure Data)    /* graph title                 */ 

 
In this command the “///” continues the command onto the next line. This is useful when 
commands are long, or when comments are inserted after specific parts of a command as we have 
done here. The comment form “/* …. */” is useful because it can be inserted anywhere and the 
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content is ignored by Stata. For discussion of alternative comment commands enter help 
comments. 

 
twoway (scatter food_exp income), is the same command used to produce the simple scatter. 

The comma is important, and indicates options that will be applied.  
 
ylabel(0(100)600) specifies the range of the Y axis, 0 to 600, and space between the major 

ticks, 100. 
 
xlabel(0(5)35) specifies the range, 0 to 35, and increment for the X axis, 5. 
 
title(Food Expenditure Data) specifies the primary title. 

 
Once again you can add the saving option to the twoway command, or use the option name to 
save to memory, or use a graph save command. We use graph save commands in the do-file for 
this chapter. 

2.4 REGRESSION 

The simple linear regression model is 
 

1 2y x e�� �   
 
Given data on the dependent variable, y (food_exp), and the independent variable, x (income), we 
can use Stata to estimate the unknown parameters. Regression analysis uses the pull-down menu 
from 
 

Statistics > Linear models and related > Linear regression 
 

 
 
In the Regress - Linear regression dialog box select the dependent variable to be food_exp. This 
is the left-hand side variable in the regression model. Select (or enter) income as the independent 
(right-hand side) variable. Stata will automatically include an intercept term in the estimation. 
Click OK. 
 

 
 

Alternatively the command line syntax is 
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regress depvar [indepvars] [if] [in] [weight] [, options] 

 
See help regress. This shows that the dependent variable depvar is listed first and then the 
independent variable or variables (for a multiple regression), indepvars. You can use if or in to 
limit the sample, assign weights to the observations or use options, if desired. We discuss these 
options more in future chapters. 

For the food expenditure the simple regression command is 
 

regress food_exp income 

 
which can be shortened to 

 
reg food_exp income 

 
In the Results window the Stata command for the regression is given, and a display of regression 
results. We will explore all of these items, but for now focus on the first two columns labeled 
food_exp and Coef.  

The first column gives the variable names. Remember that computer software will not know 
that you call the estimates “b1” and “b2” and will instead list these with variable names. Stata 
lists the slope coefficient first, income. The y-intercept is labeled _cons, short for “constant” or 
“constant term,” which is another common name for the y-intercept. 
 

 

2.4.1 Fitted values and residuals 

The fitted, or predicted, values ŷ  are obtained using what are called “postestimation” 
commands. They are called “postestimation” options because they follow the estimation of the 
regression model. After help regress the link to the postestimation options is in the upper right-
hand corner. 
 

       _cons       83.416   43.41016     1.92   0.062    -4.463279    171.2953
      income     10.20964   2.093264     4.88   0.000     5.972052    14.44723

    food_exp        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total     495132.16    39  12695.6964           Root MSE      =  89.517
           Adj R-squared =  0.3688

    Residual    304505.176    38   8013.2941           R-squared     =  0.3850
       Model    190626.984     1  190626.984           Prob > F      =  0.0000

           F(  1,    38) =   23.79
      Source         SS       df       MS              Number of obs =      40

. regress food_exp income
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The path on the Stata menu bar is 
 

Statistics > Postestimation > Predictions, residuals, etc. 
 
Click Statistics then 

 

 
 

In the resulting dialog box there are several alternatives. To obtain the fitted values, click on 
Linear prediction and enter a name for the fitted values, say yhat. Click OK. 

 

 
 
To obtain the least squares residuals,  
 

1 2ˆ ˆi i i i ie y y y b b x� � � � �  
 
open the dialog box again, click on Residuals and enter a name for the residuals, say ehat. Click 
OK. 
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These commands have created two new variables, yhat and ehat, which appear in the Variables 
window.  

 

 
 
Examine these values by selecting the Data Browser, or use the command 
 

Browse 

 
 
The Stata commands that compute the fitted values and least squares residuals are obtained using 
the fundamental postestimation command predict. Close the browser and in the Command 
window type  
 

help predict 

 
The basic syntax for predict is  
 

predict [type] newvar [if] [in] [, single_options] 

 
What is required is the name of the variable, newvar, and an option. To obtain fitted values use 
the option xb which is short for “x times b”. 
 

predict yhat, xb  

 
Obtaining predictions are actually the default for this command, so we could have used 
 

predict yhat  

 
To obtain residuals use the option residuals. For the food expenditure model these are 
 

predict ehat, residuals 
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The option residuals can be shortened to the minimum of r, or a bit longer like res or resid. 

2.4.2 Computing an elasticity 

Given the parameter estimates, and the summary statistics for the variables, we can easily 
compute other quantities, like the elasticity of food expenditure with respect to income, evaluated 
at the means 
 

2
19.60ˆ 10.21 0.71
283.57

xb
y

� � � � � �  

 
One of Stata’s post-estimation commands allows computing this elasticity automatically. Select 
Statistics > Postestimation > Marginal effects. 
 

   
 
In the resulting dialog box select the radio button for Elasticities and the Variable. In our simple 
regression model there is only one variable to select, income. To evaluate the elasticity at the 
sample means select the At tab, and click the radio button for All covariates at their means in 
the sample. 
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In the Results window we find the Conditional marginal effects 

 

 
 

The Margins dialog box is very powerful and will do calculations you may not understand at the 
moment. We present it to make a couple of points. In Economic analysis the change in one 
variable resulting from the change in another, holding all else constant, is called a marginal
effect. In the linear regression model this is the interpretation of the slope parameter and in the 
simple linear regression model is the derivative dy/dx. Stata will compute this value in more 
complex models and we will return to this feature later. 

For the linear (straight-line) regression model the elasticity is 
 

percentage change in /
percentage change in /

y y y y x
x x x x y

� �
� � � � �

� �
 

 
Replace the � by the “d” to put it in the form of a derivative. 
 

2
/
/

dy y dy x x
dx x dx y y

� � � � � �  

 
In calculus dln(y) = dy/y and dln(x) = dx/x, thus an economical way to write the elasticity for a 
straight line regression model is  
 

ln( ) /
ln( ) /

d y dy y
d x dx x

� � �  

 
The Stata post-estimation command for this elasticity following a regression is 
 

margins, eyex( income ) atmeans 

 

      income    .7058399   .1489436     4.74   0.000     .4139159    .9977639

      ey/ex   Std. Err.      z    P>|z|     [95% Conf. Interval]
            Delta-method

at           : income          =    19.60475 (mean)
ey/ex w.r.t. : income
Expression   : Linear prediction, predict()

Model VCE    : OLS
Conditional marginal effects                      Number of obs   =         40

. margins, eyex(income) atmeans
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Note only does Stata report the elasticity, but computes a standard error for this quantity and a 
confidence interval as well1. It shows the value of income at which this quantity is calculated, 
which is the sample mean. Most commonly the elasticity is calculated at the “point of the means” 
( , ) (19.60,283.57)x y �  because it is a representative point on the regression line. 

 
Remark: Computer software is dangerous to the learning process. You must not 
rely on pointing and clicking to obtain an answer without understanding what 
calculation is occurring, and how the quantity is interpreted. Neat computing 
tricks are not a substitute for really learning the material. 

 
Rather than computing the elasticity at one specific point we can alternatively find the elasticity 
at each value of y and x and then average this quantity across all observations. This is called an 
Average marginal effect, in this case average elasticity. That is, compute 

 

2
1

1 N
i

i i

xAME b
N y�

� � � �  

 
Stata will compute 

 

�
2 2

1 1 1 2

1 1
ˆ

N N
i i

i ii i

x xAME b b
N y N b b x� �

� �
� � � �� �

� �  

 
The Stata margins command for this quantity omits the previously used “atmeans” option  

 
margins, eyex( income ) 

 
The results are2 now Average marginal effects, rather than Conditional marginal effects as 
above. 

 

 
 
We can verify this calculation. After a regression Stata saves the estimated coefficients in its 
memory, though not indefinitely. Regression coefficients are designated _b[varname]. After the 
food expenditure regression, the estimated slope is stored as _b[income]. The elasticity 
calculation, evaluated for each observation in the sample, is then 

 
1 The calculation of the standard error is discussed in an appendix to this chapter. 
2 More details of this calculation are given in an appendix to this chapter. 

      income     .6796126   .1466535     4.63   0.000     .3921769    .9670482

                    ey/ex   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method

ey/ex w.r.t. : income
Expression   : Linear prediction, predict()

Model VCE    : OLS
Average marginal effects                          Number of obs   =         40

. margins, eyex( income )
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generate elas = _b[income]*income/yhat 

 
The average elasticity is  

 
summarize elas 

 
We have then in the Results window 

 

 
 

In these results the Std. Dev. reported is the sample standard deviation. The margins command 
produces something called a Delta-method Std. Err. These are not the same. The Delta method 
is introduced in Chapter 5 of POE4.  

2.4.3 Plotting the fitted regression line 

To plot the fitted regression line use the pull-down menu Graphics > Twoway graph (scatter, 
line, etc.). If you are continuing this session and have done the scatter plot in Section 2.3 then 
Plot 1, the scatter diagram, already exists. We will create a new plot for the linear prediction. 
Click Create. In the Plot 2 dialog box, choose Fit plots and Linear prediction with Y variable 
and X variable as food_exp and income. 

 

 
 
Click on Accept. Change the title by clicking on Titles, enter a new title. Return to Plots tab. 
Clicking Submit will create the graph and leave the window open. 
 

        elas          40    .6796126    .1168024   .3111216   .8034579

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize elas

. generate elas = _b[income]*income/yhat
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When several Plot definitions are present and active in memory, Stata will overlay one graph on 
top of another. The figure produced is 
 

 
 

Into the Command window we could have entered 
 

twoway (scatter food_exp income)  ///    /* basic plot control */ 

 (lfit food_exp income),  ///    /* add linear fit */ 

 ylabel(0(100)600)   ///    /* label Y axis */ 

 xlabel(0(5)35)   ///    /* label X axis */ 

 title(Fitted Regression Line)  /* graph title */ 

2.4.4 Estimating the variance of the error term 

Besides the regression coefficients another important parameter is the variance of the error term, 
 

2 2 2var( ) [ ( )] ( )i i i ie E e E e E e� � � � �  
 
This parameter is estimated as 
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2
2 ˆ

ˆ
2
ie

N
� �

�
�  

 
where 1 2ˆ ˆi i i i ie y y y b b x� � � � �  are the least squares residuals. The “2” in the denominator is the 
number of regression parameters, here 1�  and 2� . In the Stata regression output this quantity is 
given in the Analysis of Variance table. 

 

 
Focus on the row Residual. The column labeled SS contains Sums of Squares. The value 
304505.176 is the sum of squared least squares residuals 
 

2

1
ˆ

N

i
i

SSE e
�

� �  = SS Residual 

 
The column labeled df is the (residual) degrees of freedom, which in this case is N � 2 = 38. The 
model degrees of freedom is 1, which is the number of parameters other than the intercept, here 

2� . The column header MS stands for Mean Square. The mean of the squared residuals is the 
estimated error variance 
 

2
2 ˆ

ˆ
2
ie

N
� �

�
�  = MS Residual = 8013.2941 

 
The other components of the table will be explained later. 

2.4.5 Viewing estimated variances and covariance 

After a regression is estimated there are many regression related statistics calculated but not 
reported by Stata. The estimated variances and covariance of the least squares estimators for the 
food expenditure model are 
 

� ��
2

2
1 2ˆvar

( )
i

i

x
b

N x x
� �

� � � ��� �

�
�

 = 1884.4423 
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� ��
2

2 2

ˆ
var

( )i

b
x x
�

�
��

 = 4.3817522 

 

� �� 2
1 2 2ˆcov ,

( )i

xb b
x x

� ��
� � � ��� ��

 = �85.903157 

 
These can be viewed using the estat command. Enter on the command line 
 

help estat 

 
To obtain the estimated variances and covariance enter 
 

estat vce 

 
The result is a table with the estimated variances of the regression coefficients reported on the 
diagonal and the estimated covariance between the regression coefficients on the “off-diagonal.” 
Stata’s arrangement has the variance of 2b  being in the upper left corner. 
 

Stata covariance matrix = 
� �� � ��

� �� � ��
2 1 2

1 2 1

var cov ,

cov , var

b b b

b b b

� �
� �
� �� �

 

 

 
 
The square roots estimated variances are the standard errors of the estimated coefficients.  
 

� � � ��1 1se varb b�  = 43.41016 
 

� � � ��2 2se varb b�  = 2.093264 
 
These are automatically produced by Stata when a regression is performed and are labeled Std.
Err.  
 

 

       _cons   -85.903157   1884.4423 
      income    4.3817522             

        e(V)       income       _cons 

Covariance matrix of coefficients of regress model

. estat vce

       _cons       83.416   43.41016     1.92   0.062    -4.463279    171.2953
      income     10.20964   2.093264     4.88   0.000     5.972052    14.44723

    food_exp        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
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2.5 Using Stata to obtain predicted values 

The predicted value of weekly food expenditure for a household with $2000 income per week, 
based on the estimated food expenditure model is 
 

� �ˆ 83.42 10.21 83.42 10.21 20 287.61i iy x�  �  �  
 
We will trick Stata into doing the work for us by adding an incomplete observation to the data 
file. On the Stata toolbar click the Data Editor icon 

 

 
 
This will open a spreadsheet view, like the Data Browser, with the difference being that in the 
Data Editor view we can change the data file. Scroll down to the 40th and last observation, 
highlight the cell for income in row 41. Type the value 20 in the “formula bar” window and press 
Enter.  

 

 
 

 
 
The Data Editor will now show that income has the value 20 for observation 41, but the other 
values have a period “.” showing. In Stata a period means that a numeric data value is missing, 
which in this case is what we want. Close the Data Editor by clicking the x. The equivalent Stata 
commands are 

 
edit 
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set obs 41 

replace income = 20 in 41 

 
The command set is a utility that controls many system parameters, including the number of 
observations. The command replace is a Data utility, that can be found using the menu path 
Data > Create or change data > Change contents of variable. The syntax of replace is 

 
replace oldvar = exp [if] [in] [, nopromote] 

 
We have replaced the value of income in line 41 with the value 20. You can view more about 
these commands using help set and help replace. 

Obtain the predicted or fitted values, which we will now call yhat0 because the variable yhat 
already exists. We can omit the xb option as it is the default with predict. 
 

predict yhat0 

 
The predict command will compute predicted, or fitted, values for all values of income, including 
income = 20 in observation 41. List the data for income and yhat0 in observation 41.  
 

list income yhat0 in 41 

 
In the Results window we see 
 

 
 
The value of yhat0 is the predicted weekly food expenditure for a household with income $2000 
per week.  

2.5.1 Saving the Stata data file 

To save the Stata data file, since it has been changed by adding several variables, click File > 
Save as 

 

 
 
Save the data file under a new name such as chap02.dta. The Stata command is 
 

save chap02.dta 

 
As the final step you will Close the log file.  
 

log close 

      
 41.       20   287.6089  
      
       income      yhat0  
      

. list income yhat0 in 41
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2.6 ESTIMATING NONLINEAR RELATIONSHIPS 

The linear regression model can be used to estimate nonlinear, curvilinear, relationships. This is 
not a contradiction because linear regression refers to a model in which the parameters do not 
enter in a nonlinear fashion. The regression 1 2y x e�� �   is linear. The variables y and x can 
be transformations of other variables. The regression � �1 2expy x e� � �   is not a linear 
regression because the parameters are involved in a nonlinear way, as an exponent.  

Two popular variable transformations are using polynomial terms and logarithmic terms. In 
this section we examine quadratic and log-linear models 

2.6.1 A quadratic model 

Using real estate data we will estimate the quadratic model 2
1 2y x e� �  �  . Begin a new log 

file, and open data br.dta. 
 

log using chap02_quad, replace text 

use br, clear 

describe 

summarize 

 
The descriptions and summary statistics are, in part, 

 

 

 
 

The most straightforward way to proceed is to create a new variable sqft2 that is the square of the 
variable sqft.  

generate sqft2=sqft^2 

 
Regress house price on the square of house size and obtain fitted values, priceq. 

 
regress price sqft2 

predict priceq, xb 

 

sqft            float  %9.0g                  total square feet
price           float  %9.0g                  sale price, dollars

variable name   type   format      label      variable label
              storage  display     value

        sqft        1080    2325.938    1008.098        662       7897
       price        1080    154863.2    122912.8      22000    1580000

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize
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To plot the fitted line we will introduce some new options in a twoway graph. First, we plot the 
raw data. The second plot is the fitted line using twoway plot type line. See help twoway for 
other plot types. The option sort must be added so that the fitted line is smooth and continuous 
instead of the jagged result obtained by plotting the observations sequentially, with houses of 
varying sizes following one another. To make the fitted line a bit thicker than the default, add 
lwidth(medthick). 

 
twoway (scatter price sqft)  /// /* basic plot */ 

 (line priceq sqft,  /// /* 2nd plot: line is continuous */ 

 sort lwidth(medthick))     /* sort & change line thickness */ 

graph save br_quad, replace 

 
The resulting plot shows the curvilinear shape of the fitted quadratic function. The slope is not 
constant, and larger houses have larger increase in price per additional size. The function is 
increasing at an increasing rate. Slope and elasticity calculations must be altered from the 
“straight line” or linear relationship functional form we considered earlier. 

 

 
 
The slope of the fitted quadratic regression function 2

1 2ŷ b b x�   is 2ˆ 2dy dx b x� . To compute 
the slope at different values of x = sqft we can use a simple display (see help display), which 
can be abbreviated as di. As earlier in this chapter we will access the regression coefficient using 
_b[sqft2]. Calculating the slope at sqft = 2000, 4000 and 6000 we have 

       _cons    55776.56   2890.441    19.30   0.000     50105.04    61448.09
       sqft2    .0154213   .0003131    49.25   0.000      .014807    .0160356

       price       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total   1.6301e+13  1079  1.5108e+10           Root MSE      =   68207
           Adj R-squared =  0.6921

    Residual   5.0150e+12  1078  4.6522e+09           R-squared     =  0.6923
       Model   1.1286e+13     1  1.1286e+13           Prob > F      =  0.0000

           F(  1,  1078) = 2425.98
      Source        SS       df       MS              Number of obs =    1080

. regress price sqft2

0
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di "slope at 2000 = " 2*_b[sqft2]*2000 

di "slope at 4000 = " 2*_b[sqft2]*4000 

di "slope at 6000 = " 2*_b[sqft2]*6000 

 
 

Using the same approach we can see the predicted values from the estimated regression 
 

di "predicted price at 2000 = " _b[_cons]+_b[sqft2]*2000^2 

di "predicted price at 4000 = " _b[_cons]+_b[sqft2]*4000^2 

di "predicted price at 6000 = " _b[_cons]+_b[sqft2]*6000^2 

 

 
 

An elasticity for the fitted function is � � � � 2
2ˆ ˆ ˆ ˆ2dy dx x y b x y� � � � . Using the estimated 

coefficients to form this value we have 
 

     di "elasticity at 2000 = " 2*_b[sqft2]*2000^2/(_b[_cons]+_b[sqft2]*2000^2) 

     di "elasticity at 4000 = " 2*_b[sqft2]*4000^2/(_b[_cons]+_b[sqft2]*4000^2) 

     di "elasticity at 6000 = " 2*_b[sqft2]*6000^2/(_b[_cons]+_b[sqft2]*6000^2) 

 

 
 

A more stylish and efficient approach is to use factor variables. If we use 2x x x� � , with the 
continuous variable x = sqft denoted in factor variable notation c.sqft, we can estimate the 
quadratic function directly without creating a new variable. 

 
regress price c.sqft#c.sqft 

 

slope at 6000 = 185.05562
. di "slope at 6000 = " 2*_b[sqft2]*6000

slope at 4000 = 123.37041
. di "slope at 4000 = " 2*_b[sqft2]*4000

slope at 2000 = 61.685207
. di "slope at 2000 = " 2*_b[sqft2]*2000
. * slope and elasticity calculations

predicted price at 6000 = 610943.42
. di "predicted price at 6000 = " _b[_cons]+_b[sqft2]*6000^2

predicted price at 4000 = 302517.39
. di "predicted price at 4000 = " _b[_cons]+_b[sqft2]*4000^2

predicted price at 2000 = 117461.77
. di "predicted price at 2000 = " _b[_cons]+_b[sqft2]*2000^2

elasticity at 6000 = 1.8174084
. di "elasticity at 6000 = " 2*_b[sqft2]*6000^2/(_b[_cons]+_b[sqft2]*6000^2)

elasticity at 4000 = 1.6312505
. di "elasticity at 4000 = " 2*_b[sqft2]*4000^2/(_b[_cons]+_b[sqft2]*4000^2)

elasticity at 2000 = 1.0503027
. di "elasticity at 2000 = " 2*_b[sqft2]*2000^2/(_b[_cons]+_b[sqft2]*2000^2)
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The predictions from this specification are the same as from the previous estimation, as you can 
confirm by browsing the data.  

 
predict price2 

 
The great advantage of using the factor notation is that Stata will correctly compute slopes and 
elasticities using the margins command. First, the slopes use margins with dydx(*), the * 
denoting a request for slopes for all model variables, which in this case is just sqft. Conveniently 
we can specify the slope to computed at several values with the at option. 

 
margins, dydx(*) at(sqft=(2000 4000 6000)) 

 

 
 
Not only are slopes computed correctly, but we are provided a standard error and interval 
estimate as well. Elasticities use the eyex(*) option. 

 
margins, eyex(*) at(sqft=(2000 4000 6000)) 

 

       _cons     55776.57   2890.441    19.30   0.000     50105.04    61448.09
              
      c.sqft     .0154213   .0003131    49.25   0.000      .014807    .0160356
      c.sqft# 

       price        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    1.6301e+13  1079  1.5108e+10           Root MSE      =   68207
           Adj R-squared =  0.6921

    Residual    5.0150e+12  1078  4.6522e+09           R-squared     =  0.6923
       Model    1.1286e+13     1  1.1286e+13           Prob > F      =  0.0000

           F(  1,  1078) = 2425.98
      Source         SS       df       MS              Number of obs =    1080

. regress price c.sqft#c.sqft

          3      185.0556   3.757154    49.25   0.000     177.6917    192.4195
          2      123.3704   2.504769    49.25   0.000     118.4612    128.2797
          1      61.68521   1.252385    49.25   0.000     59.23058    64.13983
         _at  
sqft          

                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method

3._at        : sqft            =        6000

2._at        : sqft            =        4000

1._at        : sqft            =        2000

dy/dx w.r.t. : sqft
Expression   : Linear prediction, predict()

Model VCE    : OLS
Conditional marginal effects                      Number of obs   =       1080

. margins, dydx(*) at(sqft=(2000 4000 6000))
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The slopes and elasticities computed above are Conditional because they are computed at 
specific values. To compute the Average marginal effects or average elasticities use the margins 
command without the at option.  

 
margins, eyex(*) 

 

 
 
To verify that these Average marginal effects are what we expect, we can compute them directly 
by accessing the save regression coefficients. It can be difficult at first to know how to refer to 
individual coefficients. This can be resolved by replaying the regression with the option
coeflegend. 

 
regress, coeflegend 

 
This returns to ANOVA table and the coefficient legend. 

 

          3      1.817408   .0112071   162.17   0.000     1.795443    1.839374
          2      1.631251   .0203148    80.30   0.000     1.591434    1.671067
          1      1.050303   .0336868    31.18   0.000     .9842778    1.116328
         _at  
sqft          

                    ey/ex   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method

3._at        : sqft            =        6000

2._at        : sqft            =        4000

1._at        : sqft            =        2000

ey/ex w.r.t. : sqft
Expression   : Linear prediction, predict()

Model VCE    : OLS
Conditional marginal effects                      Number of obs   =       1080

. margins, eyex(*) at(sqft=(2000 4000 6000))

        sqft    1.102401   .0292176    37.73   0.000     1.045135    1.159666

      ey/ex   Std. Err.      z    P>|z|     [95% Conf. Interval]
            Delta-method

ey/ex w.r.t. : sqft
Expression   : Linear prediction, predict()

Model VCE    : OLS
Average marginal effects                          Number of obs   =       1080

. margins, eyex(*)
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For the factor model specification the _b[varname] is _b[c.sqft#c.sqft]. 
 

generate elas2 = 2*_b[c.sqft#c.sqft]*(sqft^2)/price2 

summarize elas2 

 

 
 
Note that the average elasticity is indeed what margins has computed, but once again summarize 
computes a sample standard deviation and margins computes a Delta-method standard error. 
Now close the log file. 

 
log close 

2.6.2 A log-linear model 

Using the same data we will estimate a log-linear model � � 1 2ln y x e�� �  . The fitted line will 
be  

� �� 1 2ln y b b x�   
 

To obtain the fitted value of y the most natural thing to do is compute the antilog as 
 

� ��� � � �1 2ˆ exp ln expy y b b x� �   

 
The slope of the fitted log-linear curve is 2ˆ ˆdy dx b y�  and the elasticity is 

� � � � 2ˆ ˆ ˆdy dx x y b x� � � � . Open a new log, and use br.dta. Detailed summary statistics for the 
variable price, and its histogram, show it to have a skewed distribution, with a long tail to the 
right. 

 
log using chap02_llin, replace text 

use br, clear 

summarize price, detail 

 

       _cons    55776.57  _b[_cons]

      c.sqft    .0154213  _b[c.sqft#c.sqft]
      c.sqft# 

       price       Coef.  Legend

       elas2       1080    1.102401    .3528353   .2161448   1.890364

    Variable        Obs        Mean    Std. Dev.       Min        Max

. summarize elas2

. generate elas2 = 2*_b[c.sqft#c.sqft]*(sqft^2)/price2
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Note that the sample mean is quite a bit greater than the median (50th percentile) because of some 
extremely large values about $1.5 million. The Skewness coefficient is positive rather than the 
zero we expect for symmetric distributions like the normal. 

 
histogram price, percent 

graph save price, replace 

 

 
 
Now generate the logarithm of price and plot its histogram. 

 
generate lprice = ln(price) 

histogram lprice, percent 

graph save lprice, replace 

 
As shown below it is more symmetrical, if not bell shaped like the normal. 

 

99%       610000        1580000       Kurtosis       60.94976
95%       315000        1575000       Skewness       6.291909
90%       244200        1400000       Variance       1.51e+10
75%       170325        1280000
                        Largest       Std. Dev.      122912.8
50%       130000                      Mean           154863.2

25%        99000          23000       Sum of Wgt.        1080
10%        74450          22654       Obs                1080
 5%      59897.5          22000
 1%        31000          22000
      Percentiles      Smallest

                     sale price, dollars

. summarize price, detail
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The log-linear regression model is 
 

reg lprice sqft 

 
 

The predicted values are obtained using 
 

predict lpricef, xb 

generate pricef = exp(lpricef) 

 
The variable pricef is the predicted (or forecast) price. Plot the fitted curve  
 

reg lprice sqft 

predict lpricef, xb 

generate pricef = exp(lpricef) 

twoway (scatter price sqft) /// 

 (line pricef sqft, sort lwidth(medthick)) 

graph save br_loglin, replace 
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       _cons     10.8386   .0246075   440.46   0.000     10.79031    10.88688
        sqft    .0004113   9.71e-06    42.36   0.000     .0003922    .0004303

      lprice       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total   296.872366  1079  .275136577           Root MSE      =  .32147
           Adj R-squared =  0.6244

    Residual   111.400275  1078  .103339773           R-squared     =  0.6248
       Model   185.472091     1  185.472091           Prob > F      =  0.0000

           F(  1,  1078) = 1794.78
      Source        SS       df       MS              Number of obs =    1080

. reg lprice sqft
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Because the fitted curve is not a linear relationship, the slope and elasticities must be calculated at 
specific points. It is worth noting here that margins will not do the calculations here, because 
Stata does not recognized the logarithmically transformed dependent variable. So we must 
calculate the slope and elasticity in the straightforward manner. Note that the slopes are 
calculated assuming specific house prices, rather than at predicted prices for a give house size. 

 
di "slope at 100000 = " _b[sqft]*100000 

di "slope at 500000 = " _b[sqft]*500000 

di "elasticity at 2000 = " _b[sqft]*2000 

di "elasticity at 4000 = " _b[sqft]*4000 

 
 

We can also compute average marginal effects at each fitted house price in the sample. 
 

generate me = _b[sqft]*pricef 

summarize me 

 

 
 
Similarly the average elasticity is 
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elasticity at 4000 = 1.6450754
. di "elasticity at 4000 = " _b[sqft]*4000

elasticity at 2000 = .82253769
. di "elasticity at 2000 = " _b[sqft]*2000

slope at 500000 = 205.63442
. di "slope at 500000 = " _b[sqft]*500000

slope at 100000 = 41.126885
. di "slope at 100000 = " _b[sqft]*100000

          me       1080    61.00072    42.91725   27.51118   539.2198

    Variable        Obs        Mean    Std. Dev.       Min        Max

. summarize me

. generate me = _b[sqft]*pricef
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generate elas = _b[sqft]*sqft 

summarize elas 

 

 
 
Close this log file 

 
log close 

2.7 REGRESSION USING INDICATOR VARIABLES 

Indicator variables are usually binary 0-1 variables. These can be used in regression to indicate 
qualitative factors, such as location in a real estate model. Open a new log and the data utown.dta. 
The describe and summarize the data. 
 

log using chap02_indicator, replace text 

use utown, clear 

describe 

summarize 

 
The description shows that the variable utown is 1 if a house is close to a university, and 
implicitly 0 otherwise. 

 

 
 

The summary statistics show that of the 1000 observations, about 52% are in the university 
neighborhood. 

 

        elas       1080    .9565858    .4145993     .27226    3.24779

    Variable        Obs        Mean    Std. Dev.       Min        Max

. summarize elas

. generate elas = _b[sqft]*sqft

fplace          byte   %8.0g                  =1 if house has fireplace
pool            byte   %8.0g                  =1 if house has pool
utown           byte   %8.0g                  =1 if close to university
age             byte   %8.0g                  house age, in years
                                                100s
sqft            double %10.0g                 square feet of living area, in
price           double %10.0g                 house price, in $1000

variable name   type   format      label      variable label
              storage  display     value
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Creating histograms for the house prices in a single graph with common axis values will allow us 
to compare them easily. First create and save two separate histograms using bins that are $12000 
[width(12)] wide and beginning at $130000 [start(130)] which is below the sample minimum. 
Using $12000 wide bins was based trial and error. The xlabel statement indicates that ticks are 
to begin at 130 with 24 between ticks up to 350. The histogram commands use the logical 
operator, for example if utown == 0, to select the two subsets of data defined by the variable 
utown. 

 
histogram price if utown==0, width(12) start(130) percent  /// 

 xtitle(House prices ($1000) in Golden Oaks)         /// 

 xlabel(130(24)350) legend(off) 

graph save utown_0, replace 

histogram price if utown==1, width(12) start(130) percent  /// 

 xtitle(House prices ($1000) in University Town)     /// 

 xlabl(130(24)350) legend(off) 

graph save utown_1, replace 

 
The saved graphs are combined into one using the graph combine command. To stack them one 
atop the other we choose them to go into a single column [col(1)]. Using help graph combine 
reveals that “…iscale(1) means that text and markers should appear the same size that they were 
originally.” The graph names are put in quotes to identify them as *.gph files. 

 
graph combine "utown_0" "utown_1", col(1) iscale(1) 

graph save combined, replace 

 

      fplace        1000        .518    .4999259          0          1

        pool        1000        .204    .4031706          0          1
       utown        1000        .519    .4998889          0          1
         age        1000       9.392    9.426728          0         60
        sqft        1000    25.20965     2.91848      20.03         30
       price        1000    247.6557    42.19273    134.316    345.197

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize
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The graphs show that prices in the university neighborhood are centered at a higher value than the 
houses in the other neighborhood.  

Rather than create two graphs and combine them, we can use a very important feature in 
Stata, the by command, which will repeat a Stata command over subsets of data. When using by it 
is important to use labels. In the two statements that follow we first create a label definition called 
utownlabel, specifying 0 for Golden Oaks and 1 for University town. In the second statement we 
apply the label to the variable UTOWN. 

 
label define utownlabel 0 "Golden Oaks" 1 "University Town" 

label value utown utownlabel 

 
The histogram uses the by option, specifying that the data subsets are defined by UTOWN. 

 
histogram price, by(utown, cols(1))    /// 

          start(130) percent                 /// 

          xtitle(House prices ($1000))      /// 

          xlabel(130(24)350) legend(off) 

graph save combined2, replace   

 
The resulting graph has as a single scale for price, and a footnote indicating the use of the by 
option. 
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This is revealed further by examining the summary statistics for prices in the separate 
neighborhoods. 

 
summarize price if utown==0 

summarize price if utown==1 

 

 
 

Again it is easier and more efficient to use a by option. When using the by command the data 
must be sorted according to the values of the variable defining the subsets of observations. The 
sorting can be done within the command, as follows. 

 
by utown, sort: summarize price   
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       price         519    277.2416    30.78208     191.57    345.197

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize price if utown==1

       price         481    215.7325    26.73736    134.316    276.977

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize price if utown==0
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A more terse command that is equivalent to the above is 

 
bysort utown: summarize price 

 

 
 
A regression with the indicator variable as explanatory variable has the same syntax as usual, 
though we could have used i.utown. 

 
regress price utown 

 

 
 
Note that the estimated constant term is the average price when utown = 0, and the coefficient of 
utown is the difference between the sample means. 

You may have done a test of whether two population means are equal in a statistics course. 
Stata includes the command ttest for this approach.  

 

       price         519    277.2416    30.78208     191.57    345.197

    Variable         Obs        Mean    Std. Dev.       Min        Max

-> utown = University Town

       price         481    215.7325    26.73736    134.316    276.977

    Variable         Obs        Mean    Std. Dev.       Min        Max

-> utown = Golden Oaks

. by utown, sort: summarize price  

       price         519    277.2416    30.78208     191.57    345.197

    Variable         Obs        Mean    Std. Dev.       Min        Max

-> utown = University Town

       price         481    215.7325    26.73736    134.316    276.977

    Variable         Obs        Mean    Std. Dev.       Min        Max

-> utown = Golden Oaks

. bysort utown: summarize price

       _cons    215.7325   1.318066   163.67   0.000      213.146     218.319
       utown    61.50911   1.829589    33.62   0.000     57.91882    65.09939

       price       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total   1778446.14   999  1780.22637           Root MSE      =  28.907
           Adj R-squared =  0.5306

    Residual   833969.397   998  835.640678           R-squared     =  0.5311
       Model   944476.744     1  944476.744           Prob > F      =  0.0000

           F(  1,   998) = 1130.24
      Source        SS       df       MS              Number of obs =    1000

. regress price utown
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ttest price, by(utown) 

 
 

log close 

APPENDIX 2A AVERAGE MARGINAL EFFECTS 

The calculation of marginal effects in Stata has been much improved in recent versions, but 
understanding the calculation does require some effort. We consider a couple of cases. 

2A.1 Elasticity in a linear relationship 

For the linear relationship 1 2y x e�� �  , elasticity is defined as 
 

2
/
/

dy y dy x x
dx x dx y y

� � � � � �  

 
To obtain a representation point on the curve Stata takes a given x = x0 and computes the 
corresponding fitted value 0 1 2 0ŷ b b x�  . Then the estimated elasticity is 

 
0 0

0 2 2
0 1 2 0

ˆ
ˆ
x xb b
y b b x

� � �


 

 
This is a complicated nonlinear function of the least squares estimates which is easy enough to 
calculate, but we econometricians want a standard error of any estimate we obtain. Simple 
variance rules like � � � � � � � �2

1 2 0 1 0 2 0 1 2var var var 2 cov ,b b x b x b x b b �    do not apply. Instead the 
standard error of the estimated elasticity must use the Delta-method, which is explained in 
Chapter 5. For now we will simply note that there is a Stata command, nlcom, that will calculate 
nonlinear functions of estimates and compute a correct standard error.  

 Pr(T < t) = 0.0000         Pr(|T| > |t|) = 0.0000          Pr(T > t) = 1.0000
    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0

Ho: diff = 0                                     degrees of freedom =      998
    diff = mean(Golden O) - mean(Universi)                        t = -33.6191

    diff            -61.50911    1.829589               -65.09939   -57.91882

combined     1000    247.6557    1.334251    42.19273    245.0375     250.274

Universi      519    277.2416    1.351183    30.78208    274.5871    279.8961
Golden O      481    215.7325    1.219119    26.73736     213.337     218.128

   Group      Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]

Two-sample t test with equal variances

. ttest price, by(utown)
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To illustrate, open the food data and summarize income. After Stata estimation commands 
certain things are saved. After summarize we can see the saved items using the command return 
list. 
 

log using chap02_ame, replace text 

use food, clear 

summarize income 

return list 

 

 
 
The saved items have “returned” values, such as the mean, denoted by r(mean). These can be 
saved as scalars and used in subsequent expressions.  

 
scalar xbar = r(mean) 

 
To evaluate the elasticity “at the means” we can use margins, as shown in the chapter. The 
regression output is suppressed since we have seen it before 

 
quietly regress food_exp income 

margins, eyex(*) atmeans 

 

 
 
The elasticity can be computed directly by using nlcom to compute the nonlinear function of the 
parameter values. The values match. The Std. Err. computed by nlcom uses the Delta-method.  

 
nlcom _b[income]*xbar/(_b[_cons]+_b[income]*xbar)   

 

                r(sum) =  784.1899999999999
                r(max) =  33.4
                r(min) =  3.69
                 r(sd) =  6.847772607168492
                r(Var) =  46.89198967948718
               r(mean) =  19.60475
              r(sum_w) =  40
                  r(N) =  40
scalars:

. return list

      income    .7058399   .1489436     4.74   0.000     .4139159    .9977639

      ey/ex   Std. Err.      z    P>|z|     [95% Conf. Interval]
            Delta-method

at           : income          =    19.60475 (mean)
ey/ex w.r.t. : income
Expression   : Linear prediction, predict()

Model VCE    : OLS
Conditional marginal effects                      Number of obs   =         40

. margins, eyex(*) atmeans
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The test statistics and interval estimates will be discussed in Chapter 3. The interval estimates 
[95% Conf. Interval] differ because the margins command uses percentiles from the Standard 
normal distribution (note that the test statistic is called “z”) while nlcom uses percentiles from the 
t-distribution (note that the test statistic is called “t”).  

 
log close 

2A.2 Elasticity in a quadratic relationship 

Using factor notation for quadratic models allows Stata to correctly compute slopes and 
elasticities. An elasticity for the fitted quadratic model function is � �2 2

0 2 0 1 2 0ˆ 2b x b b x� �  . Using 

the logic from the previous section calculate the elasticity for a 2000 square foot home. 
 

log using chap02_quad_ame, replace text 

use br, clear 

quietly regress price c.sqft#c.sqft 

margins, eyex(*) at(sqft=2000) 

 

 
 

The analogous nlcom command and output, which echos the command, are 
 

nlcom 2*_b[c.sqft#c.sqft]*(2000^2)/ 

 (_b[_cons]+_b[c.sqft#c.sqft]*(2000^2)) 

 

       _nl_1     .7058399   .1489436     4.74   0.000     .4043194     1.00736

    food_exp        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       _nl_1:  _b[income]*xbar/(_b[_cons]+_b[income]*xbar)

. nlcom _b[income]*xbar/(_b[_cons]+_b[income]*xbar) 

        sqft    1.050303   .0336868    31.18   0.000     .9842778    1.116328

      ey/ex   Std. Err.      z    P>|z|     [95% Conf. Interval]
            Delta-method

at           : sqft            =        2000
ey/ex w.r.t. : sqft
Expression   : Linear prediction, predict()

Model VCE    : OLS
Conditional marginal effects                      Number of obs   =       1080

. margins, eyex(*) at(sqft=2000)
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log close 

2A.3 Slope in a log-linear model 

Using the same data we will estimate a log-linear model � � 1 2ln y x e�� �  . The fitted line will 
be  

� �� 1 2ln y b b x�   
 

To obtain the fitted value of y the most natural thing to do is compute the antilog as 
 

� ��� � � �1 2ˆ exp ln expy y b b x� �   

 
The slope of the fitted log-linear curve is � �2 2 1 2ˆ ˆ expdy dx b y b b b x� � �  . In Section 2.6.2 we 
simply chose a value of y at which to evaluate the slope. In keeping with the spirit of the margins 
calculations, we can instead evaluate the slope at a given value of x, say sqft = 2000, using the 
nlcom command.  

 
log using chap02_llin_me, replace text 

use br, clear 

gen lprice = log(price) 

quietly regress lprice sqft 

nlcom _b[sqft]*exp(_b[_cons]+_b[sqft]*2000) 

log close 

 
 

       _nl_1     1.050303   .0336868    31.18   0.000     .9842035    1.116402

       price        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

> ))
       _nl_1:  2*_b[c.sqft#c.sqft]*(2000^2)/(_b[_cons]+_b[c.sqft#c.sqft]*(2000^2

. nlcom 2*_b[c.sqft#c.sqft]*(2000^2)/(_b[_cons]+_b[c.sqft#c.sqft]*(2000^2))

       _nl_1      47.6971   1.080834    44.13   0.000     45.57632    49.81788

      lprice        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       _nl_1:  _b[sqft]*exp(_b[_cons]+_b[sqft]*2000)

. nlcom _b[sqft]*exp(_b[_cons]+_b[sqft]*2000)
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APPENDIX 2B A SIMULATION EXPERIMENT 

In Appendix 2G of Principles of Econometrics, 4th edition, a simulation experiment3 is described. 
We generate artificial data and then try out our statistical techniques on the data we have created. 
In the experiment we use a sample size of 40 with 

 
� �

� �

| 10 100 10 100 10 10 200, 1,...,20

| 20 100 10 100 10 20 300, 21,...,40

i i i

i i i

E y x x i

E y x x i

� �  �  � � �

� �  �  � � �
 

 
The random error is assumed to have a normal distribution � �20,2500 50N � . We generate such 

data, and save it as a representative Monte Carlo sample 
 

clear all 

log using chap02_app2G, replace text 

 
First we create some global “macros” that contain constants for the experiment.  

 
global numobs 40  // sample size  

global beta1 100  // intercept parameter 

global beta2 10  // slope parameter  

global sigma 50  // error standard deviation 

 
A Monte Carlo experiment uses random numbers. See Appendix B4 in Principles of 
Econometrics, 4th edition. Also enter the Stata command help random numbers. Random 
numbers are created iteratively, and require a starting point. If none is provided Stata picks one. 
Therefore, so that we can all get the same results, we set the system parameter seed. 

 
set seed 1234567 

 
Normal random numbers with mean zero and standard deviation 50� �  are created using 
rnormal(0,$sigma), with the $ sign indicating that a global variable is to be used. The data 
generation process for x and y is 

 
set obs $numobs 

generate x = 10 

replace x = 20 if _n > $numobs/2 

generate y = $beta1 + $beta2*x + rnormal(0,$sigma) 

 
We can estimate a regression with this data to see how close the estimates are to the true values. 
 

regress y x 

di "rmse " e(rmse) 

estat vce 

 
3 For more on simulation using Stata, see A. Colin Cameron and Pravin K. Trivedi (2010) “Microeconometrics Using Stata, 

Revised Edition,” Stata Press. 



94   Chapter 2 

 

 

 
 

The data we have generated can be saved for further study 
 

save mc1, replace 

 
The result of one regression does not reveal the repeated sampling properties of the least squares 
estimator. We must carry out this process many times. Using Stata’s simulate command we can 
do this. The simulate command will repeat the same sequence of steps, written as a program, and 
collect the results from each repetition. A program is a self-contained series of commands. For 
example, the following program, called chap02sim, creates the artificial data, estimates the 
regression and returns the results. Because it returns results it is called an rclass program. Note 
that we reset the seed value, and close the program with end. 

 
program chap02sim, rclass 

 version 11.1  

 drop _all 

 set obs $numobs 

 generate x = 10 

 replace x = 20 if _n > $numobs/2 

 generate ey = $beta1 + $beta2*x 

 generate e = rnormal(0, $sigma) 

 generate y = ey + e 

 regress y x 

 return scalar b2 =_b[x]    // saves slope 

 return scalar b1 =_b[_cons]   // saves intercept 

 return scalar sig2 = (e(rmse))^2   // saves sigma^2 

end 

 

       _cons    127.2055   23.32624     5.45   0.000     79.98398     174.427
           x     8.73252   1.475281     5.92   0.000     5.745971    11.71907

           y       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total   158962.139    39  4075.95227           Root MSE      =  46.652
           Adj R-squared =  0.4660

    Residual   82705.2254    38   2176.4533           R-squared     =  0.4797
       Model   76256.9134     1  76256.9134           Prob > F      =  0.0000

           F(  1,    38) =   35.04
      Source        SS       df       MS              Number of obs =      40

. regress y x

       _cons   -32.646799   544.11332 
           x    2.1764533             

        e(V)            x       _cons 

Covariance matrix of coefficients of regress model

. estat vce

rmse 46.652474
. di "rmse " e(rmse)
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The simulate command names variables b1r, b2r and sig2r that contain the returned program 
values; reps(1000) indicates that we will execute this program 1000 times, nodots and 
nolegend suppress some output, the seed(1234567) is specified, and the program name is 
specified at the end by :chap02sim. 

 
simulate b1r = r(b1) b2r=r(b2) sig2r=r(sig2) , /// 

 reps(1000) nodots nolegend seed(1234567): chap02sim 

 
It takes Stata only a few seconds to complete the simulation. We then summarize the results. 

 
di " Simulation parameters"  

di " beta1 = " $beta1 

di " beta2 = " $beta2 

di " N = " $numobs   

di " sigma^2 = " $sigma^2 

summarize, detail 

 
To illustrate, the summary statistics for b2r=r(b2) show that the average value of the 1000 
estimates is very near the true value of 10, and that the sample variance 2.31 of these estimates is 
close to the true � �2var 2.50b � .  

 

 
 

 
 

A histogram for these estimates, with a normal distribution superimposed [See POE4, Appendix 
C.10 or use help kdensity]. The resulting figure shows the histogram of the estimates to closely 
follow the shape of the normal density, which is as it should be. 

 
histogram b2r, percent normal 

 sigma^2 = 2500
. di " sigma^2 = " $sigma^2

 N = 40
. di " N = " $numobs       

 beta2 = 10
. di " beta2 = " $beta2

 beta1 = 100
. di " beta1 = " $beta1

 Simulation parameters
. di " Simulation parameters"     

99%     13.52443       14.93775       Kurtosis        2.97382
95%     12.56822       14.84318       Skewness      -.0553848
90%     11.98034       14.83626       Variance       2.427726
75%     11.06335       14.48513
                        Largest       Std. Dev.      1.558116
50%     9.988169                      Mean           9.997464

25%     8.966896       5.726702       Sum of Wgt.        1000
10%      7.95141       5.506445       Obs                1000
 5%     7.381377       5.379227
 1%     6.403119       5.009561
      Percentiles      Smallest

                            r(b2)
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graph save b2r, replace 

log close 

 

KEY TERMS 

atmeans list rnormal 
by list in  save 
bysort log saving 
cd log close scalar 
clear log-linear model scatter
data browser lwidth seed, random number 
data editor marginal effects set more off 
delta method margins set obs 
di mean set seed 
display model, linear simulate 
dydx model, log-linear standard deviation
elasticity model, quadratic standard error 
estat msymbol std. dev. 
estat vce name std. err. 
eyex nlcom summarize, detail 
factor variable postestimation title
gen predict ttest 
generate program twoway 
global quadratic model twoway lfit 
graph random number twoway line 
graph combine range/delta twoway scatter 
graph save reg use
graph save regress variance
histogram replace xb
label define residuals xlabel 
label value return list ylabel 
lfit return scalar  

0
2

4
6

8
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nt

5 10 15
r(b2)
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CHAPTER 2 DO-FILE [CHAP02.DO] 

At the end of each chapter we will provide a list of the commands used, as they would appear in a 
Do-file. Lines beginning with * are comments. It is a good idea to comment your computer code 
so that at some later point it will make sense. 
 
* file chap02.do for Using Stata for Principles of Econometrics, 4e 

cd c:\data\poe4stata 

* Stata Do-file  
* copyright C 2011 by Lee C. Adkins and R. Carter Hill  

* used for "Using Stata for Principles of Econometrics, 4e"  

* by Lee C. Adkins and R. Carter Hill (2011) 
* John Wiley and Sons, Inc. 

* setup 
version 11.1 

capture log close 

set more off 

* open food data 

log using chap02_food, replace text 
use food, clear 

* examine data 
describe 

* browse 
list 

list in 1/5 

list food_exp in 1/5 
list food_exp if income < 10 

* compute summary statistics 
summarize 

* summarize food expenditure with detail 
summarize food_exp, detail 

* simple plot data 
twoway (scatter food_exp income) 

graph save food1, replace         // open for editing with: graph use food1 

* save graph using saving 

twoway (scatter food_exp income), saving(food1, replace) 

* store the graph in memory only 

twoway (scatter food_exp income), name(food1, replace) 

* enhanced plot /* with comments */ 

twoway (scatter food_exp income),  ///  /* basic plot control */ 

 ylabel(0(100)600)          ///  /* Y axis 0 to 600 with ticks each 100 */            
  xlabel(0(5)35)  ///  /* X axis 0 to 35 with ticks each 5 */ 

  title(Food Expenditure Data)   /* graph title */ 

graph save food2, replace 

* compute least squares regression 

regress food_exp income 

* calculate fitted values & residuals 
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predict yhat, xb 

predict ehat, residuals 

* compute elasticity at means 

margins, eyex(income) atmeans 

* compute average of elasticities at each data point 

margins, eyex(income) 

generate elas = _b[income]*income/yhat 
summarize elas 

* plot fitted values and data scatter 
twoway (scatter food_exp income)  /// /* basic plot control */ 

 (lfit food_exp income),    /// /* add linear fit */ 

 ylabel(0(100)600)          /// /* label Y axis */ 
 xlabel(0(5)35)             /// /* label X axis */ 

 title(Fitted Regression Line) /* graph title */ 

graph save food3, replace 

* examine variances and covariances 

estat vce 

* add observation to data file 

edit 
set obs 41 

replace income=20 in 41 

* obtain prediction 

predict yhat0 

list income yhat0 in 41 
log close  

* to save changes to food data 
* save chap02.dta, replace 

* Chapter 2.8.2 Using a Quadratic Model 

* new log file 

log using chap02_quad, replace text 

* open br data and examine 

use br, clear 
describe 

summarize 

* create new variable 

generate sqft2=sqft^2 

* regression 

regress price sqft2 

predict priceq, xb 

* plot fitted line 

twoway (scatter price sqft)     ///      /* basic plot */ 
       (line priceq sqft,         ///  /* 2nd plot: line is continuous */ 

     sort lwidth(medthick))          /* sort & change line thickness */ 

graph save br_quad, replace 

* slope and elasticity calculations 

di "slope at 2000 = " 2*_b[sqft2]*2000 
di "slope at 4000 = " 2*_b[sqft2]*4000 

di "slope at 6000 = " 2*_b[sqft2]*6000 

di "predicted price at 2000 = " _b[_cons]+_b[sqft2]*2000^2 
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di "predicted price at 4000 = " _b[_cons]+_b[sqft2]*4000^2 

di "predicted price at 6000 = " _b[_cons]+_b[sqft2]*6000^2 

di "elasticity at 2000 = " 2*_b[sqft2]*2000^2/(_b[_cons]+_b[sqft2]*2000^2) 
di "elasticity at 4000 = " 2*_b[sqft2]*4000^2/(_b[_cons]+_b[sqft2]*4000^2) 

di "elasticity at 6000 = " 2*_b[sqft2]*6000^2/(_b[_cons]+_b[sqft2]*6000^2) 

* using factor variables 

regress price c.sqft#c.sqft 

predict price2 
margins, dydx(*) at(sqft=(2000 4000 6000)) 

margins, eyex(*) at(sqft=(2000 4000 6000)) 

margins, eyex(*) 
regress, coeflegend 

generate elas2 = 2*_b[c.sqft#c.sqft]*(sqft^2)/price2 

summarize elas2 

log close 

* Chapter 2.8.4 Using a Log-linear Model 

log using chap02_llin, replace text 
use br, clear 

* distribution of prices 
summarize price, detail 

histogram price, percent 

graph save price, replace 

* distribution of log(price) 

generate lprice = ln(price) 
histogram lprice, percent 

graph save lprice, replace 

* log-linear regression 

reg lprice sqft 

predict lpricef, xb 

* price prediction using anti-log 

generate pricef = exp(lpricef) 
twoway (scatter price sqft) /// 

       (line pricef sqft, sort lwidth(medthick)) 

graph save br_loglin, replace 

* slope and elasticity calculations 

di "slope at 100000 = " _b[sqft]*100000 
di "slope at 500000 = " _b[sqft]*500000 

di "elasticity at 2000 = " _b[sqft]*2000 

di "elasticity at 4000 = " _b[sqft]*4000 

* average marginal effects 

generate me = _b[sqft]*pricef 
summarize me 

generate elas = _b[sqft]*sqft 
summarize elas 

log close 

* Section 2.9 Regression with Indicator Variables 

* open new log 

log using chap02_indicator, replace text 
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* open utown data and examine 

use utown, clear 

describe 
summarize 

* histograms of utown data by neighborhood 
histogram price if utown==0, width(12) start(130) percent  /// 

          xtitle(House prices ($1000) in Golden Oaks)      /// 

    xlabel(130(24)350) legend(off) 
graph save utown_0, replace 

histogram price if utown==1, width(12) start(130) percent  /// 
          xtitle(House prices ($1000) in University Town)  /// 

    xlabel(130(24)350) legend(off) 

graph save utown_1, replace 

graph combine "utown_0" "utown_1", col(1) iscale(1) 

graph save combined, replace 

* using by option 

label define utownlabel 0 "Golden Oaks" 1 "University Town" 
label value utown utownlabel 

histogram price, by(utown, cols(1))     /// 

          start(130) percent                  /// 
          xtitle(House prices ($1000))       /// 

          xlabel(130(24)350) legend(off) 

graph save combined2, replace   

* summary stats 

summarize price if utown==0 
summarize price if utown==1 

* summary stats using by 
by utown, sort: summarize price   

* summary stats using bysort 
bysort utown: summarize price 

* regression 
regress price utown 

* test of two means 
ttest price, by(utown) 

log close 

* Appendix 2A on calculation of Average marginal effects 

* food expenditure example 
log using chap02_food_me, replace text 

use food, clear 

summarize income 
return list 

scalar xbar = r(mean) 

quietly regress food_exp income 
margins, eyex(*) atmeans 

nlcom _b[income]*xbar/(_b[_cons]+_b[income]*xbar)  

log close 

* quadratic house price example 

log using chap02_quad_me, replace text 
use br, clear 

quietly regress price c.sqft#c.sqft 

margins, eyex(*) at(sqft=2000) 
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nlcom 2*_b[c.sqft#c.sqft]*(2000^2)/(_b[_cons]+_b[c.sqft#c.sqft]*(2000^2)) 

log close 

* slope in log-linear model 

log using chap02_llin_me, replace text 

use br, clear 
gen lprice = log(price) 

quietly regress lprice sqft 

nlcom _b[sqft]*exp(_b[_cons]+_b[sqft]*2000) 
log close 

* Appendix 2B 

*clear memory and start new log 

clear all 
log using chap02_app2G, replace text 

* define some global macros 
global numobs 40   // sample size         

global beta1 100   // intercept parameter 

global beta2 10   // slope parameter  
global sigma 50   // error standard deviation 

* random number seed 
set seed 1234567 

* create artificial data using y = beta1+beta2*x+e 
set obs $numobs 

generate x = 10 

replace x = 20 if _n > $numobs/2 
generate y = $beta1 + $beta2*x + rnormal(0,$sigma) 

* regression with artifical data 
regress y x 

di "rmse " e(rmse) 

estat vce 

* data file mc1.data created using following command 

save mc1, replace 

* program to generate data and estimate regression 

program chap02sim, rclass 
    version 11.1  

    drop _all 

    set obs $numobs 
    generate x = 10 

 replace x = 20 if _n > $numobs/2 

    generate ey = $beta1 + $beta2*x 
 generate e = rnormal(0, $sigma) 

 generate y = ey + e 

 regress y x 
    return scalar b2 =_b[x]   // saves slope 

 return scalar b1 =_b[_cons]  // saves intercept 

 return scalar sig2 = (e(rmse))^2 // saves sigma^2 
end 

* simulate command 
simulate b1r = r(b1) b2r=r(b2) sig2r=r(sig2) , /// 

         reps(1000) nodots nolegend seed(1234567): chap02sim 

* display experiment parameters 

di " Simulation parameters"  

di " beta1 = " $beta1 
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di " beta2 = " $beta2 

di " N = " $numobs   

di " sigma^2 = " $sigma^2 

* summarize experiment results 

summarize, detail 

* histogram sampling distribution of LS estimates 

histogram b2r, percent normal 
graph save b2r, replace 

log close 
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3.1 Interval estimates 
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     3.1.2 Creating an interval estimate 
3.2 Hypothesis tests 
     3.2.1 Right-tail test of significance 
     3.2.2 Right-tail test of an economic hypothesis 
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     3.2.4 Two-tail test of an economic hypothesis 
3.3 p-values 
     3.3.1 p-value of a right-tail test  

     3.3.2 p-value of a left-tail test  
     3.3.3 p-value for a two-tail test  
     3.3.4 p-values in Stata output  
     3.3.5 Testing and estimating linear  
              combinations of parameters  
Appendix 3A Graphical tools  
Appendix 3B Monte Carlo simulation  
Key Terms  
Chapter 3 Do-file 

3.1 INTERVAL ESTIMATES 

Interval estimates are also known as confidence intervals. When Stata carries out a regression 
analysis part of its standard output is a 95% interval estimate for each of the coefficients. Begin a 
new Stata session and change to your working directory. Open a log file and estimate the food 
expenditure model, as demonstrated in Section 2.4 of the previous chapter. 
 

log using chap03, replace text 

use food, clear 

reg food_exp income 

 
The regression output includes [95% Conf. Interval] which are the lower and upper bounds of 
the interval estimates for the corresponding coefficients. 
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The interval estimates are computed as Coef. ± t-critical*Std. Err. The values of the 
coefficients are given, as are the standard errors. The remaining ingredient is the t-critical value. 
This can be found in Table 2 of Principles of Econometrics, or using Stata, as we now show. 

3.1.1 Critical values from the t-distribution 

We can use Stata to compute critical values of many probability distributions, which is very 
handy in many contexts. Critical values are created as scalars in Stata and carry the general prefix 
inv, indicating that they are “inverse” functions. To recall the command for a particular scalar 
value enter 
 

help scalar 

 
Click on define in the Viewer box if you wish to use a dialog box. Using the Expression
builder (see Section 1.12.8 in this manual) box locate invttail(), double click, and fill in the 
degrees of freedom N � 2 = 38 and the amount of the probability in the upper tail of the t-
distribution required for a 95% interval estimate: 2.5% of the probability in the upper tail defines 
the 97.5 percentile of the t-distribution. Click OK. 
 

 
 
In the scalar define box we now have 
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Click on Submit at the bottom of this box. In the Results window (and in the Review window) 
the Stata command is shown to be 
 

scalar define tc975 = invttail(38,0.025) 

 
The optional define is not required, so the command can be simplified to 
 

scalar tc975 = invttail(38,0.025) 

 
To view the value of this scalar we must display it 
 

di "t critical value 97.5 percentile = "  tc975 

 
which produces 
 

 
 
Other examples of t-critical values are: 
 

di "t(30) 95th percentile = " invttail(30,0.05) 

 

 
 

di "t(20) 5th percentile  = " invttail(20,0.95) 

 

 
di "t(30) 2.5th percentile  = " invttail(30,0.975) 

 

3.1.2 Creating an interval estimate 

Using the regression results and the t-critical value we have just calculated a 95% interval 
estimate can be computed using a calculator. You can also use results saved in Stata’s memory to 
obtain an interval estimate. As noted previously, when a regression is estimated certain results are 
saved and are accessible for further use. The estimated coefficients and standard errors are saved 
as _b[varname] and _se[varname], respectively. After the food expenditure equation estimation 
the estimated slope coefficient is known as _b[income] and the estimated intercept is _b[_cons]. 
Their standard errors are _se[income] and _se[_cons]. For more information on these, enter 
help _variables in the Command window. The 95% interval estimates are se( ) k c kb t b� . The 
upper bound and lower bound of the interval estimates for the slope are 
 

scalar ub2 = _b[income] + tc975*_se[income] 

scalar lb2 = _b[income] - tc975*_se[income] 

 
These can be displayed using 

t critical value 97.5 percentile = 2.0243942
. di "t critical value 97.5 percentile = "  tc975

t(30) 95th percentile = 1.6972609
. di "t(30) 95th percentile = " invttail(30,0.05)

t(20) 5th percentile  = -1.7247182
. di "t(20) 5th percentile  = " invttail(20,0.95)

t(30) 2.5th percentile  = -2.0422725
. di "t(30) 2.5th percentile  = " invttail(30,0.975)
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di "beta 2 95% interval estimate is " lb2 " , " ub2 

 
producing 
 

 

3.2 HYPOTHESIS TESTS 

The t-statistics used for hypothesis tests about the parameters can be computed using a calculator 
from the regression output and a t-critical value from a statistical table. However in this section 
we will compute the test statistic values, critical values and p-values using Stata. As an example 
we will continue with the food expenditure regression model. 

3.2.1 Right-tail test of significance 

To test the null hypothesis 0 2: 0H � �  against the alternative hypothesis 1 2: 0H � � . We can 
construct and display the t-statistic value and critical value using 
 

scalar tstat0 = _b[income]/_se[income] 

di "t statistic for Ho: beta2=0 = " tstat0 

di "t(38) 95th percentile = " invttail(38,0.05) 

 

 
 

Note that the critical value comes from the right tail of the t-distribution and we use the invttail 
command to find the critical value. The t-statistic values for the null hypothesis that the 
coefficients are zero are automatically produced by Stata when a regression model is estimated in 
the column labeled “t”. 

 

 

beta 2 95% interval estimate is 5.9720525 , 14.447233
. di "beta 2 95% interval estimate is " lb2 " , " ub2

t(38) 95th percentile = 1.6859545
. di "t(38) 95th percentile = " invttail(38,0.05)

t statistic for Ho: beta2=0 = 4.8773806
. di "t statistic for Ho: beta2=0 = " tstat0

. scalar tstat0 = _b[income]/_se[income]
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Sometimes we will want to test more complicated hypotheses about coefficients, and these can be 
implemented using the post-estimation command lincom. From the Stata pull-down menu select 
Statistics > Postestimation > Linear combinations of estimates. 
 

 
 
Type the expression that you want to estimate in the dialog box. It can be any linear expression, 
called a linear combination, involving the two coefficients 1b  and 2b , such as 2 15 3 1b b� � . Of 
course Stata does not make reference to 2b  and 1b  directly but rather through _b[income] and 
_b[_cons]. In the case of the command lincom we can simply refer to the variable names, such 
as 5*income - 3*_cons-1. The command will compute the value of the expression and its 
standard error, and produce a t-statistic and an interval estimate. 

 

 
 

 
As another example, simply enter 

 

 
 
Click OK. In the Result window we find that the implied Stata command and the same result 
presented in the regression output. 

 

                                                                              
         (1)    -200.1998   140.1664    -1.43   0.161    -483.9518    83.55225
                                                                              
    food_exp        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

 ( 1)  5*income - 3*_cons = 1

. lincom 5*income - 3*_cons -1
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3.2.2 Right-tail test of an economic hypothesis 

To test 0 2: 5.5H � �  against the alternative hypothesis 1 2: 5.5H � �  we can again do the basic 
calculations of the test statistic and 0.01 right-tail critical value 
 

scalar tstat1 = (_b[income]-5.5)/_se[income] 

 
Note that we have used parentheses to control the order of operation.  
 

di "t-statistic for Ho: beta2 = 5.5 is " tstat1 

di "t(38) 99th percentile = " invttail(38,0.01) 

 
This produces the results 
 

 
 

Using lincom enter 
 

lincom income-5.5 

 
The result shows that the value of 2 5.5b �  is computed [ Coef. ] and the t-statistic [ t ]calculated, 
along with a 95% interval estimate of this value. 

 

 

                                                                              
         (1)     10.20964   2.093264     4.88   0.000     5.972052    14.44723
                                                                              
    food_exp        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

 ( 1)  income = 0

. lincom income

t(38) 99th percentile = 2.4285676
. di "t(38) 99th percentile = " invttail(38,0.01)

t-statistic for Ho: beta2 = 5.5 is 2.2499045
. di "t-statistic for Ho: beta2 = 5.5 is " tstat1
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3.2.3 Left-tail test of an economic hypothesis 

To illustrate a left tail test, let the null hypothesis be 0 2: 15H �   with alternative hypothesis 

1 2: 15H � ! . The command sequence is 
 

scalar tstat2 = (_b[income]-15)/_se[income] 

di "t-statistic for Ho: beta2 = 15 is " tstat2 

 
We again use invttail to compute the 0.05 critical value. Since the rejection region is in the left 
tail, this time we require 95% of the probability in the right tail. 
 

di "t(38) 5th percentile = " invttail(38,0.95) 

 
Producing 
 

 
 

To use lincom enter 
 

lincom income-15 

 

 

3.2.4 Two-tail test of an economic hypothesis 

A two-tail test has the same mechanics as a one tail-test except for the calculation of the critical 
values. For a test at the 0.05 level of significance the critical values must be the 2.5 and 97.5 
percentiles of the t-distribution. To test 0 2: 7.5H � �  against alternative hypothesis 1 2: 7.5H � "  
use the following commands 
 

scalar tstat3 = (_b[income]-7.5)/_se[income] 

di "t-statistic for Ho: beta2 = 7.5 is " tstat3 

di "t(38) 97.5th percentile = " invttail(38,0.025) 

di "t(38) 2.5th percentile = " invttail(38,0.975) 

 
The results are 
 

t(38) 5th percentile = -1.6859545
. di "t(38) 5th percentile = " invttail(38,0.95)

t-statistic for Ho: beta2 = 15 is -2.2884634
. di "t-statistic for Ho: beta2 = 15 is " tstat2

                                                                              
         (1)    -4.790357   2.093264    -2.29   0.028    -9.027948   -.5527666
                                                                              
    food_exp        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

 ( 1)  income = 15

. lincom income-15
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Because the Stata command invttail works with the upper tail of the t-distribution, calculating 
the critical values for the lower tail can be confusing. At all times let your brain continue to 
function. The t-distribution is symmetric and the percentiles 90, 95, 97.5 and 99 are positive 
values, and percentiles 1, 2.5, 5 and 10 are negative. 

To use lincom enter 
 

lincom income-7.5 

 

 

3.3 p-VALUES

The ability to compute p-values easily is a powerful feature of Stata. Recall that 
 

� if 1 : kH c� � , p = probability to the right of t 
� if 1 : kH c� ! , p = probability to the left of t 
� if 1 : kH c� " , p = sum of probabilities to the right of t  and to the left of t�  

 
The p-value rule for testing hypotheses: Reject the null hypothesis when the p-
value is less than, or equal to, the level of significance �. That is, if p � � then 
reject 0H . If p > � then do not reject 0H . 

 
Critical values for the t-distribution can be looked up in tables, or computed using the function 
invttail. However p-values must be calculated using the computer. Stata uses the function 
ttail. The syntax of the command and its definition are obtained by entering help ttail in the 
Command window. 
 

ttail(n,t) “returns the reverse cumulative (upper-tail) Student's t 

distribution; it returns the probability T > t.” 

 
where n is the number of degrees of freedom and t is the value of the t-statistic. Once again the 
ttail function returns an upper-tail probability value.  

t(38) 2.5th percentile = -2.0243942
. di "t(38) 2.5th percentile = " invttail(38,0.975)

t(38) 97.5th percentile = 2.0243942
. di "t(38) 97.5th percentile = " invttail(38,0.025)

t-statistic for Ho: beta2 = 7.5 is 1.2944586
. di "t-statistic for Ho: beta2 = 7.5 is " tstat3

                                                                              
         (1)     2.709643   2.093264     1.29   0.203    -1.527948    6.947233
                                                                              
    food_exp        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

 ( 1)  income = 7.5

. lincom income-7.5
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3.3.1 p-value of a right-tail test  

In Section 3.2.2 above we tested 0 2: 5.5H � �  against the alternative hypothesis 1 2: 5.5H � � . 
We calculated the t-statistic value using 
 

scalar tstat1 = (_b[income]-5.5)/_se[income] 

 
To compute and display the p-value use 
 

di "p value right tail test ho:beta2 = 5.5 is " ttail(38,tstat1) 

 
With result 
 

 
Recall that if you forget the syntax, you can find the scalar define dialog box by entering the 
command help scalar. In the resulting Viewer click define. Click Create and then in the 
Expression builder dialog box select Probability functions and scroll down to something that 
looks right. The definitions of the functions show up at the bottom of the box which is a great 
help. Then double-click the name of the function, and in the Expression builder box enter the 
degrees of freedom n and the t-statistic value t and click OK. 

 

 
 
In the resulting box enter a name for the expression and click OK. 

 

 
 

p-value for right-tail test ho:beta2 = 5.5 is .01516329
. di "p-value for right-tail test ho:beta2 = 5.5 is " ttail(38,tstat1)
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3.3.2 p-value of a left-tail test

To illustrate a left-tail test p-value use the example in Section 3.2.3 above. Let the null hypothesis 
be 0 2: 15H �   with alternative hypothesis 1 2: 15H � ! . We computed 
 

scalar tstat2 = (_b[income]-15)/_se[income] 

 
The p-value for a left tail test, is in the left, or lower, tail of the t-distribution. Enter the command 
 

di "p value left tail test ho:beta2 = 15 is " 1-ttail(38,tstat2) 

 

We have to use 1 � ttail(38,tstat2) because we want to compute the area to the left of tstat2 
while ttail(38,tstat2) calculates the area to the right of tstat2. The result is 
 

 

3.3.3 p-value for a a two-tail test  

In Section 3.2.4 above we tested 0 2: 7.5H � �  against alternative hypothesis 1 2: 7.5H � " . The t-
statistic was calculated using 
 

scalar tstat3 = (_b[income]-7.5)/_se[income] 

 
The p-value for a two-tail test is the sum of the areas to right of t  and the left of t� . Use 
 

scalar phalf = ttail(38,abs(tstat3)) 

 
This command computes ½ the p-value, the portion in the upper tail of the t-distribution to the 
right of the absolute value (the function abs) of the t-statistic. Multiply this value by 2 and 
display 
 

scalar p3 = 2*phalf 

di "p value for two tail test ho:beta2 = 7.5 is " p3 

 
The result is 
 

 
 

Of course separate calculations are not required. The calculation is 
 

di "p value for ho:beta2 = 7.5 is " 2*ttail(38,abs(tstat3)) 

 

 

p-value for left-tail test ho:beta2 = 15 is .01388071
. di "p-value for left-tail test ho:beta2 = 15 is " 1-ttail(38,tstat2)

p-value for two-tail test ho:beta2 = 7.5 is .20331828
. di "p-value for two-tail test ho:beta2 = 7.5 is " p3

p-value for ho:beta2 = 7.5 is .20331828
. di "p-value for ho:beta2 = 7.5 is " 2*ttail(38,abs(tstat3))
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3.3.4 p-values in Stata output

When a regression is estimated, and when the post-estimation command lincom is used, a p-
value is reported. For example, the regression output is: 

 

 
The column labeled P t�  is the two-tail p-value for the null hypothesis that the coefficient is 
zero. The symbol itself is taken to the mean the probability P greater than the absolute value of 
the t-statistic value t . This translates into two statements really, the probability greater than the 
positive value of t and the value less than the negative value of t. If a one-tail test of significance 
is desired, the p-value is ½ the p-value of the two-tail test as long as the estimate satisfies the 
alternative hypothesis, since it occurs in only one-tail of the distribution. 

When lincom is used the same elements are present 
 

 

3.3.5 Testing and estimating linear combinations of parameters

A more general linear hypothesis involves both parameters and may be stated as  
 

0 1 1 2 2 0:H c c c�  � �  
 
where c0, c1 and c2 are specified constants. The test of this hypothesis uses the t-statistic 

 
� �

� �
1 1 2 2 0

1 1 2 2se
c b c b c

t
c b c b
 �

�
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The rejection regions for the one- and two-tail alternatives (i)-(iii) are the same as those described 
in Section 3.3, and conclusions are interpreted the same way as well. The standard error in the 
denominator of the t-statistic is the square root of 

 
# $� � � �2 2

1 1 2 2 1 1 2 2 1 2 1 2var var( ) var( ) 2 cov( , )c b c b c b c b c c b b �    
 
To compute this value manually use the estimated covariance matrix of the least squares 
estimates, obtained post-estimation using estat vce. 

 

 
 

Using lincom we can estimate a linear combination such as 1 1 2 2c c�  � , and test the more general 
form of linear hypothesis. For example, if c1 = 1, and c2 = 20, then  

 
lincom _cons + income*20 

 

 
To test the null hypothesis that this linear combination equals 250, use 

 
lincom _cons + income*20 - 250 

 

 

APPENDIX 3A GRAPHICAL TOOLS 

To illustrate graphically one-tail and two-tail rejection regions and p-values we first generate the 
t-distribution values, and then “shade” the appropriate tail areas. For example, the two-tail 

       _cons   -85.903157   1884.4423 
      income    4.3817522             
                                      
        e(V)       income       _cons 

Covariance matrix of coefficients of regress model

. estat vce

                                                                              
         (1)     287.6089   14.17804    20.29   0.000     258.9069    316.3108
                                                                              
    food_exp        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

 ( 1)  20*income + _cons = 0

. lincom _cons + income*20

                                                                              
         (1)     37.60886   14.17804     2.65   0.012     8.906915    66.31081
                                                                              
    food_exp        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

 ( 1)  20*income + _cons = 250

. lincom _cons + income*20 - 250
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rejection region for a t-distribution with 38 degrees of freedom is t-values greater than 2.024 or 
less than �2.024.  

First, clear memory. The density function values ( )f t  are obtained using the Stata function 
tden(n,t) where n is the degrees of freedom and t is a value. The graph twoway function (help 
twoway function) will generate a line plot for a specified function. The command syntax is 

 
twoway function [[y]=] f(x) [if] [in] [, options] 

 
Within the twoway function we can obtain as shaded area using the recast option, which specifies 
a new plot type—an area instead of a line plot. 

 
twoway (function y=tden(38,x), range(-5 -2.024) /// 

   color(ltblue) recast(area)) /// 

 (function y=tden(38,x), range(2.024 5)   /// 

   color(ltblue) recast(area)) /// 

 (function y=tden(38,x), range(-5 5)),    /// 

 legend(off) plotregion(margin(zero))     /// 

 ytitle("f(t)") xtitle("t")    /// 

 text(0 -2.024 "-2.024", place(s))       /// 

 text(0 2.024 "2.024", place(s))         /// 

 title("Two-tail rejection region" "t(38), alpha=0.05") 

 

The option plotregion (help region options) eliminates graph margins. The text option allows 
placement of text into a graph at given coordinates (help graph text) in relative position given by 
place, here south (s). 

 

 
 
Similarly, for a right-tail rejection region use 

 
twoway (function y=tden(38,x), range(1.686 5) /// 

   color(ltblue) recast(area)) /// 

 (function y=tden(38,x), range(-5 5)), /// 

 legend(off) plotregion(margin(zero)) /// 

 ytitle("f(t)") xtitle("t") /// 

-2.024 2.0240
.1

.2
.3

.4
f(t

)

-5 0 5
t

Two-tail rejection region
t(38), alpha=0.05
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 text(0 1.686 "1.686", place(s)) /// 

 title("Right-tail rejection region" "t(38), alpha=0.05") 

 

 

APPENDIX 3B MONTE CARLO SIMULATION 

Using the same experimental design as in the Chapter 2 simulation, we now explore the repeated 
sampling properties of hypothesis tests and interval estimators. A test at the 5% level of 
significance should result in rejecting a true null hypothesis 5% of the time. A 95% interval 
estimator should cover, or contain, the true parameter value 95% of the time. We can verify these 
properties using a Monte Carlo simulation.  

 
clear all 

log using app3c, replace text 

global numobs 40  

global beta1 100 

global beta2 10 

global sigma 50 

 

set seed 1234567 

 

set obs $numobs 

gen x = 10 

replace x = 20 if _n > $numobs/2 

gen y = $beta1 + $beta2*x + rnormal(0,$sigma) 

 

quietly regress y x 

 

Test the true null hypothesis that the slope parameter is 10 by constructing the t-statistic from 
saved results. 

 
scalar tstat = (_b[x]-$beta2)/_se[x] 

1.6860
.1

.2
.3

.4
f(t

)

-5 0 5
t

Right-tail rejection region
t(38), alpha=0.05
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di "ttest of ho b2 = 10 " tstat 

 
The program that will be repeated in the simulation process now returns both the t-statistic value 
and also the upper and lower bounds of a 95% interval estimate. 

 
program chap03sim, rclass 

 version 11.1  

 drop _all 

 set obs $numobs 

 gen x = 10 

 replace x = 20 if _n > $numobs/2 

 gen ey = $beta1 + $beta2*x 

 gen e = rnormal(0, $sigma) 

 gen y = ey + e 

 regress y x 

 scalar tc975 = invttail($numobs-2,0.025) 

 * calculating 95% interval estimate 

 return scalar b2 = _b[x] 

 return scalar se2 = _se[x] 

 return scalar ub = _b[x] + tc975*_se[x] 

 return scalar lb = _b[x] - tc975*_se[x] 

  

 * calculating t-statistic 

 return scalar tstat = (_b[x] - $beta2)/_se[x] 

end 

 
In a Monte Carlo experiment concerning rejection probabilities or interval estimation success, the 
number of Monte Carlo experimental samples is quite important. Here we choose to use 10,000 
samples for the following reason. A 95% confidence interval estimator should contain the true 
parameter value 95% of the time in repeated samples. The M repeated samples in a Monte Carlo 
experiment are independent experimental trials in which we expect a “success,” an interval 
containing the true parameter value, with probability of success 0.95P � . The number of 
successes follows a binomial distribution. The proportion of successes P̂  in M trials is a 
random variable with expectation P and variance � �1P P M� . If the number of Monte Carlo 
samples M is large, the probability is 0.95 that the proportion of Monte Carlo successes is 

� �1.96 1P P P M� � . Similarly, for a test with probability of rejection 0.05% � , the 

probability is 0.95 that the percent of rejections will fall within � �1.96 1 M% � % �% .  
These bounds for 10,000 and 1000 samples are given by 
 

di "lower bound with 10000 replications " 0.05 –  

 1.96*sqrt(0.05*0.95/10000) 

di "upper bound with 10000 replications " 0.05 +  

 1.96*sqrt(0.05*0.95/10000) 

di "lower bound with 1000 replications " 0.05 –  

 1.96*sqrt(0.05*0.95/1000) 

di "upper bound with 1000 replications " 0.05 +  

 1.96*sqrt(0.05*0.95/1000) 
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With 10,000 Monte Carlo samples the probability is 0.95 that the observed percent of rejections 
will fall within the interval 0.0457 and 0.0543. With only 1000 samples the interval is 0.0365 to 
0.0635. 

The simulate command generates new variables b2r, se2r as in Chapter 2. In addition we 
add ubr, lbr and tstatr for the upper and lower interval estimate bounds and the t-statistic for the 
true null hypothesis that 2 10� � . 

 
simulate b2r = r(b2) se2r = r(se2) ubr = r(ub) lbr=r(lb) /// 

 tstatr=r(tstat) , reps(10000) nodots nolegend /// 

 seed(1234567): chap03sim 

 

To count the number of successful interval estimations we count how many times the interval 
estimate contains the true parameter value 10. 

 
gen cover = (lbr < $beta2) & ($beta2<ubr) 

 
The hypothesis test should reject the true null hypothesis 5% of the time. Here we demonstrate 
using a right-tail alternative. We can examine and summarize these values. 

 
gen reject = (tstatr > invttail($nobs,0.05)) 

list b2r se2r tstatr reject lbr ubr cover in 101/120, table 

 

 
 

summarize cover reject 

 

 
log close 

 

upper bound with 1000 replications .06350837
. di "upper bound with 1000 replications " 0.05 + 1.96*sqrt(0.05*0.95/1000)

lower bound with 1000 replications .03649163
. di "lower bound with 1000 replications " 0.05 - 1.96*sqrt(0.05*0.95/1000)

upper bound with 10000 replications .05427172
. di "upper bound with 10000 replications " 0.05 + 1.96*sqrt(0.05*0.95/10000)

lower bound with 10000 replications .04572828
. di "lower bound with 10000 replications " 0.05 - 1.96*sqrt(0.05*0.95/10000)

                                                                               
105.   12.34023   1.627542    1.437893        0   9.045445   15.63502       1  
104.   9.740551   1.876146   -.1382883        0   5.942492   13.53861       1  
103.   13.36436    1.70848     1.96921        1   9.905719   16.82299       1  
102.   10.95639   1.548826    .6174955        0    7.82096   14.09183       1  
101.   8.318099   1.502351   -1.119513        0   5.276749   11.35945       1  
                                                                               
            b2r       se2r      tstatr   reject        lbr        ubr   cover  
                                                                               

      reject       10000       .0473    .2122904          0          1
       cover       10000       .9518    .2141993          0          1
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize cover reject
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We see that the interval estimates contain the true parameter value 95.18 % of the time, and the 
hypothesis test rejects 4.73 % of the time, which is within the bounds of sampling error we 
calculated. 

KEY TERMS 

_b[_cons] interval estimate scalar 
_b[varname] invttail set obs 
_se[_cons] left-tail test simulate 
_se[varname] lincom tden 
confidence interval linear combinations of estimates ttail 
coverage probability postestimation two-tail test 
define p-value twoway 
estat vce recast(area)  
expression builder right-tail test  

CHAPTER 3 DO-FILE [CHAP03.DO] 

* file chap03.do for Using Stata for Principles of Econometrics, 4e 

 

cd c:\data\poe4stata 
 

* Stata Do-file  

* copyright C 2011 by Lee C. Adkins and R. Carter Hill  
* used for "Using Stata for Principles of Econometrics, 4e"  

* by Lee C. Adkins and R. Carter Hill (2011) 

* John Wiley and Sons, Inc. 
 

* setup 

version 11.1 
capture log close 

set more off 

 
* open log 

log using chap03, replace text 

 
* open food 

use food, clear 

 
* estimate regression 

reg food_exp income 

 
* compute t-critical value 

scalar tc975 = invttail(38,.025) 

di "t critical value 97.5 percentile = "  tc975 
 

* calculating 95% interval estimate 

scalar ub2 = _b[income] + tc975*_se[income] 
scalar lb2 = _b[income] - tc975*_se[income] 

di "beta 2 95% interval estimate is " lb2 " , " ub2 

 
* examples of computing t-critical values 

di "t(30) 95th percentile = " invttail(30,0.05) 
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di "t(20) 95th percentile = " invttail(20,0.05) 

di "t(20) 5th percentile  = " invttail(20,0.95) 

di "t(30) 97.5th percentile = " invttail(30,0.025) 
di "t(30) 2.5th percentile  = " invttail(30,0.975) 

 

* right-tail test ho:beta2 = 0 
scalar tstat0 = _b[income]/_se[income] 

di "t statistic for Ho: beta2=0 = " tstat0 

di "t(38) 95th percentile = " invttail(38,0.05) 
 

* using lincom 

lincom income 
 

* right-tail test ho:beta2 = 5.5 

scalar tstat1 = (_b[income]-5.5)/_se[income] 
di "t-statistic for Ho: beta2 = 5.5 is " tstat1 

di "t(38) 99th percentile = " invttail(38,0.01) 

 
* using lincom for calculation 

lincom income-5.5 

 
* left-tail test ho:beta2 = 15 

scalar tstat2 = (_b[income]-15)/_se[income] 

di "t-statistic for Ho: beta2 = 15 is " tstat2 
di "t(38) 5th percentile = " invttail(38,0.95) 

lincom income-15 

 
* two-tail test ho:beta2 = 7.5 

scalar tstat3 = (_b[income]-7.5)/_se[income] 

di "t-statistic for Ho: beta2 = 7.5 is " tstat3 
di "t(38) 97.5th percentile = " invttail(38,0.025) 

di "t(38) 2.5th percentile = " invttail(38,0.975) 

lincom income-7.5 
 

* two-tail test ho:beta1 = 0 

lincom _cons 
 

* p-value for right-tail test 

scalar tstat1 = (_b[income]-5.5)/_se[income] 
di "p-value for right-tail test ho:beta2 = 5.5 is " ttail(38,tstat1) 

 

* p-value for left-tail test 
scalar tstat2 = (_b[income]-15)/_se[income] 

di "p-value for left-tail test ho:beta2 = 15 is " 1-ttail(38,tstat2) 

 
* p-value for a two-tail test 

scalar tstat3 = (_b[income]-7.5)/_se[income] 

scalar phalf = ttail(38,abs(tstat3)) 
scalar p3 = 2*phalf 

di "p-value for two-tail test ho:beta2 = 7.5 is " p3 

di "p-value for ho:beta2 = 7.5 is " 2*ttail(38,abs(tstat3)) 
 

* linear combinations of parameters 

* estimating a linear combination 
estat vce 

lincom _cons + income*20 

 
* testing a linear combination 

lincom _cons + income*20 - 250 

 
log close 

 

* Appendix 3A Graphing rejection regions 
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clear 

 
* specify critcal values as globals 

global t025=invttail(38,0.975) 

global t975=invttail(38,0.025) 
 

* draw the shaded areas, then draw the overall curve 

twoway (function y=tden(38,x), range(-5 $t025)  /// 
                   color(ltblue) recast(area))  /// 

       (function y=tden(38,x), range($t975 5)   /// 

                color(ltblue) recast(area))  /// 
       (function y=tden(38,x), range(-5 5)),    /// 

       legend(off) plotregion(margin(zero))     /// 

              ytitle("f(t)") xtitle("t")     /// 
    text(0 -2.024 "-2.024", place(s))        /// 

    text(0 2.024 "2.024", place(s))          /// 

    title("Two-tail rejection region" "t(38), alpha=0.05") 
 

* one-tail rejection region 

twoway (function y=tden(38,x), range(1.686 5)  /// 
                   color(ltblue) recast(area))  /// 

       (function y=tden(38,x), range(-5 5)),  /// 

       legend(off) plotregion(margin(zero))   /// 
               ytitle("f(t)") xtitle("t")  /// 

    text(0 1.686 "1.686", place(s))   /// 

    title("Right-tail rejection region" "t(38), alpha=0.05") 
     

* Appendix 3C 

 
* set up 

clear all 

 
* open log 

log using app3c, replace text 

 
* define global variables 

global numobs 40    

global beta1 100  
global beta2 10  

global sigma 50 

 
* set random number seed 

set seed 1234567 

 
* generate sample of data 

set obs $numobs 

gen x = 10 
replace x = 20 if _n > $numobs/2 

gen y = $beta1 + $beta2*x + rnormal(0,$sigma) 

 
* regression 

quietly regress y x 

 
* test h0: beta2 = 10 

scalar tstat = (_b[x]-$beta2)/_se[x] 

di "ttest of ho b2 = 10 " tstat 
 

* program to generate data and to examine 

*  performance of interval estimator and 
* hypothesis test    

program chap03sim, rclass 

    version 11.1  
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    drop _all 

    set obs $numobs 

    gen x = 10 
 replace x = 20 if _n > $numobs/2 

    gen ey = $beta1 + $beta2*x 

 gen e = rnormal(0, $sigma) 
 gen y = ey + e 

 regress y x 

 scalar tc975 = invttail($numobs-2,0.025) 
 

 * calculating 95% interval estimate 

 return scalar b2 = _b[x] 
 return scalar se2 = _se[x] 

 return scalar ub = _b[x] + tc975*_se[x] 

    return scalar lb = _b[x] - tc975*_se[x] 
  

 * calculating t-statistic 

    return scalar tstat = (_b[x] - $beta2)/_se[x] 
end 

 

* display 95% interval for test size with different number  
* of monte carlo samples  

 

di "lower bound with 10000 replications is " 0.05 - 1.96*sqrt(0.05*0.95/10000) 
di "upper bound with 10000 replications is " 0.05 + 1.96*sqrt(0.05*0.95/10000) 

di "lower bound with 1000 replications is " 0.05 - 1.96*sqrt(0.05*0.95/1000) 

di "upper bound with 1000 replications is " 0.05 + 1.96*sqrt(0.05*0.95/1000) 
 

* simulate command 

simulate b2r = r(b2) se2r = r(se2) ubr = r(ub) lbr=r(lb)  /// 
 tstatr=r(tstat) , reps(10000) nodots nolegend  /// 

 seed(1234567): chap03sim 

 
* display experiment parameters    

di " Simulation parameters"  

di " beta1 = " $beta1 
di " beta2 = " $beta2 

di " N = " $numobs   

di " sigma^2 = " $sigma^2 
 

* count intervals covering true beta2 = 10 

gen cover = (lbr < $beta2) & ($beta2 < ubr) 
 

* count rejections of true h0: beta2 = 10 

gen reject = (tstatr > invttail($numobs-2,0.05)) 
 

* examine some values 

list b2r se2r tstatr reject lbr ubr cover in 101/120, table 
 

* summarize coverage and rejection 

summarize cover reject 
 

log close 
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CHAPTER 4

Prediction, Goodness-of-Fit and 
Modeling Issues 

CHAPTER OUTLINE 
4.1 Least squares prediction 
     4.1.1 Editing the data 
     4.1.2 Estimate the regression and obtain 
              postestimation results 
     4.1.3 Creating the prediction interval 
4.2 Measuring goodness-of-fit 
     4.2.1 Correlations and R2

4.3 The effects of scaling and transforming the 
      data 
     4.3.1 The linear-log functional form 
     4.3.2 Plotting the fitted linear-log model 
     4.3.3 Editing graphs 
4.4 Analyzing the residuals      
     4.4.1 The Jarque-Bera test 
     4.4.2 Chi-square distribution critical values 
     4.4.3 Chi-square distribution p-values 

4.5 Polynomial models 
     4.5.1 Estimating and checking the linear 
              relationship 
     4.5.2 Estimating and checking a cubic 
              relationship 
     4.5.3 Estimating a log-linear yield growth model 
4.6 Estimating a log-linear wage equation 
     4.6.1 The log-linear model 
     4.6.2 Calculating wage predictions 
     4.6.3 Constructing wage plots 
     4.6.4 Generalized R2

     4.6.5 Prediction intervals in the log-linear model  
4.7 A log-log model  
Key Terms  
Chapter 4 Do-file 

4.1 LEAST SQUARES PREDICTION 

We have touched on prediction in Chapter 2. Now we include the standard error of the forecast as 
a measurement of the precision of the prediction, or forecast, and a prediction interval. Change to 
your working directory, begin a log file for the chapter, and open the food expenditure data. 
 

version 11.1 

capture log close 

set more off 

log using chap04_food, replace text 
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use food, clear 

 
Let us obtain the predicted value of household food expenditure for a household with income of 
$2000 per week.  

4.1.1 Editing the data 

We will edit the data, entering income = 20 in observation 41. The steps are explained in Section 
2.5 of this manual.  
 

edit 

set obs 41 

replace income = 20 in 41 

4.1.2 Estimate the regression and obtain postestimation results 

Now estimate the food expenditure regression, suppressing the output since we have seen it. 
 

quietly regress food_exp income 

 
Using the post-estimation predict command, obtain the fitted values (yhat), the least squares 
residuals (ehat). These we have seen before in Section 2.4.1. 
 

predict yhat 

predict ehat, residuals 

 
A new option that we will add is stdf which will compute the standard error of the forecast. Let 
the new observation for which we wish a forecast be defined by 
 

0 1 2 0 0y x e� � �   
 
where 0e  is a random error. We assume that � �0 1 2 0E y x� �  �  and � �0 0E e � . We also assume 
that 0e  has the same variance as the regression errors, � � 2

0var e � � , and 0e  is uncorrelated with 
the random errors that are part of the sample data, so that � �0cov , 0 1,2, ,ie e i N� � � . The least 
squares predictor of 0y  comes from the fitted regression line 
 

0 1 2 0ŷ b b x�   
 
That is, the predicted value 0ŷ  is given by the point on the least squares fitted line where 0x x� . 
To evaluate how well this predictor performs we define the forecast error, which is analogous to 
the least squares residual, 
 

� � � �0 0 1 2 0 0 1 2 0ˆf y y x e b b x� � � �  �  �   
 
The estimated variance of this forecast error is 
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The square root of this estimated variance is the standard error of the forecast 
 

� � � ��se varf f�  
 
This is the quantity calculated using the command 
 

predict sef, stdf 

 
Browsing the data, we find 

 

 
 
The predicted value yhat and the standard error of the forecast sef have values. The dependent 
variable food_exp and the least squares residual ehat have missing values for observation 41. 

4.1.3 Creating the prediction interval 

Defining the critical value tc to be the 100(1��/2)-percentile from the t-distribution, we can obtain 
a 100(1��)% prediction interval as 
 

� �0ˆ secy t f�  
 
We create the t-critical value using invttail(n,p). 
 

scalar tc = invttail(38,.025) 

di "t critical value 97.5 percentile = "  tc 

 
 

t critical value 97.5 percentile = 2.0243942
. di "t critical value 97.5 percentile = "  tc



126   Chapter 4 

The value created is 2.0243942. Now, we use this value, along with yhat and sef to generate new 
variables that are the lower and upper bound of the prediction interval. The generate command 
can be shortened to gen.  
 

gen lb = yhat - tc*sef 

gen ub = yhat + tc*sef 

 
We can view the values of these variables in observation 41 using list. We will list the variables 
income, lb, yhat and ub in observation 41. 
 

list income lb yhat ub in 41 

 

 
 
Because we will use observation 41 no longer, let us drop it from the data file 
 

drop in 41 

 
The command drop has several functions. It can be used to delete particular observations from 
the data file, as we have done above, and it can be used to drop variables. Enter help drop to see 
the syntax. 

4.2 MEASURING GOODNESS-OF-FIT 

The goodness of fit measure 2R  is motivated by the sum of squares decomposition 
 

2 2 2ˆ ˆ( ) ( )i i iy y y y e� � � � � �  
 
These “sums of squares” are: 
 

� 2( )iy y�� = total sum of squares = SST: a measure of total variation in y about the 
sample mean.  

� 2ˆ( )iy y�� = sum of squares due to the regression = SSR: that part of total variation in y, 
about the sample mean, that is explained by, or due to, the regression. Also known as the 
“explained sum of squares.” 

� 2
îe� = sum of squares due to error = SSE: that part of total variation in y about its mean 

that is not explained by the regression. Also known as the unexplained sum of squares, 
the sum of squared residuals, or the sum of squared errors. 

 
Using these abbreviations the sum of squares decomposition becomes 

 41.      20   104.1323   287.6089   471.0854

 income         lb       yhat         ub

. list income lb yhat ub in 41
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SST = SSR + SSE 
 
Then the goodness of fit measure 2R  is 
 

2 1SSR SSER
SST SST

� � �  

 
When a regression is estimated, all of these quantities appear in the Analysis of Variance Table 
just above the regression coefficients. In the table source (Model, Residual, Total) refers to the 
same breakdown as the sums of squares decomposition. The column labeled SS refers to sums of 
squares. The column df is for degrees of freedom. The Model “degrees of freedom” is 1 because 
the model contains one explanatory variable. The Residual degrees of freedom is N � 2, which is 
the number of observations minus the number of model parameters, including the intercept. The 
column MS is for Mean Square. This column contains the ratio of the SS column divided by the 
df column. Thus the Residual MS is our estimated error variance. 
 

 

4.2.1 Correlations and R2

It is also noted in POE that in the simple regression model 2R  is the squared simple correlation 
between the y and x variables. Also, in general, 2R  is the squared correlation between y and its 
fitted value, ŷ . From the Stata pull-down menu choose  
 

Statistics > Summaries, tables, and tests > Summary and descriptive 
 statistics > Pairwise correlations 

 
In the Pairwise correlations dialog box fill in the names of the variables using the pull-down list. 
Click OK. The Stata command is 
 

pwcorr food_exp income yhat 

 
The Results window shows the correlations. 
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Then squaring the correlation between food_exp and income gives 2 2 2.62 .385xyr R� � � . 

4.3 THE EFFECTS OF SCALING AND TRANSFORMING THE DATA 

Data in a regression model can be scaled without any real loss of meaning. The scaling of 
variables should result in reasonable units of measurement, with no extremely large numbers or 
extremely small numbers. Scaled and transformed variables are easily created using the generate 
command.  

For the food expenditure data the variable income is measured in units of $100, so income = 
20 means that the household has a monthly income of $2000. To change the income variable to 
dollars and estimate the resulting regression, enter into the Command window 
 

gen inc_dollar = income*100 

 
Estimate the food expenditure regression with this new income variable. Note that we have 
shortened the regress command to reg. 
 

reg food_exp income 

 
 

reg food_exp inc_dollar 

 

 
In the regression results note the change in the size of the coefficient of income and its standard 
error, and thus the confidence interval. 

 
log close 

 

        yhat     0.6205   1.0000   1.0000 
      income     0.6205   1.0000 
    food_exp     1.0000 

               food_exp   income     yhat

. pwcorr food_exp income yhat

       _cons      83.416   43.41016     1.92   0.062    -4.463279    171.2953
      income    10.20964   2.093264     4.88   0.000     5.972052    14.44723

    food_exp       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       _cons      83.416   43.41016     1.92   0.062    -4.463279    171.2953
  inc_dollar    .1020964   .0209326     4.88   0.000     .0597205    .1444723

    food_exp       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
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4.3.1 The linear-log functional form 

The linear regression model can represent relationships between variables that are nonlinear using 
simple transformations of variables. For the food expenditure example the linear-log model is 
 

� �1 2_ lnFOOD EXP INCOME e� �  �   
 
To estimate this model we will create a new variable that is the log of income, and then apply 
least squares regression. 
 

log using chap04_linlog, replace text 

use food, clear 

gen lincome = ln(income) 

reg food_exp lincome 

 

 
 

Use the post-estimation command predict to obtain fitted values and residuals from the log-
linear model regression that we use in Section 4.3.2. 
 

predict lyhat 

predict lehat, resid 

 
For the linear-log model the slope is 2 INCOME� . How can we use Stata to compute this? First 
we must select a value for income. The sample mean is a good choice when no other specific 
value is of interest. Calculate the summary statistics for income. 
 

summarize income 

 
Stata saves a number of calculated results. You can see these by entering the command 
 

return list 

 

       _cons   -97.18645   84.23744    -1.15   0.256    -267.7162    73.34333
     lincome    132.1659   28.80461     4.59   0.000     73.85397    190.4777

    food_exp       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    495132.16    39  12695.6964           Root MSE      =  91.567
           Adj R-squared =  0.3396

    Residual   318612.333    38  8384.53507           R-squared     =  0.3565
       Model   176519.828     1  176519.828           Prob > F      =  0.0000

           F(  1,    38) =   21.05
      Source        SS       df       MS              Number of obs =      40

. reg food_exp lincome
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We see that a number of scalars are returned, including the mean. Save it as a scalar. 
 

scalar xbar = r(mean) 

 
Now use lincom to calculate the slope formula 
 

lincom lincome/xbar 

 

 
 

At the mean level of income an increase of $100 weekly household income is estimated to 
increase food expenditure by $6.74. The slope of the estimated linear-log function can be 
computed at other values as well. 

 
lincom lincome/10 

lincom lincome/20 

lincom lincome/30 

 

 

                r(sum) =  784.1899999999999
                r(max) =  33.4
                r(min) =  3.69
                 r(sd) =  6.847772607168492
                r(Var) =  46.89198967948718
               r(mean) =  19.60475
              r(sum_w) =  40
                  r(N) =  40
scalars:

. return list

      income          40    19.60475    6.847773       3.69       33.4

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize income

         (1)     6.741522   1.469267     4.59   0.000     3.767147    9.715897

    food_exp        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 ( 1)  .051008*lincome = 0

. lincom lincome/xbar

         (1)    13.21659   2.880461     4.59   0.000     7.385397    19.04777

    food_exp       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 ( 1)  .1*lincome = 0

. lincom lincome/10
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4.3.2 Plotting the fitted linear-log model 

Using the fitted values and residuals computed in the previous section, we overlay two plots using 
the twoway graphs, the first being a scatter diagram and the second a line plot. The figures will 
overlay nicely because the data are sorted on INCOME.  
 

twoway (scatter food_exp income, sort) /// 

 (line lyhat income, sort lwidth(medthick)), /// 

 xtitle(Income) ytitle(Food Expenditure) ylabel(0(100)600) /// 

 title(Linear Log Model)  

graph save linlog, replace 

 

 
 
This relationship is not a straight-line. Near the center of the data the fitted line is not very steep. 
The slope, 6.74, is smaller from the simple linear regression. To see this more clearly let us 
overlay three plots. Estimate the linear relationship, using the quietly option to suppress output, 
and obtain predicted values and residuals.  
 

quietly reg food_exp income 

         (1)    4.405528   .9601537     4.59   0.000     2.461799    6.349258

    food_exp       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 ( 1)  .0333333*lincome = 0

. lincom lincome/30

         (1)    6.608293   1.440231     4.59   0.000     3.692698    9.523887

    food_exp       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 ( 1)  .05*lincome = 0

. lincom lincome/20
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predict yhat 

predict ehat, resid 

 
Add the fitted line with another new option, lpattern(dash). 
 

twoway (scatter food_exp income, sort) /// 

 (line lyhat income, sort lwidth(medthick)) /// 

 (line yhat income, sort lpattern(dash) lwidth(medthick)), /// 

 xtitle(Income) ytitle(Food Expenditure) ylabel(0(100)600) /// 

 title(Linear Log Model) 

graph save linlog2, replace 

 

 

4.3.3 Editing graphs 

Using the Graph Editor aspects of the graph can be altered interactively.   
 

 
 
On the right-side is a list of graph elements with “+” denoting elements that open to more detailed 
list. Clicking elements shows highlighted fields with which they are associated. To change the 
label “Fitted Values” for the linear-log model select label[2]. 
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Selecting label[2] reveals along the top editing options for color of label, size and text. Simply 
type in the text you desire and press Enter. 

Select plotregion, and plot3. As plot3 is selected the linear-fitted line shows crosses to 
indicate it has been selected. To change the line pattern from dash to another, select from the pull-
down menu.  

 

 
 

Select Apply to have the changes made. Then Save your changes and Stop the plot editor 
 

 
 
Our graph is now 
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Virtually every aspect of your graph can be controlled in the Graph Editor. The edits you have 
made can be recorded using the graph recorder and re-played on other graphs. Enter help graph 
recorder for more on this feature. 

4.4 ANALYZING THE RESIDUALS 

One of the key elements in determining if the selected functional form is adequate is analyzing 
the model residuals. In Section 4.1.2 above we computed the least squares residuals for the linear 
model. They should be in the dataset in memory. If not, re-estimate the linear food expenditure 
model and calculate the residuals, which we call ehat. If you have an extended session you must 
remember to save the variables you will need for later use. This requires a little planning ahead, 
or simply to recalculate. 

As a first step, construct a histogram of the least squares residuals. We always hope that the 
result is reasonably bell-shaped, reminding us of a normal distribution. 
 

histogram ehat, percent title(Linear Model Residuals) 

graph save olsehat_hist, replace 

 
 

0
10

0
20

0
30

0
40

0
50

0
60

0
Fo

od
 E

xp
en

di
tu

re

0 10 20 30 40
Income

household food expenditure per week linear-log fit
linear fit

Linear Log Model

0
10

20
30

P
er

ce
nt

-200 -100 0 100 200
Residuals

Linear Model Residuals



Prediction, Goodness-of-Fit and Modeling Issues   135 

Secondly, we can summarize the residuals in detail 
 

summarize ehat, detail 

 

 

4.4.1 The Jarque-Bera test 

The detailed analysis includes the Skewness and Kurtosis coefficients that are ingredients of the 
Jarque-Bera test for normality. Define the sample moments for a variable Y as 
 

� �
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Note that in these calculations we divide by N. Using these sample estimates of the central 
moments we can obtain estimates of the skewness coefficient (S) and kurtosis coefficient (K) as 
 

�

�

3
3

4
4

skewness S

kurtosis K

	
� �

�

	
� �

�

�
�

�
�

 

 
As noted earlier when summarize is used, a number of items are saved. Enter  
 

return list 

 
Some of the returned items are 
 

99%      212.044        212.044       Kurtosis       2.989034
95%     121.0697       122.0443       Skewness      -.0973187
90%     112.8848       120.0951       Variance       7807.825
75%     68.72928       117.4039
                        Largest       Std. Dev.       88.3619
50%    -6.324473                      Mean           4.77e-08

25%    -52.94326       -119.058       Sum of Wgt.          40
10%    -115.6628      -125.6295       Obs                  40
 5%    -133.9407      -142.2519
 1%    -223.0255      -223.0255
      Percentiles      Smallest

                          Residuals

. summarize ehat, detail
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Using the returned values of N, skewness and kurtosis we can use Stata (or a calculator) to 
compute the Jarque-Bera statistic 

 
� �2

2 3
6 4

KNJB S
� ��
� �� 
� �
� �

 

 
The commands to create the statistic and display it are: 
 

scalar jb = (r(N)/6)*( (r(skewness)^2) + ((r(kurtosis)-3)^2)/4 ) 

di "Jarque-Bera Statistic = " jb 

 
The result is 
 

 

4.4.2 Chi-square distribution critical values 

The critical value for this distribution comes from a chi-square distribution with 2 degrees of 
freedom. Critical values are computed using inv type functions. To locate the correct function 
type help scalar, then click define as we have done several times before. Another fast 
alternative is to enter 

 
db scalar 

 
The “db” stands for “dialog box.” The Stata command is 
 

scalar chic = invchi2tail(2,.05) 

di "Chi-square(2) 95th percentile = " chic 

 
The resulting value is 
 

 
 

The value of the Jarque-Bera statistic 0.06334 is far below the test critical value 5.99, so we fail 
to reject the hypothesis that the regression errors are normally distributed. 

           r(kurtosis) =  2.989033831200444
           r(skewness) =  -.0973187365457582
                 r(sd) =  88.36189781184373
                r(Var) =  7807.824984910715
               r(mean) =  4.76837158203e-08
              r(sum_w) =  40
                  r(N) =  40
scalars:

. return list

Jarque-Bera Statistic = .06334
. di "Jarque-Bera Statistic = " jb

Chi-square(2) 95th percentile = 5.9914645
. di "Chi-square(2) 95th percentile = " chic

. scalar chic = invchi2tail(2,.05)
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4.4.3 Chi-square distribution p-values

Instead of obtaining the chi-square critical value, we could perform the test by obtaining the p-
value for the Jarque-Bera test statistic value. To locate the correct function type db scalar. The 
Stata command is 

 
scalar pvalue = chi2tail(2,jb) 

di "Jarque-Bera p-value = " pvalue 

 
The resulting p-value is 
 

 
 

Because the p-value 0.9688 is greater than the probability of Type I error, 0.05% � , we fail to 
reject normality, as previously note. 

 
log close 

4.5 POLYNOMIAL MODELS 

As an example of a polynomial model we consider wheat yield over time in some shires of 
Western Australia. The data file is wa_wheat.dta. Open this file and clear Stata’s memory. Obtain 
descriptions of the variables and summary statistics. 
 

log using chap04_wheat, replace text 

use wa_wheat, clear 

describe 

summarize 

 

 
 
The summary statistics are show that there are T = 48 observations on 4 different shires. So that 
our terminology will parallel Principles of Econometrics, 4e, create a new variable called YIELD 
for the production in Greenough shire. 

 
gen yield = greenough 

label variable yield "wheat yield greenough shire" 

 
Create a scatter plot showing the relationship between YIELD and TIME.  
 

Jarque-Bera p-value = .96882624
. di "Jarque-Bera p-value = " pvalue

. scalar pvalue = chi2tail(2,jb)

        time          48        24.5          14          1         48
   greenough          48     1.15306    .3653873      .4369     2.2353
     mullewa          48    .9840625    .3352854      .3965     1.7992
     chapman          48    1.072385    .3328069      .4167     2.0244
 northampton          48    1.168654    .4250324      .3024     2.3161

    Variable         Obs        Mean    Std. Dev.       Min        Max
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twoway (scatter yield time, sort) , /// 

 xtitle(Time) ylabel(0(.5)2.5) ytitle(Yield) /// 

 title(Wheat Yield)  

graph save wawheat, replace  

 

 
 

4.5.1 Estimating and checking the linear relationship 

The rate of increase in wheat yield increases, especially towards the end of the period. A linear 
relationship between YIELD and TIME will not be suitable because it will not capture the 
changing slope. To demonstrate, estimate the linear regression between YIELD and TIME and 
compute both the fitted value and least squares residual. 
 

reg yield time 

predict yhat 

predict ehat, residuals 

 
The estimation results are 
 

 
 
The fitted least squares line and the data scatter are obtained with 
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Wheat Yield

       _cons    .6377778   .0641305     9.94   0.000     .5086898    .7668658
        time    .0210319   .0022785     9.23   0.000     .0164455    .0256184

       yield       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total   6.27486952    47  .133507862           Root MSE      =  .21869
           Adj R-squared =  0.6418

    Residual   2.20000947    46  .047826293           R-squared     =  0.6494
       Model   4.07486005     1  4.07486005           Prob > F      =  0.0000

           F(  1,    46) =   85.20
      Source        SS       df       MS              Number of obs =      48

. reg yield time
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twoway (scatter yield time, sort) /// 

 (line yhat time, sort lwidth(medthick)) , /// 

 xtitle(Time) ytitle(Yield) ylabel(0(.5)2.5) /// 

 title(Wheat Yield Fitted Linear Model)  

graph save wheat_fit, replace 

 

 
 

Remark: Variables with long labels may result in text below graph being 
illegible. Edit the Graph using the Graph editor and enter a new label. 

 
With practice you will be able to spot the cluster of positive residuals at the beginning and end of 
the time period, and the cluster of negative residuals in the middle. To see this more easily we can 
plot the residuals against time. A simple plot can be obtained using  
 

twoway (scatter ehat time, sort) , /// 

 xtitle(Time) ytitle(Residuals) yline(0) /// 

 title(Wheat Linear Model Residuals)  

graph save wheat_ehat, replace 

 
The option yline(0) creates the horizontal reference line at zero. 
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Alternatively, Stata has some built in post-estimation residual diagnostic plots. On the Stata menu 
bar select the following: 
 

 
 
Using help regress postestimation we find links to dialogs and descriptions of available 
plots. 

 

 
 
One example is, using the recast(bar) option to obtain a bar graph rather than a scatter diagram, 

 
rvpplot time, recast(bar) yline(0) 
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This plot clearly shows the cluster of positive residuals at the two ends of the time period and the 
large cluster of negative residuals in the center. Patterns in the residuals are not desirable and may 
indicate a need to find a better functional form. 

4.5.2 Estimating and checking a cubic equation 

Generate the variable time0 = time/100. This scaling will prevent the cubic variable being very 
large, and make the estimated coefficient comparably larger. Estimate the cubic equation using 
factor variable notation, and obtain fitted values and residuals, naming them yhat3 and ehat3 
because yhat and ehat exist from the previous regression. 
 

generate time0=time/100 

list yield time0 in 1/5 

 
 

summarize time0 

 
 

reg yield c.time0#c.time0#c.time0 
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  5.  .7998     .05  
  4.  .7258     .04  
  3.  .7191     .03  
  2.  .6721     .02  
  1.  .9141     .01  

 yield   time0  

       time0         48        .245         .14        .01        .48

    Variable        Obs        Mean    Std. Dev.       Min        Max
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Compute the least squares residuals and predicted values. 

 
predict yhat3 

predict ehat3, residuals 

 
The advantage of the factor notation is that margins will correctly compute the slope for us. 

 
margins, dydx(*) at(time=(0.15 0.30 0.45)) 

 

 
A plot of the data and fitted line shows that the curvature of the cubic function fits the data better 
at the beginning and end of the period. 
 

twoway (scatter yield time, sort) /// 

 (line yhat3 time, sort lwidth(medthick)) , /// 

 xtitle(Time) ytitle(Yield) ylabel(0(.5)2.5) /// 

 title(Wheat Yield Fitted Cubic Model)   

graph save wheat_cubic_fit, replace 

 

       _cons    .8741166   .0356307    24.53   0.000     .8023958    .9458374

     c.time0    9.681516   .8223546    11.77   0.000     8.026202    11.33683
     c.time0# 
     c.time0# 

       yield       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total   6.27486952    47  .133507862           Root MSE      =  .18437
           Adj R-squared =  0.7454

    Residual   1.56360425    46  .033991397           R-squared     =  0.7508
       Model   4.71126527     1  4.71126527           Prob > F      =  0.0000

           F(  1,    46) =  138.60
      Source        SS       df       MS              Number of obs =      48

. reg yield c.time0#c.time0#c.time0

          3    5.881521   .4995804    11.77   0.000     4.902361     6.86068
          2     2.61401   .2220357    11.77   0.000     2.178827    3.049192
          1    .6535024   .0555089    11.77   0.000     .5447069    .7622979
         _at
time0

      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
            Delta-method
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Using the residual diagnostic plot we find that the runs of positive and negative residuals are 
reduced.  
 

twoway (scatter ehat3 time, sort) , /// 

 xtitle(Time) ytitle(Residuals) yline(0) /// 

 title("Residuals Wheat" "Cubic Specification") 

graph save wheat_cube_ehat, replace 

 

 

4.5.3 Estimating a log-linear yield growth model 

As alternative to the cubic model of the previous section, a log-linear growth model can be used. 
 

gen lyield = ln(yield) 

reg lyield time 
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We estimate an annual growth rate of 1.78%. More will be said about the log-linear functional 
form in the following section. 

 
log close 

4.6 ESTIMATING A LOG-LINEAR WAGE EQUATION 

Begin a new log, open the data file cps4_small.dta, and obtain variable descriptions and examine 
the summary statistics. Tabulate the values of EDUC. 
 

log using chap04_lwage, replace text 

use cps4_small, clear 

describe 

summarize 

tabulate educ 

 
The variables we will use are 

 

 
 
Plot a scatter diagram of wage versus years of education, using small symbols with the 
msize(small) option. 

 
twoway (scatter wage educ, msize(small)) , /// 

 xtitle(Education) ytitle(Wage) /// 

 title(Wage-Education Scatter)   

graph save wage_educ, replace 

 

       _cons   -.3433665   .0584042    -5.88   0.000     -.460928   -.2258049
        time    .0178439   .0020751     8.60   0.000     .0136669    .0220208

      lyield       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total   4.75780119    47  .101229813           Root MSE      =  .19916
           Adj R-squared =  0.6082

    Residual   1.82466561    46  .039666644           R-squared     =  0.6165
       Model   2.93313558     1  2.93313558           Prob > F      =  0.0000

           F(  1,    46) =   73.94
      Source        SS       df       MS              Number of obs =      48

. reg lyield time

educ            byte   %8.0g                  years of education
wage            double %10.0g                 earnings per hour

variable name   type   format      label      variable label
              storage  display     value
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Using these data we will study the relationship between wages and years of education. The plot of 
wage against education shows the tendency for some wages at higher levels of education to be 
skewed. This is typical of wage, salary and income data. 

4.6.1 The log-linear model 

This is a log-linear model, which means the dependent variable is transformed.  
 

gen lwage = ln(wage) 

 
Now plot the scatter of ln(wage) against education. The transformed data are noticeably less 
skewed. 
 

twoway (scatter lwage educ, msize(small)), /// 

 xtitle(Education) ytitle(ln(Wage)) /// 

 title(ln(Wage)-Education Scatter) 

graph save lwage_educ, replace 
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In this example we will predict the wage of a person with 12 years of education. So edit the data 
file by adding in observation 1001 the value EDUC = 12. 
 

edit  

set obs 1001 

replace educ=12 in 1001 

 
Estimate the log-linear regression, and compute the fitted values, the least squares residuals and 
the standard error of the forecast. 

 
reg lwage educ 

 
 
Compute fitted values, residuals and the standard error of the forecast for future use. 

 
predict lwagehat 

predict ehat, residuals 

predict sef, stdf 

 
Based on the regression results we estimate that each additional year of education leads to 
approximately 9% higher wages. 

Below we will use the estimated variance of the error term in a calculation, so while 
regression results are in Stata’s memory, we will obtain it. Use ereturn list to view the list of 
items saved by Stata after a regression. 
 

ereturn list 

 

 
 

       _cons    1.609444   .0864229    18.62   0.000     1.439853    1.779036
        educ    .0904082   .0061456    14.71   0.000     .0783484    .1024681

       lwage       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total   336.780731   999  .337117849           Root MSE      =  .52661
           Adj R-squared =  0.1774

    Residual    276.76489   998   .27731953           R-squared     =  0.1782
       Model    60.015841     1   60.015841           Prob > F      =  0.0000

           F(  1,   998) =  216.41
      Source        SS       df       MS              Number of obs =    1000

. reg lwage educ

                e(rss) =  276.764890442558
                e(mss) =  60.01584096379838
               e(rmse) =  .5266113647668089
                 e(r2) =  .1782044973688944
                  e(F) =  216.4140443756974
               e(df_r) =  998
               e(df_m) =  1
                  e(N) =  1000
scalars:

. ereturn list
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Among the scalars returned are the degrees of freedom (df_r) and the sum of squared residuals 
(ssr). Compute a scalar that is the estimated variance of the error term. 
 

scalar sig2 = e(rss)/e(df_r) 

di "sigma-hat squared = " sig2 

 

 
Now, using the same commands as earlier construct a histogram, and calculate the Jarque-Bera 
test for normality. 
 

histogram ehat, percent title(log(Wage) Model Residuals) 

graph save lwage_ehat, replace 

 

 
 

summarize ehat, detail 

scalar jb = (r(N)/6)*( (r(skewness)^2) + ((r(kurtosis)-3)^2)/4 ) 

di "Jarque-Bera Statistic = " jb 

scalar chic = invchi2tail(2,.05) 

di "Chi-square(2) 95th percentile = " chic 

scalar pvalue = chi2tail(2,jb) 

di "Jarque-Bera p-value = " pvalue 

 
The normality of the residuals is rejected. The plot of the residuals is obtained using 

 

sigma-hat squared = .27731953
. di "sigma-hat squared = " sig2
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Jarque-Bera p-value = 1.053e-06
. di "Jarque-Bera p-value = " pvalue

. scalar pvalue = chi2tail(2,jb)

Chi-square(2) 95th percentile = 5.9914645
. di "Chi-square(2) 95th percentile = " chic

. scalar chic = invchi2tail(2,.05)

Jarque-Bera Statistic = 27.528329
. di "Jarque-Bera Statistic = " jb
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rvpplot educ, yline(0) 

 

 
 
The residuals show both a downward trend and increasing variation as education increases. 

4.6.2 Calculating wage predictions 

The predicted value from the log-linear model is � �� 1 2ln y b b x�  . To obtain a prediction of the 
dependent variable y we take the antilog, obtaining the “natural predictor” 
 

� ��� � � �1 2ˆ exp ln expny y b b x� �   

 
The Stata function exp() is the exponential function. To create the antilog of the predicted 
ln(wage) use 
 

gen yhatn = exp(lwagehat) 

 
In larges samples a better predictor is the “corrected” predictor 
 

� �� � � 2ˆ2 2
1 2ˆ ˆ ˆexp 2c ny E y b b x y e�� �   � �  

 
Recall that we calculated the estimated error variance 2�̂  calling it sig2. Using this scalar, the 
corrected predictor can be generated using 

di "correction factor = " exp(sig2/2) 

 

 
gen yhatc = yhatn*exp(sig2/2) 
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correction factor = 1.1487332
. di "correction factor = " exp(sig2/2)
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The correction factor is 1.1487, and thus the “corrected” predictions are larger than the “natural” 
ones. This will always be so because the correction factor 1ae �  for any value 0a � , and the 
estimated variance 2�̂  is always greater than zero. 

4.6.3 Constructing wage plots 

It would be good to see a graph comparing the two predictors. 
 

twoway (scatter wage educ, sort msize(small)) /// 

       (line yhatn educ, sort  /// 

  lwidth(medthick) lpattern(dash)) /// 

 (line yhatc educ, sort lwidth(medthick) lpattern(solid)) 

graph save lwage_predict, replace 

 

 
 
The plot shows that yhatc is always greater than yhatn. To view the natural and corrected 
predictions we will list the observation 1001. 
 

list educ yhatn yhatc in 1001 

 

 
 
Are these values reasonable? We can do a rough check by calculating the summary statistics for 
wage for those with 12 years of education in our sample. 
 

summarize wage if educ==12 in 1/1000 
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1001.    12   14.7958   16.99643  

 educ     yhatn      yhatc  

        wage        328    15.99329    8.843706        2.5      72.13

    Variable        Obs        Mean    Std. Dev.       Min        Max

. summarize wage if educ==12 in 1/1000
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We see that the predictions are in line with the actual mean of wages for individuals with 12 years 
of education. 

4.6.4 Generalized R2

The generalized 2R  measure is the square of the correlation between the “best” predictor yhatc 
and the variable wage. In this case yhatc and yhatn differ only by a multiplicative constant, so 
their correlation with wage is the same. To compute the correlations use 
 

correlate wage yhatn yhatc 

di "r2g = " r(rho)^2 

 

 

4.6.5 Prediction intervals in the log-linear model 

A prediction interval in the log-linear model is constructed as 
 

� �� � �� � � �� � �� �exp ln se ,exp ln sec cy t f y t f� �� � �� �
 

 
It is based on the “natural” predictor and the standard error of the forecast constructed in Section 
4.6.1 above. First, calculate the 97.5 percentile from the t-distribution with 998 degrees of 
freedom. 
 

scalar tc = invttail(998,.025) 

 
Generate the lower and upper prediction intervals of ln(wage) 
 

gen lb_lwage = lwagehat - tc*sef 

gen ub_lwage = lwagehat + tc*sef 

 
Find the antilog using the exponential function exp.  
 

gen lb_wage = exp(lb_lwage) 

gen ub_wage = exp(ub_lwage) 

 
List the values of the prediction interval for observation 1001. 
 

r2g = .18593072
. di "r2g = " r(rho)^2

       yhatc    0.4312   1.0000   1.0000
       yhatn    0.4312   1.0000
        wage    1.0000

     wage    yhatn    yhatc

(obs=1000)
. correlate wage yhatn yhatc
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list lb_wage ub_wage in 1001 

 

 
 
Create a plot with wage data, the natural predictor and the interval predictor against education. 
 

twoway (scatter wage educ, sort msize(small)) /// 

 (line yhatn educ, sort lwidth(medthick) lpattern(solid)) /// 

 (line ub_wage educ, sort lcolor(forest_green) lwidth(medthick) /// 

  lpattern(dash)) /// 

 (line lb_wage educ, sort lcolor(forest_green) lwidth(medthick) /// 

  lpattern(dash)) 

graph save lwage_interval, replace 

 
 

log close 

 

4.7 A LOG-LOG MODEL 

The log-log function, 1 2ln( ) ln( )y x� � � , is widely used to describe demand equations and 
production functions. The name “log-log” comes from the fact that the logarithm appears on both 
sides of the equation. In order to use this model all values of y and x must be positive. The slopes 
of these curves change at every point, but the elasticity is constant and equal to 	2. A useful way 
to think about the log-log function comes from closer inspection of its slope � �2dy dx y x�� . 

1001.  5.260397   41.61581  

  lb_wage    ub_wage  

. list lb_wage ub_wage in 1001
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Rearrange this so that � � � �2 dy y dx x� � . Thus the slope of the log-log function exhibits 
constant relative change, whereas the linear function displays constant absolute change. 

Open a new log file, and use the data newbroiler.dta. 
 

log using chap04_loglog, replace text 

use newbroiler, clear 

describe 

summarize 

 
Variables of interest include 

 

 
 

Create the logarithm of quantity and price and estimate the log-log model. Here we use the log 
function ln which is equivalent to log. 

 
gen lq = ln(q) 

gen lp = ln(p) 

reg lq lp 

 

 
 
The estimated elasticity is �1.12. 

Obtain the corrected predictor and plot. The plot commands are a little long, so we wrapped 
them onto a second line here, but not in the do-file. 

 
predict lqhat 

scalar sig2 = e(rss)/e(df_r) 

gen qhatc = exp(lqhat)*exp(sig2/2) 

twoway (scatter q p, sort msize(small) lwidth(medthick) /// 

  lpattern(solid)) /// 

                                                chicken
p               float  %9.0g                  real price (index) of fresh
                                                1996 = 100
y               float  %9.0g                  per capita real disposable income,
                                                chicken, pounds
q               float  %9.0g                  per capita consumption of boneless
year            float  %9.0g                  year

variable name   type   format      label      variable label
              storage  display     value

       _cons     3.716944   .0223594   166.24   0.000     3.672034    3.761854
          lp    -1.121358   .0487564   -23.00   0.000    -1.219288   -1.023428

          lq        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total     8.0601908    51  .158042957           Root MSE      =  .11799
           Adj R-squared =  0.9119

    Residual     .69608941    50  .013921788           R-squared     =  0.9136
       Model    7.36410139     1  7.36410139           Prob > F      =  0.0000

           F(  1,    50) =  528.96
      Source         SS       df       MS              Number of obs =      52

. reg lq lp
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 (line qhatc p, sort lwidth(medthick)), /// 

 xtitle(Price of Chicken) ytitle(Quantity of Chicken) /// 

 title(Poultry Demand) 

 
 

The generalized 2R  is given by 
 

correlate q qhatc 

di "r2g = " r(rho)^2 

log close 
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r2g = .88177576
. di "r2g = " r(rho)^2

       qhatc     0.9390   1.0000
           q     1.0000

                      q    qhatc

(obs=52)
. correlate q qhatc
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KEY TERMS 

analysis of variance table histogram predict  
chi2 invchi2 prediction 
chi2tail invchi2tail prediction interval 
connected Jarque-Bera test regress 
correlate kurtotsis replace 
correlations lcolor residual diagnostic plots
create lfit return list 
data editor lincom R-squared
db scalar linear-log model rvpplot 
drop list scalar 
dydx ln scatter 
edit log set obs 
ereturn list log-linear model skewness
exponential function log-log model sort on x variable 
expression builder lpattern standard error of forecast 
factor variables lwidth stdf 
gen margins summarize 
generate msymbol twoway 
goodness of fit natural log yline 
graph editor plot definition 

CHAPTER 4 DO-FILE [CHAP04.DO] 

* file chap04.do for Using Stata for Principles of Econometrics, 4e 

cd c:\data\poe4stata 

* Stata Do-file  

* copyright C 2011 by Lee C. Adkins and R. Carter Hill  

* used for "Using Stata for Principles of Econometrics, 4e"  
* by Lee C. Adkins and R. Carter Hill (2011) 

* John Wiley and Sons, Inc. 

* setup 

version 11.1 

capture log close 
set more off 

* open log 
log using chap04_food, replace text 

* open data 
use food, clear 

* add observation  
edit 

set obs 41 

replace income=20 in 41 

* estimate regression 

quietly regress food_exp income 
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predict yhat 

predict ehat, residuals 

predict sef, stdf 

* compute t-critical value 

scalar define tc = invttail(38,.025) 
di "t critical value 97.5 percentile = "  tc 

gen lb = yhat - tc*sef 

gen ub = yhat + tc*sef 
list income lb yhat ub in 41 

drop in 41 

* R2 

pwcorr food_exp income yhat 

* effect of scaling 

* create $ income and regress 
gen inc_dollar = income*100 

reg food_exp income 

reg food_exp inc_dollar 
log close 

* Chapter 4.3.3 linear-log model 
log using chap04_linlog, replace text 

* open data 
use food, clear 

* log of income 
gen lincome = ln(income) 

* linear-log regression 
reg food_exp lincome 

predict lyhat 

predict lehat, resid 

* slope = beta2/x 

summarize income 
return list 

scalar xbar = r(mean) 

lincom lincome/xbar 
lincom lincome/10 

lincom lincome/20 

lincom lincome/30 

* fitted value plot 

twoway (scatter food_exp income, sort)     /// 
 (line lyhat income, sort lwidth(medthick)),    /// 

 xtitle(Income) ytitle(Food Expenditure) ylabel(0(100)600)  /// 

 title(Linear Log Model)  
graph save linlog, replace 

* linear relationship 
quietly reg food_exp income 

predict yhat 

predict ehat, resid 

* linear and linear-log fitted lines 

twoway (scatter food_exp income, sort)     /// 
 (line lyhat income, sort lwidth(medthick))    /// 

 (line yhat income, sort lpattern(dash) lwidth(medthick)),  /// 

 xtitle(Income) ytitle(Food Expenditure) ylabel(0(100)600)  /// 
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 title(Linear Log Model)  

graph save linlog2, replace 

* plot linear-log model residuals   

twoway (scatter lehat income, sort) ,  /// 

 xtitle(Income) ytitle(Residuals) /// 
 title(Linear Log Model Residuals)  

graph save linlog_residual, replace 

* analyze residuals from original equation 

histogram ehat, percent title(Linear Model Residuals) 

graph save olsehat_hist, replace 

* Jarque-Bera test of error normality 

summarize ehat, detail 
return list 

scalar jb = (r(N)/6)*( (r(skewness)^2) + ((r(kurtosis)-3)^2)/4 ) 
di "Jarque-Bera Statistic = " jb 

scalar chic = invchi2tail(2,.05) 

di "Chi-square(2) 95th percentile = " chic 
scalar pvalue = chi2tail(2,jb) 

di "Jarque-Bera p-value = " pvalue 

log close 

* Polynomial model Chapter 4.4 

* open new log 

log using chap04_wheat, replace text 

* open data and examine 

use wa_wheat, clear 

describe 
summarize 

gen yield = greenough 

label variable yield "wheat yield greenough shire" 

* plot data 

twoway (scatter yield time, sort msymbol(circle)) ,   /// 
 xtitle(Time) ylabel(0(.5)2.5) ytitle(Yield)   /// 

 title(Wheat Yield)  

graph save wawheat, replace 

* regression 

reg yield time 
predict yhat 

predict ehat, residuals 

* plot fitted lines and data 

twoway (scatter yield time, sort)    /// 

 (line yhat time, sort lwidth(medthick)) ,  /// 
 xtitle(Time) ytitle(Yield) ylabel(0(.5)2.5)  /// 

 title(Wheat Yield Fitted Linear Model)  

graph save wheat_fit, replace 

* plot residuals 

twoway (scatter ehat time, sort) ,    /// 
 xtitle(Time) ytitle(Residuals) yline(0)  /// 

 title(Wheat Linear Model Residuals)  

graph save wheat_ehat, replace 

rvpplot time, recast(bar) yline(0) 

graph save wheat_ehat_bar, replace 
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* Chapter 4.4.2 Cubic equation for yield 

* create scaled cubic variable 

generate time0=time/100 

list yield time0 in 1/5 
summarize time0 

* cubic regression 
reg yield c.time0#c.time0#c.time0 

predict yhat3 

predict ehat3, residuals 

* slopes 

margins, dydx(*) at(time=(0.15 0.30 0.45)) 

* plot fitted lines and data 

twoway (scatter yield time, sort)    /// 
 (line yhat3 time, sort lwidth(medthick)) ,  /// 

 xtitle(Time) ytitle(Yield) ylabel(0(.5)2.5)  /// 

 title(Wheat Yield Fitted Cubic Model)  
graph save wheat_cubic_fit, replace 

* plot residuals 
twoway (scatter ehat3 time, sort) ,     /// 

 xtitle(Time) ytitle(Residuals) yline(0)   /// 

 title("Residuals Wheat" "Cubic Specification") 
graph save wheat_cube_ehat, replace 

* Chapter 4.5 Log-linear Models 

* Wheat growth model 

gen lyield = ln(yield) 
reg lyield time 

log close 

* Wage Equation 

* open new log file 
log using chap04_lwage, replace text 

* open cps4_small data 
use cps4_small, clear 

* summarize and plot 
describe 

summarize 

tabulate educ 

twoway (scatter wage educ, msize(small)) ,   /// 

 xtitle(Education) ytitle(Wage)   /// 
 title(Wage-Education Scatter)  

graph save wage_educ, replace 

* create log(wage) and plot 

gen lwage = ln(wage) 

twoway (scatter lwage educ, msize(small)),   /// 
 xtitle(Education) ytitle(ln(Wage))   /// 

 title(ln(Wage)-Education Scatter)  

graph save lwage_educ, replace  

* log-linear regression 

* add one observation 
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edit  

set obs 1001 

replace educ=12 in 1001 
reg lwage educ 

predict lwagehat 

predict ehat, residuals 
predict sef, stdf 

* calculate sigma-hat^2 
ereturn list 

scalar sig2 = e(rss)/e(df_r) 

di "sigma-hat squared = " sig2 

* Analyze resdiduals 

histogram ehat, percent title(ln(Wage) Model Residuals) 
graph save lwage_ehat, replace 

summarize ehat, detail 
scalar jb = (r(N)/6)*( (r(skewness)^2) + ((r(kurtosis)-3)^2)/4 ) 

di "Jarque-Bera Statistic = " jb 

scalar chic = invchi2tail(2,.05) 
di "Chi-square(2) 95th percentile = " chic 

scalar pvalue = chi2tail(2,jb) 

di "Jarque-Bera p-value = " pvalue 
rvpplot educ, yline(0) 

* compute natural and corrected predictor and plot 
gen yhatn = exp(lwagehat) 

di "correction factor = " exp(sig2/2) 

gen yhatc = yhatn*exp(sig2/2) 
twoway (scatter wage educ, sort msize(small))  /// 

 (line yhatn educ, sort     /// 

  lwidth(medthick) lpattern(dash))  /// 
 (line yhatc educ, sort lwidth(medthick) lpattern(solid)) 

graph save lwage_predict, replace 

* list predicted values 

list educ yhatn yhatc in 1001 

summarize wage if educ==12 in 1/1000 

* R^2 

correlate wage yhatn yhatc 
di "r2g = " r(rho)^2 

* prediction interval 
scalar tc = invttail(998,.025) 

gen lb_lwage = lwagehat - tc*sef 

gen ub_lwage = lwagehat + tc*sef 
gen lb_wage = exp(lb_lwage) 

gen ub_wage = exp(ub_lwage) 

* list and plot 

list lb_wage ub_wage in 1001 

twoway (scatter wage educ, sort msize(small))     /// 
 (line yhatn educ, sort lwidth(medthick) lpattern(solid))   /// 

 (line ub_wage educ, sort lcolor(forest_green) lwidth(medthick)  /// 

  lpattern(dash))       /// 
 (line lb_wage educ, sort lcolor(forest_green) lwidth(medthick)  /// 

  lpattern(dash)) 

graph save lwage_interval, replace 
log close 

* A log-log model example 
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log using chap04_loglog, replace text 

use newbroiler, clear 

describe 
summarize 

gen lq = ln(q) 
gen lp = ln(p) 

reg lq lp 

predict lqhat 
scalar sig2 = e(rss)/e(df_r) 

gen qhatc = exp(lqhat)*exp(sig2/2) 

twoway (scatter q p, sort msize(small) lwidth(medthick)    /// 
  lpattern(solid))       /// 

 (line qhatc p, sort lwidth(medthick)),     /// 

  xtitle(Price of Chicken) ytitle(Quantity of Chicken)  /// 
  title(Poultry Demand) 

correlate q qhatc 
di "r2g = " r(rho)^2 

log close 
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CHAPTER 5

The Multiple Regression Model 

CHAPTER OUTLINE 
5.1 Big Andy’s Burger Barn 
5.2 Least squares prediction 
5.3 Sampling precision 
5.4 Confidence intervals  
     5.4.1 Confidence interval for a linear combination  
              of parameters 
5.5 Hypothesis tests 
     5.5.1 Two-sided tests 
     5.5.2 One-sided tests 
     5.5.3 Testing a linear combination 

5.6 Polynomial equations  
     5.6.1 Optimal advertising: nonlinear combinations  
              of parameters  
     5.6.2 Using factor variables for interactions 
5.7 Interactions 
5.8 Goodness-of-fit  
Key Terms  
Chapter 5 Do-file 

5.1 BIG ANDY’S BURGER BARN 

In the simple linear regression the average value of a dependent variable is modeled as linear 
function of a constant and a single explanatory variable. The multiple linear regression model 
expands the number of explanatory variables. As such it is a simple but important extension that 
makes linear regression quite powerful.  

The example used in this chapter is a model of sales for Big Andy's Burger Barn. Big Andy’s 
hamburger sales depend on the price charged and the level of advertising. Thus, the model 
includes two explanatory variables and a constant: 

 
1 2 3SALES PRICE ADVERT e� �  �  �   

 
where SALES is monthly sales in a given city and is measured in $1,000 increments, PRICE is 
price of a hamburger measured in dollars, ADVERT is the advertising expenditure also measured 
in thousands of dollars and i = 1, 2, … , N.   

First, start Stata and, from the command line, change the working directory to the location 
that contains your data files, or if you plan to use files stored at an internet address, the location to 
which you want to write the Stata log file. As in all of our examples, we choose 
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cd c:\data\poe4stata 

 
Locate the file you wish to open, here andy.dta, and click Open. Before estimating any model, it 
is good practice to check that the data have been loaded into your software properly. In this case, 
check the summary statistics and list the first few observations. They should match those in table 
5.1 of the textbook. Basically, you want to look at the summary statistics to see if they make 
sense. Do you have the desired number of observations? Do the ranges of the variables seem 
reasonable—in this instance, are the sales, prices and advertising expenditures positive?  

Recall that the summarize command calls for the basic set of summary statistics and list 
prints the variables and observations in the data set. The in 1/5 appended to list tells Stata to 
limit the printout to observations 1 through 5. The results are: 
 

 
 

 
 
You may opt to estimate the regression from the command line, which usually saves time.   
 

regress sales price advert 

If you cannot recall the syntax, use the pull-down menus. Select Statistics > Linear models and 
related > Linear regression. This opens the regress dialog box shown in section 2.4. Enter 
sales as the dependent variable and price and advert as independent variables and click 
submit. Remember that Stata includes a constant variable that places an intercept into the model. 
Unless you have a good reason to omit the intercept from a model, you should always include 
one. Hence, this is the default for Stata. The output is given below: 
 

 

      advert          75       1.844    .8316769         .5        3.1
       price          75      5.6872     .518432       4.83       6.49
       sales          75    77.37467    6.488537       62.4       91.2

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize

      
  5.    89.3    5.02      1.5  
  4.    67.4    6.22       .7  
  3.    62.4    5.63       .8  
  2.    71.8    6.49      2.9  
  1.    73.2    5.69      1.3  
      
       sales   price   advert  
      

. list in 1/5

       _cons     118.9136   6.351638    18.72   0.000     106.2519    131.5754
      advert     1.862584   .6831955     2.73   0.008      .500659     3.22451
       price    -7.907854   1.095993    -7.22   0.000    -10.09268   -5.723032

       sales        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    3115.48187    74  42.1011063           Root MSE      =  4.8861
           Adj R-squared =  0.4329

    Residual    1718.94294    72  23.8742075           R-squared     =  0.4483
       Model    1396.53893     2  698.269465           Prob > F      =  0.0000

           F(  2,    72) =   29.25
      Source         SS       df       MS              Number of obs =      75
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The parameter for the intercept is labeled _cons and those for the slopes 2�  and 3�  &are labeled 
price and advert, respectively. 

The variance-covariance matrix measures the precision with which the least squares estimator 
is able to measure the parameters of your model. The precision of least squares depends on a 
number of things, including the variability of your data ( 2� ), the size of your sample, and the 
design of your ‘experiment’ implied by the numerical values of your independent variables. This 
information is summarized by the estimated variance-covariance matrix, which includes a 
measurement of the variance of the intercept, each slope and any covariances between them.  

 

� �
� � � � � �

� � � � � �
� � � � � �

1 1 2 1 3

1 2 3 1 2 2 2 3

1 3 2 3 3

var cov , cov ,
cov , , cov , var cov ,

cov , cov , var

b b b b b
b b b b b b b b

b b b b b

� �
� �� � �
� �� �  

 
The variances of the least squares estimator fall on the diagonal and the covariance between each 
pair is in the lower triangle.  

To print an estimate of the variance-covariance matrix following a regression use 
 

 
 
So, the estimated variance of b2 is 1.20 and its estimated covariance with b3 is �0.0197. Taking 
the square roots of the diagonal elements produces the least squares standard errors and, as one 
can easily verify, match the results in the regression table above.  

A dialog box can be summoned using the pull-down menus by choosing Statistics>Linear 
Models and related>Regression diagnostics>Specification tests, etc., which opens the estat-
Postestimation statistics for regress dialog box. Use the scroll bar to select the Covariance matrix 
estimate (vce) option as shown below. 

 

 
 

       _cons   -6.7950641   -.7484206   40.343299 
      advert   -.01974215   .46675606             
       price    1.2012007                         

        e(V)        price      advert       _cons 

Covariance matrix of coefficients of regress model

. estat vce
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5.2 LEAST SQUARES PREDICTION 

Prediction was touched upon in Chapter 2 and is revisited here. Suppose Big Andy wants to 
predict sales revenue for a price of $5.50 and an advertising expenditure of $1,200. This 
prediction is displayed using  

 
di _b[_cons] + _b[price]*5.50 + _b[advert]*1.2 

which is echoed to the Results window.  
 

 
In this example, predicted sales for the given price and advertising expenditure are 77.66.  

One can also use the trick explored in Chapter 4 that adds observations to the data set and the 
predict command to generate conditional forecasts. Open the data editor Data>Data editor and 
add the desired values of the independent variables on a new data line (here, observation 76). This 
can be done from the Command window as well. First set the observations to 76 using set obs 
76. Then use the replace command to enter the desired values of the independent variables for 
the new observation. This is done in the first three lines below. 

set obs 76 

replace price = 5.50 in 76 

replace advert = 1.2 in 76 

predict yhat 

list yhat in 76 

 
Once the desired values of price and advert are entered, Stata’s predict command can be used 
to generate the prediction. The predict command assumes that the Big Andy regression was the 
last one estimated and it uses the default option, xb to get predicted values from the regression. 
Once again, the list yhat statement uses the conditional in 76 to list the 76th observation of 
the data. 

 

 

5.3 SAMPLING PRECISION

Many of the results needed to manually compute this and other statistics are stored internally by 
Stata. To view the contents of results produced from estimation use 

 
ereturn list 

which produces, in part 

77.655513
. di _b[_cons] + _b[price]*5.50 + _b[advert]*1.2

      
 76.   77.65551
      
           yhat
      

. list yhat in 76
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To estimate the equation’s error variance, use the equation 

 
2

2 1
ˆ

ˆ

N

i
i

e

N K
�� �
�

�

 
 

Where the 2
îe  are the squared least squares residuals. Essentially, the numerator is just the sum of 

squared errors from the regression, which is divided by the residual degrees of freedom.  
The residual degrees of freedom is stored in e(df_r) and the sum-of-squared errors in 

e(rss). So,  
 

scalar sighat2 = e(rss)/e(df_r) 

scalar list sighat2 

 
produces: 
  

 
 
All of this information is available from the analysis of variance table produced by Stata, which is 
shown below.  

As you can see, the estimated variance is 23.874. Root MSE is the square root of this number and 
appears on the printout on the right-hand side of the table, highlighted in yellow.  

                e(rss) =  1718.942936893432
                e(mss) =  1396.538929773235
               e(rmse) =  4.886123970679952
                 e(r2) =  .4482577622149436
                  e(F) =  29.24785947967357
               e(df_r) =  72
               e(df_m) =  2
                  e(N) =  75
scalars:

   sighat2 =  23.874207
. scalar list sighat2
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5.4 CONFIDENCE INTERVALS 

The regression table gives you the least squares estimates and the estimated standard errors. The 
given standard error is an estimate of how precisely least squares is able to measure the parameter 
of interest. 

The confidence interval serves a similar purpose, though it is much more straightforward to 
interpret because it gives you upper and lower bounds between which the unknown parameter 
will lie with a given probability. Suppose one wants a 95% interval estimate for 2� , the response 
of sales revenue to a change in price at Big Andy’s Burger Barn for a given level of advertising. 
The procedure is the same as that used in Chapter 3. This time, the t-distribution used to obtain 
the critical values will have 75 3 72N K� � � �  degrees of freedom.  

The 95% confidence interval is based on equation (5.13) from the text:  
 

(72)( ) .95c cP t t t� ! ! �  
 

A critical value from the (72)t -distribution, call it tc, is needed that satisfies this equation. The 
constant tc is the %/2 critical value from the t-distribution and % is the total desired probability 
associated with the “rejection” area (the area outside of the confidence interval). The critical 
value, tc, can be found in a statistical table or one can use the invttail(df,%'() function in 
Stata to discover that the .025 critical value from (72)t -distribution is 1.993. A little algebra yields 

the 95% interval estimator of 2� based on its least squares estimator, b2,&and its estimated standard 
error, se(b2):  

 
# $2 2 2 21.993 se( ), 1.993 se( )b b b b� �  �  

 
Below, you’ll find the Stata commands to generate the lower and upper endpoints for the 
estimated confidence interval.  
 

scalar lb = _b[price] - invttail(e(df_r),.025) * _se[price] 

scalar ub = _b[price] + invttail(e(df_r),.025) * _se[price] 

scalar list lb ub 

 

 
 
In this case, we’ve used several stored results from the Big Andy’s regression. These include the 
least squares estimate of the coefficient on price, _b[price], its estimated standard error, 
_se[price], and the residual degrees for freedom from the regression (N�K), e(df_r).  

The 95% confidence intervals are computed by default whenever you estimate a linear 
regression model. The interval appears in the last two columns of the regression results. You can 
change the probabilities to 90% using the level() option after the regression. For example, to 
obtain the 90% intervals with your regression use 

 
regress sales price advert, level(90)  

 

        bU = -5.7230322
        bL = -10.092676
. scalar list bL bU
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The level can also be changed through the dialog system. Choose Statistics > Linear models 
and related > Linear regression from the pull-down menu to open the regress—Linear 
regression dialog box Choose the Reporting tab and change the confidence level to the one you 
desire as shown here: 

 

 

5.4.1 Confidence interval for a linear combination of parameters 

Big Andy plans to increase advertising expenditure by $800 and drop the price by 40 cents. The 
change in expected sales is 
 

2 30.4 0.8) � � �  �  
 
which is a linear combination of parameters. Stata contains a built-in command lincom that 
computes various statistics for linear combination of parameters; lincom computes point 
estimates, standard errors, t or z statistics, p-values, and confidence intervals for linear 
combinations of coefficients after any estimation. To estimate )&using the least squares estimates 
of Big Andy’s sales: 
 

lincom -0.4*price+0.8*advert, level(90) 

In this instance, the optional level(90) command is included in order to set the coverage 
probability for the confidence interval at 90%. The output is: 
 

 
 

Stata echoes the command to the screen and reproduces the linear combination. The estimated 
value of )&is 4.65, its estimated standard error is 0.7096, and the 90% confidence interval is 
(3.471, 5.835).  

One can use algebra and arithmetic to accomplish the same thing. Although Stata makes easy 
work of the computation, the user has to provide the algebra. Here, the estimated variances and 
covariances of the least estimator are used to compute standard error of )̂ * 
 

matrix cov=e(V) 

scalar lambda = -0.4*_b[price]+0.8*_b[advert] 

         (1)     4.653209   .7096133     6.56   0.000     3.470785    5.835633

       sales        Coef.   Std. Err.      t    P>|t|     [90% Conf. Interval]

 ( 1)  - .4*price + .8*advert = 0

. lincom -0.4*price+0.8*advert, level(90)
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scalar var_lambda = (-0.4)^2*cov[1,1]+(0.8)^2*cov[2,2]+2* ///  

    (-0.4)*(0.8)*cov[1,2] 

The matrix cov=e(V) statement writes the variance covariance, which is saved in e(V), to a 
matrix labeled cov. In the third and forth lines Stata’s matrix indexing capabilities are used to 
select the desired elements from the covariance matrix to use in computing the variance of ˆ .) &For 
instance cov[1,1] refers to the element that is in the first row and first column of cov—that is, 
the variance of b2. Remember that Stata automatically places a constant at the end of an equation, 
hence b2 is actually at the first element of coefficient vector.  

Once the variance is computed, take its square root and divide the estimate of ) by the result 
to get the standard error. From there the confidence interval is computed in the usual way.  
 

scalar se = sqrt(var_lambda) 

scalar t = lambda/se 

scalar lb = lambda-invttail(e(df_r),.05)*se 

scalar ub = lambda+invttail(e(df_r),.05)*se 

In the script, the invttail(e(df_r),.05) is used to get the 5% critical value from the t72 
distribution. The results match those from lincom almost exactly. 
 

 

5.5 HYPOTHESIS TESTS 

5.5.1 Two-sided tests 

The t-ratio of the test that 2� =0 against the two-sided alternative that 2 0� " is  
 

2
( )

2

0 ~
( ) N K

bt t
se b �

�
�

 
 

provided the null hypothesis that 2� =0 is true. The computed value is 
 

7.908 7.215
1.096

t �
� � �

 
 

Stata computes this easily from the command line. The p-value is obtained using the 
tail(df,stat) command, where df is the degrees of freedom and stat is the value of the test 
statistic. This function measures the tail area to the right of stat for the t-distribution with df 
degrees of freedom. For the two-sided test include the area to the left of the computed statistic 

        ub =  5.8356332
        lb =  3.4707851
         t =  6.5573876
        se =  .70961325
var_lambda =  .50355097
    lambda =  4.6532091
. scalar list lambda var_lambda se t lb ub
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(stat) by doubling the tail area of the positive value of t. Hence, use 2*ttail(72,abs(t1)). 
The complete Stata code is: 

 
scalar t1 = (_b[price]-0)/_se[price] 

scalar p1 = 2*ttail(72,abs(t1)) 

scalar list t1 p1 

 
The two-sided test that 3� =0 is performed similarly and the script is found at the end of this 
chapter.  

5.5.2 One-sided tests 

To test the null hypothesis that 2 0�   against the alternative 2 0� ! , use the same statistic 
 

2
( )

2

0 ~
( ) N K

bt t
se b �

�
�

 
 

Although the computation is the same, the critical value is now in the left tail of the t-distribution.  
 

scalar t1 = (_b[price]-0)/_se[price] 

scalar crit = -invttail(e(df_r),.05) 

scalar pval = 1-ttail(e(df_r),t1) 

 
The statement ttail(e(df_r),t1) computes the probability that a t-random variable with df_r 
degrees of freedom is larger that t1. Since the t-distribution is symmetric and we want the 
probability of being less than t1, we subtract ttail(e(df_r),t1) from 1. 

If the p-value is less than the 5% significance level of the test, then reject the null hypothesis 
at that level of statistical significance. Otherwise, the null cannot be rejected at that level of 
significance. 

The other way to conduct the test is to compare the statistic to the 5% critical value. Stata 
produces the critical value using the invttail(e(df_r),.05) function. The results of these 
computations are: 
 

 
 
The test of advertising’s effectiveness considers the null hypothesis that 3 1� �  against the 
alternative 3 1.� �  The script is: 

 
scalar t2 = (_b[advert]-1)/_se[advert] 

scalar crit = invttail(e(df_r),.05) 

scalar pval = ttail(e(df_r),t2) 

 
Since the alternative is found in the right hand tail of the t-distribution the code is slightly more 
transparent. Again invttail computes the 5% right hand critical value for the t-distribution and 
ttail computes the area to the right of t2. These lines produce: 

      pval =  2.212e-10
      crit = -1.6662937
        t1 = -7.2152415
. scalar list t1 crit pval
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5.5.3 Testing a linear combination 

Big Andy’s marketing adviser claims that dropping the price by 20 cents will be more effective 
for increasing sales revenue than increasing advertising expenditure by $500. In terms of the 
model, she thinks that 2 30.2  > 0.5 .� � �  The null hypothesis is that 2 30.2 0.5 0� � � � � and the 
alternative is 2 30.2 0.5 0� � � � �   

Once again, the lincom command is useful since it estimates the linear combination and its 
standard error. As a one-sided test, its best to compute the critical value or the p-value directly 
rather than rely on the printed output of lincom, which only gives you the p-value for a two-sided 
t-test.  

 
First, use lincom 

 
lincom -0.2*price-0.5*advert 

 
which yields 

 

 
 
Dividing the estimated coefficient, 0.650, by the standard error, 0.400, yields the t-ratio 1.62. The 
one-sided p-value is half of the two-sided one, provided the estimated linear combination has the 
anticipated sign. To avoid confusion, we recommend computing the proper critical value or the p-
value for one sided tests as is done below. 
 

scalar t = r(estimate)/r(se) 

scalar crit = invttail(r(df),.05) 

scalar pval = ttail(r(df),t) 

scalar list crit t pval 

 

 
 

The new element involves r(estimate), r(df) and r(se). These are the estimated linear 
combination and standard error computed by lincom. Like the e() commands that are available 
after estimation, many other commands (e.g., test and lincom) also save results for further 
computation. Issuing  

 
return list 

      pval =  .10540831
      crit =  1.6662937
        t2 =  1.2625732
. scalar list t2 crit pval

         (1)     .6502787   .4009846     1.62   0.109    -.1490694    1.449627

       sales        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 ( 1)  - .2*price - .5*advert = 0

      pval =  .05461891
         t =  1.6217052
      crit =  1.6662937
. scalar list crit t pval
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yields  

 

 
 
This indicates that the degrees of freedom (N�K), the estimate and its standard error are saved 
from the prior use of the lincom command. When in doubt, use ereturn list or return list 
to verify what resides in the set of saved results. 

5.6 POLYNOMIAL EQUATIONS 

One way to allow for nonlinear relationships between independent and dependent variables is to 
introduce polynomials of the regressors into the model. In this example the marginal effect of an 
additional $1000 of advertising is expected to diminish as more advertising is used. The model 
becomes: 
 

2
1 2 3 4= +  + + SALES PRICE ADVERT ADVERT e� � � �   

 
There are two ways to estimate this. First, one can create the new variable 2ADVERT  add it to 
the model, and estimate the parameters. As in 
 

generate a2 = advert*advert 

reg sales price advert a2 

 
which produces 

 
 
The variable a2, which is created by multiplying advert*advert, is a simple example of what is 
sometimes referred to as an interaction variable. The simplest way to think about an interaction 
variable is that its effect on the dependent variable depends on another variable—the two 
variables interact to determine the average value of your dependent variable. In this case, the 
effect of advertising on average sales depends on the level of advertising itself.   

           r(estimate) =  .65027873012098
                 r(se) =  .4009845529554849
                 r(df) =  72
scalars:

       _cons      109.719   6.799045    16.14   0.000     96.16212    123.2759
          a2    -2.767964   .9406241    -2.94   0.004    -4.643515   -.8924123
      advert     12.15124   3.556164     3.42   0.001     5.060447    19.24203
       price        -7.64   1.045939    -7.30   0.000    -9.725543   -5.554457

       sales        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    3115.48187    74  42.1011063           Root MSE      =  4.6453
           Adj R-squared =  0.4875

    Residual    1532.08443    71  21.5786539           R-squared     =  0.5082
       Model    1583.39744     3  527.799145           Prob > F      =  0.0000

           F(  3,    71) =   24.46
      Source         SS       df       MS              Number of obs =      75

. reg sales price advert a2
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When variables interact, the marginal effect of another unit of advertising ($1000) has to be 
computed manually based on the calculus. Taking the partial derivative of average sales with 
respect to advertising yields 
 

3 4
( ) 2E SALES ADVERT

ADVERT
+

��  �
+  

 
The magnitude of the marginal effect depends on the parameters as well as on the level of 
advertising. In the example it is evaluated at two points, ADVERT=.5 and ADVERT=2. The code 
is: 
 

scalar me1 = _b[advert]+2*(.5)*_b[a2] 

scalar me2 = _b[advert]+2*(2)*_b[a2] 

 
and listing the results produces 
 

 

5.6.1 Optimal advertising: nonlinear combinations of parameters 

The optimal level of advertising is defined in this example to be the amount maximizes net sales. 
Andy will advertise up to the point where another dollar of expenditure adds one dollar of sales—
and no more. At this point the marginal effect is equal to one, 
  

3 42 1ADVERT�  � �  
 

Solving ADVERT in terms of the parameters  
 

3

4

1
2OADVERT ��

�
�  

 
which is nonlinear in the parameters of the model. A consistent estimate of the optimal level of 
advertising can be obtained by substituting the least squares estimates for the parameters on the 
right-hand side. Estimating the standard error via the Delta method requires some calculus, but 
fortunately Stata includes a command nlcom that computes nonlinear combinations of 
parameters after estimation as well as the standard error, t-ratio, and confidence interval.    
 

nlcom (1-_b[advert])/(2*_b[a2]) 

 

 

       me2 =   1.079383
       me1 =  9.3832736
. scalar list me1 me2

       _nl_1      2.01434    .128723    15.65   0.000     1.757673    2.271006

       sales        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       _nl_1:  (1-_b[advert])/(2*_b[a2])

. nlcom (1-_b[advert])/(2*_b[a2])
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According to this estimate the optimal level of advertising is $2014. 

5.6.2 Using factor variables for interactions 

A better way to estimate models with interactions and evaluate marginal effects is to use Stata’s 
factor variables and built-in margins command. Interacting variables in Stata is particularly easy, 
but some care must be taken to ensure that you are estimating what you intend. In Stata factor 
variables create indicator variables from categorical variables, interactions of indicators of 
categorical variables, interactions of categorical and continuous variables, and interactions of 
continuous variables (polynomials). They are allowed with most estimation and postestimation 
commands, along with a few other commands.  

Factor-variables have their own operators in Stata:  
 

A unary operator is math-speak for a mathematical operation that affects only one number or 
variable—called an operand.  An example would be a negative sign that appears before a number; 
when so used it takes the number and makes it negative. So, in the expression �2, the negative 
sign is a unary operator that operates on the number 2, making it negative. Binary operators 
operate on two variables. For example the � in the expression 1�2 operates on 1 and 2, 
subtracting 2 from 1.  

Stata includes several unary operators that include i. and c. When used before a variable 
name these operators indicate to Stata that the variable is to be treated as continuous (e.g., 
c.price) or discrete (i.price). In the latter case, i.price will create an indicator variable for 
each different value of PRICE. Since the variable is continuous and each value in the data set is 
unique, Stata creates a set of N indicator variables to use in the model--probably not something 
you want to do ordinarily. On the other hand, it would be useful in creating sets if indicator 
variables for discrete variables in your data. Some examples of this are given elsewhere in this 
manual. 

In the current case, ADVERT is continuous (equivalent to c.advert) and we want to interact 
it with itself (c.advert). The binary operator # is used to multiply two factor variables in Stata. 
In this way it creates the interaction of the two variables. So, the continuous variable ADVERT2 is 
be created using c.advert#c.advert.  

There are at least two reasons to specify variables in this way. First, there is no need to 
specifically generate the interaction variable to include in the data set; c.advert#c.advert can 
be added directly to the model by including it in the variable list of the regress command. 
Second, variables created this way can use Stata’s built-in margins command to compute 
marginal effects. The use of # to multiply factor variables instead of the usual multiplication * 
indicates to Stata that the two variables that sandwich it have been interacted. This allows it to 
keep track of the marginal effects without you having to do any calculus. The key is to create the 
interactions using these factor variables and to use the proper options in margins. 

To estimate the regression 
 

regress sales price advert c.advert#c.advert 

          
         ##        binary operator to specify factorial interactions
         #         binary operator to specify interactions
         c.        unary operator to treat as continuous
         i.        unary operator to specify indicators
          
         Operator  Description
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the results of which are:  
  

 
 
Notice that the results from this regression are identical to those where a2 was generated 
manually and included in the model. The coefficient on the interaction term is now identified as 
c.advert#c.advert. The payoff comes with the use of margins to compute the marginal effect. 
Evaluating the marginal effect at advertising levels of 0.5 and 2 is obtained: 
 

 
 
The syntax for margins requires some explanation. The first option is dydx(advert). This asks 
for the marginal effect of a one unit increase in the parenthesized variable (advert) on the mean 
of the dependent variable. The second option tells Stata at which values of advert to evaluate the 
marginal effect. In any event, margins produced the same result as the first method, and did so 
with virtually no programming and with no math. As a bonus, margins also produces an estimate 
of the standard error, t-ratio, two-sided p-value, and a confidence interval.  
 

       _cons      109.719   6.799045    16.14   0.000     96.16212    123.2759
              
    c.advert    -2.767963    .940624    -2.94   0.004    -4.643514    -.892412
    c.advert# 
              
      advert     12.15124   3.556164     3.42   0.001     5.060446    19.24203
       price        -7.64   1.045939    -7.30   0.000    -9.725543   -5.554457

       sales        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    3115.48187    74  42.1011063           Root MSE      =  4.6453
           Adj R-squared =  0.4875

    Residual    1532.08446    71  21.5786543           R-squared     =  0.5082
       Model    1583.39741     3  527.799136           Prob > F      =  0.0000

           F(  3,    71) =   24.46
      Source         SS       df       MS              Number of obs =      75

. regress sales price advert c.advert#c.advert

          2      1.079383   .7019353     1.54   0.124    -.2963846    2.455151
          1      9.383273   2.636965     3.56   0.000     4.214916    14.55163
         _at  
advert        

                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method

2._at        : advert          =           2

1._at        : advert          =          .5

dy/dx w.r.t. : advert
Expression   : Linear prediction, predict()

Model VCE    : OLS
Average marginal effects                          Number of obs   =         75

. margins, dydx(advert) at(advert=(.5 2))
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5.7 INTERACTIONS 

Interaction among variables was introduced in the preceding section for creating polynomial 
terms. The concept is very general can be applied to any situation where the effect of a change in 
one variable on the mean of the dependent variable depends on another variable. The basic model 
considered is 
 

1 2 3PIZZA AGE INCOME e� �  �  �   
 

It is proposed that as a person grows older, his or her marginal propensity to spend on pizza 
declines—this implies that the coefficient �,&depends on a person’s age.  
 

3 4 5 AGE� � �  �  
 

Substituting this into the model produces 
 

1 2 4 5 ( )PIZZA AGE INCOME INCOME AGE e� �  �  �  � �   
 

This introduces a new variable, ,INCOME AGE� which is an interaction variable. The marginal 
effect of unit increase in AGE in this model depends on INCOME and the marginal effect of an 
increase in INCOME depends on AGE.  

The interaction could be created in Stata using the generate command, but a better choice is 
to use factor variables. This will permit one to evaluate marginal effects using the built-in 
margins command. 
 

use pizza4, clear 

regress pizza age income c.age#c.income 

margins, dxdy(age) at(income=(25 90)) 

The output from the regression is 

 
 

And from the margins command: 

       _cons     161.4654   120.6634     1.34   0.189    -83.25131    406.1822
              
    c.income    -.1232394   .0667187    -1.85   0.073    -.2585512    .0120725
       c.age# 
              
      income     6.979905   2.822768     2.47   0.018     1.255067    12.70474
         age    -2.977423   3.352101    -0.89   0.380    -9.775799    3.820952

       pizza        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total      947651.9    39  24298.7667           Root MSE      =     127
           Adj R-squared =  0.3363

    Residual     580608.65    36  16128.0181           R-squared     =  0.3873
       Model     367043.25     3   122347.75           Prob > F      =  0.0005

           F(  3,    36) =    7.59
      Source         SS       df       MS              Number of obs =      40

. regress pizza age income c.age#c.income
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Another example introduces and interaction between education and experience into the wage 
model discussed in Chapter 4 that uses the cps_small.dta data set.  
 

1 2 3 4ln( ) ( )WAGE EDUC EXPER EDUC EXPER e� �  �  �  � �   
 

use cps4_small, clear 

gen lwage = ln(wage) 

regress lwage educ exper c.educ#c.exper  

 
 
And  
 

regress lwage educ exper c.educ#c.exper c.exper#c.exper 

 

          2     -14.06896   4.171058    -3.37   0.001    -22.24409   -5.893842
          1     -6.058407   2.390502    -2.53   0.011    -10.74371   -1.373109
         _at  
age           

                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method

2._at        : income          =          90

1._at        : income          =          25

dy/dx w.r.t. : age
Expression   : Linear prediction, predict()

Model VCE    : OLS
Average marginal effects                          Number of obs   =         40

. margins, dydx(age) at(income=(25 90))

       _cons     1.392318   .2066447     6.74   0.000      .986809    1.797827
              
     c.exper    -.0000364   .0004838    -0.08   0.940    -.0009858    .0009129
      c.educ# 
              
       exper     .0063295   .0066985     0.94   0.345    -.0068153    .0194743
        educ     .0949385   .0146246     6.49   0.000       .06624     .123637

       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    336.780731   999  .337117849           Root MSE      =  .52185
           Adj R-squared =  0.1922

    Residual    271.235783   996  .272325084           R-squared     =  0.1946
       Model    65.5449479     3   21.848316           Prob > F      =  0.0000

           F(  3,   996) =   80.23
      Source         SS       df       MS              Number of obs =    1000

. regress lwage educ exper c.educ#c.exper 
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Once again, the use of Stata’s unary operators for factor variables makes estimating this 
regression particularly easy.  

5.8 GOODNESS-OF-FIT 

As we saw in Chapter 4 goodness-of-fit of the regression is based on statistics from the analysis 
of variance table. The R2 measures the proportion of sample variation in the dependent variable 
accounted for by the regression. The same holds true for the multiple regression model. The only 
difference is that now there is more than one explanatory variable in the model. So, the 
relationship of Chapter 4 can be used. Decompose the total sum of squares of the dependent 
variable (SST) into explained (SSR) and unexplained (SSE) variation. 

 
SST = SSR + SSE 

 
Then the goodness-of-fit measure R2 is 
 

2 1SSR SSER
SST SST

� � �
 

 
You have to be careful when using Stata’s analysis of variance table with the notation developed 
in POE and employed here. Stata refers to the explained variation as the model sum of squares. 
The text calls this the sum of squares regression or SSR. The unexplained variation in the 
dependent variable is captured in the least squares residuals. In your textbook this is called the 
sum of squared errors, SSE. Stata calls this unexplained variation the residual sum of squares.  

 
Concept POE Stata 
Unexplained variation SSE (sum of squared errors) Residual SS 
Explained variation SSR (sum of squared regression) Model SS 
Total variation SST Total SS 

       _cons     .5296774   .2267415     2.34   0.020      .084731    .9746237
              
     c.exper    -.0007139    .000088    -8.11   0.000    -.0008867   -.0005412
     c.exper# 
              
     c.exper    -.0013224   .0004949    -2.67   0.008    -.0022935   -.0003513
      c.educ# 
              
       exper     .0629807   .0095361     6.60   0.000     .0442676    .0816938
        educ     .1271953   .0147188     8.64   0.000     .0983118    .1560789

       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    336.780731   999  .337117849           Root MSE      =  .50567
           Adj R-squared =  0.2415

    Residual    254.421562   995  .255700062           R-squared     =  0.2445
       Model    82.3591698     4  20.5897924           Prob > F      =  0.0000

           F(  4,   995) =   80.52
      Source         SS       df       MS              Number of obs =    1000

. regress lwage educ exper c.educ#c.exper c.exper#c.exper
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With that out of the way, you can get R2 in a number of ways. The first is to use the analysis of 
variance table and compute it by hand. The second is to read it directly off of the regression 
output, since it is computed by default for linear regression. The third is to use the command line 
to compute it using saved results from the preceding regression. Certainly this option is easier 
than the first, but harder than the second! So, we will compute and display R2 using the model 
sum of squares, which Stata saves in e(mss), and residual sum of squares, saved in e(rss). Note, 
the R2 computed by default is also saved in Stata’s memory and can be recalled using e(r2).  

 
use andy, clear 

reg sales price advert 

 

 
 

di "R-square " e(mss)/(e(mss)+e(rss)) 

di "R-square " 1-e(rss)/(e(mss)+e(rss)) 

 
 

A disadvantage of R2 as a measure of the goodness-of-fit is that adding regressors to the model 
always improves fit. A related measure of fit imposes a small penalty for adding regressors so 
that it is possible for the adjusted R2 to get smaller as irrelevant independent variables are added 
to the model. The adjusted R2 is  

 
2 /( )1

/( 1)
SSE N KR
SST N

�
� �

�  
 

This statistic is also reported by default by Stata’s regress command. Notice that adjusted R-
squared is smaller than R-squared. In fact, R-squared will never be smaller than the adjusted R-
Squared in multiple linear regression since the estimated fit is being penalized for adding 
explanatory variables.  
 

       _cons     118.9136   6.351638    18.72   0.000     106.2519    131.5754
      advert     1.862584   .6831955     2.73   0.008      .500659     3.22451
       price    -7.907854   1.095993    -7.22   0.000    -10.09268   -5.723032

       sales        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    3115.48187    74  42.1011063           Root MSE      =  4.8861
           Adj R-squared =  0.4329

    Residual    1718.94294    72  23.8742075           R-squared     =  0.4483
       Model    1396.53893     2  698.269465           Prob > F      =  0.0000

           F(  2,    72) =   29.25
      Source         SS       df       MS              Number of obs =      75

. reg sales price advert

R-square .44825776
. di "R-square " 1-e(rss)/(e(mss)+e(rss))

R-square .44825776
. di "R-square " e(mss)/(e(mss)+e(rss))
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KEY TERMS 

# i.variable R2 
adjusted R2 index regress 
binary operators interaction variable replace 
c.variable invtail(df,alpha) return list 
confidence interval level(90) Root MSE 
di lincom scalar 
dydx list scalar list
e(df_r) marginal effect set obs 
e(mss) margins test 
e(rss) matrix t-ratio 
e(V) multiple linear regression ttail(df,tstat) 
ereturn list nlcom unary operators 
estat vce prediction variance 
factor variables p-value variance covariance matrix 

CHAPTER 5 DO-FILE [CHAP05.DO] 

* file chap05.do for Using Stata for Principles of Econometrics, 4e 

cd c:\data\poe4stata 

* Stata Do-file 

* copyright C 2011 by Lee C. Adkins and R. Carter Hill 

* used for "Using Stata for Principles of Econometrics, 4e" 
* by Lee C. Adkins and R. Carter Hill (2011) 

* John Wiley and Sons, Inc. 

* setup 

version 11.1 

capture log close 
set more off 

* open log 
log using chap05_food, replace text 

* open data 
use andy, clear 

* Summary Statistics 
summarize 

* List subset of observations 
list in 1/5 

* Least squares regression with covariance matrix 
regress sales price advert 

estat vce 

* Predict sales when price is 5.50 and adv is 1200 

di _b[_cons] + _b[price]*5.50 + _b[advert]*1.2 

* Using the data editor to predict 

set obs 76 
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replace price = 5.50 in 76 

replace advert = 1.2 in 76 

predict yhat 
list yhat in 76 

* Calculate sigma-hat square 
ereturn list 

scalar sighat2 = e(rss)/e(df_r) 

scalar list sighat2 

* Standard error of the regression 

di sqrt(sighat2) 

* Confidence Intervals 

scalar bL = _b[price] - invttail(e(df_r),.025) * _se[price] 
scalar bU = _b[price] + invttail(e(df_r),.025) * _se[price] 

scalar list bL bU 

* Using the level() command to change size of default intervals 

regress sales price advert, level(90) 

* Interval for a linear combination 

* Easy way 
lincom -0.4*price+0.8*advert, level(90) 

* Hard way 
matrix cov=e(V) 

scalar lambda = -0.4*_b[price]+0.8*_b[advert] 

scalar var_lambda = (-0.4)^2*cov[1,1]+(0.8)^2*cov[2,2]+2*(-0.4)*(0.8)*cov[1,2] 
scalar se = sqrt(var_lambda) 

scalar t = lambda/se 

scalar lb = lambda-invttail(e(df_r),.05)*se 
scalar ub = lambda+invttail(e(df_r),.05)*se 

scalar list lambda var_lambda se t lb ub 

* t-ratios 

scalar t1 = (_b[price]-0)/_se[price] 

scalar t2 = (_b[advert]-0)/_se[advert] 
scalar list t1 t2 

* pvalues 
scalar p1 = 2*ttail(72,abs(t1)) 

scalar p2 = ttail(72,abs(t2)) 

scalar list p1 p2 

* One sided significance test 

scalar t1 = (_b[price]-0)/_se[price] 
scalar crit = -invttail(e(df_r),.05) 

scalar pval = 1-ttail(e(df_r),t1) 

scalar list t1 crit pval 

* One sided test of Advertising effectiveness 

scalar t2 = (_b[advert]-1)/_se[advert] 
scalar crit = invttail(e(df_r),.05) 

scalar pval = ttail(e(df_r),t2) 

scalar list t2 crit pval 

* Linear combination 

lincom -0.2*price-0.5*advert 
scalar t = r(estimate)/r(se) 

scalar crit = invttail(e(df_r),.05) 

scalar pval = ttail(e(df_r),t) 
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scalar list crit t pval 

return list 

* Polynomial 

generate a2 = advert*advert 
reg sales price advert a2 

scalar me1 = _b[advert]+2*(.5)*_b[a2] 

scalar me2 = _b[advert]+2*(2)*_b[a2] 
scalar list me1 me2 

* Nonlinear combinations of variables 
scalar advertt0 = (1-_b[advert])/(2*_b[a2]) 

scalar list advertt0 

nlcom (1-_b[advert])/(2*_b[a2]) 

* Polynomial using factor variables 
regress sales price advert c.advert#c.advert 

margins, dydx(advert) at(advert=(.5 2)) 

* Interactions 

use pizza4, clear 

regress pizza age income c.age#c.income 
margins, dydx(age) at(income=(25 90)) 

use cps4_small, clear 
gen lwage = ln(wage) 

regress lwage educ exper c.educ#c.exper  

regress lwage educ exper c.educ#c.exper c.exper#c.exper 

use andy, clear 

reg sales price advert 

di "R-square " e(mss)/(e(mss)+e(rss)) 

di "R-square " 1-e(rss)/(e(mss)+e(rss)) 
log close 
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CHAPTER 6

Further Inference in the Multiple 
Regression Model 

CHAPTER OUTLINE 
6.1 The F-Test 
     6.1.1 Testing the significance of the model 
     6.1.2 Relationship between t- and F-tests
     6.1.3 More general F-tests
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     6.3.1 Omitted variables 
     

     6.3.2 Irrelevant variables 
     6.3.3 Choosing the model 
              Model Selection Criteria 
              RESET 
6.4 Poor data, collinearity, and insignificance  
Key Terms  
Chapter 6 Do-file 

6.1 THE F-TEST 

The example used in this chapter is a model of sales for Big Andy's Burger Barn considered in 
Chapter 5.  The model includes three explanatory variables and a constant: 

2
1 2 3 4i i i i iSALES PRICE ADVERT ADVERT e� �  �  �  � 

where SALESi is monthly sales in a given city and is measured in $1,000 increments, PRICEi is 
price of a hamburger measured in dollars, ADVERTi is the advertising expenditure also measured 
in thousands of dollars and i=1, 2, … , N.

The null hypothesis is that advertising has no effect on average sales.  For this marginal effect 
to be zero for all values of advertising requires 3 40 and 0.� � � �  The alternative is 

3 40 or 0.� " � "   The parameters of the model under the null hypothesis are restricted to be zero 
and the parameters under the alternative are unrestricted.

The F-test compares the sum of squared errors from the unrestricted model to that of the 
restricted model. A large difference is taken as evidence that the restrictions are false.  The 
statistic used to test the null hypothesis (restrictions) is 
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which has an F-distribution with J numerator and N�K denominator degrees of freedom when the 
restrictions are true.  

The statistic is computed by running two regressions. The first is unrestricted; the second has 
the restrictions imposed. Save the sum of squared errors from each regression, the degrees of 
freedom from the unrestricted regression (N�K), and the number of independent restrictions 
imposed (J). Then, compute the following: 

� �
� �

� �
� �

1896.391 1532.084 2
8.44

1532.084 75 4
R U

U

SSE SSE J
F

SSE N K
� �

� � �
� �

To estimate this model load the data file andy.dta

use andy, clear 

In Stata’s variables window, you’ll see that the data contain three variables:  sales, price, and
advert. These are used with the regress function to estimate the unrestricted model 

regress sales price advert c.advert#c.advert 

Save the sum of squared errors into a new scalar called sseu using e(ssr) and the residual 
degrees of freedom from the analysis of variance table into a variable called df_unrest using 
e(df_r).   

scalar sseu = e(ssr) 

scalar df_unrest = e(df_r) 

Next, impose the restriction on the model and reestimate it using least squares. Again, save the 
sum of squared errors and the residual degrees of freedom.  

       _cons      109.719   6.799045    16.14   0.000     96.16212    123.2759
              
    c.advert    -2.767963    .940624    -2.94   0.004    -4.643514    -.892412
    c.advert# 
              
      advert     12.15124   3.556164     3.42   0.001     5.060446    19.24203
       price        -7.64   1.045939    -7.30   0.000    -9.725543   -5.554457

       sales        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    3115.48187    74  42.1011063           Root MSE      =  4.6453
           Adj R-squared =  0.4875

    Residual    1532.08446    71  21.5786543           R-squared     =  0.5082
       Model    1583.39741     3  527.799136           Prob > F      =  0.0000

           F(  3,    71) =   24.46
      Source         SS       df       MS              Number of obs =      75

. regress sales price advert c.advert#c.advert
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regress sales price 

scalar sser = e(ssr) 

scalar df_rest = e(df_r) 

The saved residual degrees of freedom from the restricted model can be used to obtain the 
number of restrictions imposed.  Each unique restriction in a linear model reduces the number of 
parameters in the model by one.  So, imposing one restriction on a three parameter unrestricted 
model (e.g., Big Andy’s) reduces the number of parameters in the restricted model to two.  Let Kr
be the number of regressors in the restricted model and Ku the number in the unrestricted model.  
Subtracting the degrees of freedom in the unrestricted model (N�Ku) from those of the restricted 
model (N�Kr) will yield the number of restrictions you’ve imposed, i.e., (N�Kr) � (N�Ku) = 
(Ku�Kr) = J. In Stata,

scalar J = df_rest - df_unrest  

Then, the F-statistic can be computed 

scalar fstat = ((sser-sseu)/J)/(sseu/(df_unrest)) 

 
The critical value from the F(J,N�K) distribution and the p-value for the computed statistic can be 
computed in the usual way. In this case, invFtail(J,N-K,%) generates the %&level critical value 
from the F-distribution with J numerator and N�K denominator degrees of freedom. The 
Ftail(J,N-K,fstat) function works similarly to return the p-value for the computed statistic, 
fstat.  

scalar crit1 = invFtail(J,df_unrest,.05) 

scalar pvalue = Ftail(J,df_unrest,fstat) 

scalar list sseu sser J df_unrest fstat pvalue crit1 

The output for which is: 

       _cons     121.9002   6.526291    18.68   0.000     108.8933    134.9071
       price    -7.829074   1.142865    -6.85   0.000     -10.1068   -5.551348

       sales        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    3115.48187    74  42.1011063           Root MSE      =  5.0969
           Adj R-squared =  0.3830

    Residual    1896.39084    73  25.9779567           R-squared     =  0.3913
       Model    1219.09103     1  1219.09103           Prob > F      =  0.0000

           F(  1,    73) =   46.93
      Source         SS       df       MS              Number of obs =      75

. regress sales price
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The dialog boxes can also be used to test restrictions on the parameters of the model.  The first 
step is to estimate the model using regress. This proceeds just as it did in section 5.1 above. 
Select Statistics > Linear models and related > Linear regression from the pull-down menu. 
This reveals the regress dialog box. Using  sales as the dependent variable and price, advert,
and the interaction c.advert#c.advertrt as independent variables in the regress–Linear 
regression dialog box, run the regression by clicking OK.  Once the regression is estimated, post-
estimation commands are used to test the hypothesis.  From the pull-down menu select Statistics
> Postestimation > Tests > Test parameters, which brings up the testparm dialog box: 

One can also use the test dialog box by selecting Statistics > Postestimation > Tests > Test 
linear hypotheses.  The test dialog is harder to use.  Each linear hypothesis must be entered as a 
Specification.  For Specification 1 (required) type in advert=0 and make sure that either the 
Coefficients are zero or Linear expressions are equal radio button is selected.  Then highlight 
Specification 2 and type in c.advert#c.advert=0 and click Submit.  The dialog box for this 
step is shown below: 

In both cases, the Command window is much easier to use.  The testparm statement is the 
simplest to use for testing zero restrictions on the parameters.  The syntax is 

     crit1 =  3.1257642
    pvalue =  .00051416
     fstat =    8.44136
 df_unrest =         71
         J =          2
      sser =  1896.3908
      sseu =  1532.0845
. scalar list sseu sser J df_unrest fstat pvalue crit1
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testparm varlist

That means that one can simply list the variables that have zero coefficients under the null.  It can 
also be coaxed into testing that coefficients are equal to one another using the equal option.  

The test command can be used to test joint hypotheses about the parameters of the most 
recently fit model using a Wald test.  There are several different ways to specify the hypotheses 
and a couple of these are explored here.  The general syntax is 

test (hypothesis 1) (hypothesis 2) 

Each of the joint hypotheses is enclosed in a set of parentheses.  In a linear model the coefficients 
can be identified by their variable names, since their meaning is unambiguous.  More generally, 
one can also use either parameter name, if previously defined, or in the linear model the 
_b[variable name] syntax.  Here are the three equivalent ways to test the joint null 

regress sales price advert c.advert#c.advert 

testparm advert c.advert#c.advert 

test (advert=0)(c.advert#c.advert=0) 

test (_b[advert]=0)(_b[c.advert#c.advert]=0) 

6.1.1 TESTING THE SIGNIFICANCE OF THE MODEL 

In this application of the F-test, you determine whether your model is significant or not at the 
desired level of statistical significance. Consider the general linear model with K regressors 

1 2 2 3 3i i i iK K iy x x x e� �  �  �   � �

If the explanatory variables have no effect on the average value of y then each of the slopes will 
be zero, leading to the null and alternative hypotheses: 

            Prob > F =    0.0005
       F(  2,    71) =    8.44

 ( 2)  c.advert#c.advert = 0
 ( 1)  advert = 0

. test (_b[advert]=0)(_b[c.advert#c.advert]=0)

            Prob > F =    0.0005
       F(  2,    71) =    8.44

 ( 2)  c.advert#c.advert = 0
 ( 1)  advert = 0

. test (advert=0)(c.advert#c.advert=0)

            Prob > F =    0.0005
       F(  2,    71) =    8.44

 ( 2)  c.advert#c.advert = 0
 ( 1)  advert = 0

. testparm advert c.advert#c.advert
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This amounts to J=K�1 restrictions. Again, estimate the model unrestricted, and restricted saving 
degrees of freedom for each. Then, use the Stata code from above to compute the test statistic:   

( ) / ( 1) (3115.485 1532.084) / 3 24.459
/ ( ) 1532.084 / (75 4)

SST SSE KF
SSE N K
� � �

� � �
� �

The Stata code is: 

* Unrestricted Model (all variables) 

regress sales price advert c.advert#c.advert 

scalar sseu = e(rss) 

scalar df_unrest = e(df_r) 

* Restricted Model (no explanatory variables) 

regress sales  

scalar sser = e(rss) 

scalar df_rest = e(df_r) 

scalar J = df_rest - df_unrest 

* F-statistic, critical value, pvalue 

scalar fstat = ((sser -sseu)/J)/(sseu/(df_unrest)) 

scalar crit2 = invFtail(J,df_unrest,.05) 

scalar pvalue = Ftail(J,df_unrest,fstat) 

scalar list sseu sser J df_unrest fstat pvalue crit2 

which produces: 

This particular test of regression significance is important enough that it appears on the default 
output of every linear regression estimated using Stata. In the output below, the F-statistic for this 
test is 24.4595 and its p-value is well below 5%. Therefore, we reject the null hypothesis that the 
model is insignificant at the five percent level. 

     crit2 =  2.7336472
    pvalue =  5.600e-11
     fstat =  24.459316
 df_unrest =         71
         J =          3
      sser =  3115.4819
      sseu =  1532.0845
. scalar list sseu sser J df_unrest fstat pvalue crit2
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6.1.2 Relationship between t- and F-tests

In this example, the equivalence of a t-test for significance and an F-test is shown.  The basic 
model is 

2
1 2 3 4i i i i iSALES PRICE ADVERT ADVERT e� �  �  �  � 

The t-ratio for 2� is equal to 7.30� (see the output at the end of section 6.1.2).  The F-test can be 
used to test the hypothesis that 2 0� � against the two-sided alternative that it is not zero.  The 
restricted model is 

2
1 3 4i i i iSALES ADVERT ADVERT e� �  �  � 

Estimating the unrestricted model, the unrestricted model, and computing the F-statistic in Stata:

* Unrestricted Regression 

regress sales price advert c.advert#c.advert 

scalar sseu = e(rss) 

scalar df_unrest = e(df_r) 

scalar tratio = _b[price]/_se[price] 

scalar t_sq = tratio^2 

* Restricted Regression 

regress sales advert c.advert#c.advert 

scalar sser = e(rss) 

scalar df_rest = e(df_r) 

scalar J = df_rest - df_unrest 

* F-statistic, critical value, pvalue 

scalar fstat = ((sser -sseu)/J)/(sseu/(df_unrest)) 

scalar crit = invFtail(J,df_unrest,.05) 

       _cons      109.719   6.799045    16.14   0.000     96.16212    123.2759
              
    c.advert    -2.767963    .940624    -2.94   0.004    -4.643514    -.892412
    c.advert# 
              
      advert     12.15124   3.556164     3.42   0.001     5.060446    19.24203
       price        -7.64   1.045939    -7.30   0.000    -9.725543   -5.554457

       sales        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    3115.48187    74  42.1011063           Root MSE      =  4.6453
           Adj R-squared =  0.4875

    Residual    1532.08446    71  21.5786543           R-squared     =  0.5082
       Model    1583.39741     3  527.799136           Prob > F      =  0.0000

           F(  3,    71) =   24.46
      Source         SS       df       MS              Number of obs =      75

. regress sales price advert c.advert#c.advert
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scalar pvalue = Ftail(J,df_unrest,fstat) 

scalar list sseu sser J df_unrest fstat pvalue crit tratio t_sq 

This produces the output: 

The F-statistic is 53.35.  It is no coincidence that the square of the t-ratio is equal to the F:
27.304 53.35.� �  The reason for this is the exact relationship between the t- and F-distributions. 

The square of a t random variable with df degrees of freedom is an F random variable with 1 
degree of freedom in the numerator and df degrees of freedom in the denominator.  

6.1.3 More General F-Tests

The F-test can also be used to test hypotheses that are more general than ones involving zero 
restrictions on the coefficients of regressors.  Up to K conjectures involving linear hypotheses 
with equal signs can be tested.  The test is performed in the same way by comparing the restricted 
sum of squared errors to its unrestricted value.  To do this requires some algebra by the user.  
Fortunately, Stata provides a couple of alternatives that avoid this. 

The example considered is based on the optimal level of advertising first considered in 
Chapter 5.  If the returns to advertising diminish, then the optimal level of advertising will occur 
when the next dollar spent on advertising generates only one more dollar of sales. Setting the 
marginal effect of another (thousand) dollar on sales equal to 1:  

3 42 1oA�  � �

and solving for AO yields 3 4
ˆ (1 ) / 2OA b b� �  where b3 and b4 are the least squares estimates. 

Plugging in the results from the estimated model yields an estimated optimal level of advertising 
of 2.014 ($2014).   

Suppose that Andy wants to test the conjecture that the optimal level of advertising is $1,900. 
Substituting 1.9 (remember, advertising in the data is measured in $1,000) leads to null and 
alternative hypotheses: 

0 3 4 1 3 4: 3.8 1 : 3.8 1H H�  � � �  � "

The Stata commands to compute the value of this conjecture under the null hypothesis and its 
standard error are 

lincom _b[advert]+3.8*_b[c.advert#c.advert]-1 

      t_sq =  53.354875
    tratio = -7.3044421
      crit =  3.9758102
    pvalue =  3.236e-10
     fstat =  53.354875
 df_unrest =         71
         J =          1
      sser =  2683.4109
      sseu =  1532.0845
. scalar list sseu sser J df_unrest fstat pvalue crit tratio t_sq
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Recall from previous chapters that the lincomm command computes linear combinations of 
parameters based on the regression that precedes it.  

The output from lincom and the computation of the t-ratio is: 

Since the regression is linear, the simpler syntax can also be used to produce identical results:   

lincom advert+3.8*c.advert#c.advert-1 

In either case, an estimate and standard error are generated and these quantities are saved in
r(estimate) and r(se), respectively. So, you can recall them and use the scalar command to 
compute a t-ratio manually.

3 4

3 4

( 3.8 ) 1
se( 3.8 )
b bt

b b
 �

�


The commands to do this are: 

scalar t = r(estimate)/r(se) 

scalar pvalue2tail = 2*ttail(e(df_r),t) 

scalar pvalue1tail = ttail(e(df_r),t) 

scalar list t pvalue2tail pvalue1tail 

The ttail() command is used to obtain the one-sided p-value for the computed t-ratio. It uses 
e(df_r) which saves the residual degrees of freedom from the sales regression that precedes its 
use.

The output is: 

An algebraic trick can be used that will enable you to rearrange the model in terms of a new 
parameter that embodies the desired restriction. This is useful if using software that does not 
contain something like the lincom command. Let -��,,*.�/�01&be the restriction.  Solve for 
�,�-0�,*.�/1&substitute this into the model and rearrange and you’ll get  

2
1 2 4 ( 3.8 )i i i i i i iSALES ADVERT PRICE ADVERT ADVERT ADVERT e� �� � - � � 

         (1)     .6329759   .6541901     0.97   0.337    -.6714421    1.937394

       sales        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 ( 1)  advert + 3.8*c.advert#c.advert = 1

pvalue1tail =  .16827134
pvalue2tail =  .33654267
         t =  .96757186
. scalar list t pvalue2tail pvalue1tail
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The coefficient on advertising contains the complete restriction. Use a t-ratio on its coefficient, -,
to test whether the restriction is true. In Stata, create two new variables 

2 3.8i i ix ADVERT ADVERT� �  and i i iy SALES ADVERT� � .

gen xstar = c.advert#c.advert-3.8*advert 

gen ystar = sales - advert 

 
These use these in a regression.   

regress ystar price advert xstar 

 
The t-ratio on the variable advert is the desired statistic. Its two-sided p-value is given in the 
output. If you want to compute this manually, try the following 

 
scalar t = (_b[advert])/_se[advert] 

scalar pvalue = ttail(e(df_r),t) 

scalar list t pvalue 

The output for the entire routine follows: 

The t-ratio in the regression table is 0.97 and has a two-sided p-value of 0.337. The t-ratio 
computed using the scalar command is the same (though carried to more digits) and its one-sided 
p-value is half that of the two-sided one in the table. The results match.  

This section concludes with a joint test of two of Big Andy’s conjectures. In addition to 
proposing that the optimal level of monthly advertising expenditure is $1,900, Big Andy is 
planning the staffing and purchasing of inputs on the assumption that a price of $6PRICE �  and 
advertising expenditure of 1.9ADVERT �  will, on average, yield sales revenue of $80,000. The 
joint null hypothesis is 

       _cons      109.719   6.799046    16.14   0.000     96.16212    123.2759
       xstar    -2.767964   .9406241    -2.94   0.004    -4.643515   -.8924125
      advert      .632976   .6541901     0.97   0.337     -.671442    1.937394
       price        -7.64   1.045939    -7.30   0.000    -9.725542   -5.554457

       ystar        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total     2989.2994    74  40.3959379           Root MSE      =  4.6453
           Adj R-squared =  0.4658

    Residual    1532.08447    71  21.5786545           R-squared     =  0.4875
       Model    1457.21493     3  485.738311           Prob > F      =  0.0000

           F(  3,    71) =   22.51
      Source         SS       df       MS              Number of obs =      75

. regress ystar price advert xstar

    pvalue =   .1682713
         t =  .96757201
. scalar list t pvalue

. scalar pvalue = ttail(e(df_r),t)

. scalar t = (_b[advert])/_se[advert]
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0 3 4 1 2 3 4: 3.8 1 and 6 1.9 3.61 80H �  � � �  �  �  � �

against the alternative that at least one of the conjectures is not true. The Stata code for the joint 
test is: 

regress sales price advert c.advert#c.advert 

test (_b[advert]+3.8*_b[c.advert#c.advert]=1) (_b[_cons] + /// 

6*_b[price] + 1.9*_b[advert]+3.61*_b[c.advert#c.advert]= 80) 

This example uses the test command, which is followed by both restrictions, each contained in a 
separate set of parentheses.  Notice that test uses the saved coefficient estimates _b[varname]
from the preceding regression.  Once again, this can be simplified in a linear regression by using 
the variable names alone.  

test (advert+3.8*c.advert#c.advert=1) (_cons + 6*price + /// 

1.9*advert+3.61*c.advert#c.advert= 80) 

The results are: 
 

Since the p-value is 0.0049 and less than 5%, the null (joint) hypothesis is rejected at that level of 
significance.

6.2 Nonsample Information 

Sometimes you have exact nonsample information that you want to use in the estimation of the 
model. Using nonsample information improves the precision with which you can estimate the 
remaining parameters. In this example from POE4, the authors consider a model of beer sales as a 
function of beer prices, liquor prices, prices of other goods, and income. The variables appear in 
their natural logarithms 

1 2 3 4 5ln( ) ln( ) ln( ) ln( ) ln( )t t t t t tQ PB PL PR I e� �  �  �  �  � 

Economic theory suggests that 
2 3 4 5 0�  �  �  � �

The beer.dta data file is used to estimate the model. Open the data file: 
 

use beer, clear 

            Prob > F =    0.0049
       F(  2,    71) =    5.74

 ( 2)  6*price + 1.9*advert + 3.61*c.advert#c.advert + _cons = 80
 ( 1)  advert + 3.8*c.advert#c.advert = 1

>      (_b[_cons]+6*_b[price]+1.9*_b[advert]+3.61*_b[c.advert#c.advert]= 80)
. test (_b[advert]+3.8*_b[c.advert#c.advert]=1) ///
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Then, generate the natural logarithms of each variable for your dataset. The Stata function 
log(variable) is used to take the natural logarithm of variable. So, to generate natural logs of 
each variable, use: 

use beer, clear 

gen lq = ln(q) 

gen lpb = ln(pb) 

gen lpl = ln(pl) 

gen lpr = ln(pr) 

gen li = ln(i) 

In order to impose linear restrictions you will use what Stata calls constrained regression. Stata 
calls the restriction a constraint, and the procedure it uses to impose those constraints on a linear 
regression model is cnsreg.  The syntax looks like this: 

 
constraint 1 

constraint 2 

cnsreg depvar indepvars [if] [in] [weight] , constraints(1 2) 

Each of the restrictions (constraints) are listed first and given a unique number. Once these are in 
memory, the cnsreg command is used like regress; follow the regression model with a comma, 
and the list of constraint numbers constraint(1 2 ... ) and Stata will impose the enumerated 
constraints and use least squares to estimate the remaining parameters. The constraint
command can be abbreviated c(1 2) as shown below. For the beer example the syntax is: 

 
constraint 1 lpb+lpl+lpr+li=0 

cnsreg lq lpb lpl lpr li, c(1) 

The result is 

The pull-down menus can also be used to obtain these results, though with more effort. First, the 
constraint must be defined. Select Statistics > Other > Manage Constraints

       _cons    -4.797793   3.713905    -1.29   0.208    -12.43183    2.836247
          li     .9458282   .4270468     2.21   0.036     .0680209    1.823635
         lpr     .1667424   .0770752     2.16   0.040     .0083121    .3251727
         lpl     .1868161   .2843833     0.66   0.517    -.3977422    .7713744
         lpb    -1.299387   .1657377    -7.84   0.000    -1.640065    -.958708

          lq        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 ( 1)  lpb + lpl + lpr + li = 0

                                                  Root MSE        =     0.0617
                                                  Prob > F        =     0.0000
                                                  F(   3,     26) =      36.46
Constrained linear regression                     Number of obs   =         30

. cnsreg lq lpb lpl lpr li, c(1)

. constraint 1 lpb+lpl+lpr+li=0
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Click on the Create button to bring up the dialog box used to number and define the constraints.   

Choose the constraint number and type in the desired restriction in the Define expression box. 
Click OK to accept the constraint and to close the box.  To add constraints click Create again in 
the constraint—Manage constraints box.  When finished, click Close to close the box. To 
estimate the restricted model, select Statistics > Linear models and related > Constrained 
linear regression from the pull-down menu as shown: 

Click OK or Submit to estimate the constrained model.       

6.3 MODEL SPECIFICATION 

Three essential features of model choice are (1) choice of functional form, (2) choice of 
explanatory variables (regressors) to be included in the model, and (3) whether the multiple 
regression model assumptions MR1–MR6, listed in Chapter 5, hold. In this section the first two 
of these are explored.  

6.3.1 Omitted Variables 

If you omit relevant variables from your model, then least squares is biased. To introduce the 
omitted variable problem, we consider a sample of married couples where both husbands and 
wives work. The data are stored in the file edu_inc.dta.    
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Open the data file and clear any previously held data from Stata’s memory 

use edu_inc, clear 

The first regression includes family income as the dependent variable (faminc) and husband’s 
education (he) and wife’s education (we) as explanatory variables. From the command line 

regress faminc he we 

 
The result is

Omitting wife’s education (we) yields: 

Simple correlation analysis reveals that husband and wife’s education levels are positively 
correlated.  As suggested in the text, this implies that omitting we from the model is likely to 
cause positive bias in the he coefficient.  This is borne out in the estimated models. 

       _cons    -5533.629   11229.53    -0.49   0.622    -27605.97    16538.71
          we     4522.641   1066.327     4.24   0.000     2426.711    6618.572
          he     3131.509    802.908     3.90   0.000     1553.344    4709.674

      faminc        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    8.3109e+11   427  1.9463e+09           Root MSE      =   40498
           Adj R-squared =  0.1574

    Residual    6.9703e+11   425  1.6401e+09           R-squared     =  0.1613
       Model    1.3405e+11     2  6.7027e+10           Prob > F      =  0.0000

           F(  2,   425) =   40.87
      Source         SS       df       MS              Number of obs =     428

. regress faminc he we

       _cons     26191.27   8541.108     3.07   0.002     9403.309    42979.23
          he     5155.483   658.4574     7.83   0.000     3861.254    6449.713

      faminc        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    8.3109e+11   427  1.9463e+09           Root MSE      =   41297
           Adj R-squared =  0.1237

    Residual    7.2654e+11   426  1.7055e+09           R-squared     =  0.1258
       Model    1.0455e+11     1  1.0455e+11           Prob > F      =  0.0000

           F(  1,   426) =   61.30
      Source         SS       df       MS              Number of obs =     428

. regress faminc he
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Including wife’s education and number of preschool age children (kl6) yields: 

Notice that compared to the preceding regression, the coefficient estimates for he and we have not 
changed much. This occurs because kl6 is not strongly correlated with the either of the education 
variables.  It implies that useful results can still be obtained even if a relevant variable is omitted.  
What is required is that that the omitted variable be uncorrelated with the included variables of 
interest, which in this example are the education variables.  It this is the case, omitting a relevant 
variable will not affect the validity of the tests and confidence intervals involving we or he.   

6.3.2 Irrelevant Variables 

Including irrelevant variables in the model diminishes the precision of the least squares estimator. 
Least squares is unbiased, but the standard errors of the coefficients will be bigger than necessary.  
In this example, two irrelevant variables (xtra_x5 and xtra_x6) are added to the model. These 
variables are correlated with he and we, but they are not related to the mean of family income. 
Estimate the model using linear regression to obtain: 

     xtra_x6     0.3514   0.8206   0.7993   0.1595   0.9002   1.0000
     xtra_x5     0.2898   0.8362   0.5178   0.1487   1.0000
         kl6    -0.0720   0.1049   0.1293   1.0000
          we     0.3623   0.5943   1.0000
          he     0.3547   1.0000
      faminc     1.0000

                 faminc       he       we      kl6  xtra_x5  xtra_x6

(obs=428)
. correlate

       _cons     -7755.33   11162.93    -0.69   0.488    -29696.91    14186.25
         kl6    -14310.92   5003.928    -2.86   0.004    -24146.52   -4475.326
          we     4776.907   1061.164     4.50   0.000     2691.111    6862.704
          he     3211.526   796.7026     4.03   0.000     1645.547    4777.504

      faminc        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    8.3109e+11   427  1.9463e+09           Root MSE      =   40160
           Adj R-squared =  0.1714

    Residual    6.8384e+11   424  1.6128e+09           R-squared     =  0.1772
       Model    1.4725e+11     3  4.9082e+10           Prob > F      =  0.0000

           F(  3,   424) =   30.43
      Source         SS       df       MS              Number of obs =     428

. regress faminc he we kl6
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Notice how much larger the estimated standard errors become compared to those in the preceding 
regression. If they had been uncorrelated with he and we, then we would expect to see very little 
effect on their standard errors. 

6.3.3 Choosing the Model 

Choosing the appropriate set of variables to include and a suitable functional form is as much art 
as science.  Ideally, one you want to choose a functional form that captures the relevant features 
of the data and variables that allow consistent and efficient estimation of the parameters of 
interest.

In this section statistics that are often used for ad hoc variable selection and test the adequacy 
of functional form are considered. 

Model Selection Criteria 

Three model selection criteria are considered: adjusted-R2, AIC, and SC (BIC).  These statistics 
can be useful in deciding among alternative models, though their use is not without controversy. 
In any event, they should only be used when all other sources of model specification have been 
exhausted.  That is use theory and common sense to the extent you can and resort to model 
selection rules only for additional information about the relative merits of alternative models.  
With that warning aside, let’s proceed. 

In Chapter 5, the adjusted R2 was introduced as an alternative measure of least squares fit that 
overcomes a well-known problem with the usual R2, namely that it never gets smaller when 
regressors are added to the model.  The adjusted R2 imposes a penalty on the fit from adding a 
regressor.  If the improvement in fit is very small relative to the penalty, then the adjusted R2 may 
get smaller when an irrelevant regressor is added to the model.  The adjusted R2 is: 

2 /( )1
/( 1)

SSE N KR
SST N

�
� �

�

This statistic is reported by default by Stata’s regress command.  
The other model selection rules considered are the Akaike information criterion (AIC)  

given by 

       _cons    -7558.613   11195.41    -0.68   0.500    -29564.33     14447.1
     xtra_x6    -1067.186   1981.685    -0.54   0.590    -4962.389    2828.018
     xtra_x5     888.8426   2242.491     0.40   0.692    -3519.001    5296.686
         kl6    -14200.18    5043.72    -2.82   0.005    -24114.13   -4286.242
          we     5868.677   2278.067     2.58   0.010     1390.905    10346.45
          he     3339.792   1250.039     2.67   0.008     882.7131    5796.871

      faminc        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    8.3109e+11   427  1.9463e+09           Root MSE      =   40240
           Adj R-squared =  0.1681

    Residual    6.8332e+11   422  1.6192e+09           R-squared     =  0.1778
       Model    1.4776e+11     5  2.9553e+10           Prob > F      =  0.0000

           F(  5,   422) =   18.25
      Source         SS       df       MS              Number of obs =     428

. regress faminc he we kl6 xtra_x5 xtra_x6
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and the Bayesian information criterion (SC) given by 

ln( )ln 2SSE K NSC
N N

� �� � �
� �

The two statistics are very similar and consist of two terms.  The first is a measure of fit; the 
better the fit, the smaller the SSE and the smaller its natural logarithm.  Adding a regressor cannot 
increase the size of this term.  The second term is a penalty imposed on the criterion for adding a 
regressor. As K increases, the penalty gets larger.  The idea is to pick the model among 
competing ones that minimizes either AIC or SC.  They differ only in how large the penalty is, 
with SC’s being slightly larger.   

These criteria are available in Stata, but are computed differently. Stata’s versions were 
developed for use under a larger set of data generation processes than the one considered here, so 
by all means use them if the need arises.1

These criteria are used repeatedly in Principles of Econometrics, 4th Edition and one goal of 
this manual is to replicate their results. Therefore, it is a good idea to write a program to compute 
and display the three model selection rules; once written the program can be run multiple times to 
compare various model specifications. In Chapter 9, the model selection program is revisited and 
used within programming loops. 

In Stata a program is a structure that allows one to execute blocks of code by simply typing 
the program’s name. In the example below, a program called modelsel is created. Each time 
modelsel is typed in the Command window, the lines of code within the program will run.  In 
this case, the program will compute AIC, SC, and print out the value of adjusted R2, all based on 
the previously run regression. 

Here’s how programming works in Stata. A program starts by issuing the program command 
and giving it a name, e.g.,  progname.  A block of Stata commands to be executed each time the 
program is run are then written. The program is closed by end.  Here’s the basic structure:   

program progname

    Stata commands 

end 

After writing the program, it must be compiled. If the program is put in a separate .do file then 
just run the .do file in the usual way. If the program resides along with other code in a .do file, 
then highlight the program code, and execute the fragment in the usual way.  The program only 
needs to be compiled once. The program is executed by typing the program’s name, progname, at
Stata’s dot prompt.   

The modelsel program is: 

program modelsel 

  scalar aic = ln(e(rss)/e(N))+2*e(rank)/e(N)  

1 In fact, Stata’s post-estimation command estat ic uses 2ln( ) 2AIC L k� �  and 2ln( ) ln( ),BIC L k N� � 
where L is the value of the maximized likelihood function when the errors of the model are normally distributed. 
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  scalar bic = ln(e(rss)/e(N))+e(rank)*ln(e(N))/e(N) 

  di "r-square = "e(r2) " and adjusted r_square " e(r2_a) 

  scalar list aic bic 

end 

The program will reside in memory until you end your Stata session or tell Stata to drop the 
program from memory. This is accomplished in either of two ways. First, program drop 

progname will drop the given program (i.e., progname) from memory. The other method is to 
drop all programs from memory using program drop _all.  Only use this method if you want to 
clear all user defined programs from Stata’s memory.   

This particular program uses results that are produced and stored by Stata after a regression is 
run.  Several of these will be familiar already.  e(rss) contains the sum of squared errors and 
e(N) the sample size.  The new result used is e(rank), which basically measures how many 
independent variables you have in the model, excluding any that are perfectly collinear with the 
others.  In an identified regression model, this generally measures the number of coefficients in 
the model, K.

Within the body of the program the scalars aic and bic (sometimes called SC—the Schwartz 
criterion) are computed and a display command is issued to print out the value of adjusted R2 in 
the model.  Finally, the scalar list command is given to print out the computed values of the 
scalars.  

To estimate a model and compute the model selection rules derived from it run the modelsel
program if you haven’t already.  Then, estimate the regression and type modelsel. For instance 

quietly regress faminc he 

di "Model 1 (he) " 

modelsel 

estimates store Model1 

This produces: 

To use the model selection rules, run modelsel after each model and choose the one that either 
has the largest adjusted R2 (usually a bad idea) or the smallest AIC or BIC (better, but not a great 
idea).

quietly regress faminc he we 

di "Model 2 (he, we) " 

modelsel 

estimates store Model2 

quietly regress faminc he we kl6 

di "Model 3 (he, we, kl6) " 

modelsel 

estimates store Model3 

       bic =  21.280744
       aic =  21.261776
r-square = .12580103 and adjusted r_square .12374892
. modelsel

Model 1 (he) 
. di "Model 1 (he) "
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quietly regress faminc he we kl6 xtra_x5 xtra_x6 

di "Model 4 (he, we, kl6. x5, x6) " 

modelsel 

estimates store Model4 

In the example, Stata’s estimates store command is issued after each model and the results are 
accumulated using the estimates table command 

estimates table Model1 Model2 Model3 Model4, b(%9.3f) stfmt(%9.3f) /// 

          se stats(N r2 r2_a aic bic)  

In this table produced by Stata, Stata’s versions of the aic and bic statistics computed for each 
regression are used.  Obviously, Stata is using a different computation!  No worries though, both 

       bic =  21.253445
       aic =  21.224993
r-square = .16130044 and adjusted r_square .15735362
. modelsel

Model 2 (he, we) 
. di "Model 2 (he, we) "

       bic =  21.248495
       aic =  21.210559
r-square = .17717332 and adjusted r_square .17135143
. modelsel

Model 3 (he, we, kl6) 
. di "Model 3 (he, we, kl6) "

       bic =  21.276051
       aic =  21.219148
r-square = .17779646 and adjusted r_square .16805472
. modelsel

Model 4 (he, we, kl6. x5, x6) 
. di "Model 4 (he, we, kl6. x5, x6) "

                                                  legend: b/se

         bic   10322.770   10311.086   10308.967   10320.761  
         aic   10314.652   10298.909   10292.731   10296.407  
        r2_a       0.124       0.157       0.171       0.168  
          r2       0.126       0.161       0.177       0.178  
           N         428         428         428         428  

                8541.108   11229.533   11162.935   11195.411  
       _cons   26191.270   -5533.629   -7755.330   -7558.613  
                                                    1981.685  
     xtra_x6                                       -1067.186  
                                                    2242.491  
     xtra_x5                                         888.843  
                                        5003.928    5043.720  
         kl6                           -1.43e+04   -1.42e+04  
                            1066.327    1061.164    2278.067  
          we                4522.641    4776.907    5868.677  
                 658.457     802.908     796.703    1250.039  
          he    5155.483    3131.509    3211.526    3339.792  

    Variable    Model1      Model2      Model3      Model4    
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sets of computations are valid and lead to the same conclusion. The largerst 2R is from Model 3 
as are the smallest aic and bic statistics.  It is clear that Model 3 is the preferred specification in 
this example. 

Functional Form 

Although theoretical considerations should be your primary guide to functional form selection, 
there are many instances when economic theory or common sense isn’t enough. This is where the 
RESET test is useful. RESET can be used as a crude check to determine whether you’ve made an 
obvious error in specifying the functional form. It is NOT really a test for omitted variables; 
instead it is a test of the adequacy of your functional form. 

The test is simple. The null hypothesis is that your functional form is adequate; the alternative 
is that it is not. Estimate the regression assuming that functional form is correct and obtain the 
predicted values. Square and cube these, add them back to the model, reestimate the regression 
and perform a joint test of the significance of 2ŷ  and 3ŷ .

There are actually several variants of this test. The first adds only 2ŷ  to the model and tests 
its significance using either an F-test or the equivalent t-test. The second add both 2ŷ  and 3ŷ  and 
then does a joint test of their significance. We’ll refer to these as RESET(1) and RESET(2), 
respectively. 

The example is again based on the family income regression. Estimate the model using least 
squares and use the predict statement to save the linear predictions from the regression 

regress faminc he we kl6 

predict yhat 

Recall that the syntax to obtain the in-sample predicted values from a regression, iŷ , is predict 
yhat, xb. In this command yhat is a name that you designate. We can safely omit the xb
option since this is Stata’s default setting. Now, generate the squares and cubes of iŷ  using 

gen yhat2 = yhat^2 

gen yhat3 = yhat^3 

Estimate the original regression with yhat2 added to the model. Test yhat2’s significance using 
a t-test or an F-test. For the latter use Stata’s test command as shown.  

regress faminc he we kl6 yhat2 

test yhat2 

The test result is 

            Prob > F =         .
       F(  0,   423) =       .

       Constraint 1 dropped
 ( 1)  yhat2 = 0

. test yhat2 
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Obviously there is a problem with this formulation. Stata tells us that the constraint was dropped 
leaving nothing to test! The problem is that the data are ill-conditioned. For the computer to be 
able to do the arithmetic, it needs the variables to be of a similar magnitude in the dataset. Take a 
look at the summary statistics for the variables in the model. 

The magnitude of faminc is 1,000s of times larger than the other variables. The predictions from 
a linear regression will be of similar scale. When these are squared and cubed as required by the 
RESET tests, the conditioning worsens to the point that your computer can’t do the arithmetic. 
The solution is to rescale faminc so that its magnitude is more in line with that of the other 
variables. Recall that in linear regression, rescaling dependent and independent variables only 
affects the magnitudes of the coefficients, not any of the substantive outcomes of the regression. 
So, drop the ill-conditioned predictions from the data and rescale faminc by dividing it by 
10,000.  

drop yhat yhat2 yhat3 

gen faminc_sc = faminc/10000 

Now, estimate the model, save the predictions and generate the squares and cubes. 
 

regress faminc_sc he we kl6 

predict yhat 

gen yhat2 = yhat^2 

gen yhat3 = yhat^3 

For RESET(1) add yhat2 to the model and test its significance using its t-ratio or an F-test.
 

         kl6         428    .1401869    .3919231          0          2
          we         428    12.65888    2.285376          5         17
          he         428    12.61215    3.035163          4         17
      faminc         428       91213    44117.35       9072   344146.3

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize faminc he we kl6 

       _cons     -.775533   1.116293    -0.69   0.488    -2.969691    1.418625
         kl6    -1.431092   .5003928    -2.86   0.004    -2.414652   -.4475326
          we     .4776908   .1061164     4.50   0.000     .2691111    .6862704
          he     .3211526   .0796703     4.03   0.000     .1645547    .4777504

   faminc_sc        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    8310.87343   427  19.4634038           Root MSE      =   4.016
           Adj R-squared =  0.1714

    Residual    6838.40844   424  16.1283218           R-squared     =  0.1772
       Model    1472.46499     3  490.821663           Prob > F      =  0.0000

           F(  3,   424) =   30.43
      Source         SS       df       MS              Number of obs =     428

. regress faminc_sc he we kl6
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Once again, the squared value of the t-ratio is equal to the F-statistic and they have the same p-
value. For RESET(2), add yhat3 and test the joint significance of the squared and cubed 
predictions:

Both RESET(1) and RESET(2) are significant at the 5% level and you can conclude that the 
original linear functional form is not adequate to model this relationship. 

Stata includes a post-estimation command that will perform a RESET(3) test after a 
regression. The syntax is 

            Prob > F =    0.0148
       F(  1,   423) =    5.98

 ( 1)  yhat2 = 0

. test yhat2 

       _cons     8.724297    4.03894     2.16   0.031      .785406    16.66319
       yhat2      .099368   .0406211     2.45   0.015     .0195237    .1792123
         kl6     1.088733   1.143928     0.95   0.342    -1.159757    3.337224
          we    -.4235108    .383214    -1.11   0.270    -1.176752      .32973
          he    -.2381465   .2419692    -0.98   0.326    -.7137582    .2374653

   faminc_sc        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    8310.87343   427  19.4634038           Root MSE      =  3.9926
           Adj R-squared =  0.1810

    Residual    6743.01819   423  15.9409413           R-squared     =  0.1887
       Model    1567.85524     4  391.963811           Prob > F      =  0.0000

           F(  4,   423) =   24.59
      Source         SS       df       MS              Number of obs =     428

. regress faminc_sc he we kl6 yhat2  

            Prob > F =    0.0451
       F(  2,   422) =    3.12

 ( 2)  yhat3 = 0
 ( 1)  yhat2 = 0

. test yhat2 yhat3

       _cons     15.01857   12.73868     1.18   0.239     -10.0206    40.05774
       yhat3    -.0085692   .0164465    -0.52   0.603    -.0408965     .023758
       yhat2     .3234728   .4320297     0.75   0.454    -.5257254    1.172671
         kl6     3.741007   5.217535     0.72   0.474    -6.514588     13.9966
          we    -1.301625    1.72841    -0.75   0.452    -4.698991    2.095741
          he    -.8451478   1.189891    -0.71   0.478       -3.184    1.493704

   faminc_sc        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    8310.87343   427  19.4634038           Root MSE      =  3.9961
           Adj R-squared =  0.1796

    Residual    6738.68307   422  15.9684433           R-squared     =  0.1892
       Model    1572.19036     5  314.438072           Prob > F      =  0.0000

           F(  5,   422) =   19.69
      Source         SS       df       MS              Number of obs =     428

. regress faminc_sc he we kl6 yhat2 yhat3 
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regress faminc he we kl6 

estat ovtest 

This version of RESET adds 2ˆ ,y 3ˆ ,y and 4ŷ to the model and tests their joint significance. 
Technically there is nothing wrong with this. However, including this many powers of ŷ is not 
often recommended since the RESET loses statistical power rapidly as powers of ŷ are added.

6.4 POOR DATA, COLLINEARITY AND INSIGNIFICANCE 

In the preceding section we mentioned that one of Stata’s computations fails due to poor 
conditioning of the data. This is similar to what collinearity does to a regression. Collinearity 
makes it difficult or impossible to compute the parameter estimates and various other statistics 
with much precision. In a statistical model collinearity arises because of poor experimental 
design, or in our case, because of data that don’t vary enough to permit precise measurement of 
the parameters. Unfortunately, there is no simple cure for this; rescaling the data has no effect on 
the linear relationships contained therein.  

The example here uses cars.dta. Load the cars data, clearing any previous data out of 
memory 

use cars, clear 

A look at the summary statistics (summarize) reveals reasonable variation in the data 

Each of the variables contains variation as measured by their range and standard deviations. 
Simple correlations (corr) reveal a potential problem.   

                  Prob > F =      0.0931
                 F(3, 421) =      2.15
       Ho:  model has no omitted variables
Ramsey RESET test using powers of the fitted values of faminc

. estat ovtest 

         wgt         392    2977.584    849.4026       1613       5140
         eng         392     194.412     104.644         68        455
         cyl         392    5.471939    1.705783          3          8
         mpg         392    23.44592    7.805007          9       46.6

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize

         wgt    -0.8322   0.8975   0.9330   1.0000
         eng    -0.8051   0.9508   1.0000
         cyl    -0.7776   1.0000
         mpg     1.0000

                    mpg      cyl      eng      wgt

(obs=392)
. corr
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Notice that among the potential explanatory variables (cyl, eng, wgt), the correlations are very 
high; the smallest occurs between cyl and wgt and it is nearly 0.9. Estimating independent effects 
of each of these variables on miles per gallon will prove challenging.   

First, estimate a simple model of miles per gallon (mpg) as a function of the number of 
cylinders (cyl) in the engine.  

regress mpg cyl 

Add the car’s engine displacement in cubic inches (eng) weight (wgt) to the model.   

regress mpg cyl eng wgt 

Now, test a series of hypotheses. The first is for the significance of cyl, the second for the 
significance of eng, and the third is of their joint significance.  

 
test cyl 

test eng 

test cyl eng 

The results are: 

       _cons     42.91551   .8348668    51.40   0.000      41.2741    44.55691
         cyl    -3.558078   .1456755   -24.42   0.000    -3.844486   -3.271671

         mpg        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    23818.9935   391  60.9181419           Root MSE      =  4.9136
           Adj R-squared =  0.6037

    Residual    9415.91039   390    24.14336           R-squared     =  0.6047
       Model    14403.0831     1  14403.0831           Prob > F      =  0.0000

           F(  1,   390) =  596.56
      Source         SS       df       MS              Number of obs =     392

. regress mpg cyl

       _cons     44.37096   1.480685    29.97   0.000     41.45979    47.28213
         wgt    -.0057079   .0007139    -8.00   0.000    -.0071115   -.0043043
         eng     -.012674   .0082501    -1.54   0.125    -.0288944    .0035465
         cyl    -.2677968   .4130673    -0.65   0.517    -1.079927    .5443336

         mpg        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    23818.9935   391  60.9181419           Root MSE      =  4.2965
           Adj R-squared =  0.6970

    Residual    7162.54916   388  18.4601782           R-squared     =  0.6993
       Model    16656.4443     3   5552.1481           Prob > F      =  0.0000

           F(  3,   388) =  300.76
      Source         SS       df       MS              Number of obs =     392

. regress mpg cyl eng wgt
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Essentially, neither of the variables is individually significant, but they are jointly significant at 
the 5% level. This can happen because you were not able to measure their separate influences 
precisely enough. As revealed by the simple correlations, the independent variables cyl, eng,
and wgt are highly correlated with one another. This can be verified by estimating several 
auxiliary regressions where each of the independent variables is regressed on all of the others. 

regress cyl eng wgt 

   scalar r1 = e(r2) 

regress eng wgt cyl 

   scalar r2 = e(r2) 

regress wgt eng cyl 

   scalar r3 = e(r2) 

 
An 2R above 0.8 indicates strong collinearity which may adversely affect the precision with 
which you can estimate the parameters of a model that contains all the variables. In the example, 
the R2s are 0.93, 0.90, and 0.87, all well above the 0.8 threshold. This is further confirmation that 
it will be difficult to differentiate the individual contributions of displacement and number of 
cylinders to a car’s gas mileage. 

The advantage of using auxiliary regressions instead of simple correlations to detect collinearity 
is not that obvious in this particular example. Collinearity may be hard to detect using 
correlations when there are many variables in the regression. Although no two variables may be 
highly correlated, several variables may be linearly related in ways that are not apparent. Looking 
at the R2 from the auxiliary multiple regressions will be more useful in these situations.  

            Prob > F =    0.0142
       F(  2,   388) =    4.30

 ( 2)  cyl = 0
 ( 1)  eng = 0

. test eng cyl

            Prob > F =    0.1253
       F(  1,   388) =    2.36

 ( 1)  eng = 0

. test eng

            Prob > F =    0.5172
       F(  1,   388) =    0.42

 ( 1)  cyl = 0

. test cyl

        r3 =  .87160914
        r2 =  .93665456
        r1 =  .90490236
. scalar list r1 r2 r3
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KEY TERMS 

adjusted R2 F-statistic regress 
AIC functional form RESET 
BIC invFtail(J,N_K,alpha) restricted regression 
cnsreg invttail(df,alpha) restricted sum of squares 
collinearity irrelevant variables Schwartz criterion 
constraint joint significance test test (hypoth 1)(hypoth 2) 
e(df_r) lincom testparm varlist
e(r2) Manage constraints t-ratio 
e(r2_a) model selection ttail(df,tstat) 
e(rank) omitted variables unrestricted sum of squares 
e(rss) overall F-test 
estat ovtest predict, xb 
estimates store program 
estimates table program drop progname
Ftail(J,N-K,fstat) program drop _all 

CHAPTER 6 DO-FILE [CHAP06.DO] 

* file chap06.do for Using Stata for Principles of Econometrics, 4e 

cd c:\data\poe4stata 

* Stata Do-file 

* copyright C 2011 by Lee C. Adkins and R. Carter Hill 
* used for "Using Stata for Principles of Econometrics, 4e" 

* by Lee C. Adkins and R. Carter Hill (2011) 

* John Wiley and Sons, Inc. 

* setup 

version 11.1 
capture log close 

set more off 

* open log 

log using chap06, replace text 

use andy, clear 

* ------------------------------------------- 
* The following block estimates Andy's sales 

* and uses the difference in SSE to test  

* a hypothesis using an F-statistic 
* ------------------------------------------- 

* Unrestricted Model 
regress sales price advert c.advert#c.advert 

scalar sseu = e(rss) 

scalar df_unrest = e(df_r) 

* Restricted Model 
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regress sales price 

scalar sser = e(rss) 

scalar df_rest = e(df_r) 
scalar J = df_rest - df_unrest 

* F-statistic, critical value, pvalue 
scalar fstat = ((sser -sseu)/J)/(sseu/(df_unrest)) 

scalar crit1 = invFtail(J,df_unrest,.05) 

scalar pvalue = Ftail(J,df_unrest,fstat) 

scalar list sseu sser J df_unrest fstat pvalue crit1 

* ------------------------------------------- 

* Here, we use Stata's test statement  

* to test hypothesis using an F-statistic 
* Note: Three versions of the syntax 

* ------------------------------------------- 

regress sales price advert c.advert#c.advert 

testparm advert c.advert#c.advert 

test (advert=0)(c.advert#c.advert=0) 
test (_b[advert]=0)(_b[c.advert#c.advert]=0) 

* ------------------------------------------- 
* Overall Significance of the Model 

* Uses same Unrestricted Model as above 

* ------------------------------------------- 

* Unrestricted Model (all variables) 

regress sales price advert c.advert#c.advert 
scalar sseu = e(rss) 

scalar df_unrest = e(df_r) 

* Restricted Model (no explanatory variables) 

regress sales  

scalar sser = e(rss) 
scalar df_rest = e(df_r) 

scalar J = df_rest - df_unrest 

* F-statistic, critical value, pvalue 

scalar fstat = ((sser -sseu)/J)/(sseu/(df_unrest)) 

scalar crit2 = invFtail(J,df_unrest,.05) 
scalar pvalue = Ftail(J,df_unrest,fstat) 

scalar list sseu sser J df_unrest fstat pvalue crit2 

* ------------------------------------------- 

* Relationship between t and F 
* ------------------------------------------- 

* Unrestricted Regression 
regress sales price advert c.advert#c.advert 

scalar sseu = e(rss) 

scalar df_unrest = e(df_r) 

scalar tratio = _b[price]/_se[price] 

scalar t_sq = tratio^2 

* Restricted Regression 

regress sales advert c.advert#c.advert 
scalar sser = e(rss) 

scalar df_rest = e(df_r) 

scalar J = df_rest - df_unrest 



208   Chapter 6 

* F-statistic, critical value, pvalue 

scalar fstat = ((sser -sseu)/J)/(sseu/(df_unrest)) 
scalar crit = invFtail(J,df_unrest,.05) 

scalar pvalue = Ftail(J,df_unrest,fstat) 

scalar list sseu sser J df_unrest fstat pvalue crit tratio t_sq 

* ------------------------------------------- 
* Optimal Advertising 

* Uses both sets of syntax for test 

* ------------------------------------------- 

* Equivalent to Two sided t-test 

regress sales price advert c.advert#c.advert 
test _b[advert]+3.8*_b[c.advert#c.advert]=1 

test advert+3.8*c.advert#c.advert=1 

* t stat for Optimal Advertising (use lincom) 

lincom _b[advert]+3.8*_b[c.advert#c.advert]-1 

lincom advert+3.8*c.advert#c.advert-1 
scalar t = r(estimate)/r(se) 

scalar pvalue2tail = 2*ttail(e(df_r),t) 

scalar pvalue1tail = ttail(e(df_r),t) 
scalar list t pvalue2tail pvalue1tail 

* t stat for Optimal Advertising (alternate method)  
gen xstar = c.advert#c.advert-3.8*advert 

gen ystar = sales - advert 

regress ystar price advert xstar 
scalar t = (_b[advert])/_se[advert] 

scalar pvalue = ttail(e(df_r),t) 

scalar list t pvalue 

* One-sided t-test 

regress sales price advert c.advert#c.advert 
lincom advert+3.8*c.advert#c.advert-1 

scalar tratio = r(estimate)/r(se) 

scalar pval = ttail(e(df_r),tratio) 
scalar crit = invttail(e(df_r),.05) 

scalar list tratio pval crit 

*  Joint Test 

regress sales price advert c.advert#c.advert 
test (_b[advert]+3.8*_b[c.advert#c.advert]=1) /// 

     (_b[_cons]+6*_b[price]+1.9*_b[advert]+3.61*_b[c.advert#c.advert]= 80) 

* ------------------------------------------- 

*  Nonsample Information 

* ------------------------------------------- 

use beer, clear 

gen lq = ln(q) 
gen lpb = ln(pb) 

gen lpl = ln(pl) 

gen lpr = ln(pr) 
gen li = ln(i) 

constraint 1 lpb+lpl+lpr+li=0 
cnsreg lq lpb lpl lpr li, c(1) 

* ------------------------------------------- 
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* MROZ Examples  

* ------------------------------------------- 

use edu_inc, clear 

regress faminc he we 

regress faminc he 

* correlations among regressors 

correlate 

regress faminc he we kl6 

* Irrelevant variables 

regress faminc he we kl6 xtra_x5 xtra_x6 

* Model selection 

program modelsel 

  scalar aic = ln(e(rss)/e(N))+2*e(rank)/e(N)  
  scalar bic = ln(e(rss)/e(N))+e(rank)*ln(e(N))/e(N) 

  di "r-square = "e(r2) " and adjusted r_square " e(r2_a) 

  scalar list aic bic 
end 

quietly regress faminc he 
di "Model 1 (he) " 

modelsel 

estimates store Model1 
quietly regress faminc he we 

di "Model 2 (he, we) " 

modelsel 
estimates store Model2 

quietly regress faminc he we kl6 

di "Model 3 (he, we, kl6) " 
modelsel 

estimates store Model3 

quietly regress faminc he we kl6 xtra_x5 xtra_x6 
di "Model 4 (he, we, kl6. x5, x6) " 

modelsel 

estimates store Model4 

estimates table Model1 Model2 Model3 Model4, b(%9.3f) stfmt(%9.3f) se stats(N r2 r2_a aic 
bic) 

* RESET 
regress faminc he we kl6 

predict yhat 

gen yhat2=yhat^2 
gen yhat3=yhat^3 

summarize faminc he we kl6  

*------------------------------- 

* Data are ill-conditioned 
* Reset test won' work here 

* Try it anyway! 

*------------------------------- 

regress faminc he we kl6 yhat2   

test yhat2  
regress faminc he we kl6 yhat2 yhat3  

test yhat2 yhat3 
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*---------------------------------------- 

* Drop the previously defined predictions 

* from the dataset 
*---------------------------------------- 

drop yhat yhat2 yhat3 

*-------------------------------- 

* Recondition the data by 
* scaling FAMINC by 10000 

* ------------------------------- 

gen faminc_sc = faminc/10000 
regress faminc_sc he we kl6 

predict yhat 

gen yhat2 = yhat^2 
gen yhat3 = yhat^3 

summarize faminc_sc faminc he we kl6 yhat yhat2 yhat3 

regress faminc_sc he we kl6 yhat2   

test yhat2  
regress faminc_sc he we kl6 yhat2 yhat3  

test yhat2 yhat3 

* ------------------------------------------- 

* Stata uses the estat ovtest following 

* a regression to do a RESET(3) test.   
* ------------------------------------------- 

regress faminc he we kl6 
estat ovtest  

* ------------------------------------------- 

* Cars Example  

* ------------------------------------------- 

use cars, clear 

summarize 

corr 

regress mpg cyl 

regress mpg cyl eng wgt 

test cyl 
test eng 

test eng cyl 

* Auxiliary regressions for collinearity 

* Check: r2 >.8 means severe collinearity 

regress cyl eng wgt 
scalar r1 = e(r2) 

regress eng wgt cyl 

scalar r2 = e(r2) 
regress wgt eng cyl 

scalar r3 = e(r2) 

scalar list r1 r2 r3 

log close 

program drop modelsel 
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CHAPTER 7

Using Indicator Variables 

CHAPTER OUTLINE 
7.1 Indicator variables 
     7.1.1 Creating indicator variables 
     7.1.2 Estimating an indicator variable regression 
     7.1.3 Testing the significance of the indicator 
              variables 
     7.1.4 Further calculations  
     7.1.5 Computing average marginal effects 
7.2 Applying indicator variables  
     7.2.1 Interactions between qualitative factors 

     7.2.2 Adding regional indicators 
     7.2.3 Testing the equivalence of two  
              regressions 
     7.2.4 Estimating separate regressions 
     7.2.5 Indicator variables in log-linear models 
7.3 The linear probability model 
7.4 Treatment effects  
7.5 Differences-in-Differences estimation 
Key Terms  
Chapter 7 Do-file 

7.1 INDICATOR VARIABLES 

Indicator, or dummy, variables are binary 0/1 variables that indicate the presence or absence of a 
characteristic. In this section we explore the use of indicator variables in a real estate example. 
Open a new log file, and open the data file utown.dta.

log using chap07_utown, replace text 

use utown, clear 

describe 

summarize 

Summarize the data and list the first six observations 

list in 1/6 

list in 501/506 
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7.1.1 Creating indicator variables 

In many examples in POE indicator variables have already been created and are ready to use. 
There are several features in Stata that facilitate creating new indicator variables. The generate
command (or gen) can be used to generate indicator variables that are based on values of other 
variables.

Compute the detailed summary statistics for price and sqft.

summarize price sqft, detail 

To create an indicator variable to indicate large houses, more than 2500 square feet in size, use 
generate along with a statement of the condition (SQFT > 25). 

gen large = (sqft > 25) 

If the house is such that SQFT > 25 then the statement is “true,” and the generate function 
creates the value 1. Otherwise the statement is not true and large = 0. 

Remark: The textbook data we provide has no missing values. Using the 
“logical operators” described above is risky if data has missing values. For 
example, if there are some missing sqft values, they would be classified as 
“large” which may not be an outcome you desire. Be careful with these automatic 
commands. 

To create an indicator variable that is 1 for “mid-price” houses use 

  6.  199.119   21.56     6       0      0        1  

  5.  221.801   26.45     0       0      0        1  
  4.   154.69   20.17     1       0      0        0  
  3.  248.422   27.77     6       0      0        0  
  2.  185.328   20.03     5       0      0        1  
  1.  205.452   23.46     6       0      0        1  

   price    sqft   age   utown   pool   fplace  

. list in 1/6

506.  292.926      26    17       1      0        1  

505.  269.971   22.76     4       1      0        0  
504.   247.82   21.26     2       1      0        1  
503.  302.834   27.02     1       1      0        1  
502.  288.556   24.48     4       1      0        1  
501.   314.65   29.28    24       1      1        0  

   price    sqft   age   utown   pool   fplace  

. list in 501/506
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gen midprice = (215 < price) & (price < 275) 

The “&” is a logical operator. If the conditions, PRICE > 215 and PRICE < 275 are both true, 
then the variable MIDPRICE will be 1. List a few observations to see the outcomes 
.

list sqft price large midprice in 1/5 

7.1.2 Estimating an indicator variable regression 

Actually estimating a model with indicator variables is no different from any other regression. 
Consider the model 

� �1 1 2

3 2 3              +

PRICE UTOWN SQFT SQFT UTOWN

AGE POOL FPLACE e

� �  2  �  3 �

�  2  2 

Using factor variable notation the model is 

reg price i.utown sqft i.utown#c.sqft age i.pool i.fplace 

Notice that the regression command, regress has been shortened to reg. This is just one example 
where Stata accepts abbreviated forms of commonly used commands (e.g., gen can be used 
instead of generate). The factor variable notation for a continuous variable c. is required only 
when the continuous variable is used in an interaction term. 

The term i.utown#c.sqft is the interaction between UTOWN and SQFT. Since the equation 
contains UTOWN and SQFT and its interaction, we can use the “A##B” operator which Stata 
interprets to mean A, B and A#B.

reg price i.utown##c.sqft age i.pool i.fplace 

The output denotes the indicator variable UTOWN as 1.utown and the coefficient of the 
interaction term SQFT UTOWN�  as utown#c.sqft.

  5.  26.45   221.801       1          1  
  4.  20.17    154.69       0          0  
  3.  27.77   248.422       1          1  
  2.  20.03   185.328       0          0  
  1.  23.46   205.452       0          0  

  sqft     price   large   midprice  

. list sqft price large midprice in 1/5
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7.1.3 Testing the significance of the indicator variables 

Testing hypotheses about coefficients of indicator variables is no different than testing hypotheses 
about any other coefficients. To test the significance of the University Town location we test the 
joint null hypothesis 0 1: 0, 0H 2 � 3 �  against the alternative that one of these coefficients is not 
zero. The F-test of this hypothesis can be carried out using a post-estimation command. On the 
Stata menu follow the path Statistics > Postestimation > Tests > Test linear hypotheses or 
following the regression enter db test to open a testing dialog box. The Stata command is 

test 1.utown 1.utown#c.sqft 

Based on the test result, with p-value 0.0000, we reject the null hypothesis that location has no 
effect at significance level 0.05% �  or even 0.001% � .

7.1.4 Further calculations

The estimated regression function for the houses near the university is 

� (24.5 27.453) (7.6122 1.2994) .1901
 4.3772 1.6492

51.953+8.9116 .1901 4.3772 1.6492

PRICE SQFT AGE
POOL FPLACE

SQFT AGE POOL FPLACE

�    �
 

� �  

       _cons     24.49998   6.191721     3.96   0.000     12.34962    36.65035
    1.fplace     1.649176   .9719568     1.70   0.090    -.2581495    3.556501
      1.pool     4.377163   1.196692     3.66   0.000     2.028828    6.725498
         age    -.1900864   .0512046    -3.71   0.000    -.2905681   -.0896048
              
          1      1.299405   .3320478     3.91   0.000     .6478091    1.951001
utown#c.sqft  
              
        sqft     7.612177   .2451765    31.05   0.000     7.131053      8.0933
     1.utown     27.45295   8.422582     3.26   0.001     10.92485    43.98106

       price        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    1778446.14   999  1780.22637           Root MSE      =  15.225
           Adj R-squared =  0.8698

    Residual    230184.426   993  231.807076           R-squared     =  0.8706
       Model    1548261.71     6  258043.619           Prob > F      =  0.0000

           F(  6,   993) = 1113.18
      Source         SS       df       MS              Number of obs =    1000

. reg price i.utown##c.sqft age i.pool i.fplace

            Prob > F =    0.0000
       F(  2,   993) = 1954.83

 ( 2)  1.utown#c.sqft = 0
 ( 1)  1.utown = 0

. test 1.utown 1.utown#c.sqft
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Use lincom to calculate the estimated regression slope and intercept for houses near the 
university.  

lincom _cons + 1.utown 

lincom c.sqft + 1.utown#c.sqft 

The results shows not only the estimates but their 95% interval estimate as well 

7.1.5 Computing average marginal effects 

Another advantage of using factor variable notation is that marginal effects are computed 
correctly using the margins command. To compute the marginal effects, denoted dy/dx, of all 
variables averaged over all observations use 

margins, dydx(*) 

Now it is just a matter of figuring out what the average marginal effects reported by Stata 
actually are. For AGE, POOL and FPLACE it is no mystery. For AGE it is the marginal effect of 

         (1)     8.911581   .2247944    39.64   0.000     8.470455    9.352708

       price        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 ( 1)  sqft + 1.utown#c.sqft = 0

. lincom c.sqft + 1.utown#c.sqft

         (1)     51.95294   5.767235     9.01   0.000     40.63557     63.2703

       price        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 ( 1)  1.utown + _cons = 0

. lincom _cons + 1.utown

Note: dy/dx for factor levels is the discrete change from the base level.

    1.fplace     1.649176   .9719568     1.70   0.090    -.2558247    3.554176
      1.pool     4.377163   1.196692     3.66   0.000     2.031691    6.722636
         age    -.1900864   .0512046    -3.71   0.000    -.2904456   -.0897272
        sqft     8.286568   .1661803    49.86   0.000      7.96086    8.612275
     1.utown     60.21049   .9646176    62.42   0.000     58.31988    62.10111

                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method

dy/dx w.r.t. : 1.utown sqft age 1.pool 1.fplace
Expression   : Linear prediction, predict()

Model VCE    : OLS
Average marginal effects                          Number of obs   =       1000

. margins, dydx(*)
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AGE on PRICE, the estimated coefficient. Since POOL and FPLACE are indicator variables their 
marginal effect is not a derivative, but a discrete change in PRICE between having a pool or not, 
in the first place, and between having a fireplace or not, in the second place. For 1.utown and 
sqft however it is not that simple. 

The difference in expected PRICE between the two neighborhoods is 

� �� � � �� � 1| 1 | 0E PRICE UTOWN E PRICE UTOWN SQFT� � � � 2  3

Stata computes  

� � � �1 11

1 N
iiAME UTOWN SQFT SQFT

N �� 2  3 � 2  3�

The variance of the estimated marginal effect is 

� � �� � � � � � � � � �2

1 1 1
ˆ ˆ ˆˆ ˆ ˆvar var var var 2 cov ,AME UTOWN SQFT SQFT SQFT� 2  3 � 2  3  2 3

To see that this is true execute the following 

quietly summarize sqft 

scalar asqft = r(mean) 

lincom 1.utown+c.sqft#1.utown*asqft 

Similarly, the marginal effect of SQFT is 

� �
2

E PRICE
UTOWN

SQFT
+

� �  3
+

Stata computes 

2 21

1( ) N
iiAME SQFT UTOWN UTOWN

N �� �  3 � �  3�

To see that this is so, execute 

         (1)     60.21049   .9646176    62.42   0.000     58.31757    62.10342

       price        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 ( 1)  1.utown + 25.20965*1.utown#c.sqft = 0

. lincom 1.utown+c.sqft#1.utown*asqft

. scalar asqft = r(mean)

. quietly summarize sqft
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quietly summarize utown 

scalar autown = r(mean) 

lincom c.sqft+c.sqft#1.utown*autown 

log close 

7.2 APPLYING INDICATOR VARIABLES 

In this section we illustrate a variety of applications of indicator variables. Open the data file 
cps4_small.dta. Start a new log and examine the data. 

log using chap07_cps4, replace text 

use cps4_small, clear 

describe 

summarize 

         (1)     8.286568   .1661803    49.86   0.000     7.960463    8.612673

       price        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 ( 1)  sqft + .519*1.utown#c.sqft = 0

. lincom c.sqft+c.sqft#1.utown*autown

. scalar autown = r(mean)

. quietly summarize utown

asian           byte   %8.0g                  = 1 if asian
black           byte   %8.0g                  = 1 if black
west            byte   %8.0g                  = 1 if lives in west
south           byte   %8.0g                  = 1 if lives in south
midwest         byte   %8.0g                  = 1 if lives in midwest
metro           byte   %8.0g                  = 1 if lives in metropolitan area
female          byte   %8.0g                  = 1 if female
married         byte   %8.0g                  = 1 if married
hrswk           byte   %8.0g                  usual hours worked per week
exper           byte   %8.0g                  post education years experience
educ            byte   %8.0g                  years of education
wage            double %10.0g                 earnings per hour

variable name   type   format      label      variable label
              storage  display     value

 size:        23,000 (99.9% of memory free)
 vars:            12                          
  obs:         1,000                          
Contains data from cps4_small.dta
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7.2.1 Interactions between qualitative factors 

First, we consider an interaction between two indicator variables, black and female in the model 

� �1 2 1 2WAGE EDUC BLACK FEMALE BLACK FEMALE e�� �  2  2  3 � 

Using the factor variable operator “##” the regression is 

reg wage educ i.black##i.female 

We estimate the wage difference between white males and black females using 

lincom 1.black + 1.female + 1.black#1.female 

       asian        1000        .043    .2029586          0          1
       black        1000        .112    .3155243          0          1

        west        1000         .24    .4272968          0          1
       south        1000        .296    .4567194          0          1
     midwest        1000         .24    .4272968          0          1
       metro        1000         .78    .4144536          0          1
      female        1000        .514    .5000541          0          1

     married        1000        .581    .4936423          0          1
       hrswk        1000      39.952     10.3353          0         90
       exper        1000      26.508    12.85446          2         65
        educ        1000      13.799    2.711079          0         21
        wage        1000    20.61566    12.83472       1.97      76.39

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize

       _cons    -5.281159   1.900468    -2.78   0.006    -9.010544   -1.551774
              
        1 1      3.844294   2.327653     1.65   0.099    -.7233779    8.411966
black#female  
              
    1.female    -4.784607   .7734139    -6.19   0.000    -6.302317   -3.266898
     1.black    -4.169077   1.774714    -2.35   0.019    -7.651689   -.6864656
        educ     2.070391   .1348781    15.35   0.000     1.805712    2.335069

        wage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    164565.428   999  164.730158           Root MSE      =  11.439
           Adj R-squared =  0.2057

    Residual    130194.667   995  130.848912           R-squared     =  0.2089
       Model    34370.7606     4  8592.69016           Prob > F      =  0.0000

           F(  4,   995) =   65.67
      Source         SS       df       MS              Number of obs =    1000

. reg wage educ i.black##i.female
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Carry out an F -test of joint significance of FEMALE, BLACK and their interaction using 

test 1.female 1.black 1.black#1.female 

The result is 

The marginal effects are computed using the margins command. 

margins, dydx(*) 

Recall that the model is 

� �1 2 1 2WAGE EDUC BLACK FEMALE BLACK FEMALE e�� �  2  2  3 � 

So

� �
� � � �

1 2 1 2

1 2 2 1

| 1E WAGE FEMALE EDUC BLACK BLACK

EDUC BLACK

� � � �  2  2  3

� �  2 �  2  3

         (1)     -5.10939   1.510567    -3.38   0.001    -8.073652   -2.145128

        wage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 ( 1)  1.black + 1.female + 1.black#1.female = 0

. lincom 1.black + 1.female + 1.black#1.female

            Prob > F =    0.0000
       F(  3,   995) =   14.21

 ( 3)  1.black#1.female = 0
 ( 2)  1.black = 0
 ( 1)  1.female = 0

. test 1.female 1.black 1.black#1.female

Note: dy/dx for factor levels is the discrete change from the base level.

    1.female    -4.354046   .7313539    -5.95   0.000    -5.787474   -2.920619
     1.black     -2.19311   1.160919    -1.89   0.059    -4.468469    .0822488
        educ     2.070391   .1348781    15.35   0.000     1.806034    2.334747

                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method

dy/dx w.r.t. : educ 1.black 1.female
Expression   : Linear prediction, predict()

Model VCE    : OLS
Average marginal effects                          Number of obs   =       1000

. margins, dydx(*)
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and � � 1 2 1| 0E WAGE FEMALE EDUC BLACK� �� �  2 . The difference is 

� � � � 2| 1 | 0E WAGE FEMALE E WAGE FEMALE BLACK� � � � 2  3

Stata reports the average over the sample of the estimated counterpart 

� � � �2 21

1 ˆ ˆˆ ˆN
iiAME FEMALE BLACK BLACK

N �� 2  3 � 2  3�

The calculation of the Average marginal effect of female is verified using 

quietly summarize black 

scalar ablack = r(mean) 

lincom 1.female + 1.black#1.female*ablack 

7.2.2 Adding regional indicators 

Next add indicator variables with several categories, regional dummies. The model of interest is 

� �1 2 3 4 5

1 2 3                    +
WAGE EDUC BLACK FEMALE BLACK FEMALE

SOUTH MIDWEST WEST e
�� � � � � �

2  2  2 

Because the regional indicator variables are already defined in the data file, we simply add them 
to the regression model 

reg wage educ i.black##i.female i.south i.midwest i.west 

A portion of the output is 

         (1)    -4.354046   .7313539    -5.95   0.000    -5.789219   -2.918873

        wage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 ( 1)  1.female + .112*1.black#1.female = 0

. lincom 1.female + 1.black#1.female*ablack

       _cons     -4.80621   2.028691    -2.37   0.018    -8.787229   -.8251912
      1.west     .9866332   1.059815     0.93   0.352    -1.093104     3.06637
   1.midwest    -2.608406   1.059644    -2.46   0.014    -4.687807   -.5290049
     1.south    -.4499056   1.025024    -0.44   0.661     -2.46137    1.561558
              
        1 1      3.625021   2.318375     1.56   0.118    -.9244618    8.174504
black#female  
              
    1.female    -4.744129   .7698381    -6.16   0.000    -6.254827   -3.233431
     1.black    -3.905465   1.786258    -2.19   0.029    -7.410743   -.4001873
        educ     2.071231   .1344687    15.40   0.000     1.807355    2.335106

        wage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
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To test the joint significance of these regional dummies we use the test statement 

test 1.south 1.midwest 1.west 

Calculate and display the critical values from the F-distribution with 3 numerator and 992 
denominator degrees of freedom. 

di "F(3,992,.95) = " invFtail(3,992,.05)  

di "F(3,992,.90) = " invFtail(3,992,.10) 

7.2.3 Testing the equivalence of two regressions 

To test the equivalence of the wage equations for the southern region versus the remainder of the 
country (i.e., not south) we create interaction variable for each variable in the regression model 
with the indicator variable south. The equation we wish to test is 

� �1 2 1 2WAGE EDUC BLACK FEMALE BLACK FEMALE e�� �  2  2  3 � 

The model with indicator variable interactions included is 

� �

� � � �

� � � �

1 2 1 2

1 2 3

4 5

               

               

WAGE EDUC BLACK FEMALE BLACK FEMALE

SOUTH EDUC SOUTH BLACK SOUTH

FEMALE SOUTH BLACK FEMALE SOUTH e

� � �  2  2  3 � 

-  - �  - � 

- �  - � � 

We have interacted SOUTH with each variable in the regression model, including the intercept. 
Use the Stata operator ## to create all the interactions. First, to create BLACK, FEMALE, and 
their interaction we use use i.black##i.female. Then the fully interacted model is 

reg wage i.south##(c.educ i.black##i.female) 

            Prob > F =    0.0054
       F(  3,   992) =    4.25

 ( 3)  1.west = 0
 ( 2)  1.midwest = 0
 ( 1)  1.south = 0

. test 1.south 1.midwest 1.west

F(3,992,.90) = 2.0893205
. di "F(3,992,.90) = " invFtail(3,992,.10)

F(3,992,.95) = 2.6138755
. di "F(3,992,.95) = " invFtail(3,992,.05) 
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To test the hypothesis that there is “no difference” between the model for the south and rest of the 
country we test the joint hypothesis 0 1 2 3 4 5: 0H - � - � - � - � - �  using a test statement. 

test 1.south 1.south#c.educ 1.south#1.black 1.south#1.female /// 

 1.south#1.black#1.female  

From the fully interacted model we can obtain the combined effect of BLACK and SOUTH using 

lincom 1.black + 1.black#1.south 

       _cons    -6.605572   2.336628    -2.83   0.005    -11.19088    -2.02026
              
      1 1 1     -2.935834   4.787647    -0.61   0.540    -12.33094    6.459268
      female  
 south#black# 
              
        1 1      .9011198   1.772665     0.51   0.611    -2.577492    4.379732
south#female  
              
        1 1      1.704396   3.633327     0.47   0.639     -5.42551    8.834302
 south#black  
              
          1      -.308541   .2857343    -1.08   0.280    -.8692554    .2521734
south#c.educ  
              
        1 1      5.305574   3.497267     1.52   0.130    -1.557333    12.16848
black#female  
              
    1.female    -5.005078   .8990074    -5.57   0.000    -6.769257   -3.240899
     1.black     -5.08936    2.64306    -1.93   0.054      -10.276    .0972837
        educ     2.172554   .1664639    13.05   0.000     1.845891    2.499216
     1.south      3.94391   4.048453     0.97   0.330    -4.000625    11.88845

        wage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    164565.428   999  164.730158           Root MSE      =  11.459
           Adj R-squared =  0.2030

    Residual    129984.409   990  131.297383           R-squared     =  0.2101
       Model    34581.0189     9  3842.33543           Prob > F      =  0.0000

           F(  9,   990) =   29.26
      Source         SS       df       MS              Number of obs =    1000

. reg wage i.south##(c.educ i.black##i.female)

            Prob > F =    0.9009
       F(  5,   990) =    0.32

 ( 5)  1.south#1.black#1.female = 0
 ( 4)  1.south#1.female = 0
 ( 3)  1.south#1.black = 0
 ( 2)  1.south#c.educ = 0
 ( 1)  1.south = 0

>      1.south#1.black#1.female
. test 1.south 1.south#c.educ 1.south#1.black 1.south#1.female ///
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Similarly, the combined effect of FEMALE and SOUTH is obtained using 

lincom 1.female + 1.female#1.south 

7.2.4 Estimating separate regressions 

Instead of using the fully interacted model approach in the previous section, the F-statistic can be 
computed using the restricted and unrestricted sum of squared residuals. The sum of squared 
residuals for the full model is the sum of the SSE from the two separate regressions 

89088.5 40895.9 129984.4full non south southSSE SSE SSE��  �  �

The estimations on the two regions can be efficiently carried out using the standard regress
command with bysort, which allows Stata commands to be repeated on subsets of the data. Enter 
help bysort. To use the by prefix the data must be sorted by grouping variable, or variables. If 
this has not already been done, then by and sort are combined into bysort. The syntax for the 
commands is 

 by varlist: stata_cmd 

 bysort varlist: stata_cmd 

To implement regressions for the two regions we have 

bysort south: reg wage educ i.black##i.female 

That is, we first sort according to the values of SOUTH and then implement the regression for 
each group of observations. 

         (1)   -3.384964    2.49305    -1.36   0.175    -8.277233    1.507305

        wage       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 ( 1)  1.black + 1.south#1.black = 0

. lincom 1.black + 1.black#1.south

         (1)   -4.103958   1.527785    -2.69   0.007    -7.102027   -1.105889

        wage       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 ( 1)  1.female + 1.south#1.female = 0

. lincom 1.female + 1.female#1.south
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The two SSE come from the analysis of variance table from the separate regressions. 

       _cons    -2.661662   3.420413    -0.78   0.437    -9.393547    4.070223
              
        1 1       2.36974   3.382739     0.70   0.484    -4.287995    9.027476
black#female  
              
    1.female    -4.103958   1.580621    -2.60   0.010    -7.214857    -.993059
     1.black    -3.384964   2.579268    -1.31   0.190     -8.46135    1.691422
        educ     1.864013   .2402682     7.76   0.000     1.391129    2.336896

        wage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    50130.2075   295  169.932907           Root MSE      =  11.855
           Adj R-squared =  0.1730

    Residual    40895.9474   291  140.535902           R-squared     =  0.1842
       Model    9234.26014     4  2308.56503           Prob > F      =  0.0000

           F(  4,   291) =   16.43
      Source         SS       df       MS              Number of obs =     296

-> south = 1

       _cons    -6.605572    2.30215    -2.87   0.004    -11.12553   -2.085615
              
        1 1      5.305574   3.445664     1.54   0.124    -1.459516    12.07066
black#female  
              
    1.female    -5.005078   .8857423    -5.65   0.000    -6.744112   -3.266044
     1.black     -5.08936   2.604061    -1.95   0.051    -10.20208    .0233585
        educ     2.172554   .1640077    13.25   0.000     1.850547     2.49456

        wage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total     114434.47   703  162.780185           Root MSE      =  11.289
           Adj R-squared =  0.2170

    Residual    89088.4615   699  127.451304           R-squared     =  0.2215
       Model    25346.0083     4  6336.50209           Prob > F      =  0.0000

           F(  4,   699) =   49.72
      Source         SS       df       MS              Number of obs =     704

-> south = 0

. bysort south: reg wage educ i.black##i.female
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7.2.5 Indicator variables in log-linear models 

The calculation of the exact effect of an indicator variable in a log-linear model seems 
complicated, but Stata’s command nlcom makes it much easier.  

Create ln(wage) and estimate the equation 

1 2ln( )WAGE EDUC FEMALE�� �  2

gen lwage = ln(wage) 

reg lwage educ i.female 

The results are 

The exact effect of the indicator variable female is 

� �100 1 %e2 �

This is a nonlinear function of the parameters that requires the use of nlcom.

nlcom 100*(exp(_b[1.female]) - 1) 

The result is 

That is, holding all else constant, we estimate that female workers earn 21.6% less than their male 
counterparts.

Similarly we can calculate other nonlinear marginal effects. Consider the model  

1 2 3ln( ) ( )WAGE EDUC EXPER EDUC EXPER�� � �  3 �

       _cons     1.653868   .0843786    19.60   0.000     1.488288    1.819448
    1.female     -.243214   .0327275    -7.43   0.000    -.3074367   -.1789913
        educ     .0962484   .0060365    15.94   0.000     .0844026    .1080942

       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    336.780731   999  .337117849           Root MSE      =  .51286
           Adj R-squared =  0.2198

    Residual    262.238666   997  .263027749           R-squared     =  0.2213
       Model    74.5420655     2  37.2710328           Prob > F      =  0.0000

           F(  2,   997) =  141.70
      Source         SS       df       MS              Number of obs =    1000

. reg lwage educ i.female

       _nl_1   -21.58963   2.566176    -8.41   0.000    -26.62535    -16.5539

       lwage       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       _nl_1:  100*(exp(_b[1.female]) - 1)

. nlcom 100*(exp(_b[1.female]) - 1)
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The approximate marginal effect is 

� �3100 %EDUC�  3

Create the interaction of education and experience and add it to the regression model 

reg lwage c.educ##c.exper 

The estimation results are 

For using lincom or nlcom the coefficient names, in the form _b[variable], are sometimes not 
immediately evident when using factor notation. These can be revealed by specifying the 
regress command with the option coeflegend, which displays the coefficients’ legend rather 
than the coefficient table. 

reg, coeflegend 

       _cons     1.392318   .2066447     6.74   0.000      .986809    1.797827
              
     c.exper    -.0000364   .0004838    -0.08   0.940    -.0009858    .0009129
      c.educ# 
              
       exper     .0063295   .0066985     0.94   0.345    -.0068153    .0194743
        educ     .0949385   .0146246     6.49   0.000       .06624     .123637

       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    336.780731   999  .337117849           Root MSE      =  .52185
           Adj R-squared =  0.1922

    Residual    271.235783   996  .272325084           R-squared     =  0.1946
       Model    65.5449479     3   21.848316           Prob > F      =  0.0000

           F(  3,   996) =   80.23
      Source         SS       df       MS              Number of obs =    1000

. reg lwage c.educ##c.exper

       _cons     1.392318  _b[_cons]
              
     c.exper    -.0000364  _b[c.educ#c.exper]
      c.educ# 
              
       exper     .0063295  _b[exper]
        educ     .0949385  _b[educ]

       lwage        Coef.  Legend

       Total    336.780731   999  .337117849           Root MSE      =  .52185
           Adj R-squared =  0.1922

    Residual    271.235783   996  .272325084           R-squared     =  0.1946
       Model    65.5449479     3   21.848316           Prob > F      =  0.0000

           F(  3,   996) =   80.23
      Source         SS       df       MS              Number of obs =    1000

. reg, coeflegend
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The approximate and exact effects are calculated using 

lincom 100*(exper+ c.educ#c.exper*16) 

nlcom 100*(exp( _b[exper]+_b[c.educ#c.exper]*16) - 1) 

log close 

7.3 THE LINEAR PROBABILITY MODEL 

When modeling choice between two alternatives, an indicator variable will be the dependent
variable rather than an independent variable in a regression model. Suppose 

1 if first alternative is chosen
0 if second alternative is chosen

y 4� 5
6

If p is the probability that the first alternative is chosen, then # $1P y p� � , then the expected 
value of y is � �E y p�  and its variance is � � � �var 1y p p� � .

We are interested in identifying factors that might affect the probability p using a linear 
regression function, or in this context a linear probability model,

� � 1 2 2 K KE y p x x� � � �  ��

The linear probability regression model is 

1 2 2 K Ky x x e� �  �   � �

The variance of the error term e is  

         (1)     .574639    .174402     3.29   0.001     .2324014    .9168765

       lwage       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 ( 1)  100*exper + 1600*c.educ#c.exper = 0

. lincom 100*(exper+ c.educ#c.exper*16)

       _nl_1    .5762932   .1754071     3.29   0.001     .2320833     .920503

       lwage       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       _nl_1:  100*(exp( _b[exper]+_b[c.educ#c.exper]*16) - 1)

. nlcom 100*(exp( _b[exper]+_b[c.educ#c.exper]*16) - 1)
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� � � �� �1 2 2 1 2 2var 1K K K Ke x x x x� �  �   � � � � � � � �� �

This error is not homoscedastic and will be treated in Chapter 8.  
As an illustration consider the choice between Coke and Pepsi. Open coke.dta and check its 

contents.

log using chap07_coke, replace text 

use coke, clear 

describe 

summarize 

To estimate the linear probability model for choosing Coke using the least squares regression 

reg coke pratio disp_coke disp_pepsi 

A concern with the linear regression approach is that the predicted probabilities can be outside the 
interval [0, 1]. Obtain the predicted values, which are in this case probabilities, and summarize.

predict phat 

summarize phat 

                                                pepsi
pratio          double %10.0g                 price of coke relative to price of
                                                purchase, otherwise = 0
disp_coke       byte   %8.0g                  = 1 if coke is displayed at time of
                                                purchase, otherwise = 0
disp_pepsi      byte   %8.0g                  = 1 if pepsi is displayed at time of
pr_coke         double %10.0g                 price of 2 liter bottle of coke
pr_pepsi        double %10.0g                 price of 2 liter bottle of pepsi
                                                chosen
coke            byte   %8.0g                  =1 if coke chosen, =0 if pepsi

variable name   type   format      label      variable label
              storage  display     value

       _cons     .8902151   .0654849    13.59   0.000     .7617301      1.0187
  disp_pepsi    -.1656637   .0355997    -4.65   0.000    -.2355122   -.0958152
   disp_coke     .0771745   .0343919     2.24   0.025     .0096956    .1446533
      pratio    -.4008614   .0613494    -6.53   0.000    -.5212324   -.2804904

        coke        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    281.842105  1139  .247446976           Root MSE      =  .46724
           Adj R-squared =  0.1177

    Residual    248.004297  1136  .218313642           R-squared     =  0.1201
       Model    33.8378078     3  11.2792693           Prob > F      =  0.0000

           F(  3,  1136) =   51.67
      Source         SS       df       MS              Number of obs =    1140

. reg coke pratio disp_coke disp_pepsi
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We see that the minimum value is less than zero, but none of the predicted probabilities are 
greater than one. To see how many predicted probabilities are negative, summarize just those, 
using 

summarize phat if phat<=0 

We see that 16 of the 1140 observations have negative predicted probabilities. 

log close 

7.4 TREATMENT EFFECTS 

In order to understand the measurement of treatment effects, consider a simple regression model 
in which the explanatory variable is a dummy variable, indicating whether a particular individual 
is in the treatment or control group. Let y be the outcome variable, the measured characteristic the 
treatment is designed to affect. Define the indicator variable d as

1 individual in treatment group
0 individual in control groupid 4

� 5
6

The effect of the treatment on the outcome can be modeled as 

1 2 , 1, ,i i iy d e i N� � �  � �

where ie  represents the collection of other factors affecting the outcome. The regression functions 
for the treatment and control groups are 

� � 1 2

1

if in treatment group, 1
if in control group, 0

i
i

i

d
E y

d
� � �4

� 5� �6

The treatment effect that we wish to measure is 2� . The least squares estimator of 2�  is 

        phat        1140    .4473684    .1723611  -.2073211   .7680784

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize phat

        phat          16   -.0183585    .0523201  -.2073211  -.0002385

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize phat if phat<=0
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where 1
1 11

N
iiy y N�� �  is the sample mean of the N1 observations on y for the treatment group (d

= 1) and 0
0 01

N
iiy y N�� �  is the sample mean of the N0 observations on y for the control group (d

= 0). In this treatment/control framework the estimator b2 is called the difference estimator
because it is the difference between the sample means of the treatment and control groups.  

To illustrate, we use the data from project STAR described in Principles of Econometrics, 4th

edition, Chapter 7.5.3.  

log using chap07_star, replace text 

use star, clear 

describe 

To examine the effect of small versus regular size classes drop the observations for classes of 
regular size with a teacher aide. 

drop if aide==1 

summarize  

We find that 3743 observations remain. The core model of interest is 

1 2i i iTOTALSCORE SMALL e� � � 

Which we may augment with additional control variables such as 

1 2 3i i i iTOTALSCORE SMALL TCHEXPER e� � � � 

aide            byte   %8.0g                  regular class with aide
regular         byte   %8.0g                  regular class
small           byte   %8.0g                  small class
schrural        float  %9.0g                  school rural
schurban        float  %9.0g                  school urban or inner city
freelunch       float  %9.0g                  free lunch provided
tchmasters      float  %9.0g                  teacher with masters degree
tchwhite        float  %9.0g                  white teacher
black           float  %9.0g                  black student
white_asian     float  %9.0g                  white or asian student
boy             float  %9.0g                  male student
totalscore      float  %9.0g                  combined math and reading score
mathscore       int    %8.0g                  math score
readscore       int    %8.0g                  reading score
absent          byte   %8.0g                  days absent
tchexper        byte   %8.0g                  teacher years of experience
tchid           long   %12.0g                 teacher id
schid           long   %12.0g                 school id
id              int    %8.0g                  student id

variable name   type   format      label      variable label
              storage  display     value
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It is convenient when estimating alternative specifications of models to define lists of variables 
that can be inserted into the Stata code with the prefix $. To do this we use a global declaration. 
Below we give the name x1list to the single variable, small. The list denoted x2list contains the 
first list, denoted $x1list, plus the variable tchexper. Similarly, we create x3list containing the 
contents of $x2list plus the additional variables boy, freelunch, and white_asian.

global x1list small 

global x2list $x1list tchexper 

global x3list $x2list boy freelunch white_asian 

global x4list $x3list tchwhite tchmasters schurban schrural 

We can use these lists in Stata commands, for example 

summarize totalscore $x4list if regular==1 

The output is 

Similarly 

summarize totalscore $x4list if small==1 

We observe that the average test score for students in small classes is higher. 

    schrural        2005    .4997506    .5001247          0          1
    schurban        2005    .3012469    .4589142          0          1
  tchmasters        2005    .3650873    .4815747          0          1
    tchwhite        2005     .798005    .4015887          0          1
 white_asian        2005    .6812968    .4660899          0          1

   freelunch        2005    .4738155    .4994385          0          1
         boy        2005     .513217      .49995          0          1
    tchexper        2005    9.068329    5.724446          0         24
       small        2005           0           0          0          0
  totalscore        2005    918.0429    73.13799        635       1229

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize totalscore $x4list if regular==1

    schrural        1738    .4626007    .4987428          0          1
    schurban        1738     .306099     .461004          0          1
  tchmasters        1738    .3176064    .4656795          0          1
    tchwhite        1738    .8624856    .3444887          0          1
 white_asian        1738    .6846951    .4647709          0          1

   freelunch        1738    .4718067    .4993482          0          1
         boy        1738    .5149597      .49992          0          1
    tchexper        1738    8.995397    5.731568          0         27
       small        1738           1           0          1          1
  totalscore        1738    931.9419    76.35863        747       1253

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize  totalscore $x4list if small==1
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If students are assigned randomly to classes of alternative sizes, then there should be no 
correlation between class size and any other variables. The correlations for the group of variables 
x3list is 

pwcorr $x3list 

Note in the first column that the correlations between small and the other factors are nearly zero. 
The experiment took place in 79 schools. We will control for school effects by including an 

indicator variable for each. That is, we can introduce 78 new indicators  

1 if student is in school 
_

0 otherwise
j

SCHOOL j 4
� 5
6

To create these use tabulate with the generate option. 

tabulate schid, gen(school) 

In the Variables window we find that we have indicator variables school1, school2 and so on. 

We now are in the position to estimate the alternative models. We will estimate four models, 
suppressing the output using quietly and reporting the results in a convenient table.  

quietly reg totalscore $x1list 

estimates store model1 

quietly reg totalscore $x2list 

estimates store model2 

 white_asian     0.0036   0.1286   0.0231  -0.4378   1.0000 
   freelunch    -0.0020  -0.0969   0.0066   1.0000 
         boy     0.0017  -0.0341   1.0000 
    tchexper    -0.0064   1.0000 
       small     1.0000 

                  small tchexper      boy freelu~h white_~n

     123056           34        0.91        1.79
     112038           33        0.88        0.88

  school id        Freq.     Percent        Cum.

. tabulate schid, gen(school)
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quietly reg totalscore $x3list 

estimates store model3 

quietly reg totalscore $x4list 

estimates store model4 

Enter help estimates table for a summary of the features, or help estout for a complete suite 
of commands to make regression tables which are stored preferably using eststo. The command 
is

estimates table model1 model2 model3 model4, b(%12.3f)  

 se stats(N r2 F bic) 

This will create a table of results with columns the different models. The estimates will be 
reported in a decimal format (enter help format) with three places after the decimal. Below the 
estimates are the standard errors, and at the bottom the sample size, R2, F and the BIC.

While perfectly satisfactory we prefer the user-written command esttab. Enter findit 
esttab. Click the blue link st0085_1. You must have administrator privileges to install. 

esttab model1 model2 model3 model4 , se(%12.3f) b(%12.3f) /// 

star(* 0.10 ** 0.05 *** 0.01) gaps ar2 bic scalars(rss) /// 

title("Project Star: Kindergarden") 

A portion of that table is 

The model including indicator variables for each school is 

79
1 2 3 2 _i i i j i ijTOTALSCORE SMALL TCHEXPER SCHOOL j e�� � � �  2 �

This regression with school fixed effects can be estimated the “hard way” using 

reg totalscore $x2list school2-school79 

However, if we do so the results will be cluttered with 78 additional coefficients in which we are 
really not interested. It is more convenient to use a modified regression command, areg. The help 

                                                  (2.335)         (2.330)   
boy                                               -15.345***      -15.287***

                                  (0.212)         (0.206)         (0.213)   
tchexper                            1.156***        0.703***        0.781***

                  (2.447)         (2.437)         (2.338)         (2.352)   
small              13.899***       13.983***       13.870***       13.358***

               totalscore      totalscore      totalscore      totalscore   
                      (1)             (2)             (3)             (4)   

Project Star: Kindergarden
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information shows that this is a linear regression with a large dummy-variable (indicator variable) 
set. The option absorb suppresses the school-specific intercept terms. 

For example, applying areg to estimate the model with explanatory variable small, and absorbing 
the indicator effects represented by schild, we have 

areg totalscore $x1list, absorb(schid) 

estimates store amodel1 

Note that at the bottom of the output the F-test of significance of the indicator variables shows 
that there is a significant difference among the school indicator variables. We estimate the 
remainder of the specifications and include them in a table. 

areg totalscore $x2list, absorb(schid) 

estimates store amodel2 

quietly areg totalscore $x3list, absorb(schid) 

estimates store amodel3 

quietly areg totalscore $x4list, absorb(schid) 

estimates store amodel4 

esttab amodel1 amodel2 amodel3 amodel4 , se(%12.3f) b(%12.3f) /// 

 star(* 0.10 ** 0.05 *** 0.01) gaps ar2 bic scalars(rss) /// 

       schid         F(78, 3663) =     14.118   0.000          (79 categories)

       _cons     917.0684   1.494793   613.51   0.000     914.1377    919.9991
       small     15.99778   2.222846     7.20   0.000     11.63964    20.35592

  totalscore        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                       Root MSE      =  66.151
                                                       Adj R-squared =  0.2213
                                                       R-squared     =  0.2377
                                                       Prob > F      =  0.0000
                                                       F(  1,  3663) =   51.80
Linear regression, absorbing indicators                Number of obs =    3743

. areg totalscore $x1list, absorb(schid)
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 title("Project Star: Kindergarden, with school effects") 

The table is 

The variables schurban and schrural in x4list are redundant, exactly collinear, with the school 
effects and thus are dropped in column (4). 

The class sizes were assigned randomly within schools. Above we computed the correlations 
between small and other variables. However correlations are only measure pairwise associations, 
so it is important to check for associations between small and other variables using a linear 
probability model, with and without school fixed effects. 

reg small boy white_asian tchexper freelunch 

areg small boy white_asian tchexper freelunch, absorb(schid) 

* p<0.10, ** p<0.05, *** p<0.01
Standard errors in parentheses

rss          16028908.368    15957533.543    14653879.350    14619709.135   
BIC             41938.575       41930.098       41635.780       41643.497   
adj. R-sq           0.221           0.225           0.287           0.289   
N                    3743            3743            3743            3743   

                  (1.495)         (2.532)         (4.375)         (5.528)   
_cons             917.068***      908.786***      916.477***      925.168***

                                                                        .   
schrural                                                                .   

                                                                        .   
schurban                                                                .   

                                                                  (2.903)   
tchmasters                                                         -4.508   

                                                                  (4.270)   
tchwhite                                                           -9.642** 

                                                  (4.415)         (4.413)   
white_asian                                        25.261***       25.148***

                                                  (2.505)         (2.504)   
freelunch                                         -36.335***      -36.102***

                                                  (2.095)         (2.093)   
boy                                               -13.457***      -13.356***

                                  (0.226)         (0.217)         (0.223)   
tchexper                            0.913***        0.821***        0.893***

                  (2.223)         (2.218)         (2.127)         (2.140)   
small              15.998***       16.066***       16.055***       16.265***

               totalscore      totalscore      totalscore      totalscore   
                      (1)             (2)             (3)             (4)   

Project Star: Kindergarden, with school effects
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The linear probability model is reconsidered in Chapter 8, and alternatives to the linear 
probability model are given in Chapter 16. 

7.5 DIFFERENCES-IN-DIFFERENCES ESTIMATION 

Natural experiments mimic randomized control experiments and are useful for evaluating policy 
changes. There is a treatment group that is affected by a policy change and a control group that is 
similar but which is not affected by the policy change. The situation is illustrated in the figure 
below. The treatment effect is the change CD .

The treatment effect is estimated as 

       schid         F(78, 3660) =      2.405   0.000          (79 categories)

       _cons     .4628762   .0331314    13.97   0.000     .3979184    .5278341
   freelunch     .0012833   .0194693     0.07   0.947    -.0368884     .039455
    tchexper    -.0007506   .0016829    -0.45   0.656    -.0040501    .0025488
 white_asian     .0094167   .0343154     0.27   0.784    -.0578626     .076696
         boy      .002337   .0162813     0.14   0.886    -.0295843    .0342584

       small        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                       Root MSE      =  .49189
                                                       Adj R-squared =  0.0275
                                                       R-squared     =  0.0488
                                                       Prob > F      =  0.9894
                                                       F(  4,  3660) =    0.08
Linear regression, absorbing indicators                Number of obs =    3743

. areg small boy white_asian tchexper freelunch, absorb(schid)
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� � � � � � � �, , , ,
ˆ ˆˆ ˆ C E B A Treatment After Control After Treatment Before Control Beforey y y y2 � � � � � � � ��

Where y  denotes the various sample means. The estimator is called a differences-in-differences
(abbreviated as D-in-D, DD, or DID) estimator of the treatment effect.  

The DID estimator can be conveniently calculated using a simple regression. Define yit to be 
the observed outcome for individual i in period t. Let AFTERt be an indicator variable that equals 
1 in the period after the policy change (t = 2) and equals 0 in the period before the policy change 
(t = 1). Let TREATi be an indicator variable that equals 1 if individual i is in the treatment group, 
and equals 0 if the individual is in the control (non-treatment) group. Consider the regression 
model 

� �1 2 3it i t i t ity TREAT AFTER TREAT AFTER e� �  �  �  2 � 

The example in Principles of Econometrics, 4th edition, is from Card and Kruegar (1994)1. On 
April 1, 1992, New Jersey’s minimum wage was increased from $4.25 to $5.05 per hour, while 
the minimum wage in Pennsylvania stayed at $4.25 per hour. Card and Krueger collected data on 
410 fast food restaurants in New Jersey (the treatment group) and eastern Pennsylvania (the 
control group). The “before” period is February, 1992, and the “after” period is November, 1992. 
Using these data they estimate the effect of the “treatment,” raising the New Jersey minimum 
wage on employment at fast food restaurants in New Jersey. 

We open a new log and njmin3.dta.

log using chap07_nj, replace text 

use njmin3, clear 

describe 

The key variables are 

The summary statistics for the key variables are 

summarize 

Full-time equivalent employment is not observed for all franchises, so there are some missing 
values in the data. 

1 David Card and Alan Krueger (1994) “Minimum Wages and Employment: A Case Study of the Fast Food Industry in New Jersey 
and Pennsylvania,” The American Economic Review, 84, 316-361.  

fte             double %10.0g                 full time-equivalent employees
d_nj            byte   %8.0g                  nj*d interaction
d               byte   %8.0g                  = 1 if after nj min wage increase
nj              byte   %8.0g                  = 1 if new jersey

variable name   type   format      label      variable label
              storage  display     value
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The various means for the DID estimator are computed using  

bysort nj d: summarize fte 

Using the regression approach we can compute the means using lincom.

reg fte nj d d_nj 

estimates store did 

         fte         794    21.02651    9.422746          0         85
        d_nj         820    .4036585      .49093          0          1
           d         820          .5    .5003052          0          1
          nj         820    .8073171    .3946469          0          1

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize nj d d_nj fte

         fte         319    21.02743    9.293024          0       60.5

    Variable         Obs        Mean    Std. Dev.       Min        Max

-> nj = 1, d = 1

         fte         321    20.43941    9.106239          5         85

    Variable         Obs        Mean    Std. Dev.       Min        Max

-> nj = 1, d = 0

         fte          77    21.16558    8.276732          0       43.5

    Variable         Obs        Mean    Std. Dev.       Min        Max

-> nj = 0, d = 1

         fte          77    23.33117    11.85628        7.5       70.5

    Variable         Obs        Mean    Std. Dev.       Min        Max

-> nj = 0, d = 0

. bysort nj d: summarize fte
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The average FTE in New Jersey before the policy change is 

lincom _cons + nj 

Similarly the other values are estimated using 

lincom _cons + d 

lincom _cons + nj + d  + d_nj 

lincom (_cons + nj + d + d_nj)-(_cons + d)-((_cons + nj)-_cons) 

       _cons     23.33117    1.07187    21.77   0.000     21.22712    25.43522
        d_nj     2.753606   1.688409     1.63   0.103     -.560693    6.067905
           d    -2.165584   1.515853    -1.43   0.154     -5.14116    .8099912
          nj    -2.891761   1.193524    -2.42   0.016    -5.234614   -.5489079

         fte        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    70408.9944   793  88.7881393           Root MSE      =  9.4056
           Adj R-squared =  0.0036

    Residual     69887.878   790  88.4656683           R-squared     =  0.0074
       Model    521.116463     3  173.705488           Prob > F      =  0.1180

           F(  3,   790) =    1.96
      Source         SS       df       MS              Number of obs =     794

. reg fte nj d d_nj

         (1)     20.43941   .5249705    38.93   0.000     19.40891    21.46991

         fte        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 ( 1)  nj + _cons = 0

. lincom _cons + nj

         (1)     21.16558    1.07187    19.75   0.000     19.06153    23.26963

         fte        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 ( 1)  d + _cons = 0

. lincom _cons + d

         (1)     21.02743   .5266136    39.93   0.000      19.9937    22.06116

         fte        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 ( 1)  nj + d + d_nj + _cons = 0

. lincom _cons + nj + d  + d_nj
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Add other control variables and create a table using 

reg fte nj d d_nj kfc roys wendys co_owned 

estimates store did2 

reg fte nj d d_nj kfc roys wendys co_owned southj centralj pa1 

estimates store did3 

esttab did did2 did3, b(%10.4f) se(%10.3f) t(%10.3f) r2 ar2 /// 

title("Difference in Difference Regressions") 

A portion of the table is 

If we used only paired observations 

reg fte nj d d_nj if !missing(demp) 

         (1)     2.753606   1.688409     1.63   0.103     -.560693    6.067905

         fte        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

 ( 1)  d_nj = 0

. lincom (_cons + nj + d + d_nj)-(_cons + d)-((_cons + nj)-_cons)

                  (1.688)         (1.523)         (1.502)   
d_nj               2.7536          2.8451          2.8149   

                  (1.516)         (1.368)         (1.349)   
d                 -2.1656         -2.2236         -2.2119   

                  (1.194)         (1.079)         (1.272)   
nj                -2.8918*        -2.3766*        -0.9080   

                      fte             fte             fte   
                      (1)             (2)             (3)   

Difference in Difference Regressions

       _cons        23.38   1.098275    21.29   0.000     21.22401    25.53599
        d_nj         2.75    1.73146     1.59   0.113    -.6489834    6.148983
           d    -2.283333   1.553195    -1.47   0.142     -5.33237    .7657035
          nj    -2.949417   1.224327    -2.41   0.016    -5.352862   -.5459732

         fte        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    69644.0502   767  90.8005869           Root MSE      =  9.5113
           Adj R-squared =  0.0037

    Residual    69115.6953   764  90.4655698           R-squared     =  0.0076
       Model    528.354829     3  176.118276           Prob > F      =  0.1206

           F(  3,   764) =    1.95
      Source         SS       df       MS              Number of obs =     768

. reg fte nj d d_nj if !missing(demp)
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The variable demp is missing if employment figures were not available both before and after the 
policy change. The Stata logical operator “!=” is “not equal to,” so the if qualifier uses only 
observations for which demp is not a missing value. 

KEY TERMS 

!missing factor variables margins, dydx 
areg fixed effects missing value 
areg varlist, absorb(var) F-test nlcom 
average marginal effect F-test critical value not equal to != 
by generate pairwise correlations 
bysort global pwcorr 
Chow test if quietly 
delta method indicator variables regional indicator variables 
DID interaction variables regress, coeflegend 
difference estimator invFtail tabulate 
differences-in-differences lincom tabul varname, gen() 
dummy variables linear probability model test 
estimates store log-linear model treatment effects 
estimates table marginal effect 
esttab margins 

CHAPTER 7 DO-FILE 

* file chap07.do for Using Stata for Principles of Econometrics, 4e 

cd c:\data\poe4stata 

* Stata Do-file  

* copyright C 2011 by Lee C. Adkins and R. Carter Hill  
* used for "Using Stata for Principles of Econometrics, 4e"  

* by Lee C. Adkins and R. Carter Hill (2011) 

* John Wiley and Sons, Inc. 

* setup 

version 11.1 
capture log close 

set more off 

* Chapter 7.1 Indicator Variables in Real Estate Example 

* open log 
log using chap07_utown, replace text 

* open data 
use utown, clear 

* summarize and examine 
describe 

summarize 

list in 1/6 
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list in 501/506 

* examples creating indicator variables 
summarize price sqft, detail 

gen large = (sqft > 25) 

gen midprice = (215 < price) & (price < 275) 
list sqft price large midprice in 1/5 

* estimate dummy variable regression 
reg price i.utown sqft i.utown#c.sqft age i.pool i.fplace 

reg price i.utown##c.sqft age i.pool i.fplace 

* test significance of utown 

test 1.utown 1.utown#c.sqft 

* use lincom for utown slope and intercept 

lincom _cons + 1.utown 

lincom c.sqft + 1.utown#c.sqft 

* ame 

margins, dydx(*) 

* ame for utown 

quietly summarize sqft 
scalar asqft = r(mean) 

lincom 1.utown+c.sqft#1.utown*asqft 

* ame for sqft 

quietly summarize utown 

scalar autown = r(mean) 
lincom c.sqft+c.sqft#1.utown*autown 

/********************************/ 
/* A matrix approach            */ 

/* Not included in text material*/ 

/********************************/ 

matrix list e(b) 

matrix list e(V) 
matrix vbols = e(V) 

*----------------------------------- 
* for utown 

*----------------------------------- 

* extract variances and covariance 
scalar vb2=vbols[2,2] 

scalar vb5=vbols[5,5] 

scalar cov52 = vbols[5,2] 

* mean of _cons and sqft 

quietly summarize sqft 
scalar asqft = r(mean) 

scalar aconst = 1 

* delta method for ame of utown 

scalar vame=(aconst^2)*vb2+(asqft^2)*vb5+2*asqft*aconst*cov52 

scalar seame = sqrt(vame) 
di "Delta-method standard error for utown " seame 

*----------------------------------- 
* for sqft 

*----------------------------------- 

* delta method se for sqft ame 
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quietly summarize utown 

scalar autown = r(mean) 

scalar vb3=vbols[3,3] 
scalar cov53 = vbols[5,3] 

* delta method 
scalar vame=(aconst^2)*vb3+(autown^2)*vb5+2*autown*aconst*cov53 

scalar seame = sqrt(vame) 

di "Delta-method standard error for sqft " seame 

log close 

* Chapter 7.2 in POE4: Applying indicator variables 

* open new log 
log using chap07_cps4, replace text 

* open data 
use cps4_small, clear 

describe 

summarize 

* estimate model with black-female interaction 

reg wage educ i.black##i.female 

* estimate wage difference between black-female and white-male 

lincom 1.black + 1.female + 1.black#1.female 

* F-test of joint significance 

test 1.female 1.black 1.black#1.female 

* Average marginal effects 

margins, dydx(*) 

quietly summarize black 

scalar ablack = r(mean) 
lincom 1.female + 1.black#1.female*ablack 

* Chapter 7.2.2 Add regional indicators 
reg wage educ i.black##i.female i.south i.midwest i.west 

test 1.south 1.midwest 1.west 

di "F(3,992,.95) = " invFtail(3,992,.05)  

di "F(3,992,.90) = " invFtail(3,992,.10) 

* Chapter 7.2.3 Testing the equivalence of two regressions 

reg wage i.south##(c.educ i.black##i.female) 

test 1.south 1.south#c.educ 1.south#1.black 1.south#1.female /// 
 1.south#1.black#1.female 

* constructing estimates in separate regressions from fully interacted model 
lincom 1.black + 1.black#1.south 

lincom 1.female + 1.female#1.south 

* Estimate separate regressions 

bysort south: reg wage educ i.black##i.female 

* Chapter 7.3 Log-linear models 

gen lwage = ln(wage) 

* estimate regression 

reg lwage educ i.female 
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* use nlcom to obtain exact effect of dummy variable 

nlcom 100*(exp(_b[1.female]) - 1) 

* using nlcom with interaction variables 

reg lwage c.educ##c.exper 
reg, coeflegend 

lincom 100*(exper+ c.educ#c.exper*16) 
nlcom 100*(exp( _b[exper]+_b[c.educ#c.exper]*16) - 1) 

log close 

* Chapter 7.4 Linear Probability Model 

* open new log 
log using chap07_coke, replace text 

* open data and examine 
use coke, clear 

describe 

summarize 

* estimate regression 

reg coke pratio disp_coke disp_pepsi 
predict phat 

summarize phat 

summarize phat if phat<=0 
log close 

* Chapter 7.5 Treatment Effects 

* open new log 

log using chap07_star, replace text 

* open data and examine 

use star, clear 
describe 

drop if aide==1 
summarize  

* create lists 
global x1list small 

global x2list $x1list tchexper 

global x3list $x2list boy freelunch white_asian 
global x4list $x3list tchwhite tchmasters schurban schrural 

* summarize for regular and small classes 
summarize totalscore $x4list if regular==1 

summarize  totalscore $x4list if small==1 

* correlations 

pwcorr $x3list 

* create school indicators 

tabulate schid, gen(school) 

* regressions 

quietly reg totalscore $x1list 

estimates store model1 

quietly reg totalscore $x2list 

estimates store model2 
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quietly reg totalscore $x3list 

estimates store model3 

quietly reg totalscore $x4list 

estimates store model4 

* create simple tables 

estimates table model1 model2 model3 model4, b(%12.3f) se stats(N r2 F bic) 

* create better tables: enter findit esttab 

esttab model1 model2 model3 model4 , se(%12.3f) b(%12.3f) /// 
 star(* 0.10 ** 0.05 *** 0.01) gaps ar2 bic scalars(rss) /// 

 title("Project Star: Kindergarden") 

* regressions with fixed effects 

* the hard way 

reg totalscore $x2list school2-school79 

* using areg 

areg totalscore $x1list, absorb(schid) 
estimates store amodel1 

areg totalscore $x2list, absorb(schid) 
estimates store amodel2 

quietly areg totalscore $x3list, absorb(schid) 
estimates store amodel3 

quietly areg totalscore $x4list, absorb(schid) 
estimates store amodel4 

esttab amodel1 amodel2 amodel3 amodel4 , se(%12.3f) b(%12.3f) /// 
 star(* 0.10 ** 0.05 *** 0.01) gaps ar2 bic scalars(rss) /// 

 title("Project Star: Kindergarden, with school effects") 

* create Table 7.7 

esttab model1 model2 amodel1 amodel2 , se(%14.4f) b(%14.4f) /// 

       star(* 0.10 ** 0.05 *** 0.01) gaps ar2 scalars(rss) /// 
    title("Project Star: Kindergarden") 

      

* Chapter 7.5.4b Check randomness of treatment 

* checking using linear probability models 

reg small boy white_asian tchexper freelunch 
areg small boy white_asian tchexper freelunch, absorb(schid) 

/* The following are not discussed in the Chapter */ 
* adding robust covariance: see chapter 8 

reg small boy white_asian tchexper freelunch, vce(robust) 

areg small boy white_asian tchexper freelunch, absorb(schid) vce(robust) 

* checking randomness using probit: see Chapter 16 

probit small boy white_asian tchexper freelunch 
probit small boy white_asian tchexper freelunch school2-school79 

log close 

* Chapter 7.5.6 Differences in Differences Estimators 

* open new log file 
log using chap07_nj, replace text 

* open data file 
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use njmin3, clear 

describe 

summarize nj d d_nj fte 

* DID estimation using sample means 

bysort nj d: summarize fte 

* DID estimation using regression 

reg fte nj d d_nj 
estimates store did 

lincom _cons + nj 
lincom _cons + d 

lincom _cons + nj + d  + d_nj 

lincom (_cons + nj + d + d_nj)-(_cons + d)-((_cons + nj)-_cons) 

* add owner controls 

reg fte nj d d_nj kfc roys wendys co_owned 
estimates store did2 

* add location controls 
reg fte nj d d_nj kfc roys wendys co_owned southj centralj pa1 

estimates store did3 

esttab did did2 did3, b(%10.4f) se(%10.3f) t(%10.3f) r2 ar2 /// 

title("Difference in Difference Regressions")  

* DID regression using only balanced sample 

reg fte nj d d_nj if !missing(demp) 

log close 
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CHAPTER 8

Heteroskedasticity

CHAPTER OUTLINE 
8.1 The nature of heteroskedasticity 
8.2 Detecting heteroskedasticity  
     8.2.1 Residual plots  
     8.2.2 Lagrange multiplier tests  
     8.2.3 The Goldfeld-Quandt test  
8.3 Heteroskedastic-consistent standard errors 
8.4 The generalized least squares estimator 

     8.4.1 GLS using grouped data 
     8.4.2 Feasible GLS-a more general case  
8.5 Heteroskedasticity in the linear probability  
      model 
Key Terms 
Chapter 8 Do-file 

8.1 THE NATURE OF HETEROSKEDASTICITY 

The simple linear regression models of Chapters 3 and 4 and the multiple regression model in 
Chapters 5 and 6 can be generalized in several ways. For instance, there is no guarantee that the 
random variables of these models (either the yi or the ei) have the same inherent variability across 
observations. That is, some observations may have a larger variance than others. This describes 
the condition referred to as heteroskedasticity.  The simple linear regression model is shown 
below.

1 2i i iy x e� �  � 

where yi is your dependent variable, xi ith observation on the independent variable, ei is random 
error, and �0&and&�(&&are the parameters you want to estimate. The errors have zero mean for any 
value of xi and are uncorrelated with one another. The difference in this model is that the variance 
of the errors now depends on the observation to which it belongs. So, the error variance is now 
referenced with the observation subscript, i=1, 2, … , N.     

The error assumptions are summarized  

2( ) 0 var( ) cov( , ) 0i i i i jE e e e e� � � �
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In this chapter, several ways to detect heteroskedasticity are considered.  Also, statistically valid 
ways of estimating the parameters of the linear regression model and testing hypotheses about the 
parameters when the data are heteroskedastic are explored. 

The least squares estimator can be used to estimate the linear model even when the errors are 
heteroskedastic; it is unbiased and consistent even when MR3, 2var( ) var( )i iy e� � � , is violated. 
The problem with using least squares in a heteroskedastic model is that the usual measure of 
precision (estimated variance-covariance matrix) is not consistent. There are several ways to 
tackle this problem. The first is to use least squares along with an estimator of its covariance that 
is consistent whether errors are heteroskedastic or not. This is the so-called robust estimator of 
covariance that Stata uses. This is discussed in Section 8.2 below. Another is to model the 
heteroskedasticity and use weighted least squares. This option is discussed in Section 8.3. 

In the first example, the food expenditure data is used to estimate the model using least 
squares. Change your working directory to the one containing the food.dta data set and load the 
data set. 

cd c:\data\poe4stata 

use food, clear 

Start by estimating the food expenditure model using least squares.  

regress food_exp income 

It can be useful to plot the data and the estimated regression line. In Stata 

graph twoway (scatter food_exp income) (lfit food_exp income) 

produces two scatter plots in the same graph. The commands to generate each plot are contained 
in the two sets of parentheses.  The first graph is a twoway scatter plot of food_exp against 
income.  The second uses lfit to estimate the simple regression of food_exp onto income.
Deviations between the regression line and the actual values of food_exp are the least squares 
residuals.
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The graph looks very similar to Figure 8.2 in Principles of Econometrics, 4th Edition (POE4).

8.2 DETECTING HETEROSKEDASTICITY 

There are a number of graphical and statistical ways to detect heteroskedasticity in a model. In 
this section, several are discussed. 

8.2.1 Residual Plots 

One way to get a feeling for whether the errors are heteroskedastic is to plot them against the 
sorted value of the independent variable.  A couple of examples were given in the preceding 
section. Another way to visualize the relationship is to estimate the model, save the residuals, and 
use graph twoway to plot the two: 

regress food_exp income 

predict ehat, res 

graph twoway scatter ehat income, yline(0) 

The graph is 

The yline(0) option was added to plot the red horizontal line at zero. From the graph it appears 
that the residuals are larger for larger values of income. This can be confirmed statistically using 
one or more of the tests below. 

Another graphical method that shows the relationship between the magnitude of the residuals 
and the independent variable is shown below: 

generate abs_e = abs(ehat) 

twoway (scatter abs_e income) (lowess abs_e income, lw(thick)) 
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To generate this graph two things have been done. First, the absolute value of the least squares 
residuals have been saved to a new variable called abs_e. Then these are plotted against income
as a scatter and as a locally weighted, smoothed scatterplot estimated by process called lowess.
From Stata documentation we learn that the basic idea behind lowess is to create a new variable
(newvar) that, for each value of the dependent variable, iy , contains the corresponding smoothed 
value. The smoothed values are obtained by running a regression of y on x by using only the data
( ; )i ix y and a few of the data near this point. In lowess, the regression is weighted so that the 
central point ( ; )i ix y gets the highest weight and points that are farther away (based on the 
distance j ix x� ) receive less weight. The estimated regression line is then used to predict the 

smoothed value ˆiy for iy only. The procedure is repeated to obtain the remaining smoothed 
values, which means that a separate weighted regression is performed for every point in the data. 
Obviously, if your data set is large, this can take a while. Lowess is said to be a desirable 
smoother because of it tends to follow the data. Polynomial smoothing methods, for instance, are 
global in that what happens on the extreme left of a scatterplot can affect the fitted values on the 
extreme right.

One can see from the graph that the residuals tend to get larger as income rises, reaching a 
maximum at 28. The residual for an observation having the largest income is relatively small and 
the locally smoothed prediction causes the line to start trending downward.  

8.2.2 Lagrange Multiplier Tests 

There are many tests of the null hypothesis of homoskedasticity that have been proposed 
elsewhere. Two of these, based on Lagrange multipliers, are particularly simple to do and useful. 
The first is sometimes referred to as the Breusch-Pagan (BP) test or in Stata, the Breusch-Godfrey 
test. The second test is credited to White.  

The null and alternative hypotheses for the Breusch-Pagan test are 

2 2 2 2
0 1 2 2: : ( ... )i i i s isH H h z z� � � � � � %  %

The null hypothesis is that the data are homoskedastic. The alternative is that the data are 
heteroskedastic in a way that depends upon the variables zi2, zi3, …, zis, , which are exogenous 
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variables that are correlated with the model’s variances. The function h(), is not specified. It could 
be anything that depends on its argument, i.e., the linear function of the variables in z.

Here are the steps:  
� Estimate the regression model 
� Save the residuals 
� Square the residuals 
� Regress the squared residuals on zi2, zi3, …, zis

� Compute NR2 from this regression and compare it to %&level critical value from the&
7(�S�1�&distribution. 

In Stata the test for heteroskedasticity dependent on income in the food expenditure model is: 

use food, clear 

quietly regress food_exp income 

predict ehat, residual 

gen ehat2=ehat^2 

quietly regress ehat2 income 

di "NR2 = " e(N)*e(r2) 

di "5% critical value = " invchi2tail(e(df_m),.05) 

di "P-value = " chi2tail(e(df_m),e(N)*e(r2))

The result 

NR2 = 7.3844244 

5% critical value = 3.8414588 

P-value = .00657911 

Notice that Stata saves the sample size, 2 ,R and the degrees of freedom from the auxiliary 
regression in e(N), e(r2), and e(df_m), respectively. As usual, invchi2tail is used to obtain 
the 5% critical value and chi2tail the p-value associated with the computed value of the LM
statistic.

White’s test is in fact just a minor variation on the Breusch-Pagan test. The null and 
alternative hypotheses are 

2 2 2 2
0 1: :i i jH H� � � � " �

for at least one i j" . This is a composite alternative that captures every possibility other than the 
one covered by the null. If you know nothing about the nature of heteroskedasticity in your data, 
then this is a good place to start. The test is very similar to the BP test. In this test, the 
heteroskedasticity related variables ( 2 3, ,...,i i isz z z ) include each non-redundant regressor and its 
square, and all cross products between regressors. See your text for details. In the food 
expenditure model there is only one continuous regressor and an intercept.  So, the constant 
squared and the cross product between the constant and income are redundant. This leaves only 
one unique variable to add to the model, income squared. In Stata generate the squared value of 
income and regress the squared residuals from the model on income and its square. Compute NR2

from this regression and compare it to %&level critical value from the& 7(�S�1�&distribution. As is 
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the case in all the LM tests considered in this book, N is the number of observations in the second 
or auxiliary regression.  

quietly regress ehat2 income c.income#c.income 

di "NR2 = " e(N)*e(r2) 

di "5% critical value = " invchi2tail(e(df_m),.05) 

di "P-value = " chi2tail(e(df_m),e(N)*e(r2)) 

The result 

NR2 = 7.5550786 

5% critical value = 5.9914645 

P-value = .02287892 

Fortunately, Stata has built in functions to compute both of these test statistics and their p-values. 
They are a little hard to find, but here’s how. The first thing to do is estimate the linear regression. 
Then select Statistics > Linear models and related > Regression Diagnostics > Specification 
tests, etc from the pull-down menu. Then for the LM test, use the scroll wheel on the right side of 
the box to select Tests for heteroskedasticity (hettest) from the list. In the next fly-out menu, 
choose N*R2 version of the score test; this adds the iid option to the command estat 
hottest command. Click the radio button for Use the following variables, then type in or select 
the desired variable(s) from the fly-out list. Click OK.

This yields 

which is the same result obtained manually using Stata commands.  

         Prob > chi2  =   0.0066
         chi2(1)      =     7.38

         Variables: income
         Ho: Constant variance
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity 

. estat hettest income, iid
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White’s test can be performed using the same dialog box. This time select Information matrix 
test (imtest) as highlighted and check the Perform White’s original heteroskedasticity test box as 
shown below.   

The result is

The best of both worlds can be accomplished via the Command window using 

quietly regress food_exp income 

estat hettest income, iid 

estat imtest, white 

8.2.3 The Goldfeld-Quandt test 

The Goldfeld-Quandt test is easy to perform when you suspect that the variance depends on a 
specific variable. To illustrate this test an example is used where average wages are estimated as a 
linear function of education and experience.  In addition, a dummy variable is included that is 
equal to one if a person lives in a metropolitan area. This is an “intercept” dummy variable, which 
means that folks living in the metro areas are expected to respond similarly to changes in 
education and experience (same slopes), but that they earn a premium relative to those in rural 
areas (different intercept). 

The test compares the estimated variances from two partitions of the data. In this example it 
is hypothesized that the error variance for the metro subsample is equal to that of the rural one. 

2 2
0 : M RH � � �         against         2 2

0 : M RH � " �

The two partitions are estimated via least squares and the estimated variances, 2ˆ M�  and 2ˆ R� , are 
obtained. The test statistic is 2 2ˆ ˆM RF � � �  which has an F(NM-KM, NR-KR), distribution if the null 

         Prob > chi2  =    0.0229
         chi2(2)      =      7.56

         against Ha: unrestricted heteroskedasticity
White's test for Ho: homoskedasticity

. estat imtest, white
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hypothesis is true. (NM�KM) is just the degrees of freedom from the metro partition and (NR�KR)
is that from the rural partition. 

First, the entire sample from the cps2.dta data set is used to estimate the wage model using 
education, experience, and the metro dummy variable as regressors. 

use cps2, clear 

regress wage educ exper metro 

The rural subsample is estimated using the if metro==0 qualifier. Stata is instructed to use only 
the observations for which metro is equal to zero or one using an if qualifier; the if qualifier is 
used after the regression and before any regression options. In this case the statement if metro 
== 0 uses only the observations that satisfy the conditional (metro equal to zero). The double 
equal sign is necessary, otherwise Stata thinks that you are trying to assign the variable metro the 
value of 0; in a single instance = is Stata’s assignment operator. It assigns value that lies to its 
right to the name given on its left; x=2 assigns the value 2 to the variable x. That is not what is 
wanted here, so use two equal signs. Estimate the model with the observations limited to those for 
which metro == 0 and save �̂  and the degrees of freedom for later use.   

regress wage educ exper if metro == 0  

scalar rmse_r = e(rmse) 

scalar df_r = e(df_r) 

Repeat for the metro subsample 

regress wage educ exper if metro == 1  

scalar rmse_m = e(rmse) 

scalar df_m = e(df_r) 

Now form the Goldfeld-Quandt ratio, get the 5% critical value and the p-value of GQ. 

scalar GQ = rmse_m^2/rmse_r^2 

scalar crit = invFtail(df_m,df_r,.05) 

scalar pvalue = Ftail(df_m,df_r,GQ) 

scalar list GQ pvalue crit 

And the result from Stata is: 

The homoskedasticity null hypothesis is rejected at any reasonable level of significance (5% or 
10%) in favor of the alternative. 

Food Expenditure Example 

Another example uses the food expenditure model. In this example the variance is thought to be 
an increasing function of income. So, we first sort the data by income (ascending) and then repeat 

      crit =  1.2150333
    pvalue =  1.567e-09
        GQ =  2.0877623
. scalar list GQ pvalue crit
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the Goldfeld-Quandt test. The forty observations are broken into two equal size partitions. Then 
the same steps used above are repeated to obtain the result. First load the food dataset and sort by 
income

use food, clear 

sort income 

Then regress food_exp on income and a constant using the first 20 observations, saving the 
estimated variance and degrees of freedom. The statement in 1/20 is a conditional statement 
similar to the if qualifier used in Section 8.3. In this case, in instructs Stata to use a range of 
observations and 1/20 is the syntax used to indicate observations 1 to 20.   

regress food_exp income in 1/20 

scalar s_small = e(rmse)^2 

scalar df_small = e(df_r) 

Now, regress food_exp on income and a constant using observations 21 through 40 (in 21/40),
saving the estimated variance and degrees of freedom. 

regress food_exp income in 21/40 

scalar s_large = e(rmse)^2 

scalar df_large = e(df_r) 

 
Now, compute the Goldfeld-Quandt statistic, its 5% critical value and p-value.

scalar GQ = s_large/s_small 

scalar crit = invFtail(df_large,df_small,.05) 

scalar pvalue = Ftail(df_large,df_small,GQ) 

scalar list GQ pvalue crit 

The results are 

Once again, the homoskedasticity null hypothesis is rejected at any reasonable level of 
significance in favor of the alternative. 

8.3 HETEROSKEDASTIC-CONSISTENT STANDARD ERRORS 

The least squares estimator can be used to estimate the linear model even when the errors are 
heteroskedastic with good results. As mentioned above, the problem with using least squares in a 
heteroskedastic model is that the usual estimator of precision (estimated variance-covariance 
matrix) is not consistent. The simplest way to tackle this problem is to use least squares to 
estimate the intercept and slopes and use an estimator of least squares covariance that is

      crit =  2.2171971
    pvalue =  .00459643
        GQ =  3.6147557
. scalar list GQ pvalue crit
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consistent whether errors are heteroskedastic or not. This is the so-called heteroskcedasticity 
robust estimator of covariance that Stata uses.  

In this example, the food expenditure data is used to estimate the model using least squares. 
Change your working directory to the one containing the food.dta data set and the data set. 

use food, clear 

Start by estimating the food expenditure model using least squares and store the estimates 
(Usual). Re-estimate the model using the vce(robust) option and store the results (store 
White). Then use the estimates table command to print both sets of results to the screen. 

quietly regress food_exp income 

estimates store Usual 

quietly reg food_exp income, vce(robust) 

estimates store White 

estimates table Usual White,  b(%7.4f) se(%7.3f) stats(F) 

Notice that the coefficient estimates are the same, but that the estimated standard errors are 
different. Interestingly enough, the robust standard errors are actually smaller than the usual ones!  

The level of the confidence interval can be changed to 90% by using the level(90) option in 
the regress statement.  

reg food_exp income, vce(robust) level(90) 

Or, the confidence intervals can be computed manually using saved results from the regression as 
shown in the .do-file at the end of this chapter. 

                      legend: b/se

           F   23.7888   31.8498  

                43.410    27.464  
       _cons   83.4160   83.4160  
                 2.093     1.809  
      income   10.2096   10.2096  

    Variable    Usual     White   

. estimates table Usual White,  b(%7.4f) se(%7.3f) stats(F)

       _cons       83.416   27.46375     3.04   0.004     37.11337    129.7186
      income     10.20964   1.809077     5.64   0.000     7.159622    13.25966

    food_exp        Coef.   Std. Err.      t    P>|t|     [90% Conf. Interval]
                             Robust

                                                       Root MSE      =  89.517
                                                       R-squared     =  0.3850
                                                       Prob > F      =  0.0000
                                                       F(  1,    38) =   31.85
Linear regression                                      Number of obs =      40
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The dialog boxes can be used to obtain the same results. Select Statistics > Linear models 
and related > Linear regression to open the familiar regress – Linear regression dialog box. 
Fill in the dependent and independent variables as you usually would. Before leaving the dialog, 
select the tab labeled SE/Robust.

Choose the Robust option in the standard error type box and select one of the options for bias 
correction using the radio buttons. Here, we have left it at the default value. All are consistent, but 
each gives slightly different results in small samples. Now click OK.

These robust standard errors are obtained from what is often referred to as the 
heteroskedasticity-consistent covariance matrix estimator (HCCME) that was proposed by Huber 
and rediscovered by White. In econometrics, the HCCME standard errors may be referred to as 
White’s standard errors or Huber/White standard errors.

Since least squares is inefficient in heteroskedastic models, you’d think that there might be 
another unbiased estimator that is more precise. And, there is. The generalized least squares
(GLS) estimator is, at least in principle, easy to obtain. Essentially, with the GLS estimator of the 
heteroskedastic model, the different error variances are used to reweight the data so that they are 
all have the same (homoskedastic) variance. If the data are equally variable, then least squares is 
efficient! 

8.4 THE GENERALIZED LEAST SQUARES ESTIMATOR 

If 2var( )i ie � � , then dividing ei by �i will give all the errors the same variance (equal to 1). That 
is,

2 2 2var( / ) 1/ var( ) (1/ ) 1i i i i i ie e� � � � � � �

To transform your model weight the observations using �i. For the food expenditure model this 
becomes 
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1 2
1i i i

i i i i

y x e
� �  � 

� � � �

Each observation, yi, constant, and xi is being weighted by the reciprocal of the standard deviation 
associated with that observation’s error. It sounds complicated, but it is rather easy to do in Stata, 
provided you know the part of i� that varies. 

Assume that the variance in the food expenditure model is proportional to xi:

� � 2 2var i i ie x� � � �

So, to give each observation the same variance, divide yi, the constant, and xi by ix . Stata 
includes a way to work with weighted data in a number of its procedures, including linear 
regression. To estimate the food expenditure model the data should be weighted by 1 / ix ,
which is done using analytic weights in Stata. The analytic weights are inversely proportional to 
the variance of an observation. So, the syntax used to reweight the food expenditure model is 

regress food_exp income [aweight=1/income] 

where aweight is the Stata command for analytic weights. There is no need to take the square 
root of the weight to get standard deviation; Stata expects the variance.  To divide observations 
by ,ix then set the aweight to 1/xi.

The dialogs are easy to use in this case as well. Select Statistics > Linear models and 
related > Linear regression to open the now familiar regress – Linear regression dialog box. 
Fill in the dependent and independent variables as you usually would. Before leaving the dialog, 
select the tab labeled Weights.

Click the Analytic weights button and enter the desired analytic weight in the box as shown 
below. In this case, we’ve used the reciprocal of income.

Click OK and you get: 
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You can see that the GLS estimated standard error for the income coefficient (1.386) is 
substantially smaller than the one produced for least squares by the HCCME (1.809). 

8.4.1 GLS using Grouped Data 

The example consists of estimating wages as a function of education and experience and is based 
on the cps2.dta used in the Goldfeld-Quandt test example. The strategy for combining these 
partitions and estimating the parameters using generalized least squares is the fairly simple. Each 
subsample will be used to estimate the model and the standard error of the regression (e(rmse))
will be saved. Then each subsample is weighted by its estimated variance (which is the squared 
value of the e(rmse).

There are a couple of ways to estimate each subsample. The first was used in the Goldfeld-
Quandt test example where the metro subsample was chosen using the if metro==1 qualifier and 
the rural one chosen with if metro==0. Grouped GLS using this method can be found in the .do 
file at the end of the chapter and will not be repeated here. The other uses a trick whereby 
subsamples of the data can be taken using analytical weights (i.e., the aweight command). 
Weighting variables by 0 or 1 is a handy way of taking subsamples. Weighting an observation by 
0 drops it from the computation of the estimator, whereas ones weighted by 1 are included in its 
computation.  

After loading the data, create an indicator variable for rural households (1 if rural, 0 
otherwise) by subtracting metro from one. The run the two subset regressions using the analytical 
weights, saving the root mean square error of each. Here is the complete code: 

use cps2, clear 

gen rural = 1 - metro 

regress wage educ exper [aweight = rural] 

scalar sr = e(rmse)^2 

regress wage educ exper [aweight = metro] 

scalar sm = e(rmse)^2 

The saved values of the root MSEs are combined into a single weight that can be used to reweight 
all observations. 

gen wtall=(sr*rural) + (sm*metro) 

regress wage educ exper metro [aweight = 1/wtall] 

       _cons     78.68408   23.78872     3.31   0.002     30.52633    126.8418
      income     10.45101   1.385891     7.54   0.000     7.645419     13.2566

    food_exp        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    501235.248    39  12852.1858           Root MSE      =  72.688
           Adj R-squared =  0.5889

    Residual    200775.783    38  5283.57325           R-squared     =  0.5994
       Model    300459.464     1  300459.464           Prob > F      =  0.0000

           F(  1,    38) =   56.87
      Source         SS       df       MS              Number of obs =      40

(sum of wgt is   2.6616e+00)
. regress food_exp income [aweight = 1/income]
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The last line uses the entire sample to estimate the model by GLS. This results in:  

In this model, the coefficients of experience and years of schooling are the same for urban and 
rural wage earners. The indicator variable, metro, allows for a shift in the intercept, which is 
positive for urban workers.

8.4.2 Feasible GLS – a more general case 

In the example above, the observation’s standard error �i (or what it is proportional to) is known. 
In most cases this information will not be known to you and you will have to estimate it using the 
data. This turns generalized least squares (GLS) into something slightly different, namely 
estimated or feasible generalized least squares (FGLS).  

The first step is to choose a model for the variance that is a function of some independent 
variables. You’ll need some variables that are thought to be correlated with the change in 
variance and you’ll have to specify a functional relationship between the variance and these 
variables. A common model of the variance uses the exponential function 

2
1 2 2exp( )i i s iSz z� � %  %   %�

where the zis are independent variables and the %i are parameters. Taking the natural logarithm, 
substituting the squared least squares residuals for the unobservable 2

i� , and adding an error term 
gives you a regression model that can be used to estimate the %i . For simplicity, assume only one 
heteroskedasticity related variable zi and you have 

where the 2
îe are from least squares estimation of your original heteroskedastic regression model. 

Let zi = ln(income) and the Stata code to estimate the %i is

gen z = ln(income) 

regress food_exp income 

predict ehat, residual 

       _cons    -9.398362   1.019673    -9.22   0.000    -11.39931   -7.397408
       metro     1.538803   .3462856     4.44   0.000     .8592702    2.218336
       exper     .1322088   .0145485     9.09   0.000     .1036595     .160758
        educ     1.195721    .068508    17.45   0.000     1.061284    1.330157

        wage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    36081.2155   999  36.1173329           Root MSE      =  5.1371
           Adj R-squared =  0.2693

    Residual    26284.1489   996  26.3897077           R-squared     =  0.2715
       Model    9797.06665     3  3265.68888           Prob > F      =  0.0000

           F(  3,   996) =  123.75
      Source         SS       df       MS              Number of obs =    1000

(sum of wgt is   3.7986e+01)
. regress wage educ exper metro [aweight = 1/wt]

2 2
1 2ˆln( ) ln( )i i i i ie v z v� �  � %  % 
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gen ln_ehat_sq = ln(ehat*ehat) 

reg ln_ehat_sq z 

The natural logarithm of income is generated, food_exp is regressed on income and a constant, 
the residuals saved and the natural logarithm of the squares is taken. Finally, these are regressed 
on z and a constant.  

This regression yields: 

To obtain weights for FGLS you need the antilogs of the predicted values from the last 
regression. That is, get the linear predictions from this regression lnsig2 and generate weights 
using the exponential function exp(lnsig2). 

predict lnsig2, xb 

gen wt = exp(lnsig2) 

Now, use its reciprocal in aweight to reweigh the observations for the regression 

regress food_exp income [aweight = 1/wt] 

 
The result of which is: 

       _cons     .9377961   1.583106     0.59   0.557    -2.267034    4.142626
           z     2.329239   .5413358     4.30   0.000     1.233362    3.425116

  ln_ehat_sq        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    167.356512    39   4.2911926           Root MSE      =  1.7209
           Adj R-squared =  0.3099

    Residual    112.530968    38  2.96134126           R-squared     =  0.3276
       Model    54.8255435     1  54.8255435           Prob > F      =  0.0001

           F(  1,    38) =   18.51
      Source         SS       df       MS              Number of obs =      40

. reg ln_ehat_sq z

       _cons     76.05379    9.71349     7.83   0.000     56.38986    95.71773
      income     10.63349   .9715143    10.95   0.000     8.666763    12.60022

    food_exp        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    245141.178    39  6285.67122           Root MSE      =  39.414
           Adj R-squared =  0.7529

    Residual     59033.089    38  1553.50234           R-squared     =  0.7592
       Model    186108.089     1  186108.089           Prob > F      =  0.0000

           F(  1,    38) =  119.80
      Source         SS       df       MS              Number of obs =      40

(sum of wgt is   6.1600e-02)
. regress food_exp income [aweight=(1/wt)]
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8.5 HETEROSKEDASTICITY IN THE LINEAR PROBABILITY MODEL 

In Chapter 7.4 we introduced the linear probability model for explaining choice between two 
alternatives. This choice can be represented by an indicator variable y that takes the value one 
with probability p if the first alternative is chosen, and the value zero with probability 1 p� if the 
second alternative is chosen. 

The regression function for the ith observation is 

1 2 2( )i i i i k iK iy E y e x x e�  � �  �   � �

and ( ) ,i iE y p� which is the probability that the alternative is chosen by individual i. It can be 
shown that  

var( ) (1 )i i iy p p� �

which makes the model heteroskedastic. The feasible GLS estimator is easy to compute. First, a 
linear regression is estimated and predictions ˆ ˆi iy p� are obtained. These are substituted into the 
variance equation 

� ˆ ˆvar( ) (1 )i i iy p p� �

Finally, these are used as analytical weights in the regression. Sometimes this fails because one or 
more of the predicted probabilities lies outside of the (0,1) interval.  

The example is based on the data in coke.dta. The independent variable, coke, takes the value 
of 1 if the individual purchases Coca-Cola and is 0 if not. The decision to purchase Coca-Cola 
depends on the ratio of the price relative to Pepsi, and whether displays for Coca-Cola or Pepsi 
were present. The variables disp_coke=1 if a Coca-Cola display was present, otherwise 0;
disp_pepsi =1 if a Pepsi display was present, otherwise zero.

First, the data are loaded and the summary statistics are provided.  

use coke, clear 

summarize 

Next, the model is estimated by least squares and predictions are generated and checked for any 
negative values (or values greater than one). 

quietly regress coke pratio disp_coke disp_pepsi 

predict p, xb 

gen var = p*(1-p) 

summarize p var 

      pratio        1140    1.027249     .286608    .497207   2.324675

   disp_coke        1140    .3789474    .4853379          0          1
  disp_pepsi        1140    .3640351    .4813697          0          1
     pr_coke        1140    1.190088    .2999157        .68       1.79
    pr_pepsi        1140    1.202719    .3007257        .68       1.79
        coke        1140    .4473684    .4974404          0          1

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize
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Since the minimum is negative, some additional thought has to be given to how one should 
proceed. One possibility is to omit the observations for which p<0 and estimate the model. 

reg coke pratio disp_coke disp_pepsi [aweight=1/var] if  p > 0 

Another is to replace all values of p less than a small positive threshold with the threshold. 
Letting the threshold be 0.01 give us 

replace p = .01 if p < .01 

replace var = p*(1-p) 

reg coke pratio disp_coke disp_pepsi [aweight=1/var] 

Here, the replace command is used to set p=0.01 when it actually falls below that value. There 
are 16 values of p that fall below the threshold. The final possibility is to estimate the model 
using least squares and use the HCCME standard errors. Inferences will be valid if not efficient. 

reg coke pratio disp_coke disp_pepsi, vce(robust) 

Each of these regressions were computed and assembled into a table (see the do-file at the end of 
the chapter for details). 

The first column, labeled LS, contains the least squares estimates along with the usual 
(inconsistent) standard errors. The next column contains the least squares estimates with 
heteroskedasticity-consistent standard errors delivered via the robust command. The column 
labeled Trunc contains the estimates where the observations less than the 0.01 threshold were 
truncated to be 0.01. The last column shows the results when the observations producing negative 
predictions are omitted from the model. The results are reasonably consistent across models 
except for Trunc.

         var        1140    .2175476    .0529915  -.2503031   .2499397
           p        1140    .4473684    .1723611  -.2073211   .7680784

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize p var

                                          legend: b/se

           N      1140      1140      1140      1124  
           F   51.6654   57.0701   36.9728   105.6006  

                0.0655    0.0653    0.0568    0.0594  
       _cons    0.8902    0.8902    0.6505    0.8795  
                0.0356    0.0344    0.0354    0.0360  
  disp_pepsi   -0.1657   -0.1657   -0.1314   -0.1587  
                0.0344    0.0339    0.0399    0.0353  
   disp_coke    0.0772    0.0772    0.0940    0.0760  
                0.0613    0.0604    0.0444    0.0527  
      pratio   -0.4009   -0.4009   -0.1652   -0.3859  

    Variable     LS      Robust     Trunc     Omit    

. estimates table LS Robust Trunc Omit, b(%7.4f) se(%7.4f) stats(F N)
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Although the model is theoretically heteroskedastic, it may be worth verifying that the sample 
is heteroskedastic via White’s test discussed earlier in this chapter.  

quietly regress coke pratio disp_coke disp_pepsi 

imtest, white 

The p-value is well below 5% and therefore we conclude that the data are heteroskedastic at that 
level of significance. 

KEY TERMS 

analytic weights graph twoway lowess 
aweight groupwise heteroskedastic. replace 
Breusch-Pagan test HCCME residual plots 
chi2tail(df,stat) heteroskedasticity robust standard errors 
drop imtest, white subsample 
e(df_r) invchi2tail(df,alpha) twoway 
e(rmse) invFtail(J,N-K,alpha) vce(robust) 
estat hettest  Lagrange multiplier Weighted Least Squares 
Ftail(J,N-K,fstat) lfit White's standard errors 
Generalized Least Squares linear probability model White's test 
Goldfeld-Quandt test LM test yline(0) 

CHAPTER 8 DO-FILE [CHAP06.DO] 

* file chap08.do for Using Stata for Principles of Econometrics, 4e 

cd c:\data\poe4stata 

* Stata Do-file 
* copyright C 2011 by Lee C. Adkins and R. Carter Hill 

* used for "Using Stata for Principles of Econometrics, 4e" 

* by Lee C. Adkins and R. Carter Hill (2011) 
* John Wiley and Sons, Inc. 

* setup 
version 11.1 

capture log close 

set more off 

* open log 

         Prob > chi2  =    0.0005
         chi2(7)      =     25.82

         against Ha: unrestricted heteroskedasticity
White's test for Ho: homoskedasticity

. imtest, white
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log using chap08, replace text 

* -------------------------------------------- 
* food expenditure example 

* OLS, OLS with White's std errors, GLS 

* -------------------------------------------- 
use food, clear 

regress food_exp income 
predict ehat, res 

graph twoway (scatter food_exp income) (lfit food_exp income, lw(thick)) 

* -------------------------------------------- 

* Graph relationship between size of errors and income 
* -------------------------------------------- 

generate abs_e = abs(ehat) 

twoway (scatter abs_e income) (lowess abs_e income, lw(thick)) 

* -------------------------------------------- 

* Graph relationship between errors and income 
* -------------------------------------------- 

graph twoway scatter ehat income, yline(0)  

drop ehat 

* -------------------------------------------- 

* Breusch-Pagan and White tests 
* -------------------------------------------- 

quietly regress food_exp income 
predict ehat, residual 

gen ehat2=ehat^2 

quietly regress ehat2 income 
di "NR2 = " e(N)*e(r2) 

di "5% critical value = " invchi2tail(e(df_m),.05) 

di "P-value = " chi2tail(e(df_m),e(N)*e(r2)) 

quietly regress ehat2 income c.income#c.income 

di "NR2 = " e(N)*e(r2) 
di "5% critical value = " invchi2tail(e(df_m),.05) 

di "P-value = " chi2tail(e(df_m),e(N)*e(r2)) 

quietly regress food_exp income 

estat hettest income, iid 

estat imtest, white 

* -------------------------------------------- 

* Goldfeld Quandt test 
* -------------------------------------------- 

use cps2, clear 

regress wage educ exper metro 

* -------------------------------------------- 

* Rural subsample regression 
* -------------------------------------------- 

regress wage educ exper if metro == 0  
scalar rmse_r = e(rmse) 

scalar df_r = e(df_r) 

* -------------------------------------------- 

* Urban subsample regression 

* -------------------------------------------- 
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regress wage educ exper if metro == 1  

scalar rmse_m = e(rmse) 
scalar df_m = e(df_r) 

scalar GQ = rmse_m^2/rmse_r^2 
scalar crit = invFtail(df_m,df_r,.05) 

scalar pvalue = Ftail(df_m,df_r,GQ) 

scalar list GQ pvalue crit 

* -------------------------------------------- 

* Goldfeld Quandt test for food  
* expenditure example 

* -------------------------------------------- 

use food, clear 
sort income 

regress food_exp income in 1/20 
scalar s_small = e(rmse)^2 

scalar df_small = e(df_r) 

regress food_exp income in 21/40 

scalar s_large = e(rmse)^2 

scalar df_large = e(df_r) 

scalar GQ = s_large/s_small 

scalar crit = invFtail(df_large,df_small,.05) 
scalar pvalue = Ftail(df_large,df_small,GQ) 

scalar list GQ pvalue crit 

* -------------------------------------------- 

* HCCME 

* -------------------------------------------- 

use food, clear 

quietly reg food_exp income 
estimates store Usual 

scalar bL = _b[income] - invttail(e(df_r),.025) * _se[income] 

scalar bU = _b[income] + invttail(e(df_r),.025) * _se[income] 
scalar list bL bU 

quietly reg food_exp income, vce(robust) 
estimates store White 

scalar bL = _b[income] - invttail(e(df_r),.025) * _se[income] 

scalar bU = _b[income] + invttail(e(df_r),.025) * _se[income] 
scalar list bL bU 

estimates table Usual White,  b(%7.4f) se(%7.3f) stats(F) 

reg food_exp income, vce(robust) level(90) 

* -------------------------------------------- 
* GLS 

* -------------------------------------------- 

regress food_exp income [aweight = 1/income] 

scalar bL = _b[income] - invttail(e(df_r),.025) * _se[income] 

scalar bU = _b[income] + invttail(e(df_r),.025) * _se[income] 
scalar list bL bU 

* -------------------------------------------- 
* cps example 

* -------------------------------------------- 
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use cps2, clear 

regress wage educ exper 

* -------------------------------------------- 

* Groupwise heteroskedastic regression using FGLS 

* -------------------------------------------- 

gen rural = 1 - metro 

gen wt=(rmse_r^2*rural) + (rmse_m^2*metro) 
regress wage educ exper metro [aweight = 1/wt] 

* -------------------------------------------- 
* subsample regressions using dummy variables  

* for weights 

* -------------------------------------------- 

regress wage educ exper [aweight = rural] 

scalar sr = e(rmse)^2 
regress wage educ exper [aweight = metro] 

scalar sm = e(rmse)^2 

scalar df_r = e(df_r) 

* -------------------------------------------- 

* Groupwise heteroskedastic regression using FGLS 
* -------------------------------------------- 

gen wtall=(sr*rural) + (sm*metro) 
regress wage educ exper metro [aweight = 1/wtall] 

regress wage educ exper metro 
predict ehat, residual 

twoway (scatter ehat metro) 
more 

twoway (scatter ehat wage) 
more 

* -------------------------------------------- 
* Heteroskedastic regression using FGLS 

* -------------------------------------------- 

use food, clear 

gen z = ln(income) 

reg food_exp income 
predict ehat, residual 

gen ln_ehat_sq = ln(ehat^2) 

reg ln_ehat_sq z 
predict sighat, xb 

gen wt = exp(sighat) 

regress food_exp income [aweight=(1/wt)] 

* -------------------------------------------- 

* FGLS with Linear Probability Model 
* -------------------------------------------- 

use coke, clear 

summarize 
* OLS with inconsistent std errors 

quietly regress coke pratio disp_coke disp_pepsi 

estimates store LS 

predict p, xb 

gen var = p*(1-p) 
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summarize p var 

predict ehat, res 
gen ehat2=ehat^2 

* White's test 
quietly imtest 

scalar NR2 = r(chi2_h) 

scalar crit05 = invchi2tail(r(df_h),.05) 
scalar pval = chi2tail(r(df_h),r(chi2_h)) 

scalar list NR2 crit05 pval 

* White's test manually 

quietly regress ehat2 pratio disp_coke disp_pepsi i.disp_coke#i.disp_pepsi 

i.disp_coke#c.pratio i.disp_pepsi#c.pratio c.pratio#c.pratio 
di "NR2 = " e(N)*e(r2) 

* OLS with HCCME std errors 
quietly reg coke pratio disp_coke disp_pepsi, vce(robust) 

estimates store Robust 

* OLS, omitting observations with negative variances 

quietly reg coke pratio disp_coke disp_pepsi [aweight=1/var] if  p > 0 

estimates store Omit 

* OLS, where all p<.01 are truncated to be equal .01 

replace p = .01 if p < .01 
replace var = p*(1-p) 

quietly reg coke pratio disp_coke disp_pepsi [aweight=1/var]  

estimates store Trunc 

estimates table LS Robust Trunc Omit, b(%7.4f) se(%7.4f) stats(F N) 

* Test for heteroskedasticity 

quietly regress coke pratio disp_coke disp_pepsi 

imtest, white 

log close 
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CHAPTER 9

Regression with Time-Series Data: 
Stationary Variables 

CHAPTER OUTLINE 
9.1 Introduction 
     9.1.1 Defining time-series in Stata 
     9.1.2 Time-series plots 
     9.1.3 Stata’s lag and difference operators 
9.2 Finite distributed lags 
9.3 Serial correlation 
9.4 Other tests for serial correlation 
9.5 Estimation with serially correlated errors 
     9.5.1 Least squares and HAC standard errors 
     9.5.2 Nonlinear least squares 
     9.5.3 A more general model 

9.6 Autoregressive distributed lag models 
     9.6.1 Phillips curve 
     9.6.2 Okun’s law 
     9.6.3 Autoregressive models 
9.7 Forecasting 
     9.7.1 Forecasting with an AR model 
     9.7.2 Exponential smoothing 
9.8  Multiplier analysis 
9.9  Appendix 
     9.9.1 Durbin-Watson test 
     9.9.2 Prais-Winsten FGLS 
Key Terms 
Chapter 9 Do-file 

9.1 INTRODUCTION 

As in Chapter 9 of Principles of Econometrics, 4th Edition, three ways in which dynamics can 
enter a regression relationship are considered —through lagged values of the explanatory 
variable, lagged values of the dependent variable, and lagged values of the error term.  

In time series regressions the data need to be stationary in order for the usual econometric 
procedures to have the proper statistical properties. Basically this requires that the means, 
variances and covariances of the time series data cannot depend on the time period in which they 
are observed. For instance, the mean and variance of GDP in the third quarter of 1973 cannot be 
different from those of the 4th quarter of 2006. Methods to deal with this problem have provided 
a rich field of research for econometricians in recent years and several of these techniques are 
explored later in Chapter 12. 
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One of the first diagnostic tools used is a simple time series plot of the data. A time series 
plot will reveal potential problems with the data and suggest ways to proceed statistically. As 
seen in earlier chapters, time series plots are simple to generate in Stata and a few new tricks will 
be explored below.  

Finally, since this chapter deals with time-series observations the usual number of 
observations, N, is replaced by the more commonly used T. In later chapters, where both time-
series and cross sectional data are used, both N and T are used.  

9.1.1 Defining Time-Series in Stata 

In order to take advantage of Stata’s many built-in functions for analyzing time-series data, one 
has to declare the data in the set to be a time-series. Since time-series are ordered in time their 
position relative to the other observations must be maintained. It is, after all, their temporal 
relationships that make analysis of this kind of data different from cross-sectional analysis. 

If the data you have do not already have a proper date to identify the time period in which the 
observation was collected, then adding one is a good idea. This makes identification of historical 
periods easier and enhances the information content of graphs considerably. The data sets 
distributed with your book have not been declared to be time series and most do not contain the 
relevant dates in the set of variables. So, the first order of business is to add this information to 
the data set and then to use the dates to identify the observations as time-series and indicates the 
period of time that separates the individual observations (e.g., daily, monthly, quarterly, yearly). 
In analyzing the time dependencies in the data, this is vital information as will be explained 
below.

Before getting to the specific examples from the text, something should be said about how 
Stata handles dates and times. Basically, Stata treats each time period as an integer. The integer 
records the number of time units (whatever you define them to be) that have passed from an 
agreed-upon base, which for Stata is 1960.  

For example, for 100 quarterly data observations that start in 1961 we could generate Stata 
dates using 

set obs 100 

generate date = tq(1961q1) + _n-1 

The tq(1961q1) is referred to as a pseudofunction. They are called pseudofunctions because they 
translate what you type into integer equivalents. The integer equivalent of 1961q1 is 4—that is 
how many quarters have passed since the first one in 1960. The second quarter is set to 5 and so 
on. Adding _n-1 is done to increment the observations by 1. Listing the first 5 observations of 
date reveals: 

      
  5.      8  
  4.      7  
  3.      6  
  2.      5  
  1.      4  
      
       date  
      

. list date in 1/5
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which is exactly what we expect. 
To make this meaningful for people, these need to be formatted as strings in order to make it 

easy for us to tell what date is 20 quarters from 1960. This is done using a format command.

format %tq date 

The format command just changes the way the integer dates are displayed.    

As you can see the format %tq date tells Stata to display the integers 4, 5, 6, and 7 contained in 
the variable date as 1961q1, 1961q2, and so on. Finally, the observations are declared to be time-
series using the tsset command followed by the variable name that identifies the time variable. 

tsset date 

Once the data are declared to be time-series, Stata prints out important information about the 
period covered and the measurement interval. It identifies the name of the time variable, the dates 
it covers, and the delta or the period of time that elapses between observations. Check this 
carefully whenever generating dates to make sure that those created match what is desired.  

Stata includes other functions and pseudofunctions for defining weekly (tw), monthly (tm), 
yearly (ty) and others. Again, these create sets of integers that indicate the number of elapsed 
time periods since 1960q1. To display the integers as dates the corresponding formats are (%tw),
(%tm), and (%ty), respectively.  To see other options and to learn more about how they operate 
type

help dates and times 

at the Command window and Stata open a viewer window and carry you to the relevant 
information. 

Once the dates have been created and the data set declared to be time series, save the data set 
so that this process will not have to be repeated for these data. Stata saves the new variable, 
desired display format, and time-series information along with the data set. 

save new.dta, replace 

The replace option will cause Stata to overwrite an existing data set of the same name, so be 
careful with this option. 

      
  5.   1962q1  
  4.   1961q4  
  3.   1961q3  
  2.   1961q2  
  1.   1961q1  
      
         date  
      

. list date in 1/5

                delta:  1 quarter
        time variable:  date, 1961q1 to 1985q4
. tsset date
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Okun data set 

The first thing to do is to change the directory to the one containing your data and load the data. 
In this exercise we’ll be using the okun.dta data.  

use okun, clear 

This data set contains two variables, g and u, that are quarterly observations on the percentage 
change in Gross Domestic Product and the unemployment rate for the U.S. from 1985q2 to 
2009q3, respectively. Once the data are loaded, a date is assigned using the generate command. 
Stata includes special functions for creating dates which translate the way Stata treats dates 
(integers) and the way people do (days, months, years, etc.). 

The quarterly data begin in the second quarter of 1985. To establish dates and convert all of 
the variables to a time series use:  

generate date = tq(1985q2) + _n-1 

list date in 1 

format %tq date 

list date in 1 

tsset date 

The two list in 1 commands were added to demonstrate what Stata is doing—they are not 
necessary in practice. Still, they reveal that 1985q2 is 101 quarters ahead of 1960q1. The format 
command tells Stata to display the integer date 101 as 1985q2.  

9.1.2 Time-Series Plots 

Once the data are loaded, the time variable generated, formatted and the variables declared as 
time-series, you are ready to begin the initial phases of analysis. With time-series, there is no 

                delta:  1 quarter
        time variable:  date, 1985q2 to 2009q3
. tsset date
.

      
  1.   1985q2  
      
         date  
      

. list date in 1

. format %tq date

.

      
  1.    101
      
       date
      

. list date in 1

. generate date = tq(1985q2) + _n-1
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better place to start than plotting the variables against time. This will reveal important features of 
the data (e.g., stationarity, trends, structural breaks, etc.). 

To plot the unemployment rate and GDP growth rates the tsline plot is used. In order to get 
the labels of both plots on the same graph, the labels are shortened using the label var

commands. Then tsline, which is an abbreviation of graph twoway tsline, plots both series in 
the same graph. 

label var u “% Unemployed” 

label var g “% GDP growth” 

tsline u g, lpattern(solid dash) 

The two time-series graphs are overlaid since each of the series to be graphed are enclosed in 
parentheses. Other options can be used, but we will keep it simple at this point. 

The Stata graphs appear below: 

The unemployment series (solid) shows a wider range of variation than GDP growth, but less 
variance from one time period to the next. There are no obvious trends, breaks, or other features 
that would suggest that either of the variables is nonstationary. Therefore, these variables are 
probably well-suited for the traditional regression techniques discussed in this chapter. In Chapter 
12 more formal tests are developed to explore the possible nonstationarity of the series. For now 
it is assumed that they are stationary. 

9.1.3 Stata’s Lag and Difference Operators 

As seen before, the list command is used to print variables from the data set to the screen. In this 
case it is used with in 1/5 and 96/98 to limit the observations. The variables that are printed use 
another instance of Stata’s unary operators that were first explored in Chapter 5.  

Stata includes special unary operators that can be used to make taking lags and differences of 
time-series data very easy and efficient. These operators are documented in the Stata User’s 
Manual under the heading Time-series varlists. Here is a partial list of operators and their 
meanings: 

-5
0

5
10

1985q1 1990q1 1995q1 2000q1 2005q1 2010q1
date

% Unemployed % GDP growth
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 Operator  Meaning 

        --------------------------------------------------------- 

        L.        lag (x_t-1) 

        L2.       2-period lag (x_t-2) 

        ... 

        D.        difference (x_t - x_t-1) 

        D2.       difference of difference (x_t - 2x_t-1 + x_t-2) 

        --------------------------------------------------------- 

These (unary) operators operate on the variable that follows the period. For instance, L.u takes 
the variable u and lags it one period. Similarly, D.u takes the one period time difference 1.t tu u ��

The lag and difference operators are linear and can be used together in any order. For instance 
to take the lagged difference between the observations in u (i.e., 1 2t t tldu u u� �� � ) one can use 
L.D.u. This works right to left: take the difference of u and then lag it one period. Linearity in 
operations implies this is equivalent to D.L.u—lag u one period and then difference. It is also true 
L.L=L2. To lag the variable u two periods, then use L.L.u or, more simply, L2.u. The number 
following L indicates how many periods in the past to lag the variable. Thus L2.u lags u two 
periods (i.e., = 2tu � ).

There are additional time-series operators that create leads (F) and seasonal differences (S).
Just as in the case of the unary operators for factor variables, these time-series operators save one 
from having to separately generate variables to include in a model. There are several other 
shortcuts that will be discussed below.

To demonstrate the use of these operators the variables, lags and differences are listed below 
for observations at the beginning and end of the data set. In general, it is often good practice to 
print a few observations to ensure that the contents of the series make sense and that the time 
periods have been assigned to the correct variables. Below the date, u, the change in u, g, and 
several lags are printed using the time-series operators. These match the observations in Table 9.1 
in Principles of Econometrics, 4th Edition (POE4).

list date u L.u D.u g L1.g L2.g L3.g in 1/5 

list date u L.u D.u g L1.g L2.g L3.g in 96/98 

      
  5.   1986q2   7.2     7    .2    .9   1.5   1.4     2  
  4.   1986q1     7     7     0   1.5   1.4     2   1.4  
  3.   1985q4     7   7.2   -.2   1.4     2   1.4     .  
  2.   1985q3   7.2   7.3   -.1     2   1.4     .     .  
  1.   1985q2   7.3     .     .   1.4     .     .     .  
      
         date     u     u     u     g     g     g     g  
                        L.    D.          L.   L2.   L3. 
      

. list date u L.u D.u g L1.g L2.g L3.g in 1/5
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The time-series operators have another feature that makes them easy to use. Stata also 
understands operator(numlist).

 As you can see, a numlist is very flexible. It allows you to specify ranges, sequences, as well as 
lists of specific numbers. These can include negative numbers and their order can be easily 
reversed. Using this syntax the list commands can be shortened to  

list date L(0/1).u D.u L(0/3).g in 1/5 

list date L(0/1).u D.u L(0/3).g in 96/98 

The command L(0/1).u is equivalent to u L.u and L(0/3).g is the same as g L.g L2.g L3.g.

      
 98.   2009q3   9.6   9.3    .3     .8    -.2   -1.2   -1.4  
 97.   2009q2   9.3   8.1   1.2    -.2   -1.2   -1.4     .3  
 96.   2009q1   8.1   6.9   1.2   -1.2   -1.4     .3     .9  
      
         date     u     u     u      g      g      g      g  
                        L.    D.            L.    L2.    L3. 
      

. list date u L.u D.u g L1.g L2.g L3.g in 96/98

        1 2 3/5 8 10:12       the same eight numbers
        1,2,3/5,8,10 to 12    the same eight numbers
        1 2 3/5 8 10 to 12    the same eight numbers
        1,2,3/5,8(2)12        the same eight numbers
        1 2 3/5 8(2)12        eight numbers: 1, 2, 3, 4, 5, 8, 10, 12

        -1[.5]2.5             same as -1(.5)2.5
        9[-2]1                same as 9(-2)1
        1[2]10                same as 1(2)10
        1[2]9                 same as 1(2)9
        1[1]3                 same as 1(1)3

        -1(.5)2.5             the numbers: -1, -.5, 0, .5, 1, 1.5, 2, 2.5
        9(-2)1                five numbers: 9, 7, 5, 3, and 1
        1(2)10                the same five numbers: 1, 3, 5, 7, 9
        1(2)9                 five numbers: 1, 3, 5, 7, 9
        1(1)3                 three numbers: 1, 2, 3

        10 15:30              same as 10 15 to 30
        4 3:1                 same as 4 3 to 1
        1 2:4                 same as 1 2 to 4

        10 15 to 30           five numbers: 10, 15, 20, 25, 30
        4 3 to 1              four numbers: 4, 3, 2, 1
        1 2 to 4              four numbers: 1, 2, 3, 4

        -1/2                  four numbers: -1, 0, 1, 2
        -5/-8                 four numbers: -5, -6, -7, -8
        -8/-5                 four numbers: -8, -7, -6, -5
        5/8                   four numbers: 5, 6, 7, 8
        3/1                   the same three numbers in reverse order
        1/3                   three numbers: 1, 2, 3

        1 3 -2.17 5.12        four numbers in jumbled order
        .5 1 1.5              three different numbers
        3 2 1                 three numbers in reversed order
        1 2 3                 three numbers
        2                     just one number

    shorthand conventions to reduce the amount of typing necessary.  For instance:
    A numlist is a list of numbers with blanks or commas in between.  There are a number of
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9.2 FINITE DISTRIBUTED LAGS 

Finite distributed lag models contain independent variables and their lags as regressors.  

0 1 1 2 2 , 1, ,t t t t q t q ty x x x x e t q T� � �� % � � �  �  � � �

The particular example considered here is an examination of Okun’s Law. In this model the 
change in the unemployment rate from one period to the next depends on the rate of growth of 
output in the economy.  

1 ( )t t t NU U G G�� � �3 �

where tU is the unemployment rate, tG  is GDP growth, NG is the normal rate of GDP growth. 
The regression model is 

0t tDU G e� % � 

where D is the difference operator, NG% � 3 , 0� � �3 and an error term has been added to the 
model. Recognizing that changes in output are likely to have a distributed-lag effect on 
unemployment—not all of the effect will take place instantaneously—lags are added to the model 
to produce: 

0 1 1 2 2 , 1, ,t t t t q t q tDU G G G G e t q T� � �� % � � �  �  � � �

The two time series can be plotted using 

tsline D.u g 

and this will produce a single graph that looks like those in Figure 9.4 of POE4.
To estimate a finite distributed lag model in Stata is quite simple using the time-series 

operators. Letting q=3 and  

regress D.u L(0/3).g 

yields  
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Once again the L(numlist) syntax is used to place the contemporaneous and 3 lagged values of g
into the model.  

Re-estimating the model using a lag length of two produces 

There is virtually no change in the model fit as a consequence of dropping the statistically 
insignificant third lag on g.

9.3 SERIAL CORRELATION 

Another complication in time-series regression occurs when the errors of the regression model are 
correlated with one another. This violates one of the basic assumptions of the Gauss-Markov 
theorem and has a substantial effect on the properties of least squares estimation of the 
parameters. 

In economics, serial correlation happens when the duration of economic shocks exceed the 
sampling frequency of the data. This causes the shock to bleed over into subsequent time periods, 
causing errors to be positively correlated. In most cases this implies a failure to model the time 
structure of the regression properly—either lagged variables are omitted that are correlated with 

       _cons     .5809746   .0538893    10.78   0.000     .4739142     .688035
              
         L3.      .003303   .0362603     0.09   0.928    -.0687345    .0753405
         L2.     -.071556   .0353043    -2.03   0.046    -.1416941   -.0014179
         L1.    -.1645352   .0358175    -4.59   0.000    -.2356929   -.0933774
         --.    -.2020526   .0330131    -6.12   0.000     -.267639   -.1364663
           g  

         D.u        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    7.86884211    94  .083711086           Root MSE      =  .17433
           Adj R-squared =  0.6370

    Residual    2.73516422    90  .030390714           R-squared     =  0.6524
       Model    5.13367789     4  1.28341947           Prob > F      =  0.0000

           F(  4,    90) =   42.23
      Source         SS       df       MS              Number of obs =      95

. regress D.u L(0/3).g

       _cons     .5835561   .0472119    12.36   0.000     .4897892    .6773231
              
         L2.    -.0700135      .0331    -2.12   0.037    -.1357529   -.0042741
         L1.    -.1653269   .0335368    -4.93   0.000    -.2319339   -.0987198
         --.    -.2020216   .0323832    -6.24   0.000    -.2663374   -.1377059
           g  

         D.u        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total          7.92    95  .083368421           Root MSE      =   .1726
           Adj R-squared =  0.6427

    Residual    2.74074794    92  .029790739           R-squared     =  0.6539
       Model    5.17925206     3  1.72641735           Prob > F      =  0.0000

           F(  3,    92) =   57.95
      Source         SS       df       MS              Number of obs =      96

. regress D.u L(0/2).g 
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included regressors or if there is some persistence in the dependent variable that has not been 
properly modeled. The solution is to properly specify the regression function so that

( | all regressors ) 0t tE e � . That satisfies the necessary condition for least squares to be consistent 
for the intercept and slopes.  

Detecting autocorrelation in the least squares residuals is important because least squares may 
be inconsistent in this case. The first tool used is to produce a scatter graph of g and L.g.
Horizontal and vertical lines are placed approximately at the mean. 

summarize g 

scatter g L.g, xline(`r(mean)') yline(`r(mean)') 

which yields 

The summarize command that precedes scatter is necessary because the mean of GDP growth 
needs to be computed to draw the lines shown in the graph. The mean of g is among the saved 
results, which can be viewed using the usual return list command.  
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-1 0 1 2 3
% GDP growth, L

           g          98    1.276531    .6469279       -1.4        2.5

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize g

                r(sum) =  125.1
                r(max) =  2.5
                r(min) =  -1.4
                 r(sd) =  .6469278741180978
                r(Var) =  .4185156743109615
               r(mean) =  1.276530612244898
              r(sum_w) =  98
                  r(N) =  98
scalars:

. return list
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To access the mean, its macro name, r(mean), must be enclosed in single quotes, i.e., 
`r(mean)’. The first quote is the left single quote (`--upper left of most keyboards) and the 
second is the right single quote (‘--located under the double quote “ on most keyboards).    

A numerical approach is to look at the computed sample autocorrelations. These are 
summoned using  

ac g, lags(12) generate(ac_g) 

list ac_g in 1/12 

The command ac computes sample autocorrelations for the variable that follows (g) and the 
lags(12) option tells Stata to compute autocorrelations for g up to 12 periods apart. The output 
consists of a graph, though the autocorrelations are saved using the generate option in a variable 
named ac_g. The graph is 

The 95% confidence band appears in the shaded area. Notice that only the first two 
autocorrelations are significantly different from zero at the 5% level.  

Approximate 95% confidence bands are computed using the fact that (0,1).
a

kT r N�  Use gen 
z=sqrt(e(N))*ac_g to generate the boundary. If any of the numbers are less than �0*89&or
greater than 1.96, it lies outside of the approximate 95% confidence interval and is statistically 
significant at the 5% level. Stata’s ac function uses a different method (Bartlett’s) and the results 
may differ from those based on this simple approximation. 

The values of the autocorrelations stored in ac_g and the boundaries, z, are  
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Phillips Curve 

The second example is based on the Phillips curve, which expresses the relationship between 
inflation and unemployment.  

The simple regression relating inflation and the change in unemployment is 

1 2t t tINF DU e� � � 

The model is estimated using the phillips_aus.dta data which contains the quarterly inflation rate 
and unemployment rates for Australia beginning in 1987q1. Load the data, generate a date, 
format the date to a string, and set the data set as time series. 

use phillips_aus, clear 

generate date = tq(1987q1) + _n-1 

format %tq date 

tsset date 

First, plot the inflation rate and the change in unemployment 

tsline inf 

tsline D.u 

      
 12.   -.20404326   -1.999207  
 11.   -.08683463   -.8508022  
      
 10.   -.02128483   -.2085479  
  9.    .04410661    .4321548  
  8.   -.08231978   -.8065658  
  7.   -.03008434   -.2947652  
  6.    .02447111     .239767  
      
  5.    .09038538    .8855922  
  4.    .20043788    1.963882  
  3.     .1544205    1.513006  
  2.     .4107073    4.024093  
  1.    .49425676    4.842708  
      
             ac_g           z  
      

. list ac_g z in 1/12
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Next, estimate the model using least squares and save the residual.  

reg inf D.u 

predict ehat, res 

The residuals will be examined for autocorrelation using the residual correlogram. A residual 
correlogram is a graph that plots series of autocorrelations between t̂e  and t̂ je �  against the time 
interval between the observations, j=1, 2, …, m.  The sample autocorrelations are saved in a 
variable called rk, the first five are printed, and then dropped from the data set since they are no 
longer needed. 

ac ehat, lags(12) generate(rk) 

list rk in 1/5 
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       _cons     .7776213   .0658249    11.81   0.000      .646808    .9084345
              
         D1.    -.5278638   .2294049    -2.30   0.024    -.9837578   -.0719699
           u  

         inf        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    36.0928889    89  .405538077           Root MSE      =  .62199
           Adj R-squared =  0.0460

    Residual    34.0445426    88  .386869802           R-squared     =  0.0568
       Model    2.04834633     1  2.04834633           Prob > F      =  0.0238

           F(  1,    88) =    5.29
      Source         SS       df       MS              Number of obs =      90

. reg inf D.u
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It is rather obvious that there are a number of significant autocorrelations and that they are 
relatively large.  

Stata contains a corrgram function, of which the ac command is a subset. corrgram
produces a table of the autocorrelations (as well as partial autocorrelations, and Portmanteau (Q) 
statistics).  It also displays a character-based plot of the autocorrelations. Another feature of 
corrgram is that each of these statistics are saved as r( ). To save and print the first five 
autocorrelations using corrgram

corrgram ehat, lags(5) 

Printing the first three sample autocorrelations 

-0
.4

0
-0

.2
0

0.
00

0.
20

0.
40

0.
60

A
ut

oc
or

re
la

tio
ns

 o
f e

ha
t

0 5 10 15
Lag

Bartlett's formula for MA(q) 95% confidence bands

      
  5.   .33903419  
  4.   .42049358  
  3.   .43321579  
  2.   .45573248  
  1.   .54865864  
      
              rk  
      

. list rk in 1/5

5        0.3390   0.0234    93.63  0.0000                            
4        0.4205   0.1637   82.433  0.0000                           
3        0.4332   0.1926   65.409  0.0000                           
2        0.4557   0.2297   47.548  0.0000                           
1        0.5487   0.5498   28.006  0.0000                          

 LAG       AC       PAC      Q     Prob>Q  [Autocorrelation]  [Partial Autocor]
                                          -1       0       1 -1       0       1

. corrgram ehat, lags(5)

rho1 = .54865864 rho2 = .45573248 rho3 = .43321579
. di "rho1 = " r(ac1) " rho2 = " r(ac2) " rho3 = " r(ac3)
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Type return list to view other statistics that are stored after executing corrgram.

9.4 OTHER TESTS FOR SERIAL CORRELATION 

A second test for serial correlation is based on the Lagrange multiplier test principle 
discussed in the context of heteroskedasticity in Chapter 8. The test statistic is based on 2TR from 
an auxiliary regression. For autocorrelation, this test is based on an auxiliary regression where 
you regress least squares residuals on lagged least squares residuals and the original regressors. If 
the regressors, which includes , explain sufficient variation in t̂e , then there must be 
autocorrelation due to . For a regression model 

1 2t t ty x e� �  �  ,

estimate the parameters using least squares and save the residuals, t̂e . Lag the residuals to get 

1ˆ .te � Then, estimate a second ‘auxiliary’ regression with t̂e as the dependent variable and the 
lagged value 1t̂e �  as an independent variable.  Include all of the other independent variables from 
the original regression as well.  For a simple linear regression the auxiliary regression is   

1 2 1ˆ ˆt t te x e residual�� 3  3  : 

TR2 from this regression has a 7(�0�&distribution if the null hypothesis of no autocorrelation is 
true, where T is the number of observations in the auxiliary regression. Rejection leads to the 
conclusion that there is significant autocorrelation. For the Phillips curve example, assuming that 
ehat was saved from the original regression, 

quietly regress ehat D.u L.ehat 

di "Observations = " e(N) " and TR2 = " e(N)*e(r2) 

yields 

In Principles of Econometrics, 4th Edition, this statistic is computed using all available 
observations. Since a lagged value, , appears in the model, one would normally lose an 
observation when estimating the auxiliary regression. In this case, the missing value for the first 
residual can be replaced with a zero. This is permissible in the current context because that is 
what its expected value is (i.e., E(e1)=0). Technically setting 1̂ 0e �  is unnecessary to obtain a 
valid test statistic; however, to replicate the result in the text it is done here. Then, 

replace ehat = 0 in 1 

quietly regress inf D.u L.ehat 

di "Observations = " e(N) " and TR2 = " e(N)*e(r2) 

yields 

1ˆ �te

1ˆ �te

Observations = 89 and TR2 = 27.608808
. di "Observations = " e(N) " and TR2 = " e(N)*e(r2)

1ˆ �te
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This matches the result in the text.  
Testing for higher order autocorrelation is simple. To test for AR(4), then include 4 lagged 

least squares residuals as regressors and compute TR2. The degrees of freedom for the chi-square 
equal the order of the autocorrelation under the alternative (in this case, 4).  

The code to do this is:  

quietly regress ehat D.u L(1/4).ehat 

which results in   

Manually replicating the results in POE4 requires some work. The missing values of ehat that 
occur from taking lags are set to zero (i.e., 3ˆ 0,e� � 2ˆ 0,e� � 1ˆ 0,e� � 0ˆ 0e � ). This allows use of the 
entire sample. It turns out that this is not particularly straightforward to program in Stata so we 
will skip that discussion here. However, the code to do so can be found in the do-file at the end of 
this chapter. 

The results can be replicated easily using the built-in post-estimation command estat
bgodfrey.

regress inf D.u 

estat bgodfrey, lags(1)  

estat bgodfrey, lags(4) 

The command uses an option that indicates how many lagged residuals to include as regressors in 
the model. In the AR(1) example, the alternative hypothesis is that the model’s errors have first 
order autocorrelation;  lags(1) is used. The result 

For the AR(4) alternative 

Observations = 90 and TR2 = 27.592347
. di "Observations = " e(N) " and TR2 = " e(N)*e(r2)

Observations = 86 and TR2 = 33.385269
. di "Observations = " e(N) " and TR2 = " e(N)*e(r2)

                        H0: no serial correlation

       1               27.592               1                   0.0000

    lags(p)             chi2               df                 Prob > chi2

Breusch-Godfrey LM test for autocorrelation

. estat bgodfrey, lags(1)
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In each case there is clear evidence of autocorrelation in the residuals of the simple regression. 

9.5 ESTIMATION WITH SERIALLY CORRELATED ERRORS 

As long as the regression model does not contain lags of the dependent variable as regressors, the 
least squares estimator is consistent even if the errors follow an AR(q) model. It is no longer 
efficient (asymptotically), when the least squares assumption MR4, cov( , ) 0t se e �  for t s"  is 
violated. Unfortunately, the usual standard errors are no longer correct, leading to statistically 
invalid hypothesis tests and confidence intervals.  

9.5.1 Least squares and HAC standard errors 

Although the usual least squares standard errors are not the correct, we can compute consistent 
standard errors just as we did in heteroskedastic models using an estimator proposed by Newey 
and West. Newey-West standard errors (also known as HAC--heteroskedasticity and 
autocorrelation consistent standard errors) are analogous to the heteroskedasticity consistent 
standard errors introduced in Chapter 8. They have the advantage of being consistent for 
autocorrelated errors that are not necessarily AR(1), and do not require specification of the 
dynamic error model that would be needed to get an estimator with a lower variance.  

HAC is not as automatic in use as the heteroskedasticity robust standard error estimator in 
Chapter 8.  To be robust with respect to autocorrelation one has to specify how far away in time 
the residual autocorrelation is likely to be significant.  Essentially, the autocorrelated errors over 
the chosen time window are averaged in the computation of HAC; the number of periods over 
which to average and how much weight to assign each residual in that average has to be set by the 
user.

The weighted average is accomplished using what is called a kernel and the number of errors 
to average using the weighting scheme (kernel) is called bandwidth. To be quite honest, these 
terms reveal little about what they do to the average user.  Just think of the kernel as another 
name for weighted average and bandwidth as the term for number of terms to average. Stata 
offers no way to choose a kernel; the Bartlett is the only one available. However, a bandwidth 
must be selected. 

There are several methods to help choose a suitable bandwidth and two are given here. In 
both cases, the bandwidth depends on the sample size, T. The first uses B = 0.75T1/3.  The other 
popular choice is B= 4 (T/100)2/9. This one appears to be the default in other programs like 
EViews and it is the one used here to obtain the results in the text.  

Implicitly there is a trade-off to consider.  A larger bandwidth reduces bias (good) as well as 
precision (bad).  A smaller bandwidth excludes more relevant autocorrelations (and hence is more 

                        H0: no serial correlation

       4               36.672               4                   0.0000

    lags(p)             chi2               df                 Prob > chi2

Breusch-Godfrey LM test for autocorrelation

. estat bgodfrey, lags(4)
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biased), but has a smaller variance.  The general principle is to choose a bandwidth that is large 
enough to contain the largest autocorrelations. 

To compute a bandwidth use the command 
 

scalar B = round(4*(e(N)/100)^(2/9)) 

scalar list B 

This returns the value 4 in the phillips_aus.dta data set. The result is rounded because Stata 
requires a whole number to be used to specify the number of lags in the HAC’s computation.  

The only kernel available in Stata is the Bartlett. This is the one used by Newey and West in 
their research on this issue. Consequently, Stata refers to the procedure that computes HAC as 
newey. It is basically a replacement for regress, and it requires the specification of a bandwidth. 
Then, to estimate the model by least squares with Newey-West standard errors and a bandwidth 
of 4 use the following command 

newey inf D.u, lag(4) 

In the example the model is estimated using least squares with the usual least squares standard 
errors and the HAC standard errors. The results appear below, with the HAC standard errors 
appearing below the estimates in the right-hand column.  

esttab Wrong_SE HAC_4, compress se(%12.3f) b(%12.5f) gaps /// 

scalars(r2_a rss aic) title("Dependent Variable: inf") /// 

mtitles("LS" "HAC(4)") 

The compress option is used to reduce the vertical space between lines, the gaps option adds 
empty rows (or, more generally, additional vertical space) between coefficients, and scalars
option allows you to print various statistics that are stored along with the regression results. In 
this case, the adjusted R2, the regression sum of squares error, and Stata’s calculation of the AIC 
criterion. In addition, the mtitle option is used to give each column a meaningful name; when 
this option is used the default column name, which is the name of the dependent variable, is 
replaced by whatever you place in each set of double quotes. The title option is used to let 

* p<0.05, ** p<0.01, *** p<0.001
Standard errors in parentheses

aic        171.91634            .   
rss         34.04454                
r2_a         0.04603                
N                 90           90   

             (0.066)      (0.112)   
_cons        0.77762***   0.77762***

             (0.229)      (0.318)   
D.u         -0.52786*    -0.52786   

                  LS       HAC(4)   
                 (1)          (2)   

Dependent Variable: inf
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readers know that the dependent variable used in each case is inf. In this example, the HAC 
standard errors are substantially larger than the usual (inconsistent) ones. 

9.5.2 Nonlinear Least Squares 

As you can see, HAC standard errors suffer at least two disadvantages:  1)  they are not automatic 
since they require specification of a bandwidth and 2) they are larger than standard errors of more 
estimators that are more efficient than ordinary linear regression. In this section, nonlinear least 
squares is used to efficiently estimate the parameters of the AR(1) model. 
In your text book the authors start with the AR(1) regression model and, using a little algebra, 
arrive at 

1 2 1 2 1(1 )t t t t ty x y x v� �� � � :  �  : �:� 

This model is nonlinear in the parameters, but has an additive white noise error. These features 
make the model suitable for nonlinear least squares estimation. Nonlinear least squares uses 
numerical methods to find the values of the parameters that minimize the sum of squared errors.  
To estimate the model use Stata’s generic nonlinear least squares command, nl:

nl (inf = {b1}*(1-{rho}) + {b2}*D.u + {rho}*L.inf - {rho}*{b2}*(L.D.u)), ///      

variables(inf D.u L.inf L.D.u) 

The syntax is fairly simple, but requires some explanation. The basic syntax is: 

nl (depvar=<sexp>) [if] [in] [weight] [, options]  

The systematic portion of the model is included inside the first set of parentheses. Parameters 
must be enclosed in braces {}.  The if, in, and weight statements are used in the same way as in 
a linear regression. However, because the variables that have been lagged, missing values will be 
created for the first observation on the lagged variables in the data set. For this to work, the 
sample must be limited to only those observations that are complete. There are two ways to do 
this. First, you could use (depvar=<sexp>) in 2/34. Or, you can list the variables as done 
here using the option variables(inf D.u L.inf L.D.u).

The results of the estimation are 

  Parameter b1 taken as constant term in model & ANOVA table

         /b2     -.694388    .247894    -2.80   0.006    -1.187185    -.201591
        /rho     .5573922   .0901546     6.18   0.000     .3781709    .7366136
         /b1     .7608716   .1245311     6.11   0.000      .513312    1.008431

         inf        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    35.5847191    88  .404371808         Res. dev.     =  132.9069
         Root MSE      =  .5193766

    Residual    23.1986758    86  .269752044         Adj R-squared =    0.3329
       Model    12.3860433     2  6.19302165         R-squared     =    0.3481

         Number of obs =        89
      Source         SS       df       MS
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The coefficient estimates match those in the text. The minimum of the sum of squares function is 
reached at the same parameter estimates. There are some small differences in estimated standard 
errors, though. This happens because there are different ways of estimating these consistently in 
nonlinear models; in small samples like the one in this example, those differences may be 
exaggerated. In larger samples the differences will usually be small and in fact vanish according 
to theory as the sample size grows. The t-ratio on the parameter : is equal to 6.18, which has a p-
value less than 0.001. This means that at any reasonable level of significance (e.g., 5%) there is 
evidence of first order autocorrelation among the residuals. 

After estimating the model a couple of scalars are computed to be used in the next section. 

scalar delta = _b[b1:_cons]*(1-_b[rho:_cons]) 

scalar delta1 = - _b[rho:_cons]*_b[b2:_cons] 

The scalar called delta  is 1
ˆ ˆ(1 )� �: and delta1 is 2

ˆˆ�:� . The reasons for these will be discussed 
in the next section. However, note that the estimates are referred to a bit differently than in the 
linear regression. The _b[varname] convention used in linear models has been replaced by 
_b[paramname:_cons]. The coeflegend option can be used after the nl command to find the 
proper names for the parameters. To verify that you have identified the parameters correctly, run 
the nonlinear least squares regression again using the coeflegend option. This suppresses much 
of the output that you ordinarily want, but it does produce a legend that identifies Stata’s names 
for each of the parameters. There is an example of this contained in the do-file at the end of the 
chapter.

9.5.3 A More General Model 

A more general form of the model is considered 

0 1 1 1 1t t t t ty x x y v� �� 2  2  2  - 

which is linear in the parameters and can be estimated by linear regression. This model is related 
to the previous model by the relationships 

1 0 2 1 2 1(1 )2 � � �: 2 � � 2 � �:� - � :

The linear model can be estimated by (linear) least squares and a hypothesis test of the implied 
restriction can be conducted. The null hypothesis implied by the restriction is 0 1 1 0:H 2 � �- 2
against the alternative that it is not equal. The first step is to estimate the model using least 
squares

regress inf L.inf D.u L.D.u 
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The scalars computed at the end of the previous section correspond to 2&&and &20&&above. The 
computed values were 

The more general estimates obtained from the linear regression are ˆ 0.3342 � and 1
ˆ 0.320.2 �

Both values are fairly close to the ones implied by the more restrictive nonlinear model estimated 
by nl.

To actually test the nonlinear hypothesis 0 1 1 0:H 2 � �- 2  use the Stata’s built in function for 
testing nonlinear functions of the paramters, testnl. 

testnl _b[L.D.u]=-_b[L.inf]*_b[D.u] 

The large p-value of 0.74 suggests that the AR(1) model estimated by nonlinear least squares in 
not overly restrictive. 

The various linear specifications of the models considered are compared using the esttab
command:  

       _cons     .3336325   .0899028     3.71   0.000     .1548817    .5123834
              
         LD.     .3199526    .257504     1.24   0.217    -.1920343    .8319396
         D1.    -.6881852   .2498704    -2.75   0.007    -1.184994    -.191376
           u  
              
         L1.     .5592676   .0907962     6.16   0.000     .3787403    .7397948
         inf  

         inf        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    35.5847191    88  .404371808           Root MSE      =  .52208
           Adj R-squared =  0.3260

    Residual    23.1680854    85   .27256571           R-squared     =  0.3489
       Model    12.4166337     3  4.13887791           Prob > F      =  0.0000

           F(  3,    85) =   15.18
      Source         SS       df       MS              Number of obs =      89

. regress inf L.inf D.u L.D.u

    delta1 =  .38704645
     delta =  .33676767
. scalar list delta delta1

              Prob > F =        0.7384
              F(1, 85) =        0.11

  (1)  _b[L.D.u] = -_b[L.inf]*_b[D.u]

. testnl _b[L.D.u]=-_b[L.inf]*_b[D.u]
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The compress option is used to reduce the vertical space between lines, the gaps option adds 
empty rows (or, more generally, additional vertical space) between coefficients, and scalars
option allows you to print various statistics that are stored along with the regression results. In 
this case, the adjusted R2, the regression sum of squares error, and Stata’s calculation of the AIC 
criterion.

9.6 AUTOREGRESSIVE DISTRIBUTED LAG MODELS 

A model that combines finite distributed lags and is autoregressive is considered. This is the so-
called autoregressive distributed lag model (ARDL). The ARDL(p,q) model has the general form  

1 1 0 1 1t t p t p t t q t q ty y y x x x v� � � �� 2  -   -  2  2   2 � �

As regressors, it has p lags of the dependent variable, yt, and q lags of the independent variable, xt.
The ARDL(1,1) and ARDL(1,0) models of inflation can be estimated using least squares. The 
estimates are stored and printed in a table below. 

regress inf L.inf L(0/1).D.u 

estimates store AR1_DL1  

regress inf L.inf D.u 

estimates store AR1_DL0 

* p<0.05, ** p<0.01, *** p<0.001
Standard errors in parentheses

aic        140.78946    140.90217    171.91634   
rss         23.16809     23.59054     34.04454   
r2_a         0.32595      0.33137      0.04603   
N                 89           90           90   

             (0.090)      (0.088)      (0.066)   
_cons        0.33363***   0.35480***   0.77762***

             (0.258)                             
LD.u         0.31995                             

             (0.250)      (0.192)      (0.229)   
D.u         -0.68819**   -0.49086*    -0.52786*  

             (0.091)      (0.085)                
L.inf        0.55927***   0.52825***             

                 inf          inf          inf   
                 (1)          (2)          (3)   

>        gaps scalars(r2_a rss aic) 
. esttab General No_LDu Original, compress se(%12.3f) b(%12.5f) ///
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Choosing between these models can be done in several ways. First, if the t-ratio on 1tDU �  is 
insignificant, then the evidence suggests that omitting it may not adversely impact the properties 
of the least squares estimator of the restricted model. 

Another possibility is to use one of the model selection rules discussed in Chapter 6. Recall 
that we wrote a program called modelsel that computes the AIC and SC model selection rules. 
Here, the program is modified slightly by omitting the display of the adjusted R2 and instead 
printing the number of observations in the model. Refer to Chapter 6 for more details on the 
program structure in Stata. 

To choose between the ARDL(1,1) and ARDL(1,0) using the AIC or SC create and run the 
following program called modelsel.

program modelsel 

  scalar aic = ln(e(rss)/e(N))+2*e(rank)/e(N)  

  scalar sc = ln(e(rss)/e(N))+e(rank)*ln(e(N))/e(N) 

  scalar obs = e(N) 

  scalar list aic sc obs  

end 

Now estimate each model, checking the selection criteria as indicated below. This produces the 
output: 

* p<0.05, ** p<0.01, *** p<0.001
Standard errors in parentheses

aic        140.78946    140.90217   
rss         23.16809     23.59054   
r2_a         0.32595      0.33137   
N                 89           90   

             (0.090)      (0.088)   
_cons        0.33363***   0.35480***

             (0.258)                
LD.u         0.31995                

             (0.250)      (0.192)   
D.u         -0.68819**   -0.49086*  

             (0.091)      (0.085)   
L.inf        0.55927***   0.52825***

                 inf          inf   
                 (1)          (2)   

>        gaps scalars(r2_a rss aic) 
. esttab AR1_DL1 AR1_DL0, compress se(%12.3f) b(%12.5f) ///
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The ARDL(1,0) minimizes both AIC and SC and is the preferred model. One problem with this 
analysis is that the residuals may still be autocorrelated or that longer lags than the ones 
considered here have been omitted. In the next section this is considered more carefully.  

9.6.1 Phillips Curve 

First, the errors of the ARDL(1,0) should be checked for autocorrelation. This can be done by 
looking at the correlogram 

quietly regress inf L.inf D.u 

predict ehat, res 

ac ehat, lags(12) 

or by the LM (Breusch-Godfrey) test, which in this case includes statistics for lags 1-5. 

       obs =         89
        sc = -1.1090776
       aic = -1.1929642
. modelsel

. quietly regress inf L.inf L.D.u

       obs =         89
        sc = -1.1441242
       aic =  -1.255973
. modelsel

. quietly regress inf L.inf L(0/1).D.u
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The results from the two procedures give different impressions about the possible existence of 
autocorrelation in the residuals of the ARDL(1,0). None of the autocorrelations in the 
correlogram lie outside of the 95% confidence interval, but the LM statistics for models having 1, 
4, or 5 lags are statistically significant at the 5% level. The latter suggests that the model selection 
rules should be applied to a wider set of models that include more autocorrelation terms. This 
means estimating twelve models; the AR terms are varied from 1 to 6 and the DL from 0 to 1 
with every combination estimated. The AIC and SC statistics are computed for each model and 
searched for the overall minima. The Stata code to estimate each of these models for time periods 
after 1988q3 is provided at the end of this chapter in a do-file.  The complete code can be used to 
reproduce the results found in Table 9.4 of POE4.  Below, a code snippet is given and its syntax 
explained.

The following code estimates the ARDL(1,1) model for data beginning in the third quarter of 
1983. The regression is estimated using the quietly command, abbreviated in Stata qui, to 
suppress the actual regression results; our interest is in the values of the model selection rules 
only at this point. To limit the sample to certain dates, the pseudofunction tq(1988q3) is used. 
Recall from earlier in this chapter that this pseudofunction translates the date 1988q3 into a 
number that Stata understands. For quarterly data, this is the proper syntax 

qui reg L(0/1).inf L(0/1).D.u if date>= tq(1988q3) 

di "p=1  q=1" 

modelsel 

The lag operators are being used to their fullest advantage by specifying the dependent variable 
and autoregressive independent variables in one statement, L(0/1).inf. The first variable in this 
statement is the zero lag of inflation, L(0).inf, which is just inf. So, the statement L(0/1).inf
is equivalent to inf L.inf Since inf appears first after regress, Stata recognizes it as the 
dependent variable. 

The result from this snippet is 

                        H0: no serial correlation

       5               12.485               5                   0.0287
       4                9.554               4                   0.0486
       3                5.221               3                   0.1563
       2                5.123               2                   0.0772
       1                4.130               1                   0.0421

    lags(p)           chi2               df                 Prob > chi2

Breusch-Godfrey LM test for autocorrelation

. estat bgodfrey, lags(1 2 3 4 5)

       obs =         85
        sc =  -1.160418
       aic = -1.2466292
. modelsel

p=1  q=0
. di "p=1  q=0"
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Using loops can make model selection much easier. As an example, let’s search over all possible 
models for p=1, 2, 3, 4, 5, and 6 q=0 and 1.  A nested loop can be formed using forvalues 
command, which loops over consecutive values.  

The basic structure would be 

forvalues q=0/1 { 

    forvalues p=1/6 { 

    [statements to compute and print] 

    } 

}

The loop is executed as long as calculated values of q and p are within the given range (e.g., 0 
and 1 for q and between 1 and 6 inclusive for p). In this form the values of p and q will increment 
in steps of 1. Braces must be specified with forvalues, and 

1. the open brace must appear on the same line as forvalues;
2. nothing may follow the open brace except, of course, comments; the first 

command to be executed must appear on a new line; 
3. the close brace must appear on a line by itself. 

For the ARDL(p,q) of Okun’s Law the code looks is: 

forvalues q=0/1 { 

   forvalues p=1/6 { 

      quietly regress L(0/`p').inf L(0/`q').D.u if date >= tq(1988q3) 

      display "p=`p'  q=`q'" 

      modelsel 

      } 

   } 

Notice a couple of things about the statements that are being computed within the loops. First, the 
p and q are now referred to by their macro names. That means that they when they are referred to 
they need to be enclosed in single quotes (left and right as we did above). Second, the dependent 
variable and autoregressive independent variables are once again included in one statement, 
L(0/`p').inf. As p increments from 1 to 6, lags are added and the modelsel program is 
executed after printing the current values of p and q to the screen. Hence, in a few short 
statements many models can be considered and the orders of the autoregressive and distributed 
lags can easily be changed. 

When loops are nested this way, the q loop starts at zero and then the p loop iterates from 1 to 
6. Once the p loop is finished, the q loop increments by 1 and the p loop starts over again. You 
can change the order of these if desired.  

9.6.2 Okun’s Law 

Okun’s Law provides another opportunity to search for an adequate specification of the time-
series model. Load the okun.dta data, generate dates beginning at 1985q2, format them to be 
printed as strings, and declare the data to be time series. 

use okun, clear 

generate date = tq(1985q2) + _n-1 
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format %tq date 

tsset date 

The model estimated in section 9.2 was an ARDL(0,2) that related the change in the 
unemployment rate to GDP growth. Below the model is estimated by least squares, the 
correlogram is obtained, and LM statistics for models containing up to 5 autocorreleted residuals 
are produced. 

reg D.u g L(1/2).g L.D.u 

predict ehat, res 

ac ehat, lags(12) 

drop ehat 

estat bgodfrey, lags(1 2 3 4 5) 

The correlogram has one significant autocorrelation and each of the LM statistics is significant at 
the 5% level. This suggests that the ARDL(0,2) is misspecified. In the do-file at the end of the 
chapter code is given to estimate a series of models using the Okun data set. The sample is 
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                        H0: no serial correlation

       5               19.648               5                   0.0015
       4               15.228               4                   0.0043
       3               13.754               3                   0.0033
       2               12.894               2                   0.0016
       1               12.364               1                   0.0004

    lags(p)             chi2               df                 Prob > chi2

Breusch-Godfrey LM test for autocorrelation

. estat bgodfrey, lags(1 2 3 4 5)
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limited as in the previous example, this time for observations beginning in the first quarter of 
1986. 

The autocorrelations are varied from 0 to 2 and distributed lags are varied from 1 to 3; this 
results in 9 models to estimate.

forvalues q=1/3 { 

   forvalues p=0/2 { 

      quietly regress L(0/`p').D.u L(0/`q').g if date >= tq(1986q1) 

      display "p=`p'  q=`q'" 

      modelsel 

      } 

   } 

This produces:  

p=0  q=1 

       aic = -3.4362364 

        sc = -3.3555876 

       obs =         95 

p=1  q=1 

       aic = -3.5879866 

        sc =  -3.480455 

       obs =         95 

p=2  q=1 

       aic = -3.5693074 

        sc = -3.4348928 

       obs =         95 

p=0  q=2 

       aic = -3.4633827 

        sc =  -3.355851 

       obs =         95 

p=1  q=2 

       aic = -3.5675498 

        sc = -3.4331352 

       obs =         95 

p=2  q=2 

       aic = -3.5483196 

        sc = -3.3870221 

       obs =         95 

p=0  q=3 

       aic = -3.4424223 

        sc = -3.3080077 

       obs =         95 

p=1  q=3 

       aic = -3.5611594 

        sc = -3.3998619 

       obs =         95 

p=2  q=3 
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       aic = -3.5490965 

        sc = -3.3609161 

       obs =         95 

The model that minimizes both AIC and SC is the ARDL(1,1). This model is estimated using the 
entire sample and the errors are checked for any remaining autocorrelation using the LM statistic. 
This is done using: 

reg D.u L.D.u L(0/1).g 

estat bgodfrey 

which results in  

There appears to be no remaining autocorrelation in the model’s residuals (p-value=0.68), 
suggesting that the ARDL(1,1) model is adequate. 

9.6.3 Autoregressive Models 

Autoregressive models can be thought of as special cases of the ARDL(p,q). Basically, an AR(p)
model is equivalent to an ARDL(p,0). The data on U.S. GDP growth found in okun.dta was 
examined for autocorrelation in Section 9.3. In the correlogram of g, there was evidence of 
correlation among the observations of the time-series.  

To examine this further, an AR(2) model is estimated for GDP growth and the correlogram of 
the residuals is drawn. The autoregression is estimated, the residuals saved, and autocorrelations 
produced for the first 12 lags:  

                        H0: no serial correlation

       1                0.170               1                   0.6804

    lags(p)             chi2               df                 Prob > chi2

Breusch-Godfrey LM test for autocorrelation

. estat bgodfrey

       _cons     .3780104   .0578398     6.54   0.000     .2631356    .4928853
              
         L1.    -.0991552   .0368244    -2.69   0.008    -.1722917   -.0260187
         --.    -.1840843   .0306984    -6.00   0.000     -.245054   -.1231146
           g  
              
         LD.     .3501158    .084573     4.14   0.000     .1821466     .518085
           u  

         D.u        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total          7.92    95  .083368421           Root MSE      =  .16228
           Adj R-squared =  0.6841

    Residual    2.42272399    92  .026333956           R-squared     =  0.6941
       Model    5.49727601     3  1.83242534           Prob > F      =  0.0000

           F(  3,    92) =   69.58
      Source         SS       df       MS              Number of obs =      96
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reg g L(1/2).g 

predict ehat, res 

ac ehat, lags(12) 

which produces 

The AR(2) model appears to be adequate since most of the residual autocorrelations are small and 
insignificant. To explore this further, the order of the autoregression is varied from 1 to 5 and the 
model selection rules are used to select the preferred model, again with the model producing the 
smallest value of AIC or SC: 

forvalues p=1/5 { 

  qui reg L(0/`p').g if date> tq(1986q2) 

  display "p=`p' 

  modelsel 

  } 

which produces 

p=1 

       aic = -1.0935183 

        sc = -1.0390538 

       obs =         93 

p=2 

       aic =  -1.130582 

        sc = -1.0488852 

       obs =         93 

p=3 

       aic = -1.1242025 

        sc = -1.0152735 

       obs =         93 
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p=4 

       aic = -1.1331587 

        sc = -.99699743 

       obs =         93 

p=5 

       aic = -1.1116622 

        sc = -.94826871 

       obs =         93  

The model producing the smallest value of AIC is the AR(4) where AIC = �0*0,,*&The model 
producing the smallest SC is the AR(2) where SC = �0*;/8*&This illustrates an important 
difference between the two model selection rules: the SC criterion imposes a larger penalty for 
adding a regressor and tends to choose smaller models than the AIC. This is well-known and 
understood among practitioners. 

9.7 FORECASTING 

In this Section we consider forecasting using 3 different models, an AR model, an ARDL model, 
and an exponential smoothing model. The examples focus on short-term forecasting, typically up 
to 3 periods into the future. 

9.7.1 Forecasting with an AR Model 

Suppose that it is the 3rd quarter in 2009 and have estimated the AR(2) model of GDP growth  
using data up to and including 2009q3. In this section the use of an AR(2) model to forecast the 
next three periods is discussed and forecast confidence intervals are generated.  

The AR(2) model in terms of its unknown coefficients 

1 1 2 2t t t tG G G v� �� 2  -  - 

Denoting the last sample observation as TG , the task is to forecast 1 2,T TG G   and 3TG  . The value 
of the next observation beyond the available sample is 

1 1 2 1 1T T T TG G G v � � 2  -  - 

Growth rates for the 2 most recent quarters are TG � 2009q3G � 0.8, and 1 2009q2 0.2TG G� � � � ,
which with the estimated values of the parameters is used to make a forecast of 1 2009q4TG G � .

1 1 2 1
ˆ ˆ ˆ ˆ

0.46573 0.37700 0.8 0.24624 ( 0.2)

0.7181

T T TG G G �� 2  -  -

�  �  � �

�

Once the model is estimated in Stata this is easy to compute. Estimate the AR(2) model 
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reg g L(1/2).g 

Then compute the scalar forecast using 

scalar ghat1 = _b[_cons]+_b[L1.g]*g[98]+ _b[L2.g]*g[97] 

Stata’s indexing capabilities are used to get the last two observations on G from the data set. 
Since the data consist of 98 observations that end in 2009q3, g[98] refers to the 98th observation 
on 2009 3qG . Similarly, g[97] refers to the observation on G from 2009q2. 

The next forecast  

2 1 1 2
ˆ ˆ ˆ ˆ ˆ

T T TG G G � 2  -  -

is produced using 

scalar ghat2 = _b[_cons]+_b[L1.g]*ghat1+ _b[L2.g]*g[98] 

Notice that forecast of ghat1 is used to estimate 1
ˆ .TG  TG is actually observed and is located in 

the data set at observation 98.    

scalar ghat2 = _b[_cons]+_b[L1.g]*ghat1+ _b[L2.g]*g[98] 

Finally, the last forecast  

3 1 2 2 1
ˆ ˆ ˆ ˆ ˆ ˆ

T T TG G G  � 2  -  -
is generated with

scalar ghat3 = _b[_cons]+_b[L1.g]*ghat2+ _b[L2.g]*ghat1 

The forecast ghat2 is used to estimate 2
ˆ

TG   and this forecast depends completely on previous 
forecasts.

The complete set of forecasts generated in this way is: 

As shown in POE4, the forecast error variances are 

� �

� �� �

2 2
1 1

2 2 2
2 2 1

22 2 2 2
3 3 1 2 1

var( )

var( ) 1

var( ) 1

v

v

v

u

u

u

� � � �

� � � �  -

� � � � -  -  - 

     ghat3 =  .99445191
     ghat2 =  .93343472
     ghat1 =  .71807948
. scalar list ghat1 ghat2 ghat3
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which are estimated by substituting in estimates from the AR(2) model 

scalar var = e(rmse)^2 

scalar se1 = sqrt(var) 

scalar se2 = sqrt(var*(1+(_b[L1.g])^2)) 

scalar se3 = sqrt(var*((_b[L1.g]^2+_b[L2.g])^2+1+_b[L1.g]^2)) 

scalar list se1 se2 se3 

The 95% forecast confidence intervals are constructed in the usual way. They are centered at the 
forecast and extend approximately 2 standard deviations in either direction. More precisely, they 
are computed using the 2.5% critical value from the t-distribution and use the forecast standard 
errors computed above. 

scalar f1L = ghat1 - invttail(e(df_r),.025)*se1 

scalar f1U = ghat1 + invttail(e(df_r),.025)*se1 

scalar f2L = ghat2 - invttail(e(df_r),.025)*se2 

scalar f2U = ghat2 + invttail(e(df_r),.025)*se2 

scalar f3L = ghat3 - invttail(e(df_r),.025)*se3 

scalar f3U = ghat3 + invttail(e(df_r),.025)*se3 

scalar list f1L f1U f2L f2U f3L f3U 

In Stata the computation of the exact critical value uses the invttail function. The results 
follow.

9.7.2 Exponential Smoothing 

Another popular model used for predicting the future value of a variable based on its history is 
exponential smoothing. Like forecasting with an AR model, forecasting using exponential 
smoothing does not use information from any other variable.  

The basic idea is that the forecast for next period is a weighted average of the forecast for the 
current period and the actual realized value in the current period. 

1ˆ ˆ(1 )T T Ty y y � %  � %

       se3 =  .62845236
       se2 =  .59065984
       se1 =  .55268751
. scalar list se1 se2 se3

       f3U =  2.2424338
       f3L = -.25352994
       f2U =  2.1063681
       f2L = -.23949866
       f1U =  1.8156073
       f1L = -.37944839
. scalar list f1L f1U f2L f2U f3L f3U



302   Chapter 9 

The exponential smoothing method is a versatile forecasting tool, but one needs a value for the 
smoothing parameter %  and a value for ˆTy  to generate the forecast 1ˆTy  . The value of %  can 
reflect one’s judgment about the relative weight of current information; alternatively, it can be 
estimated from historical information by obtaining within-sample forecasts

1 1ˆ ˆ(1 )t t ty y y� �� %  �% 2,3, ,t T� �

and choosing that value of %  that minimizes the sum of squares of the one-step forecast errors

� �1 1ˆ ˆ(1 )t t t t t tv y y y y y� �� � � � %  �%

Smaller values of % result in more smoothing of the forecast. Stata contains a routine that 
performs various forms of smoothing for time-series called tssmooth. tssmooth creates new 
variable newvar and fills it in by passing the variable through the requested smoother. There are 
several smoothers available, including the exponential. Once can specify the desired value of the 
smoothing parameter, %, or its value can be chosen automatically to minimize the in-sample sum-
of-squared prediction errors as discussed in POE4.

Below, the okun.dta data are used to obtain the exponentially smoothed forecast values of 
GDP growth. First the data are opened, the dates generated, reformatted, and the variables are set 
as time-series.  

use okun, clear 

generate date = tq(1985q2) + _n-1 

format %tq date 

tsset date 

The first thing to do before smoothing g is to add an (empty) observation to the time-series. 
Doing this before smoothing will allow Stata to fill that observation with the one-step ahead 
forecast.

tsappend, add(1) 

The command to exponentially smooth the series g is: 

tssmooth exponential sm1=g, parms(.38) 

The syntax for tssmooth, which appears below, deserves some explanation.  
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The first thing to specify is the desired type of smoothing. Here, we choose exponential. Next a 
new variable name must be created and set equal to the series that is to be smoothed (sm1=g). This 
is followed by some options. The first, parms(.38), sets the value of the smoothing parameter. If 
this option is not specified, then tssmooth chooses the one that minimizes the sum-of-squared 
errors.

This produces the output 

The new variable sm1 contains the exponentially smoothed series and it is added to the data set. 
Once the smoothed series is generated, it can be compared to the unsmoothed version in a time-
series plot. In the line that follows, the two series are plotted and the legend is relabeled so that 
everything fits on the graph a little better. 

tsline sm1 g, legend(lab (1 "G") lab(2 "Ghat")) title(alpha=.38) \\\ 

lpattern(solid dash) 

    Nonlinear filter              nl

      seasonal Holt-Winters       shwinters
      nonseasonal Holt-Winters    hwinters
      double exponential          dexponential
      exponential                 exponential
    Recursive

      with specified weights      ma
      with uniform weights        ma
    Moving average

    Smoother category             smoother

        tssmooth smoother [type] newvar = exp [if] [in] [, ...]

Syntax

root mean squared error  =       .56354
sum-of-squared residuals =       31.122
exponential coefficient  =       0.3800

. tssmooth exponential sm1=g, parms(.38)

-1
0

1
2

3

1985q1 1990q1 1995q1 2000q1 2005q1 2010q1
date

G Ghat

alpha=0.38
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The forecast for the next period is generated and listed. Also, the information is computed 
automatically by tssmooth for 1 period. If more are desired then Stata offers options for that. The 
manually generated and the automatic forecast from Stata match. 

scalar f1 = .38*g[98]+(1-.38)*sm1[98] 

scalar list f1  

list sm1 in 99 

The exercise is repeated for a smoothing parameter of 0.8.% � The code and results are below. 

tssmooth exponential sm2=g, parms(.8) 

tsline sm2 g, legend(lab (1 "G") lab(2 "Ghat")) title(alpha=.8) \\\ 

lpattern(solid dash) 

scalar f2 = .8*g[98]+(1-.8)*sm2[98] 

scalar list f2 

The larger value of 0.8% � results in less smoothing; the exponentially smoothed series is much 
closer to the original that when 0.38.% � The forecast, f2,  is 0.56128444, which is much larger 
than the one generated with the larger smoothing parameter. 

      
 99.   .0535653  
      
            sm1  
      

. list sm1 in 99

        f1 =  .05356533
. scalar list f1 

-1
0

1
2

3

1985q1 1990q1 1995q1 2000q1 2005q1 2010q1
date

G Ghat

alpha=0.8
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Finally, if the specific value of the smoothing parameter is omitted as an option, Stata 
chooses the value that minimizes the in-sample sum-of-squared prediction errors. This is 
estimated in Stata using  

tssmooth exponential sm3=g 

scalar f3 = r(alpha)*g[98]+(1-r(alpha))*sm3[98] 

scalar list f3 

which yields 

By this accounting, the fixed choice of 0.38 was an informed one! Note that the value of the 
smoothing parameter is saved as r(alpha) after smoothing and that it can be used to generate 
forecasts just as easily as with a fixed value. 

9.8 MULTIPLIER ANALYSIS 

Multiplier analysis refers to the effect, and the timing of the effect, of a change in one variable on 
the outcome of another variable. The simplest form of multiplier analysis is based on a finite 
distributed lag model 

0 1 1 2 2t t t t q t q ty x x x x e� � �� % � � �  � �

The estimated coefficients from this model can be used to produce impact, delay and interim 
multipliers. The impact multiplier is the impact of a one unit change in xt on the mean of yt. Since 
x and y are in the same time period the effect is contemporaneous and therefore equal to the initial 
impact of the change. The s-period delay multiplier is 

( )t
s

t s

E y
x �

+
� �

+

is the effect of a change in x s-periods in the past on the average value of the dependent variable 
in the current period. If tx is increased by 1 unit and then maintained at its new level in 
subsequent periods ( 1),( 2),t t  � ., then one can compute the interim multiplier. An interim
multiplier simply adds the immediate effect (impact multiplier), 0� , to subsequent delay 
multipliers to measure the cumulative effect. So in period t + 1 the interim effect is 0 1� � . In 

        f3 =  .05367152
. scalar list f3

. scalar f3 = r(alpha)*g[98]+(1-r(alpha))*sm3[98]

root mean squared error         =     .56353515
sum-of-squared residuals        =     31.122043
optimal exponential coefficient =        0.3803

computing optimal exponential  coefficient (0,1)
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period 2t  , it will be 0 1 2�  �  � , and so on. The total multiplier is the final effect on y of the 
sustained increase after q or more periods have elapsed; it is given by 0

q
ss� �� .

The ARDL model adds lagged values of the dependent variable to the AR model.  

1 1 0 1 1t t p t p t t q t q ty y y x x x v� � � �� 2  -   -  2  2   2 � �

and this makes the multiplier analysis a little harder. Basically, this needs to be transformed into 
an infinite distributed lag model using the properties of the lag operator, L, which works just as 
the Stata commands based on it do.  That is, .i

t t iL x x �� This puts the model into the familiar AR 
form and the usual definitions of the multipliers can be applied. This is discussed in detail in 
POE4 and will not be replicated here.  

For the ARDL(1,1) model used to describe Okun’s law we have 

1 1 0 1 1t t t t tDU DU G G v� �� 2  -  2  2 

or, written with the lag operator, L 

� � � �1 0 11 t t tL DU L G v�- � 2  2  2 

� � � � � � � �1 1 1
1 1 0 1 11 1 1t t tDU L L L G L v� � �� � - 2  �- 2  2  �-

� �
0 1 1 2 2 3 3

2 3
0 1 2 3

t t t t t t

t t

DU G G G G e

L L L G e

� � �� % � � � �  

� %  � � � �  

�

�

This is just an infinite distributed lag model. The coefficients for the multipliers involve the ,s�
which must be solved for in terms of the estimated parameters of the ARDL.  

The solutions given in POE4 are 

0 0� � 2

1 1 0 1� � 2 � -

1 1j j�� � � -      for  2j  

The Stata code to estimate the impact and first few interim multipliers based on the ARDL(1,1) 
for the Okun model is: 

regress D.u L.D.u L(0/1).g  

scalar b0 = _b[g] 

scalar b1 = _b[L1.D.u]*b0+_b[L1.g] 

scalar b2 = b1*_b[L1.D.u] 

scalar b3 = b2*_b[L1.D.u] 

and so on. 



Regression with Time-Series Data:  Stationary Variables   307

Stata provides a slick way to get these into a data set so that they can be graphed. After the 
regression generate a new variable called mult and place the estimated coefficient 0� into the first 
observation 

gen mult = _b[g] in 1 

For the second observation where 1 1 0 1� � 2  � - , use the replace command to put the computed 
value into the second observation: 

replace mult = L.mult*_b[L1.D.u]+_b[L1.g] in 2   

Notice that L.mult is used for the estimate of 0� . The rest of the multipliers are computed based 
on 1 1j j�� � � - , which can be estimated using a single line 

replace mult = L.mult*_b[L1.D.u] in 3/8 

list mult in 1/8 

In this case L.mult is the lagged value of the variable mult that contains the multipliers. You 
could easily compute these up to T if desired, though we’ve chosen to only do eight. Finally, 
create a new variable called lag that contains integers to be used as the lag weights (1 to 8). 
Finally, you can plot them. 

gen lag = _n-1 in 1/8 

line mult lag in 1/8 

The multipliers are: 

and the graph: 

      
  8.   -.0003013  
  7.   -.0008607  
  6.   -.0024584  
      
  5.   -.0070216  
  4.    -.020055  
  3.    -.057281  
  2.    -.163606  
  1.   -.1840843  
      
            mult  
      

. list mult in 1/8
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It appears that the initial impact is negative, but converges to zero as time passes. By the 6th

period the effect of a one unit change in GDP growth on unemployment is virtually zero. 

9.9 APPENDIX 

9.9.1 Durbin-Watson Test 

The Durbin-Watson statistic is easily produced using estat dwatson after a regression. For the 
Phillips dataset the DW statistic is produced using the code:  

* Durbin Watson test 

use phillips_aus, clear 

generate date = tq(1987q1) + _n-1 

format %tq date 

tsset date 

regress inf D.u 

estat dwatson 

which produces  

Note, the dwatson test in Stata requires you to looks up the upper and lower bounds in a table. 
The exact p-value obtained by integrating the distribution function of DW is not performed at this 
point in time. 

-.2
-.1

5
-.1

-.0
5

0
m

ul
t

0 2 4 6 8
lag

Durbin-Watson d-statistic(  2,    90) =  .8872891

. estat dwatson
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9.9.2 Prais-Winsten FGLS 

The feasible GLS estimator of the AR(1) model can be estimated using the Stata procedure called 
prais. The prais command operates much like regress and uses similar syntax. There are a few 
additional options that may be worth exploring if you are interested. The biggest limitation of 
prais is that it will only estimate models with first-order autocorrelation. For more complex 
models, see the arima command which estimates more general models using maximum 
likelihood. Two-step FGLS estimation of a linear regression model with AR(1) errors is estimated  

* Prais-Winsten FGLS estimator 

prais inf D.u, twostep 

If the twostep option is not given, the estimator iterates until a stable solution is found. Both 
estimators have the same asymptotic properties so there is really no need to iterate.   

prais inf D.u 

This produces: 

The first column contains the two-step FGLS results and the second are the ones from iteration. 
The results are very similar. 

The maximum likelihood estimator derived via the arima command is estimated using 

arima inf D.u, ar(1) 

which produces 

* p<0.05, ** p<0.01, *** p<0.001
Standard errors in parentheses

rho          0.54988      0.55825   
rss         23.50157     23.49538   
N                 90           90   

             (0.120)      (0.122)   
_cons        0.78584***   0.78619***

             (0.243)      (0.243)   
D.u         -0.69943**   -0.70236** 

              2-step     Iterated   
                 (1)          (2)   

Dependent Variable: inf

>         mtitle("2-step" "Iterated") title("Dependent Variable: inf")
> /
. esttab _2step Iterate, compress se(%12.3f) b(%12.5f) gaps scalars(rss rho) //
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The first block contains the estimates of the regression. The intercept is estimated to be ;*<.9 and 
the slope on the change in unemployment is �;*<;(,*&The autocorrelation parameter is in the box 
labeled ARMA and is estimated to be ;*==8*&These results are very similar to the FGLS estimates 
obtained using prais.

      /sigma     .5109273   .0277513    18.41   0.000     .4565358    .5653188

         L1.     .5588218   .0873961     6.39   0.000     .3875285    .7301151
          ar  
ARMA          

       _cons     .7861493   .1398032     5.62   0.000       .51214    1.060159
              
         D1.    -.7025681   .3167053    -2.22   0.027    -1.323299   -.0818371
           u  
inf           

         inf        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                               OPG

Log likelihood =  -67.4559                      Prob > chi2        =    0.0000
                                                Wald chi2(2)       =     44.96
Sample:  1987q2 - 2009q3                        Number of obs      =        90

ARIMA regression
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KEY TERMS 

%tq estat dwatson nl 
ac exponential smoothing nonlinear least squares 
AIC criterion finite distributed lag Prais-Winsten 
AR(1) error forecast error prais 
AR(p) model forecast standard error program 
ARDL(p,q) model forecasting pseudofunctions 
arima format replace 
autocorrelation forvalues sample autocorrelations 
autoregressive HAC standard errors SC criterion 
autoregressive error impact multiplier serial correlation 
autoregressive model infinite distributed lag TR2 form of LM test 
bandwidth interim multiplier total multiplier 
BIC criterion kernel tsline 
correlogram L(0/4).varname tsset 
corrgram L. operator tssmooth 
D. operator lag length tsvarlist 
delay multiplier lag operator within-sample forecasts 
difference operator lagged dependent variable 
distributed lags LM test 
e(df_r) macro 
e(N) multiplier analysis 
e(r2) newey 
estat bgodfrey Newey-West standard errors 
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CHAPTER 9 DO-FILE [CHAP09.DO] 

* file chap09.do for Using Stata for Principles of Econometrics, 4e 

cd c:\data\poe4stata 

* Stata Do-file 

* copyright C 2011 by Lee C. Adkins and R. Carter Hill 
* used for "Using Stata for Principles of Econometrics, 4e" 

* by Lee C. Adkins and R. Carter Hill (2011) 

* John Wiley and Sons, Inc. 

* setup 

version 11.1 
capture log close 

set more off 

* dates 

clear 

set obs 100 
generate date = tq(1961q1) + _n-1 

list date in 1/5 

format %tq date 
list date in 1/5 

tsset date 

save new.dta, replace 

* open log 

log using chap09, replace text 
use okun, clear 

generate date = tq(1985q2) + _n-1 

list date in 1 

format %tq date 

list date in 1 

tsset date 

label var u "% Unemployed" 

label var g "% GDP growth" 

tsline u g, lpattern(solid dash) 

list date u L.u D.u g L1.g L2.g L3.g in 1/5 

list date u L.u D.u g L1.g L2.g L3.g in 96/98 

regress D.u L(0/3).g 

regress D.u L(0/2).g  

summarize g 

return list 

scatter g L.g, xline(`r(mean)') yline(`r(mean)') 

ac g, lags(12) generate(ac_g) 

* approximate z scores 

gen z=sqrt(e(N))*ac_g 
list ac_g z in 1/12 

use phillips_aus, clear 
generate date = tq(1987q1) + _n-1 

format %tq date 

tsset date 
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tsline inf 

tsline D.u 

reg inf D.u 

predict ehat, res 

ac ehat, lags(12) generate(rk) 

list rk in 1/5 

* -------------------------------------------------- 

* Corrgram  
* -------------------------------------------------- 

corrgram ehat, lags(5) 

di "rho1 = " r(ac1) " rho2 = " r(ac2) " rho3 = " r(ac3) 
drop rk ehat 

* LM tests for AR(1) and AR(4) alternatives 
reg inf D.u 

predict ehat, res 

regress inf D.u L.ehat 
test L.ehat 

* LM test for AR(1) 

quietly regress ehat D.u L.ehat 
di "Observations = " e(N) " and TR2 = " e(N)*e(r2) 

* LM test for AR(4) 

quietly regress ehat D.u L(1/4).ehat 
di "Observations = " e(N) " and TR2 = " e(N)*e(r2) 

drop ehat 

* Using the built-in bgodfrey command to test the  

* AR(1) and AR(4) alternatives 

regress inf D.u 
predict ehat, res 

estat bgodfrey, lags(1) 

estat bgodfrey, lags(4) 

* Replacing ehat(1) with zero and computing LM 

replace ehat = 0 in 1 
regress inf D.u L.ehat 

test L.ehat 

quietly regress ehat D.u L.ehat 
di "Observations = " e(N) " and TR2 = " e(N)*e(r2) 

drop ehat 

* Getting Stata to use 90 observations for the LM test 

reg inf D.u 

predict ehat, res 

* Using all observations for bgodfrey test 

set obs 94                                   // add 3 observations to data 
gsort -date                                  // moves missing observations to end 

replace date = date[_n-1] - 1 if missing(date) // creates dates for missing obs 

replace ehat = 0 if missing(ehat)            // puts zeros in for missing ehats 
sort date                                    // re-sort data into ascending order 

regress ehat D.u L(1/4).ehat 

di "Observations = " e(N) " and TR2 = " e(N)*e(r2) 

use phillips_aus, clear 

generate date = tq(1987q1) + _n-1 
format %tq date 

tsset date 
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scalar B = round(4*(e(N)/100)^(2/9)) 

scalar list B 

regress inf D.u 

estimates store Wrong_SE 

newey inf D.u, lag(4)  
estimates store HAC_4 

esttab Wrong_SE HAC_4, compress se(%12.3f) b(%12.5f) gaps /// 
 scalars(r2_a rss aic) title("Dependent Variable: inf") /// 

 mtitles("LS" "HAC(4)") 

   
* -------------------------------------------------- 

* Nonlinear least squares of AR(1) regression model 

* -------------------------------------------------- 

nl (inf = {b1}*(1-{rho}) + {b2}*D.u + {rho}*L.inf - {rho}*{b2}*(L.D.u)), ///  

         variables(inf D.u L.inf L.D.u) 
* To see the coefficient legend use coeflegend option 

nl (inf = {b1}*(1-{rho}) + {b2}*D.u + {rho}*L.inf - {rho}*{b2}*(L.D.u)), ///  

          variables(inf D.u L.inf L.D.u) coeflegend 
scalar delta = _b[b1:_cons]*(1-_b[rho:_cons]) 

scalar delta1 = - _b[rho:_cons]*_b[b2:_cons] 

* -------------------------------------------------- 

* More general model 

* -------------------------------------------------- 

regress inf L.inf D.u L.D.u 

estimates store General 
scalar list delta delta1 

testnl _b[L.D.u]=-_b[L.inf]*_b[D.u] 

regress inf L.inf D.u 

estimates store No_LDu 

regress inf D.u 

estimates store Original 
esttab General No_LDu Original, compress se(%12.3f) b(%12.5f) /// 

       gaps scalars(r2_a rss aic)  

* ARDL 

regress inf L.inf L(0/1).D.u 

estimates store AR1_DL1  
regress inf L.inf D.u 

estimates store AR1_DL0 

esttab AR1_DL1 AR1_DL0, compress se(%12.3f) b(%12.5f) /// 
       gaps scalars(r2_a rss aic)  

* Model selection program computes aic and sc 
* To remove it from memory use: 

* program drop modelsel 

capture program drop modelsel 

program modelsel 

  scalar aic = ln(e(rss)/e(N))+2*e(rank)/e(N)  
  scalar sc = ln(e(rss)/e(N))+e(rank)*ln(e(N))/e(N) 

  scalar obs = e(N) 

  scalar list aic sc obs  
end 

quietly regress inf L.inf L(0/1).D.u 
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modelsel 

quietly regress inf L.inf L.D.u 

modelsel 

* -------------------------------------------------- 

* Residual correlogram and graph 
* -------------------------------------------------- 

quietly regress inf L.inf D.u 
predict ehat, res 

corrgram ehat, lags(12) 

ac ehat, lags(12)  
estat bgodfrey, lags(1 2 3 4 5) 

drop ehat 

* Table 9.4 AIC and SC Values for Phillips Curve ARDL model 

* Note that regress can be abreviated to reg and quietly to qui 

quietly reg L(0/1).inf D.u if date>= tq(1988q3) 

di "p=1  q=0" 

modelsel 
quietly regress L(0/2).inf D.u if date>= tq(1988q3) 

di "p=2  q=0" 

modelsel 
quietly regress L(0/3).inf D.u if date>= tq(1988q3) 

di "p=3  q=0" 

modelsel 
quietly regress L(0/4).inf D.u if date>= tq(1988q3) 

di "p=4  q=0" 

modelsel 
quietly regress L(0/5).inf D.u if date>= tq(1988q3) 

di "p=5  q=0" 

modelsel 
quietly regress L(0/6).inf D.u if date>= tq(1988q3) 

di "p=6  q=0" 

modelsel 

qui reg L(0/1).inf L(0/1).D.u if date>= tq(1988q3) 

di "p=1  q=1" 
modelsel 

qui reg L(0/2).inf L(0/1).D.u if date>= tq(1988q3) 

di "p=2  q=1" 
modelsel 

qui reg L(0/3).inf L(0/1).D.u if date>= tq(1988q3) 

di "p=3  q=1" 
modelsel 

qui reg L(0/4).inf L(0/1).D.u if date>= tq(1988q3) 

di "p=4  q=1" 
modelsel 

qui reg L(0/5).inf L(0/1).D.u if date>= tq(1988q3) 

di "p=5  q=1" 
modelsel 

qui reg L(0/6).inf L(0/1).D.u if date>= tq(1988q3) 

di "p=6  q=1" 
modelsel 

* Table 9.4 AIC and SC Values for Phillips Curve ARDL model 
* Here is the entire thing again, using nested loops 

forvalues q=0/1 { 

   forvalues p=1/6 { 
      quietly regress L(0/`p').inf L(0/`q').D.u if date >= tq(1988q3) 

      display "p=`p'  q=`q'" 

      modelsel 
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      } 

   } 

    
* Using var to estimate ARDL 

* Disadvantage:  No estat after the procedure 

var inf in 7/91, lags(1/3) exog(L(0/1).D.u)  

* ARDL models 
use okun, clear 

generate date = tq(1985q2) + _n-1 

format %tq date 
tsset date 

* Estimate the ARDL(0,2)  
* Generate the correlogram and test for autocorrelation 

reg D.u L(0/2).g  

predict ehat, res 
ac ehat, lags(12) 

drop ehat 

estat bgodfrey, lags(1 2 3 4 5) 

* Model Selection for Okun's Law model 

forvalues q=1/3 { 
   forvalues p=0/2 { 

      quietly regress L(0/`p').D.u L(0/`q').g if date >= tq(1986q1) 

      display "p=`p'  q=`q'" 
      modelsel 

      } 

   } 

reg D.u L.D.u L(0/1).g 

estat bgodfrey 

* Figure 9.11 

reg g L(1/2).g 
predict ehat, res 

ac ehat, lags(12) 

* Table 9.6 

forvalues p=1/5 { 

  qui reg L(0/`p').g if date> tq(1986q2) 
  display "p=`p' 

  modelsel 

  } 

* Forecasting using -arima- instead of -regress- 
* which, of course, yields different predictions 

arima g, ar(1/2) 

tsappend, add(3) 
predict ghat, y // for the point estimates 

predict ghatse, mse // for the standard error of prediction 

* Forecasting with an AR model 

reg g L(1/2).g  
scalar ghat1 = _b[_cons]+_b[L1.g]*g[98]+ _b[L2.g]*g[97] 

scalar ghat2 = _b[_cons]+_b[L1.g]*ghat1+ _b[L2.g]*g[98] 

scalar ghat3 = _b[_cons]+_b[L1.g]*ghat2+ _b[L2.g]*ghat1 
scalar list ghat1 ghat2 ghat3 

scalar var = e(rmse)^2 
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scalar se1 = sqrt(var) 

scalar se2 = sqrt(var*(1+(_b[L1.g])^2)) 

scalar se3 = sqrt(var*((_b[L1.g]^2+_b[L2.g])^2+1+_b[L1.g]^2)) 
scalar list se1 se2 se3 

scalar f1L = ghat1 - invttail(e(df_r),.025)*se1 
scalar f1U = ghat1 + invttail(e(df_r),.025)*se1 

scalar f2L = ghat2 - invttail(e(df_r),.025)*se2 
scalar f2U = ghat2 + invttail(e(df_r),.025)*se2 

scalar f3L = ghat3 - invttail(e(df_r),.025)*se3 
scalar f3U = ghat3 + invttail(e(df_r),.025)*se3 

scalar list f1L f1U f2L f2U f3L f3U 

* -------------------------------------------------- 

* Impact and Delay Multipliers from Okun's ARDL(1,1) model 
* -------------------------------------------------- 

regress D.u L.D.u L(0/1).g  

scalar b0 = _b[g] 

scalar b1 = _b[L1.D.u]*b0+_b[L1.g] 
scalar b2 = b1*_b[L1.D.u] 

scalar list b0 b1 b2   

* An alternative method: Exploiting variable creation 

regress D.u L.D.u L(0/1).g 

gen mult = _b[g] in 1 
replace mult = L.mult*_b[L1.D.u]+_b[L1.g] in 2 

replace mult = L.mult*_b[L1.D.u] in 3/8 

list mult in 1/8 
gen lag = _n-1 in 1/8 

line mult lag in 1/8 

* -------------------------------------------------- 

* Exponential Smoothing 

* -------------------------------------------------- 

use okun, clear 

generate date = tq(1985q2) + _n-1 
format %tq date 

tsset date 

tsappend, add(1) 

tssmooth exponential sm1=g, parms(.38) 

tsline sm1 g, legend(lab (1 "G") lab(2 "Ghat")) title(alpha=0.38) lpattern(solid dash) 
scalar f1 = .38*g[98]+(1-.38)*sm1[98] 

scalar list f1  

list sm1 in 99 

tssmooth exponential sm2=g, parms(.8) 

tsline sm2 g, legend(lab (1 "G") lab(2 "Ghat")) title(alpha=0.8) lpattern(solid dash) 
scalar f2 = .8*g[98]+(1-.8)*sm2[98] 

scalar list f2 

tssmooth exponential sm3=g 

scalar f3 = r(alpha)*g[98]+(1-r(alpha))*sm3[98] 

scalar list f3 
list sm3 in 99 

program drop modelsel  
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drop sm1 sm2 sm3  

* appendix 
* Durbin Watson test 

use phillips_aus, clear 

generate date = tq(1987q1) + _n-1 
format %tq date 

tsset date 

regress inf D.u 

estat dwatson 

* Prais-Winsten FGLS estimator 

prais inf D.u, twostep 

estimates store _2step 
prais inf D.u 

estimates store Iterate 

esttab _2step Iterate, compress se(%12.3f) b(%12.5f) gaps scalars(rss rho) /// 
        mtitle("2-step" "Iterated") title("Dependent Variable: inf") 

* AR(1) using arima 
arima inf D.u, ar(1) 

log close 
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CHAPTER 10

Random Regressors and Moment-
Based Estimation 

CHAPTER OUTLINE 
10.1 Least squares estimation of a wage equation 
10.2 Two-stage least squares 
10.3 IV estimation with surplus instruments  
     10.3.1 Illustrating partial correlations 
10.4 The Hausman test for endogeneity 
10.5 Testing the validity of surplus instruments 

10.6 Testing for weak instruments 
10.7 Calculating the Cragg-Donald F-statistic 
10.8 A simulation experiment 
Key Terms  
Chapter 10 Do-file 

10.1 LEAST SQUARES ESTIMATION OF A WAGE EQUATION 

The example in Chapter 10 of Principles of Econometrics, 4th Edition, uses Thomas Mroz’s data 
on labor force experiences of married women. Open a log file, the data file mroz.dta, and examine 
the data 

 
log using chap10_wage, replace text 

use mroz, clear 

describe 

summarize 

 
We will use the wage data on working women to estimate the log-linear wage equation 
 

� � 2
1 2 3 4ln WAGE EDUC EXPER EXPER e� � � � �   

 
To eliminate non-working women in the data file we use the drop statement. The variable 
identifying labor force participation is lfp which is 1 if a woman is in the labor force and 0 if she 
is not. Then summarize the key variables wage, educ and experience (exper). 
 

drop if lfp==0 
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summarize wage educ exper 

 

 
 
Create the variables ln(wage) and experience squared. 
 

gen lwage = ln(wage) 

gen exper2 = exper^2 

 
Estimate regression model using least squares 
 

reg lwage educ exper exper2 

 

 
 
For later purposes we will save these regression results using the estimates store command. 
This post-estimation command saves the results in Stata’s memory and can be recalled for later 
use. Save the estimates under the name “ls” for “least squares.” The command is 
 

estimates store ls 
 
Should you forget the syntax click Statistics > Postestimation. Then select Manage estimation 
results > Store in memory 
 

       exper         428    13.03738    8.055923          0         38
        educ         428    12.65888    2.285376          5         17
        wage         428    4.177682    3.310282      .1282         25
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize wage educ exper

                                                                              
       _cons    -.5220406   .1986321    -2.63   0.009    -.9124667   -.1316144
      exper2    -.0008112   .0003932    -2.06   0.040    -.0015841   -.0000382
       exper     .0415665   .0131752     3.15   0.002     .0156697    .0674633
        educ     .1074896   .0141465     7.60   0.000     .0796837    .1352956
                                                                              
       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    223.327442   427  .523015086           Root MSE      =  .66642
                                                       Adj R-squared =  0.1509
    Residual    188.305145   424  .444115908           R-squared     =  0.1568
       Model    35.0222967     3  11.6740989           Prob > F      =  0.0000
                                                       F(  3,   424) =   26.29
      Source         SS       df       MS              Number of obs =     428

. reg lwage educ exper exper2
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In the resulting dialog box enter a name, “ls” for the saved results. 
 

 

10.2 TWO-STAGE LEAST SQUARES 

In this example we might consider the education variable educ to be endogenous because it may 
be correlated with ability and other factors in the regression error term. Instrumental variables 
estimation is also known as two-stage least squares because the estimates can be obtained in two 
steps. Estimate the first-stage equation for education, educ, including on the right-hand side as 
explanatory variables the included exogenous variables exper and exper2 and the instrumental 
variable mothereduc which is not included in the model. 
 

reg educ exper exper2 mothereduc 
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A key element in the first-stage regression is that mothereduc is a statistically significant 
explanatory variable, with a t-statistic > 3.3 or an F-value > 10. More will be said about critical 
values for the F-test in Section 10.6 of this chapter. The F-test values is obtained using  

 
test mothereduc 

 

 
 
Obtain the fitted value from the first stage equation, and use it as an explanatory variable in the 
ln(wage) equation in place of educ. 
 

predict educ_hat 

reg lwage educ_hat exper exper2  

 
The resulting coefficient estimates are proper IV/2SLS estimates, but the reported standard errors, 
t-statistics, p-values and interval estimates reported below are not correct. 
 

 
 

                                                                              
       _cons     9.775103   .4238886    23.06   0.000     8.941918    10.60829
  mothereduc     .2676908   .0311298     8.60   0.000     .2065029    .3288787
      exper2    -.0012811   .0012449    -1.03   0.304     -.003728    .0011659
       exper     .0488615   .0416693     1.17   0.242    -.0330425    .1307655
                                                                              
        educ        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    2230.19626   427  5.22294206           Root MSE      =  2.1111
                                                       Adj R-squared =  0.1467
    Residual    1889.65843   424  4.45674158           R-squared     =  0.1527
       Model    340.537834     3  113.512611           Prob > F      =  0.0000
                                                       F(  3,   424) =   25.47
      Source         SS       df       MS              Number of obs =     428

. reg educ exper exper2 mothereduc

            Prob > F =    0.0000
       F(  1,   424) =   73.95

 ( 1)  mothereduc = 0

. test mothereduc

                                                                              
       _cons     .1981861   .4933427     0.40   0.688    -.7715157    1.167888
      exper2    -.0009221    .000424    -2.17   0.030    -.0017554   -.0000887
       exper     .0448558   .0141644     3.17   0.002     .0170147     .072697
     educhat     .0492629   .0390562     1.26   0.208    -.0275049    .1260308
                                                                              
       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    223.327442   427  .523015086           Root MSE      =  .70902
                                                       Adj R-squared =  0.0388
    Residual    213.146238   424  .502703391           R-squared     =  0.0456
       Model     10.181204     3  3.39373467           Prob > F      =  0.0002
                                                       F(  3,   424) =    6.75
      Source         SS       df       MS              Number of obs =     428

. reg lwage educhat exper exper2



Random Regressors and Moment-Based Estimation   323 

When carrying out instrumental variable estimation always use software designed for this 
purpose. In Stata 11 this command is ivregress. For a full description of the capabilities of this 
powerful command enter help ivregress. To implement ivregress using a dialog box follow 
the path  
 
Statistics > Endogenous covariates > Single-equation instrumental-variables regression 
 

    
 
Alternatively enter db ivregress in the Command window. Fill in as shown and press OK.  

 

 
 

 
 
Instruments:   exper exper2 mothereduc
Instrumented:  educ
                                                                              
       _cons     .1981861   .4706623     0.42   0.674    -.7242952    1.120667
      exper2    -.0009221   .0004045    -2.28   0.023    -.0017148   -.0001293
       exper     .0448558   .0135132     3.32   0.001     .0183704    .0713413
        educ      .049263   .0372607     1.32   0.186    -.0237666    .1222925
                                                                              
       lwage        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

                                                       Root MSE      =  .67642
                                                       R-squared     =  0.1231
                                                       Prob > chi2   =  0.0001
                                                       Wald chi2(3)  =   22.25
Instrumental variables (2SLS) regression               Number of obs =     428

. ivregress 2sls lwage exper exper2 (educ = mothereduc)
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The implied Stata command is 
 

ivregress 2sls lwage exper exper2 (educ=mothereduc) 

 
After ivregress use the option 2sls, which is required for instrumental variables estimation. 
The dependent variable lwage follows, which is then followed by the explanatory variables. 
Endogenous variables are placed in parentheses with the list of instrumental variables from 
outside the model, as in (educ=mothereduc). For any explanatory variable that is endogenous 
we have the statement in parentheses, which is 
 

(varlist2 = varlist_iv)  

 
where 

 
 varlist2 is a list of all the right-hand size endogenous variables 
 varlist_iv is a list of all the instrumental variables that are not in the model 

 
Explanatory variables that are not endogenous would be listed either before or after the 
expression in parentheses. Using the dialog-box approach this is placed at the end of the 
command, but it can appear anywhere after the dependent variable. 

The coefficient estimates are the IV estimates, and the standard errors are properly computed. 
The reported test statistics are labeled “z” because IV estimators have asymptotic properties, and 
in large samples the t-statistics converge to the standard normal distribution, and Z–statistics are 
appropriate. 

To take a more “conservative” approach we compute t-statistics, which correct for the 
degrees of freedom, producing slightly larger standard errors and thus slightly larger p-values. In 
the dialog box use the Reporting tab and choose option for degrees-of-freedom adjustments. 

 

 
 

Equivalently, in the command, we add the option small 
 

ivregress 2sls lwage (educ=mothereduc) exper exper2, small 

 
Note that in this command we have placed (educ=mothereduc) after the dependent variable. As 
noted this placement is at the discretion of the programmer. 
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Note that now t-statistics are reported in the usual fashion, along with an analysis of variance 
table. The usual formulas for the explained sum of squares (due to regression) do not hold with IV 
estimation. However the sums of squares add up because Stata defines SS_Model = SS_Total � 
SS_Residual. Such details may be found by reading the full Stata documentation. This material 
is advanced and uses matrix algebra. 

 

 
 
For cross sectional data, such as the Mroz data, we may also be concerned about 
heteroskedasticity in the data. Instrumental variables standard errors can be made “robust” to 
heteroskedasticity, using the White heteroskedasticity correction, by adding the option 
vce(robust) to ivregress. In the ivregress dialog box on the SE/Robust Tab choose Robust. 
 

 
 
In the command line enter 

 
ivregress 2sls lwage (educ=mothereduc) exper exper2, vce(robust) small 

Instruments:   exper exper2 mothereduc
Instrumented:  educ
                                                                              
       _cons     .1981861   .4728772     0.42   0.675    -.7312895    1.127662
      exper2    -.0009221   .0004064    -2.27   0.024    -.0017208   -.0001233
       exper     .0448558   .0135768     3.30   0.001     .0181696    .0715421
        educ      .049263    .037436     1.32   0.189    -.0243204    .1228463
                                                                              
       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    223.327442   427  .523015086           Root MSE      =   .6796
                                                       Adj R-squared =  0.1169
    Residual    195.829059   424  .461860988           R-squared     =  0.1231
       Model    27.4983827     3  9.16612758           Prob > F      =  0.0001
                                                       F(  3,   424) =    7.35
      Source         SS       df       MS              Number of obs =     428

Instrumental variables (2SLS) regression

. ivregress 2sls lwage (educ=mothereduc) exper exper2, small
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The standard errors are now labeled Robust Std. Err. Note that the robust standard errors are 
slightly larger than the usual standard errors, which is the usual outcome. The overall F-test is 
also based on the robust covariance matrix.  

10.3 IV ESTIMATION WITH SURPLUS INSTRUMENTS 

Increasing the number of instruments requires a simple modification to the syntax of ivregress. 
Suppose that in addition to mothereduc we use fathereduc as an instrument. To test whether our 
instruments are adequately correlated with education estimate the first-stage equation. Test the 
significance of the instruments from outside the model. Because we have only one endogenous 
explanatory variable we require only one instrumental variable. If we consider mothereduc and 
fathereduc individually we can use t-tests to test their significance. Recall that mere significance 
is not enough. For t-tests we look for values in excess of 3.3. 
 

reg educ exper exper2 fathereduc 

 

 
 

Instruments:   exper exper2 mothereduc
Instrumented:  educ
                                                                              
       _cons     .1981861   .4891462     0.41   0.686    -.7632673    1.159639
      exper2    -.0009221   .0004319    -2.14   0.033     -.001771   -.0000732
       exper     .0448558   .0156038     2.87   0.004     .0141853    .0755264
        educ      .049263   .0380396     1.30   0.196    -.0255067    .1240326
                                                                              
       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                             Robust
                                                                              

                                                       Root MSE      =   .6796
                                                       Adj R-squared =  0.1169
                                                       R-squared     =  0.1231
                                                       Prob > F      =  0.0010
                                                       F(  3,   424) =    5.50
Instrumental variables (2SLS) regression               Number of obs =     428

. ivregress 2sls lwage (educ=mothereduc) exper exper2, vce(robust) small

                                                                              
       _cons     9.887034   .3956078    24.99   0.000     9.109438    10.66463
  fathereduc     .2705061   .0288786     9.37   0.000     .2137431    .3272691
      exper2    -.0011504   .0012286    -0.94   0.350    -.0035652    .0012645
       exper     .0468243   .0411074     1.14   0.255    -.0339754     .127624
                                                                              
        educ        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    2230.19626   427  5.22294206           Root MSE      =  2.0825
                                                       Adj R-squared =  0.1697
    Residual     1838.7191   424  4.33660166           R-squared     =  0.1755
       Model    391.477157     3  130.492386           Prob > F      =  0.0000
                                                       F(  3,   424) =   30.09
      Source         SS       df       MS              Number of obs =     428

. reg educ exper exper2 fathereduc
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If we use both instruments together we will examine their individual and joint significance. 
 

reg educ exper exper2 mothereduc fathereduc 

test mothereduc fathereduc 

 

 
 
Or, making this test robust to heteroskedasticity 

 
reg educ exper exper2 mothereduc fathereduc, vce(robust) 

test mothereduc fathereduc 

 

 
 
In a joint test of significance the alternative hypothesis is that at least one of the variables is 
significant, and one is all we require when there is one endogenous variable. For an F-test, the 
minimum threshold value for an adequate instrument is about 10. Assured that our instruments 
are strong, we can now carry out IV estimation with two instrumental variables using 
 

ivregress 2sls lwage (educ=mothereduc fathereduc) exper exper2, small 

estimates store iv 

 

 

            Prob > F =    0.0000
       F(  2,   423) =   55.40

 ( 2)  fathereduc = 0
 ( 1)  mothereduc = 0

. test mothereduc fathereduc

            Prob > F =    0.0000
       F(  2,   423) =   49.53

 ( 2)  fathereduc = 0
 ( 1)  mothereduc = 0

. test mothereduc fathereduc

Instruments:   exper exper2 mothereduc fathereduc
Instrumented:  educ
                                                                              
       _cons     .0481003   .4003281     0.12   0.904    -.7387745     .834975
      exper2     -.000899   .0004017    -2.24   0.026    -.0016885   -.0001094
       exper     .0441704   .0134325     3.29   0.001     .0177679    .0705729
        educ     .0613966   .0314367     1.95   0.051    -.0003945    .1231878
                                                                              
       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    223.327442   427  .523015086           Root MSE      =  .67471
                                                       Adj R-squared =  0.1296
    Residual    193.020016   424  .455235886           R-squared     =  0.1357
       Model    30.3074259     3  10.1024753           Prob > F      =  0.0000
                                                       F(  3,   424) =    8.14
      Source         SS       df       MS              Number of obs =     428

Instrumental variables (2SLS) regression

. ivregress 2sls lwage (educ=mothereduc fathereduc) exper exper2 , small 
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Note that we have stored the instrumental variables estimates for future use. The post-estimation 
command estat firststage produces the first-stage F-statistic value. In the ivregress dialog 
box select this option on the Reporting tab. 

 

 
 

The post-estimation command is 
 

estat firststage 

 

 
 
The F-value is given the name Minimum eigenvalue statistic. This terminology and the 
usefulness of the Critical Values given below the statistic will be explained in Section 10.6 of 
this chapter. 

The IV estimation can be made robust to heteroskedasticity using 
 

ivregress 2sls lwage (educ=mothereduc fathereduc) exper exper2, 

 vce(robust) small  

 

                                                                       
  LIML Size of nominal 5% Wald test      8.68    5.33    4.42    3.92
  2SLS Size of nominal 5% Wald test     19.93   11.59    8.75    7.25
                                         10%     15%     20%     25%
                                                                       
  2SLS relative bias                           (not available)
                                          5%     10%     20%     30%
                                                                       
  Ho: Instruments are weak             # of excluded instruments:     2
  Critical Values                      # of endogenous regressors:    1

  Minimum eigenvalue statistic = 55.4003     

                                                                            
          educ    0.2115      0.2040       0.2076       55.4003    0.0000
                                                                            
      Variable     R-sq.       R-sq.        R-sq.      F(2,423)   Prob > F
                            Adjusted      Partial
                                                                            
  First-stage regression summary statistics

. estat firststage 
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estat firststage 

 

 
After robust IV estimation, the automatic first stage command, estat firststage, does not 
report the Critical Values because they are not valid under heteroskedasticity. 

10.3.1 Illustrating partial correlations 

One of the phrases heard during discussions of instrument strength is “partial correlations.” What 
does this mean? To simplify let us consider the case in which we have a single instrumental 
variable, mothereduc. Examine part of the output of estat firststage following ivregress. 
 

ivregress 2sls lwage (educ=mothereduc) exper exper2, small 

estat firststage 

 

 

Instruments:   exper exper2 mothereduc fathereduc
Instrumented:  educ
                                                                              
       _cons     .0481003   .4297977     0.11   0.911    -.7966992    .8928998
      exper2     -.000899   .0004301    -2.09   0.037    -.0017443   -.0000536
       exper     .0441704   .0155464     2.84   0.005     .0136128     .074728
        educ     .0613966   .0333386     1.84   0.066    -.0041329    .1269261
                                                                              
       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                             Robust
                                                                              

                                                       Root MSE      =  .67471
                                                       Adj R-squared =  0.1296
                                                       R-squared     =  0.1357
                                                       Prob > F      =  0.0004
                                                       F(  3,   424) =    6.15
Instrumental variables (2SLS) regression               Number of obs =     428

> small 
. ivregress 2sls lwage (educ=mothereduc fathereduc) exper exper2 , vce(robust) 

                                                                            
          educ    0.2115      0.2040       0.2076       49.5266    0.0000
                                                                            
      Variable     R-sq.       R-sq.        R-sq.      F(2,423)   Prob > F
                            Adjusted      Partial       Robust
                                                                            
  First-stage regression summary statistics

. estat firststage

                                                                            
          educ    0.1527      0.1467       0.1485       73.9459    0.0000
                                                                            
      Variable     R-sq.       R-sq.        R-sq.      F(1,424)   Prob > F
                            Adjusted      Partial
                                                                            
  First-stage regression summary statistics

. estat firststage
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The partial correlation of interest is the correlation between the endogenous variable educ and the 
instrumental variable mothereduc after removing the effects of the other exogenous variables, 
exper and exper2. Instrument strength can be measured by the partial correlation between the 
endogenous variable and a single instrument. The effects of exper and exper2 are removed by 
regressing educ and mothereduc on these variables and computing the least squares residuals. 
The residuals contain what is left after removing the effects of exper and exper2. 

 
reg educ exper exper2 

predict v1, r 

 

reg mothereduc exper exper2 

predict v2, r 

 
The option “r” in the predict statements is short for residuals. The correlation between these 
residuals is 

 
correlate v1 v2 

 

 
 

The square of this correlation is obtained by first using return list to see what has been saved 
after correlate. 

 
return list 

 

 
 
The square of the correlation is then displayed with 
 

di "partial correlation = "r(rho)^2 

 

 
 
In the output of estat firststage this is called the Partial R-sq. Why is it called a called an R-
squared? Regress v1 on v2, with no constant since the average value of the residuals v1 is zero. 

 
reg v1 v2, noconstant 

 

          v2     0.3854   1.0000
          v1     1.0000
                                
                     v1       v2

(obs=428)
. correlate v1 v2

                r(rho) =  .3853595047039399
                  r(N) =  428
scalars:

. return list

partial correlation = .14850195
. di "partial correlation = "r(rho)^2
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Note that the R-squared from this regression, which does not include a constant, is 0.1485.  

The relation between correlations and covariance helps us understand the regression 
coefficient above. The sample covariance between v1 and v2 is obtained using 

 
correlate v1 v2, covariance 

return list 

 

 
 

From these values we can compute the regression coefficient and the correlation. 
 

di "partial LS coefficient = " r(cov_12)/r(Var_2) 

di "partial correlation = " r(cov_12)/sqrt(r(Var_2)*r(Var_1)) 

 

 
 

 
 

                                                                              
          v2     .2676908   .0310202     8.63   0.000     .2067194    .3286622
                                                                              
          v1        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    2219.21639   428  5.18508502           Root MSE      =  2.1037
                                                       Adj R-squared =  0.1465
    Residual    1889.65843   427  4.42542958           R-squared     =  0.1485
       Model    329.557956     1  329.557956           Prob > F      =  0.0000
                                                       F(  1,   427) =   74.47
      Source         SS       df       MS              Number of obs =     428

. reg v1 v2, noconstant

              r(Var_1) =  5.197228071400259
              r(Var_2) =  10.77052844798386
             r(cov_12) =  2.883171450907586
                  r(N) =  428
scalars:

. return list

          v2    2.88317  10.7705
          v1    5.19723
                                
                     v1       v2

(obs=428)
. correlate v1 v2, covariance

partial LS coefficient = .26769081
. di "partial LS coefficient = " r(cov_12)/r(Var_2)

partial correlation = .3853595
. di "partial correlation = " r(cov_12)/sqrt(r(Var_2)*r(Var_1))
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10.4 THE HAUSMAN TEST FOR ENDOGENEITY 

We do not always know whether there might be an endogenous regressor among our explanatory 
variables. The Hausman procedure is a way to empirically test whether an explanatory variable is 
endogenous or not.  

In the regression 1 2y x e�� �   we wish to know whether x is correlated with e. Let 1z  and 

2z  be instrumental variables for x. At a minimum one instrument is required for each variable 
that might be correlated with the error term. Then carry out the following steps: 

 
1. Estimate the model 1 1 1 2 2x z z v� 3  -  -   by ordinary (i.e., not 2SLS) least squares, 

and obtain the residuals 1 1 1 2 2
ˆ ˆˆv̂ x z z� � 3 � - � - . If there is more than one explanatory 

variable that are being tested for endogeneity, repeat this estimation for each one, 
using all available instrumental variables in each regression. 

2. Include the residuals computed in step 1 as an explanatory variable in the original 
regression, 1 2 ˆy x v e�� �  2  . Estimate this "artificial regression" by least squares, 
and employ the usual t-test for the hypothesis of significance 

 
� �
� �

0

1

: 0 no correlation between  and 
: 0 correlation between  and 

H x e
H x e

2 �
2 "

 

 
To test whether educ is endogenous, and correlated with the regression error term, we use the 
regression based Hausman test described above. To implement the test estimate the first stage 
equation for educ using least squares, including all exogenous variables, including the 
instrumental variables mothereduc and fathereduc, on the right-hand side. Save the residuals 
 

reg educ exper exper2 mothereduc fathereduc 

predict vhat, residuals 

 
Add the computed residuals to the ln(wage) equation as an additional explanatory variable, and 
test its significance using a standard t-test. 
 

reg lwage educ exper exper2 vhat 
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If heteroskedasticity is suspected, then compute robust standard errors by adding the 
vce(robust) option. 
 

reg lwage educ exper exper2 vhat, vce(robust) 

 

 
 

These tests indicate that educ is endogenous at about the 10% level of significance.  
We prefer the regression based test in most circumstances. To implement Stata’s “automatic” 

Hausman test, we contrast the previously saved instrumental variables (iv) and least squares (ls) 
estimates. Using help hausman we find the syntax. 

 

 
 

                                                                              
       _cons     .0481003   .3945753     0.12   0.903    -.7274721    .8236727
        vhat     .0581666   .0348073     1.67   0.095    -.0102502    .1265834
        educ     .0613966   .0309849     1.98   0.048      .000493    .1223003
      exper2     -.000899   .0003959    -2.27   0.024    -.0016772   -.0001208
       exper     .0441704   .0132394     3.34   0.001     .0181471    .0701937
                                                                              
       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    223.327442   427  .523015086           Root MSE      =  .66502
                                                       Adj R-squared =  0.1544
    Residual    187.070132   423  .442246175           R-squared     =  0.1624
       Model    36.2573098     4  9.06432745           Prob > F      =  0.0000
                                                       F(  4,   423) =   20.50
      Source         SS       df       MS              Number of obs =     428

. reg lwage exper exper2 educ vhat

                                                                              
       _cons     .0481003   .4221019     0.11   0.909    -.7815781    .8777787
        vhat     .0581666   .0364135     1.60   0.111    -.0134073    .1297405
        educ     .0613966   .0326667     1.88   0.061    -.0028127     .125606
      exper2     -.000899   .0004152    -2.16   0.031    -.0017152   -.0000828
       exper     .0441704   .0151219     2.92   0.004     .0144469    .0738939
                                                                              
       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                             Robust
                                                                              

                                                       Root MSE      =  .66502
                                                       R-squared     =  0.1624
                                                       Prob > F      =  0.0000
                                                       F(  4,   423) =   21.52
Linear regression                                      Number of obs =     428

. reg lwage exper exper2 educ vhat, vce(robust)
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To use the dialog-box approach, enter db hausman, or follow the path Statistics > 
Postestimation > Tests > Hausman specification test. 

 

 
 

The automatic test is a contrast test between the least squares estimator, which is best linear 
unbiased and efficient if the assumptions listed in Section 10.1 of POE4. If a regressor is 
endogenous, then the least squares estimator is inconsistent, but the instrumental variables 
estimator is consistent. This contrast test is not valid under heteroskedasticity, because the test is 
predicated upon the least squares estimator being efficient. If heteroskedasticity is present least 
squares is not efficient because the Gauss-Markov theorem does not hold. This is one advantage 
of the regression based test, which can be applied with heteroskedastic data. In the Consistent
estimation drop-down list select “iv” and in the Efficient estimation list select “ls”.  

The other choices we show are so that this contrast test will work as well as possible. Include 
the intercept in the comparison and, most importantly, base the estimator variances on a common 
estimate of the error variance, the estimate of 2�  based on the least squares estimates and 
residuals. This estimator is valid if the null hypothesis of “no endogeneity” is true. 

In the Stata Result window there are lots of words you do not understand, and which are 
beyond the scope of this book. The key result from your point of view is that the Hausman test is 
a chi-square statistic with 1 degree of freedom. The chi-square value is given, along with its p-
value. Based on this version of the test we also conclude that educ is correlated with the 
regression error at the 10% level of significance. 

 

 
 

The implied Stata command is 
 

hausman iv ls, constant sigmamore 

 

                Prob>chi2 =      0.0954
                          =        2.78
                  chi2(1) = (b-B)'[(V_b-V_B)^(-1)](b-B)
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The option constant is added so that the contrast will include the intercept term. The option 
sigmamore is included to force Stata to use the least squares residuals in the estimation of the 
error variance for both estimators. This ensures that Stata will calculate the correct number of 
degrees of freedom for the Hausman test, which is the number of endogenous variables on the 
right-hand side of the regression. 

10.5 TESTING THE VALIDITY OF SURPLUS INSTRUMENTS 

An LM test for the validity of the surplus, or overidentifying, instruments is computed as 2NR  
from an artificial regression with the IV/2SLS residuals as the dependent variable and all 
instrumental and exogenous variables as explanatory variables. For that purpose compute the 
IV/2SLS residuals from this estimation. 
 

quietly ivregress 2sls lwage (educ=mothereduc fathereduc) exper exper2, 

 small 

predict ehat, residuals 

 
Because we have already seen it, we can suppress the estimation output by adding the Stata 
command quietly before ivregress. Now regress ehat on all exogenous variables and 
instrumental variables. 

 
reg ehat exper exper2 mothereduc fathereduc 

 
Use ereturn list to recall what elements are saved from the regression. Then compute 2NR  

 
ereturn list 

scalar nr2 = e(N)*e(r2) 

 
Also compute the chi-square(1) 95th percentile using invchi2tail, which will be the 0.05 critical 
value for the test of the validity of the surplus instruments. Surplus instruments are also called 
“overidentifying restrictions” in the literature. The number of degrees of freedom here is 1 
because there is one surplus instrument. 

 
scalar chic = invchi2tail(1,.05) 

 
Compute the p-value of the test using chi2tail.  
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scalar pvalue = chi2tail(1,nr2) 

 
Then display the results using 

 
di "R^2 from artificial regression = " e(r2) 

di "NR^2 test of overidentifying restriction  = " nr2 

di "Chi-square critical value 1 df, .05 level = " chic 

di "p value for overidentifying test 1 df, .05 level = " pvalue 

 

 
 
Using Stata we can produce this same LM test. Obtain the IV/2SLS estimates, again using 
quietly because we have already inspected these results, followed by estat overid. 
 

quietly ivregress 2sls lwage (educ=mothereduc fathereduc) exper 

 exper2, small 

estat overid 

 
The resulting Sargan (score) test is the LM test, 2NR , from above. 
 

 
 

Remark: Principles of Econometrics, 4th Edition, Appendix 10F includes fully 
worked examples using a simulated data set. We will not discuss those examples, 
although complete code is provided in the do-file for this chapter, which is listed 
at the end of this chapter. 

10.6 TESTING FOR WEAK INSTRUMENTS 

The F-test for weak instruments is not adequate for models with more than one endogenous 
variable on the right side of the equation. For example, suppose there we have two endogenous 
variables and two instrumental variables. For instrumental variables estimation we required two 
external instrumental variables. Using the first stage F-test approach, we would estimate two first 

p value for overidentifying test 1 df, .05 level = .53863714
. di "p value for overidentifying test 1 df, .05 level = " pvalue

Chi-square critical value 1 df, .05 level = 3.8414588
. di "Chi-square critical value 1 df, .05 level = " chic

NR^2 test of overidentifying restriction  = .37807151
. di "NR^2 test of overidentifying restriction  = " nr2

R^2 from artificial regression = .00088334
. di "R^2 from artificial regression = " e(r2)

  Basmann chi2(1)        =  .373985  (p = 0.5408)
  Sargan (score) chi2(1) =  .378071  (p = 0.5386)

  Tests of overidentifying restrictions:

. estat overid

. quietly ivregress 2sls lwage (educ=mothereduc fathereduc) exper exper2, small
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stage equations and test the joint significance of the two instrumental variables. The first stage F-
tests has as the alternative hypothesis that at least one of the instruments is a relevant, strong 
instrument. Suppose however that of our two instruments only one is actually related to the 
endogenous variables. So in truth we have one instrument. The F-test will reject the joint null 
hypothesis, leading us to believe we have two instruments, when we do not. 

Using canonical correlations there is a solution to the problem of identifying weak 
instruments when an equation has more than one endogenous variable. Canonical correlations are 
a generalization of the usual concept of a correlation between two variables and attempt to 
describe the association between two sets of variables. A detailed discussion of canonical 
correlations is beyond the scope of this work. Consult a book on multivariate analysis, but 
explanations will involve matrix algebra. Let N denote the sample size, B the number of right-
hand side endogenous variables, G the number of exogenous variables included in the equation 
(including the intercept), L the number of “external” instruments that are not included in the 
model. If we have two variables in the first set of variables and two variables in the second set 
then there are two canonical correlations, r1 and r2. If we have B variables in the first group (the 
endogenous variables with the effects of the exogenous variables x1 
 1, x2, …, xG removed) and 
L B  variables in the second group (the group of instruments with the effects of x1 
 1, x2, …, xG 
removed), then there are B possible canonical correlations, 1 2 Br r r   � , with rB being the 
minimum canonical correlation. A test for weak identification, the situation that arises when the 
instruments are correlated with the endogenous regressors but only weakly, is based on the 
Cragg-Donald F-test statistic  

 
� � � �2 2Cragg Donald 1B BF N G B L r r� �� � � � � � � �� � � �  

 
The Cragg-Donald statistic reduces to the usual weak instruments F-test when the number of 
endogenous variables is B = 1. Critical values for this test statistic have been tabulated by James 
Stock and Motohiro Yogo (2005)1, so that we can test the null hypothesis that the instruments are 
weak, against the alternative that they are not, for two particular consequences of weak 
instruments. 

 
Relative Bias: In the presence of weak instruments the amount of bias in the IV estimator 
can become large. Stock and Yogo consider the bias when estimating the coefficients of 
the endogenous variables. They examine the maximum IV estimator bias relative to the 
bias of the least squares estimator. Stock and Yogo give the illustration of estimating the 
return to education. If a researcher believes that the least squares estimator suffers a 
maximum bias of 10%, and if the relative bias is 0.1, then the maximum bias of the IV 
estimator is 1%.  

 
Rejection Rate (Test Size): When estimating a model with endogenous regressors, 
testing hypotheses about the coefficients of the endogenous variables is frequently of 
interest. If we choose the � = 0.05 level of significance we expect that a true null 
hypothesis is rejected 5% of the time in repeated samples. If instruments are weak, then 
the actual rejection rate of the null hypothesis, also known as the test size, may be larger. 
Stock and Yogo’s second criterion is the maximum rejection rate of a true null hypothesis 
if we choose � = 0.05. For example, we may be willing to accept a maximum rejection 

 
1 “Testing for Weak Instruments in Linear IV Regression,” in Identification and Inference for Econometric Models: Essays in 

Honor of Thomas Rothenberg, eds, Donald W. K. Andrews and James H. Stock, Cambridge University Press, Chapter 5. 
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rate of 10% for a test at the 5% level, but we may not be willing to accept a rejection rate 
of 20% for a 5% level test. 

 
To test the null hypothesis that instruments are weak, against the alternative that they are not, we 
compare the Cragg-Donald F-test statistic to a critical value. The values given in Tables 10E.1 
and Table 10E.2 in POE4 are built into Stata. When estat firststage is used after ivregress 
these critical values are reported, as shown in Section 10.3 of this chapter. The steps are 

 
1. First choose either the maximum relative bias or maximum test size criterion. You must 

also choose the maximum relative bias or maximum test size you are willing to accept.  
2. Reject the null hypothesis that the instruments are weak if the Cragg-Donald F-test 

statistic is larger than the tabled critical value. If the F-test statistic is not larger than the 
critical value, then do not reject the null hypothesis that the instruments are weak.  

 
Using Mroz’s data consider the following HOURS supply equation specification 

 
1 2 3 4 56HOURS MTR EDUC KIDSL NWIFEINC e�� � � � �   

 
The variable ( ) /1000NWIFEINC FAMINC WAGE HOURS� � �  is household income 
attributable to sources other than the wife’s income. The variable MTR is the marginal tax rate 
facing the wife, including social security taxes. In this equation we expect the signs of 
coefficients on MTR, KIDSL6 and NWIFEINC to be negative and the coefficient on EDUC is of 
uncertain sign.  

Treat both marginal tax rate MTR and education EDUC as endogenous, so that B = 2. Use 
mother’s and father’s education, MOTHEREDUC and FATHEREDUC, as instruments, so that L 
= 2. To begin, open the data and create the required variables. 

 
use mroz, clear 

drop if lfp==0 

gen lwage=ln(wage) 

gen nwifeinc = (faminc-wage*hours)/1000 

gen exper2 = exper^2 

 
The first stage equations and tests for MTR and EDUC are obtained using 

 
reg mtr mothereduc fathereduc kidsl6 nwifeinc 

test mothereduc fathereduc 

 

 
 

reg educ mothereduc fathereduc kidsl6 nwifeinc 

test mothereduc fathereduc 

 

            Prob > F =    0.0003
       F(  2,   423) =    8.14

 ( 2)  fathereduc = 0
 ( 1)  mothereduc = 0

. test mothereduc fathereduc
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The test results show that the instruments are strong for EDUC as we have earlier seen, with the 
first stage weak instrument F-test statistic 49.02. For MTR these two instruments are less strong. 
FATHEREDUC is significant at the 5% level, and the first stage weak instrument F-test statistic 
is 8.14, which has a p-value of 0.0003. While this does not satisfy the F > 10 rule of thumb, it is 
“close,” and we may have concluded that these two instruments were adequately strong.  

The instrumental variables estimates and first stage statistics are obtained using 
 

ivregress 2sls hours (mtr educ =  mothereduc fathereduc) kidsl6 

 nwifeinc, small 

estat firststage 

 
The instrumental variables estimates are 

 

 
 

The first stage results are 
 

            Prob > F =    0.0000
       F(  2,   423) =   49.02

 ( 2)  fathereduc = 0
 ( 1)  mothereduc = 0

. test mothereduc fathereduc

Instruments:   kidsl6 nwifeinc mothereduc fathereduc
Instrumented:  mtr educ
                                                                              
       _cons     -24491.6   79689.72    -0.31   0.759    -181128.8    132145.6
    nwifeinc     149.2325   470.5173     0.32   0.751    -775.6108    1074.076
      kidsl6    -1144.478   2510.194    -0.46   0.649    -6078.485    3789.529
        educ      258.559   846.0142     0.31   0.760    -1404.356    1921.474
         mtr     29709.47   90487.78     0.33   0.743    -148152.2    207571.2
                                                                              
       hours        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total     257311020   427   602601.92           Root MSE      =  1747.4
                                                       Adj R-squared =       .
    Residual    1.2916e+09   423  3053476.37           R-squared     =       .
       Model   -1.0343e+09     4  -258577372           Prob > F      =  0.5329
                                                       F(  4,   423) =    0.79
      Source         SS       df       MS              Number of obs =     428

Instrumental variables (2SLS) regression

> l
. ivregress 2sls hours (mtr educ =  mothereduc fathereduc) kidsl6 nwifeinc, smal
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Suppose that we are willing to accept a maximum test size of 15% for a 5% test. Stata shows the 
critical value for the weak instrument test when using 2SLS is 4.58. Ignore the critical values for 
LIML. These values will be explained in Chapter 11. See also Table 10E.1 in POE4. The Cragg-
Donald F-test statistic value is only 0.101, which is far below the critical value 4.58 for 15% 
maximum test size (for a 5% test on MTR and EDUC). We cannot reject the null hypothesis that 
the instruments are weak, despite the favorable first stage F-test values. The estimates of the 
HOURS supply equation shows parameter estimates that are wildly different from those in Model 
(1) and Model (2), given in Table 10E.4, POE4, page 439, and the very small t-statistic values 
imply very large standard errors, another consequence for instrumental variables estimation in the 
presence of weak instruments. Other models are illustrated in the Chapter 10 do-file at the end of 
this chapter. 

10.7 CALCULATING THE CRAGG-DONALD F-STATISTIC 

To illustrate the calculation of the Cragg-Donald F-statistic use the model illustrated in Section 
10.6 above, with mothereduc and fathereduc as instruments. Save the degrees of freedom, 
N�G�B using ereturn list to show which results are saved post-estimation. 

 
ivregress 2sls hours (mtr educ =  mothereduc fathereduc) kidsl6 

 nwifeinc, small 

ereturn list 

scalar df_r = e(df_r) 

 
Partial out the effects of kidsl6 and nwifeinc from the endogenous variables and from the 
instruments, using the procedure outlined in Section 10.3.1 above.  

 
reg mtr kidsl6 nwifeinc 

                                                                       
  LIML Size of nominal 5% Wald test      7.03    4.58    3.95    3.63
  2SLS Size of nominal 5% Wald test      7.03    4.58    3.95    3.63
                                         10%     15%     20%     25%
                                                                       
  2SLS relative bias                           (not available)
                                          5%     10%     20%     30%
                                                                       
  Ho: Instruments are weak             # of excluded instruments:     2
  Critical Values                      # of endogenous regressors:    2

  Minimum eigenvalue statistic = .100568     

                                                    
          educ       0.0024             -0.0046
           mtr       0.0005             -0.0066
                                                    
      Variable    Partial R-sq.   Adj. Partial R-sq.
                     Shea's             Shea's
                                                    
  Shea's partial R-squared

. estat firststage
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predict mtrr, r 

reg educ kidsl6 nwifeinc 

predict educr, r 

 

reg mothereduc kidsl6 nwifeinc 

predict mothereducr, r 

 

reg fathereduc kidsl6 nwifeinc 

predict fathereducr, r 

 
Canonical correlations are computed by Stata using the command canon. See help canon. 

 

 
 

To use the dialog box, click on the link above or follow  
 
Statistics > Multivariate analysis > MANOVA, multivariate regression, and 
        related > Canonical correlations 

 
The command to find the canonical correlations from the two endogenous variables and two 
instruments, from which we have removed the effects of the other exogenous variables, is 

 
canon (mtrr educr) (mothereducr fathereducr) 

 
While there is other output the canonical correlations are shown to be 

 

 
 
The saved results and minimum canonical correlation are extracted using 

 
ereturn list 

matrix r2=e(ccorr) 

di "Calculation of Cragg-Donald statistic " 

di "The canonical correlations " 

matrix list r2 

scalar mincc = r2[1,2] 

di "The minimum canonical correlation = " mincc 

 

 

  0.4356  0.0218
Canonical correlations:

The minimum canonical correlation = .02180077
. di "The minimum canonical correlation = " mincc
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The calculation of the Cragg-Donald F-statistic is then straightforward and identical to the 
automatic calculation using estat firststage following ivregress. The “2” in denominator is 
the number of instrumental variables, L. 

 
scalar cd = df_r*(mincc^2)/(2*(1-mincc^2)) 

di "The Cragg-Donald F-statistic = " cd 

 

 

10.8 A SIMULATION EXPERIMENT 

In Principles of Econometrics, 4th Edition, Appendix 10F.2, a simulation experiment is performed 
to illustrate the sampling properties of the IV/2SLS estimator. In the simulation we use the data 
generation process y x e�  , so that the intercept parameter is 0 and the slope parameter is 1. 
The first stage regression is 1 2 3x z z z v� >  >  >  . Note that we have L = 3 instruments, each of 
which has an independent standard normal � �0,1N  distribution. The parameter � controls the 
instrument strength. If 0> �  the instruments are not correlated with x and instrumental variables 
estimation will fail. The larger � becomes the stronger the instruments become. Finally, we create 
the random errors e and v to have standard normal distributions with correlation �, which controls 
the endogeneity of x. If 0: � , then x is not endogenous. The larger � becomes the stronger the 
endogeneity. We create 10,000 samples of size N = 100 and then try out least squares (LS) and 
IV/2SLS under several scenarios. We let 0.1> �  (weak instruments) and 0.5> �  (strong 
instruments). We let 0: �  (x exogenous) and 0.8: �  (x highly endogenous). 

The simulation begins by clearing all memory, and specifying global constants that control 
the simulation. 

 
clear all 

global numobs 100 // number of simulated sample observations       

global pi     0.1 // first stage parameter controls IV strength 

global rho    0.8 // rho controls endogeneity 

set seed 1234567    // random number seed 

set obs $numobs 

 
The seed set above will ensure that when we repeat the code we will obtain the same sequences 
of pseudo-random numbers and thus the same results. For an explanation of pseudo-random 
numbers and seed values, see POE4, Appendix B. A key component in the simulation experiment 
is the correlation between the error terms e and v. Creating correlated random numbers is 
achieved using the Stata command drawnorm. From help drawnorm we find the basic syntax and 
options.  

 

The Cragg-Donald F-statistic = .10056813
. di "The Cragg-Donald F-statistic = " cd
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Among the options are 

 
n(#)                  # of observations to be generated 

cov(matrix|vector)    covariance matrix 

 
That is, we can specify the number of observations, and covariances and variances to be anything 
we choose. We will use a covariance matrix that is 
 

� � � �
� � � �

var cov , 1
cov , var 1

e e v
e v v

� � :� �
? � �� � � �:� �� �

 

 
Specify this matrix using 

 
matrix sig = (1, $rho \ $rho, 1)  // corr(e,v) 

drawnorm e v, n($numobs) corr(sig) // e & v values 

 

For the instruments we use 3 independent normal random variables. 
 

gen z1 = rnormal() 

gen z2 = rnormal() 

gen z3 = rnormal() 

 
Using the data generation process noted above, we create x and y. The error terms are correlated 
with correlation $rho. 

 
generate x = $pi*z1 + $pi*z2 + $pi*z3 + v 

generate y = x + e     

correlate x e 

 
The 100 random values we have drawn have sample correlation 

 

 
 

The first stage regression using the simulated data shows that the instruments are weak, since we 
have set $pi = 0.1 
 

           e     0.7960   1.0000
           x     1.0000
                                
                      x        e

(obs=100)
. correlate x e
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reg x z1 z2 z3   

 

 
 
The following least squares estimate of the slope is far from the true value because the x variable 
we generated is strongly endogenous. 

 
reg y x 

 

 
 
Since we have weak instruments, we see that the IV/2SLS estimate of the slope is not especially 
close to the true value either. 

 
ivregress 2sls y (x=z1 z2 z3), small 

 

                                                                              
       _cons     .0174734   .1106386     0.16   0.875    -.2021425    .2370893
          z3     .0217676   .1132988     0.19   0.848    -.2031288    .2466641
          z2       .03231   .1214898     0.27   0.791    -.2088453    .2734652
          z1     .1141584    .098892     1.15   0.251    -.0821408    .3104575
                                                                              
           x        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    117.419881    99   1.1860594           Root MSE      =   1.098
                                                       Adj R-squared = -0.0164
    Residual    115.728748    96  1.20550779           R-squared     =  0.0144
       Model    1.69113235     3  .563710782           Prob > F      =  0.7056
                                                       F(  3,    96) =    0.47
      Source         SS       df       MS              Number of obs =     100

. reg x z1 z2 z3          

                                                                              
       _cons     .1243801   .0644743     1.93   0.057     -.003567    .2523272
           x      1.77446   .0594987    29.82   0.000     1.656387    1.892534
                                                                              
           y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total     410.45754    99  4.14603576           Root MSE      =  .64473
                                                       Adj R-squared =  0.8997
    Residual    40.7364595    98  .415678159           R-squared     =  0.9008
       Model    369.721081     1  369.721081           Prob > F      =  0.0000
                                                       F(  1,    98) =  889.44
      Source         SS       df       MS              Number of obs =     100

. reg y x
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We use a program to serve as the basis for the simulation. In the first portion of the program we 
have the same data generation process, controlled by global macros. 

 
program ch10sim, rclass 

    version 11.1  

    drop _all 

 

    set obs $numobs 

    matrix sig = (1, $rho \ $rho, 1)   

    drawnorm e v, n($numobs) corr(sig)     

 gen z1 = rnormal() 

 gen z2 = rnormal() 

 gen z3 = rnormal() 

    

 * DGP 

 generate x = $pi*z1 + $pi*z2 + $pi*z3 + v     

 generate y = x + e    // structural equation 

     

 * first stage regression using all IV 

 reg x z1 z2 z3   

 
During the execution of this program the values are “returned” from the post-estimation results 

 
 return scalar rsq = e(r2)  // first stage r^2 

 return scalar F=e(F)  // first stage F 

 predict vhat, r 

 
The least squares slope estimate (bols) and t-value (tols) for a 5% test of the true null 
hypothesis that the slope is 1, are returned, as is the outcome (rols) of the test. The value of rols 
is 1 if the null hypothesis is rejected, and rols is 0 otherwise. Under the assumptions of the linear 
regression model in Chapter 10.1 of POE4 the test should reject the true null hypothesis 5% of 
the time. 

Instruments:   z1 z2 z3
Instrumented:  x
                                                                              
       _cons     .1268431   .0766601     1.65   0.101    -.0252863    .2789726
           x     1.397208   .5887541     2.37   0.020     .2288449    2.565572
                                                                              
           y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total     410.45754    99  4.14603576           Root MSE      =  .76564
                                                       Adj R-squared =  0.8586
    Residual    57.4475569    98  .586199561           R-squared     =  0.8600
       Model    353.009983     1  353.009983           Prob > F      =  0.0196
                                                       F(  1,    98) =    5.63
      Source         SS       df       MS              Number of obs =     100

Instrumental variables (2SLS) regression

. ivregress 2sls y (x=z1 z2 z3), small
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 * OLS 

 reg y x 

 return scalar bols =_b[x] 

 return scalar seols = _se[x] 

 return scalar tols = (_b[x]-1)/_se[x] 

 return scalar rols = abs(return(tols))>invttail($numobs-2,.025) 

    
The regression-based Hausman test statistic is haust. The outcome of the 5% test is haus, which 
takes the value 1 if the null hypothesis of no endogeneity is rejected. 

 
 * Hausman 

 reg y x vhat 

 return scalar haust = _b[vhat]/_se[vhat] 

 return scalar haus = abs(return(haust))>invttail($numobs-3,.025) 

 
The IV/2SLS slope estimate (b2sls), the t-value for the test of the true null hypothesis that the 
slope is 1, and the test outcome (r2sls) are returned. The test outcome r2sls is 1 if the null 
hypothesis is rejected and is zero otherwise. The test should reject the true null hypothesis 5% of 
the time if the instruments are relevant and valid. 

 
 * 2sls 

 ivregress 2sls y (x=z1 z2 z3), small 

 return scalar b2sls =_b[x] 

 return scalar se2sls = _se[x] 

 return scalar t2sls = (_b[x]-1)/_se[x] 

 return scalar r2sls = abs(return(t2sls))>invttail($numobs-2,.025) 

   

end 

 
The program concludes with end. The simulation is actually carried out using Stata’s simulate 
command.  

 
simulate rsqf = r(rsq) Fr=r(F) bolsr=r(bols) seolsr=r(seols) ///  

 rolsr=r(rols) b2slsr=r(b2sls) se2slsr=r(se2sls) /// 

 t2slsr=r(t2sls) r2slsr=r(r2sls) hausr=r(haus),  /// 

 reps(10000) nodots nolegend seed(1234567): ch10sim 

 
The variable names assigned to the returned values are rsqf, Fr, bolsr, etc. There are 10,000 
experimental replications of the program ch10sim. After the simulation we display the global 
parameter values, for record keeping purposes. 

 
di " Simulation parameters"  

di " rho  " $rho 

di " N    " $numobs   

di " pi   " $pi 
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We are interested in the average first-stage F-value, which is an indicator of instrument strength. 
 

di " average first stage F"  

mean Fr 

 

 
 

For each estimator we compute its average value and standard deviation using the Stata command 
tabstat. This is a convenient alternative to summarize as is permits specification of the statistics 
to report in a nice table. For a dialog box follow  
 

Statistics > Summaries, tables, and tests > Tables > Table of summary 
 statistics (tabstat) 

 
The syntax and important options are given by help tabstat. 

 

 
 
The average estimate value should be close to the true value, 1, if the estimator is unbiased. The 
average of the rejection rate variable (rols) indicates the actual rejection rate of the true null 
hypothesis. The average of mseols is the “mean squared error” of estimation. This is the 
empirical analog of  
 

� � � � � � 22
2 2 2 2var biasMSE E b b b� �� �� �  � �� �� �  

 

 pi = .1
. di " pi = " $pi

 N = 100
. di " N = " $numobs       

 rho = .8
. di " rho = " $rho

 Simulation parameters
. di " Simulation parameters"     

                                                              
        rsqf     .0576316    .000391      .0568652    .0583981
                                                              
                     Mean   Std. Err.     [95% Conf. Interval]
                                                              

Mean estimation                     Number of obs    =   10000



348   Chapter 10 

Mean squared error answers the question of how close, on average, are the estimates to the true 
parameter value. Finally we examine the average rejection rate of the Hausman test. 

 
di " OLS" 

gen mseols = (bolsr-1)^2 

tabstat bolsr seolsr rolsr mseols hausr, stat(mean sd) 

 

 
 

The average value of the least squares estimates is 1.776 which is not close to the true value of 1. 
The t-test of the true null hypothesis rejects 100% of the time instead of the nominal 5% rate. The 
Hausman regression based test rejects the (false) null hypothesis of no endogeneity 38% of the 
time. 

 
di " 2sls" 

gen mse2sls = (b2slsr-1)^2 

tabstat b2slsr se2slsr r2slsr mse2sls, stat(mean sd) 

 
Similar values for the IV/2SLS estimator are 

 

 
 

If we increase the instrument strength by setting $pi to 0.5, for the least squares estimates we find 
not any improvement. 

 

 
 

However for the IV/2SLS estimator we find a great deal of improvement, thanks to the stronger 
instrumental variables. 

 

 

                                                            
      sd    .0609983  .0061937         0  .0947578  .4864061
    mean    1.776194  .0612667         1  .6061978     .3841
                                                            
   stats       bolsr    seolsr     rolsr    mseols     hausr

. tabstat bolsr seolsr rolsr mseols hausr, stat(mean sd)

                                                  
      sd    .9482915  35.54677  .4531342  58.61448
    mean    1.331058  .8850129     .2886  1.008766
                                                  
   stats      b2slsr   se2slsr    r2slsr   mse2sls

. tabstat b2slsr se2slsr r2slsr mse2sls, stat(mean sd)

                                                            
      sd    .0610322  .0061183         0  .0560244         0
    mean    1.456824  .0608191         1  .2124129         1
                                                            
   stats       bolsr    seolsr     rolsr    mseols     hausr

. tabstat bolsr seolsr rolsr mseols hausr, stat(mean sd)

                                                  
      sd    .1174081  .0274133  .2440512  .0227001
    mean    1.011116    .11695     .0636  .0139068
                                                  
   stats      b2slsr   se2slsr    r2slsr   mse2sls

. tabstat b2slsr se2slsr r2slsr mse2sls, stat(mean sd)
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KEY TERMS 

2SLS heteroskedasticity robust rnormal() 
canon instrumental variables estimation robust standard errors 
canonical correlations invchi2tail(n,p) Sargan statistic
chi2tail(n,x) ivregress seed 
correlate LM test Stock-Yogo critical values 
Cragg-Donald F-test matrix strong instruments 
drawnorm mean squared error surplus instruments
drop minimum eigenvalue statistic tabstat
endogenous covariates MSE two-stage least squares 
ereturn list option, sigmamore valid instruments 
estat firststage option, small vce(robust) 
estat overid overidentifying instruments Wald chi-square test 
estimates store partial correlation weak instruments 
first stage regression quietly
F-test random regressors  
global rejection rate criterion  
Hausman test relative bias criterion  
Hausman test, regression based return list  

CHAPTER 10 DO-FILE [CHAP10.DO] 

* file chap10.do for Using Stata for Principles of Econometrics, 4e 

 

cd c:\data\poe4stata 
 

* Stata do-file  

* copyright C 2011 by Lee C. Adkins and R. Carter Hill  
* used for "Using Stata for Principles of Econometrics, 4e"  

* by Lee C. Adkins and R. Carter Hill (2011) 

* John Wiley and Sons, Inc. 
 

* setup 

version 11.1 
capture log close 

set more off 

 
************* POE4 Chapter 10.2.4: A Wage Equation 

* open log 

log using chap10_wage, replace text 
 

* open data and examine 

use mroz, clear 
describe 

summarize  

 
* drop nonworking women and summarize 

drop if lfp==0 

summarize wage educ exper 
 

* create variables 

gen lwage = ln(wage) 
gen exper2 = exper^2 
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* Least squares estimation 

reg lwage educ exper exper2 
estimates store ls 

 

********** POE4 Chapter 10.3.6: IV estimation of wage equation 
* using only mothereduc as IV 

 

* first stage regression 
reg educ exper exper2 mothereduc 

 

* test IV strength 
test mothereduc 

 

* obtain predicted values 
predict educhat 

 

* 2sls using 2-stages 
reg lwage educhat exper exper2 

 

* IV estimation using automatic command 
ivregress 2sls lwage (educ=mothereduc) exper exper2 

ivregress 2sls lwage (educ=mothereduc) exper exper2, small 

ivregress 2sls lwage (educ=mothereduc) exper exper2, vce(robust) small 
 

********** Add fathereduc as an IV 

* Test fathereduc alone 
reg educ exper exper2 fathereduc 

 

* joint first stage regression F-test for weak instruments 
reg educ exper exper2 mothereduc fathereduc 

test mothereduc fathereduc 

 
reg educ exper exper2 mothereduc fathereduc, vce(robust) 

test mothereduc fathereduc 

 
* IV estimation with surplus instruments 

ivregress 2sls lwage (educ=mothereduc fathereduc) exper exper2, small  

estimates store iv 
 

* Testing for weak instruments using estat 

estat firststage  
 

* IV estimation with robust standard errors 

 
ivregress 2sls lwage (educ=mothereduc fathereduc) exper exper2, vce(robust) small  

estat firststage 

 
********** Chapter 10.3.7: Illustrate partial correlation 

ivregress 2sls lwage (educ=mothereduc) exper exper2, small 

estat firststage 
 

* partial out exper and exper^2 

reg educ exper exper2 
predict v1, r 

 

reg mothereduc exper exper2 
predict v2, r 

 

* partial correlation 
correlate v1 v2 

return list 

di "partial correlation = "r(rho)^2 
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* effect of mothereduc on educ controlling for exper and exper^2 

reg v1 v2, noconstant 
 

* partial correlation 

correlate v1 v2, covariance 
return list 

 

* calculate partial least squares regression coefficient 
di "partial LS coefficient = " r(cov_12)/r(Var_2) 

 

* calculate partial correlation 
di "partial correlation = " r(cov_12)/sqrt(r(Var_2)*r(Var_1)) 

 

********** Chapter 10.4.3: Hausman test 
 

* reduced form 

reg educ exper exper2 mothereduc fathereduc 
predict vhat, residuals 

 

* augment wage equation with reduced form residuals 
reg lwage exper exper2 educ vhat 

reg lwage exper exper2 educ vhat, vce(robust) 

 
* Hausman test automatic 

hausman iv ls, constant sigmamore 

 
********** Testing surplus moment conditions 

 

* obtain 2sls residuals 
quietly ivregress 2sls lwage (educ=mothereduc fathereduc) exper exper2, small 

predict ehat, residuals 

 
* regress 2sls residuals on all IV 

reg ehat exper exper2 mothereduc fathereduc 

ereturn list 
 

* NR^2 test 

scalar nr2 = e(N)*e(r2) 
scalar chic = invchi2tail(1,.05) 

scalar pvalue = chi2tail(1,nr2) 

di "R^2 from artificial regression = " e(r2) 
di "NR^2 test of overidentifying restriction  = " nr2 

di "Chi-square critical value 1 df, .05 level = " chic 

di "p value for overidentifying test 1 df, .05 level = " pvalue 
 

* Using estat 

quietly ivregress 2sls lwage (educ=mothereduc fathereduc) exper exper2, small 
estat overid 

 

log close 
 

*********** Chapter 10E: Testing for Weak Instruments 

 
* open new log 

log using chap10_weakiv, replace text 

 
* open data & create variables 

use mroz, clear 

drop if lfp==0 
gen lwage=ln(wage) 

gen nwifeinc = (faminc-wage*hours)/1000 

gen exper2 = exper^2 
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********** 2SLS with various instrument sets 

 
* B=1, L=1 

ivregress 2sls hours (mtr = exper) educ kidsl6 nwifeinc, small 

estat firststage 
estimates store m11 

 

* first stage 
reg mtr exper educ kidsl6 nwifeinc 

estimates store r11 

test exper 
 

* B=1, L=2 

ivregress 2sls hours (mtr =  exper exper2) educ kidsl6  nwifeinc, small 
estat firststage 

estimates store m12 

 
* first stage 

reg mtr exper exper2 educ kidsl6 nwifeinc 

estimates store r12 
test exper exper2 

 

* B=1, L=3 
ivregress 2sls hours (mtr = exper exper2 largecity) educ kidsl6  nwifeinc, small 

estat firststage 

estimates store m13 
 

* first stage 

reg mtr exper exper2 largecity educ  kidsl6  nwifeinc 
estimates store r13 

test exper exper2 largecity 

 
* B=1, L=4 

ivregress 2sls hours (mtr = exper exper2 largecity unemployment) educ  kidsl6  nwifeinc, 

small 
estat firststage 

estimates store m14 

 
* first stage 

reg mtr exper exper2 largecity unemployment educ kidsl6 nwifeinc 

estimates store r14 
test exper exper2 largecity unemployment 

 

* B=2, L=2 
ivregress 2sls hours (mtr educ =  mothereduc fathereduc) kidsl6 nwifeinc, small 

estat firststage 

estimates store m22 
 

* first stage 

reg mtr mothereduc fathereduc kidsl6 nwifeinc 
test mothereduc fathereduc 

estimates store r22a 

 
* first stage 

reg educ mothereduc fathereduc kidsl6 nwifeinc 

test mothereduc fathereduc 
estimates store r22b 

 

* B=2, L=3 
ivregress 2sls hours (mtr educ =  mothereduc fathereduc exper) kidsl6 nwifeinc, small 

estat firststage 

estimates store m23 
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* first stage 

reg mtr mothereduc fathereduc exper kidsl6 nwifeinc 
test mothereduc fathereduc exper 

estimates store r23a 

 
* first stage 

reg educ mothereduc fathereduc exper kidsl6 nwifeinc 

test mothereduc fathereduc exper 
estimates store r23b 

 

* B=2, L=4 
ivregress 2sls hours (mtr educ =  mothereduc fathereduc exper exper2) kidsl6 nwifeinc, 

small 

estat firststage 
estimates store m24 

 

* create tables 
esttab r11 r13 r22a r22b r23a r23b, compress t(%12.2f) b(%12.5f) nostar /// 

 gaps scalars(r2_a rss) title("First Stage Equations") 

 
esttab m11 m13 m22 m23, t(%12.4f) b(%12.4f) nostar /// 

 gaps title("IV estimations") 

 
********** Appendix 10E Calculating Cragg-Donald Statistic 

 

ivregress 2sls hours (mtr educ =  mothereduc fathereduc) kidsl6 nwifeinc, small 
ereturn list 

scalar df_r = e(df_r) 

 
* partial out kidsl6 and nwifeinc 

reg mtr kidsl6 nwifeinc 

predict mtrr, r 
 

reg educ kidsl6 nwifeinc 

predict educr, r 
 

reg mothereduc kidsl6 nwifeinc 

predict mothereducr, r 
 

reg fathereduc kidsl6 nwifeinc 

predict fathereducr, r 
 

* canonical correlations 

canon (mtrr educr) (mothereducr fathereducr) 
ereturn list 

matrix r2=e(ccorr) 

di "Calculation of Cragg-Donald statistic " 
di "The canonical correlations " 

matrix list r2 

scalar mincc = r2[1,2] 
di "The minimum canonical correlation = " mincc 

scalar cd = df_r*(mincc^2)/(2*(1-mincc^2)) 

di "The Cragg-Donald F-statistic = " cd 
 

log close 

 
********** Chapter 10F.1 Using Simulated Data 

 

* open new log file 
log using chap10_AppF, replace text 

 

* open data 
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use ch10, clear 

summarize 

 
* Least squares estimation 

reg y x 

estimates store ls 
 

* IV estimation 

reg x z1 
predict xhat 

reg y xhat 

 
* IV estimation using automatic command 

ivregress 2sls y (x=z1) 

ivregress 2sls y (x=z1), small 
ivregress 2sls y (x=z2), small 

ivregress 2sls y (x=z3), small 

 
* IV estimation with surplus instruments 

ivregress 2sls y (x=z1 z2), small 

estimates store iv 
 

* Hausman test regression based 

reg x z1 z2 
predict vhat, residuals 

reg y x vhat 

 
* Hausman test automatic contrast 

hausman iv ls, constant sigmamore 

 
* Testing for weak instrument 

reg x z1 

reg x z2 
 

* Joint test for weak instrument 

reg x z1 z2 
test z1 z2 

 

* Testing for weak iv using estat 
ivregress 2sls y (x=z1 z2), small 

estat firststage 

 
* Testing surplus moment conditions 

predict ehat, residuals 

reg ehat z1 z2 
scalar nr2 = e(N)*e(r2) 

scalar chic = invchi2tail(1,.05) 

scalar pvalue = chi2tail(1,nr2) 
di "NR^2 test of overidentifying restriction  = " nr2 

di "Chi-square critical value 1 df, .05 level = " chic 

di "p value for overidentifying test 1 df, .05 level = " pvalue 
 

* Testing for weak iv using estat 

quietly ivregress 2sls y (x=z1 z2), small 
estat overid 

 

* Testing surplus moment conditions 
ivregress 2sls y (x=z1 z2 z3), small 

predict ehat2, residuals 

reg ehat2 z1 z2 z3 
scalar nr2 = e(N)*e(r2) 

scalar chic = invchi2tail(2,.05) 

scalar pvalue = chi2tail(2,nr2) 
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di "NR^2 test of overidentifying restriction  = " nr2 

di "Chi-square critical value 2 df, .05 level = " chic 

di "p value for overidentifying test 2 df, .05 level = " pvalue 
 

* Testing surplus moments using estat 

quietly ivregress 2sls y (x=z1 z2 z3) 
estat overid 

 

log close 
 

********** Chapter 10F.2: Repeated Sampling Properties of IV/2SLS 

 
* open log file and clear all  

log using chap10_sim, text replace 

clear all 
 

* specify constants to control simulation 

*----------------------------------------------------------------- 
global numobs 100 // number of simulated sample observations         

global pi     0.1 // reduced form parameter controls IV strength 

global rho    0.8 // rho controls endogeneity 
*----------------------------------------------------------------- 

 

set obs $numobs 
set seed 1234567    // random number seed 

 

* correlation between e and v controls endogeneity 
matrix sig = (1, $rho \ $rho, 1)  // corr(e,v) 

drawnorm e v, n($numobs) corr(sig)     // e & v values 

 
* create 3 uncorrelated standard normal variables                

gen z1 = rnormal() 

gen z2 = rnormal() 
gen z3 = rnormal() 

  

* DGP 
generate x = $pi*z1 + $pi*z2 + $pi*z3 + v  

generate y = x + e     

correlate x e 
 

* first stage regression using all IV 

reg x z1 z2 z3   
 

* OLS 

reg y x 
 

* 2sls 

ivregress 2sls y (x=z1 z2 z3), small 
 

* program used for simulation 

    
program ch10sim, rclass 

    version 11.1  

    drop _all 
 

    set obs $numobs 

    matrix sig = (1, $rho \ $rho, 1)   
    drawnorm e v, n($numobs) corr(sig)      

                         

 gen z1 = rnormal() 
 gen z2 = rnormal() 

 gen z3 = rnormal() 
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 * DGP 

 generate x = $pi*z1 + $pi*z2 + $pi*z3 + v     

 generate y = x + e    // structural equation 
     

 * first stage regression using all IV 

 reg x z1 z2 z3   
 return scalar rsq = e(r2)  // first stage r^2 

 return scalar F=e(F)   // first stage F 

 predict vhat, r 
  

 * OLS 

 reg y x 
    return scalar bols =_b[x] 

    return scalar seols = _se[x] 

    return scalar tols = (_b[x]-1)/_se[x] 
    return scalar rols = abs(return(tols))>invttail($numobs-2,.025) 

  

 * Hausman 
 reg y x vhat 

    return scalar haust = _b[vhat]/_se[vhat] 

    return scalar haus = abs(return(haust))>invttail($numobs-3,.025) 
  

 * 2sls 

 ivregress 2sls y (x=z1 z2 z3), small 
 return scalar b2sls =_b[x] 

    return scalar se2sls = _se[x] 

    return scalar t2sls = (_b[x]-1)/_se[x] 
    return scalar r2sls = abs(return(t2sls))>invttail($numobs-2,.025) 

   

end 
 

simulate rsqf = r(rsq) Fr=r(F) bolsr=r(bols) seolsr=r(seols) ///  

         rolsr=r(rols) b2slsr=r(b2sls) se2slsr=r(se2sls) /// 
   t2slsr=r(t2sls) r2slsr=r(r2sls) hausr=r(haus),  /// 

         reps(10000) nodots nolegend seed(1234567): ch10sim 

 
di " Simulation parameters"  

di " rho = " $rho 

di " N = " $numobs   
di " pi = " $pi 

di " average first stage r-square"  

mean rsqf 
 

di " average first stage F"  

mean Fr 
 

* For each estimator compute  

* avg and standard deviation estimate beta 
* avg nominal standard error 

* avg percent rejection 5% test 

 
di " OLS" 

gen mseols = (bolsr-1)^2 

tabstat bolsr seolsr rolsr mseols hausr, stat(mean sd) 
 

di " 2sls" 

gen mse2sls = (b2slsr-1)^2 
tabstat b2slsr se2slsr r2slsr mse2sls, stat(mean sd) 

 

log close 
 



357 

CHAPTER 11

Simultaneous Equations Models 

CHAPTER OUTLINE 
11.1 Truffle supply and demand 
11.2  Estimating the reduced form equations 
11.3  2SLS estimates of truffle demand  
11.4  2SLS estimates of truffle supply 
11.5 Supply and demand of fish 
11.6 Reduced forms for fish price and quantity 

11.7 2SLS estimates of fish demand  
11.8 2SLS alternatives  
11.9 Monte Carlo simulation  
Key Terms  
Chapter 11 Do-file 

11.1 TRUFFLE SUPPLY AND DEMAND 

Consider a supply and demand model for truffles: 
 

1 2 3 4Demand:  dQ P PS DI e� %  %  %  %   
 

1 2 3Supply:  sQ P PF e� �  �  �   
 
In the demand equation Q is the quantity of truffles traded in a particular French market place, P 
is the market price of truffles, PS is the market price of a substitute for real truffles (another 
fungus much less highly prized), and DI is per capita monthly disposable income of local 
residents. The supply equation contains the market price and quantity supplied. Also it includes 
the price of a factor of production, PF, which in this case is the hourly rental price of truffle-pigs 
used in the search process. In this model we assume that P and Q are endogenous variables. The 
exogenous variables are PS, DI, PF and the intercept variable. 

The data for this example are in the data file truffles.dta. Execute the usual beginning 
commands, start a log and open the data file 
 

use truffles, clear 

describe 

 
Examine the data by listing the first 5 observations, and computing summary statistics. 
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list in 1/5 

 

summarize 

 

 

11.2 ESTIMATING THE REDUCED FORM EQUATIONS 

The reduced form equations express each endogenous variable, P and Q, in terms of the 
exogenous variables PS, DI, PF and the intercept variable, plus an error term. They are: 
 

11 21 31 41 1

12 22 32 42 2

Q PS DI PF v

P PS DI PF v

� >  >  >  > 

� >  >  >  >   
 
We can estimate these equations by least squares since the right-hand side variables are 
exogenous and uncorrelated with the random errors. The reduced form for QUANTITY is obtained 
using 
 

reg q ps di pf  

 

 

      
  5.   53.37   22.55   19.79   2.709   13.71  
  4.   41.43   17.13   20.87   1.525   17.95  
  3.   34.71   19.61   22.36    1.87   13.74  
  2.   40.23   13.04   18.04   2.043   19.67  
  1.   29.64   19.89   19.97   2.103   10.52  
      
           p       q      ps      di      pf  
      

. list in 1/5

          pf          30    22.75333    5.329654      10.52      34.01
          di          30    3.526967    1.040803      1.525      5.125
          ps          30      22.022    4.077237      15.21      28.98
           q          30    18.45833    4.613088       6.37      26.27
           p          30      62.724    18.72346      29.64     105.45

    Variable         Obs        Mean    Std. Dev.       Min        Max

       _cons     7.895099   3.243422     2.43   0.022     1.228151    14.56205
          pf    -.5069823   .1212617    -4.18   0.000    -.7562392   -.2577254
          di     2.167156   .7004738     3.09   0.005      .727311       3.607
          ps     .6564021   .1425376     4.61   0.000     .3634118    .9493923

           q        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    617.136817    29  21.2805799           Root MSE      =  2.6801
           Adj R-squared =  0.6625

    Residual    186.754213    26  7.18285434           R-squared     =  0.6974
       Model    430.382604     3  143.460868           Prob > F      =  0.0000

           F(  3,    26) =   19.97
      Source         SS       df       MS              Number of obs =      30
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The reduced form for PRICE is  
 

reg p ps di pf  

 

 
 
For later use, we obtain the fitted or predicted values of price using the predict post-estimation 
command. Name the variable phat, to remind us of P̂ . 
 

predict phat  

11.3 2SLS ESTIMATES OF TRUFFLE DEMAND 

Two-stage least squares (2SLS) estimates can be obtained by replacing the endogenous variable 
on the right-hand side of the structural equations by the fitted value from the reduced form and 
then applying least squares. The two-stage least squares estimates of the demand equation 
obtained using this approach are 
 

reg q phat ps di 

 

 
 

       _cons    -32.51242   7.984235    -4.07   0.000    -48.92425   -16.10059
          pf     1.353906   .2985062     4.54   0.000     .7403175    1.967494
          di     7.602491   1.724336     4.41   0.000     4.058068    11.14691
          ps     1.708147   .3508806     4.87   0.000     .9869017    2.429393

           p        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    10166.4727    29  350.568025           Root MSE      =  6.5975
           Adj R-squared =  0.8758

    Residual    1131.69721    26  43.5268157           R-squared     =  0.8887
       Model    9034.77551     3  3011.59184           Prob > F      =  0.0000

           F(  3,    26) =   69.19
      Source         SS       df       MS              Number of obs =      30

       _cons     -4.27947   3.013834    -1.42   0.168    -10.47449    1.915554
          di     5.013976   1.241414     4.04   0.000     2.462213     7.56574
          ps     1.296033   .1930944     6.71   0.000     .8991219    1.692944
        phat     -.374459   .0895643    -4.18   0.000    -.5585611   -.1903569

           q        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    617.136817    29  21.2805799           Root MSE      =  2.6801
           Adj R-squared =  0.6625

    Residual    186.754221    26  7.18285466           R-squared     =  0.6974
       Model    430.382596     3  143.460865           Prob > F      =  0.0000

           F(  3,    26) =   19.97
      Source         SS       df       MS              Number of obs =      30
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The standard errors, t-statistics and 95% confidence intervals in this output are incorrect because 
the error variance is based on least squares residuals. It is always better to use software 
commands for 2SLS. 

Stata has a built in command for 2SLS estimation called ivregress, which stands for 
“instrumental variables regression.” For a complete explanation of why 2SLS is called an 
instrumental variables estimator see Chapter 10 in Principles of Econometrics, 4th Edition, and in 
Chapter 10 of this manual. Enter help ivregress for Stata help.  

 

 
 

It is available through the pull-down menus. Select  
 
Statistics > Endogenous covariates > Single-equation instrumental-variables regression. 
 

  
 
The naming conventions in Stata appeal to a broad segment of statistical practitioners. 
“Covariates” is another term used for regression explanatory variables. “Endogenous 
covariates” means that right-hand side explanatory variables are endogenous, and correlated with 
the error term. Within this category there are several choices, but we are working with a single 
equation and want to use instrumental variables estimation, so that choice is clear.  

The dialog box can be accessed by entering db ivregress into the Command line, or 
clicking in the help box dialog: ivregress. The “instrument variables” in the dialog box (on 
next page) are the exogenous variables that are not in the demand equation. In this case that 
variable is pf which is the price of a factor of production, which appears in the supply equation, 
not the demand equation. The “independent variables” in the dialog box are the right-hand side 
variables that are not endogenous. We choose the 2SLS option and click OK.  
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The Stata command shown in the Results window is 
 

ivregress 2sls q di ps (p = pf) 

 

 
 
After the command ivregress we must specify which estimator we want, which in this case is 
2sls. The regression model specification is standard, with the dependent variable q coming first. 
For any explanatory variable that is endogenous we have the statement in parentheses, which is 
 

(varlist2 = varlist_iv)  

Instruments:   di ps pf
Instrumented:  p

       _cons    -4.279471   5.161076    -0.83   0.407    -14.39499    5.836052
          ps     1.296033   .3306669     3.92   0.000     .6479381    1.944128
          di     5.013977   2.125875     2.36   0.018      .847339    9.180615
           p    -.3744591   .1533755    -2.44   0.015    -.6750695   -.0738486

           q        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                       Root MSE      =  4.5895
                                                       R-squared     =       .
                                                       Prob > chi2   =  0.0001
                                                       Wald chi2(3)  =   20.43
Instrumental variables (2SLS) regression               Number of obs =      30

. ivregress 2sls q di ps (p = pf)
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where 

 
varlist2 is a list of all the right-hand size endogenous variables 
varlist_iv is a list of all the exogenous variables that are not 

  in the model 
 
Explanatory variables that are not endogenous would be listed either before or after the 
expression in parentheses. Also, the order of independent variables in the printed results depends 
on their order of entry in the dialog box.  

The IV regression output reports z-values because IV regression has properties that depend 
upon having large samples, and we know that in large samples the t-distribution converges to the 
standard normal N(0,1) distribution. Thus t-statistics become z-statistics. In large samples it does 
not matter if critical values for tests come from one distribution or the other, but in smaller 
samples it can matter. It is our preference to always base inferences on the t-distribution. This is 
achieved in Stata by using the small option. In the following command, also note that we have 
placed the endogenous variable (p=pf) after the dependent variable to make the point that it does 
not have to appear at the end. 
 

ivregress 2sls q (p=pf) ps di, small  

 

 
 
The output will be different in two regards. In the previous estimation the overall test of model 
significance was based on the Wald chi-square test. With the small option the overall test is 
reported as an F-test. The second difference is that t-values are reported, and the p-values and 
interval estimates are based on the t-distribution. 

Stata also includes an option that will display the first stage (the reduced form) of two stage 
least squares. It is an option called first.  
 

ivregress 2sls q (p=pf) ps di, small first 

 

Instruments:   ps di pf
Instrumented:  p

       _cons    -4.279471   5.543884    -0.77   0.447    -15.67509    7.116147
          di     5.013977   2.283556     2.20   0.037     .3200608    9.707893
          ps     1.296033   .3551932     3.65   0.001     .5659232    2.026143
           p    -.3744591   .1647517    -2.27   0.032     -.713111   -.0358071

           q        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    617.136817    29  21.2805799           Root MSE      =    4.93
           Adj R-squared =       .

    Residual    631.917143    26  24.3045055           R-squared     =       .
       Model    -14.780326     3 -4.92677534           Prob > F      =  0.0033

           F(  3,    26) =    5.90
      Source         SS       df       MS              Number of obs =      30

Instrumental variables (2SLS) regression
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The additional output is the first-stage regressions. In this case, since there is one right-hand side 
endogenous variable, PRICE (p), Stata reports its reduced form. The reason is that in this reduced 
form there must be evidence that the instrument, pf, is actually a significant explanatory variable. 
We see that its t-statistic is 4.54. There is a rule of thumb in this literature that for two-stage least 
squares estimation to be reliable the t-statistic must be greater than about 3.3, or the F-value for 
testing the instruments greater than 10. For much more detail on this issue see Principles of 
Econometrics, 4th Edition, Chapter 10, Appendix E, and Chapter 10.6 of this manual. 

There is a “post-estimation” command called estat firststage that carries out this test of 
instrument validity. It is located on the pull-down Stata menu by selecting Statistics > 
Postestimation > Reports and statistics. From the resulting list select the first item. 
 

 
 
There is quite a bit of output and most you will not understand, but the key item is the value of 
the F-statistic. Since there is a single external instrument this value, 20.5717 is the square of the t-
statistic from the reduced form. 

 

 
 

In the lower portion of the output, shown on the next page, from estat firststage are the 
Stock-Yogo critical values for the test of whether or not instruments are strong. The rule of thumb 
value for the first stage F-test is 10, but this has been refined. For an explantion of how to use 
these critical values, see Chapter 10.6 of this manual. 

       _cons    -32.51242   7.984235    -4.07   0.000    -48.92425   -16.10059
          pf     1.353906   .2985062     4.54   0.000     .7403175    1.967494
          di     7.602491   1.724336     4.41   0.000     4.058068    11.14691
          ps     1.708147   .3508806     4.87   0.000     .9869017    2.429393

           p        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                  Root MSE        =     6.5975
                                                  Adj R-squared   =     0.8758
                                                  R-squared       =     0.8887
                                                  Prob > F        =     0.0000
                                                  F(   3,     26) =      69.19
                                                  Number of obs   =         30

First-stage regressions

   
             p    0.8887      0.8758       0.4417       20.5717    0.0001
   
      Variable     R-sq.       R-sq.        R-sq.       F(1,26)   Prob > F
                            Adjusted      Partial
   
  First-stage regression summary statistics

. estat firststage
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The Stata command is  
 

estat firststage 

11.4 2SLS ESTIMATES OF TRUFFLE SUPPLY 

The two-stage least squares estimates of the supply equation are similarly obtained. Note that 
there are two exogenous shift variables for this estimation, ps and di, which are variables in the 
demand equation. 
 

ivregress 2sls q (p=ps di) pf, small first 

 
The first stage estimation results are shown below. In this estimation, at least one of the external 
instruments, the shift variables ps and di, must be significant.  
 

 
 
The 2SLS estimates of the supply equation are 
 

   
  LIML Size of nominal 5% Wald test     16.38    8.96    6.66    5.53
  2SLS Size of nominal 5% Wald test     16.38    8.96    6.66    5.53
                                         10%     15%     20%     25%
   
  2SLS relative bias                           (not available)
                                          5%     10%     20%     30%
   
  Ho: Instruments are weak             # of excluded instruments:     1
  Critical Values                      # of endogenous regressors:    1

  Minimum eigenvalue statistic = 20.5717     

       _cons    -32.51242   7.984235    -4.07   0.000    -48.92425   -16.10059
          di     7.602491   1.724336     4.41   0.000     4.058068    11.14691
          ps     1.708147   .3508806     4.87   0.000     .9869017    2.429393
          pf     1.353906   .2985062     4.54   0.000     .7403175    1.967494

           p        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                  Root MSE        =     6.5975
                                                  Adj R-squared   =     0.8758
                                                  R-squared       =     0.8887
                                                  Prob > F        =     0.0000
                                                  F(   3,     26) =      69.19
                                                  Number of obs   =         30

First-stage regressions
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To check the joint significance of the shift variables we use 
 

estat firststage 

 

 
 
The key figure is the F-statistic. The value 41.4873 is greater than the rule of thumb threshold of 
10, reassuring us that the first-stage coefficient of at least one of the shift variables ps and di is 
significantly different than from zero. 

11.5 SUPPLY AND DEMAND OF FISH 

The second example of a simultaneous equations model is from the Fulton Fish Market in New 
York City. Let us specify the demand equation for this market as 
 

� � � �1 2 3 4 5 6ln ln d
t t t t t t tQUAN PRICE MON TUE WED THU e� %  %  %  %  %  %   

 
where QUANt is the quantity sold, in pounds, and PRICEt the average daily price per pound. Note 
that we are using the subscript “t” to index observations for this relationship because of the time 
series nature of the data. The remaining variables are indicator variables for the days of the week, 
with Friday being omitted. The coefficient 2%  is the price elasticity of demand, which we expect 
to be negative. The daily indicator variables capture day to day shifts in demand. The supply 
equation is  
 

� � � �1 2 3ln ln s
t t t tQUAN PRICE STORMY e� �  �  �   

Instruments:   pf ps di
Instrumented:  p

       _cons      20.0328   1.223115    16.38   0.000     17.52318    22.54243
          pf    -1.000909   .0825279   -12.13   0.000    -1.170243    -.831576
           p     .3379816   .0249196    13.56   0.000     .2868509    .3891123

           q        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    617.136817    29  21.2805799           Root MSE      =  1.4976
           Adj R-squared =  0.8946

    Residual    60.5545652    27  2.24276167           R-squared     =  0.9019
       Model    556.582251     2  278.291126           Prob > F      =  0.0000

           F(  2,    27) =   95.26
      Source         SS       df       MS              Number of obs =      30

Instrumental variables (2SLS) regression

   
             p    0.8887      0.8758       0.7614       41.4873    0.0000
   
      Variable     R-sq.       R-sq.        R-sq.       F(2,26)   Prob > F
                            Adjusted      Partial
   
  First-stage regression summary statistics
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The coefficient 2�  is the price elasticity of supply. The variable STORMY is an indicator variable 
indicating stormy weather during the previous three days. This variable is important in the supply 
equation because stormy weather makes fishing more difficult, reducing the supply of fish 
brought to market. 

Open a new log file, and open and examine the data file fultonfish.dta. 
 

use fultonfish, clear  

describe 

 
Examine the data by listing the first 5 observations for the variables in the system. 
 

list lquan lprice mon tue wed thu stormy in 1/5 

 

 
 
Now obtain the summary statistics for these variables 
 

summarize lquan lprice mon tue wed thu stormy 

 

11.6 REDUCED FORMS FOR FISH PRICE AND QUANTITY 

It is very important to estimate the reduced form equations for each endogenous variable in a 
system of simultaneous equations. The reduced form equations can be estimated by least squares 
because all the right-hand side variables are exogenous. The reduced form equation for 
� �ln QUAN  is obtained using 

 
reg lquan mon tue wed thu stormy  

 
Because � �ln PRICE  is the right-hand side explanatory variable let us examine its reduced form 
equation more closely. It is estimated using 
 

      
  5.   7.844241    .6643268     0     0     0     0        1  
  4.   8.656955     .247139     0     0     0     1        1  
  3.   8.350194    .0723207     0     0     1     0        0  
  2.   7.707063           0     0     1     0     0        1  
  1.   8.994421   -.4307829     1     0     0     0        1  
      
          lquan      lprice   mon   tue   wed   thu   stormy  
      

      stormy         111    .2882883    .4550202          0          1
         thu         111    .2072072    .4071434          0          1

         wed         111    .1891892    .3934351          0          1
         tue         111    .2072072    .4071434          0          1
         mon         111    .1891892    .3934351          0          1
      lprice         111   -.1936811    .3819346  -1.107745   .6643268
       lquan         111     8.52343     .741672   6.194406   9.981374

    Variable         Obs        Mean    Std. Dev.       Min        Max
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reg lprice mon tue wed thu stormy 

 

 
 

The concept of identification is discussed in POE4. To use 2SLS there must be M � 1 (M is the 
number of equations) exogenous variables that are excluded from the equation—these are the 
instrumental variables. However, not only must they be omitted from the equation in question, 
but they must be statistically significant in the reduced form. 

In the demand equation, the variable stormy is not included, because storms affect supply 
and not demand. In the reduced form for � �ln PRICE  the variable stormy must be very 
significant for 2SLS to work well. Note that the t-statistic for stormy is 4.64 and the p-value is 
very small. This is very good. The key “rule of thumb” threshold for the t-statistic value of the 
shift variable is 3.3. If the t-statistic is lower than this value, 2SLS may not work very well. 

In the supply equation, the variables omitted are the days of the week, mon, tue, wed and thu. 
In order to use 2SLS to estimate the supply equation at least one of these variables must be (very) 
significant. The t-values are small. The F-statistic of the joint null hypothesis that all these 
variables have no effect is obtained using 
 

test mon tue wed thu 

 
This particular syntax is another simplification of that used in our discussion of the test 
statement in Chapter 6. Since each coefficient is zero under the null hypothesis, you can simply 
list the variables after test. The result is 

 

 
 
In order to use 2SLS for the supply equation we would look for a very significant test outcome, 
with an F-value greater than 10. Clearly this is not the case. Thus in practical terms the supply 
equation is not identified, and thus we should not rely on the 2SLS estimates for this equation. 

       _cons    -.2717054    .076389    -3.56   0.001    -.4231706   -.1202402
      stormy     .3464055   .0746776     4.64   0.000     .1983337    .4944774
         thu     .0496456   .1044582     0.48   0.636    -.1574758     .256767
         wed     -.011825   .1069299    -0.11   0.912    -.2238473    .2001973
         tue    -.0411493   .1045087    -0.39   0.695    -.2483707    .1660721
         mon    -.1129225   .1072918    -1.05   0.295    -.3256623    .0998174

      lprice        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    16.0461409   110  .145874008           Root MSE      =  .35424
           Adj R-squared =  0.1398

    Residual    13.1756621   105  .125482496           R-squared     =  0.1789
       Model    2.87047878     5  .574095757           Prob > F      =  0.0008

           F(  5,   105) =    4.58
      Source         SS       df       MS              Number of obs =     111

            Prob > F =    0.6501
       F(  4,   105) =    0.62

 ( 4)  thu = 0
 ( 3)  wed = 0
 ( 2)  tue = 0
 ( 1)  mon = 0

. test mon tue wed thu
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11.7 2SLS ESTIMATES OF FISH DEMAND 

To obtain the 2SLS estimates of the demand equation we again use the Stata command 
ivregress. The exogenous shift variable is stormy. It appears in the parentheses along with the 
right-hand side endogenous variable lprice, with other explanatory variables listed either before 
or after. We use the option small so that t-statistics will be displayed rather than z-statistics, and 
we use the option first to obtain the first stage regression which is the reduced form for lprice. 
 

ivregress 2sls lquan (lprice=stormy) mon tue wed thu, small first 

 
The reduced form equation is 
 

 
 
Note that stormy is significant with a t-value of 4.64, which is larger than the rule of thumb value 
3.3. It should also be mentioned that the small option alters the computation of p-values and the 
confidence intervals, which are also based on the t-distribution. The two-stage least squares, 
instrumental variables, estimates are 

 

       _cons    -.2717054    .076389    -3.56   0.001    -.4231706   -.1202402
      stormy     .3464055   .0746776     4.64   0.000     .1983337    .4944774
         thu     .0496456   .1044582     0.48   0.636    -.1574758     .256767
         wed     -.011825   .1069299    -0.11   0.912    -.2238473    .2001973
         tue    -.0411493   .1045087    -0.39   0.695    -.2483707    .1660721
         mon    -.1129225   .1072918    -1.05   0.295    -.3256623    .0998174

      lprice        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                  Root MSE        =     0.3542
                                                  Adj R-squared   =     0.1398
                                                  R-squared       =     0.1789
                                                  Prob > F        =     0.0008
                                                  F(   5,    105) =       4.58
                                                  Number of obs   =        111

First-stage regressions
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The post-estimation command estat firststage can also be used to test the validity of the 
instrument stormy. 
 

estat firststage 

 

 
 
Once again we point out that the lower portion the output contains the Stock-Yogo critical values 
for the first-stage F-test, and the use of these critical values is explained in POE4, Chapter 10, 
Appendix E, and in Chapter 10.6 of this manual. 

11.8 2SLS ALTERNATIVES 

There has always been great interest in alternatives to the standard IV/2SLS estimator. See 
Principles of Econometrics, 4th Edition, Appendix E. The limited information maximum 

Instruments:   mon tue wed thu stormy
Instrumented:  lprice

       _cons     8.505911   .1661669    51.19   0.000     8.176433     8.83539
         thu     .1092673   .2087866     0.52   0.602    -.3047179    .5232525
         wed    -.5663511   .2127549    -2.66   0.009    -.9882047   -.1444975
         tue    -.5307694   .2080001    -2.55   0.012    -.9431951   -.1183437
         mon    -.0254022   .2147742    -0.12   0.906    -.4512596    .4004553
      lprice    -1.119417    .428645    -2.61   0.010    -1.969341    -.269493

       lquan        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total     60.508517   110  .550077427           Root MSE      =  .70434
           Adj R-squared =  0.0981

    Residual    52.0903208   105  .496098293           R-squared     =  0.1391
       Model    8.41819623     5  1.68363925           Prob > F      =  0.0006

           F(  5,   105) =    4.72
      Source         SS       df       MS              Number of obs =     111

Instrumental variables (2SLS) regression

   
  LIML Size of nominal 5% Wald test     16.38    8.96    6.66    5.53
  2SLS Size of nominal 5% Wald test     16.38    8.96    6.66    5.53
                                         10%     15%     20%     25%
   
  2SLS relative bias                           (not available)
                                          5%     10%     20%     30%
   
  Ho: Instruments are weak             # of excluded instruments:     1
  Critical Values                      # of endogenous regressors:    1

  Minimum eigenvalue statistic = 21.5174     

   
        lprice    0.1789      0.1398       0.1701       21.5174    0.0000
   
      Variable     R-sq.       R-sq.        R-sq.      F(1,105)   Prob > F
                            Adjusted      Partial
   
  First-stage regression summary statistics
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likelihood (LIML) estimator was first derived by Anderson and Rubin in 1949.1 There is renewed 
interest in LIML in the presence of weak instruments. Several modifications of LIML have been 
suggested by Fuller (1977) and others. These estimators are unified in a common framework, 
along with 2SLS, using the idea of a k-class of estimators. LIML suffers less from test size 
aberrations than the 2SLS estimator, and the Fuller modification suffers less from bias. 

In a system of M simultaneous equations let the endogenous variables be 1 2, , , My y y� . Let 
there be K exogenous variables 1 2, , , Kx x x� . Suppose the first structural equation within this 
system is 

 
1 2 2 1 1 2 2 1y y x x e� % � �   

The endogenous variable 2y  has reduced form � �2 12 1 22 2 2 2 2 2K Ky x x x v E y v� >  >   >  � � . 
The parameters of the reduced form equation are consistently estimated by least squares, so that 

 

� ��2 12 1 22 2 2ˆ ˆ ˆ K KE y x x x� >  >   >�  
 

The reduced form residuals are 
 

� ��2 2 2v̂ y E y� �  
 
The two-stage least squares estimator is an IV estimator using � ��2E y  as an instrument. A k-class 

estimator is an IV estimator using instrumental variable 2 2ˆy kv� . The LIML estimator uses ˆk � �  
where �̂  is the minimum ratio of the sum of squared residuals from two regressions. The 
explanation is given on pages 468-469 of POE4. A modification suggested by Wayne Fuller 
(1977)2 uses the k-class value 

 
ˆ ak

N K
� �

�
�

 
 
where K is the total number of instrumental variables (included and excluded exogenous 
variables) and N is the sample size. The value of a is a constant—usually 1 or 4.  

With the Mroz data we estimate the HOURS supply equation 
 

1 2 3 4 56HOURS MTR EDUC KIDSL NWIFEINC e� � � � � �   
 

This example was used in Chapter 10.6 of this manual. The example we consider has endogenous 
variables educ and mtr and IV mothereduc and fathereduc and experience, exper. The code for 
other POE4 examples is given in the Chapter 11 do-file, but we will not discuss them here. 

Open a new log, and re-open the Mroz data, clearing memory. Create variables used in the 
example. 

 

 
1 Anderson, T.W. and H. Rubin (1949) “Estimation of the Parameters of a Single Equation in a Complete System of Stochastic 

Equations,” Annals of Mathematical Statistics, 21, pp. 46-63. 
2 “Some Properties of a Modification of the Limited Information Estimator,” Econometrica, 45, pp. 939-953. 
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use mroz, clear 

drop if lfp==0 

gen lwage=ln(wage) 

gen nwifeinc =  (faminc-wage*hours)/1000 

gen exper2 = exper^2  

 
The LIML estimates are obtained using ivregress. Using the dialog box, db ivregress, click 
the radio button for Limited-information maximum likelihood (LIML). 

 

 
 

The Stata command is 
 

ivregress liml hours kidsl6 nwifeinc (mtr educ = mothereduc fathereduc 

 exper) 

 
 
The test for weak instruments is obtained using  

 
estat firststage 

 

Instruments:   kidsl6 nwifeinc mothereduc fathereduc exper
Instrumented:  mtr educ

       _cons     18587.91   3662.026     5.08   0.000     11410.47    25765.35
    nwifeinc    -104.9415   20.56548    -5.10   0.000    -145.2491   -64.63395
      kidsl6     207.5531   162.2957     1.28   0.201    -110.5406    525.6469
        educ    -197.2591   64.24267    -3.07   0.002    -323.1724   -71.34579
         mtr    -19196.52   3980.227    -4.82   0.000    -26997.62   -11395.42

       hours        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                       Root MSE      =  852.35
                                                       R-squared     =       .
                                                       Prob > chi2   =  0.0000
                                                       Wald chi2(4)  =   36.52
Instrumental variables (LIML) regression               Number of obs =     428

. ivregress liml hours kidsl6 nwifeinc (mtr educ = mothereduc fathereduc exper)
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Using the maximum size of 10%, for a nominal 5% test of a hypothesis concerning the coefficient 
of the endogenous variable, the critical value is given in the Stata output as 5.44. We reject the 
null hypothesis that the instruments are weak using the Cragg-Donald F-test statistic (called 
Minimum eigenvalue statistic by Stata) of 8.60. If we were using the 2SLS/IV estimator, we 
would have not rejected the hypothesis that the instruments are weak because the critical value is 
13.43. For more understanding of this test you are referred to Chapter 10.6 of this manual, and 
Chapter 11, Appendix B in Principles of Econometrics, 4th Edition.  

The Stata command ivregress does not have an option for Fuller’s modified k-class 
estimator. However there is a user-written routine to use. In the Stata command window enter 
findit ivreg2. In the resulting help window, locate 

 

 
 

Click on st0030_3. In the resulting viewer you can install this package if you have administrative 
privileges on the computer. 

 

   
  LIML Size of nominal 5% Wald test      5.44    3.81    3.32    3.09
  2SLS Size of nominal 5% Wald test     13.43    8.18    6.40    5.45
                                         10%     15%     20%     25%
   
  2SLS relative bias                           (not available)
                                          5%     10%     20%     30%
   
  Ho: Instruments are weak             # of excluded instruments:     3
  Critical Values                      # of endogenous regressors:    2

  Minimum eigenvalue statistic = 8.60138     

   
          educ       0.1042             0.0957
           mtr       0.0618             0.0529
   
      Variable    Partial R-sq.   Adj. Partial R-sq.
                     Shea's             Shea's
   
  Shea's partial R-squared

. estat firststage
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The syntax of the command is much like ivregress. 
 

ivreg2 hours (mtr educ =  mothereduc fathereduc exper) kidsl6 nwifeinc,  

 fuller(1) small 

 
In the option fuller(1), the 1 indicates setting the constant a = 1. At the top of the output we 
find the parameter estimates and the k-value used in estimation, as well as the value of �̂ . 

 

 
 
In addition to the estimates we are automatically given many diagnostics. For current purposes 
we report only the weak instrument test results. The Cragg-Donald F-statistic is reported along 
with critical values for the criteria based on relative bias. See Appendix 10.6 of this manual for a 
description of the relative bias criterion. 

 

       _cons     18156.78    3560.13     5.10   0.000     11159.04    25154.53
    nwifeinc     -102.629   20.03279    -5.12   0.000    -142.0052   -63.25276
      kidsl6     193.2295   159.1413     1.21   0.225    -119.5767    506.0358
        educ    -191.1248   62.73944    -3.05   0.002    -314.4446   -67.80487
         mtr    -18730.16   3870.958    -4.84   0.000    -26338.87   -11121.45

       hours        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

Residual SS             =  302240888.2                Root MSE      =    845.3
Total (uncentered) SS   =    983895094                Uncentered R2 =   0.6928
Total (centered) SS     =  257311019.9                Centered R2   =  -0.1746
                                                      Prob > F      =   0.0000
                                                      F(  4,   423) =     9.22
                                                      Number of obs =      428

Statistics consistent for homoskedasticity only
Estimates efficient for homoskedasticity only

Fuller parameter=1    
lambda          =1.00288
k               =1.00051

LIML estimation
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11.9 MONTE CARLO SIMULATION RESULTS 

In Chapter 10.8 of this manual we explained the Monte Carlo simulation experiment used in 
Chapter 10, Appendix 10F.2 of Principles of Econometrics, 4th Edition. The Monte Carlo 
simulation explores the properties of the IV/2SLS estimators. Here we employ the same 
experiment, adding aspects of the LIML and k-class estimators. 

The code is completely given in the Chapter 11 do-file at the end of this chapter. The 
structure is explained in Chapter 10.8 in this manual. The first portion, the global control 
parameters and data generation process are unchanged. 
 

clear all 

set more off 

global numobs 100             

global pi     0.5  // reduced form parameter controls IV strength 

global rho    0.8  // rho controls endogeneity 

set seed 1234567     // random number seed 

set obs $numobs 

matrix sig = (1, $rho \ $rho, 1)  // corr(e1,v2) 

drawnorm e v, n($numobs) corr(sig) // e1 & v2 values 

generate z1 = rnormal() 

generate z2 = rnormal() 

generate z3 = rnormal() 

generate x = $pi*z1 + $pi*z2 + $pi*z3 + v // reduced form 

generate y = x + e     

correlate x e 

regress x z1 z2 z3   

regress y x 

ivregress 2sls y (x=z1 z2 z3), small 

 
The first new element is the application of the LIML estimator to the simulated data. The 
command and output are given below. Note that the LIML estimates are close to the true values 
because we have set the global variable $pi = 0.5 so that the instruments are strong. 

 
ivregress liml y (x=z1 z2 z3), small 

 

Source: Stock-Yogo (2005).  Reproduced by permission.
NB: Critical values based on Fuller parameter=1
                                         30% Fuller maximum bias          5.88
                                         20% Fuller maximum bias          6.79
                                         10% Fuller maximum bias          8.39
                                          5% Fuller maximum bias         10.00
                                         30% maximal Fuller rel. bias     6.15
                                         20% maximal Fuller rel. bias     7.18
                                         10% maximal Fuller rel. bias     8.96
Stock-Yogo weak ID test critical values:  5% maximal Fuller rel. bias    10.83
Weak identification test (Cragg-Donald Wald F statistic):                8.601
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Next, we introduce the Fuller-modified k-class estimator with a = 1 and a = 4. 
 

ivreg2 y (x=z1 z2 z3), small fuller(1) 

 

 
 

ivreg2 y (x=z1 z2 z3), small fuller(4) 

 

Instruments:   z1 z2 z3
Instrumented:  x

       _cons     .1290802   .1074206     1.20   0.232    -.0840924    .3422528
           x     .9951923   .1391497     7.15   0.000     .7190542     1.27133

           y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    468.851956    99  4.73587834           Root MSE      =  1.0692
           Adj R-squared =  0.7586

    Residual    112.041511    98  1.14328073           R-squared     =  0.7610
       Model    356.810445     1  356.810445           Prob > F      =  0.0000

           F(  1,    98) =   51.15
      Source         SS       df       MS              Number of obs =     100

Instrumental variables (LIML) regression

. ivregress liml y (x=z1 z2 z3), small

       _cons      .130244    .106042     1.23   0.222    -.0801929    .3406808
           x     1.010894   .1359953     7.43   0.000     .7410159    1.280772

           y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

Residual SS             =  109.2043273                Root MSE      =    1.056
Total (uncentered) SS   =  469.1579693                Uncentered R2 =   0.7672
Total (centered) SS     =  468.8519559                Centered R2   =   0.7671
                                                      Prob > F      =   0.0000
                                                      F(  1,    98) =    55.25
                                                      Number of obs =      100

Statistics consistent for homoskedasticity only
Estimates efficient for homoskedasticity only

Fuller parameter=1    
lambda          =1.00996
k               =0.99954

LIML estimation

. ivreg2 y (x=z1 z2 z3), small fuller(1)
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The program used for the simulation is similar in structure to the one used in Chapter 10.8 of this 
manual. 

 
program ch11sim, rclass 

version 11.1  

drop _all 

set obs $numobs 

matrix sig = (1, $rho \ $rho, 1)  // cov(e1,v2) 

drawnorm e v, n($numobs) corr(sig) // e1 & v2 values 

generate z1 = rnormal() 

generate z2 = rnormal() 

generate z3 = rnormal() 

generate x = $pi*z1 + $pi*z2 + $pi*z3 + v   

generate y = x + e     

ivregress 2sls y (x=z1 z2 z3), small 

return scalar b2sls =_b[x] 

return scalar se2sls = _se[x] 

return scalar t2sls = (_b[x]-1)/_se[x] 

return scalar r2sls = abs(return(t2sls))>invttail($numobs-2,.025) 

 
We introduced LIML and Fuller-modified k-class with returns the same as 2SLS. 

 
ivregress liml y (x=z1 z2 z3), small 

return scalar bliml =_b[x] 

return scalar seliml = _se[x] 

return scalar tliml = (_b[x]-1)/_se[x] 

return scalar rliml = abs(return(tliml))>invttail($numobs-2,.025) 

       _cons     .1334717   .1023524     1.30   0.195    -.0696432    .3365867
           x     1.054443   .1275256     8.27   0.000      .801373    1.307514

           y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

Residual SS             =  101.7893518                Root MSE      =    1.019
Total (uncentered) SS   =  469.1579693                Uncentered R2 =   0.7830
Total (centered) SS     =  468.8519559                Centered R2   =   0.7829
                                                      Prob > F      =   0.0000
                                                      F(  1,    98) =    68.37
                                                      Number of obs =      100

Statistics consistent for homoskedasticity only
Estimates efficient for homoskedasticity only

Fuller parameter=4    
lambda          =1.00996
k               =0.96829

LIML estimation

. ivreg2 y (x=z1 z2 z3), small fuller(4)
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ivreg2 y (x=z1 z2 z3), small fuller(1) 

return scalar bfull =_b[x] 

return scalar sefull = _se[x] 

return scalar tfull = (_b[x]-1)/_se[x] 

return scalar rfull = abs(return(tfull))>invttail($numobs-2,.025) 

ivreg2 y (x=z1 z2 z3), small fuller(4) 

return scalar bfull4 =_b[x] 

return scalar sefull4 = _se[x] 

return scalar tfull4 = (_b[x]-1)/_se[x] 

return scalar rfull4 = abs(return(tfull4))>invttail($numobs-2,.025) 

end 

The simulate command has more elements but the same structure as in Chapter 10.8 of this 
manual. 

 
simulate b2slsr=r(b2sls) se2slsr=r(se2sls) t2slsr=r(t2sls) /// 

 r2slsr=r(r2sls) blimlr=r(bliml) selimlr=r(seliml) /// 

 tlimlr=r(tliml) rlimlr=r(rliml) bfullr=r(bfull) /// 

 sefullr=r(sefull) tfullr=r(tfull) rfullr=r(rfull) /// 

 bfull4r=r(bfull4) sefull4r=r(sefull4) tfull4r=r(tfull4) /// 

 rfull4r=r(rfull4), reps(10000) nodots nolegend seed(1234567):  

  ch11sim 

 
The first display and results for 2SLS are the same as in Chapter 10.8 of this manual. 

 
di " Simulation parameters"  

di " rho = " $rho 

di " N = " $numobs   

di " pi = "  $pi 

 
 

di " 2sls" 

gen mse2sls = (b2slsr-1)^2 

tabstat b2slsr se2slsr r2slsr mse2sls, stat(mean sd) 

 pi = .5
. di " pi = "  $pi

 N = 100
. di " N = " $numobs       

 rho = .8
. di " rho = " $rho

 Simulation parameters
. di " Simulation parameters"     
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Note in the above that the two-stage least squares estimates averaged over 10,000 simulations are 
very close to the true slope parameter value of 1, and the t-test of the true null hypothesis rejects 
about 5% of the time, as it should. 

 
di " liml" 

gen mseliml = (blimlr-1)^2 

tabstat blimlr selimlr rlimlr mseliml, stat(mean sd) 

 
 

The LIML results, above, are similar in this strong IV example. 
 

di " fuller(1)" 

gen msefull = (bfullr-1)^2 

tabstat bfullr sefullr rfullr msefull, stat(mean sd) 

 

The Fuller-modified k-class estimator with a = 1 is designed to produce an estimator that is nearly 
unbiased, and the results above are consistent with that objective. 

 
di " fuller(4)" 

gen msefull4 = (bfull4r-1)^2 

tabstat bfull4r sefull4r rfull4r msefull4, stat(mean sd) 

 
 

      sd    .1174081  .0274133  .2440512  .0227001
    mean    1.011116    .11695     .0636  .0139068

   stats      b2slsr   se2slsr    r2slsr   mse2sls

. tabstat b2slsr se2slsr r2slsr mse2sls, stat(mean sd)

      sd    .1234965   .029831  .2198045  .0276647
    mean    .9881047  .1210493     .0509  .0153914

   stats      blimlr   selimlr    rlimlr   mseliml

. tabstat blimlr selimlr rlimlr mseliml, stat(mean sd)

      sd    .1190081  .0283846  .2285763  .0239569
    mean     .999965  .1189061     .0553  .0141615

   stats      bfullr   sefullr    rfullr   msefull

. tabstat bfullr sefullr rfullr msefull, stat(mean sd)

      sd    .1074901  .0247115  .2731557  .0177391
    mean    1.033343  .1130738     .0812  .0126647

   stats     bfull4r  sefull4r   rfull4r  msefull4

. tabstat bfull4r sefull4r rfull4r msefull4, stat(mean sd)
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The Fuller-modified k-class estimator with a = 4 is designed to have a small mean squared error, 
and the results above show that it does have lower MSE than the other estimators. Recall that the 
mean squared error is computed for each estimator as 

 

� � � �210000

2 2 21
ˆ ˆmse 10000mm�
� � � ���  

KEY TERMS 

2sls instrument variables regress 
correlate ivreg2 rnormal() 
demand equation ivregress seed 
drawnorm k-class estimator simulate 
endogenous variables LIML simultaneous equations 
esttab list Stock-Yogo critical value 
exogenous variables matrix summarize 
findit mean squared error supply equation 
F-test Monte Carlo simulation test 
global predict two-stage least squares 
identification reduced form equations Wald test 
  

CHAPTER 11 DO-FILE [CHAP11.DO] 

* file chap11.do for Using Stata for Principles of Econometrics, 4e 

cd c:\data\poe4stata 

* Stata do-file  
* copyright C 2011 by Lee C. Adkins and R. Carter Hill  

* used for "Using Stata for Principles of Econometrics, 4e"  

* by Lee C. Adkins and R. Carter Hill (2011) 
* John Wiley and Sons, Inc. 

* setup 
version 11.1 

capture log close 

set more off 

********** Chapter 11.6 Truffle Supply and Demand 

* open log file 

log using chap11_truffles, replace text 

* open data 

use truffles, clear 

* examine data 

describe 

list in 1/5 
summarize  
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* reduced form equations 

reg q ps di pf  
reg p ps di pf  

predict phat  

* 2sls of demand 

reg q phat ps di 

* IV/2sls of demand equation 

ivregress 2sls  q (p=pf) ps di  

ivregress 2sls  q (p=pf) ps di, small  
ivregress 2sls  q (p=pf) ps di, small first  

estat firststage 

* 2sls of supply using least squares 

reg q phat pf 

* IV/2sls of supply equation  

ivregress 2sls q (p=ps di) pf, small first 

estat firststage 

********* 2sls using REG3 

********* This is not discussed in the chapter. 
********* Enter help reg3 

reg3 (q p ps di) (q p pf), endog(q p) 2sls 
log close 

********** Chapter 11.7 Fulton Fish Market  

* open log 

log using chap11_fish, replace text 

* open data 

use fultonfish, clear  

* examine data 

describe 
list lquan lprice mon tue wed thu stormy in 1/5 

summarize lquan lprice mon tue wed thu stormy 

* estimate reduced forms 

reg lquan mon tue wed thu stormy  

reg lprice mon tue wed thu stormy 
test mon tue wed thu 

* IV/2sls  
ivregress 2sls lquan (lprice=stormy) mon tue wed thu, small first 

estat firststage 

log close 

*********** Chapter 11B.2.3a 

log using chap11_liml, replace text 

use mroz, clear 
drop if lfp==0 

gen lwage=ln(wage) 

gen nwifeinc =  (faminc-wage*hours)/1000 
gen exper2 = exper^2 

* B=1, L=1 
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ivregress liml hours (mtr = exper) educ kidsl6 nwifeinc, small 

estat firststage 

estimates store m11 

* B=1, L=2 

ivregress liml hours (mtr =  exper exper2) educ kidsl6 nwifeinc, small 
estat firststage 

estimates store m12 

*********** View LIML as IV estimator 

* save liml k-value 
scalar kvalue=e(kappa) 

* reduced form residuals 
reg mtr exper exper2 educ kidsl6 nwifeinc 

predict vhat, r 

* create purged endogenous variable 

gen emtr = mtr - kvalue*vhat 

* apply 2sls with IV = purged endogenous variable 

ivregress 2sls hours (mtr = emtr) educ kidsl6 nwifeinc, small 

* B=1, L=3 

ivregress liml hours (mtr = exper exper2 largecity) educ kidsl6 nwifeinc, small 

estat firststage 
estimates store m13 

* B=1, L=4 
ivregress liml hours (mtr = exper exper2 largecity unemployment) educ kidsl6  nwifeinc, 

small 

estat firststage 
estimates store m14 

* B=2, L=2 
ivregress liml hours (mtr educ =  mothereduc fathereduc) kidsl6 nwifeinc, small 

estat firststage 

estimates store m22 

* B=2, L=3 

ivregress liml hours (mtr educ =  mothereduc fathereduc exper) kidsl6 nwifeinc, small 
estat firststage 

estimates store m23 

* B=2, L=4 

ivregress liml hours (mtr educ =  mothereduc fathereduc exper exper2) kidsl6  nwifeinc, 

small 
estat firststage 

estimates store m24 

********** Table 11B.3 

esttab m11 m13 m22 m23, t(%12.2f) b(%12.4f) nostar /// 
       gaps scalars(kappa) title("LIML estimations") 

log close 

********** Chapter 11B.2.3b Fuller modified LIML 

********** Estimation using IVREG2 a user written command 

********** In the command line type FINDIT IVREG2 and click to install 
********** You must have administrative power to install 

* open log file 



382   Chapter 11 

log using chap11_fuller, text replace 

* open data 
use mroz, clear 

drop if lfp==0 

gen lwage=ln(wage) 
gen nwifeinc = (faminc-wage*hours)/1000 

gen exper2 = exper^2 

* B=1, L=1 

ivreg2 hours (mtr = exper) educ kidsl6 nwifeinc, fuller(1) small 

estimates store m11 

* B=1, L=2 

ivreg2 hours (mtr = exper exper2) educ kidsl6 nwifeinc, fuller(1) small 
estimates store m12 

* B=1, L=3 
ivreg2 hours (mtr = exper exper2 largecity) educ kidsl6 nwifeinc, /// 

 fuller(1) small 

estimates store m13 

* B=1, L=4 

ivreg2 hours (mtr = exper exper2 largecity unemployment) educ kidsl6 nwifeinc, /// 
 fuller(1) small 

estimates store m14 

* B=2, L=2 

ivreg2 hours (mtr educ = mothereduc fathereduc) kidsl6 nwifeinc, /// 

 fuller(1) small 
estimates store m22 

* B=2, L=3 
ivreg2 hours (mtr educ =  mothereduc fathereduc exper) kidsl6 nwifeinc, /// 

 fuller(1) small 

estimates store m23 

* B=2, L=4 

ivreg2 hours (mtr educ =  mothereduc fathereduc exper exper2) kidsl6 /// 
 nwifeinc, fuller(1) small 

estimates store m24 

esttab  m11 m13 m22 m23, t(%12.2f) b(%12.4f) nostar /// 

       gaps scalars(kclass fuller widstat) title("fuller(1) estimations") 

log close 

********** Chapter 11B.3 Monte Carlo simulation 

* open log 

log using chap11_sim, replace text 

* clear memory 

clear all 

set more off 

* set experiment parameters 

global numobs 100             
global pi     0.5   // reduced form parameter controls IV strength 

global rho    0.8   // rho controls endogeneity 

set seed 1234567       // random number seed 

set obs $numobs 
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* draw correlated e and v 

matrix sig = (1, $rho \ $rho, 1)  // corr(e1,v2) 

drawnorm e v, n($numobs) corr(sig)  // e1 & v2 values 

* draw 3 uncorrelated standard normals               

generate z1 = rnormal() 
generate z2 = rnormal() 

generate z3 = rnormal() 

* DGP 

generate x = $pi*z1 + $pi*z2 + $pi*z3 + v  // reduced form 

generate y = x + e     

* correlation between x and e 

correlate x e 

* reduced form regression 

regress x z1 z2 z3   

* OLS 

regress y x 

* 2sls 

ivregress 2sls y (x=z1 z2 z3), small 

* liml 
ivregress liml y (x=z1 z2 z3), small 

* fuller(1) 
ivreg2 y (x=z1 z2 z3), small fuller(1) 

* fuller(4) 
ivreg2 y (x=z1 z2 z3), small fuller(4) 

* program to carry out simulation 
      

program ch11sim, rclass 

 version 11.1  
 drop _all 

 set obs $numobs 
 matrix sig = (1, $rho \ $rho, 1)  // cov(e1,v2) 

 drawnorm e v, n($numobs) corr(sig) // e1 & v2 values 

                         
 generate z1 = rnormal() 

 generate z2 = rnormal() 

 generate z3 = rnormal() 
     

 * DGP 

 generate x = $pi*z1 + $pi*z2 + $pi*z3 + v     
 generate y = x + e     

       

 * 2sls 
 ivregress 2sls y (x=z1 z2 z3), small 

 return scalar b2sls =_b[x] 

 return scalar se2sls = _se[x] 
 return scalar t2sls = (_b[x]-1)/_se[x] 

 return scalar r2sls = abs(return(t2sls))>invttail($numobs-2,.025) 

   
 * liml 

 ivregress liml y (x=z1 z2 z3), small 

 return scalar bliml =_b[x] 
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 return scalar seliml = _se[x] 

 return scalar tliml = (_b[x]-1)/_se[x] 

 return scalar rliml = abs(return(tliml))>invttail($numobs-2,.025) 

 * fuller a=1 

 ivreg2 y (x=z1 z2 z3), small fuller(1) 
 return scalar bfull =_b[x] 

 return scalar sefull = _se[x] 

 return scalar tfull = (_b[x]-1)/_se[x] 
 return scalar rfull = abs(return(tfull))>invttail($numobs-2,.025) 

  * fuller a=4 
 ivreg2 y (x=z1 z2 z3), small fuller(4) 

 return scalar bfull4 =_b[x] 

 return scalar sefull4 = _se[x] 
 return scalar tfull4 = (_b[x]-1)/_se[x] 

 return scalar rfull4 = abs(return(tfull4))>invttail($numobs-2,.025) 

end 

simulate b2slsr=r(b2sls) se2slsr=r(se2sls) t2slsr=r(t2sls) /// 

 r2slsr=r(r2sls) blimlr=r(bliml) selimlr=r(seliml) /// 
 tlimlr=r(tliml) rlimlr=r(rliml) bfullr=r(bfull) /// 

 sefullr=r(sefull) tfullr=r(tfull) rfullr=r(rfull) /// 

 bfull4r=r(bfull4) sefull4r=r(sefull4) tfull4r=r(tfull4) /// 
 rfull4r=r(rfull4), reps(10000) nodots nolegend /// 

 seed(1234567): ch11sim 

di " Simulation parameters"  

di " rho = " $rho 

di " N = " $numobs   
di " pi = "  $pi 

* For each estimator compute  
* avg and standard deviation estimate beta 

* avg nominal standard error 

* avg percent rejection 5% test 

di " 2sls" 

gen mse2sls = (b2slsr-1)^2 
tabstat b2slsr se2slsr r2slsr mse2sls, stat(mean sd) 

di " liml" 
gen mseliml = (blimlr-1)^2 

tabstat blimlr selimlr rlimlr mseliml, stat(mean sd) 

di " fuller(1)" 

gen msefull = (bfullr-1)^2 

tabstat bfullr sefullr rfullr msefull, stat(mean sd) 

di " fuller(4)" 

gen msefull4 = (bfull4r-1)^2 
tabstat bfull4r sefull4r rfull4r msefull4, stat(mean sd) 

log close 



385 

CHAPTER 12

Regression with Time-Series Data: 
Nonstationary Variables 

CHAPTER OUTLINE 
12.1 Stationary and nonstationary data 
     12.1.1  Review: generating dates in Stata 
     12.1.2 Extracting dates 
     12.1.3 Graphing the data 
12.2 Spurious regressions 

12.3 Unit root tests for stationarity 
12.4 Integration and cointegration 
     12.4.1 Engle-Granger test 
     12.4.2 Error-correction model 
Key Terms 
Chapter 12 Do-file 
 

12.1 STATIONARY AND NONSTATIONARY DATA 

The main purpose of this chapter is to show you how to use Stata to explore the time series 
properties of your data.  One of the fundamental principles in econometrics is that the statistical 
properties of estimators, and consequently their usefulness for research, depend on how the data 
behave. For instance, in a linear regression model where errors are correlated with regressors, the 
least squares estimator is no longer consistent and it should not be used for either estimation or 
subsequent testing. 

In time series regressions the data need to be stationary in order for the usual econometric 
procedures to have the proper statistical properties. Basically this requires that the means, 
variances and covariances of the time series data cannot depend on the time period in which they 
are observed. For instance, the mean and variance of GDP in the third quarter of 1973 cannot be 
different from those of the 4th quarter of 2006. Methods to deal with this problem have provided 
a rich field of research for econometricians in recent years and several of these techniques are 
explored here. 

One of the first diagnostic tools used is a simple time series plot of the data. A time series 
plot will reveal potential problems with the data and suggest ways to proceed statistically. As 
we’ve seen in earlier chapters time series plots are simple to generate in Stata and a few new 
tricks will be explored below.  
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The first thing to do is to change the directory to the one containing the data and load it into 
memory. In this exercise we’ll be using the usa.dta data.  

 
cd c:\data\poe4stata 

use usa, clear 

 
This dataset includes four variables (gdp, inf, f, and b) but no time variables. In order to use 
Stata’s built in time series functions we’ll have to create a time variable and then declare the data 
to be time series using tsset. To make the graphs more meaningful, go the extra mile to create a 
set of dates to match those from the actual dataset. The definition files distributed with the data 
indicate that the data are quarterly, begin in the first quarter of 1984 (1984q1), and end in the 
third quarter of 2009 (2009q3). A more complete discussion of generating proper dates in Stata 
was given in Chapter 9 and it is suggested that you review that material now if you have not done 
so already. 

12.1.1 Review: Generating Dates in Stata 

Essentially, the first thing to do is to enter a series of integers that mark the desired dates. Recall 
from Chapter 9 that Stata records the passage of time as the number of time units that pass from 
the baseline date (1960). Therefore, date creation must include a function to indicate the time unit 
and the starting date. Thus, q(1984q1) means that the increment is quarterly (and that the series 
of integers starts in the first quarter of 1984. To verify this, type 

 
display q(1984q1) 

 
which reveals 

 
. di q(1984q1) 

96 

 
This tells one that the 1st quarter of 1984 is 96 quarters beyond 1960q1. To increment the 
numbers by rows of the data set add _n-1 to this number. _n is Stata’s method of identifying the 
observation number. So at observation number 1 this is equal to zero. The first observation is 
1984q1 which is equal to 96. For observation number 2 (__n=2), and date will be equal to 97, and 
so on. This variable is written to date using the generate command. 
 

gen date = q(1984q1) + _n - 1 

Next, the format command is used to convert the integers into strings using the display format 
%tq. That is, 96 is displayed as 1984q1 to make it easier for someone to identify what the date 
actually is. Finally, the new variable is declared to be a time-series using the tsset command. 

 
format %tq date  

tsset date 
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12.1.2 Extracting Dates 

There are situations where having separate year and quarter variables can be useful. Once the 
time series have been generated, formatted, and declared this is very simple to do. To extract the 
quarter and year information contained in the usa.dta requires a couple of steps. First, the date 
needs to be given a new format. In our case, the %tq formatted dates need to be changed into the 
%td format. The %td format is the mother format in Stata and this is the only one from which 
month, day, year etc can be extracted from the date information. The function to convert %tq 
quarterly data to %td format is dofq(). This reads as “daily of quarterly”. The argument must 
contain the dates in quarterly format. Once the format has been changed, then the year and quarter 
can be extracted using very clear syntax as shown below. 

 
gen newdate = dofq(newdate) 

gen y = year(newdate) 

gen q = quarter(newdate) 

 
To convert %tm to %td, use dofm(). For others type help dates at the Command window and 
see the sections on Converting and Extracting date and time values. 

With the date information correctly in the dataset, it’s a good idea to save your data. This puts 
the new date information into the dataset permanently, saving you the trouble of manually typing 
it in each time you want to use it. Either File > Save or keyboard command Ctrl+S will save the 
current information into usa.dta. 

12.1.3 Graphing the Data 

Use the graph command to graph the gdp series. The complete syntax to graph time-series is 
 

graph twoway (tsline gdp) 

 
The first argument is twoway followed by tsline (which stands for time series line) and it can be 
used instead of the variable date to measure the time dimension of the variable gdp on the x-axis. 
To graph the first differences, use Stata’s built in difference operator, D. (or D1). Like the lag 
operator L the difference operator is used as a prefix and will difference the data very easily. It 
can be used either in generate statement or directly in all of Stata’s the time series commands. For 
more information on other time series operators, search for tsvarlist in the online help or in the 
viewer.  

This can be abbreviated to  
 

tsline gdp 

foregoing the graph twoway altogether. This is the convention we will follow below.  
A graph of the differenced series is obtained using 
 

tsline D.gdp 

 
An easy way to combine graph is name them using the name(graph_name)  option as done 
below. Graphs of gdp and its differences are created, given names, and then combined using the 
graph combine command. The Stata code is 
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qui tsline gdp, name(gdp, replace) 

qui tsline D.gdp, name(dgdp, replace) 

graph combine gdp dgdp 

 

 
 
The panel on the left is the level of U.S. GDP and the quarterly change is on the right. To remove 
graphs from memory that were created and named, issue the graph drop graph_name

command.  
If you want to save the graph, then use the saving(graph_name) option. This can be handy if 

you want to save the graphs to paste into another program. To erase graphs that have been created 
and saved using the saving(graph_name) option,  use Stata’s shell command to gain direct 
access to the command line for your operating system. My current system is operated by 
Microsoft’s Windows XP. Using shell opens a Windows XP command window. From there 
standard operating system commands can be issued for the computer.  

Next, a set of graphs for the inflation rate, the Fed funds rate, and the 3-year bond rate are 
combined along-side their changes.  

 
qui tsline inf, name(inf, replace) 

qui tsline D.inf, name(dinf, replace) yline(0) 

qui tsline f, name(f, replace) 

qui tsline D.f, name(df, replace) yline(0) 

qui tsline b, name(b, replace) 

qui tsline D.b, name(db, replace) yline(0) 

graph combine inf dinf f df b db, cols(2) 
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Horizontal lines were placed at zero using the yline(0) option for each of the series measured in 
changes. This is useful so that negative and positive values can easily be identified. Also, the 
graph combine command employs the cols(2) option so that the graphs for each series and 
difference appear side-by-side. 

Next, create a set of summary statistics. In this case, Principles of Econometrics, 4th Edition 
(POE4) has you produce summary statistics for subsamples of the data. The first subsample 
consists of the 52 observations from 1984q1 to 1996q4. The second contains 52 observations and 
continues from 1996q4 to 2009q4. The summarize command is used to obtain the summary 
statistics using the conditional if statement. The trick will be to condition the subsample to the 
desired period.  

There are a couple of ways to do this. First, we could limit the sample dates using a standard 
if statement. The subsample starts at the beginning of the dataset and ends at 1996q4. The 
syntax is  
 

summarize if date<=q(1996q4) 

This summarizes all the data up to and including 1996q4. The dates are stored in the variable 
date,  q(1996q4) tells Stata that the date is quarterly using q(),  and that the relevant date is 
1996q4. The <= operator is mathematically equivalent to “less than or equal to”. The second 
subsample starts in the first quarter of 1997 and extends to the end of the data set.  The syntax is 

 
summarize if date>=q(1997q1) 
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If the variable names are not listed following the summarize command, then summary statistics 
for all the variables in the data set will be printed. Of course, this will not contain any differences 
unless you have generated them first and put them into the data set using separate generate 
commands. In this example, the differences had not previously been generated and they have to 
be specifically listed after the summarize command. 

The other way to limit the sample is to use the built-in tin() function, but this only works for 
time-series. The syntax for tin() from the on-line help is  
 

 
 

The name “tin” reads “t in” which suggests what it does. It is essentially a logical function that 
checks to see if an observation within the specified time window between its arguments d1 and d2 
(inclusive). The arguments can be dates or integers, but in either case the data set must be tsset 
as a time series in order for this function to work.  

If you want the sample to start at the beginning of the sample, simply leave the argument d1 
blank. To include observations to the end, omit d2. Here is the syntax using tin(): 

 
summarize if tin(,1996q4) 

summarize if tin(1997q1,) 

 
To actually replicate the numbers in Table 12.1 of POE4, d1 has to be specified because the first 
observation is dropped.  The first observation used in the computation of the table is from 1984q2 
so the command  

 
summarize gdp inf b f D.gdp D.inf D.b D.f if tin(1984q2,1996q4) 

 
The result for the first subsample is  

 

 

and for the second 

                     it is recorded.  You type d1 and d2 according to that format.
                     the data, you specify a time variable t, and the format on t states how
                     You must have previously tsset the data to use tin().  When you tsset

       Description: true if d1 < t < d2, where t is the time variable previously tsset.
       Range:        0 and 1, 1 means true
       Domain d2:    data or time literals recorded in units of t previously tsset
       Domain d1:    data or time literals recorded in units of t previously tsset
    tin(d1, d2)

Time-series function

         D1.          51   -.0864706    .5860711      -2.12        .97
           f  
              
         D1.          51   -.1029412    .6312822      -1.54       1.45
           b  
              
         D1.          51   -.1605882    .8320058       -1.8       1.43
         inf  
              

         D1.          51    82.65882    29.33348       -4.6      161.8
         gdp  
              
           f          51    6.417255    2.130539       2.99      11.39
           b          51    7.343137    1.939775       4.32      12.64
         inf          51    6.903725    3.337811       1.28      13.55
         gdp          51     5813.02    1204.604     3906.3       8023

    Variable         Obs        Mean    Std. Dev.       Min        Max
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These match the results from Table 12.1. 

12.2 SPURIOUS REGRESSIONS 

It is possible to estimate a regression and find a statistically significant relationship even if none 
exists. In time series analysis this is actually a common occurrence when data are not stationary. 
This example uses two data series, rw1 and rw2, that were generated as independent random 
walks.  
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� 
 

 
The errors are independent standard normal random deviates generated using a pseudo-random 
number generator. As you can see, xt and yt are not related in any way. To explore the empirical 
relationship between these unrelated series, load the spurious.dta data, create a time variable, and 
declare the data to be time series. 
 

use spurious, clear 

gen time = _n 

tsset time 

Since the data are artificial, there is no need to take the time to create actual dates. In this case a 
simple period counter is sufficient and one is created that is equal to the observation number 
using _n. This simple way to create a time variable can be used for any series that is recorded at 
regular intervals (i.e., the elapsed time between observations is equal).  

The first thing to do is to plot the data using a time series plot. Simply use 
 

tsline rw1 rw2, name(g1, replace) 

         D1.          52   -.0992308    .5142893      -1.43        .59
           f  
              
         D1.          52      -.0875    .4788502      -1.33        .81
           b  
              
         D1.          52    .0251923    .4617422       -.93       1.52
         inf  
              

         D1.          52     120.275    92.91987     -293.7      267.9
         gdp  
              
           f          52      3.4875    2.025269        .12       6.52
           b          52    3.977115    1.564322       1.27       6.56
         inf          52    3.219423    1.116619       1.45       6.04
         gdp          52    11458.19    2052.135       8137    14484.9

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize gdp inf b f D.gdp D.inf D.b D.f if tin(1997q1,) 
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to produce the following plot: 

 
    
A scatter plot reveals a potentially spurious relationship between the variables: 

 
scatter rw1 rw2, name(g2, replace) 

 

 
 

The name( ) option is not necessary, but convenient when running these commands in a batch 
file. This gives each graph a name and will open all of them in separate windows. 

A linear regression confirms the appearance of a linear relationship between these two 
unrelated time series.  

 
regress rw1 rw2 
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yields the result 
 

 
 

The coefficient on rw2 is positive (.842) and significant ( t 40.84 1.96� � ). However, these 
variables are actually not related! The observed relationship is purely spurious. The cause of the 
spurious result is the nonstationarity of the two series. This is why you must check your data for 
stationarity whenever you use time series in a regression.  

A quick check of the residuals for the possibility of autocorrelation can be done using the LM 
test (see Chapter 9).  
 

 
 

The p-value is very, very small and is evidence of misspecification in the model. Further 
investigation is warranted. 

12.3 UNIT ROOT TESTS FOR STATIONARITY 

The (augmented) Dickey-Fuller tests can be used to test for the stationarity of your data.  To 
perform this test, a few decisions have to be made regarding the time series.  Sometimes these 
choices can be made based on visual inspection of the time series plots. By inspecting the plots 
you try to determine whether the time series have a nonzero mean or if they have a linear or 
quadratic trend. If the trend in the series is quadratic then the differenced version of the series will 
have a linear trend in them. In the graphs of the Fed Funds rate above you can see that F appears 
to be trending downward and its difference (D.f) appears to wander around some constant 
amount. Bonds behave similarly. This suggests that the Augmented Dickey-Fuller (ADF) test 
regressions for each of the series should contain a constant, but not a time trend. 

The GDP series in appears to be slightly quadratic in time. The differenced version of the 
series that appears below it has a slight upward drift and hence you would choose an ADF test 
that included a constant and a time trend.  As you can tell, judgment is required and there is 
something of an art to using it wisely. Our goal is to reduce some of the uncertainty using formal 

       _cons     17.81804   .6204776    28.72   0.000     16.59981    19.03627
         rw2     .8420412   .0206196    40.84   0.000     .8015572    .8825251

         rw1        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    173228.888   699  247.823874           Root MSE      =  8.5573
           Adj R-squared =  0.7045

    Residual    51112.3314   698  73.2268359           R-squared     =  0.7049
       Model    122116.557     1  122116.557           Prob > F      =  0.0000

           F(  1,   698) = 1667.65
      Source         SS       df       MS              Number of obs =     700

. regress rw1 rw2

                        H0: no serial correlation

       1              682.958               1                   0.0000

    lags(p)             chi2               df                 Prob > chi2

Breusch-Godfrey LM test for autocorrelation

. estat bgodfrey
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tests whenever we can, but realize that choosing the appropriate test specification requires some 
judgment by the econometrician. 

The next decision is to pick the number of lags to include in the ADF regressions. Again, this 
is a judgment call, but the residuals from the ADF regression should not be autocorrelated; 
include enough lagged differences in the model to ensure that the residuals are white noise.  

In this section two ways to estimate the Dickey-Fuller tests for stationarity will be explored. 
One is manual. In this case you estimate an appropriate model using least squares, find the t-ratio 
for the test, and compare it to tabled values in your text. Recall, the t-ratio on lagged value of 
your series does not have a t-distribution. The correct distribution is complex and we have to rely 
on established tables or simulation to get the right critical values for testing. 

The second method uses one of Stata’s built-in functions. The advantage here is that Stata 
generates the correct critical values for the test and you won’t have to refer to an external source 
(i.e., a table) to get them. Stata also provides you with an approximate p-value.  

First, here is the basic taxonomy of the Dickey-Fuller regressions 
 

Series Characteristics Regression Model 
No Constant and No Trend 1t t ty y v�� � 3   
Constant, but No Trend 1t t ty y v�� � % 3   
Constant and Trend 1t t ty y t v�� � %  3  )   

 
In each case, the null and alternative hypotheses are 0 : 0H 3 �  and 1 : 0H 3 ! . Basically, the 
regressions are estimated, the t-ratio on 3&computed, and compared to the tabled critical value in 
the text or, better yet, to the one provided by Stata. 

The augmented version of the Dickey-Fuller test adds lagged differences to the model. For 
the model with a constant and no trend this would be:  
 

1
1

m

t t s t s t
s

y y a y v� �
�

� � %  3  � �  

 
You have to pick the number of lags to include. Essentially, one should include just enough lags 
of sty �� to ensure that the residuals uncorrelated. An example of this appears later in this manual. 
The number of lagged terms can also be determined by examining the autocorrelation function 
(ACF) of the residuals tv , or the significance of the estimated lag coefficients sa . 

In the example, the Federal Funds rate (f) and the 3-year Bond rate (b) are considered. The 
series plots show that the data wander about, indicating that they may be nonstationary. To 
perform the Dickey-Fuller tests, first decide whether to use a constant and/or a trend.  Since the 
series fluctuates around a nonzero mean we include a constant. There doesn’t appear to be a 
linear or quadratic trend so we adopt the constant, no trend formulation. Then decide on how 
many lagged difference terms to include on the right-hand side of the equation. Using the model 
selection rules described in Chapter 9, we find that the inclusion of one lagged difference term is 
sufficient to eliminate autocorrelation in the residuals in both cases.  

Reload the usa.dta data, clearing any previous data held in Stata’s memory. 
 

use usa, clear 
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If the usa.dta data were not saved after creating the time variables and declaring the data in the 
first example, then recreate the date variable now 

 
use usa, clear 

gen date = q(1984q1) + _n - 1 

format %tq date 

tsset date 

 
The regressions in Stata are 

regress D.f L.f L.D.f 
regress D.b L.b L.D.b 

 
The difference operator is used to create the changes in f and b on the left-hand side of the 
equation. The lag operator L. operator is used to obtain the first lagged level of f and b. The last 
variable uses both operators, L.D.f and L.D.b. The linearity of these operators allows them to be 
combined and used in any order (commutative). So, L.D.f takes the lagged value of D.f, which 
in turn is the first differenced value of f. The commutative property also means that we can 
reverse the order using D.L.f and get the same result.  

The t-ratios on the lagged values of f and b are circled in the figure above. These are the relevant 
values for conducting the Dickey-Fuller test. 

The lag operators also support numlist and this can shorten the syntax further. 
 
reg L(0/1).D.f L.f 
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reg L(0/1).D.b L.b 

 
In this case regress is abbreviated as reg and L(0/1).D.f replaces D.f L.D.f. The latter does 
not actually save any characters in this instance, but would if more lags of the difference in f
were added to the model. As shown below, it is also useful for using loops for model lag 
selection. 

Stata has built-in commands to do Dickey-Fuller regressions. The command is dfuller and 
the syntax from the online help is 

 
 
For options you can choose whether to include a constant, a trend, drift (trend squared) and 
specify the number of lags. If you use the regress option, then the complete regression results 
will be printed. For the sake of comparison, we’ll use this option below: 

 
dfuller f, regress lags(1) 

 
produces the Dickey-Fuller test statistic, critical values, and the regression results when the 
regress option is used. The approximate p-value for the test is given as well, making the test 
quite easy to carry out. In this case, the p-value is greater than 0.10 and the unit root null 
hypothesis cannot be rejected at that level of significance.  
 

 
 

The test for the bond yield series is  

varname may contain time-series operators; see tsvarlist.
    You must tsset your data before using dfuller; see [TS] tsset.

      lags(#)       include # lagged differences
      regress       display regression table
      drift         include drift term in regression
      trend         include trend term in regression
      noconstant    suppress constant term in regression
    Main

options         description

        dfuller varname [if] [in] [, options]

Syntax

       _cons     .1725221   .1002333     1.72   0.088    -.0263625    .3714067
              
         LD.     .5610582   .0809827     6.93   0.000     .4003708    .7217455
         L1.    -.0446213   .0178142    -2.50   0.014    -.0799685   -.0092741
           f  

         D.f        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

MacKinnon approximate p-value for Z(t) = 0.1143

 Z(t)             -2.505            -3.509            -2.890            -2.580

               Statistic           Value             Value             Value
                  Test         1% Critical       5% Critical      10% Critical
                                 Interpolated Dickey-Fuller  

Augmented Dickey-Fuller test for unit root         Number of obs   =       102

. dfuller f, regress lags(1)
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The approximate p-value for this test is greater than 5% and the nonstationary null hypothesis is 
not rejected at that level.  

Notice that the Dickey-Fuller statistic is given (called Z(t)) and that the 1%, 5%, and 10% 
critical values for the test are given in the accompanying table. These numbers differ a little from 
the ones in your text, probably due to the interpolation that Stata does for you. In any event, the 
test statistics do not fall within the rejection region and we conclude that the levels of the data are 
nonstationary, at least at the 5% level of significance. 

The Dickey-Fuller tests are repeated for the differenced series. The differenced series contain 
neither a trend nor a constant. No lags are needed so the code becomes: 

 
dfuller D.f, noconstant lags(0) 

dfuller D.b, noconstant lags(0) 

The regression results are omitted this time and we obtain 
 

 
 

 
 

       _cons      .236873   .1291731     1.83   0.070    -.0194345    .4931804
              
         LD.     .2903078   .0896069     3.24   0.002     .1125084    .4681072
         L1.    -.0562412   .0208081    -2.70   0.008     -.097529   -.0149534
           b  

         D.b        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

MacKinnon approximate p-value for Z(t) = 0.0735

 Z(t)             -2.703            -3.509            -2.890            -2.580

               Statistic           Value             Value             Value
                  Test         1% Critical       5% Critical      10% Critical
                                 Interpolated Dickey-Fuller  

Augmented Dickey-Fuller test for unit root         Number of obs   =       102

. dfuller b, regress lags(1)

 Z(t)             -5.487            -2.600            -1.950            -1.610

               Statistic           Value             Value             Value
                  Test         1% Critical       5% Critical      10% Critical
                                 Interpolated Dickey-Fuller  

Dickey-Fuller test for unit root                   Number of obs   =       102

. dfuller D.f, noconstant lags(0)

 Z(t)             -7.662            -2.600            -1.950            -1.610

               Statistic           Value             Value             Value
                  Test         1% Critical       5% Critical      10% Critical
                                 Interpolated Dickey-Fuller  

Dickey-Fuller test for unit root                   Number of obs   =       102

. dfuller D.b, noconstant lags(0)
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In this case, we reject the nonstationary null hypothesis and conclude that both series are 
stationary in their differences (Integrated of order 1, i.e., I(1)).

The dialog boxes for the Dickey-Fuller test are found be selecting Statistics > Time series > 
Tests > Augmented Dickey-Fuller unit root tests.  This brings up the following dialog box 

 
 
Once again, the dfuller dialog simply generates the commands discussed above. Choose the 
variable you wish to test, select noconstant, trend, or drift from the list of options, and choose 
the number of lags with which to augment the Dickey-Fuller regression. You can also check the 
box to display the regression results as done here. 

There are other tests for nonstationarity in Stata that you may find useful. The first is the DF-
GLS test. dfgls tests for a unit root in a time series. It performs the modified Dickey–Fuller t test 
(known as the DF-GLS test) proposed by Elliott, Rothenberg, and Stock (1996). Essentially, the 
test is an augmented Dickey–Fuller test, similar to the test performed by Stata’s dfuller 
command, except that the time series is transformed via a generalized least squares (GLS) 
regression before performing the test. Elliott, Rothenberg, and Stock and later studies have shown 
that this test has significantly greater power than the previous versions of the augmented Dickey–
Fuller test. Consequently, it is not unusual for this test to reject the null of nonstationarity when 
the usual augmented Dickey-Fuller test does not.  

dfgls performs the DF-GLS test for the series of models that include 1 to k lags of the first 
differenced, detrended variable, where k can be set by the user or by the method described in 
Schwert (1989). As discussed above and in POE4, the augmented Dickey–Fuller test involves 
fitting a regression of the form 

1 1 1 ...t t t k t k ty y t y y u� � �� � %  �  2  @ �   @ �   

and then testing the null hypothesis H0: 0.� � The DF-GLS test is performed analogously but on 
GLS-detrended data. The null hypothesis of the test is that ty is a random walk, possibly with 
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drift. There are two possible alternative hypotheses: ty is stationary about a linear time trend or 

ty is stationary with a possibly nonzero mean but with no linear time trend. The default is to use 
the former. To specify the latter alternative, use the notrend option. 

For the levels of the Fed funds and 3-year bond rates: 
 

dfgls f 

dfgls b 

 
The results are: 
 

 
 

 
 

One of the benefits of using dfgls is readily obvious. The Schwert criterion sets a maximum lag 
length of 12 and models are searched from lags 1 to 12. The model that minimizes SC, the MAIC, 

Min MAIC = -1.808821 at lag  1 with RMSE  .3535111
Min SC   = -1.980541 at lag  1 with RMSE  .3535111
Opt Lag (Ng-Perron seq t) =  1 with RMSE  .3535111

    1            -3.278           -3.575            -3.031            -2.739
    2            -3.499           -3.575            -3.014            -2.723
    3            -3.793           -3.575            -2.994            -2.706
    4            -3.290           -3.575            -2.972            -2.686
    5            -3.436           -3.575            -2.949            -2.664
    6            -3.732           -3.575            -2.924            -2.641
    7            -3.602           -3.575            -2.898            -2.617
    8            -3.097           -3.575            -2.870            -2.591
    9            -3.107           -3.575            -2.842            -2.565
    10           -2.905           -3.575            -2.813            -2.537
    11           -3.025           -3.575            -2.783            -2.508
    12           -3.035           -3.575            -2.753            -2.479

  [lags]     Test Statistic        Value             Value             Value
               DF-GLS tau      1% Critical       5% Critical      10% Critical

Maxlag = 12 chosen by Schwert criterion
DF-GLS for f                                             Number of obs =    91

. dfgls f

Min MAIC = -1.216796 at lag  1 with RMSE  .4793635
Min SC   = -1.371452 at lag  1 with RMSE  .4793635
Opt Lag (Ng-Perron seq t) =  3 with RMSE  .4644163

    1            -3.095           -3.575            -3.031            -2.739
    2            -2.924           -3.575            -3.014            -2.723
    3            -3.392           -3.575            -2.994            -2.706
    4            -2.995           -3.575            -2.972            -2.686
    5            -3.206           -3.575            -2.949            -2.664
    6            -3.185           -3.575            -2.924            -2.641
    7            -2.896           -3.575            -2.898            -2.617
    8            -3.270           -3.575            -2.870            -2.591
    9            -2.787           -3.575            -2.842            -2.565
    10           -2.265           -3.575            -2.813            -2.537
    11           -2.571           -3.575            -2.783            -2.508
    12           -2.556           -3.575            -2.753            -2.479

  [lags]     Test Statistic        Value             Value             Value
               DF-GLS tau      1% Critical       5% Critical      10% Critical

Maxlag = 12 chosen by Schwert criterion
DF-GLS for b                                             Number of obs =    91

. dfgls b
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and the Ng-Perron statistic are given. For f, the lag selection is unambiguously equal to 1 and the 
nonstationarity hypothesis is rejected at the 5% level. For b, two of the criteria choose lags of 1 
and these are significant at 5% as well.  

The greater efficiency of the GLS estimator has led to a set of ambiguous results. The levels 
of the series may actually be stationary. One more test is sometimes recommended. The Phillips-
Perron (1988) test also has the null hypothesis that the time-series is non-stationary against the 
alternative that it is stationary. pperron uses Newey–West standard errors discussed in Chapter 9 
to account for serial correlation, whereas the augmented Dickey–Fuller test implemented in 
dfuller uses additional lags of the first-differenced variable. The advantage of this test is that 
one does not need to consider a model selection process to help decide how to augment the 
regression. Consequently, the regress option can be used to print the regression results. The 
disadvantage is that the results depend on the choice of bandwidth. Unlike the newey procedure 
discussed in Chapter 9, the pperron test automatically will choose one of the choices suggested 
there, namely 2/94( / 100) .T  You have the option to add a trend or to remove the constant. In this 
example, a trend is included since the time-series graphs show a downward trend. 

For the levels of the two time series we have 
 

pperron b, regress trend 

pperron f, regress trend 

The results 
 

 
 
and  

 

       _cons     .3633958   .2941354     1.24   0.220    -.2201604    .9469521
      _trend    -.0035557   .0027713    -1.28   0.202    -.0090539    .0019426
         L1.     .9460524   .0326592    28.97   0.000     .8812574    1.010847
           f  

f                   Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

MacKinnon approximate p-value for Z(t) = 0.2985

 Z(t)             -2.560            -4.039            -3.450            -3.150
 Z(rho)          -13.209           -27.420           -20.712           -17.510

               Statistic           Value             Value             Value
                  Test         1% Critical       5% Critical      10% Critical
                                 Interpolated Dickey-Fuller  

                                                   Newey-West lags =         4
Phillips-Perron test for unit root                 Number of obs   =       103

. pperron f, regress trend
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This set of results supports those from the usual augmented Dickey-Fuller regressions. The 
Z(rho) statistic is not in the rejection region of either test, supporting the nonstationarity of both 
b and f. The trend term in f is not significant and could possibly be dropped. It is significant in 
the other series, providing evidence of its inclusion. 

12.4 INTEGRATION AND COINTEGRATION 

Two nonstationary time series are cointegrated if they tend to move together through time.  For 
instance, we have established that the levels of the Fed Funds rate and the 3-year bond rate are 
nonstationary, whereas their differences are stationary.  In the opaque terminology used in the 
time series literature, each series is said to be “integrated of order 1” or I(1).  If the two 
nonstationary series move together through time then we say they are “cointegrated.”  Economic 
theory would suggest that they should be tied together via arbitrage, but that is no guarantee, so 
we perform a formal statistical test.  

The test procedure is very simple.  Regress one I(1) variable on another using least squares. 
Then test the residuals for nonstationarity using the (augmented) Dickey-Fuller test. If the series 
are cointegrated, the Dickey-Fuller test statistic will be statistically significant.  The null 
hypothesis is that the residuals are nonstationary.  Rejection of this leads to the conclusion that 
the residuals are stationary and the series are cointegrated.   

12.4.1 Engle-Granger Test 

The test described in the preceding section is commonly referred to as the Engle-Granger test. 
Regress b on f and a constant, save the residuals then use these in an augmented Dickey-Fuller 
regression. Manually, this is done 

 
regress b f 

 

       _cons     .8823205   .4187536     2.11   0.038     .0515253    1.713116
      _trend    -.0069282   .0035347    -1.96   0.053     -.013941    .0000845
         L1.     .8924541   .0429605    20.77   0.000     .8072218    .9776865
           b  

b                   Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

MacKinnon approximate p-value for Z(t) = 0.1382

 Z(t)             -2.978            -4.039            -3.450            -3.150
 Z(rho)          -16.361           -27.420           -20.712           -17.510

               Statistic           Value             Value             Value
                  Test         1% Critical       5% Critical      10% Critical
                                 Interpolated Dickey-Fuller  

                                                   Newey-West lags =         4
Phillips-Perron test for unit root                 Number of obs   =       103

. pperron b, regress trend
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predict ehat, residual 

regress D.ehat L.ehat L.D.ehat, noconstant 

 

 
The t-ratio on the lagged value of ê  is �4.20. The critical value has to be obtained from the 
proper table e.g., Table 12.4 in POE4. The 5% critical value for a cointegrating regression 
containing an intercept is �3.37 and the t-ratio is less than this. The null hypothesis of no 
cointegration is rejected when ct t� , and not rejected when ct t� . The t-statistic in this case is 
�4.196< �3.37 and the null hypothesis that the least squares residuals are nonstationary is 
rejected; the residuals are stationary. This implies that the bond rate and the federal funds rate are 
cointegrated. 

Once can use the built-in dfuller command to obtain the t-ratio, but the critical values 
printed by Stata will not be correct. Those still have to come from a table of values suitable for a 
cointegrating equation; these are not the same as those for a conventional Dickey-Fuller 
regression.  

 

 
 

       _cons      1.13983   .1740833     6.55   0.000     .7945362    1.485123
           f     .9144114   .0310801    29.42   0.000     .8527641    .9760587

           b        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    635.125935   103  6.16627121           Root MSE      =  .81018
           Adj R-squared =  0.8936

    Residual    66.9519745   102  .656391907           R-squared     =  0.8946
       Model     568.17396     1   568.17396           Prob > F      =  0.0000

           F(  1,   102) =  865.60
      Source         SS       df       MS              Number of obs =     104

. regress b f

         LD.     .2540448   .0937006     2.71   0.008     .0681454    .4399442
         L1.    -.2245093   .0535039    -4.20   0.000    -.3306595   -.1183592
        ehat  

      D.ehat        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total     20.951439   102  .205406265           Root MSE      =  .41728
           Adj R-squared =  0.1523

    Residual    17.4123657   100  .174123657           R-squared     =  0.1689
       Model    3.53907328     2  1.76953664           Prob > F      =  0.0001

           F(  2,   100) =   10.16
      Source         SS       df       MS              Number of obs =     102

. regress D.ehat L.ehat L.D.ehat, noconstant

 Z(t)             -4.196            -2.600            -1.950            -1.610

               Statistic           Value             Value             Value
                  Test         1% Critical       5% Critical      10% Critical
                                 Interpolated Dickey-Fuller  

Augmented Dickey-Fuller test for unit root         Number of obs   =       102

. dfuller ehat, noconstant lags(1)
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Once again, be careful not to use the critical values from this table when testing the stationarity of 
residuals; the given critical values are computed under the assumption that the time series being 
tested has not been estimated.  

12.4.2  The Error Correction Model 

Cointegration is a relationship between two nonstationary, I(1), variables. These variables share a 
common trend and tend to move together in the long-run. In this section, a dynamic relationship 
between I(0) variables which embeds a cointegrating relationship known as the short-run error 
correction model is examined.  

Start with an ARDL(1,1) 
 

1 1 0 1 1t t t t ty y x x v� �� 2  -  2  2   

after some manipulation (see POE4 for details) 
 

1 1 1 2 1 0 1 1(1 )( )t t t t t ty y x x x v� � �� � � � - � � � �  2 �  2 �   

 
The term in the second set of parentheses is a cointegrating relationship. The levels of y and x are 
linearly related. Let 1(1 )% � � - and the equation’s parameters can be estimated by nonlinear least 
squares. 

 
gen Db=D.b 

nl (Db = -{alpha}*(L.b-{beta1}-beta2}*L.f)+ ///     

{delta0}*D.f+{delta1}*D.L.f), variables(L.b L.f D.L.f) 

The only trick here is that the time-series operator D. cannot be used in the formation of the 
dependent variable. It has to be generated separately before it can be used in nl. The lag and 
difference operators can be used on the right-hand side of the equation if listed in the variables 
option. The results are: 
 

 
 

To estimate 1-  
 

  Parameter beta1 taken as constant term in model & ANOVA table

     /delta1    -.3268445   .0847928    -3.85   0.000    -.4951347   -.1585544
     /delta0     .8424631   .0897482     9.39   0.000     .6643378    1.020588
      /beta2     .7765569   .1224753     6.34   0.000     .5334773    1.019637
      /beta1     1.429188   .6246253     2.29   0.024       .18948    2.668897
      /alpha     .1418774   .0496561     2.86   0.005     .0433237     .240431

          Db        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total     29.215291   101  .289260307         Res. dev.     =  88.20819
         Root MSE      =  .3823517

    Residual    14.1807005    97  .146192788         Adj R-squared =    0.4946
       Model    15.0345905     4  3.75864763         R-squared     =    0.5146

         Number of obs =       102
      Source         SS       df       MS
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scalar theta1 = 1-_b[alpha:_cons] 

scalar list theta1 

 

 
 

Finally, obtain the residuals and perform the ADF test for stationarity 
 

gen ehat = L.b - _b[beta1:_cons]-_b[beta2:_cons]*L.f 

reg D.ehat L.ehat L.D.ehat, noconst 

di di _b[L.ehat]/_se[L.ehat] 

 

 
 

As before, the null is that (y, x) are not cointegrated. Since the cointegrating relationship includes 
a constant term, the critical value is �3.37. Comparing the calculated value (�3.912) with the 
critical value, we reject the null hypothesis and conclude that (y, x) are cointegrated. 

KEY TERMS 

augmented DF test estat bgodfrey stationary 
cointegration format %tm time series plots 
combine graph format %tq tin(d1,d2) 
date functions integration trend 
dfuller lag operator, L. tsline
Dickey-Fuller (DF) test nl tsvarlist 
difference operator, D. noconstant  
dofq q(1996q4)  
dofm name(graph, replace) 
drift nonstationary 
Engle-Granger test shell

CHAPTER 12 DO-FILE [CHAP12.DO] 

* file chap12.do for Using Stata for Principles of Econometrics, 4e 

* cd c:\data\poe4stata 

* Stata Do-file 
* copyright C 2011 by Lee C. Adkins and R. Carter Hill 

* used for "Using Stata for Principles of Econometrics, 4e" 

* by Lee C. Adkins and R. Carter Hill (2011) 
* John Wiley and Sons, Inc. 

* setup 
version 11.1 

capture log close 

set more off 

    theta1 =  .85812265
. scalar list theta1

-3.9108174
. di _b[L.ehat]/_se[L.ehat]
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* open log 

log using chap12, replace text 
use usa, clear 

* --------------------------------------- 
* Create dates and declare time-series 

* --------------------------------------- 

generate date = q(1984q1) + _n-1 

format date %tq 

tsset date 

* --------------------------------------- 

* Extract dates with year and quarter  
* --------------------------------------- 

gen double newdate = dofq(date) 
gen y = year(newdate) 

gen q = quarter(newdate) 

list date y q in 1/9 

* --------------------------------------- 
* Graph time-series  

* Graphs are named with replace option 

* and combined. 
* --------------------------------------- 

qui tsline gdp, name(gdp, replace)   
qui tsline D.gdp, name(dgdp, replace)  

graph combine gdp dgdp 

qui tsline inf, name(inf, replace) 

qui tsline D.inf, name(dinf, replace) yline(0) 

qui tsline f, name(f, replace) 
qui tsline D.f, name(df, replace) yline(0) 

qui tsline b, name(b, replace) 

qui tsline D.b, name(db, replace) yline(0) 

graph combine inf dinf f df b db, cols(2) 

* Two ways to limit dates 

summarize if date<=q(1996q4) 

summarize if date>=q(1997q1) 

summarize if tin(,1996q4) 

summarize if tin(1997q1,) 

* To get summary stats for all variables and differences without generate 

summarize gdp inf b f D.gdp D.inf D.b D.f if tin(1984q2,1996q4) 
summarize gdp inf b f D.gdp D.inf D.b D.f if tin(1997q1,)  

summarize 

* --------------------------------------- 

* Spurious Regression 

* --------------------------------------- 

use spurious, clear 

gen time = _n 
tsset time 

regress rw1 rw2 
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estat bgodfrey 

tsline rw1 rw2, name(g1, replace) 
scatter rw1 rw2, name(g2, replace) 

regress rw1 rw2 
estat bgodfrey 

* --------------------------------------- 
* Unit root tests and cointegration 

* --------------------------------------- 

use usa, clear 

gen date = q(1984q1) + _n - 1 

format %tq date 
tsset date 

* Augmented Dickey Fuller Regressions 
regress D.f L.f L.D.f 

regress D.b L.b L.D.b 

* Augmented Dickey Fuller Regressions with built in functions 

dfuller f, regress lags(1) 

dfuller b, regress lags(1) 

* ADF on differences 

dfuller D.f, noconstant lags(0) 
dfuller D.b, noconstant lags(0) 

* DF-GLS tests 
dfgls f 

dfgls b 

* Phillips-Perron tests 

pperron f, regress trend 

pperron b, regress trend 

* Engle Granger cointegrations test 

regress b f 
predict ehat, residual 

regress D.ehat L.ehat L.D.ehat, noconstant 

* Using the built-in Stata commands 

dfuller ehat, noconstant lags(1) 

drop ehat 

gen Db=D.b 

nl (Db = -{alpha}*(L.b-{beta1}-{beta2}*L.f)+{delta0}*D.f+{delta1}*D.L.f), ///          
variables(L.b L.f D.L.f)  

scalar theta1 = 1-_b[alpha:_cons] 

scalar list theta1 

gen ehat = L.b - _b[beta1:_cons]-_b[beta2:_cons]*L.f 

qui reg D.ehat L.ehat L.D.ehat, noconst 
di _b[L.ehat]/_se[L.ehat] 

log close 
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CHAPTER 13

Vector Error Correction and Vector 
Autoregressive Models 

CHAPTER OUTLINE 
13.1 VEC and VAR models 
13.2 Estimating a VEC Model 
13.3 Estimating a VAR 

13.4 Impulse responses and variance 
        decompositions 
Key Terms  
Chapter 13 do-file 

13.1 VEC AND VAR MODELS 

The vector autoregressive (VAR) model is a general framework used to describe the dynamic 
interrelationship among stationary variables. So, the first step in time-series analysis should be to 
determine whether the levels of the data are stationary. If not, take the first differences of the 
series and try again. Usually, if the levels (or log-levels) of your time series are not stationary, the 
first differences will be.  

If the time series are not stationary then the VAR framework needs to be modified to allow 
consistent estimation of the relationships among the series. The vector error correction (VEC) 
model is just a special case of the VAR for variables that are stationary in their differences (i.e., 
I(1)).  The VEC can also take into account any cointegrating relationships among the variables. 

Consider two time-series variables, ty  and .tx  Generalizing the discussion about dynamic 
relationships in Chapter 9 to these two interrelated variables yields a system of equations: 

 
10 11 1 12 1

20 21 1 22 1

y
t t t t

x
t t t t

y y x v

x y x v

� �

� �

� �  � � 

� � � � 
 

The equations describe a system in which each variable is a function of its own lag, and the lag of 
the other variable in the system. In this case, the system contains two variables y and x. Together 
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the equations constitute a system known as a vector autoregression (VAR). In this example, since 
the maximum lag is of order one, we have a VAR(1). 

If y and x are stationary, the system can be estimated using least squares applied to each 
equation. If y and x are not stationary in their levels, but stationary in differences (i.e., I(1)), then 
take the differences and estimate: 
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using least squares.  
If y and x are I(1) and cointegrated, then the system of equations can be modified to allow for 

the cointegrating relationship between the I(1) variables. Introducing the cointegrating 
relationship leads to a model known as the vector error correction (VEC) model. 

13.2 ESTIMATING A VEC MODEL 

In the first example, data on the Gross Domestic Product of Australia and the U.S. are used to 
estimate a VEC model. We decide to use the vector error correction model because (1) the time 
series are not stationary in their levels but are in their differences (2) the variables are 
cointegrated. Our initial impressions are gained from looking at plots of the two series.  

To get started, change the directory to the one containing your data and load your data. In this 
exercise we’ll be using the gdp.dta data.  

 
cd c:\data\poe4stata 

use gdp, clear 

 
The data contain two quarterly time series: Australian and U.S. GDP from 1970q1 to 2004q4. Just 
as you did in Chapter 13, create a sequence of quarterly dates:  

gen date = q(1970q1) + _n - 1  

format %tq date 

tsset date 

 
Plotting the levels and differences of the two GDP series suggests that the data are nonstationary 
in levels, but stationary in differences. In this example, we used the tsline command with an 
optional scheme. A scheme holds saved graph preferences for later use. You can create your own 
or use one of the ones installed with Stata. At the command line you can use determine which 
schemes are installed on your computer by typing 

graph query, schemes 

 
In this example I used a scheme called sj, which stands for Stata Journal. This produces graphs 
that look just like the ones published there. In this case, it produces a grayscale line graph with 
two different line definitions:  solid lines for aus and dashed ones for usa. The complete syntax 
for the graphs with optional scheme is: 
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tsline aus usa, scheme(sj) 

tsline D.aus D.usa, scheme(sj) 

 

Neither series looks stationary in its levels. They appear to have a common trend, an indication 
that they may be cointegrated.  

Unit root tests are performed using the procedures discussed in Chapter 12. Augmented 
Dickey-Fuller regressions require some judgment about specification. User has to decide whether 
to include a constant, trend or drift, and lag lengths for the differences that augment the regular 
Dickey-Fuller regressions. The differences are graphed and this gives some clues about 
specification. The graph below shows little evidence of trend or drift.  

 
 

Lag lengths can be chosen using model selection rules or by starting at a maximum lag length, 
say 4, and eliminating lags one-by-one until the t-ratio on the last lag becomes significant.  
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dfuller aus, regress lags(1) 

dfuller usa, regress lags(3) 

 
Through process of elimination the decision is made to include the constant (though it looks 
unnecessary) and to include 1 lag for aus and 3 for the usa series. In none of the ADF regressions 
I estimated was either ADF statistic even close to being significant at the 5% level. Satisfied that 
the series are nonstationary in levels, their cointegration is explored. 

 

 
 

 
 

In each case, the null hypothesis of nonstationarity cannot be rejected at any reasonable level of 
significance. Notice that both lagged differences are significant in the U.S. equation and the 3rd 
lag in the Australia equation are significant; significant lag coefficients provide some evidence 
that the lagged variables should be included.  

Next, estimate the cointegrating equation using least squares. Notice that the cointegrating 
relationship does not include a constant.  
 
regress aus usa, noconst 

 
 

The residuals are saved in order to conduct an Engle-Granger test of cointegration and plotted.  

MacKinnon approximate p-value for Z(t) = 0.9991

 Z(t)              2.658            -3.503            -2.889            -2.579

               Statistic           Value             Value             Value
                  Test         1% Critical       5% Critical      10% Critical
                                 Interpolated Dickey-Fuller  

Augmented Dickey-Fuller test for unit root         Number of obs   =       122

. dfuller aus, regress lags(1)

MacKinnon approximate p-value for Z(t) = 0.9981

 Z(t)              1.691            -3.503            -2.889            -2.579

               Statistic           Value             Value             Value
                  Test         1% Critical       5% Critical      10% Critical
                                 Interpolated Dickey-Fuller  

Augmented Dickey-Fuller test for unit root         Number of obs   =       120

. dfuller usa, regress lags(3)

         usa     .9853495   .0016566   594.79   0.000     .9820703    .9886288

         aus        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total     526197.09   124  4243.52492           Root MSE      =  1.2194
           Adj R-squared =  0.9996

    Residual    182.885542   123  1.48687433           R-squared     =  0.9997
       Model    526014.204     1  526014.204           Prob > F      =  0.0000

           F(  1,   123) =       .
      Source         SS       df       MS              Number of obs =     124

. reg aus usa, noconst
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predict ehat, residual 

tsline ehat 

 
 

The residuals have an intercept of zero and show little evidence of trend. Finaly, the saved 
residuals are used in an auxiliary regression 

 
1ˆ ˆt t te e v�� � A   

The Stata command is: 

regress D.ehat L.ehat, noconstant  

 

 

The t-ratio is equal to �2.89. The 5% critical value for a cointegrating relationship with no 
intercept is �2.76 and so this falls within the rejection region of the test. The null hypothesis of no 
cointegration is rejected at the 5% level of significance.  

To measure the one quarter response of real GDP to economic shocks we estimate the 
parameters of the vector error correction model by least squares. 
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         L1.    -.1279366   .0442792    -2.89   0.005    -.2155916   -.0402816
        ehat  

      D.ehat        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    46.6909601   123  .379601302           Root MSE      =   .5985
           Adj R-squared =  0.0564

    Residual    43.7006336   122  .358201914           R-squared     =  0.0640
       Model    2.99032657     1  2.99032657           Prob > F      =  0.0046

           F(  1,   122) =    8.35
      Source         SS       df       MS              Number of obs =     123

. reg D.ehat L.ehat, noconst
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regress D.aus L1.ehat 

regress D.usa L1.ehat 

The error correction model results the Australian GDP are: 

 
 
The significant negative coefficient on 1ˆte �  indicates that Australian GDP responds to a 
temporary disequilibrium between the U.S. and Australia.  For the U.S.: 

 

 
 

The U.S. does not appear to respond to a disequilibrium between the two economies; the t-ratio 
on 1ˆte �  is insignificant. These results support the idea that economic conditions in Australia 
depend on those in the U.S. more than conditions in the U.S. depend on Australia. In a simple 
model of two economy trade, the U.S. is a large closed economy and Australia is a small open 
economy.   

13.3 ESTIMATING A VAR 

The vector autoregressive model (VAR) is actualy simpler to estimate than the VEC model.  It is 
used when there is no cointegration among the variables and it is estimated using time series that 
have been transformed to their stationary values. 

In the example from POE4, we have macroeconomic data log of real personal disposable 
income (denoted as Y) and log of real personal consumption expenditure (denoted as C) for the 
U.S. economy over the period 1960:1 to 2009:4 that are found in the fred.dta dataset.  As in the 
previous example, the first step is to determine whether the variables are stationary.  If they are 

       _cons     .4917059   .0579095     8.49   0.000     .3770587     .606353
              
         L1.    -.0987029   .0475158    -2.08   0.040    -.1927729   -.0046329
        ehat  

       D.aus        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    51.4701178   122  .421886212           Root MSE      =  .64088
           Adj R-squared =  0.0265

    Residual     49.697821   121  .410725793           R-squared     =  0.0344
       Model    1.77229686     1  1.77229686           Prob > F      =  0.0399

           F(  1,   121) =    4.32
      Source         SS       df       MS              Number of obs =     123

       _cons     .5098843   .0466768    10.92   0.000     .4174752    .6022934
              
         L1.     .0302501   .0382992     0.79   0.431    -.0455732    .1060734
        ehat  

       D.usa        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    32.4544011   122  .266019681           Root MSE      =  .51657
           Adj R-squared = -0.0031

    Residual    32.2879333   121  .266842424           R-squared     =  0.0051
       Model    .166467786     1  .166467786           Prob > F      =  0.4312

           F(  1,   121) =    0.62
      Source         SS       df       MS              Number of obs =     123
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not, then difference them, checking to make sure that the differences are stationary (i.e., 
integrated). Next, test for cointegration. If they are cointegrated, estimate the VEC model. If not, 
use the differences and lagged differences to estimate a VAR. model. 

First, change the directory to the one containing your data and load your data. In this exercise 
we’ll be using the fred.dta data.  

 
cd c:\data\poe4stata 

use fred, clear 

The data are quartery and begin in 1960q1 and extend to 2009q4. Just as we did in Chapter 12 
and in the example above, sequences of quartery dates:  

 
gen date = q(1960q1) + _n - 1 

format %tq date 

tsset date 

 
The first step is to plot the series in order to identify whether constants or trends should be 
included in the tests of nonstationarity. Both the levels and differences are plotted. 

 
tsline c y, legend(lab (1 "ln(Consumption)") lab(2 "ln(PDI)")) 

tsline D.c D.y, legend(lab (1 "D.ln(Consumption)") lab(2 "D.ln(PDI)")) 

The levels series appear to be trending together. The differences show no obvious trend, but the 
mean of the series appears to be greater than zero, suggesting that a constant be included in the 
ADF regressions.  
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The other decision that needs to be made is the number of lagged differences to include in the 
augmented Dickey-Fuller regressions. The principle to follow is to include just enough so that the 
residuals of the ADF regression are not autocorrelated. So, start out with a basic regression that 
contains no lags, estimate the DF regression, then use the LM test discussed in chapter 9 to 
determine whether the residuals are autocorrelated. Add enough lags to eliminate the 
autocorrelation among residuals. If this strategy is pursued in Stata, then the ADF regressions will 
have to be explicity estimated; the estat bgodfrey command will not be based on the proper 
regression if issued after dfuller.  

The regressions for the ADF tests are 
 

qui reg L(0/1).D.c L.c  

estat bgodfrey, lags(1 2 3) 

qui reg L(0/2).D.c L.c  

estat bgodfrey, lags(1 2 3) 

qui reg L(0/3).D.c L.c  

estat bgodfrey, lags(1 2 3) 

The test results for the last two regressions appear below.  
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ln(RPCE) ln(RPDI)

                        H0: no serial correlation

       3                2.542               3                   0.4677
       2                2.539               2                   0.2810
       1                2.077               1                   0.1495

    lags(p)             chi2               df                 Prob > chi2

Breusch-Godfrey LM test for autocorrelation
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It is clear that the residuals of the ADF(2) are autocorrelated and those of the ADF(3) are not. The 
resulting ADF statistic is obtained using: 

dfuller c, lags(3) 

where the indicated number of lags is used.  
 

 
 
Note also that this regression contains a constant and that the test statistic is �0*88=. The unit root 
hypothesis is not rejected at the 5% level. 

A Stata loop is used to perform the same procedure for y.   
 

forvalues p = 1/3 { 

   qui reg L(0/`p').D.y L.y 

   di "Lags =" `p'   

   estat bgodfrey, lags(1 2 3) 

}

The loop increments the macro p from 1 to 3. The quietly option is used for the regression to 
suppress output. The abbreviated coding for the linear regression is used, which combines the 
dependent variable D.y with the lagged regressors in one statement, i.e., reg L(0/`p').D.y . For 
p=1 this is equivalent to reg D.y L.D.y. I’ve instructed Stata to print the current value of p 
before printing the results from the LM test. The output is: 

 

 
 

                        H0: no serial correlation

       3                2.098               3                   0.5523
       2                1.271               2                   0.5297
       1                0.157               1                   0.6916

    lags(p)             chi2               df                 Prob > chi2

Breusch-Godfrey LM test for autocorrelation

MacKinnon approximate p-value for Z(t) = 0.2886

 Z(t)             -1.995            -3.478            -2.884            -2.574

               Statistic           Value             Value             Value
                  Test         1% Critical       5% Critical      10% Critical
                                 Interpolated Dickey-Fuller  

Augmented Dickey-Fuller test for unit root         Number of obs   =       196

. dfuller c, lags(3)

                        H0: no serial correlation

       3                2.880               3                   0.4105
       2                2.853               2                   0.2401
       1                0.208               1                   0.6487

    lags(p)             chi2               df                 Prob > chi2

Breusch-Godfrey LM test for autocorrelation

Lags =1
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There is no evidence that lagged differences of y need to be included as regressors (i.e., the 
regular Dickey-Fuller regression). The Dickey-Fuller test yields:  

 
 

Recall that the cointegrating relationship can be estimated using least squares.  
 

1 2t t tC Y v� �  �   
 

The residuals from this regression are obtained and their changes are regressed on the lagged 
value 

 
1 1ˆ ˆ ˆt t t te e e v� �� � 3  2�   

 
The Stata code for this procedure is:  

 
reg c y 

predict ehat, res 

reg D.ehat L.ehat D.L.ehat, noconst 

di _b[L.ehat]/_se[L.ehat] 

and the results,  
 

                        H0: no serial correlation

       3                2.098               3                   0.5523
       2                1.271               2                   0.5297
       1                0.157               1                   0.6916

    lags(p)             chi2               df                 Prob > chi2

Breusch-Godfrey LM test for autocorrelation

Lags =3
                        H0: no serial correlation

       3                2.542               3                   0.4677
       2                2.539               2                   0.2810
       1                2.077               1                   0.1495

    lags(p)             chi2               df                 Prob > chi2

Breusch-Godfrey LM test for autocorrelation

Lags =2

MacKinnon approximate p-value for Z(t) = 0.0673

 Z(t)             -2.741            -3.477            -2.883            -2.573

               Statistic           Value             Value             Value
                  Test         1% Critical       5% Critical      10% Critical
                                 Interpolated Dickey-Fuller  

Dickey-Fuller test for unit root                   Number of obs   =       199

. dfuller y, lags(0)
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Note that an intercept term has been included here to capture the component of (log) consumption 
that is independent of disposable income. The 5% critical value of the test for stationarity in the 
cointegrating residuals is �3.37. Since the unit root t-value of  �2.873 is greater than �3.37, it 
indicates that the errors are not stationary, and hence that the relationship between C (i.e., 
ln(RPCE)) and Y (i.e., ln(RPDI)) is spurious—that is, we have no cointegration. In this case, 
estimate the coefficients of the model using a VAR in differences.  

The VAR is simple to estimate in Stata. The easiest route is to use the varbasic command. 
varbasic fits a basic vector autoregressive (VAR) model and graphs the impulse-response 
functions (IRFs) and the forecast-error variance decompositions (FEVDs).  

The basic structure of the VAR that is stationary in differences is given in the equations 
below: 
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The variables xt and yt are nonstationary, but the differences are stationary. Each difference is a 
linear function of it own lagged differences and of lagged differences of each of the other 
variables in the system. The equations are linear and least squares can be used to estimate the 
parameters. The varbasic command simplifies this. You need to specify the variables in the 
system (�yt and �xt) and the number of lags to include on the right-hand-side of the model. In our 
example, only 1 lag is included and the syntax to estimate the VAR is: 
 

varbasic D.c D.y, lags(1/1) step(12) nograph 

 
The syntax lags(1/1) tells Stata to include lags from the first number to the last, which in this 
case is lag 1 to lag 1. If your VAR is longer than 1 lag then you’ll change that. Also added is the 
step(12) option. This option is used to limit the number of lagged periods for which to compute 
impulse responses (IRF) and forecast error variance decompositions (FEVD) —when used it can 
make the graphs easier to interpret and it conserves space in the tables that Stata can generate. 
Finally, the nograph option is used to suppress the graphs of the IRFs and the FEVDs. These can 
be called later in separate statements as is done below. The output from this is:  

 

-2.8728997
. di _b[L.ehat]/_se[L.ehat]

D_y                   3     .008562   0.1118   24.92656   0.0000
D_c                   3     .006575   0.1205   27.12459   0.0000

Equation           Parms      RMSE     R-sq      chi2     P>chi2

Det(Sigma_ml)  =  2.46e-09                         SBIC            = -13.98565
FPE            =  2.62e-09                         HQIC            = -14.04496
Log likelihood =  1400.444                         AIC             =  -14.0853
Sample:  1960q3 - 2009q4                           No. of obs      =       198

Vector autoregression

. varbasic D.c D.y, lags(1/1) step(12) nograph
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In light of the fact that longer lags were used in the Dickey-Fuller regressions it is likely that the 
VAR should also have longer lags. In practice, it would probably be a good idea to test the 
residuals of the VAR for autocorrelation. The Stata command varlmar issued after varbasic will 
perform a LM test of the residuals similar to the ones that were performed for autocorrelation.  

 

 
 

There is evidence of autocorrelation in the residuals since the p-value at lag 1 is less than 5%. 
Extending the lag length to 3 removes the ambiguity. 

Stata includes another procedure that makes selecting lag lengths in VAR models very easy. 
The varsoc command reports the final prediction error (FPE), Akaike's information criterion 
(AIC), Schwarz's Bayesian information criterion (SC), and the Hannan and Quinn information 
criterion (HQIC) lag-order selection statistics for a series of vector autoregressions. This can be 
used to find lag lengths for VAR or VEC models of unknown order. For the example above Stata 
yields: 
 

 
 

       _cons     .0060367   .0009786     6.17   0.000     .0041187    .0079547
              
         LD.    -.2171679   .0746013    -2.91   0.004    -.3633839    -.070952
           y  
              
         LD.     .4754276   .0965863     4.92   0.000      .286122    .6647332
           c  
D_y           

       _cons     .0052776   .0007516     7.02   0.000     .0038046    .0067507
              
         LD.     .1493798   .0572953     2.61   0.009     .0370832    .2616765
           y  
              
         LD.     .2156068   .0741801     2.91   0.004     .0702164    .3609972
           c  
D_c           

                    Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

   H0: no autocorrelation at lag order
   
      2     5.6784     4     0.22449    
      1     9.5086     4     0.04957    
   
    lag       chi2    df   Prob > chi2  
   
   Lagrange-multiplier test

. varlmar 

  4    1391.6  6.7149    4  0.152  2.6e-09  -14.0882  -13.9659  -13.7861   
  3   1388.24  8.6379    4  0.071  2.6e-09* -14.0948* -13.9996  -13.8598   
  2   1383.92  9.6655*   4  0.046  2.6e-09  -14.0915  -14.0235  -13.9237   
  1   1379.09  48.129    4  0.000  2.6e-09   -14.083  -14.0422* -13.9823*  
  0   1355.02                      3.2e-09  -13.8772  -13.8636  -13.8436   

lag     LL      LR      df    p      FPE       AIC      HQIC      SBIC     

   Sample:  1961q2 - 2009q4                     Number of obs      =       195
   Selection-order criteria

. varsoc D.c D.y, maxlag(4)
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The AIC selects a lag order of 3 while the SC (labeled by Stata, SBIC) chooses 1.   
The dialog box for varbasic is found Statistics > Mutivariate time series > Basic VAR 
 

 

 
This dialog box is 

 
 
List both c and y as dependent variables and click the radio button labeled Include lags 1 to:  
The number in the box below this button should be set to 1 to produce the results in POE4, 
though we’ve set it to three in this example. At the bottom left of the box, we have chosen a 12 
period horizon for impulse responses and the forecast error variance decompositions. Click OK.  

13.4 IMPULSE RESPONSES AND VARIANCE DECOMPOSITIONS 

Impulse response functions show the effects of shocks on the adjustment path of the variables. 
Forecast error variance decompositions measure the contribution of each type of shock to the 
forecast error variance. Both computations are useful in assessing how shocks to economic 
variables reverberate through a system.   

Impulse response functions (IRFs) and forecast error variance decompositions (FEVD) can be 
produced after using the varbasic command. The results can be presented in a table or a graph. 
In this example we illustrate both. After the varbasic command, we use the irf table 
command to generate IRFs and FEVDs:  
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irf table irf 

irf table fevd 

The syntax for irf table is: 
 
        irf table [stat] [, options] 

 
where stat can be any of the following:  

 
    irf        impulse-response function 

    oirf       orthogonalized impulse-response function 

    dm         dynamic-multiplier function 

    cirf       cumulative impulse-response function 

    coirf      cumulative orthogonalized impulse-response function 

    cdm        cumulative dynamic-multiplier function 

    fevd       Cholesky forecast-error variance decomposition 

    sirf       structural impulse-response function 

    sfevd      structural forecast-error variance decomposition  
 
The results from the IRF table are: 

 

 
12        -3.2e-08    -3.8e-06    3.7e-06     2.7e-06     -7.7e-06    .000013    
11        3.4e-06     -6.9e-06    .000014     -5.1e-06    -.000033    .000023    
10        -2.2e-07    -.000027    .000026     .000023     -.000051    .000097    
9         .000029     -.000043    .000101     -.000043    -.000237    .000151    
8         -1.5e-06    -.000182    .000179     .000195     -.000303    .000693    
7         .000244     -.000241    .00073      -.000363    -.001642    .000916    
6         -9.7e-06    -.001161    .001141     .001651     -.001506    .004807    
5         .002075     -.001028    .005177     -.003059    -.010845    .004726    
4         -.000055    -.006566    .006456     .013967     -.003818    .031752    
3         .017604     -.000946    .036153     -.025776    -.066356    .014804    
2         -.000233    -.027858    .027392     .118181     .043031     .193332    
1         .14938      .037083     .261676     -.217168    -.363384    -.070952   
0         0           0           0           1           1           1          

  step      irf        Lower       Upper        irf        Lower       Upper     
             (3)         (3)         (3)         (4)         (4)         (4)     

12        2.6e-06     -7.4e-06    .000013     -1.0e-07    -.000012    .000012    
11        4.7e-06     -.000022    .000032     .000011     -.000022    .000043    
10        .000022     -.000049    .000094     -7.2e-07    -.000086    .000084    
9         .00004      -.000148    .000228     .000092     -.000134    .000317    
8         .000191     -.000295    .000676     -4.9e-06    -.000581    .000571    
7         .000345     -.000905    .001595     .000778     -.000719    .002275    
6         .001623     -.001478    .004723     -.000031    -.003694    .003632    
5         .002951     -.004713    .010615     .006603     -.002593    .015799    
4         .013808     -.003806    .031422     -.000175    -.020898    .020548    
3         .025224     -.014994    .065442     .056027     .007234     .104819    
2         .117506     .042463     .192549     -.000742    -.088665    .087181    
1         .215607     .070216     .360997     .475428     .286122     .664733    
0         1           1           1           0           0           0          

  step      irf        Lower       Upper        irf        Lower       Upper     
             (1)         (1)         (1)         (2)         (2)         (2)     
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The results appear in four quadrants and a key is given at the bottom of the table. In quadrant one 
(northwest) is the response in ln(RCPE)  to a shock in itself. You’ll remember that this series is 
stationary and therefore shocks are not persistent; their effects eventually die out. Shocks to 
ln(RPDI) are not persistent either. More interesting is how ln(RPDI) responds to shocks in the 
ln(RCPE), and vice versa. Quadrant 2 (northeast) shows a shocks to ln(RCPE) affects ln(RPDI) 
for one period, but dies out very quickly. Shocks to the ln(RRDI) create a smaller, but significant 
response in ln(RCPE)  (quadrant 3), though once again if falls to zero very quickly.  

A separate command called irf graph basically does the same thing as irf table, except 
the results appear as a graph rather than in tabular form.  

 
irf graph 

 
 
This is merely the data produced by irf table in graphical form.  

Like the impulse responses, the FEVDs can be produced in either tabular or graphical form. 
The commands are, respectively: 

 
irf table fevd 

irf graph fevd 

 
The results are arranged in the same way, by quadrant with a key at the bottom. 

(4) irfname = varbasic, impulse = D.y, and response = D.y
(3) irfname = varbasic, impulse = D.y, and response = D.c
(2) irfname = varbasic, impulse = D.c, and response = D.y
(1) irfname = varbasic, impulse = D.c, and response = D.c
95% lower and upper bounds reported
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(4) irfname = varbasic, impulse = D.y, and response = D.y
(3) irfname = varbasic, impulse = D.y, and response = D.c
(2) irfname = varbasic, impulse = D.c, and response = D.y
(1) irfname = varbasic, impulse = D.c, and response = D.c
95% lower and upper bounds reported

12        .027033     -.013225    .067291     .75625      .657846     .854654    
11        .027033     -.013225    .067291     .75625      .657846     .854654    
10        .027033     -.013225    .067291     .75625      .657846     .854654    
9         .027033     -.013225    .067291     .75625      .657846     .854654    
8         .027033     -.013225    .067291     .75625      .657846     .854654    
7         .027033     -.013225    .067291     .75625      .657846     .854654    
6         .027033     -.013225    .067291     .75625      .657847     .854653    
5         .027028     -.01322     .067277     .756257     .657865     .854649    
4         .027033     -.013225    .06729      .756248     .65789      .854607    
3         .026702     -.012977    .066381     .756802     .658913     .854692    
2         .02703      -.013212    .067271     .7562       .659308     .853092    
1         0           0           0           .801448     .701963     .900933    
0         0           0           0           0           0           0          

  step      fevd       Lower       Upper        fevd       Lower       Upper     
             (3)         (3)         (3)         (4)         (4)         (4)     

12        .972967     .932709     1.01323     .24375      .145346     .342154    
11        .972967     .932709     1.01323     .24375      .145346     .342154    
10        .972967     .932709     1.01323     .24375      .145346     .342154    
9         .972967     .932709     1.01323     .24375      .145346     .342154    
8         .972967     .932709     1.01323     .24375      .145346     .342154    
7         .972967     .932709     1.01323     .24375      .145346     .342154    
6         .972967     .932709     1.01323     .24375      .145347     .342153    
5         .972972     .932723     1.01322     .243743     .145351     .342135    
4         .972967     .93271      1.01322     .243752     .145393     .34211     
3         .973298     .933619     1.01298     .243198     .145308     .341087    
2         .97297      .932729     1.01321     .2438       .146908     .340692    
1         1           1           1           .198552     .099067     .298037    
0         0           0           0           0           0           0          

  step      fevd       Lower       Upper        fevd       Lower       Upper     
             (1)         (1)         (1)         (2)         (2)         (2)     
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The tabulation and graphing functions in Stata for IRFs and FEVDs are really very flexible. You 
can combine tables, overlay graphs, and do many other things using either the language or the 
dialog boxes. Choose Statistics > Multivariate time series > IRF and FEVD analysis to reveal 
the final box: 

 

 
Here you have a number of choices including the ones we’ve just discussed. However, you can 
also use these dialogs to overlay graphs, combine graphs, or select specific portions of the tables 
or graphs to use in your output. Feel free to experiment! 

KEY TERMS 

ADF test impulse response function trend
cointegration IRF tsline
dfuller irf graph varbasic 
drift irf table varlmar 
Engle-Granger test lags varsoc 
estat bgodfrey LM test vector autoregressive model 
forecast error variance 
decomposition (FEVD) 

multivariate time series vector error correction model 
scheme  

CHAPTER 13 DO-FILE 

* file chap13.do for Using Stata for Principles of Econometrics, 4e 

* cd c:\data\poe4stata 

* Stata do-file 

* copyright C 2011 by Lee C. Adkins and R. Carter Hill 

* used for "Using Stata for Principles of Econometrics, 4e" 
* by Lee C. Adkins and R. Carter Hill (2011) 

* John Wiley and Sons, Inc. 

* setup 

version 11.1 

capture log close 
set more off 

* open log 
log using chap13, replace text 
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*----------------------------------------- 

* Estimating a VECM 
* Load the data and create a time variable 

*----------------------------------------- 

use gdp, clear 

gen date = q(1970q1) + _n - 1  

format %tq date 
tsset date 

*----------------------------------------- 
* Plot the series to identify constants  

* and trends. 

*----------------------------------------- 

tsline aus usa, scheme(sj) name(level, replace) 

tsline D.aus D.usa, scheme(sj) name(difference, replace) 

* Test for Unit Roots 

* Experiment with noconst, trend, drift, and lag length 
dfuller aus, regress lags(1) 

dfuller usa, regress lags(3) 

* Cointegrating regression 

reg aus usa, noconst 

predict ehat, res 
tsline ehat, name(C1, replace) 

* Engle-Granger Test for Cointegration 
reg D.ehat L.ehat, noconst 

dfuller ehat, lags(0) noconst 

*----------------------------------------- 

* VECM  

*----------------------------------------- 

regress D.aus L.ehat 

regress D.usa L.ehat 
drop ehat 

*----------------------------------------- 
* VAR Estimation  

*----------------------------------------- 

use fred, clear 

gen date = q(1960q1) + _n - 1  

format %tq date 
tsset date 

*----------------------------------------- 
* Plot the series to identify constants  

* and trends. 

*----------------------------------------- 

tsline c y, legend(lab (1 "ln(RPCE)") lab(2 "ln(RPDI)")) ///  

       name(l1, replace) lpattern(solid dash) 
tsline D.c D.y, legend(lab (1 "ln(RPCE)") lab(2 "ln(RPDI)")) /// 

       name(d1, replace) lpattern(solid dash) 

* Stationarity Analysis 

* Brute force, 1 equation at a time 

qui reg L(0/1).D.c L.c  
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di "Lags = 1"    

estat bgodfrey, lags(1 2 3) 

qui reg L(0/2).D.c L.c  
di "Lags = 2"   

estat bgodfrey, lags(1 2 3) 

qui reg L(0/3).D.c L.c  
di "Lags = 3" 

estat bgodfrey, lags(1 2 3) 

dfuller c, lags(3) 

* Use the loop to compute stats for y 

forvalues p = 1/3 { 
   qui reg L(0/`p').D.y L.y 

   di "Lags =" `p'   

   estat bgodfrey, lags(1 2 3) 
}

dfuller y, lags(0) 

* Cointegration Test: Case 2 

reg c y 

predict ehat, res 
reg D.ehat L.ehat D.L.ehat, noconst 

di _b[L.ehat]/_se[L.ehat] 

reg D.c D.L.c D.L.y 

reg D.y D.L.c D.L.y 

varbasic D.c D.y, lags(1/1) step(12) nograph 

*------------------------------------------- 
* Test residuals for autocorrelation 

*------------------------------------------- 

varlmar  

* Try extending lags to 3 and repeat 

quietly varbasic D.c D.y, lags(1/3) step(12) 
varlmar 

* There is evidence of autocorrelation so extend the lag to 3 

* Selecting lags using model selection criteria 

varsoc D.c D.y, maxlag(4) 

* Impulse responses and variance decompositions 

qui varbasic D.c D.y, lags(1/1) step(12) 

irf table irf 
irf table fevd 

irf graph irf, name(g1, replace) 
irf graph fevd, name(g2, replace) 

* Combining irf and fevd in a single table 
irf table irf fevd, title("Combined IRF/FEVD for C and Y") 

log close 
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CHAPTER 14

Time-Varying Volatility and 
ARCH Models 

CHAPTER OUTLINE 
14.1 ARCH model and time-varying volatility 
14.2 Estimating, testing, and forecasting 
14.3 Extensions 
     14.3.1 GARCH 

     14.3.2 T-GARCH 
     14.3.3 GARCH-in-mean  
Key Terms  
Chapter 14 Do-file 

14.1 ARCH MODEL AND TIME-VARYING VOLATILITY  

In this chapter we'll use Stata to estimate several models in which the variance of the dependent 
variable changes over time.  These are broadly referred to as ARCH (autoregressive conditional 
heteroskedasticity) models and there are many variations upon the theme.  

The first thing to do is illustrate the problem graphically using data on stock returns. The data 
are stored in the Stata dataset returns.dta.  Change the directory to the one containing the data and 
load it into memory.  

 
cd c:\data\poe4stata 

use returns, clear 

 
The data contain four monthly stock price indices: U.S. Nasdaq (nasdaq), the Australian All 
Ordinaries (allords), the Japanese Nikkei (nikkei) and the U.K. FTSE (ftse).  The data are 
recorded monthly beginning in 1988m1 and ending in 2009m7.  

gen date = m(1988m1) + _n - 1 

format date %tm 

tsset date 
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Plots of the series in their levels are generated using twoway(tsline varname), which can be 
abbreviated tsline varname. As done previously, each graph is given a name with a replace
option. Then the graphs are combined.  

qui tsline nasdaq, name(nas, replace) 

qui tsline allords, name(a, replace) 

qui tsline ftse, name(f, replace) 

qui tsline nikkei, name(nk, replace) 

graph combine nas a f nk, cols(2) name(all1, replace) 

 

  
 

The series are characterized by random, rapid changes and are said to be volatile. The volatility 
seems to change over time as well. For instance the U.S. stock returns index (NASDAQ) 
experiences a relatively sedate period from 1992 to 1996. Then, stock returns become much more 
volatile until early 2004. Volatility increases again at the end of the sample. The other series 
exhibit similar periods of relative calm followed by increased volatility.  

Next, the histogram command is used to generate graphs of the empirical distribution of 
returns. A curve from a normal distribution is overlaid using the normal option.  

 
qui histogram nasdaq, normal name(nas, replace) 

qui histogram allords, normal name(a, replace) 

qui histogram ftse, normal name(f, replace) 

qui histogram nikkei, normal name(nk, replace) 

graph combine nas a f nk, cols(2) name(all2, replace) 
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These series are leptokurtic. That means they have lots of observations around the average and a 
relatively large number of observations that are far from average; the center of the histogram has 
a high peak and the tails are relatively heavy compared to the normal. 

14.2 TESTING, ESTIMATING, AND FORECASTING 

The basic ARCH models consist of two equations. The mean equation describes the behavior of 
the mean of your time series; it is a linear regression function that contains a constant and 
possibly some explanatory variables. In the cases considered below, the mean function contains 
only an intercept. 

t ty e� � 

In this case we expect the time series to vary randomly about its mean, �*&If the mean of your 
time series drifts over time or is explained by other variables, you'd add them to this equation just 
as you would in the usual regression model. The error of the regression is normally distributed 
and heteroskedastic. The variance of the current period's error depends on information that is 
revealed in the preceding period. The variance of et is given the symbol ht. The variance 
equation describes how the error variance behaves. 
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Notice that ht depends on the squared error in the preceding time period. The parameters in this 
equation have to be positive to ensure that the variance, ht, is positive. 

A Lagrange Multiplier (LM) test can be used to test for the presence of ARCH effects (i.e., 
whether %�;). To perform this test, first estimate the mean equation. Save and square the 
estimated residuals, 2

t̂e . You will use these in an auxiliary regression from which you’ll use the 
sample size and goodness-of-fit measure to compute a test statistic. For first order ARCH, regress 

2
t̂e  on the lagged residuals 2

1t̂e �  and a constant: 

2 2
0 1 1ˆ ˆt t te e v�� 3  3 

where tv  is a random term. The null and alternative hypotheses are: 

0 1

1 1

: 0

: 0

H

H

3 �

3 "

The test statistic is TR2, where T is the number of observations in the auxiliary regression. It has a 
7(�0� distribution is the null hypothesis is true. Compare the p-value from this statistic to the 
desired test level (%) and reject the null if the p-value is smaller. If you suspect a higher order 
ARCH(q) error variance process, then include q lags of 2

t̂e  as regressors, compute TR2, and use 
the 7(�q� distribution to obtain the p-value.

In the first ARCH example the byd.dta data are used. Load the data using the clear option to 
remove any previous data from Stata’s memory. 

use byd, clear 

This dataset contains a single undated time series. Generate a time variable in the easiest way 
possible and declare the data to be time series. 

gen time = _n 

tsset time 

In this instance, a time counter equal to the observation number is created using _n and this is set 
equal to the variable time. Then the tsset command is used to declare it a time series.  

The first thing to do is plot the time series using 

tsline r, name(g1, replace) 

This yields 
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There is visual evidence of time varying volatility. Towards the end of the time series, returns for 
BYD appear to become more volatile. An ARCH(1) model is proposed and the ARCH(1) model 
is tested against the null hypothesis of no ARCH using the LM test discussed above. The first 
step is to estimate a regression that contains only an intercept. Obtain the residuals, which we call 
ehat, and square them.  

regress r 

predict ehat, residual 

gen ehat2 = ehat * ehat 

The auxiliary regression 2 2
0 1 1ˆ ˆt t te e v�� 3  3  uses the lag operator L. to take a single lag to include 

as a regressor in the auxiliary model. 

regress ehat2 L.ehat2 

 
The test statistic is TR2 from this regression. The p-value is computed using the chi2tail
function. Remember, the first argument of chi2tail is the degrees of freedom for your test 
(equal to q) and the second argument is the computed value of your statistic. Reject no arch if the 
p-value is less than the desired significance level, %. The Stata code is: 

scalar TR2 = e(N)*e(r2) 

scalar pvalue = chi2tail(1,TR2) 

scalar crit = invchi2tail(1,.05) 

scalar list TR2 pvalue crit 

 
This yields the result: 
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      crit =  3.8414588
    pvalue =  3.167e-15
       TR2 =  62.159504
. scalar list TR2 pvalue crit
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Stata also includes a built-in function to compute this test statistic. Using it will provide identical 
results. First estimate the regression then use the post-estimation command archlm as shown 
below:

Then use the post-estimation command archlm as shown below. 

estat archlm, lags(1) 

As we know, post-estimation commands begin with estat, after which the archlm command is 
issued. The archlm command uses the lags(q) option, where q is the order of the ARCH process 
you wish to include in the alternative hypothesis. In this example q=1.

The results from the archlm command are: 

This is a particularly useful alternative to the manual process of computing TR2 from an auxiliary 
regression. The null and alternative hypotheses are clearly stated, the statistic and its distribution 
are given, and the p-value is computed and shown in the default output. That means that Stata is 
generating all the information you need to properly conduct the test. Excellent! 

The archlm test can be accessed through the dialogs, but the process is fairly convoluted. Just 
in case you haven’t weaned yourself from using the pull-down menus yet here is how. First you 
need to estimate the mean equation using regression. Select Statistics > Linear models and 
related >  Linear regression. Choose r as the dependent variable (with no independent 
variables) and click OK. Then, choose Statistics > Time series > Tests < Time-series tests after 
regress.

This reveals the estat dialog box that we’ve seen before.  

       _cons     1.078294   .0529959    20.35   0.000     .9741716    1.182417

           r        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    700.737278   499  1.40428312           Root MSE      =   1.185
           Adj R-squared =  0.0000

    Residual    700.737278   499  1.40428312           R-squared     =  0.0000
       Model             0     0           .           Prob > F      =       .

           F(  0,   499) =    0.00
      Source         SS       df       MS              Number of obs =     500

. regress r

         H0: no ARCH effects      vs.  H1: ARCH(p) disturbance

       1               62.160               1                   0.0000

    lags(p)           chi2               df                 Prob > chi2

LM test for autoregressive conditional heteroskedasticity (ARCH)
. estat archlm, lags(1)
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In this case, scroll down to the option Test for ARCH effects in the residuals (archlm – time 
series only) and then specify the number of lags to be tested (1 as shown). Click OK.
In this example, the no ARCH effects hypothesis is rejected at the 5% level and we proceed to 
estimation of the model.  

The basic ARCH model and all the variants considered below are estimated using the arch
command. The syntax is shown below: 

arch depvar [indepvars] [if] [in] [weight] [, options] 

 
After issuing the arch command, list the dependent variable, independent variables (if you have 
any), and any conditionals or weights you may wish to use. Then, list the desired options. These 
options are what make Stata’s arch command very flexible and powerful.  

For the ARCH(1) model of BYD, the option to use is simply arch(1). The complete 
command syntax for an ARCH(1) model of BYD’s returns is 
 

arch r, arch(1) 

which produces this output: 

In the Stata output (but not shown) is a list of iterations; this gives a clue as to how this magic is 
being performed. Iterations indicate that a nonlinear numerical optimization is being used to 
obtain estimates, in this case to maximize the likelihood function (see Section  C.8 of Principles 
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of Econometrics). The log likelihood should be getting larger as the iterations proceed. If the 
numerical optimization somehow fails, an error message will appear just after the (many) 
iterations.

The parameter estimates follow the iteration summary. In this case they match those in 
POE4, but the standard errors are a little different. Don’t worry about this, they are valid if the 
ARCH(1) model is appropriate. So, in the BYD example, the average return is about 1.06%. The 
ARCH term’s t-ratio is statistically significant and you conclude that the variance is 
autoregressive conditionally heteroskedastic (which for good measure should be repeated out 
loud three times). 

To arrive at these results through the dialogs choose Statistics > Time series > 
ARCH/GARCH > ARCH and GARCH models from the pull-down menu. This reveals the 
arch – Autoregressive conditional heteroskedasticity family of estimators dialog box shown 
below:

In this box choose r as the dependent variable and select a single lag in the ARCH maximum lag
box.  Click OK and you are done. Note, you can choose longer maximum ARCH lags (i.e., q) or 
even specify a list of lags in this dialog. The dialog is also used to estimate a generalization of 
ARCH that is considered in the next section. Before moving on though, let’s graph the estimated 
future return 1tr   and the conditional volatility 1th  .

The forecasted return is just a constant in this case, since no explanatory variables other than 
a constant was included in the regression portion of the ARCH model 

1 0
ˆˆ 1.063tr  �� �

The forecasted error variance is essentially an in-sample prediction model based on the estimated 
variance function.  

� � � �
2 2

1 0 1 0
ˆ ˆˆ ˆ 0.642 0.569 1.063t t th r r � %  % � � �  �

Stata generates this whenever it estimates an ARCH model and saves the result to a variable using 
the predict command with option variance. Here the ARCH(1) model is estimated and the 
variance is generated and placed into a variable called htarch.
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arch r, arch(1)  

predict htarch, variance 

This could be generated manually using saved results from the estimated ARCH model 

gen ht_1 = _b[ARCH:_cons]+_b[ARCH:L1.arch]*(L.r-_b[r:_cons])^2 

list htarch ht_1 in 496/500 

which produces: 

The built-in computation from Stata’s predict command is confirmed by our manual calculation. 
Then tsline is used to plot the forecast error variance against time. 
 

tsline htarch, name(g2, replace) 

This produces the time series plot  

Obviously, there is a lot more volatility towards the end of the sample. 

      
500.   2.122526   2.122526  
499.   1.614941   1.614941  
498.   1.968768   1.968768  
497.   .8093833   .8093833  
496.   1.412281   1.412281  
      
        htarch1       ht_1  
      

. list htarch ht_1 in 496/500
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14.3 EXTENTIONS 

An important extension of the ARCH(1) is the ARCH(q) model. Here, additional lags of the 
squared residuals are added as determinants of the equation’s variance, ht:

2 2 2
0 1 1 2 2 ...t t t q t qh e e e� � �� %  %  %  %

14.3.1 GARCH 

Another extension is the Generalized ARCH or GARCH model. The GARCH model adds up to 
p lags of the variance, t ph � , to the standard ARCH. A GARCH(1,1) model would look like this: 

2
1 1 1 1t t th e h� �� 2 % �

It has one lag of the regression model’s squared residual (one ARCH term) and one lag of the 
variance (one GARCH term). Additional ARCH or GARCH terms can be added to obtain the 
GARCH(p,q),  where p is the number of lags for ht and q is the number of lags of et included in 
the model. 

Estimating a GARCH(1,1) model for BYD is simple. Basically, you just add a single 
GARCH term to the existing ARCH model, so the command is 

arch r, arch(1) garch(1) 

The syntax is interpreted this way. We have an arch regression model that includes r as a 
dependent variable and has no independent variables other than a constant. The first option 
arch(1) tells Stata to add a single lagged value of et to the modeled variance; the second option 
garch(1) tells Stata to add a single lag of the variance, ht, to the modeled variance. The result is:  

The estimate of %0 is 0.491 and the estimated coefficient on the lagged variance, �0&is 0.238. 
Again, there are a few minor differences between these results and those in the text, but that is to 

       _cons     .4009868   .0899182     4.46   0.000     .2247505    .5772232
              
         L1.     .2379837   .1114836     2.13   0.033     .0194799    .4564875
       garch  
              
         L1.     .4911796   .1015995     4.83   0.000     .2920482    .6903109
        arch  
ARCH          

       _cons     1.049856   .0404623    25.95   0.000     .9705517    1.129161
r             

           r        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                               OPG

Log likelihood = -736.0281                         Prob > chi2     =         .
Distribution: Gaussian                             Wald chi2(.)    =         .
Sample: 1 - 500                                    Number of obs   =       500

ARCH family regression
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be expected when coefficient estimates have to be solved for via numerical methods rather than 
analytical ones.   

As in the ARCH model, the predicted forecast variance can be saved and plotted: 

predict htgarch, variance 

tsline htgarch 

 
which yields the time series plot: 

 

14.3.2 Threshold GARCH 

The threshold GARCH model, or T-GARCH, is another generalization of the GARCH model 
where positive and negative news are treated asymmetrically. In the T-GARCH version of the 
model, the specification of the conditional variance is: 

2 2
1 1 1 1 1 1

1 0 (bad news)
0 0 (good news)

t t t t t

t
t

t

h e d e h

e
d

e

� � � �� 2  %  3 �

!4
� 5  6

In Stata this just means that another option is added to the arch r regression model. The option 
to add asymmetry of this sort is tarch() where the argument tells Stata how many lagged 
asymmetry terms to add. This can be less than the number of ARCH terms, q, but not greater.  

Here is a T-GARCH model for BYD. 

arch r, arch(1) garch(1) tarch(1) 

predict httgarch, variance 

tsline httgarch 
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Once again, the variance is saved and plotted using a time series plot. The threshold GARCH 
result is: 

and the plotted predicted error variances are: 

14.3.3 GARCH-in-mean 

A final variation of the ARCH model is called GARCH-in-mean (MGARCH). In this model, 
the variance, ht, is added to the regression function. 

0t t ty h e� �  - 

       _cons     .3557296   .0900538     3.95   0.000     .1792274    .5322318
              
         L1.        .2873   .1154888     2.49   0.013     .0609462    .5136538
       garch  
              
         L1.    -.4917071   .2045045    -2.40   0.016    -.8925285   -.0908856
       tarch  
              
         L1.      .754298   .2003852     3.76   0.000     .3615501    1.147046
        arch  
ARCH          

       _cons     .9948399   .0429174    23.18   0.000     .9107234    1.078956
r             

           r        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                               OPG

Log likelihood =  -730.554                         Prob > chi2     =         .
Distribution: Gaussian                             Wald chi2(.)    =         .
Sample: 1 - 500                                    Number of obs   =       500

ARCH family regression

0
5

10
15

C
on

di
tio

na
l v

ar
ia

nc
e,

 o
ne

-s
te

p

0 100 200 300 400 500
time



438   Chapter 14  

If its parameter, -, is positive then higher variances will cause the average return E(y) to increase. 
This seems reasonable: more risk, higher average reward! To add a GARCH-in-mean to the BYD 
example, we simply add another option to the growing list in the arch statement. The command 
becomes: 

arch r, archm arch(1) garch(1) tarch(1) 

In this case, the option archm  (which stands for arch in mean) is added to the others, arch(1) 
garch(1) and tarch(1). These are retained since these terms are included in the BYD example 
from the text. The results are  

You can see that the coefficient on the GARCH-in-mean term ˆ 0.1959,- � is positive and 
statistically significant at the 5% level in this instance.  

Finally, the predicted mean and variance functions are saved and plotted using time series 
plots.

predict m_mgarch, xb 

predict htmgarch, variance 

qui tsline m_mgarch, name(g5, replace) 

qui tsline htmgarch, name(g6, replace) 

graph combine g5 g6, cols(1) 

In this case, the mean and variance are plotted in the same graph in a single column:  

       _cons     .3705214   .0818646     4.53   0.000     .2100698    .5309731
              
         L1.     .2783425   .1039073     2.68   0.007      .074688     .481997
       garch  
              
         L1.     -.321069   .1621927    -1.98   0.048    -.6389608   -.0031772
       tarch  
              
         L1.     .6160302   .1634603     3.77   0.000     .2956538    .9364066
        arch  
ARCH          

      sigma2     .1958843    .067164     2.92   0.004     .0642453    .3275233
ARCHM         

       _cons     .8181453   .0711579    11.50   0.000     .6786783    .9576122
r             

           r        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                               OPG

Log likelihood = -724.6549                         Prob > chi2     =    0.0035
Distribution: Gaussian                             Wald chi2(1)    =      8.51
Sample: 1 - 500                                    Number of obs   =       500

ARCH family regression
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The predictions of the mean and variance follow very similar patterns. 

KEY TERMS 

arch() garch() threshold GARCH 
ARCH generalized ARCH (GARCH) tarch() 
format %tm histogram tsline
arch y, options LM test variance equation 
archlm, lags() mean equation volatility 
archm predict ehat, residual %tm 
autoregressive conditional  
heteroskedastic  predict yhat, xb 
GARCH in Mean (MGARCH) returns 

CHAPTER 14 DO-FILE 

* file chap14.do for Using Stata for Principles of Econometrics, 4e 

* cd c:\data\poe4stata 

* Stata Do-file 

* copyright C 2011 by Lee C. Adkins and R. Carter Hill 

* used for "Using Stata for Principles of Econometrics, 4e" 
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* by Lee C. Adkins and R. Carter Hill (2011) 

* John Wiley and Sons, Inc. 

* setup 

version 11.1 

capture log close 
set more off 

* open log 
log using chap14, replace text 

use returns, clear 

* ---------------------------------------------- 

* Create dates and declare time series  

* ---------------------------------------------- 

gen date = m(1988m1) + _n - 1 

format date %tm 
tsset date 

* ---------------------------------------------- 
* Time series plots and histograms 

* ---------------------------------------------- 

qui tsline nasdaq, name(nas, replace) 

qui tsline allords, name(a, replace) 

qui tsline ftse, name(f, replace) 
qui tsline nikkei, name(nk, replace) 

graph combine nas a f nk, cols(2) name(all1, replace) 

qui histogram nasdaq, normal name(nas, replace) 

qui histogram allords, normal name(a, replace) 

qui histogram ftse, normal name(f, replace) 
qui histogram nikkei, normal name(nk, replace) 

graph combine nas a f nk, cols(2) name(all2, replace) 

* ---------------------------------------------- 

* Load byd, create dates and declare time series 

* ---------------------------------------------- 
use byd, clear 

gen time = _n 

tsset time 

tsline r, name(g1, replace) 

* ---------------------------------------------- 

* LM test for ARCH(1) 

* ---------------------------------------------- 

regress r 

predict ehat, residual 

gen ehat2 = ehat * ehat 

qui reg ehat2 L.ehat2 
scalar TR2 = e(N)*e(r2) 

scalar pvalue = chi2tail(1,TR2) 

scalar crit = invchi2tail(1,.05) 
scalar list TR2 pvalue crit 

* ---------------------------------------------- 
* Built-in LM Test for ARCH(1) 

* ---------------------------------------------- 
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regress r 

estat archlm, lags(1) 

* ---------------------------------------------- 

* ARCH(1) 

* ---------------------------------------------- 

arch r, arch(1) 

predict htarch1, variance 
tsline htarch, name(g2, replace) 

gen ht_1 = _b[ARCH:_cons]+_b[ARCH:L1.arch]*(L.r-_b[r:_cons])^2 
list htarch ht_1 in 496/500 

* ---------------------------------------------- 
* GARCH(1,1) 

* ---------------------------------------------- 

arch r, arch(1) garch(1) 

predict htgarch, variance 

tsline htgarch, name(g3, replace) 

* ---------------------------------------------- 

* Threshold GARCH 
* ---------------------------------------------- 

arch r, arch(1) garch(1) tarch(1) 
predict httgarch, variance 

tsline httgarch, name(g4, replace) 

* ---------------------------------------------- 

* GARCH in mean 

* ---------------------------------------------- 

arch r, archm arch(1) garch(1) tarch(1) 

predict m_mgarch, xb 
predict htmgarch, variance 

qui tsline m_mgarch, name(g5, replace) 

qui tsline htmgarch, name(g6, replace) 
graph combine g5 g6, cols(1) 

summarize m_mgarch r, detail  
histogram m_mgarch, normal 

log close 
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CHAPTER 15

Panel Data Models 

CHAPTER OUTLINE 
15.1 A microeconomic panel 
15.2 A pooled model 
     15.2.1 Cluster-robust standard errors 
15.3 The fixed effects model 
     15.3.1 The fixed effects estimator 
     15.3.2 The fixed effects estimator using xtreg 
     15.3.3 Fixed effects using the complete panel 
15.4 Random effects estimation 
     15.4.1 The GLS transformation  

     15.4.2 The Breusch-Pagan test 
     15.4.3 The Hausman test  
     15.4.4 The Hausman-Taylor model  
15.5 Sets of regression equations  
     15.5.1 Seemingly unrelated regresssions  
     15.5.2 SUR with wide data  
15.6 Mixed models  
Key Terms  
Chapter 15 do-file 

15.1 A MICROECONOMETRIC PANEL 

The data file nls_panel.dta contains a panel of data for 716 women for 5 years. Open the data file 
and obtain the summary statistics on key variables. 
 

use nls_panel, clear 

To take advantage of the cross section and time series nature of the data we must define the 
variables identifying the individual and time. To use any of Stata’s powerful “xt” commands we 
must identify the variables that indicate the cross section observations (i) and the time series 
observations (t). The Stata command for this task is xtset.  
 

xtset id year 

 

 
 

                delta:  1 unit
        time variable:  year, 82 to 88, but with gaps
       panel variable:  id (strongly balanced)
. xtset id year
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The data are strongly balanced, which means that for each individual we have the same number 
of time series observations, here 5, though the years, 1982, 1983, 1985, 1987 and 1988 are not 
evenly spaced. This is called a “balanced panel” and it was created by the authors from a larger 
data set, nls.dta, which is not balanced. Most panel data sets have large numbers of missing 
observations. This one does not have missing values for the key variables. The Stata command 
xtdescribe provides more information about the panel. 

 

 
 
If we summarize the data we find that the key variables have the same numbers of observations. 
 

summarize lwage educ south black union exper tenure 

 

 
If we list the first few observations we can see how they are stacked by individual. 

 
list id year lwage educ south black union exper tenure in 1/10 

      716    100.00            XX.X.XX

      716    100.00  100.00    11.1.11

     Freq.  Percent    Cum.    Pattern

                         5       5       5         5         5       5       5
Distribution of T_i:   min      5%     25%       50%       75%     95%     max

           (id*year uniquely identifies each observation)
           Span(year)  = 7 periods
           Delta(year) = 1 unit
    year:  82, 83, ..., 88                                   T =          5
      id:  1, 2, ..., 716                                    n =        716

. xtdescribe

      tenure        3580    6.947439    5.171849          0      24.75
       exper        3580    12.02858    3.862796   1.057692    27.1923

       union        3580    .2642458    .4409924          0          1
       black        3580    .2821229    .4500957          0          1
       south        3580    .4240223    .4942627          0          1
        educ        3580    13.02235     2.44402          4         18
       lwage        3580    1.918238    .4646068    .137109   4.254619

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize lwage educ south black union exper tenure
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The fixed effects model is a model for pooling data. It permits cross-section heterogeneity by 
allowing the intercept to vary across individuals. 

15.2 A POOLED MODEL 

A pooled model is one where individuals are simply pooled together with no provision for 
individual or time differences. 

 
1 2 2 3 3it it it ity x x e�� � �   

 
A basic regression specification is 

 
reg lwage educ exper exper2 tenure tenure2 black south union 

 

 

      
 10.    2     88   2.200974     17       0       0       1   13.21154       1.75  
  9.    2     87   1.919034     17       0       0       1   12.03846   .3333333  
  8.    2     85    1.93017     17       0       0       0   10.38461   5.416667  
  7.    2     83   1.515855     17       0       0       0   8.384615   3.416667  
  6.    2     82   1.280933     17       0       0       0   7.576923   2.416667  
      
  5.    1     88   1.856449     12       0       1       1   13.62179       5.25  
  4.    1     87    1.84653     12       0       1       1   12.17949       3.75  
  3.    1     85   1.789367     12       0       1       1   10.17949   1.833333  
  2.    1     83   1.863417     12       0       1       1   8.583333   8.583333  
  1.    1     82   1.808289     12       0       1       1   7.666667   7.666667  
      
       id   year      lwage   educ   south   black   union      exper     tenure  
      

. list id year lwage educ south black union exper tenure in 1/10

       _cons        .4766   .0561559     8.49   0.000     .3664993    .5867008
       union     .1322432   .0149616     8.84   0.000      .102909    .1615774
       south    -.1060026   .0142008    -7.46   0.000    -.1338451     -.07816
       black    -.1167139   .0157159    -7.43   0.000    -.1475269   -.0859008
     tenure2     -.000486   .0002577    -1.89   0.059    -.0009913    .0000192
      tenure       .01496   .0044073     3.39   0.001      .006319     .023601
      exper2    -.0011475   .0003613    -3.18   0.002    -.0018559   -.0004392
       exper     .0556851   .0086072     6.47   0.000     .0388096    .0725605
        educ     .0714488   .0026894    26.57   0.000     .0661759    .0767217

       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    772.561229  3579  .215859522           Root MSE      =  .38197
           Adj R-squared =  0.3241

    Residual    521.026186  3571  .145904841           R-squared     =  0.3256
       Model    251.535043     8  31.4418803           Prob > F      =  0.0000

           F(  8,  3571) =  215.50
      Source         SS       df       MS              Number of obs =    3580

. reg lwage educ exper exper2 tenure tenure2 black south union
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15.2.1 Cluster-robust standard errors 

Panel data has several observations per individual. The individual’s error term may have some 
common components that are present for each time period. For example, if we are estimating a 
wage equation, the unobserved characteristics of any individual, such as ability, are present in 
each time period. The error terms for each individual may show an intercorrelation within the 
“cluster” of observations specific to the individual. To relax the usual assumption of zero error 
correlation over time for the same individual we write 

 
� �cov ,it is tse e � B  

 
Notice that this alternative assumption also relaxes the assumption of homoskedasticity because, 
when t s� , we have  

 
� � � �cov , varit it it tte e e� � B  

 
The error variance can be different in different time periods, but is constant over individuals. To 
avoid confusion with different 2� ’s that will be used later, we have introduced another Greek 
letter “psi” ( )B  to denote the variances and covariances.  

Under these assumptions the least squares estimator is unbiased and consistent, but the usual 
least squares estimator variance formulas no longer hold. It is much the same as in Chapters 8 and 
9, where we used a “robust” covariance matrix for the least squares estimator. Similarly, in this 
case, we have “robust-cluster” standard errors. The concept and procedures are explained in 
Principles of Econometrics, 4th Edition, Appendix 15A on pages 581-583. Stata implements 
robust standard errors with a simple option 
 

reg lwage educ exper exper2 tenure tenure2 black south union,  

 vce(cluster id) 

 
The option vce(cluster id) requires the variable id to be specified so that we can identify 
which observational error terms may be intercorrelated. 

 

 
 
Note that the output now shows Robust Std. Err. and a message that the standard errors are 
adjusted for 716 clusters, which corresponds to the number of individuals in the sample. 
Compared to the incorrect standard errors provided using regress with no correction, these 
robust standard errors are slightly larger. 

       _cons        .4766   .0845629     5.64   0.000     .3105787    .6426213
       union     .1322432   .0270747     4.88   0.000     .0790878    .1853986
       south    -.1060026   .0270616    -3.92   0.000    -.1591322    -.052873
       black    -.1167139   .0281342    -4.15   0.000    -.1719493   -.0614784
     tenure2     -.000486   .0004102    -1.18   0.236    -.0012914    .0003194
      tenure       .01496   .0071232     2.10   0.036     .0009752    .0289448
      exper2    -.0011475   .0004925    -2.33   0.020    -.0021144   -.0001807
       exper     .0556851   .0113101     4.92   0.000       .03348    .0778901
        educ     .0714488   .0054995    12.99   0.000     .0606517    .0822459

       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                             Robust

                                   (Std. Err. adjusted for 716 clusters in id)
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15.3 THE FIXED EFFECTS MODEL 

The fixed effects model allows for differences in the intercept parameter for each individual. The 
model is 
 

1 2 2 3 3 , 1, ,it i it it ity x x e i N�� � �  � �  
 
Note that the intercept now includes a subscript i which means that it is individual specific. We 
have in effect introduced N new parameters, one intercept parameter for each individual. To 
accomplish this we can create N indicator variables such as 

 

 1

1 1
0 otherwisei

i
D

�4
� 5
6

         2

1 2
0 otherwisei

i
D

�4
� 5
6

         3

1 3
0 otherwisei

i
D

�4
� 5
6

 

 
If N is not too large then these indicator variables can be added to the regression model as 
additional variables. This is called the least squares dummy variable model.  

 
11 1 12 2 1,10 10 2 2 3 3it i i i it it ity D D D x x e� �  �   �  �  � �  

To illustrate, we have created a smaller version of nls_panel.dta with only 10 individuals. Open 
and examine the data set nls_panel10.dta.  

 
use nls_panel10, clear 

summarize 

 

 
Note that among these 10 individuals none lived in the south, so that variable SOUTH will be 
omitted from the analysis in this section. 

Rather than actually creating 10 indicator variables for the individuals, we use Stata’s factor 
variable notation. In this case we want all levels of the variable id to have a unique indicator 
variable. Enter help factor variables and locate the discussion of “Base levels.” A particular 
group can be specified as the base using ib#. where # is the desired base. That is, ib2.group 
would indicate that the 2nd group was the base group. Here, we do not wish a base group at all, so 
we specify ibn.group to indicate there is no base level.  

The least squares dummy variable model is then estimated using 
 

reg lwage ibn.id exper exper2 tenure tenure2 union, noconstant 

 

       union          50         .44    .5014265          0          1
       south          50           0           0          0          0
       black          50          .1    .3030458          0          1
     tenure2          50    70.35375    96.20069          0        361

      tenure          50    6.498334    5.357182          0         19
      exper2          50     164.316    73.05605   57.40976   362.7071
       exper          50    12.50923    2.827552   7.576923   19.04487
        educ          50        14.2    1.678191         12         17
       lwage          50    2.197666    .3770917   1.280933   3.579129

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize lwage educ exper exper2 tenure tenure2 black south union
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We suppress the automatic constant term as its inclusion would create exact collinearity. 
 

 
 
The analysis of variance table includes the usual information and shows that we have estimated 
15 parameters.  

For later use we save the sum of squared residuals, the degrees of freedom N – K, and the 
estimated error variance. 
 

scalar sse_u = e(rss) 

scalar df_u = e(df_r) 

scalar sig2u = sse_u/df_u 

 
To test the equality of the intercepts form the null and alternative hypotheses. 

 
0 11 12 1

1 1

:

: the  are not all equal

N

i

H

H

� � � � � �

�

�
 

 
Use Stata’s test statement with 9 pairs of equalities. 

 
test (1.id=2.id) (2.id=3.id) (3.id=4.id) (4.id=5.id) /// 

     (5.id=6.id) (6.id=7.id) (7.id=8.id) (8.id=9.id)(9.id=10.id) 

 

       union     .1135435   .1508628     0.75   0.457    -.1927244    .4198113
     tenure2     .0022961   .0026885     0.85   0.399    -.0031617     .007754
      tenure      -.01235   .0341433    -0.36   0.720    -.0816647    .0569646
      exper2    -.0081882   .0079048    -1.04   0.307    -.0242358    .0078595
       exper     .2379985   .1877565     1.27   0.213    -.1431675    .6191646
              
         10       .614558   1.090176     0.56   0.577    -1.598618    2.827734
          9      .4183341   1.084049     0.39   0.702    -1.782401     2.61907
          8       .537925   1.097498     0.49   0.627    -1.690114    2.765964
          7      .5811988   1.235914     0.47   0.641     -1.92784    3.090237
          6      .7944846   1.111771     0.71   0.480    -1.462531      3.0515
          5      .9389866    1.09778     0.86   0.398    -1.289625    3.167598
          4       .185626   1.343498     0.14   0.891     -2.54182    2.913072
          3     -.0630423   1.350917    -0.05   0.963    -2.805549    2.679464
          2      .1868944   1.071485     0.17   0.863    -1.988335    2.362124
          1      .1519055   1.096745     0.14   0.891    -2.074606    2.378417
          id  

       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    248.454417    50  4.96908834           Root MSE      =  .27605
           Adj R-squared =  0.9847

    Residual    2.66718984    35  .076205424           R-squared     =  0.9893
       Model    245.787227    15  16.3858151           Prob > F      =  0.0000

           F( 15,    35) =  215.02
      Source         SS       df       MS              Number of obs =      50

. reg lwage ibn.id exper exper2 tenure tenure2 union, noconstant
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In this case we find no significant differences, due primarily to the fact that we have only 10 
individuals in the sample.  

Alternatively we can estimated the “restricted model” and compute the F-statistic using 
 

� �
� �

R U

U

SSE SSE J
F

SSE NT K
�

�
�

 

 
Estimate the restricted model and save restricted sum of squared residuals SSER 

 
reg lwage exper exper2 tenure tenure2 union 

scalar sse_r = e(rss) 

 
Use these values to compute the F-statistic, critical value and p-value. 

 
scalar f = (sse_r - sse_u)/(9*sig2u) 

scalar fc = invFtail(9,df_u,.05) 

scalar pval = Ftail(9,df_u,f) 

di "F test of equal intercepts = " f 

di "F(9,df_u,.95) = " fc 

di "p value = " pval 

 
The results of these commands are 

 

 

15.3.1 The fixed effects estimator 

The above approach works for small N. If we have thousands of individuals it is inconvenient to 
introduce indicator variables for each. Fixed effects estimation can be carried out using a single 
command that we will discuss below. First, however, we will consider an alternative approach 

            Prob > F =    0.0011
       F(  9,    35) =    4.13

 ( 9)  9.id - 10.id = 0
 ( 8)  8.id - 9.id = 0
 ( 7)  7.id - 8.id = 0
 ( 6)  6.id - 7.id = 0
 ( 5)  5.id - 6.id = 0
 ( 4)  4.id - 5.id = 0
 ( 3)  3.id - 4.id = 0
 ( 2)  2.id - 3.id = 0
 ( 1)  1bn.id - 2.id = 0

>      (5.id=6.id) (6.id=7.id) (7.id=8.id) (8.id=9.id)(9.id=10.id)
. test (1.id=2.id) (2.id=3.id) (3.id=4.id) (4.id=5.id) ///

p value = .00108357
. di "p value = " pval

F(9,df_u,.95) = 2.1608293
. di "F(9,df_u,.95) = " fc

F test of equal intercepts = 4.1339667
. di "F test of equal intercepts = " f
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using data that is in deviations from the mean form. To proceed, first find individual averages of 
the regression data for each individual.  

 

1 2 2 3 3
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1 2 2 3 3
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t t t t
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The “bar” notation iy  indicates that we have averaged the values of yit over time. Then, subtract 
this averaged equation from 
 

1 2 2 3 3 1, ,it i it it ity x x e t T�� � �  � �  
 
to obtain 
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Least squares applied to this equation will produce the fixed effects estimates. The data set 
nls_panel_devn.dta contains the data in deviation from the mean form. Open this data set and 
summarize. 
 

use nls_panel_devn, clear 

summarize 

 

 
 

Note that the Mean of each variable is zero, because it is in deviation about the mean form. 
List a few of the values. 
 

list lw_dev exp_dev union_dev in 1/10 

   union_dev          50           0    .2857143        -.6         .8

    ten2_dev          50   -3.42e-16    39.09372  -91.27776   111.3819
     ten_dev          50   -4.86e-18    2.130799  -3.583334   3.383334
    exp2_dev          50    2.58e-16    58.50121  -93.17334   111.1935
     exp_dev          50   -1.48e-17     2.26546  -3.092308   3.369232
      lw_dev          50    2.83e-18    .2643443  -.8445444   1.055708

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize
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Try to use the data and summary statistics from nls_panel10.dta to create a few of these values by 
hand. The regression using these data is 
 

reg lw_dev exp_dev exp2_dev ten_dev ten2_dev union_dev, noconstant 

 

 
 

Compare the estimated coefficients to those from the estimation including the 10 indicator 
variables. They are the same. The standard errors here are a little off, because their calculation 
using regress does not recognize that we have taken the deviations about the mean. A correct 
calculation would have the Residual degrees of freedom equal to 35. 

Let us create the deviations ourselves. Open again the nls_panel10.dta file, clear memory and 
use xtset.  
 

use nls_panel10, clear 

xtset id year 

 
We can use the dialog boxes for extensions to functions to accomplish the calculation of the 
group means. From the drop down menus select Data > Create or change variables > Create 
new variable (extended).  
 

      
 10.    .4315808    2.8923104         .6  
  9.    .1496408    1.7192304         .6  
  8.    .1607768     .0653804        -.4  
  7.   -.2535382   -1.9346146        -.4  
  6.   -.4884602   -2.7423066        -.4  
      
  5.    .0236386     3.175636          0  
  4.    .0137196     1.733336          0  
  3.   -.0434434     -.266664          0  
  2.    .0306066    -1.862821          0  
  1.   -.0245214    -2.779487          0  
      
          lw_dev      exp_dev   union_~v  
      

. list lw_dev exp_dev union_dev in 1/10

   union_dev     .1135435   .1330485     0.85   0.398      -.15443     .381517
    ten2_dev     .0022961    .002371     0.97   0.338    -.0024793    .0070716
     ten_dev      -.01235   .0301116    -0.41   0.684    -.0729979    .0482978
    exp2_dev    -.0081882   .0069714    -1.17   0.246    -.0222293    .0058529
     exp_dev     .2379985   .1655857     1.44   0.158    -.0955082    .5715052

      lw_dev        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    3.42401872    50  .068480374           Root MSE      =  .24346
           Adj R-squared =  0.1345

    Residual    2.66718984    45  .059270885           R-squared     =  0.2210
       Model    .756828872     5  .151365774           Prob > F      =  0.0407

           F(  5,    45) =    2.55
      Source         SS       df       MS              Number of obs =      50

. reg lw_dev exp_dev exp2_dev ten_dev ten2_dev union_dev, noconstant
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The dialog box can also be opened using the link from help egen 

 

 
 
Alternatively enter db egen. Fill in the Generate variable box with a variable name. Select 
mean in the egen function drop down list. Enter the expression on which the function will 
operate, here simply the variable lwage

 

 
 

Click on the by/if/in tab. 
 

 
 
Enter the variable defining the groups (individuals) and click the Repeat command by groups 
box. Equivalently use the Stata commands. Sort the data by individual id, using the stable 
option, and then use extensions to generate commands (egen) with the by command. 
 

sort id, stable 
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To save ourselves some typing, and reduce the odds of a typing error, we will use a loop in order 
to create deviations about means for each variable. First, create a list containing the variables we 
wish to transform. 

 
global v1list lwage exper exper2 tenure tenure2 union 

 
The foreach loop control has much the same structure as the forvalues loop used in Chapter 9. 
For each of the variables in the global v1list we will use egen to create the mean, and then 
generate the deviation about the mean. The foreach statement line ends in a left brace “{“ and 
concludes with a single right brace “}”. The statements in between are performed repeatedly 
using the `var’ to designate the variable name in the list. 

 
foreach var of varlist $v1list { 

 by i: egen `var'bar = mean(`var') 

 gen `var'_dev = `var' - `var'bar 

 } 

 
List the data, and apply least squares to these data, with no constant, produce the fixed effects 
estimates. 
 

list id year lwage lwagebar lwage_dev in 1/10 

 
We see that lwbar is constant across each time observation for each individual. 
 

 
 

Apply least squares estimation to the data in deviation from mean form. 
 

reg lwage_dev exper_dev exper2_dev tenure_dev tenure2_dev union_dev,  

 noconstant 

 

      
 10.    2     88   2.200974   1.769393    .4315808  
  9.    2     87   1.919034   1.769393    .1496408  
  8.    2     85    1.93017   1.769393    .1607768  
  7.    2     83   1.515855   1.769393   -.2535382  
  6.    2     82   1.280933   1.769393   -.4884602  
      
  5.    1     88   1.856449    1.83281    .0236386  
  4.    1     87    1.84653    1.83281    .0137196  
  3.    1     85   1.789367    1.83281   -.0434434  
  2.    1     83   1.863417    1.83281    .0306066  
  1.    1     82   1.808289    1.83281   -.0245214  
      
       id   year      lwage   lwagebar   lwage_dev  
      

. list id year lwage lwagebar lwage_dev in 1/10



Panel Data Models   453 

 
 

The standard errors from this least squares regression are not correct. This is because the estimate 
of the error variance used by the least squares software is � �2

*ˆ 5e SSE NT� � � , which neglects 
the fact that we have used N individual means to center the data. The centering process uses up a 
degree of freedom for each individual. When what is required is � �2ˆ 5e SSE NT N� � � � . It is 
better to use the automatic software for fixed effects, so this calculation will be done correctly. 

15.3.2 The fixed effects estimator using xtreg 

Fixed effects estimation is accomplished using the xtreg command with the option fe. Stata 
help, help xtreg, shows the syntax for this estimation. 

 

 
 

xtreg lwage exper exper2 tenure tenure2 union, fe 

   union_dev     .1135435   .1330485     0.85   0.398      -.15443    .3815169
 tenure2_dev     .0022961    .002371     0.97   0.338    -.0024793    .0070716
  tenure_dev      -.01235   .0301116    -0.41   0.684    -.0729979    .0482978
  exper2_dev    -.0081882   .0069714    -1.17   0.246    -.0222293    .0058529
   exper_dev     .2379985   .1655857     1.44   0.158    -.0955082    .5715052

   lwage_dev        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    3.42401868    50  .068480374           Root MSE      =  .24346
           Adj R-squared =  0.1345

    Residual    2.66718982    45  .059270885           R-squared     =  0.2210
       Model    .756828858     5  .151365772           Prob > F      =  0.0407

           F(  5,    45) =    2.55
      Source         SS       df       MS              Number of obs =      50

> ant
. reg lwage_dev exper_dev exper2_dev tenure_dev tenure2_dev union_dev, noconst
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There are some familiar, and some unfamiliar, contents. The familiar items are the coefficients 
and standard errors of the estimated coefficients. One unfamiliar item is the coefficient labeled 
_cons. Stata reports the average of the 10 indicator variable coefficients. We explore this below. 
The F-test statistic for the null hypothesis that there is no significant difference between the 
individual intercepts is located at the bottom of the output.  

15.3.3 Fixed effects using the complete panel 

Now we use the complete panel data set to estimate the wage equation. Open nls_panel.dta and 
use xtset.  
 

use nls_panel, clear 

xtset id year 

 
Create a variable list that we will use repeatedly and then apply the fixed effects estimator. 

 
global x1list exper exper2 tenure tenure2 south union 

xtreg lwage $x1list, fe 

F test that all u_i=0:     F(9, 35) =     4.13               Prob > F = 0.0011

         rho    .56742384   (fraction of variance due to u_i)
     sigma_e     .2760533
     sigma_u     .3161662

       _cons     .4346871    1.14518     0.38   0.707    -1.890152    2.759526
       union     .1135435   .1508628     0.75   0.457    -.1927244    .4198113
     tenure2     .0022961   .0026885     0.85   0.399    -.0031617     .007754
      tenure      -.01235   .0341433    -0.36   0.720    -.0816647    .0569646
      exper2    -.0081882   .0079048    -1.04   0.307    -.0242358    .0078595
       exper     .2379985   .1877565     1.27   0.213    -.1431675    .6191646

       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

corr(u_i, Xb)  = -0.3986                        Prob > F           =    0.1050
                                                F(5,35)            =      1.99

       overall = 0.0742                                        max =         5
       between = 0.0226                                        avg =       5.0
R-sq:  within  = 0.2210                         Obs per group: min =         5

Group variable: id                              Number of groups   =        10
Fixed-effects (within) regression               Number of obs      =        50

. xtreg lwage exper exper2 tenure tenure2 union, fe



Panel Data Models   455 

 
 

The overall F-test for 715 individual differences, labeled by Stata F test that all u_i=0:, 
shows that there are significant differences between at least some individuals. 

If heteroskedasticity is anticipated, or if we anticipate unobserved heterogeneity to persist 
through time for individuals, then we can make adjustment using cluster corrected standard 
errors.  

 
xtreg lwage $x1list, fe vce(cluster id) 

 
 

These commands can be obtained using the pull-down menus. Follow the path 
 

Statistics > Longitudinal/panel data > Linear models > Linear regression (FE, RE, PA, BE) 
 

Alternatively enter db xtreg. In the dialog box choose the dependent and independent variables, 
and choose the Fixed-effects button. Click OK. 

 

F test that all u_i=0:     F(715, 2858) =    19.66           Prob > F = 0.0000

         rho    .80959194   (fraction of variance due to u_i)
     sigma_e    .19511039
     sigma_u    .40231926

       _cons     1.450034     .04014    36.12   0.000     1.371328     1.52874
       union     .0636972   .0142538     4.47   0.000     .0357485     .091646
       south    -.0163224    .036149    -0.45   0.652    -.0872031    .0545584
     tenure2    -.0008962   .0002059    -4.35   0.000    -.0012999   -.0004926
      tenure     .0139089   .0032778     4.24   0.000     .0074818    .0203361
      exper2    -.0004091   .0002733    -1.50   0.135     -.000945    .0001269
       exper     .0410832     .00662     6.21   0.000     .0281027    .0540637

       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

corr(u_i, Xb)  = 0.0952                         Prob > F           =    0.0000
                                                F(6,2858)          =     79.46

       overall = 0.1170                                        max =         5
       between = 0.1162                                        avg =       5.0
R-sq:  within  = 0.1430                         Obs per group: min =         5

Group variable: id                              Number of groups   =       716
Fixed-effects (within) regression               Number of obs      =      3580

. xtreg lwage $x1list, fe

       _cons     1.450034    .055029    26.35   0.000     1.341996    1.558072
       union     .0636972   .0168605     3.78   0.000     .0305952    .0967993
       south    -.0163224     .05848    -0.28   0.780    -.1311355    .0984907
     tenure2    -.0008962   .0002495    -3.59   0.000    -.0013861   -.0004064
      tenure     .0139089   .0042154     3.30   0.001     .0056329     .022185
      exper2    -.0004091   .0003299    -1.24   0.215    -.0010568    .0002387
       exper     .0410832   .0082404     4.99   0.000     .0249049    .0572615

       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                             Robust

                                   (Std. Err. adjusted for 716 clusters in id)
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To obtain the fixed effects, from the Statistics > Postestimation drop down menu select 
Predictions, residuals, etc.  
 

 
 
In the dialog box name the variable and select the option shown. Click OK. 
 

 
 
Alternatively, to compute the indicator variable coefficients for each individual, follow the 
estimation of the fixed effects model with the post-estimation command 
 

predict muhat, u 

 
Here muhat is a variable name, and the option u with predict in this case estimates the fixed 
effects. To obtain the indicator variable coefficients add these values to the average value given 
by _cons. Compute the sum of the muhat values 
 

tabstat muhat if year==82, stat(sum) 

 

 
       muhat   -1.12e-07

    variable         sum
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It should be noted that including the variables for race (black) and years of education (educ) 
leads to exact collinearity of a particular form. The variable black is an indicator variable equal 
to 1 for a black person and 0 for white. In this data set only two races are included for simplicity. 
In larger data sets there may be indicators for other races. In this case, for each person the 
indicator black does not change over time. It is said to be time invariant. Similarly, in this 
sample, the variable educ does not change across time for any of the women in the sample. This 
is because they had all completed their education before the data collection began. Thus when we 
create deviations about the means, as in Section 15.3.1 above, we obtain a string of 5 zeroes for 
both of these variables. The variables black and educ in deviation about the mean form are all 
zeroes, and thus offer no variation to use in the estimation process. The fixed effects estimation 
including these variables is  
 

global x2list educ black $x1list 

xtreg lwage $x2list, fe 

 
 
In the results note that the variables black and educ have been dropped by Stata. Look at the few 
listed observations in Section 15.1 of this chapter, and you can see that this is true, for these few 
observations. A better check is provided using the Stata command xtsum, which summarizes 
cross section and time series data. 
 

xtsum educ 

 

 
 
Note that the within standard deviation is zero. That means that within the observations on each 
individual there is no variation, or that educ is constant for each individual. The fixed effects 
transformation eliminates such variables. While Stata drops variables that are time invariant from 
the fixed effects estimation, it is better to specify the model correctly. See the estimation results at 
the beginning of Section 15.3.3. 

         rho    .80959194   (fraction of variance due to u_i)
     sigma_e    .19511039
     sigma_u    .40231926

       _cons     1.450034     .04014    36.12   0.000     1.371328     1.52874
       union     .0636972   .0142538     4.47   0.000     .0357485     .091646
       south    -.0163224    .036149    -0.45   0.652    -.0872031    .0545584
     tenure2    -.0008962   .0002059    -4.35   0.000    -.0012999   -.0004926
      tenure     .0139089   .0032778     4.24   0.000     .0074818    .0203361
      exper2    -.0004091   .0002733    -1.50   0.135     -.000945    .0001269
       exper     .0410832     .00662     6.21   0.000     .0281027    .0540637
       black    (omitted)
        educ    (omitted)

       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

         within                       0   13.02235   13.02235       T =       5
         between               2.445387          4         18       n =     716
educ     overall    13.02235    2.44402          4         18       N =    3580

Variable                Mean   Std. Dev.       Min        Max      Observations
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15.4 RANDOM EFFECTS ESTIMATION 

The random effects model treats the heterogeneity across individuals as a random component. 
The model is  
 

� �1 2 2 3 3
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where the combined error is 
 

it i itv u e�   
 
The key properties of this new error term is that it is homoskedastic  
 

� � � �2 2 2var varv it i it u ev u e� � �  � �  �  
 
but serially correlated in a special way. For individual i 
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The correlation of these observations is 
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This intra-individual correlation is very important. For two individuals i and j 
 

� �cov , 0it jsv v �  

 
The model’s parameters are estimated by (feasible) generalized least squares. This estimation is 
implemented by xtreg in the same way fixed effects estimation is carried out. Random effects 
estimation is accomplished by simply changing the xtreg option to re. We continue with the data 
file nls_panel.dta used in the previous section. 
 

xtreg lwage $x2list, re theta 

 
The option theta is present to have Stata print the transformation parameter used in the GLS 
estimation. We will say more about this below. 
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In the estimation output, note several items. First the coefficients of educ and black can be 
estimated by random effects. Second, the estimated value of � = 0.74. The error components 
estimates are  
 

ˆ .3290

ˆ .1951

u

e

� �

� �
 

 
The random effects estimator’s standard errors can be made robust to cluster effects. 

 
xtreg lwage $x2list, re vce(cluster id) 

We might do such a thing if we believe that there is heteroskedasticity across individual, or there 
is serial correlation in the overall error term over time. 

15.4.1 The GLS transformation 

The process of implementing generalized least squares in the random effects model is discussed 
in Principles of Econometrics, 4th edition, Chapter 15, Appendix B. The random effects model is 
  

� �1 2 2 3 3it it it i ity x x u e� � � �    

where iu  is the individual specific error and ite  is the usual regression error. We will discuss the 
case for a balanced panel, with T time series observations for each of N individuals. To 

         rho    .73986872   (fraction of variance due to u_i)
     sigma_e    .19511039
     sigma_u    .32904965

       _cons     .5339294   .0798828     6.68   0.000      .377362    .6904968
       union     .0802353   .0132132     6.07   0.000     .0543379    .1061327
       south    -.0818117   .0224109    -3.65   0.000    -.1257363   -.0378871
       black    -.1167366   .0302087    -3.86   0.000    -.1759446   -.0575286
     tenure2    -.0007553   .0001947    -3.88   0.000     -.001137   -.0003737
      tenure     .0141541   .0031666     4.47   0.000     .0079478    .0203605
      exper2     -.000561   .0002626    -2.14   0.033    -.0010757   -.0000463
       exper      .043617   .0063576     6.86   0.000     .0311564    .0560776
        educ     .0732536   .0053308    13.74   0.000     .0628055    .0837017

       lwage        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

theta              = .74368295
corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000
Random effects u_i ~ Gaussian                   Wald chi2(8)       =    860.08

       overall = 0.3191                                        max =         5
       between = 0.3543                                        avg =       5.0
R-sq:  within  = 0.1411                         Obs per group: min =         5

Group variable: id                              Number of groups   =       716
Random-effects GLS regression                   Number of obs      =      3580
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implement generalized least squares estimation we need to consistently estimate 2
u� , the variance 

of the individual specific error component, and 2
e� , the variance of the regression error.  

We obtain the generalized least squares estimator in the random effects model by applying 
least squares to a transformed model. The transformed model is  

 

1 1 2 2 3 3it it it it ity x x x vC C C CC � � � �   

where the transformed variables are 
 

1 2 2 2 3 3 3, 1 , ,it it i it it it i it it iy y y x x x x x x xC CC C� �% � �% � �% � �%  
 

The variables iy , 2 ix  and 3ix  are the individual means. The transformed error term is 

it it iv v vC � �% . The key transformation parameter %  (which is called theta by Stata) is defined as 
 

2 2
1 e

u eT
�

% � �
�  �  

 
The regression error variance 2

e�  comes from the fixed effects estimator. The panel data 
regression in “deviation about the individual mean” form is 

 
� � � � � �2 2 2 3 3 3it i it i it i it iy y x x x x e e� � � � � �  �  

A consistent estimator of 2
e�  is obtained by dividing DVSSE  by the appropriate degrees of 

freedom, which is slopesNT N K� � , where slopesK  is the number of parameters that are present in 
the transformed  

2ˆ DV
e

slopes

SSE
NT N K

� �
� �

 

The estimator of 2
u�  requires a bit more work. We begin with the time averaged observations  

 

1 2 2 3 3i i i i iy x x u e�� � �    1, 2, ,i N� �  

The least squares estimator of this model is called the between estimator. The error term in this 
model is i iu e ; it is uncorrelated across individuals, and has homoskedastic variance 

 

� �
2

2var e
i i uu e

T
�

 � �   

We can estimate this variance by estimating the between regression and dividing the sum of 
squared errors, BESSE , by the degrees of freedom BEN K� , where BEK  is the total number of 
parameters in the between regression, including the intercept parameter. Then 
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�2

2 e BE
u

BE

SSE
T N K
�

�  �
�  

 
With this estimate in hand we can estimate 2

u�  as 
 

�

� �
2 2

2 2 ˆˆ e e DVBE
u u

BE slopes

SSESSE
T T N K T NT N K
� �

� � �  � � �
� � �

 

While Stata shows us the theta parameter used in the GLS estimation, theta = .74368295, it is 
good to be able to replicate this value for ourselves. 

First, obtain the fixed effects estimate and save the estimated error variance. 
 

quietly xtreg lwage $x2list, fe 

scalar sig2e =( e(sigma_e))^2 

The between estimator is another option within xtreg. Use ereturn list to see what is saved. 
 

xtreg lwage $x2list, be 

ereturn list 

Obtain the estimated error variance and carry out the calculation of the transformation parameter. 
 

scalar sig2b = e(rss)/e(df_r) 

scalar sig2u = sig2b - sig2e/e(Tbar) 

scalar sigu = sqrt(sig2u) 

scalar theta = 1-sqrt(sig2e/(e(Tbar)*sig2u+sig2e)) 

di "Components of variance" 

di "sig2e   = " sig2e " variance of overall error e(it)" 

di "sige    = " sqrt(sig2e) " standard deviation of e(it)" 

di "sig2b   = " sig2b " variance from between regression " 

di "sig2u   = " sig2u " derived variance mu(i) " 

di "sigu    = " sigu  " standard deviation mu(i) " 

di "theta   = " theta " transformation parameter " 

The displayed information shows that we have obtained the same value as Stata. 
 

Components of variance 

sig2e   = .03806806 variance of overall error e(it) 

sige    = .19511039 standard deviation of e(it) 

sig2b   = .11588729 variance from between regression  

sig2u   = .10827367 derived variance mu(i)  

sigu    = .32904965 standard deviation mu(i)  

theta   = .74368295 transformation parameter 

 



462   Chapter 15 

The transformation of the data is accomplished in the same way as the fixed effects 
transformation, subtracting a scalar times the time averaged variables, including the intercept. 
First compute the time averages and then the partial differences. 

 
gen one = 1 

sort id, stable 

 
global v2list lwage one $x2list 

foreach var of varlist $v2list { 

 by i: egen `var'bar = mean(`var') 

 gen `var'd = `var' - theta*`var'bar 

 } 

 
Applying least squares to the transformed data we have 

 
reg lwaged educd blackd experd exper2d tenured tenure2d southd uniond  

 oned, noconstant 

 

 
Compare these estimates to the estimates obtained using xtreg with the option re. They are the 
same, as are the standard errors. 

15.4.2 The Breusch-Pagan test 

To test for the presence of random effects we use the Breusch-Pagan test statistic 
 

� �

22

1 12

2

1 1

ˆ
1

2 1 ˆ

N T

it
i t

N T

it
i t

e
NTLM
T e

� �

� �

4 D� �
E E� �E E� �� �5 F

� E E
E E6 G

� �

��
 

 

        oned     .5339295   .0798828     6.68   0.000      .377309    .6905499
      uniond     .0802353   .0132132     6.07   0.000     .0543291    .1061415
      southd    -.0818117   .0224109    -3.65   0.000    -.1257512   -.0378722
    tenure2d    -.0007553   .0001947    -3.88   0.000    -.0011371   -.0003736
     tenured     .0141541   .0031666     4.47   0.000     .0079457    .0203626
     exper2d     -.000561   .0002626    -2.14   0.033    -.0010758   -.0000461
      experd      .043617   .0063576     6.86   0.000     .0311521    .0560818
      blackd    -.1167366   .0302087    -3.86   0.000    -.1759646   -.0575085
       educd     .0732536   .0053308    13.74   0.000     .0628019    .0837052

      lwaged        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    1034.81703  3580  .289055035           Root MSE      =   .1955
           Adj R-squared =  0.8678

    Residual    136.490642  3571  .038221966           R-squared     =  0.8681
       Model    898.326385     9  99.8140427           Prob > F      =  0.0000

           F(  9,  3571) = 2611.43
      Source         SS       df       MS              Number of obs =    3580
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If the null hypothesis 2
0 : 0uH � �  is true, i.e., there are no random effects, then (0,1)LM N�  in 

large samples. Thus, we reject 0H  at significance level %  and accept the alternative 2
1 : 0uH � �  

if (1 )LM z �%� , where (1 )z �%  is the 100(1��) percentile of the standard normal [ (0,1)]N  
distribution. This critical value is 1.645 if 0.05% �  and 2.326 if 0.01%� . Rejecting the null 
hypothesis leads us to conclude that random effects are present. 

The original LM test due to Breusch and Pagan used 2LM  with the distribution under 0H  as 
2
(1)7 . Subsequent authors pointed out that the alternative hypothesis for using 2LM  is 2

1 : 0uH � " , 
and that we can do better by using LM as a one-sided (0,1)N  test with alternative hypothesis 

2
1 : 0uH � � . Some software, for example Stata, reports 2LM . The danger from using 2LM  is that 

0LM !  is possible and should not be taken as evidence that 2 0u� � . The adjustment for a chi-

square test at significance %  is to use the 100(1 2 )� %  percentile of the 27 -distribution. This 
critical value for an 0.05% �  test is 2.706 which is 21.645 . It should only be used for 0LM � . 

To implement this test in Stata use the post estimation command xttest0. Obtain the random 
effects estimates again quietly, since xttest0 operates on the previous estimation. 
 

quietly xtreg lwage $x2list, re 

xttest0 

 
 

15.4.3 The Hausman test 

To check for any correlation between the error component ui and the regressors in a random 
effects model we can use a Hausman test. The test compares the coefficient estimates from the 
random effects model to those from the fixed effects model. The idea underlying Hausman’s test 
is that both the random effects and fixed effects estimators are consistent if there is no correlation 
between ui and the explanatory variables xkit. If both estimators are consistent then they should 
converge to the true parameter values k�  in large samples. That is, in large samples the random 
effects and fixed effects estimates should be similar. On the other hand, if ui is correlated with 
any xkit the random effects estimator is inconsistent, while the fixed effects estimator remains 
consistent. Thus in large samples the fixed effects estimator converges to the true parameter 
values, but the random effects estimator converges to some other value that is not the value of the 

                          Prob > chi2 =     0.0000
                              chi2(1) =  3859.28
        Test:   Var(u) = 0

                       u     .1082737       .3290497
                       e     .0380681       .1951104
                   lwage     .2158595       .4646068
                 
                                 Var     sd = sqrt(Var)
        Estimated results:

        lwage[id,t] = Xb + u[id] + e[id,t]

Breusch and Pagan Lagrangian multiplier test for random effects
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true parameters. In this case, we expect to see differences between the fixed and random effects 
estimates. 

To implement the test obtain the fixed effects and random effects estimates and save them. 
 

quietly xtreg lwage $x2list, fe 

estimates store fe 

quietly xtreg lwage $x2list, re  

estimates store re 

 
The Hausman contrast test is carried out using the post estimation command 
 

hausman fe re 

 
When using the hausman command the consistent fixed effects estimator (fe) is listed first, and 
the efficient random effects estimator (re) is listed second. 
 

 
 
The output of the test shows the Coefficients common to both models and their estimated 
Difference. The column labeled S.E. is the standard error of the difference, so calculation of the 
t-statistic for the coefficient on south is 
 

� � � � � � � �
, ,

1 2 1 22 2 2 2
, ,

.0163 ( .0818) .0654893  2.3137
.0283637.0361 .0224se se

FE k RE k

FE k RE k

b b
t

b b

� � � �
� � � �
� � � ��� � �� �� �

 

 
This test statistic is asymptotically normal when the null hypothesis is true, and the critical value 
1.96 is exceeded by the test statistic value, thus we reject the equality of the two coefficients. 

At the bottom of the panel is the chi-square statistic comparing all 6 coefficients, which has a 
small p-value again leading us to reject the hypothesis that the coefficient estimates are equal to 
one another. This difference suggests that the random effects estimator is inconsistent. It may be 
the result of an endogenous variable, such as education, or some other misspecification. 

                Prob>chi2 =      0.0021
                          =       20.73
                  chi2(6) = (b-B)'[(V_b-V_B)^(-1)](b-B)

    Test:  Ho:  difference in coefficients not systematic

            B = inconsistent under Ha, efficient under Ho; obtained from xtreg
                           b = consistent under Ho and Ha; obtained from xtreg

       union      .0636972     .0802353       -.0165381        .0053462
       south     -.0163224    -.0818117        .0654893        .0283637
     tenure2     -.0008962    -.0007553       -.0001409        .0000668
      tenure      .0139089     .0141541       -.0002452        .0008468
      exper2     -.0004091     -.000561        .0001519        .0000758
       exper      .0410832      .043617       -.0025338        .0018455

                     fe           re         Difference          S.E.
                    (b)          (B)            (b-B)     sqrt(diag(V_b-V_B))
                   Coefficients  
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An alternative testing approach due to Yair Mundlak and described, for example, in 
Wooldridge (2010, p. 332)1. The idea is that if there is a systematic relation between ui and xkit it 
may show up as a relationship between ui and the time averages of time-varying explanatory 
variables. To implement the test we augment the original model with the time average, estimate 
the model by random effects, and test the significance of the augmenting variables. If there is no 
relation between ui and xkit we should find no significance. 

 
global xlist3 experbar exper2bar tenurebar tenure2bar southbar /// 

       unionbar educ exper exper2 tenure tenure2 black south union 

xtreg lwage $xlist3, re  

test experbar exper2bar tenurebar tenure2bar southbar unionbar 

 

 
 

The advantages of this test include avoidance of sometimes negative Hausman statistic, and the 
ability to make this test robust. 

 
xtreg lwage $xlist3, re vce(cluster id) 

test experbar exper2bar tenurebar tenure2bar southbar unionbar 

 
 

Another possible option, if we think the year effect might be significant, is to add a year indicator 
variable prior to the test. 

 
tabulate year, generate (d) 

xtreg lwage $xlist3 d2-d5, re vce(cluster id) 

test expbar exp2bar tenbar ten2bar southbar unionbar 

 
1 Econometric Analysis of Cross Section and Panel Data, MIT Press. 

         Prob > chi2 =    0.0023
           chi2(  6) =   20.44

 ( 6)  unionbar = 0
 ( 5)  southbar = 0
 ( 4)  ten2bar = 0
 ( 3)  tenbar = 0
 ( 2)  exp2bar = 0
 ( 1)  expbar = 0

         Prob > chi2 =    0.0084
           chi2(  6) =   17.26

 ( 6)  unionbar = 0
 ( 5)  southbar = 0
 ( 4)  tenure2bar = 0
 ( 3)  tenurebar = 0
 ( 2)  exper2bar = 0
 ( 1)  experbar = 0

. test experbar exper2bar tenurebar tenure2bar southbar unionbar
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Using all these test variations we reject the null hypothesis that the random effect is uncorrelated 
with the regressors, casting doubt on random effects estimation. 

15.4.4 The Hausman-Taylor model 

The outcome from our comparison of the fixed and random effects estimates of the wage 
equation poses a dilemma. Correlation between the explanatory variables and the random effects 
means the random effects estimator will be inconsistent. We can overcome the inconsistency 
problem by using the fixed effects estimator, but doing so means we can no longer estimate the 
effects of the time invariant variables EDUC and BLACK. The wage return to an extra year of 
education, and whether or not there is wage discrimination on the basis of race might be two 
important questions that we would like to answer. 

The Hausman-Taylor estimator is an instrumental variables estimator applied to the random 
effects model, to overcome the problem of inconsistency caused by correlation between the 
random effects and some of the explanatory variables. This model is discussed in Wooldridge 
(2010, Chapter 11.3). To explain how it works consider the regression model 

 
1 2 , 3 , 3 , 4 ,it it exog it endog i exog i endog i ity x x w w u e� � � � � �    

 
We have divided the explanatory variables into 4 categories: 
 
 ,it exogx :   exogenous variables that vary over time and individuals 

 ,it endogx :  endogenous variables that vary over time and individuals 

 ,i exogw :   time-invariant exogenous variables 

 ,i endogw :  time-invariant endogenous variables 
 
The model equation is written as if there is one variable of each type, but in practice there could 
be more than one. For the Hausman-Taylor estimator to work the number of exogenous time-
varying variables � �,it exogx  must be at least as great as the number of endogenous time-invariant 

variables � �,i endogw . 
To implement the estimation in Stata we use xthtaylor. The wage equation is specified as 

usual, but with options endog() to identify which variables might be endogenous, and the option 
constant() identifying variables that are time-invariant. Enter help xthtaylor 

 

         Prob > chi2 =    0.0123
           chi2(  6) =   16.29

 ( 6)  unionbar = 0
 ( 5)  southbar = 0
 ( 4)  tenure2bar = 0
 ( 3)  tenurebar = 0
 ( 2)  exper2bar = 0
 ( 1)  experbar = 0

. test experbar exper2bar tenurebar tenure2bar southbar unionbar
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In the example used in Principles of Econometrics, 4th Edition, page 560-562 the variables south 
and educ are treated as potentially endogenous. The variable south is time varying, but educ is 
time invariant. 

 
xthtaylor lwage $x2list, endog(south educ) constant(educ black) 

The output is arranged into the 4 parts identified above. 
 

 

15.5 SETS OF REGRESSION EQUATIONS 

In this section we will examine investment data from two firms, General Electric (GE) and 
Westinghouse (WE). These are two firms among 10 in Grunfeld’s classic data. To begin, issue 
the usual initial commands. Open the data file grunfeld2.dta and examine its contents. 
 

Note:  TV refers to time varying; TI refers to time invariant.

         rho    .84195987   (fraction of variance due to u_i)
     sigma_e     .1949059
     sigma_u    .44986996

       _cons    -.7507694   .5862357    -1.28   0.200     -1.89977    .3982314
              
        educ     .1705081   .0444628     3.83   0.000     .0833626    .2576535
TIendogenous  
       black    -.0359136   .0600681    -0.60   0.550    -.1536449    .0818177
TIexogenous   
       south    -.0317122   .0348474    -0.91   0.363    -.1000118    .0365874
TVendogenous  
       union     .0719692   .0134545     5.35   0.000      .045599    .0983395
     tenure2    -.0008526   .0001974    -4.32   0.000    -.0012395   -.0004657
      tenure     .0143257   .0031597     4.53   0.000     .0081328    .0205186
      exper2    -.0003913   .0002676    -1.46   0.144    -.0009159    .0001332
       exper     .0399079   .0064745     6.16   0.000      .027218    .0525977
TVexogenous   

       lwage        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                Prob > chi2        =    0.0000
Random effects u_i ~ i.i.d.                     Wald chi2(8)       =    609.26
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use grunfeld2, clear 

describe 

summarize 

 
For each of the 10 firms in Grunfeld’s data there are 20 time series observations. The data file 
grunfeld2.dta omits all the data on firms other than GE or WE.  

The equations we consider first are two investment models. If the models have the same 
parameters we can estimate a pooled regression model using all 40 observations 
 

, 1 2 , 3 , ,

, 1 2 , 3 , ,

1, ,20

1, ,20

GE t GE t GE t GE t

WE t WE t WE t WE t

INV V K e t

INV V K e t

� � � �  �

� � � �  �

�

�
 

 
To obtain pooled regression estimates with the abbreviated form of regress use 
 

reg inv v k 

 
If the firm parameters are not identical the models will be 
 

, 1, 2, , 3, , ,

, 1, 2, , 3, , ,

1, ,20

1, ,20

GE t GE GE GE t GE GE t GE t

WE t WE WE WE t WE WE t WE t

INV V K e t

INV V K e t

� � � �  �

� � � �  �

�

�
 

 
To test whether we should pool the data or not, estimate a dummy variable model 
 

1, 1 2, 2 3, 3it GE i GE it i it GE it i it itINV D V D V K D K e�� 2 � 2 � � 2 �   
 
where D = 1 for Westinghouse observations. Create this dummy variable and its interactions 

 
tabulate firm, generate(d) 

gen vd1 = v*d1 

gen kd1 = k*d1 

gen vd2 = v*d2 

gen kd2 = k*d2 

 
Use regress to estimate the model with dummy variables, using GE as the base when the indicator 
variables are zero. 
 

reg inv v k d2 vd2 kd2 
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Test the significance of the coefficients of the indicator and slope-indicator variables. 
 

test d2 vd2 kd2 

 

 
 

If this is the form of the regression you wish to report, then we can achieve the same without 
creating the indicator variables using factor variable notation. The factor variable ib1.firm is 1 
for firm 2 but zero otherwise, as we have declared the base group to be the first, GE. 
 

reg inv v k ib1.firm ib1.firm#(c.v c.k) 

 

 

       _cons    -9.956307   23.62636    -0.42   0.676    -57.97086    38.05824
         kd2    -.0592874   .1169464    -0.51   0.615    -.2969511    .1783764
         vd2     .0263429   .0343527     0.77   0.448    -.0434701     .096156
          d2     9.446918   28.80535     0.33   0.745     -49.0926    67.98643
           k     .1516939   .0193564     7.84   0.000     .1123568    .1910309
           v     .0265512    .011722     2.27   0.030     .0027291    .0503733

         inv        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    87069.2229    39  2232.54418           Root MSE      =  20.997
           Adj R-squared =  0.8025

    Residual    14989.8218    34  440.877111           R-squared     =  0.8278
       Model    72079.4011     5  14415.8802           Prob > F      =  0.0000

           F(  5,    34) =   32.70
      Source         SS       df       MS              Number of obs =      40

. reg inv v k d2 vd2 kd2

            Prob > F =    0.3284
       F(  3,    34) =    1.19

 ( 3)  kd2 = 0
 ( 2)  vd2 = 0
 ( 1)  d2 = 0

. test d2 vd2 kd2

       _cons    -9.956306   23.62636    -0.42   0.676    -57.97086    38.05824
              
          2     -.0592874   .1169464    -0.51   0.615    -.2969511    .1783764
    firm#c.k  
              
          2      .0263429   .0343527     0.77   0.448    -.0434701     .096156
    firm#c.v  
              
      2.firm     9.446916   28.80535     0.33   0.745     -49.0926    67.98643
           k     .1516939   .0193564     7.84   0.000     .1123568    .1910309
           v     .0265512    .011722     2.27   0.030     .0027291    .0503733

         inv        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    87069.2229    39  2232.54418           Root MSE      =  20.997
           Adj R-squared =  0.8025

    Residual    14989.8217    34  440.877109           R-squared     =  0.8278
       Model    72079.4012     5  14415.8802           Prob > F      =  0.0000

           F(  5,    34) =   32.70
      Source         SS       df       MS              Number of obs =      40

. reg inv v k ib1.firm ib1.firm#(c.v c.k)
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The corresponding test statement is 
 

test 2.firm 2.firm#c.v 2.firm#c.k 

 

 
 
Instead of using one firm as the base we could include separate intercepts and slopes for each 
firm. 

 
reg inv d1 d2 vd1 vd2 kd1 kd2, noconstant 

 

 
 

To test for significant difference in the coefficients of GE and WE test the joint null hypothesis 
that the dummy variable coefficients are zero, 
 

test (d1=d2) (vd1=vd2) (kd1=kd2) 

 

 
 
If this second approach is what you wish, using factor variables makes creation of the indicator 
variables and their interactions unnecessary. 

 
reg inv ibn.firm ibn.firm#(c.v c.k), noconstant 

test (1.firm=2.firm) (1.firm#c.v=2.firm#c.v) (1.firm#c.k=2.firm#c.k) 

 

            Prob > F =    0.3284
       F(  3,    34) =    1.19

 ( 3)  2.firm#c.k = 0
 ( 2)  2.firm#c.v = 0
 ( 1)  2.firm = 0

. test 2.firm 2.firm#c.v 2.firm#c.k

         kd2     .0924065   .1153334     0.80   0.429    -.1419792    .3267922
         kd1     .1516939   .0193564     7.84   0.000     .1123568    .1910309
         vd2     .0528941   .0322909     1.64   0.111    -.0127288    .1185171
         vd1     .0265512    .011722     2.27   0.030     .0027291    .0503733
          d2    -.5093887   16.47857    -0.03   0.976    -33.99786    32.97909
          d1    -9.956306   23.62636    -0.42   0.676    -57.97086    38.05824

         inv        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    297845.902    40  7446.14756           Root MSE      =  20.997
           Adj R-squared =  0.9408

    Residual    14989.8218    34  440.877113           R-squared     =  0.9497
       Model     282856.08     6  47142.6801           Prob > F      =  0.0000

           F(  6,    34) =  106.93
      Source         SS       df       MS              Number of obs =      40

            Prob > F =    0.3284
       F(  3,    34) =    1.19

 ( 3)  kd1 - kd2 = 0
 ( 2)  vd1 - vd2 = 0
 ( 1)  d1 - d2 = 0

. test (d1=d2) (vd1=vd2) (kd1=kd2)
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There is no strong evidence that the coefficients are different in these two regressions. However, 
we should also test for differences in variances. Use the Goldfeld-Quandt test discussed in 
Chapter 8. We estimate two separate regressions using the regress command with the if 
qualifier. Also, for later use we will save the SSE. Recall that ereturn list will display the items 
saved after a regression 
 

reg inv v k if firm==1 

scalar sse_ge = e(rss) 

reg inv v k if firm==2 

scalar sse_we = e(rss) 

* Goldfeld-Quandt test 

scalar GQ = sse_ge/sse_we 

scalar fc95 = invFtail(17,17,.05) 

di "Goldfeld-Quandt Test statistic = " GQ 

di "F(17,17,.95) = " fc95 

 

 
 

            Prob > F =    0.3284
       F(  3,    34) =    1.19

 ( 3)  1bn.firm#c.k - 2.firm#c.k = 0
 ( 2)  1bn.firm#c.v - 2.firm#c.v = 0
 ( 1)  1bn.firm - 2.firm = 0

. test (1.firm=2.firm) (1.firm#c.v=2.firm#c.v) (1.firm#c.k=2.firm#c.k)

          2      .0924065   .1153334     0.80   0.429    -.1419792    .3267922
          1      .1516939   .0193564     7.84   0.000     .1123568    .1910309
    firm#c.k  
              
          2      .0528941   .0322909     1.64   0.111    -.0127288    .1185171
          1      .0265512    .011722     2.27   0.030     .0027291    .0503733
    firm#c.v  
              
          2     -.5093902   16.47857    -0.03   0.976    -33.99786    32.97908
          1     -9.956306   23.62636    -0.42   0.676    -57.97086    38.05824
        firm  

         inv        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total    297845.902    40  7446.14756           Root MSE      =  20.997
           Adj R-squared =  0.9408

    Residual    14989.8217    34  440.877109           R-squared     =  0.9497
       Model    282856.081     6  47142.6801           Prob > F      =  0.0000

           F(  6,    34) =  106.93
      Source         SS       df       MS              Number of obs =      40

. reg inv ibn.firm ibn.firm#(c.v c.k), noconstant

F(17,17,.95) = 2.2718929
. di "F(17,17,.95) = " fc95

Goldfeld-Quandt Test statistic = 7.4533808
. di "Goldfeld-Quandt Test statistic = " GQ
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We have strong evidence that the error variances of the two equations are different. Recall that if 
you do not remember the syntax for a scalar, type db scalar and use the dialog box. 

15.5.1 Seemingly unrelated regressions 

Seemingly unrelated regressions (SUR) permits equation coefficients and variances to differ, and 
also allows for contemporaneous correlation between the errors, 
 

� �, , ,cov ,GE t WE t GE WEe e � �  
 
The SUR estimator is a generalized least squares estimator, and because the data are stacked, one 
firm atop the other, is implemented in Stata using xtgls. Later we will see how the estimation is 
carried out with data in “wide form.” The command xtgls is very powerful with many options. 
Enter help xtgls to see the syntax and some of the options listed. 

 

 
 
The option panels(correlated) is the SUR model. The errors are heteroskedastic across 
equations and have a correlated error structure. To implement the estimation use xtset to which 
we add the option yearly to indicate annual data. 

 
xtset firm year, yearly 

 
The model is 

 
xtgls inv ibn.firm ibn.firm#(c.v c.k), noconstant panels(correlated) nmk 

 
We add the option nmk to obtain the degrees of freedom correction N K�  when computing the 
error variances and covariance. 
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The Chow-like test for equal coefficients in the two equations is 
 

test (1.firm=2.firm) (1.firm#c.v=2.firm#c.v) (1.firm#c.k=2.firm#c.k) 

 
 
In passing we note that xtgls offers many more options. You should try the following. First, if 
we think that the variances are different for the two regressions we might use the grouped or 
partitioned heteroskedasticity model from Chapter 8. If there is no contemporaneous covariance 
use 

 
* pooled model GLS with group hetero 

xtgls inv v k, panels(heteroskedastic) nmk 

 
If we choose to pool the regressions, but wish to retain the SUR assumptions of cross-equation 
heteroskedasticity and contemporaneous covariance use 

 
* pooled model GLS with sur assumptions 

xtgls inv v k, panels(correlated) nmk 

 

          2      .0639781   .0530406     1.21   0.228    -.0399796    .1679357
          1      .1390363   .0249856     5.56   0.000     .0900654    .1880072
    firm#c.k  
              
          2      .0576298   .0145463     3.96   0.000     .0291196      .08614
          1      .0383102   .0144152     2.66   0.008      .010057    .0665634
    firm#c.v  
              
          2     -1.251988   7.545217    -0.17   0.868    -16.04034    13.53637
          1     -27.71932   29.32122    -0.95   0.344    -85.18785    29.74922
        firm  

         inv        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                Prob > chi2        =    0.0000
                                                Wald chi2(6)       =    424.35
Estimated coefficients     =         6          Time periods       =        20
Estimated autocorrelations =         0          Number of groups   =         2
Estimated covariances      =         3          Number of obs      =        40

Correlation:   no autocorrelation
Panels:        heteroskedastic with cross-sectional correlation
Coefficients:  generalized least squares

Cross-sectional time-series FGLS regression

. xtgls inv ibn.firm ibn.firm#(c.v c.k), noconstant panels(correlated) nmk

         Prob > chi2 =    0.0326
           chi2(  3) =    8.77

 ( 3)  1bn.firm#c.k - 2.firm#c.k = 0
 ( 2)  1bn.firm#c.v - 2.firm#c.v = 0
 ( 1)  1bn.firm - 2.firm = 0

. test (1.firm=2.firm) (1.firm#c.v=2.firm#c.v) (1.firm#c.k=2.firm#c.k)
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SUR models can be iterated. This means that after the SUR estimates are obtained, they can be 
used to obtain new equation residuals. These residuals are used to estimate the variances of the 
two equations and covariance and a new set of SUR estimates. The process can be repeated until 
convergence. Here we illustrate the iterated process with a pooled model by adding the option 
igls. 

 
* pooled model GLS with sur assumptions iterated 

xtgls inv v k, panels(correlated) nmk igls 

 
We may consider estimation of the SUR model incorporating first order serial correlation 
between the errors for each equation. That is, we assume 

 
, , 1 ,

, , 1 ,

GE t GE GE t GE t

WE t WE WE t WE t

e e v

e e v

�

�

� : 

� : 
 

 
The option corr(ar1) implements this estimation under the assumption that GE WE: � : . 

 
* pooled model GLS with sur assumptions and common ar(1) 

xtgls inv v k, panels(correlated) corr(ar1) nmk 

 
The details of all these models are beyond the scope of this work. However see the complete 
documentation for xtgls as well as Cameron and Trivedi (2010, pp. 273-278)2. 

When equations are numerous, and the number of time observations is not, implementation of 
SUR estimation using GLS is often not recommended. Instead it has been suggested by Beck and 
Katz (1995) that we are often better off using least squares with a robust standard errors that 
account for SUR-type assumptions. These are called “panel-corrected standard errors.” To 
implement this in Stata use xtpcse. If we apply this to the pooled regression model we use 

 
xtpcse inv v k, nmk 

 

 

 
2 Microeconometrics Using Stata, Revised Edition, Stata Press. 

       _cons       17.872   4.690806     3.81   0.000     8.678191    27.06581
           k     .1435792   .0246476     5.83   0.000     .0952707    .1918876
           v     .0151926    .006932     2.19   0.028     .0016062    .0287791

         inv        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                         Panel-corrected

Estimated coefficients     =         3          Prob > chi2        =    0.0000
Estimated autocorrelations =         0          Wald chi2(2)       =    176.16
Estimated covariances      =         3          R-squared          =    0.8098
                                                               max =        20
Autocorrelation:  no autocorrelation                           avg =        20
Panels:           correlated (balanced)         Obs per group: min =        20
Time variable:    year                          Number of groups   =         2
Group variable:   firm                          Number of obs      =        40

Linear regression, correlated panels corrected standard errors (PCSEs)
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15.5.2 SUR with wide data 

To estimate an SUR model in Stata (and most software) the data should be in “wide form” rather 
than “stacked form” such as we have with grunfeld2.dta. It is possible to make this conversion in 
Stata quite easily. 
 

use grunfeld2, clear 

reshape wide inv v k, i(year) j(firm) 

 
The reshape command shows us 

 

 
 

Take a look at the data using 
 

describe 

summarize 

list in 1/5 

 
The variable descriptions are 
 

 
 
Instead of the variables inv, v and k in grunfeld2.dta, we now have variables for each firm in a 
data set containing 20 observations. The summary statistics are 

 

                                      k   ->   k1 k2
                                      v   ->   v1 v2
                                    inv   ->   inv1 inv2
xij variables:
j variable (2 values)              firm   ->   (dropped)
Number of variables                   5   ->       7
Number of obs.                       40   ->      20

Data                               long   ->   wide

(note: j = 1 2)
. reshape wide inv v k, i(year) j(firm)

Sorted by:  year

k2              double %10.0g                 2 k
v2              double %10.0g                 2 v
inv2            double %10.0g                 2 inv
k1              double %10.0g                 1 k
v1              double %10.0g                 1 v
inv1            double %10.0g                 1 inv
year            int    %8.0g                  year

variable name   type   format      label      variable label
              storage  display     value

 size:         1,080 (99.9% of memory free)
 vars:             7                          
  obs:            20                          
Contains data

. describe
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A few of the observations are 
 

 
 

With data in wide-form the SUR model is estimated using sureg.

 
 
With the data in wide form the estimation command is 

 
sureg (inv1 v1 k1) (inv2 v2 k2), corr dfk small 

 

          k2          20       85.64    62.26494         .8      213.5
          v2          20      670.91    222.3919      191.5     1193.5

        inv2          20     42.8915    19.11019      12.93      90.08
          k1          20      400.16    250.6188       97.8      888.9
          v1          20    1941.325    413.8433     1170.6     2803.3
        inv1          20      102.29     48.5845       33.1      189.6
        year          20      1944.5     5.91608       1935       1954

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize

  5.  1939   48.1   2256.2   172.6   18.84   519.9   23.5  
  4.  1938   44.6   2039.7   156.2   22.89   560.4   18.1  
  3.  1937   77.2   2803.3     118   35.05     729    7.4  
  2.  1936     45   2015.8   104.4    25.9     516     .8  
  1.  1935   33.1   1170.6    97.8   12.93   191.5    1.8  

 year   inv1       v1      k1    inv2      v2     k2  

. list in 1/5
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Each separate equation is enclosed in parentheses, with the dependent variable first in the list, as 
always. The following options are: 
 

� dfk requests that the estimated error variances and the contemporaneous covariance be 
corrected for degrees of freedom, as in 

 
20 20

, , , , ,
1 1

1 1ˆ ˆ ˆ ˆ ˆ
3GE WE GE t WE t GE t WE t

t tGE WE

e e e e
TT K T K � �

� � �
�� �

� �  

 
� corr requests that the correlations between residuals of the different equations be 

reported, and that the LM test of “no correlation” be displayed, 
 

1
2

2 1

M i

ij
i j

LM T r
�

� �
� ��  

 
 This LM statistic has a 27 -distribution with � �1 2M M �  degrees of freedom, in large 

samples. 
 

� small requests that tests be based on t-statistics and F-statistics rather than z-statistics 
and 27 -statistics. 

 

Breusch-Pagan test of independence: chi2(1) =    10.628, Pr = 0.0011

inv2  0.7290  1.0000
inv1  1.0000
        inv1    inv2

Correlation matrix of residuals:

       _cons    -1.251988   7.545217    -0.17   0.869    -16.58571    14.08174
          k2     .0639781   .0530406     1.21   0.236    -.0438134    .1717695
          v2     .0576298   .0145463     3.96   0.000     .0280682    .0871914
inv2          

       _cons    -27.71932   29.32122    -0.95   0.351     -87.3072    31.86857
          k1     .1390363   .0249856     5.56   0.000     .0882594    .1898131
          v1     .0383102   .0144152     2.66   0.012     .0090151    .0676053
inv1          

                    Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

inv2               20      2    10.29363    0.7404      25.27   0.0000
inv1               20      2    28.47948    0.6926      20.92   0.0000

Equation          Obs  Parms        RMSE    "R-sq"     F-Stat        P

Seemingly unrelated regression

. sureg (inv1 v1 k1) (inv2 v2 k2), corr dfk small
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To see the estimated variances and covariance use 
 

matrix list e(Sigma) 

 

 

15.6 MIXED MODELS3

The random effects model allows for random individual heterogeneity that is constant over time, 
and which is captured by the intercept. A natural question to ask is “If the intercept can vary 
randomly across individuals, what about slopes and other parameters?” That is an excellent 
question. One way to approach such questions is through the use of mixed models. These models 
incorporate not only random intercepts but also random slopes. Furthermore, multiple layers of 
group effects can be captured. For example, if we sampling school children, we may allow 
individual heterogeneity, but there also may be a school effect, and children are within a school. 
Stata’s xtmixed is designed for such problems. See the help for syntax and links to further 
documentation, examples and a dialog-box. 

 

 
 

Another excellent source is the previously cited Cameron and Trivedi (2010, Chapters 9.5 and 
9.6).  

Our approach is to illustrate the use of xtmixed using simulated data. By seeing the data 
generation process and estimation command you will have a better idea of when the various 
options should be used. The simulated data will have group and individual effects. First we 
generate some data. 

 
clear 

* set random number seed 

set seed 1234567 

First we generate two group effects u1 and u2 for 10 groups which are correlated with correlation 
0.5. 

set obs 10  // number of groups 

 
3 Contains some advanced material. 

inv2  207.58713  104.30788
inv1  777.44634
           inv1       inv2
symmetric e(Sigma)[2,2]
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* random group effects with correlation sgrp 

matrix sgrp = (1, .5 \ .5, 1)   

drawnorm u1 u2, corr(sgrp) 

 
The tricky part of the data generation process is keeping group and individual heterogeneity 
components constant over sets of observations. Create a group id variable, grp, and then replicate 
these observations 20 times, for 20 individuals per group. 

 
gen grp = _n  // assign group id 

expand 20  // number of individuals per group 

 
Next we create two random individual effects, u3 and u4, with correlation 0.7. 

 
* random individual effects with correlation sind 

matrix sind = (1, .7 \ .7, 1)   

drawnorm u3 u4, corr(sind) 

 
Assign a person id, id, and replicate these individual observations 10 times, so that we have 10 
time series observations, or occasions, in which we observe the individual. 

 
gen id = _n  // assign individual id 

expand 10  // number of observations per individual 

Arrange the data by group and individual. 
 

sort grp id   // arrange by group and person 

Create a counter t = 1-10 for the occasions. 
 

by grp id: gen t = _n 

 
Now randomly create an uncorrelated x variable and an overall disturbance e. 

 
matrix sigxe = (1, 0 \ 0,1) 

drawnorm x e, corr(sigxe) 

For convenience change the order of variables and list some observations. 
 

order grp id t u1 u2 u3 u4 x e 

list in 1/20 
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These are observations for group 1, and individuals 1 and 11, with time observations 1-10. The 
group and individual effects are constant across group and time, respectively. 

Using this structure we can generate and estimate a variety of models. First, generate a 
variable y that has a random intercept, as in the random effects model. The true intercept is 10 
and the slope is 5. Note that we multiply the random error term by 3 so that 3e� �  and the 
random effect has standard deviation 1 1.0u� � . 

 
gen y = (10 + u3) + 5*x + 3*e 

xtset id t 

xtreg y x, re 

 
 

Testing for the random effect we of course find it since we have generated the data this way. 
 

xttest0 

 

      
 20.     2    2   10   1.729758   -.0415373    .6692421   1.480754    .5481977    1.791418  
 19.     2    2    9   1.729758   -.0415373    .6692421   1.480754   -2.571998   -.2759298  
 18.     2    2    8   1.729758   -.0415373    .6692421   1.480754    1.365633    -.952275  
 17.     2    2    7   1.729758   -.0415373    .6692421   1.480754    -.812617   -.8523542  
 16.     2    2    6   1.729758   -.0415373    .6692421   1.480754    -.875877    1.194646  
      
 15.     2    2    5   1.729758   -.0415373    .6692421   1.480754   -1.087195    .2557569  
 14.     2    2    4   1.729758   -.0415373    .6692421   1.480754    .2971053   -.0706769  
 13.     2    2    3   1.729758   -.0415373    .6692421   1.480754   -.0884378    1.965032  
 12.     2    2    2   1.729758   -.0415373    .6692421   1.480754   -.4346218    .1466878  
 11.     2    2    1   1.729758   -.0415373    .6692421   1.480754   -.3922293    .4159981  
      
 10.     1    1   10   1.071039    .8732365   -.2009179   1.186175   -.1450447    1.576772  
  9.     1    1    9   1.071039    .8732365   -.2009179   1.186175   -.6466608      -1.245  
  8.     1    1    8   1.071039    .8732365   -.2009179   1.186175   -.0429053    1.274183  
  7.     1    1    7   1.071039    .8732365   -.2009179   1.186175    .6081262   -.9055414  
  6.     1    1    6   1.071039    .8732365   -.2009179   1.186175   -.1993113   -1.329407  
      
  5.     1    1    5   1.071039    .8732365   -.2009179   1.186175    .3947991    -.891265  
  4.     1    1    4   1.071039    .8732365   -.2009179   1.186175   -1.477673    .5904121  
  3.     1    1    3   1.071039    .8732365   -.2009179   1.186175   -.5339671    -.045241  
  2.     1    1    2   1.071039    .8732365   -.2009179   1.186175   -1.448084   -1.003928  
  1.     1    1    1   1.071039    .8732365   -.2009179   1.186175    .2388448    .1548654  
      
       grp   id    t         u1          u2          u3         u4           x           e  
      

         rho   .10258664   (fraction of variance due to u_i)
     sigma_e   2.9607527
     sigma_u   1.0010396

       _cons    10.01111   .0969605   103.25   0.000     9.821075    10.20115
           x    4.984971   .0657294    75.84   0.000     4.856144    5.113798

           y       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000
Random effects u_i ~ Gaussian                   Wald chi2(1)       =   5751.83
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Next, generate an outcome with both random intercept and slope, with intercept and slope 
correlated. 

 
gen y2 = (10 + u3) + (5 + u4)*x + 3*e 

xtmixed y2 x || id: x 

 
The xtmixed command specifies the regression part as usual. The presence of random intercept 
and slope, varying randomly across individuals, is indicated by || id: x. The double vertical bar 
|| denotes a group level; id: denotes the individual level, and the following x indicates that the 
slope is random, with the randomness of the intercept being implicit. The output is quite 
complicated. The first set of estimates are for the intercept and slope. 

 

 
 

These are followed by the estimates of the standard deviations of the random components and the 
overall disturbance. The likelihood-ratio test is said to be conservative because it ignores the one-
tail character of the alternative hypothesis, 3 0u� �  and/or 4 0u� � . 

 

                          Prob > chi2 =     0.0000
                              chi2(1) =    94.07
        Test:   Var(u) = 0

                       u      1.00208        1.00104
                       e     8.766056       2.960753
                       y     36.40073       6.033302

                                 Var     sd = sqrt(Var)
        Estimated results:

        y[id,t] = Xb + u[id] + e[id,t]

Breusch and Pagan Lagrangian multiplier test for random effects

       _cons     9.999877   .0989142   101.10   0.000     9.806009    10.19375
           x     4.944701   .1031165    47.95   0.000     4.742596    5.146805

          y2        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

Log restricted-likelihood = -5162.5522          Prob > chi2        =    0.0000
                                                Wald chi2(1)       =   2299.45

                                                               max =        10
                                                               avg =      10.0
                                                Obs per group: min =        10

Group variable: id                              Number of groups   =       200
Mixed-effects REML regression                   Number of obs      =      2000

Computing standard errors:

Iteration 1:   log restricted-likelihood = -5162.5522  
Iteration 0:   log restricted-likelihood = -5162.5524  

Performing gradient-based optimization: 

Performing EM optimization: 

. xtmixed y2 x || id: x
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Next consider a model in which there are random individual (u3 and u4) and group effects (u1 
and u2), and that these effects can be correlated. The group level is || grp: x, cov(un) with 
the option cov(un) indicating that the covariance of the group effects is unstructured. Similarly, 
||id: x, cov(un) specifies the individual effects with unstructured covariance. 

 
gen y3 = (10 + u3 + 2*u1) + (5 + u4 + 2*u2)*x + 3*e 

xtmixed y3 x || grp: x, cov(un) ||id: x, cov(un) 

 
The first part of the output, above, reports the estimated slope and intercept. The estimation 
procedure is called restricted maximum likelihood (REML). The underlying assumptions are 
normality and homoscedasticity for the random effects. 
 

 
 

The lower part of the output shows the estimates for the standard deviations of the random effects 
and their estimated correlation. 

 

Note: LR test is conservative and provided only for reference.

LR test vs. linear regression:       chi2(2) =   148.14   Prob > chi2 = 0.0000

                sd(Residual)     2.946652   .0516848      2.847074    3.049714

                   sd(_cons)      1.01991   .0969353      .8465669    1.228748
                       sd(x)     1.080571   .0974925       .905431    1.289589
id: Independent               

  Random-effects Parameters      Estimate   Std. Err.     [95% Conf. Interval]

       _cons     9.898466   .7274034    13.61   0.000     8.472782    11.32415
           x     4.654365   .6096052     7.64   0.000     3.459561    5.849169

          y3        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

Log restricted-likelihood = -5172.5486          Prob > chi2        =    0.0000
                                                Wald chi2(1)       =     58.29

             id        200         10       10.0         10
            grp         10        200      200.0        200

 Group Variable     Groups    Minimum    Average    Maximum
                    No. of       Observations per Group

Mixed-effects REML regression                   Number of obs      =      2000
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KEY TERMS 

between estimator ib1.group sureg
Breusch-Pagan test ibn.group tabstat 
by invFtail tabulate 
corr LM test test 
dfk matrix theta 
drawnorm mixed models vce(cluster id) 
dummy variables Mundlak test wide data
egen noconstant xtdescribe 
estimates store order xtgls 
expand panel data xtmixed 
fe pooled model xtpcse 
fixed effects random effects xtreg 
foreach re xtset 
global macro reshape xtsum 
GLS robust cluster xttest0 
Goldfeld-Quandt test seemingly unrelated
group effects small  
Hausman test sort
Hausman-Taylor model SUR  

CHAPTER 15 DO-FILE [CHAP15.DO] 

* file chap15.do for Using Stata for Principles of Econometrics, 4e 

cd c:\data\poe4stata 

* Stata do-file  
* copyright C 2011 by Lee C. Adkins and R. Carter Hill  

* used for "Using Stata for Principles of Econometrics, 4e"  

* by Lee C. Adkins and R. Carter Hill (2011) 
* John Wiley and Sons, Inc. 

Note: LR test is conservative and provided only for reference.

LR test vs. linear regression:       chi2(6) =  1172.43   Prob > chi2 = 0.0000

                sd(Residual)     2.948056   .0517184      2.848413    3.051185

               corr(x,_cons)     .6619854   .1118354      .3852072    .8294962
                   sd(_cons)     .9615468   .0987601      .7862195    1.175972
                       sd(x)     1.027574   .0993964      .8501143    1.242079
id: Unstructured              

               corr(x,_cons)     .3811047   .2914015     -.2606752    .7892862
                   sd(_cons)     2.280183   .5469646      1.424904    3.648832
                       sd(x)     1.901634   .4607021      1.182795    3.057345
grp: Unstructured             

  Random-effects Parameters      Estimate   Std. Err.     [95% Conf. Interval]
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* setup 

version 11.1 
capture log close 

set more off 

*********** A Microeconomic Panel 

* open log file 
log using chap15_nls, replace text 

* Open and examine the data 
use nls_panel, clear 

xtset id year 

describe 
summarize lwage educ south black union exper tenure 

list id year lwage educ south black union exper tenure in 1/10 

*********** Pooled OLS 

* OLS 
reg lwage educ exper exper2 tenure tenure2 black south union 

* OLS with cluster robust standard errors 
reg lwage educ exper exper2 tenure tenure2 black south union, vce(cluster id) 

********** LSDV estimator for small N 
use nls_panel10, clear 

summarize lwage educ exper exper2 tenure tenure2 black south union 

* LSDV for wage equation 

reg lwage ibn.id exper exper2 tenure tenure2 union, noconstant 

scalar sse_u = e(rss) 

scalar df_u = e(df_r) 

scalar sig2u = sse_u/df_u 

test (1.id=2.id) (2.id=3.id) (3.id=4.id) (4.id=5.id) /// 

     (5.id=6.id) (6.id=7.id) (7.id=8.id) (8.id=9.id)(9.id=10.id) 

* Pooled model 
reg lwage exper exper2 tenure tenure2 union 

scalar sse_r = e(rss) 

* F-test: using sums of squared residuals 

scalar f = (sse_r - sse_u)/(9*sig2u) 
scalar fc = invFtail(9,df_u,.05) 

scalar pval = Ftail(9,df_u,f) 

di "F test of equal intercepts = " f 
di "F(9,df_u,.95) = " fc 

di "p value = " pval 

********** Use data in deviation from mean form 

use nls_panel_devn, clear 
summarize 

list lw_dev exp_dev union_dev in 1/10 

reg lw_dev exp_dev exp2_dev ten_dev ten2_dev union_dev, noconstant 

* Create deviation from mean data 

use nls_panel10, clear 
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xtset id year 

sort id, stable 

* Sort data and create group means 

global v1list lwage exper exper2 tenure tenure2 union 

foreach var of varlist $v1list { 

 by i: egen `var'bar = mean(`var') 

 gen `var'_dev = `var' - `var'bar 
 } 

list id year lwage lwagebar lwage_dev in 1/10 

* OLS regression on data in deviations from mean 

reg lwage_dev exper_dev exper2_dev tenure_dev tenure2_dev union_dev, noconstant 

* Using fixed effects software 

xtreg lwage exper exper2 tenure tenure2 union, fe 

* Fixed effects using complete NLS panel 

use nls_panel, clear 
xtset id year 

global x1list exper exper2 tenure tenure2 south union 
xtreg lwage $x1list, fe 

* FE with robust cluster-corrected standard errors 
xtreg lwage $x1list, fe vce(cluster id) 

* Recover individual differences from mean 
predict muhat, u 

tabstat muhat if year==82, stat(sum) 

* Using time invariant variables 

global x2list educ black $x1list 

xtreg lwage $x2list, fe 
xtsum educ 

********** Random Effects 

xtreg lwage $x2list, re theta 

* RE with robust cluster-corrected standard errors 

xtreg lwage $x2list, re vce(cluster id) 

* Calculation of RE transformation parameter 

quietly xtreg lwage $x2list, fe 

scalar sig2e =( e(sigma_e))^2 

* Automatic Between estimator 

xtreg lwage $x2list, be  
ereturn list 

* Save sigma2_between and compute theta 
scalar sig2b = e(rss)/e(df_r) 

scalar sig2u = sig2b - sig2e/e(Tbar) 

scalar sigu = sqrt(sig2u) 
scalar theta = 1-sqrt(sig2e/(e(Tbar)*sig2u+sig2e)) 

di "Components of variance" 

di "sig2e   = " sig2e " variance of overall error e(it)" 
di "sige    = " sqrt(sig2e) " standard deviation of e(it)" 

di "sig2b   = " sig2b " variance from between regression " 

di "sig2u   = " sig2u " derived variance mu(i) " 
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di "sigu    = " sigu  " standard deviation mu(i) " 

di "theta   = " theta " transformation parameter " 

* transform data including intercept 

gen one = 1 

sort id, stable 
global v2list lwage one $x2list 

foreach var of varlist $v2list { 
 by i: egen `var'bar = mean(`var') 

 gen `var'd = `var' - theta*`var'bar 

 } 

* RE is ols applied to transformed data 

reg lwaged educd blackd experd exper2d tenured tenure2d southd uniond oned, noconstant 

* Breusch-Pagan test 

quietly xtreg lwage $x2list, re  
xttest0 

* Hausman contrast test 
quietly xtreg lwage $x2list, fe 

estimates store fe 

quietly xtreg lwage $x2list, re  

estimates store re 

hausman fe re 

* Regression based Hausman test 
global xlist3 experbar exper2bar tenurebar tenure2bar southbar /// 

       unionbar educ exper exper2 tenure tenure2 black south union 

xtreg lwage $xlist3, re  

test experbar exper2bar tenurebar tenure2bar southbar unionbar 

* Hausman test with robust VCE 

xtreg lwage $xlist3, re vce(cluster id) 

test experbar exper2bar tenurebar tenure2bar southbar unionbar 

* Add year specific indicator variable 

tabulate year, generate (d) 
xtreg lwage $xlist3 d2-d5, re vce(cluster id) 

test experbar exper2bar tenurebar tenure2bar southbar unionbar 

* Hausman-Taylor Model 

xthtaylor lwage $x2list, endog(south educ) constant(educ black) 

log close 

********** Seemingly Unrelated Regressions 

* open log 

log using chap15_sur, replace text 

* Open Grunfeld GE & WE data 

use grunfeld2, clear 
describe 

summarize 

* pooled least squares 

reg inv v k 
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* Create slope and intercept indicators 

tabulate firm, generate(d) 

gen vd1 = v*d1 
gen kd1 = k*d1 

gen vd2 = v*d2 

gen kd2 = k*d2 

* model with indicator and slope-indicator variables 

reg inv v k d2 vd2 kd2 
test d2 vd2 kd2 

reg inv v k ib1.firm ib1.firm#(c.v c.k) 
test 2.firm 2.firm#c.v 2.firm#c.k 

* model with firm specific variables 
reg inv d1 d2 vd1 vd2 kd1 kd2, noconstant 

test (d1=d2) (vd1=vd2) (kd1=kd2) 

* use factor variable notation 

reg inv ibn.firm ibn.firm#(c.v c.k), noconstant 

test (1.firm=2.firm) (1.firm#c.v=2.firm#c.v) (1.firm#c.k=2.firm#c.k) 

* Separate regressions allow different variances 

reg inv v k if firm==1 
scalar sse_ge = e(rss) 

reg inv v k if firm==2 
scalar sse_we = e(rss) 

* Goldfeld-Quandt test 
scalar GQ = sse_ge/sse_we 

scalar fc95 = invFtail(17,17,.05) 

di "Goldfeld-Quandt Test statistic = " GQ 
di "F(17,17,.95) = " fc95 

* SUR using XTGLS 
xtset firm year, yearly 

xtgls inv ibn.firm ibn.firm#(c.v c.k), noconstant panels(correlated) nmk 

test (1.firm=2.firm) (1.firm#c.v=2.firm#c.v) (1.firm#c.k=2.firm#c.k) 

* pooled model GLS with group hetero 

xtgls inv v k, panels(heteroskedastic) nmk 

* pooled model GLS with sur assumptions 

xtgls inv v k, panels(correlated) nmk 

* pooled model GLS with sur assumptions iterated 

xtgls inv v k, panels(correlated) nmk igls 

* pooled model GLS with sur assumptions and common ar(1) 

xtgls inv v k, panels(correlated) corr(ar1) nmk 

* pooled ols with sur cov matrix 

xtpcse inv v k, nmk 

* Convert long data to wide data and use SUREG 

use grunfeld2, clear 
reshape wide inv v k, i(year) j(firm) 

describe 

summarize 
list in 1/5 

sureg (inv1 v1 k1) (inv2 v2 k2), corr dfk small 
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matrix list e(Sigma) 

log close 

********** Mixed models 

log using chap15_mixed, replace text  

clear 

* set random number seed 

set seed 1234567 

* generate some panel data 

set obs 10   // number of groups 

* random group effects with correlation sgrp 

matrix sgrp = (1, .5 \ .5, 1)   
drawnorm u1 u2, corr(sgrp)  

gen grp = _n   // assign group id 
expand 20   // number of individuals per group 

* random individual effects with correlation sind 
matrix sind = (1, .7 \ .7, 1)   

drawnorm u3 u4, corr(sind)  

gen id = _n   // assign individual id 

expand 10   // number of observations per individual 

sort grp id    // arrange by group and person 

* generate time or occasion counter for each id 

by grp id: gen t = _n 

* generate uncorrelated x and e 

matrix sigxe = (1, 0 \ 0,1) 
drawnorm x e, corr(sigxe) 

* change variable order 
order grp id t u1 u2 u3 u4 x e 

list grp id t u1 u2 u3 u4 x e in 1/20 

* random individual intercept dgp 

gen y = (10 + u3) + 5*x + 3*e 

xtset id t 

xtreg y x, re 

xttest0 

* random individual intercept and random slope 

gen y2 = (10 + u3) + (5 + u4)*x + 3*e 
xtmixed y2 x || id: x 

* random intercept and slope: person and group effect 
gen y3 = (10 + u3 + 2*u1) + (5 + u4 + 2*u2)*x + 3*e 

xtmixed y3 x || grp: x, cov(un) ||id: x, cov(un) 

log close 
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CHAPTER 16

Qualitative and Limited Dependent 
Variable Models 

CHAPTER OUTLINE 
16.1 Models with binary dependent variables  
     16.1.1 Average marginal effects  
     16.1.2 Probit marginal effects: details  
     16.1.3 Standard error of average marginal effect 
16.2 The logit model for binary choice  
     16.2.1 Wald tests  
     16.2.2 Likelihood ratio tests  
     16.2.3 Logit estimation  
     16.2.4 Out-of-sample prediction 
16.3 Multinomial logit 

16.4 Conditional logit 
     16.4.1 Estimation using asclogit 
16.5 Ordered choice models  
16.6 Models for count data 
16.7 Censored data models 
     16.7.1 Simulated data example 
     16.7.2 Mroz data example  
16.8 Selection bias  
Key Terms  
Chapter 16 Do-file 

16.1 MODELS WITH BINARY DEPENDENT VARIABLES 

We will illustrate binary choice models using an important problem from transportation 
economics. How can we explain an individual’s choice between driving (private transportation) 
and taking the bus (public transportation) when commuting to work, assuming, for simplicity, that 
these are the only two alternatives? We represent an individual’s choice by the dummy variable 
 

1 individual drives to work
0 individual takes bus to work

y 4
� 5
6

 

 
If we collect a random sample of workers who commute to work, then the outcome y will be 
unknown to us until the sample is drawn. Thus, y is a random variable. If the probability that an 
individual drives to work is p, then # $1P y p� � . It follows that the probability that a person uses 

public transportation is # $0 1P y p� � � . Define the explanatory variable 



490   Chapter 16 

 
x = (commuting time by bus � commuting time by car) 

 
Let Z be a standard normal random variable, with probability density function 
 

2.51( )
2

zz e�A �
>  

 
This function is computed using the Stata function normalden. The cumulative distribution 
function of Z is 
 

2.51( ) [ ]
2

uz
z P Z z e du�

�H

 � � �

>I
 

 
The Stata function that computes this value is normal.  

The probit statistical model expresses the probability p that y takes the value 1 to be 
 

# $ 1 2 1 21 [ ] ( )p P y P Z x x� � � � �  � � 
 �  �  
 
Sample data on automobile and public transportation travel times and the alternative chosen for N 
= 21 individuals are contained in the data file transport.dta. In this table the variable DTIME = 
(bus time – auto time) and the dependent variable AUTO = 1 if automobile transportation is 
chosen. 

Issue the standard opening commands, open the data file, and examine the data 
 

use transport, clear 

describe 

summarize 

 

 
 

Estimation of the probit model is by a Stata command with the same syntax as other estimation 
commands. 
 

probit auto dtime 

 
The first variable after probit is the binary dependent variable, followed by the explanatory 
variables. The commands and options for probit are available from the Stata menus. Select 
Statistics > Binary outcomes > Probit regression or enter db probit. 
 

        auto          21    .4761905    .5117663          0          1
       dtime          21    -.122381    5.691037      -9.07        9.1
     bustime          21    48.12381    34.63082        1.6       91.5
    autotime          21    49.34762    32.43491         .2       99.1
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize
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The probit dialog box is similar to others. A problem with the menu approach is that you may be 
confronted with many unfamiliar choices, especially for advanced models, thus for the most part 
we will stick with the simple command approach. 

In the output you will notice a series of Iterations. These are a record of the steps Stata is 
taking to maximize the log-likelihood function. See Appendix C in Principles of Econometrics, 
4th Edition for more on maximum likelihood estimation. 
 

 
 

In the output we see the estimated coefficients, standard errors and z values. The properties of the 
probit estimator are all asymptotic, which is why the normal distribution is used for test statistic 
critical values. Also reported is an overall test of model significance called LR chi2(1) and its p-
value. This test is a joint test that all the variable coefficients, other than the intercept, are zero, 
analogous to the overall F-test of model significance in regression. 

Predicted probabilities are based on the probit model estimates, so 
 

1 2ˆ ( )p x� 
 � �� �  
 

These predicted probabilities for sample values are obtained using the post-estimation predict 
command. 

 
predict phat 

 
Suppose that we wish to estimate the marginal effect of increasing public transportation time, 
given that travel via public transportation currently takes 20 minutes longer [dtime = 2] than auto 
travel. It is calculated as 
 

                                                                              
       _cons    -.0644338   .3992438    -0.16   0.872    -.8469372    .7180696
       dtime     .2999898   .1028673     2.92   0.004     .0983735    .5016061
                                                                              
        auto        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood = -6.1651585                       Pseudo R2       =     0.5758
                                                  Prob > chi2     =     0.0000
                                                  LR chi2(1)      =      16.73
Probit regression                                 Number of obs   =         21

Iteration 4:   log likelihood = -6.1651585  
Iteration 3:   log likelihood = -6.1651585  
Iteration 2:   log likelihood =  -6.165583  
Iteration 1:   log likelihood = -6.2074807  
Iteration 0:   log likelihood = -14.532272  

. probit auto dtime
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# $�
1 2 2

1
( ) ( 0.0644 0.3000 2)(0.3000)

(.5355)(0.3000) 0.3456 0.3000 0.1037

dP AUTO
DTIME

dDTIME
�

� A � � � � A �  �

� A � � �

� � �
 

 
In this expression � �A 	  is the standard normal probability density function (pdf) evaluated at the 

argument, which we evaluate using the Stata function normalden. To compute 1 2DTIME� �� �  for 
dtime = 2 we can use lincom 

 
lincom _b[_cons]+_b[dtime]*2  

 

 
 

The value of 1 2( )DTIMEA � �� �  is then computed using nlcom, because the normal pdf is a 
nonlinear function. 

 
nlcom (normalden(_b[_cons]+_b[dtime]*2)) 

 

 
 
The marginal effect is 1 2 2( )DTIMEA � � �� � � . The nlcom command to compute the marginal effect 
at dtime = 2 is 
 

nlcom (normalden(_b[_cons]+_b[dtime]*2)*_b[dtime] ) 

 

 
 
The above steps are used to compute the marginal effect when dtime = 2. Another representative 
value is the average time difference dtime = �0.122381. 

 
lincom _b[_cons]+_b[dtime]*(-.122381)  

nlcom (normalden(_b[_cons]+_b[dtime]*(-.122381))) 

nlcom (normalden(_b[_cons]+_b[dtime]*(-.122381))*_b[dtime] ) 

 

                                                                              
         (1)     .5355458   .4505849     1.19   0.235    -.3475843    1.418676
                                                                              
        auto        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

 ( 1)  2*[auto]dtime + [auto]_cons = 0

                                                                              
       _nl_1     .3456449   .0834072     4.14   0.000     .1821699      .50912
                                                                              
        auto        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

       _nl_1:  normalden(_b[_cons]+_b[dtime]*2)

                                                                              
       _nl_1       .10369   .0326394     3.18   0.001     .0397179     .167662
                                                                              
        auto        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

       _nl_1:  normalden(_b[_cons]+_b[dtime]*2)*_b[dtime]



Qualitative and Limited Dependent Variable Models   493 

The results from these commands are 
 

 
 

Similarly we can calculate a predicted probability, such as 
 

1 2ˆ ( ) ( 0.0644 0.3000 3) 0.7983p DTIME� 
 � � � 
 �  � �� �  
 
The function � �
 	  is the standard normal cumulative distribution function (cdf). The Stata 
function normal returns the value of the standard normal cdf. Using nlcom we compute 
 

nlcom (normal(_b[_cons]+_b[dtime]*3) ) 

 

 

16.1.1 Average marginal effects 

Rather than compute the marginal effect, or a prediction, at a specific point, such as the means, a 
trend is to find the average marginal effect using each data point in the sample. We can do this 
manually by generating a variable that is the marginal effect for each sample value of dtime. 

 
gen ame = normalden(_b[_cons]+_b[dtime]*dtime)*_b[dtime] 

 

                                                                              
       _nl_1      .119068   .0409982     2.90   0.004      .038713     .199423
                                                                              
        auto        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

       _nl_1:  normalden(_b[_cons]+_b[dtime]*(-.122381))*_b[dtime]

. nlcom (normalden(_b[_cons]+_b[dtime]*(-.122381))*_b[dtime] )

                                                                              
       _nl_1     .3969068   .0160319    24.76   0.000     .3654847    .4283288
                                                                              
        auto        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

       _nl_1:  normalden(_b[_cons]+_b[dtime]*(-.122381))

. nlcom (normalden(_b[_cons]+_b[dtime]*(-.122381)))

                                                                              
         (1)    -.1011468   .3993423    -0.25   0.800    -.8838433    .6815496
                                                                              
        auto        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

 ( 1)  - .122381*[auto]dtime + [auto]_cons = 0

. lincom _b[_cons]+_b[dtime]*(-.122381) 

                                                                              
       _nl_1     .7982919   .1425387     5.60   0.000     .5189211    1.077663
                                                                              
        auto        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

       _nl_1:  normal(_b[_cons]+_b[dtime]*3)
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Find the summary statistics for this quantity. 
 

tabstat ame, stat(n mean sd min max) 

 

 
 

This value is 
�

1 2 21

1 ( )N
iiAME DTIME

N �� A � � �� � � �
 

 
The average marginal effect has become a popular alternative to computing the marginal effect at 
the mean as it summarizes the response of individuals in the sample to a change in the value of an 
explanatory variable. For the current example, 0.0484 is the average estimated increase in 
probability given a 10 minute increase in bus travel time relative to auto travel time.  

The standard deviation sd reported by tabstat is the sample standard deviation of the 
individual values. It gives us measure of how much variation there is in the marginal effect from 
person to person.  

Stata uses the margins command to compute marginal effect, predictions, and average 
marginal effects for most models. You may study help margins and the Stata documentation, 
but it is very massive, and somewhat overwhelming. We hope that introducing it to you in bits 
will be useful. The marginal effect of DTIME is 

 

� �� � �1 2 2 1 2

1
( ) ,

dP AUTO
DTIME g

dDTIME
�

� A � � � � � �� � � � �  

 
The marginal effect is an estimator, since it is a function of the estimators 1��  and 2�� . The 
discussion of the “delta method” in Principles of Econometrics, 4th Edition, Appendix 5B.5, is 
relevant because the marginal effect is a nonlinear function of 1��  and 2�� . 

To compute the marginal effect of DTIME at the variable means use 
 

margins, dydx(dtime) atmeans 

 

 
 

The output shows that we have computed a Conditional marginal effect, dy/dx, with respect to 
dtime at dtime = �.122381 (mean). The standard error is described as Delta-method Std. 

                                                                
         ame          21  .0484069  .0364573  .0024738  .1152559
                                                                
    variable           N      mean        sd       min       max

                                                                              
       dtime      .119068   .0409982     2.90   0.004      .038713     .199423
                                                                              
                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

at           : dtime           =    -.122381 (mean)
dy/dx w.r.t. : dtime
Expression   : Pr(auto), predict()

Model VCE    : OIM
Conditional marginal effects                      Number of obs   =         21
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Err. The 95% interval estimate is based on the standard normal distribution, with critical values 
1.96� . Because there are only 21 observations we may want to use critical values from the t-

distribution.  
The average marginal effect is the default with margins.  

 

margins, dydx(dtime) 

 

 
 

The Average marginal effects are calculated and the value 0.0484 is the same as we calculated 
manually. The Delta-method standard error is not the standard deviation of the marginal effects 
that we computed above. This quantity is explained in Principles of Econometrics, 4th Edition, 
Appendix 16A.2. Rather than rely on the standard normal based interval estimate we can instead 
use the t-distribution for the calculation. 

 
scalar t975 = invttail(19,.025) 

di "0.975 critical value 19 df " t975 

 

scalar lbame =   .0484069   - t975*.003416 

scalar ubame =   .0484069   + t975*.003416 

di "95% interval estimate AME" 

di "lbame = " lbame " ubame = " ubame 

 
The returned interval is slightly wider than the standard normal based interval because it uses 
critical value 2.0930241. 

 
lbame = .04125713 ubame = .05555667 

 
In the previous section we manually computed the marginal effect of DTIME at the value DTIME 
= 2. Using Stata’s margins command we can do this automatically using 

 
margins, dydx(dtime) at(dtime=2) 

 

                                                                              
       dtime     .0484069    .003416    14.17   0.000     .0417116    .0551022
                                                                              
                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

dy/dx w.r.t. : dtime
Expression   : Pr(auto), predict()

Model VCE    : OIM
Average marginal effects                          Number of obs   =         21
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This is a conditional marginal effect because it is evaluated at a specific point. 
The margins command can also compute predicted values, as we did manually in the 

previous section, for us. 
 

margins, predict(pr) at(dtime=3) 

 

 
 

We have the predicted probability that we computed above as 
 

1 2ˆ ( ) ( 0.0644 0.3000 3) 0.7983p DTIME� 
 � � � 
 �  � �� �  
 

The Delta-method standard error is required because the normal cdf ( )
 	  is a nonlinear function. 
The average value of the predictions at each observation is obtained using 
 

margins, predict(pr) 

 

 
 

Recall that we computed these predictions and called them phat. Finding the summary statistics 
we observe that the mean or average is the quantity reported by Stata’s margins command.  

 
summarize phat 

                                                                              
       dtime     .1036899   .0326394     3.18   0.001     .0397179     .167662
                                                                              
                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

at           : dtime           =           2
dy/dx w.r.t. : dtime
Expression   : Pr(auto), predict()

Model VCE    : OIM
Conditional marginal effects                      Number of obs   =         21

                                                                              
       _cons     .7982919   .1425387     5.60   0.000     .5189211    1.077663
                                                                              
                   Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

at           : dtime           =           3
Expression   : Pr(auto), predict(pr)

Model VCE    : OIM
Adjusted predictions                              Number of obs   =         21

                                                                              
       _cons     .4863133   .0647176     7.51   0.000     .3594693    .6131574
                                                                              
                   Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

Expression   : Pr(auto), predict(pr)

Model VCE    : OIM
Predictive margins                                Number of obs   =         21
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16.1.2 Probit marginal effects: details1

Consider the probit model 1 2( )p x� 
 � � . The marginal effect of a continuous x, evaluated at a 
specific point 0x x� is 

 

� �
0

1 2 0 2 1 2( ) ,
x x

dp x g
dx �

� A � � � � � �  

 
The estimator of the marginal effect is � �1 2,g � �� � , where 1��  and 2��  are the maximum likelihood 

estimators of the unknown parameters. The variance of this estimator was developed in Principles 
of Econometrics, 4th Edition, Appendix 5B.5, in equation (5B.8), and is given by  

 

� � � � � � � � � �

� � � � � �

2 2
1 2 1 2

1 2 1 2
1 2

1 2 1 2
1 2

1 2

, ,
var , var var

, ,
                          2 cov ,

g g
g

g g

+ � � + � �� � � �� �� � J �  �� � � �� � +� +�� � � �

+ � � + � �� � � �
 � �� � � �+� +�� � � �

� � � �

� �

  (16.1) 

 
The variances and covariance of the estimators come from maximum likelihood estimation. The 
essence of these calculations is given in POE4, Appendix C.8.2. To implement the delta method 
we require the derivative 

 
� � # $1 2 1 2 0 2

1 1

1 2 0 2
2 1 2 0

1 1

1 2 0 1 2 0 2

, ( )

( ) ( )

( ) ( )

g x

x x

x x

+ � � + A � � �
�

+� +�

4 D+A � � +�
� ��  A � � �5 F+� +�6 G

� �A � � � � � ��

 

 
To obtain the final result we used 2 1 0+� +� �  and 

 
1 2 0

1 2 0 1 2 0
1

( ) ( ) ( )x x x+A �  �
� �A �  � � �  �

+�
 

 
Using similar steps we obtain the other key derivative, 

 
 

1 This section contains advanced material. It shows Stata code for Principles of Econometrics, 4th Edition, Appendix 16A.1. 

        phat          21    .4863133    .4116046   .0026736    .996156
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max
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� � # $1 2
1 2 0 1 2 0 2 0

2

,
( ) 1 ( )

g
x x x

+ � �
� A � � � � � ��

+�
 

 
From the maximum likelihood estimation results using the transportation data example we obtain 
the estimator variances and covariance2 

 

� �� � ��

� �� � ��
1 1 2

1 2 2

var cov , 0.1593956 0.0003261
0.0003261 0.0105817cov , var

� �� � � � �� � � � �� � � �� � �� �� �

� � �

� � �
 

 
To obtain these values in Stata, estimate the probit model and list the matrix e(V). Estimation 
returns are viewed with ereturn list. 

 
probit auto dtime 

ereturn list 

 

matrix list e(V) 

 

 
 
Note that Stata places the intercept estimator last among the coefficients. 

The marginal effect of dtime on the probability of choosing auto travel, when dtime = 2, is 
obtained using 

 
margins, dydx(dtime) at(dtime=2) 

 

 
 

To confirm this calculation the derivatives must be evaluated at the maximum likelihood 
estimates. For dtime = 2 ( 0 2x � ), the calculated values of the derivatives are 

 
� ��1 2

1

,
0.055531

g+ � �
� �

+�
 and 

� ��1 2

2

,
0.2345835

g+ � �
�

+�  

 
2 Using minus the inverse matrix of second derivatives. 

auto:_cons   .0003261  .15939558
auto:dtime  .01058169
                dtime      _cons
                 auto:      auto:
symmetric e(V)[2,2]

                                                                              
       dtime     .1036899   .0326394     3.18   0.001     .0397179     .167662
                                                                              
                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

at           : dtime           =           2
dy/dx w.r.t. : dtime
Expression   : Pr(auto), predict()

Model VCE    : OIM
Conditional marginal effects                      Number of obs   =         21
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We compute these values using nlcom: 

 
nlcom (-normalden(_b[_cons]+_b[dtime]*2)*(_b[_cons]+_b[dtime]*2) 

 *_b[dtime]) 

 

 
 

nlcom (normalden(_b[_cons]+_b[dtime]*2)*(1-(_b[_cons]+_b[dtime]*2)* 

 _b[dtime]*2)) 

 

 
 
Carrying out the required multiplication for equation (16.1) above we obtain the estimated 
variance and standard error of the marginal effect 

 

� ��1 2var , 0.0010653g� �� � �� �
� �  and � �1 2se , 0.0326394g� �� � �� �

� �  

16.1.3 Standard error of average marginal effect3

Consider the probit model 1 2( )p x� 
 � � . For the transportation data example the explanatory 
variable x = DTIME. The average marginal effect of this continuous variable is 

 

� �1 2 2 2 1 21

1 ( ) ,N
iiAME DTIME g

N �� A �  � � � � ��  

 
This is calculated using 

 
margins, dydx(dtime) 

 

 

 
3 This section contains advanced material. It explains the calculations used in Principles of Econometrics, 4th Edition, Chapter 16, 

Appendix 16A.2. 

                                                                              
       _nl_1    -.0555307   .0454006    -1.22   0.221    -.1445142    .0334528
                                                                              
        auto        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

                                                                              
       _nl_1     .2345835   .1710668     1.37   0.170    -.1007013    .5698683
                                                                              
        auto        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

                                                                              
       dtime     .0484069    .003416    14.17   0.000     .0417116    .0551022
                                                                              
                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

dy/dx w.r.t. : dtime
Expression   : Pr(auto), predict()

Model VCE    : OIM
Average marginal effects                          Number of obs   =         21
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The estimator of the average marginal effect is � �2 1 2,g � �� � . To apply the delta method to find 

� �2 1 2var ,g� �� �� �
� �  we require the derivatives 

 
� � # $

� �

2 1 2
1 2 21

1 1

1 2
1

1

, 1 ( )

,1

N
ii

N
i

g
DTIME

N

g
N

�

�

+ � � +
� A � � �

+� +�

+ � �
�

+�

�

�
 

 
The term � �1 2 1,g+ � � +�  we evaluated in the previous section. Similarly, the derivative 

 
� � # $

� �

2 1 2
1 2 21

2 2

1 2
1

2

, 1 ( )

,1

N
ii

N
i

g
DTIME

N

g
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�

�
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+� +�

+ � �
�

+�

�

�
 

 
For the transportation data we compute 

 
� ��2 1 2

1

,
0.00185

g+ � �
� �

+�
 and 

� ��2 1 2

2

,
0.032366

g+ � �
� �

+�
 

 
To calculate these values use 

 
gen dg21 = -normalden(_b[_cons]+_b[dtime]*dtime)* /// 

          (_b[_cons]+_b[dtime]*dtime)*_b[dtime]  

 

gen dg22 = normalden(_b[_cons]+_b[dtime]*dtime)* /// 

          (1-(_b[_cons]+_b[dtime]*dtime)*_b[dtime]*dtime) 

 

summarize dg21 dg22 

 

 
 
Using (16.1) above, with g replaced by 2g , and carrying out the required multiplication, we 
obtain the estimated variance and standard error of the average marginal effect 

 

� ��2 1 2var , 0.0000117g� �� � �� �
� �  and � �2 1 2se , 0.003416g� �� � �� �

� �  

 

        dg22          21   -.0323657    .1530839  -.1792467   .3620589
        dg21          21     -.00185    .0538807  -.0724431   .0725776
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max
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16.2 THE LOGIT MODEL FOR BINARY CHOICE 

We use the choice between Coke and Pepsi as an example to illustrate more about the linear 
probability model, probit and the logit model for binary choice. Open the data file coke.dta and 
examine its contents. 
 

use coke, clear 

describe 

 

 
 

summarize 

 

 
 

The variable COKE 
 

1 if Coke is chosen
0 if Pepsi is chosen

COKE 4� 5
6  

 
The expected value of this variable is � �( ) 1 COKEE COKE P COKE p� � �  probability that Coke is 
chosen. As explanatory variables we use the relative price of Coke to Pepsi (PRATIO), as well as 
DISP_COKE and DISP_PEPSI, which are indicator variables taking the value 1 if the respective 
store display is present and 0 if it is not present. We expect that the presence of a Coke display 
will increase the probability of a Coke purchase, and the presence of a Pepsi display will decrease 
the probability of a Coke purchase.  

The cumulative distribution function for a logistic random variable is  
 

� � 1[ ]
1 ll P L l

e�K � � �


 

In the logit model the probability p that the observed value y takes the value 1 is 
 

                                                                                    
                                                pepsi
pratio          double %10.0g                 price of coke relative to price of
                                                purchase, otherwise = 0
disp_coke       byte   %8.0g                  = 1 if coke is displayed at time of
                                                purchase, otherwise = 0
disp_pepsi      byte   %8.0g                  = 1 if pepsi is displayed at time of
pr_coke         double %10.0g                 price of 2 liter bottle of coke
pr_pepsi        double %10.0g                 price of 2 liter bottle of pepsi
coke            byte   %8.0g                  =1 if coke chosen, =0 if pepsi chosen
                                                                                    
variable name   type   format      label      variable label
              storage  display     value

      pratio        1140    1.027249     .286608    .497207   2.324675
                                                                      
   disp_coke        1140    .3789474    .4853379          0          1
  disp_pepsi        1140    .3640351    .4813697          0          1
     pr_coke        1140    1.190088    .2999157        .68       1.79
    pr_pepsi        1140    1.202719    .3007257        .68       1.79
        coke        1140    .4473684    .4974404          0          1
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max
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# $ � � � �1 21 2 1 2
1

1 xp P L x x
e� � �

� � � � � K � � �


 

The probit and logit models for the choice are the same except for the cumulative distribution 
function. The two models are 

 
� � � �

� � � �

1 2 3 4

1 2 3 4

_ _

_ _

COKE

COKE

p E COKE PRATIO DISP COKE DISP PEPSI

p E COKE PRATIO DISP COKE DISP PEPSI

� � 
 � � � �

� � K 3  3  3  3  
 

Let us examine the alternative models and model results obtained using logit, probit, and the 
linear probability model. Begin with the linear probability model. Use regress with robust 
standard errors. Save the estimates for later and obtain the linear predictions. 

 
regress coke pratio disp_coke disp_pepsi, vce(robust) 

estimates store lpm 

predict phat 

 

Using the margins command we can calculate the predicted value at a specific point. 
 

margins, predict(xb) at(pratio=1.1 disp_coke=0 disp_pepsi=0) 

 

 
 

To predict the choice outcomes compare the predicted choice probabilities to 0.5 and tabulate 
these results. 

 
generate p1 = (phat >=.5) 

tabulate p1 coke,row 

 

                                                                              
       _cons     .4492675   .0202031    22.24   0.000     .4096702    .4888648
                                                                              
                   Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

               disp_pepsi      =           0
               disp_coke       =           0
at           : pratio          =         1.1
Expression   : Linear prediction, predict(xb)

Model VCE    : Robust
Adjusted predictions                              Number of obs   =       1140
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The successful predictions are on the diagonal. 
Obtain the probit estimates and store them. 
 

probit coke pratio disp_coke disp_pepsi 

estimates store probit 

 
The post-estimation command estat will create a classification table like the one we created for 
the linear probability model, along with quite a bit of other information. 

 
estat classification 

 

 
 

Using margins calculate the average marginal effect of a change in the price-ratio variable. 
 

margins, dydx(pratio) 

 

 
 

                 55.26      44.74      100.00 
     Total         630        510       1,140 
                                             
                 33.24      66.76      100.00 
         1         123        247         370 
                                             
                 65.84      34.16      100.00 
         0         507        263         770 
                                             
        p1           0          1       Total
                if pepsi chosen
             =1 if coke chosen, =0

                  
  row percentage  
    frequency     
                  
  Key             
                  

Classified + if predicted Pr(D) >= .5

   Total           510           630          1140
                                                  
     -             263           507           770
     +             247           123           370
                                                  
Classified           D            ~D         Total
                       True         

Probit model for coke

                                                                              
      pratio    -.4096951   .0616434    -6.65   0.000     -.530514   -.2888761
                                                                              
                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

dy/dx w.r.t. : pratio
Expression   : Pr(coke), predict()

Model VCE    : OIM
Average marginal effects                          Number of obs   =       1140
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Using margins we can also compute marginal effects at specific values. 
 

margins, dydx(pratio) at(pratio=1.1 disp_coke=0 disp_pepsi=0) 

 

 
 

Furthermore, using margins we can compute predictions at specific values. 
 

margins, predict(pr) at(pratio=1.1 disp_coke=0 disp_pepsi=0) 

 

 

16.2.1 Wald tests 

Hypothesis tests concerning individual coefficients in probit and logit models are carried out in 
the usual way based on an “asymptotic-t” test. If the null hypothesis is 0 : kH c� � , then the test 
statistic using the probit model is  

 

� � � �~
se

ak
N K

k

ct t �

� �
�

�

�
�  

 
where k��  is the parameter estimator, N is the sample size, and K is the number of parameters 
estimated. The test is asymptotically justified, and if N is large the critical values from the � �N Kt �  

distribution will be very close to those from the standard normal distribution. In smaller samples, 
however, the use of the t-distribution critical values can make minor differences and is the more 
“conservative” choice.  

                                                                              
      pratio    -.4518877   .0702839    -6.43   0.000    -.5896417   -.3141338
                                                                              
                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

               disp_pepsi      =           0
               disp_coke       =           0
at           : pratio          =         1.1
dy/dx w.r.t. : pratio
Expression   : Pr(coke), predict()

Model VCE    : OIM
Conditional marginal effects                      Number of obs   =       1140

                                                                              
       _cons     .4393966   .0218425    20.12   0.000     .3965861    .4822071
                                                                              
                   Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

               disp_pepsi      =           0
               disp_coke       =           0
at           : pratio          =         1.1
Expression   : Pr(coke), predict(pr)

Model VCE    : OIM
Adjusted predictions                              Number of obs   =       1140
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The t-test is based on the Wald principle. This testing principle is discussed in Principles of 
Econometrics, 4th Edition, Appendix C.8.4b. Stata has “built in” Wald test statements that are 
convenient to use. To illustrate, using the probit model, consider the two hypotheses 

 
� �

� �

0 3 4 1 3 4

0 3 4 1 3 4

Hypothesis 1 : , :

Hypothesis 2 : 0, 0, : either  or  is not zero

H H

H H

� � �� � " ��

� � � � � �  
 

Hypothesis (1) is that the coefficients on the display variables are equal in magnitude but opposite 
in sign, or that the effect of the Coke and Pepsi displays have an equal but opposite effect on the 
probability of choosing Coke. A t-test is calculated using 

 
lincom disp_coke + disp_pepsi 

 

 
 
Automatic test commands usually generate the chi-square distribution version of the test, which 
in this case is the square of the t-statistic, W = 5.4040. If the null hypothesis is true the Wald test 
statistic has an asymptotic � �

2
17  distribution.  

 
test disp_coke + disp_pepsi=0 

 

 
The link between the t and chi-square test is fully explained in POE4, Appendix C.8.4b.  

A generalization of the Wald statistic is used to test the joint null hypothesis (2) that neither 
the Coke nor Pepsi display affects the probability of choosing Coke. Here we are testing 2 
hypotheses, so that the Wald statistic has an asymptotic � �

2
27  distribution.  

 
test disp_coke disp_pepsi 

 

 

16.2.2 Likelihood ratio tests 

When using maximum likelihood estimators, such as probit and logit, tests based on the 
likelihood ratio principle are generally preferred. Appendix C.8.4a in POE4 contains a discussion 
of this methodology. One test component is the log-likelihood function value in the unrestricted, 

                                                                              
         (1)    -.2301101   .0989868    -2.32   0.020    -.4241207   -.0360994
                                                                              
        coke        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

 ( 1)  [coke]disp_coke + [coke]disp_pepsi = 0

         Prob > chi2 =    0.0201
           chi2(  1) =    5.40

 ( 1)  [coke]disp_coke + [coke]disp_pepsi = 0

         Prob > chi2 =    0.0001
           chi2(  2) =   19.46

 ( 2)  [coke]disp_pepsi = 0
 ( 1)  [coke]disp_coke = 0
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full model (call it ln UL ) evaluated at the maximum likelihood estimates. The second ingredient 
is the log-likelihood function value from the model that is “restricted” by imposing the condition 
that the null hypothesis is true (call it ln RL ). The likelihood ratio test statistic is 

� �2 ln lnU RLR L L� � . If the null hypothesis is true, the statistic has an asymptotic chi-square 
distribution with degrees of freedom equal to the number of hypotheses being tested. The null 
hypothesis is rejected if the value LR is larger than the chi-square distribution critical value. 

To illustrate, first the overall test of model significance. After a probit or logit model 
estimation the value of the log-likelihood function is saved as e(ll). If all the parameters are 
zero except the intercept the probit model is � �1COKEp �
 � . The log-likelihood for this model is 
saved as e(ll_0). Then the likelihood ratio test of probit model significance is calculated using 

 
scalar lnlu = e(ll) 

scalar lnlr = e(ll_0) 

scalar lr_test = 2*(lnlu-lnlr) 

di "lnlu     =" lnlu  

di " lnlr    =" lnlr  

di " lr_test =" lr_test 

 

 
 
The probit estimation automatically reports this value following estimation. 

 

 
 

We can test other hypotheses using this principle. Hypothesis (1) on the previous page is tested 
by first imposing the hypothesis as a restriction on the model. If this hypothesis is true then 

 
� � � �� �1 2 41 _ _P COKE PRATIO DISP PEPSI DISP COKE� �
 � � � �  

 
Create a variable equal to the difference of displays, and estimate the resulting “restricted model. 

 
gen disp = disp_pepsi-disp_coke 

probit coke pratio disp 

estimates store probitr 

 

Stata has an automatic command to compute a likelihood ratio test given an unrestricted and a 
restricted model. Using the saved model results we have 

 
lrtest probit probitr 

 

 lr_test = 145.82341
. di " lr_test = " lr_test

 lnlr    = -783.86028
. di " lnlr    = " lnlr 

lnlu     = -710.94858
. di "lnlu     = " lnlu 

                                                  Prob > chi2     =     0.0000
                                                  LR chi2(3)      =     145.82
Probit regression                                 Number of obs   =       1140
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To test Hypothesis (2) that the display variables are not significant, we estimate the restricted 
model � � � �1 21P COKE PRATIO� � 
 � �  and repeat. 

 
probit coke pratio 

estimates store probitr 

lrtest probit probitr 

 

 

16.2.3 Logit estimation 

The syntax and analysis for logit models is the same as for the probit model.  
 

logit coke pratio disp_coke disp_pepsi 

estimates store logit 

 

 
 

estat classification 

 

 
 

margins, dydx(pratio)  

 

(Assumption: probitr nested in probit)                 Prob > chi2 =    0.0199
Likelihood-ratio test                                  LR chi2(1)  =      5.42

(Assumption: probitr nested in probit)                 Prob > chi2 =    0.0001
Likelihood-ratio test                                  LR chi2(2)  =     19.55

                                                                              
       _cons     1.922972   .3258328     5.90   0.000     1.284352    2.561593
  disp_pepsi    -.7309859   .1678376    -4.36   0.000    -1.059941   -.4020303
   disp_coke     .3515994   .1585398     2.22   0.027     .0408671    .6623316
      pratio    -1.995742   .3145873    -6.34   0.000    -2.612322   -1.379162
                                                                              
        coke        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood = -709.44614                       Pseudo R2       =     0.0949
                                                  Prob > chi2     =     0.0000
                                                  LR chi2(3)      =     148.83
Logistic regression                               Number of obs   =       1140

Classified + if predicted Pr(D) >= .5

   Total           510           630          1140
                                                  
     -             263           507           770
     +             247           123           370
                                                  
Classified           D            ~D         Total
                       True         

Logistic model for coke
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margins, dydx(pratio) at(pratio=1.1 disp_coke=0 disp_pepsi=0) 

 

 
 

margins, predict(pr) at(pratio=1.1 disp_coke=0 disp_pepsi=0) 

 

 

16.2.4 Out-of-sample prediction 

Evaluating the predictive ability of choice models in new data, not used in the estimation, is of 
interest. Use the first 1000 observations for estimation of the linear probability, probit and logit 
models, then predict the remaining 140 outcomes. 

 
regress coke pratio disp_coke disp_pepsi in 1/1000 

predict phat2 

generate p2 = (phat2 >=.5) 

tabulate p2 coke in 1001/1140,row 

 

                                                                              
      pratio    -.4332631   .0639434    -6.78   0.000    -.5585899   -.3079363
                                                                              
                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

dy/dx w.r.t. : pratio
Expression   : Pr(coke), predict()

Model VCE    : OIM
Average marginal effects                          Number of obs   =       1140

                                                                              
      pratio     -.489797   .0753207    -6.50   0.000    -.6374228   -.3421711
                                                                              
                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

               disp_pepsi      =           0
               disp_coke       =           0
at           : pratio          =         1.1
dy/dx w.r.t. : pratio
Expression   : Pr(coke), predict()

Model VCE    : OIM
Conditional marginal effects                      Number of obs   =       1140

                                                                              
       _cons     .4323318   .0224204    19.28   0.000     .3883885     .476275
                                                                              
                   Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

               disp_pepsi      =           0
               disp_coke       =           0
at           : pratio          =         1.1
Expression   : Pr(coke), predict(pr)

Model VCE    : OIM
Adjusted predictions                              Number of obs   =       1140
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probit coke pratio disp_coke disp_pepsi in 1/1000 

estat classification in 1001/1140 

 

 
 

logit coke pratio disp_coke disp_pepsi in 1/1000 

estat classification in 1001/1140 

 

 
 

We find no difference between logit and probit predictions in this example. 

16.3 MULTINOMIAL LOGIT 

Suppose that a decision maker must choose between several distinct alternatives. Let us focus on 
a problem with J = 3 alternatives. An example might be the choice facing a high school graduate. 
Shall I attend a 2-year college, a 4-year college, or not go to college? The factors affecting this 

                 40.71      59.29      100.00 
     Total          57         83         140 
                                             
                 13.64      86.36      100.00 
         1           6         38          44 
                                             
                 53.13      46.88      100.00 
         0          51         45          96 
                                             
        p2           0          1       Total
                if pepsi chosen
             =1 if coke chosen, =0

                  
  row percentage  
    frequency     
                  
  Key             
                  

Classified + if predicted Pr(D) >= .5

   Total            83            57           140
                                                  
     -              45            51            96
     +              38             6            44
                                                  
Classified           D            ~D         Total
                       True         

Probit model for coke

Classified + if predicted Pr(D) >= .5

   Total            83            57           140
                                                  
     -              45            51            96
     +              38             6            44
                                                  
Classified           D            ~D         Total
                       True         

Logistic model for coke
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choice might include household income, the student’s high school grades, family size, race, the 
student’s gender, and the parent’s education. As in the logit and probit models, we try to explain 
the probability that the ith person will choose alternative j,  
 

# $individual  chooses alternative ijp P i j�  
 
In our example there are J = 3 alternatives, denoted by j = 1, 2, or 3. These numerical values have 
no meaning because the alternatives in general have no particular ordering, and are assigned 
arbitrarily. You can think of them as categories A, B and C.  

If we assume a single explanatory factor, xi, then, in the multinomial logit specification, the 
probabilities of individual i choosing alternatives 1,2, 3j �  are: 
 

� � � �1
12 22 13 23

1
1 exp expi

i i

p
x x

�
 � �  � �

,   j = 1 

 
� �

� � � �
12 22

2
12 22 13 23

exp
1 exp exp

i
i

i i

x
p

x x
� �

�
 � �  � � ,   j = 2 

 
� �

� � � �
13 23

3
12 22 13 23

exp
1 exp exp

i
i

i i

x
p

x x
� �

�
 � �  � � ,   j = 3 

 
Because the model is such a complicated nonlinear function of the 	-parameters, it will not 
surprise you to learn that the 	-parameters are not “slopes.” In these models the marginal effect is 
the effect of a change in x, everything else held constant, on the probability that an individual 
chooses alternative m = 1, 2, or 3. It can be shown that 
 

3

2 2
1all else constant

im im
im m j ij

ji i

p p p p
x x �

� �� +
� � � � �� �� + � �

�  

 
Estimation of such models is by maximum likelihood. To illustrate use the data file 
nels_small.dta. We have 1000 observations on students who choose, upon graduating from high 
school, either no college (PSECHOICE=1), a 2-year college (PSECHOICE=2), or a 4-year 
college (PSECHOICE=3). For illustration purposes we focus on the explanatory variable 
GRADES, which is an index ranging from 1.0 (highest level, A+ grade) to 13.0 (lowest level, F 
grade) and represents combined performance in English, Math and Social Studies.4 Open the data 
file and examine its contents. 
 

use nels_small, clear 

describe 

 

 
4 The indexing for grades is a bit awkward since higher grades correspond to smaller numbers. While we could have reversed this, 

we have chosen to stay with the original indexing.  
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Obtain detailed summary statistics for GRADES. 
 

summarize grades, detail 

 
Note that the median of GRADES (50th percentile) is 6.64, and the 5th percentile mark is 2.635. 
We will use these values in calculations below. 
 

 
 
Within the 1000 observations tabulate PSECHOICE to see the distribution of choices. 
 

tab psechoice 

 

 
 
To estimate this model we use the mlogit command. For this command the dependent variable 
must take values 1, 2, …, m, representing different categories facing the decision maker. They are 
unordered alternatives. We attach an option baseoutcome(1) to indicate that we want the first 
category, PSECHOICE = 1 (no college) to be the “base category”. 
 

black           byte   %8.0g                  = 1 if black
female          byte   %8.0g                  = 1 if female
                                                degree
                                                from college or had an advanced
parcoll         byte   %8.0g                  = 1 if most educated parent graduated
famsiz          byte   %8.0g                  number of family members
faminc          float  %9.0g                  gross 1991 family income (in $1000)
                                                = highest
grades          double %10.0g                 average grade on 13 point scale with 1
hscath          byte   %8.0g                  = 1 if catholic high school graduate
                                                = 4-year college
psechoice       byte   %8.0g                  no college = 1, 2 = 2-year college, 3
                                                                                    
variable name   type   format      label      variable label
              storage  display     value

99%        11.13          12.33       Kurtosis       2.243896
95%       10.105          11.77       Skewness      -.0909654
90%        9.525          11.53       Variance       5.134097
75%         8.24          11.46
                        Largest       Std. Dev.      2.265855
50%         6.64                      Mean            6.53039

25%        4.905              2       Sum of Wgt.        1000
10%        3.375           1.96       Obs                1000
 5%        2.635           1.85
 1%         2.02           1.74
      Percentiles      Smallest
                                                             
      average grade on 13 point scale with 1 = highest

      Total        1,000      100.00
                                                
          3          527       52.70      100.00
          2          251       25.10       47.30
          1          222       22.20       22.20
                                                
    college        Freq.     Percent        Cum.
   = 4-year  
 college, 3  
     2-year  
   = 1, 2 =  
 no college  
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mlogit psechoice grades, baseoutcome(1) 

 
On the Stata menu you can locate the mlogit dialog box by entering the command db mlogit, or 
by following Statistics > Categorical outcomes > Multinomial logistic regression 

Because estimation is by maximum likelihood, there will be an iteration history, showing the 
steps that Stata has taken.  
 

 
 

The algorithm used converges to a solution in 4 steps. Note that the value of the log-likelihood is 
increasing with each iteration. 

The estimation results are 
 

 
 

In the results there are estimated coefficients for PSECHOICE = 2 and = 3. These are 12�� , 22�� , 

13�� , and 23�� . The other coefficients relate to the first alternative, 11 21 0� � � � , and are set to zero 
because of the identification problem. The coefficients themselves have little direct meaning, but 
the coefficients of GRADES are statistically significant. At the top of the results is the LR 
chi2(2) which is the result of a joint test that the coefficients of GRADES are zero. This is the 
test of overall model significance. 

Use the post-estimation command predict to obtain predicted probabilities of every choice 
for each observation in the sample. Because there are 3 choices, 3 names must be provided for the 
predictions. 
 

predict ProbNo ProbCC ProbColl 

 
If we summarize these predicted probabilities we find that their mean is the same as the 
percentage of choices in the original data (see results of tabulate command above). This is a 
characteristic of the logit model. 
 

summarize ProbNo ProbCC ProbColl 

 

Iteration 4:   log likelihood = -875.31309  
Iteration 3:   log likelihood = -875.31309  
Iteration 2:   log likelihood = -875.36084  
Iteration 1:   log likelihood = -881.68524  
Iteration 0:   log likelihood = -1018.6575  

                                                                              
       _cons     5.769876   .4043229    14.27   0.000     4.977417    6.562334
      grades    -.7061967   .0529246   -13.34   0.000     -.809927   -.6024664
3             
                                                                              
       _cons     2.506421   .4183848     5.99   0.000     1.686402     3.32644
      grades    -.3087889   .0522849    -5.91   0.000    -.4112654   -.2063125
2             
                                                                              
1               (base outcome)
                                                                              
   psechoice        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood = -875.31309                       Pseudo R2       =     0.1407
                                                  Prob > chi2     =     0.0000
                                                  LR chi2(2)      =     286.69
Multinomial logistic regression                   Number of obs   =       1000
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The probabilities and marginal effects are complicated algebraic expressions, but luckily the 
margins post-estimation command will do the calculations. There is one additional required 
option in the command. Because there are 3 choices, we must indicate the outcome for which the 
predictions or marginal effects are desired. Also, as in probit, if we want to specify the values of 
the explanatory variables at which the derivative are calculated we can do so with an at option. 
Some examples of using margins to compute predicted probabilities are: 
 

margins, predict(outcome(1)) at(grades=6.64) 

 

 
 

Other predictions are obtained similarly, and for these we omit the output. 
 

margins, predict(outcome(2)) at(grades=6.64) 

margins, predict(outcome(3)) at(grades=6.64) 

margins, predict(outcome(1)) at(grades=2.635) 

margins, predict(outcome(2)) at(grades=2.635) 

margins, predict(outcome(3)) at(grades=2.635) 

 
To compute the derivatives of probability with respect to individual explanatory variables we 
again using margins. 

 
margins, dydx(grades) at(grades=6.64) 

 

 
 

Above, since we did not specify the outcome of interest, Stata computes the change in the 
probability of the base outcome, alternative 1, given a unit change in grades. 

    ProbColl        1000        .527    .2388916   .0399892   .9199234
      ProbCC        1000        .251    .0784017   .0702686   .3314252
      ProbNo        1000        .222    .1739746    .009808   .7545629
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max

                                                                              
       _cons      .181006   .0148743    12.17   0.000      .151853    .2101591
                                                                              
                   Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

at           : grades          =        6.64
Expression   : Pr(psechoice==1), predict(outcome(1))

Model VCE    : OIM
Adjusted predictions                              Number of obs   =       1000

                                                                              
      grades     .0841445   .0063047    13.35   0.000     .0717875    .0965015
                                                                              
                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

at           : grades          =        6.64
dy/dx w.r.t. : grades
Expression   : Pr(psechoice==1), predict()

Model VCE    : OIM
Conditional marginal effects                      Number of obs   =       1000
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If we omit the conditioning level of GRADES, then Stata computes the Average marginal 
effect over all individuals in the sample. That is, it finds the marginal effect on the probability 
of the first outcome at the grade level of each student, as computed in the previous command, and 
then finds the average of those marginal effects. 

 
margins, dydx(grades) 

 

 
 

The marginal effects for the other choices at the two chosen percentiles are obtained using similar 
commands. We omit the output. 

 
margins, dydx(grades) predict(outcome(2)) at(grades=6.64) 

margins, dydx(grades) predict(outcome(2)) at(grades=2.635) 

margins, dydx(grades) predict(outcome(3)) at(grades=6.64) 

margins, dydx(grades) predict(outcome(3)) at(grades=2.635) 

16.4 CONDITIONAL LOGIT 

Suppose that a decision maker must choose between several distinct alternatives, just as in the 
multinomial logit model. In a marketing context, suppose our decision is between three types (J = 
3) of soft drinks, say Pepsi, 7-Up and Coke Classic, in 2-liter bottles. Shoppers will visit their 
supermarkets and make a choice, based on prices of the products and other factors. With the 
advent of supermarket scanners at checkout, data on purchases (what brand, how many units, and 
the price paid) are recorded. Of course we also know the prices of the products that the consumer 
did not buy on a particular shopping occasion. The key point is that if we collect data on soda 
purchases from a variety of supermarkets, over a period of time, we observe consumer choices 
from the set of alternatives and we know the prices facing the shopper on each trip to the 
supermarket.  

Let 1iy , 2iy  and 3iy  be indicator variables that indicate the choice made by individual i. If 
alternative 1 (Pepsi) is selected, then 1 1iy � , 2 0iy �  and 3 0iy � . If alternative 2 (7-Up) is 
selected then 1 0iy � , 2 1iy �  and 3 0iy � .  If alternative 3 (Coke) is selected then 1 0iy � , 2 0iy �  
and 3 1iy � . The price facing individual i for brand j is PRICEij. That is, the price of Pepsi, 7-Up 
and Coke is potentially different for each customer who purchases soda. Remember, different 
customers can shop at different supermarkets and at different times. Variables like price are to be 
individual and alternative specific, because they vary from individual to individual and are 
different for each choice the consumer might make. 

                                                                              
      grades     .0743738   .0052076    14.28   0.000      .064167    .0845805
                                                                              
                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

dy/dx w.r.t. : grades
Expression   : Pr(psechoice==1), predict()

Model VCE    : OIM
Average marginal effects                          Number of obs   =       1000



Qualitative and Limited Dependent Variable Models   515 

Our objective is to understand the factors that lead a consumer to choose one alternative over 
another, and we will construct a model for the probability that individual i chooses alternative j 
 

# $individual  chooses alternative ijp P i j�  
 
The conditional logit model specifies these probabilities as 
 

� �
� � � � � �

1 2

11 2 1 12 2 2 13 2 3

exp
exp exp exp

j ij
ij

i i i

PRICE
p

PRICE PRICE PRICE
�  �

�
�  �  � �  � �  

 
Note that unlike the probabilities for the multinomial logit model, there is only one parameter 2�  
relating the effect of each price to the choice probability pij. We have also included alternative 
specific constants (intercept terms). These cannot all be estimated, and one must be set to zero. 
We will set 13 0� � . 

Estimation of the unknown parameters is by maximum likelihood. How a change in price 
affects the choice probability is different for “own price” changes and “cross price” changes. 
Specifically it can be shown that the own-price effect is 
 

� � 21ij
ij ij

ij

p
p p

PRICE
+

� � �
+  

 
The sign of 2�  indicates the direction of the own-price effect.  

The change in probability of alternative j being selected if the price of alternative k changes 
(k  j) is 
 

2
ij

ij ik
ik

p
p p

PRICE
+

� � �
+  

 
The cross-price effect is in the opposite direction of the own-price effect. Examining the marginal 
effects, we can see that if we have estimates of the coefficients and predicted values, we can 
compute them. 

We observe 1822 purchases, covering 104 weeks and 5 stores, in which a consumer 
purchased either two-liter bottles of Pepsi (34.6%), 7-Up (37.4%) or Coke Classic (28%). These 
data are in the file cola.dta. Open this data file. Compute summary statistics. 
 

use cola, clear 

describe 
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summarize 

 

 
 

For conditional logit the data must be in a stacked format. There are 3 choices, and thus there 
must be 3 lines of data for each individual, indicated by the variable id. List the data for the first 3 
individuals 
 

list in 1/9 

 

 
 
The lines of data correspond to alternatives 1, 2 and 3, with choice being 1 for the alternative 
chosen and 0 otherwise. The variable price similarly contains the prices for alternatives 1, 2 and 3 
in order, and so on.  

It is usually important to include alternative specific constants, like indicator variables, for 
each brand. These indicator variables serve to capture the effects of market share. Using the 
automatic observation number variable _n, we can generate a variable that lists the alternatives 1, 
2 and 3. 
 

sort id, stable 

by id:gen alt = _n 

 
Note again that this process works because the data are ordered consistently with an observation 
for Pepsi, then 7-Up and then Coke. List some of the observations to see what we have done. 
 

                                                                                    
display         byte   %8.0g                  = 1 if displayed at time of purchase
                                                purchase
feature         byte   %8.0g                  = 1 featured item at the time of
price           double %10.0g                 price of 2 liter soda
choice          byte   %8.0g                  = 1 if brand chosen
id              int    %8.0g                  customer id
                                                                                    
variable name   type   format      label      variable label
              storage  display     value
                                                                                    

     display        5466    .3635199    .4810567          0          1
     feature        5466    .5087816    .4999686          0          1
       price        5466    1.185134    .3059794        .16       2.99
      choice        5466    .3333333    .4714476          0          1
          id        5466       911.5    526.0141          1       1822
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max

                                                
  9.    3        1     .89         1         0  
  8.    3        0     .84         0         1  
  7.    3        0    1.41         0         0  
  6.    2        1     .89         1         1  
                                                
  5.    2        0    1.79         0         0  
  4.    2        0    1.79         0         0  
  3.    1        1    1.79         0         0  
  2.    1        0    1.79         0         0  
  1.    1        0    1.79         0         0  
                                                
       id   choice   price   feature   display  
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list in 1/3 

 

 
 
Now, summarize the data by alternative 
 

bysort alt:summarize choice price feature display 

 

 
 
In the data we have, alternative 2 (7-Up) has slightly lower average price and uses displays more 
frequently than alternative 1 (Pepsi) and alternative 3 (Coke). 

16.4.1 Estimation using asclogit 

The command asclogit stands for alternative-specific conditional logit. First, we will make an 
enhancement that, while not strictly necessary, is very convenient when interpreting the results. 
We will create specific value labels, so that alt will no longer be 1, 2 and 3, but will be 
represented by the brand names. The first statement below creates the labels, and the second 
applies them to the variable alt.  
 

label define brandlabel 1 "Pepsi"  2  "SevenUp" 3 "Coke" 

label values alt brandlabel 

 

                                                      
  3.    1        1    1.79         0         0     3  
  2.    1        0    1.79         0         0     2  
  1.    1        0    1.79         0         0     1  
                                                      
       id   choice   price   feature   display   alt  
                                                      

     display        1822    .3358946    .4724319          0          1
     feature        1822    .4956092     .500118          0          1
       price        1822    1.210307    .2908002        .68       1.79
      choice        1822    .2799122    .4490791          0          1
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max

-> alt = 3
                                                                               

     display        1822    .4429199    .4968675          0          1
     feature        1822    .5159166    .4998838          0          1
       price        1822     1.11764    .3242961        .16       2.99
      choice        1822    .3743139    .4840781          0          1
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max

-> alt = 2
                                                                               

     display        1822    .3117453    .4633336          0          1
     feature        1822    .5148189    .4999176          0          1
       price        1822    1.227453    .2902694        .68       1.79
      choice        1822    .3457739    .4757505          0          1
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max

-> alt = 1
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The command syntax for asclogit is found using help asclogit. 
 

 
 
A dialog box is obtained using db asclogit or by following the menu path 

 
Statistics > Categorical outcomes > Alternative-specific conditional logit 

 
For the coke choice model we use 

 
asclogit choice price, case(id) alternatives(alt) basealternative(Coke) 

 
In this command case identifies the individual. The command alternatives is required. It 
indicates the choices that are available to each individual. The command asclogit will 
automatically create the alternative specific variables that we called pepsi and sevenup and add 
them to the model. The specification of the base alternative, using basealternative(Coke), is 
not strictly required, but it is usually better to choose the base group rather than follow the 
internal assignment rules in the software. The results are: 
 

 
 
The asclogit command has post-estimation commands. First, there is a nice summary of the 
choices made in the sample data. 

                                                                              
Coke             (base alternative)
                                                                              
       _cons      .103833   .0624705     1.66   0.096    -.0186069     .226273
SevenUp       
                                                                              
       _cons     .2831663    .062381     4.54   0.000     .1609019    .4054307
Pepsi         
                                                                              
       price    -2.296368   .1376575   -16.68   0.000    -2.566172   -2.026565
alt           
                                                                              
      choice        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood = -1824.5621                       Prob > chi2     =     0.0000
                                                  Wald chi2(1)    =     278.28

                                                              max =          3
                                                              avg =        3.0
Alternative variable: alt                      Alts per case: min =          3

Case variable: id                              Number of cases    =       1822
Alternative-specific conditional logit         Number of obs      =       5466
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estat alternatives 

 

 
 
More importantly, there is a post-estimation command that will not only compute the predicted 
probabilities of each alternative but also the marginal effects. The default command will carry out 
the calculations at the means of the alternatives of the explanatory variable price. 
 

estat mfx 

 
Better yet, we can compute the predicted probabilities and marginal effects at specific values of 
price for each alternative. 
 

estat mfx, at(Coke:price=1.10 Pepsi:price=1 SevenUp:price=1.25) 

 

 
 

                                                                             
         3           3               Coke        1822        510      27.99  
         2           2            SevenUp        1822        682      37.43  
         1           1              Pepsi        1822        630      34.58  
                                                                             
     index        value             label     present   selected   selected  
             Alternative                       Cases   Frequency    Percent  
                                                                             
   Alternatives summary for alt

                                                                               
        Coke   -.472188   .029761  -15.87   0.000  -.530519  -.413857       1.1
     SevenUp    .151136   .008372   18.05   0.000   .134727   .167545      1.25
       Pepsi    .321052   .025424   12.63   0.000   .271221   .370883         1
price                                                                          
                                                                               
variable         dp/dx   Std. Err.    z     P>|z|  [    95% C.I.    ]       X
                                                                               
Pr(choice = Coke|1 selected) = .28934312

                                                                               
        Coke    .151136   .008372   18.05   0.000   .134727   .167545       1.1
     SevenUp   -.403527   .018607  -21.69   0.000  -.439996  -.367058      1.25
       Pepsi    .252391   .014163   17.82   0.000   .224632    .28015         1
price                                                                          
                                                                               
variable         dp/dx   Std. Err.    z     P>|z|  [    95% C.I.    ]       X
                                                                               
Pr(choice = SevenUp|1 selected) = .22746378

                                                                               
        Coke    .321052   .025424   12.63   0.000   .271221   .370883       1.1
     SevenUp    .252391   .014163   17.82   0.000   .224632    .28015      1.25
       Pepsi   -.573443   .035023  -16.37   0.000  -.642088  -.504799         1
price                                                                          
                                                                               
variable         dp/dx   Std. Err.    z     P>|z|  [    95% C.I.    ]       X
                                                                               
Pr(choice = Pepsi|1 selected) =  .4831931
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16.5 ORDERED CHOICE MODELS 

The choice options in multinomial and conditional logit models have no natural ordering or 
arrangement. However, in some cases choices are ordered in a specific way. Examples include: 
 

� Results of opinion surveys in which responses can be strongly disagree, disagree, neutral, 
agree or strongly agree.  

� Assignment of grades or work performance ratings. Students receive grades A, B, C, D, F 
which are ordered on the basis of a teacher’s evaluation of their performance. Employees 
are often given evaluations on scales such as Outstanding, Very Good, Good, Fair and 
Poor which are similar in spirit. 

� Standard and Poor’s rates bonds as AAA, AA, A, BBB and so on, as a judgment about 
the credit worthiness of the company or country issuing a bond, and how risky the 
investment might be.  

 
When modeling these types of outcomes numerical values are assigned to the outcomes, but the 
numerical values are ordinal, and reflect only the ranking of the outcomes. In the first example, 
we might assign a dependent variable y the values  
 

1 strongly disagree
2 disagree
3 neutral
4 agree
5 strongly agree

y

4
E
EE� 5
E
E
E6

 

 
In POE4 the problem of choosing what type of college to attend after graduating from high 
school is used as an illustration. We might rank the possibilities as 
 

3 4-year college (the full college experience)
2 2-year college (a partial college experience)
1 no college

y
4
E� 5
E
6  

 
The choices we observe are based on a comparison of “sentiment” towards higher education, *

iy , 
which is taken simply to be function of GRADES in the text example, 
 

*
i i iy GRADES e��   

 
to certain thresholds. Because there are M = 3 alternatives there are M�1 = 2 thresholds 1	  and 

2	 , with 1 2	 ! 	 . The index model does not contain an intercept because it would be exactly 
collinear with the threshold variables. If sentiment towards higher education is in the lowest 
category, then *

1iy � 	  and the alternative “no college” is chosen, if *
1 2iy	 ! �	  then the 

alternative “2-year college” is chosen, and if sentiment towards higher education is in the highest 
category, then *

1iy � 	  and “4-year college” is chosen. That is, 
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*
2
*

1 2
*

1

3 (4-year college) if  
2 (2-year college) if  
1 (no college) if 

i

i

i

y
y y

y

4 � 	
E� 	 ! � 	5
E � 	6  

 
The ordinal probit model assumes that the errors ei are standard normal.  

The example uses the data file nels_small.dta. Open the data file. 
 

use nels_small, clear 

 
Obtain the detailed summary statistics for the variable GRADES. 
 

summarize grades, detail 

 

 
 
Tabulate the choices made by sample members. 
 

tab psechoice 

 

 
 

The ordered probit syntax is just like the usual regression model. To use a dialog box for 
specifying the model follow Statistics > Ordinal outcomes > Ordered probit regression or 
enter db oprobit. 
 

oprobit psechoice grades 

 
This is a maximum likelihood estimation problem. The Stata results show that it takes only 3 
iterations until the numerical algorithm converges. 

99%        11.13          12.33       Kurtosis       2.243896
95%       10.105          11.77       Skewness      -.0909654
90%        9.525          11.53       Variance       5.134097
75%         8.24          11.46
                        Largest       Std. Dev.      2.265855
50%         6.64                      Mean            6.53039

25%        4.905              2       Sum of Wgt.        1000
10%        3.375           1.96       Obs                1000
 5%        2.635           1.85
 1%         2.02           1.74
      Percentiles      Smallest
                                                             
      average grade on 13 point scale with 1 = highest

. summarize grades, detail

      Total        1,000      100.00
                                                
          3          527       52.70      100.00
          2          251       25.10       47.30
          1          222       22.20       22.20
                                                
    college        Freq.     Percent        Cum.
   = 4-year  
 college, 3  
     2-year  
   = 1, 2 =  
 no college  
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The estimated coefficient of grades is �0.3066 and it is very significant. The “/cut” parameters 
are the estimated thresholds 1	  and 2	 . 

The marginal effects for this model are calculated differently for each outcome.  
 

# $ � �

# $ � � � �

# $ � �

1

1 2

2

1

2

3

P y
GRADES

GRADES

P y
GRADES GRADES

GRADES

P y
GRADES

GRADES

+ �
� �A 	 �� ��

+

+ �
� �A 	 �� � A 	 �� � ��� �+

+ �
� A 	 �� ��

+

 

 
The margins command in Stata will compute these marginal effects. The additional option that is 
required indicates for which rank outcome the marginal effect is calculated. If we choose the 
median grades the marginal effect on the probability of attending a 4-year college is 
 

margins, dydx(grades) at(grades=6.64) predict(outcome(3)) 

 

 
 
If we choose the 5th percentile value, the marginal effect is 
 

margins, dydx(grades) at(grades=2.635) predict(outcome(3)) 

                                                                              
       /cut2    -2.089993   .1357681                     -2.356094   -1.823893
       /cut1      -2.9456   .1468283                     -3.233378   -2.657822
                                                                              
      grades    -.3066252   .0191735   -15.99   0.000    -.3442045   -.2690459
                                                                              
   psechoice        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood = -875.82172                       Pseudo R2       =     0.1402
                                                  Prob > chi2     =     0.0000
                                                  LR chi2(1)      =     285.67
Ordered probit regression                         Number of obs   =       1000

Iteration 3:   log likelihood = -875.82172  
Iteration 2:   log likelihood = -875.82172  
Iteration 1:   log likelihood = -876.21962  
Iteration 0:   log likelihood = -1018.6575  

                                                                              
      grades    -.1221475   .0076332   -16.00   0.000    -.1371084   -.1071867
                                                                              
                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

at           : grades          =        6.64
dy/dx w.r.t. : grades
Expression   : Pr(psechoice==3), predict(outcome(3))

Model VCE    : OIM
Conditional marginal effects                      Number of obs   =       1000
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16.6 MODELS FOR COUNT DATA 

When the dependent variable in a regression model is a count of the number of occurrences of an 
event, the outcome variable is y = 0, 1, 2, 3, … These numbers are actual counts, and thus 
different from the ordinal numbers of the previous section. While we are again interested in 
explaining and predicting probabilities, such as the probability that an individual will take two or 
more trips to the doctor during a year, the probability distribution we use as a foundation is the 
Poisson, not the normal or the logistic. If Y is a Poisson random variable, then its probability 
function is 
 

� � � � , 0,1,2,
!

yef y P Y y y
y

�))
� � � � �  

 
The factorial (!) term � � � �! 1 2 1y y y y� � � � � � �� . This probability function has one 

parameter, ), which is the mean (and variance) of Y. That is, � � � �varE Y Y� � ) . In a regression 

model we try to explain the behavior of � �E Y  as a function of some explanatory variables. We 

do the same here, keeping the value of � � 0E Y   by defining 
 

� � � �1 2expE Y x� ) � � �  
 
As in other modeling situations we would like to use the estimated model to predict outcomes, 
determine the marginal effect of a change in an explanatory variable on the mean of the 
dependent variable, and test the significance of coefficients. 

Prediction of the conditional mean of y is straightforward. Given the maximum likelihood 
estimates 1��  and 2��  and given a value of the explanatory variable x0, then  
 

� �� � �0 0 1 2 0expE y x� ) � � �� � �  

 
This value is an estimate of the expected number of occurrences observed, if x takes the value x0. 
The probability of a particular number of occurrences can be estimated by inserting the estimated 
conditional mean into the probability function, as 

                                                                              
      grades    -.0537788   .0035887   -14.99   0.000    -.0608126    -.046745
                                                                              
                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

at           : grades          =       2.635
dy/dx w.r.t. : grades
Expression   : Pr(psechoice==3), predict(outcome(3))

Model VCE    : OIM
Conditional marginal effects                      Number of obs   =       1000



524   Chapter 16 

 

� ��
� �0 0exp

Pr , 0,1,2,
!

y

Y y y
y

�) )
� � �

� �
�

 
 
The marginal effect of a change in a continuous variable x in the Poisson regression model is not 
simply given by the parameter, because the conditional mean model is a nonlinear function of the 
parameters. Using our specification that the conditional mean is given by 
� � � �1 2expi i iE y x� ) � � � , and using rules for derivatives of exponential functions, we obtain 

the marginal effect 
 

� �
2

i
i

i

E y
x

+
� ) �

+
 

 
This choice defines the Poisson regression model for count data. 

The example in Principles of Econometrics, 4th Edition concerns the number of medals won 
by a country at the Olympic games in 1988. We will estimate a Poisson regression explaining the 
number of medals won (MEDALTOT) as a function of the logarithms of population and gross 
domestic product (measure in real 1995 dollars). The data file is olympics.dta. Open the data file. 
 

use olympics, clear 

 
Keep the data for the year 1988. 
  

keep if year==88 

 
Keep only the variables of interest. 
 

keep medaltot pop gdp 

 
The Poisson model we will initially estimate has the conditional mean function 
 

� � � � � �� �1 2 3exp ln lnE MEDALTOT POP GDP� ) � �  �  �  
 
Create the logarithmic variables. 
 

generate lpop = ln(pop) 

generate lgdp = ln(gdp) 

 
Estimate the Poisson model and store the results. The syntax is just like the usual regression 
model. 
 

poisson medaltot lpop lgdp 

 
The estimation results are: 
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To reach the poisson dialog box enter the command db poisson, or on the Stata menu bar select 
Statistics > Count outcomes > Poisson regression 

Use the margins command to compute the marginal effects at the median values 
 

margins, dydx(*) at((median) lpop lgdp) 

 

 
 

Using margins we can compute the predicted number of events when explanatory variables are at 
their medians.  
 

margins, predict(n) at((median) lpop lgdp) 

 

 
 

                                                                              
       _cons    -15.88746   .5118048   -31.04   0.000    -16.89058   -14.88434
        lgdp     .5766033   .0247217    23.32   0.000     .5281497     .625057
        lpop     .1800376   .0322801     5.58   0.000     .1167697    .2433055
                                                                              
    medaltot        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood = -722.33649                       Pseudo R2       =     0.5447
                                                  Prob > chi2     =     0.0000
                                                  LR chi2(2)      =    1728.04
Poisson regression                                Number of obs   =        151

Iteration 3:   log likelihood = -722.33649  
Iteration 2:   log likelihood = -722.33649  
Iteration 1:   log likelihood = -722.33675  
Iteration 0:   log likelihood = -722.76694  

                                                                              
        lgdp     .6389744   .0402253    15.88   0.000     .5601343    .7178145
        lpop     .1995122   .0389282     5.13   0.000     .1232143    .2758101
                                                                              
                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

               lgdp            =    22.81883 (median)
at           : lpop            =    15.73425 (median)
dy/dx w.r.t. : lpop lgdp
Expression   : Predicted number of events, predict()

Model VCE    : OIM
Conditional marginal effects                      Number of obs   =        151

                                                                              
       _cons      1.10817   .0903926    12.26   0.000     .9310035    1.285336
                                                                              
                   Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

               lgdp            =    22.81883 (median)
at           : lpop            =    15.73425 (median)
Expression   : Predicted number of events, predict(n)

Model VCE    : OIM
Adjusted predictions                              Number of obs   =        151
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16.7 CENSORED DATA MODELS 

An example that illustrates the situation is based on Thomas Mroz’s (1987) study of married 
women’s labor force participation and wages. The data are in the file mroz.dta and consist of 753 
observations on married women. Of these women 325 did not work outside the home, and thus 
had no hours worked and no reported wages. The histogram of hours worked is shown in Figure 
16.3 of Principles of Econometrics, 4th Edition. The histogram shows the large fraction of women 
who did not enter the labor force. This is an example of censored data, meaning that a substantial 
fraction of the observations on the dependent variable take a limit value, which is zero in the case 
of market hours worked by married women. 

16.7.1 Simulated data example 

In Principles of Econometrics, 4th Edition, Section 16.7.2 the underlying ideas are presented first 
using a Monte Carlo experiment and simulated data in the file tobit.dta. Using simulation is an 
excellent way to learn econometrics. It requires us to understand how the data are obtained under 
a particular set of assumptions. The observed sample is obtained within the framework of an 
index or latent variable model, similar to the one discussed in Section 16.5 of this manual on the 
ordered probit model. Let the latent variable be  
 

*
1 2 9i i i i iy x e x e�� �  � �    

 
In this example we have given the parameters the specific values 1 9� � �  and 2 1� � . The error 

term is assumed to have a normal distribution, � �2~ 0, 16ie N � � . The observable outcome yi 

takes the value zero if * 0iy � , but *
i iy y�  if * 0iy � . That is, 

 
*

* *

0 if 0

if 0

i
i

i i

y
y

y y

4 �E� 5
�E6

 

 
Open tobit.dta. 
 

use tobit, clear 

describe 

 
First, examine the data summary statistics for all the data. 
 

Summarize 

 

 

 
 

Now summarize the data for positive y values 
 

           x         200     9.88019    5.659853    .148959     19.824
           y         200    2.951102    3.906139          0    14.9416
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max
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summarize if y>0 

 

 
 
The simulated data has 100 observations with positive y values. Estimate the least squares 
regression of y on x. 
 

reg y x 

 

 
 
Note that the estimates are far from the true values. 

Now estimate the regression using only observations for which y > 0.  
 

reg y x if y>0 

 

 
 
Again the estimates are far from the true values.  

The syntax for tobit estimation is like a usual regression, except for the requirement that we 
specify whether the data are censored from below (lower limit, ll) or above (upper limit, ul). 
Enter help tobit for the complete syntax. The simulated data has a lower limit, so the 
estimation command is 
 

tobit y x, ll 

 
which yields the results: 
 

           x         100    14.15509    3.481772    2.00901     19.824
           y         100    5.902204    3.616079    .106413    14.9416
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max

                                                                              
       _cons    -2.147694   .3705802    -5.80   0.000    -2.878485   -1.416903
           x     .5160625   .0325657    15.85   0.000     .4518423    .5802827
                                                                              
           y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    3036.32671   199  15.2579232           Root MSE      =  2.6001
                                                       Adj R-squared =  0.5569
    Residual    1338.59888   198  6.76060042           R-squared     =  0.5591
       Model    1697.72783     1  1697.72783           Prob > F      =  0.0000
                                                       F(  1,   198) =  251.12
      Source         SS       df       MS              Number of obs =     200

                                                                              
       _cons    -3.139881   1.205478    -2.60   0.011    -5.532112   -.7476489
           x     .6387869   .0827208     7.72   0.000     .4746302    .8029437
                                                                              
           y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    1294.52635    99  13.0760238           Root MSE      =  2.8657
                                                       Adj R-squared =  0.3720
    Residual     804.80632    98  8.21230938           R-squared     =  0.3783
       Model    489.720033     1  489.720033           Prob > F      =  0.0000
                                                       F(  1,    98) =   59.63
      Source         SS       df       MS              Number of obs =     100
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Note that these maximum likelihood estimates are much close to the true values. The coefficient 
/sigma is the estimate of �, which in the Monte Carlo experiment was set to be 4. 
The tobit dialog box is accessed by entering the command db tobit, or following the menu path  

 
Statistics > Linear models and related > Censored regression > Tobit regression 

16.7.2 Mroz data example 

If we wish to estimate a model explaining the market hours worked by a married woman, what 
explanatory variables would we include? Factors that would tend to pull a woman into the labor 
force are her education and her prior labor market experience. Factors that may reduce her 
incentive to work are her age, the presence of young children in the home. Thus we might 
propose the regression model 
 

1 2 3 4 4 6HOURS EDUC EXPER AGE KIDSL e� � � � � �   
 
where the observed variable HOURS is either a positive number of hours worked, or zero, for 
women who did not enter the labor force. KIDSL6 is the number of children less than 6 years old 
in the household.  

Open mroz.dta and describe the regression variables. 
 

use mroz, clear 

describe lfp hours educ exper age kidsl6 

 

 
 
Examine the data by computing summary statistics for the key variables. 

                         0 right-censored observations
                       100     uncensored observations
  Obs. summary:        100  left-censored observations at y<=0
                                                                              
      /sigma     3.575591   .2610292                      3.060853    4.090329
                                                                              
       _cons     -10.2773   1.096991    -9.37   0.000    -12.44052   -8.114084
           x     1.048705   .0789849    13.28   0.000     .8929506     1.20446
                                                                              
           y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

Log likelihood = -301.87794                       Pseudo R2       =     0.2535
                                                  Prob > chi2     =     0.0000
                                                  LR chi2(1)      =     205.08
Tobit regression                                  Number of obs   =        200

                                                old in household
kidsl6          byte   %8.0g                  Number of children less than 6 years
age             byte   %8.0g                  Wife's age
                                                market experience
exper           byte   %8.0g                  Actual years of wife's previous labor
                                                years
educ            byte   %8.0g                  Wife's educational attainment, in
hours           int    %8.0g                  Wife's hours of work in 1975
                                                1975, else 0
lfp             byte   %8.0g                  dummy variable = 1 if woman worked in
                                                                                    
variable name   type   format      label      variable label
              storage  display     value
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summarize lfp hours educ exper age kidsl6 

 

 
 

To illustrate the censored nature of the data, construct a histogram for the variable hours. 
 

histogram hours, frequency title(Hours worked by married women) 

 

 

 
 
A large proportion of married women in the sample have 0 hours of labor market work. Obtain 
the summary statistics for those with positive hours worked. 
 

summarize hours educ exper age kidsl6 if (hours>0) 

 

 
 
Compare these to the summary statistics for those who are not in the labor force. 
 

summarize educ exper age kidsl6 if (hours==0) 

 

      kidsl6         753    .2377158     .523959          0          3
                                                                      
         age         753    42.53785    8.072574         30         60
       exper         753    10.63081     8.06913          0         45
        educ         753    12.28685    2.280246          5         17
       hours         753    740.5764    871.3142          0       4950
         lfp         753    .5683931    .4956295          0          1
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max

0
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Wife's hours of work in 1975

Hours worked by married women

      kidsl6         428    .1401869    .3919231          0          2
         age         428    41.97196    7.721084         30         60
       exper         428    13.03738    8.055923          0         38
        educ         428    12.65888    2.285376          5         17
       hours         428     1302.93    776.2744         12       4950
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max
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The nonworking women have slightly lower education and experience, are slightly older and have 
more small children. 

Carry out a least squares regression of the model for hours worked using all the sample 
observations, and then again using only women with positive hours worked. 
 

regress hours educ exper age kidsl6 

 

 
 

regress hours educ exper age kidsl6 if (hours>0) 

 

 
 
Compare the coefficient estimates of educ and kidsl6.  

Now obtain the tobit estimates. 
 

tobit hours educ exper age kidsl6, ll 

 

      kidsl6         325    .3661538    .6368995          0          3
         age         325    43.28308    8.467796         30         60
       exper         325    7.461538    6.918567          0         45
        educ         325    11.79692    2.181995          5         17
       hours         325           0           0          0          0
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max

                                                                              
       _cons     1335.306   235.6487     5.67   0.000     872.6945    1797.918
      kidsl6    -447.8547   58.41252    -7.67   0.000    -562.5267   -333.1827
         age    -31.30782    3.96099    -7.90   0.000     -39.0838   -23.53184
       exper     48.03981   3.641804    13.19   0.000     40.89044    55.18919
        educ     27.08568   12.23989     2.21   0.027     3.057054     51.1143
                                                                              
       hours        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total     570909724   752  759188.463           Root MSE      =  753.01
                                                       Adj R-squared =  0.2531
    Residual     424138429   748  567029.985           R-squared     =  0.2571
       Model     146771295     4  36692823.7           Prob > F      =  0.0000
                                                       F(  4,   748) =   64.71
      Source         SS       df       MS              Number of obs =     753

                                                                              
       _cons     1829.746   292.5356     6.25   0.000     1254.741     2404.75
      kidsl6     -305.309   96.44904    -3.17   0.002    -494.8881   -115.7299
         age    -17.10821   5.457674    -3.13   0.002    -27.83575   -6.380677
       exper     33.93637   5.009185     6.77   0.000     24.09038    43.78237
        educ    -16.46211   15.58083    -1.06   0.291     -47.0876    14.16339
                                                                              
       hours        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total     257311020   427   602601.92           Root MSE      =  729.51
                                                       Adj R-squared =  0.1168
    Residual     225117032   423  532191.566           R-squared     =  0.1251
       Model    32193987.4     4  8048496.86           Prob > F      =  0.0000
                                                       F(  4,   423) =   15.12
      Source         SS       df       MS              Number of obs =     428
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As previously argued the least squares estimates are unreliable because the least squares estimator 
is both biased and inconsistent. The Tobit estimates have the anticipated signs and are all 
statistically significant at the 0.01 level.  

To compute and interpret marginal effects we must specify exactly what we want. Two 
regression functions of interest are � �E HOURS , the expectation of the observed hours, and 

� �| 0E HOURS HOURS � , the expected hours worked conditional on the woman being in the 
labor force. For the observed hours, the marginal effect of education, for example is 

 
� � � �1 2 3 4 4 26

E HOURS
EDUC EXPER AGE KIDSL

EDUC
+

� 
 �  �  �  �  � ��
+

 

 
This is the coefficient of EDUC multiplied by a scale factor, � �
 	 . To compute the scale factor 
required for calculation of the marginal effects we must choose values of the explanatory 
variables. We choose the sample means for EDUC (12.29), EXPER (10.63), AGE (42.5) and 
assume one small child at home (rather than the mean value of 0.24). The Stata commands to 
compute the scale factor after a tobit estimation are 
 

scalar xb = _b[_cons]+_b[educ]*12.29+_b[exper]*10.63 

 +_b[age]*42.5+_b[kidsl6]*1 

scalar cdf = normal( xb/_b[/sigma]) 

display "x*beta = " xb 

display "Tobit scale Factor: cdf evaluated at zi = " cdf 

display "Marginal effect of education = " _b[educ]*cdf 

 

 
 

Thus the marginal effect on observed hours of work of another year of education is  

                         0 right-censored observations
                       428     uncensored observations
  Obs. summary:        325  left-censored observations at hours<=0
                                                                              
      /sigma     1133.697   42.06234                      1051.123    1216.271
                                                                              
       _cons     1349.876   386.2989     3.49   0.001     591.5188    2108.234
      kidsl6    -918.9181   111.6606    -8.23   0.000    -1138.123    -699.713
         age     -60.7678    6.88819    -8.82   0.000    -74.29025   -47.24534
       exper     80.53527   6.287805    12.81   0.000     68.19145    92.87909
        educ     73.29099   20.47458     3.58   0.000     33.09659    113.4854
                                                                              
       hours        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

Log likelihood = -3827.1433                       Pseudo R2       =     0.0323
                                                  Prob > chi2     =     0.0000
                                                  LR chi2(4)      =     255.50
Tobit regression                                  Number of obs   =        753

Marginal effect of education = 26.664527
. display "Marginal effect of education = " _b[educ]*cdf

Tobit scale Factor: cdf evaluated at zi = .36381726
. display "Tobit scale Factor: cdf evaluated at zi = " cdf

x*beta = -394.837
. display "x*beta = " xb
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� �

2 73.29 .3638 26.66
E HOURS

EDUC
+

� � 
 � � �
+

� �  

 
That is, we estimate that another year of education will increase a wife’s hours of work by about 
26.7 hours, conditional upon the assumed values of the explanatory variables. This marginal 
effect can be computed using the margins command: 

 
quietly tobit hours  educ exper age kidsl6, ll 

margins, dydx(educ) at(educ=12.29 exper=10.63 age=42.5 kidsl6=1) 

 predict(ystar(0,.)) 

 

 
 

The marginal effect above is the effect of education on the observed value of y (HOURS). The 
marginal effect can be decomposed into two factors, and is called the “McDonald-Moffit” 
decomposition, 

 
� � � � � � � � � �| | , 0 Prob 0

Prob 0 | , 0
E y x E y x y y

y E y x y
x x x

+ + � + �
� �  �

+ + +  
 

The first factor accounts for the marginal effect of a change in x for the portion of the population 
whose y-data is observed already. The second factor accounts for changes in the proportion of the 
population who switch from the y-unobserved category to the y-observed category when x 
changes.  

The marginal effect on those whose HOURS are already positive is 
 

� �| , 0E y x y
x

+ �
+

 

 
This marginal effect is computed using 

 
margins, dydx(educ) at(educ=12.29 exper=10.63 age=42.5 kidsl6=1) 

 predict(e(0,.)) 

 

                                                                              
        educ     26.66453   7.563667     3.53   0.000     11.84001    41.48904
                                                                              
                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

               kidsl6          =           1
               age             =        42.5
               exper           =       10.63
at           : educ            =       12.29
dy/dx w.r.t. : educ
Expression   : E(hours*|hours>0), predict(ystar(0,.))

Model VCE    : OIM
Conditional marginal effects                      Number of obs   =        753
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16.8 SELECTION BIAS 

The Heckit model is composed of two equations. The first, is the selection equation that 
determines whether the variable of interest is observed. The sample consists of N observations, 
however the variable of interest is observed only for n < N of these. The selection equation is 
expressed in terms of a latent variable *

iz  which depends on one or more explanatory variables 

iw , and is given by  
 

*
1 2 1, ,i i iz w u i N� 3  3  � �  

 
For simplicity we will include only one explanatory variable in the selection equation. The latent 
variable is not observed, but we do observe the binary variable 
 

*1 0

0 otherwise

i
i

z
z

4 �E� 5
E6

 

 
The second equation is the linear model of interest. It is 
 

1 2 1, ,i i iy x e i n N n� � �  � ��  
 
A selectivity problem arises when yi is observed only when zi = 1, and if the errors of the two 
equations are correlated. In such a situation the usual least squares estimators of 1�  and 2�  are 
biased and inconsistent.  

Consistent estimators are based on the conditional regression function 
 

*
1 2| 0 1, ,i i i iE y z x i n)� �� � � � � ) �� � �  

 
where the additional variable i)  is “Inverse Mills Ratio.” It is equal to 
 

                                                                              
        educ       21.574   5.999972     3.60   0.000     9.814276    33.33373
                                                                              
                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Delta-method
                                                                              

               kidsl6          =           1
               age             =        42.5
               exper           =       10.63
at           : educ            =       12.29
dy/dx w.r.t. : educ
Expression   : E(hours|hours>0), predict(e(0,.))

Model VCE    : OIM
Conditional marginal effects                      Number of obs   =        753
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 3  3
 

 
where, as usual, � �A �  denotes the standard normal probability density function, and � �
 �  denotes 
the cumulative distribution function for a standard normal random variable. While the value of i)  
is not known, the parameters 13  and 23  can be estimated using a probit model, based on the 
observed binary outcome zi. Then the estimated IMR,  
 

� �
� �

1 2

1 2

i
i

i

w
w

A 3  3
) �


 3  3

� ��
� �

 

 
is inserted into the regression equation as an extra explanatory variable, yielding the estimating 
equation 

 

1 2 1, ,i i i iy x v i n)� � � � )  �� �  
 

Least squares estimation of this equation yields consistent estimators of 1�  and 2� . A word of 
caution, however, as the least squares estimator is inefficient relative to the maximum likelihood 
estimator, and the usual standard errors and t-statistics produced after estimation by least squares 
of the augmented equation are incorrect. Proper estimation of standard errors requires the use of 
specialized software for the “Heckit” model. 
As an example we will reconsider the analysis of wages earned by married women using the 
Mroz (1987) data. In the sample of 753 married women, 428 have market employment and 
nonzero earnings.  

Open mroz.dta. 
 

use mroz, clear 

 
Generate ln(WAGE).  
 

generate lwage = ln(wage) 

 
Estimate a simple wage equation, explaining ln(WAGE) as a function of the woman’s education, 
EDUC, and years of market work experience (EXPER), using the 428 women who have positive 
wages. 
 

regress lwage educ exper if (hours>0) 
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The estimated return to education is about 11%, and the estimated coefficients of both education 
and experience are statistically significant. 

The Heckit procedure starts by estimating a probit model of labor force participation. As 
explanatory variables we use the woman’s age, her years of education, an indicator variable for 
whether she has children and the marginal tax rate that she would pay upon earnings if employed.  
Generate a new variable kids which is a dummy variable indicating the presence of any kids in 
the household. 
 

generate kids = (kidsl6+kids618>0) 

 
The estimated probit model is 
 

probit lfp age educ kids mtr 

 

 
 

As expected the effects of age, the presence of children, and the prospects of higher taxes 
significantly reduce the probability that a woman will join the labor force, while education 
increases it. Using the estimated coefficients, compute the Inverse Mills Ratio for the 428 women 
with market wages. 
 

� �
� �
1.1923 0.0206 0.0838 0.3139 1.3939
1.1923 0.0206 0.0838 0.3139 1.3939

AGE EDUC KIDS MTR
IMR

AGE EDUC KIDS MTR
A �  � �

) � �

 �  � �

�  

 
This is accomplished in Stata by using the predict post-estimation command, and then 
generating a new variable for the inverse Mills ratio. The function normalden is the standard 
normal pdf and the function normal is the standard normal cdf. 

                                                                              
       _cons    -.4001744   .1903682    -2.10   0.036    -.7743548   -.0259939
       exper     .0156736   .0040191     3.90   0.000     .0077738    .0235733
        educ     .1094888   .0141672     7.73   0.000     .0816423    .1373353
                                                                              
       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    223.327442   427  .523015086           Root MSE      =  .66897
                                                       Adj R-squared =  0.1444
    Residual    190.194984   425  .447517609           R-squared     =  0.1484
       Model     33.132458     2   16.566229           Prob > F      =  0.0000
                                                       F(  2,   425) =   37.02
      Source         SS       df       MS              Number of obs =     428

                                                                              
       _cons     1.192296   .7205439     1.65   0.098    -.2199443    2.604536
         mtr    -1.393853   .6165751    -2.26   0.024    -2.602318   -.1853878
        kids    -.3138848   .1237108    -2.54   0.011    -.5563535   -.0714162
        educ     .0837753    .023205     3.61   0.000     .0382943    .1292563
         age    -.0206155   .0070447    -2.93   0.003    -.0344229   -.0068082
                                                                              
         lfp        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood = -494.14614                       Pseudo R2       =     0.0403
                                                  Prob > chi2     =     0.0000
                                                  LR chi2(4)      =      41.45
Probit regression                                 Number of obs   =        753
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predict w, xb 

generate imr = normalden(w)/normal(w) 

 
This then is included in the wage equation, and least squares estimation applied. 
 

regress lwage educ exper imr 

 

 
 
Two results are of note. First the estimated coefficient of the Inverse Mills ratio is statistically 
significant, implying that there is a selection bias present in the least squares results. Secondly, 
the estimated return to education has fallen from approximately 11% to approximately 6%. The 
usual standard errors do not account for the fact that the Inverse Mills ratio is itself an estimated 
value. The correct standard errors which do account for the first stage probit estimation are 
obtained using Stata’s heckman command.  
 

heckman lwage educ exper, select(lfp=age educ kids mtr) twostep 

 
The command has two parts: the first is the equation of interest, second the selection equation. 
The labor force participation variable lfp = 0 when hours = 0, and lfp = 1 when hours > 0. The 
option twostep replicates the steps we have shown, and produces correct standard errors. 

The heckman dialog box is located by entering help heckman. Note that there are separate 
dialogs for the two-step and maximum likelihood estimator. 

 

 
 

Alternatively, for the two-step estimator, follow the menu path 
 
Statistics > Sample-selection models > Heckman selection model (two-step) 
 

                                                                              
       _cons     .8105417   .4944723     1.64   0.102    -.1613804    1.782464
         imr    -.8664386   .3269855    -2.65   0.008    -1.509153   -.2237242
       exper     .0163202   .0039984     4.08   0.000     .0084612    .0241793
        educ     .0584579   .0238495     2.45   0.015       .01158    .1053358
                                                                              
       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    223.327442   427  .523015086           Root MSE      =  .66428
                                                       Adj R-squared =  0.1563
    Residual    187.096716   424  .441265841           R-squared     =  0.1622
       Model    36.2307253     3  12.0769084           Prob > F      =  0.0000
                                                       F(  3,   424) =   27.37
      Source         SS       df       MS              Number of obs =     428
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As you can see the adjusted t-statistics are slightly smaller, indicating that the adjusted standard 
errors are somewhat larger than the usual ones from the least squares regression.  

In most instances it is preferable to estimate the full model, both the selection equation and 
the equation of interest, jointly by maximum likelihood. While the nature of this procedure is 
beyond the scope of this book, it is available in Stata. Then menu path is 
 

Statistics > Sample-selection models > Heckman selection model (ML) 
 

The maximum likelihood estimated wage equation is 
 

heckman lwage educ exper, select(age educ kids mtr) 

 
The results are: 
 

                                                                              
      lambda   -.86643869   .3992843
       sigma    .93255927
         rho     -0.92910
                                                                              
      lambda    -.8664387   .3992843    -2.17   0.030    -1.649022   -.0838559
mills         
                                                                              
       _cons     1.192296   .7205439     1.65   0.098    -.2199443    2.604536
         mtr    -1.393853   .6165751    -2.26   0.024    -2.602318   -.1853878
        kids    -.3138848   .1237108    -2.54   0.011    -.5563535   -.0714162
        educ     .0837753    .023205     3.61   0.000     .0382943    .1292563
         age    -.0206155   .0070447    -2.93   0.003    -.0344229   -.0068082
lfp           
                                                                              
       _cons     .8105418   .6107985     1.33   0.185    -.3866012    2.007685
       exper     .0163202   .0042022     3.88   0.000     .0080842    .0245563
        educ     .0584579   .0296354     1.97   0.049     .0003737    .1165422
lwage         
                                                                              
                    Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

                                                Prob > chi2        =    0.0001
                                                Wald chi2(2)       =     19.53

                                                Uncensored obs     =       428
(regression model with sample selection)        Censored obs       =       325
Heckman selection model -- two-step estimates   Number of obs      =       753

. heckman lwage educ exper, select(lfp=age educ kids mtr) twostep



538   Chapter 16 

 
 

Note that with this procedure we can apply likelihood ratio principles to test whether the errors in 
the equation of interest and selection equation are correlated. This is the LR test at the bottom of 
the results.  
 

                                                                              
LR test of indep. eqns. (rho = 0):   chi2(1) =    28.64   Prob > chi2 = 0.0000
                                                                              
      lambda     -.713081   .0605756                      -.831807    -.594355
       sigma     .8494425   .0424831                       .770128    .9369255
         rho    -.8394695   .0348978                     -.8958914   -.7563985
                                                                              
    /lnsigma    -.1631751   .0500129    -3.26   0.001    -.2611986   -.0651515
     /athrho    -1.219374   .1181811   -10.32   0.000    -1.451005   -.9877435
                                                                              
       _cons     1.595958   .6237306     2.56   0.011     .3734682    2.818447
         mtr    -2.291885   .5375647    -4.26   0.000    -3.345493   -1.238278
        kids    -.1525918   .0995874    -1.53   0.125    -.3477796     .042596
        educ     .0639306   .0217446     2.94   0.003     .0213119    .1065492
         age    -.0132621    .005939    -2.23   0.026    -.0249022   -.0016219
lfp           
                                                                              
       _cons     .6685864   .2350055     2.84   0.004     .2079841    1.129189
       exper     .0117675   .0040935     2.87   0.004     .0037444    .0197906
        educ     .0658159   .0166346     3.96   0.000     .0332126    .0984192
lwage         
                                                                              
                    Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood =  -913.561                      Prob > chi2        =    0.0000
                                                Wald chi2(2)       =     22.50

                                                Uncensored obs     =       428
(regression model with sample selection)        Censored obs       =       325
Heckman selection model                         Number of obs      =       753

Iteration 4:   log likelihood = -913.56101  
Iteration 3:   log likelihood = -913.56101  
Iteration 2:   log likelihood = -913.56337  
Iteration 1:   log likelihood = -914.27456  
Iteration 0:   log likelihood = -922.95945  

. heckman lwage educ exper, select(lfp=age educ kids mtr)
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KEY TERMS 

asclogit latent variable normal  
baseoutcome likelihood ratio test normalden 
binary choice models lincom oprobit 
censored data logit ordered probit 
censored regression LR test poisson 
conditional logit lrtest Poisson regression 
db marginal effects predict
delta method margins probit 
estat alternatives matrix selection bias 
estat classification maximum likelihood estimation selection equation 
estat mfx mlogit tabstat 
heckit modulo tobit 
heckman Monte Carlo experiment tobit scale factor 
histogram multinomial logit Wald test 
inverse Mills ratio nlcom  

CHAPTER 16 DO-FILE [CHAP16.DO] 

* file chap16.do for Using Stata for Principles of Econometrics, 4e 

 

cd c:\data\poe4stata 
 

* Stata Do-file  

* copyright C 2011 by Lee C. Adkins and R. Carter Hill  
* used for "Using Stata for Principles of Econometrics, 4e"  

* by Lee C. Adkins and R. Carter Hill (2011) 

* John Wiley and Sons, Inc. 
 

* setup 

version 11.1 
capture log close 

set more off 

 
********** Probit 

 

* open new log 
log using chap16_probit, replace text 

 

* examine data 
use transport, clear 

describe 

summarize 
 

* probit estimation 

probit auto dtime 
 

* predicted probabililties 

predict phat 
 

* beta1 + beta2*2 

lincom _b[_cons]+_b[dtime]*2  
 

* standard normal density 
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nlcom (normalden(_b[_cons]+_b[dtime]*2)) 

 

* marginal effect when dtime=2 
nlcom (normalden(_b[_cons]+_b[dtime]*2)*_b[dtime] ) 

 

* calulations at mean -.122381 
lincom _b[_cons]+_b[dtime]*(-.122381)  

nlcom (normalden(_b[_cons]+_b[dtime]*(-.122381))) 

nlcom (normalden(_b[_cons]+_b[dtime]*(-.122381))*_b[dtime] ) 
 

* direct calculation of predicted probability at dtime=3 

nlcom (normal(_b[_cons]+_b[dtime]*3) ) 
 

* marginal effect evaluated at each observation 

gen ame = normalden(_b[_cons]+_b[dtime]*dtime)*_b[dtime] 
 

* average marginal effect 

tabstat ame, stat(n mean sd min max) 
 

* marginal effects at means 

margins, dydx(dtime) atmeans 
 

* average marginal effects 

margins, dydx(dtime) 
 

* 0.975 percentile of t(19)-distribution 

scalar t975 = invttail(19,.025) 
di "0.975 critical value 19 df " t975 

 

* 95% interval estimate of AME 
scalar lbame =   .0484069   - t975*.003416 

scalar ubame =   .0484069   + t975*.003416 

di "95% interval estimate AME" 
di "lbame = " lbame " ubame = " ubame 

 

* ME at dtime = 2 
margins, dydx(dtime) at(dtime=2) 

 

* 95% interval estimate of AME at dtime = 2 
scalar lb =  .1036899 - t975*.0326394 

scalar ub =  .1036899 + t975*.0326394 

di "95% interval estimate marginal effect dtime=2" 
di "lb = " lb " ub= " ub 

 

* ME at dtime=3 
margins, dydx(dtime) at(dtime=3) 

 

* predicted probability at dtime = 2 
margins, predict(pr) at(dtime=2) 

 

* predicted probability at dtime = 3 
margins, predict(pr) at(dtime=3) 

 

* 95% interval estimate of predicted probability at dtime = 3 
scalar lbp =   .7982919 - t975*.1425387 

scalar ubp =   .7982919 + t975*.1425387 

di "95% interval estimate predicted probability dtime=3" 
di "lb = " lbp " ub= " ubp 

 

* Average predicted probability 
margins, predict(pr) 

 

* Average of predicted probability 
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summarize phat 

 

*-------------------------------------------- 
* The Delta-method standard errors 

*-------------------------------------------- 

 
********** Appendix 16A 

 

* probit 
probit auto dtime 

ereturn list 

 
matrix list e(V) 

 

* ME at dtime=2 
margins, dydx(dtime) at(dtime=2) 

 

* dg-dbeta1 
nlcom (-normalden(_b[_cons]+_b[dtime]*2)*(_b[_cons]+_b[dtime]*2)*_b[dtime]) 

 

* dg-dbeta2 
nlcom (normalden(_b[_cons]+_b[dtime]*2)*(1-(_b[_cons]+_b[dtime]*2)*_b[dtime]*2)) 

 

* average marginal effects 
margins, dydx(dtime) 

 

* dg2-dbeta1 
gen dg21 = -normalden(_b[_cons]+_b[dtime]*dtime)* /// 

          (_b[_cons]+_b[dtime]*dtime)*_b[dtime]  

gen dg22 = normalden(_b[_cons]+_b[dtime]*dtime)* /// 
          (1-(_b[_cons]+_b[dtime]*dtime)*_b[dtime]*dtime) 

summarize dg21 dg22 

 
log close 

 

********** A Marketing example 
 

* open new log 

log using chap16_coke, replace text 
use coke, clear 

 

* examine data 
describe 

summarize 

 
* linear probability model 

regress coke pratio disp_coke disp_pepsi, vce(robust) 

estimates store lpm 
predict phat 

 

* predict probability when pratio = 1.1 
margins, predict(xb) at(pratio=1.1 disp_coke=0 disp_pepsi=0) 

 

* predict outcomes using linear probability model 
generate p1 = (phat >=.5) 

tabulate p1 coke,row 

 
* probit 

probit coke pratio disp_coke disp_pepsi 

estimates store probit 
 

* predicted outcomes summary 

estat classification 
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* average marginal effect of change in price ratio 

margins, dydx(pratio) 
 

* average marginal effect when pratio=1.1 and displays are not present  

margins, dydx(pratio) at(pratio=1.1 disp_coke=0 disp_pepsi=0) 
 

* average predicted probability when pratio=1.1 and displays are not present 

margins, predict(pr) at(pratio=1.1 disp_coke=0 disp_pepsi=0) 
 

* t-test 

lincom disp_coke + disp_pepsi 
 

* chi-square tests 

test disp_coke + disp_pepsi=0 
test disp_coke disp_pepsi 

 

* likelihood ratio test of model significance 
scalar lnlu = e(ll) 

scalar lnlr = e(ll_0) 

scalar lr_test = 2*(lnlu-lnlr) 
di "lnlu     = " lnlu  

di " lnlr    = " lnlr  

di " lr_test = " lr_test 
 

* likelihood ratio test of displays equal but opposite effect 

gen disp = disp_pepsi-disp_coke 
probit coke pratio disp 

estimates store probitr 

 
* automatic test 

lrtest probit probitr 

 
* direct calculation 

scalar lnlr = e(ll) 

scalar lr_test = 2*(lnlu-lnlr) 
di "lnlu     = " lnlu  

di " lnlr    = " lnlr  

di " lr_test = " lr_test 
 

* likelihood ratio of significance of displays 

probit coke pratio 
estimates store probitr 

 

* automatic test 
lrtest probit probitr 

 

* direct calculation 
scalar lnlr = e(ll) 

scalar lr_test = 2*(lnlu-lnlr) 

di "lnlu     = " lnlu  
di " lnlr    = " lnlr  

di " lr_test = " lr_test 

 
* logit 

logit coke pratio disp_coke disp_pepsi 

estimates store logit 
 

* predicted outcomes summary 

estat classification 
 

* average marginal effects for logit 

margins, dydx(pratio)  
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margins, dydx(pratio) at(pratio=1.1 disp_coke=0 disp_pepsi=0) 

margins, predict(pr) at(pratio=1.1 disp_coke=0 disp_pepsi=0) 

 
* tables comparing models 

esttab lpm probit logit , se(%12.4f) b(%12.5f) star(* 0.10 ** 0.05 *** 0.01) /// 

       scalars(ll_0 ll chi2)gaps mtitles("LPM" "probit" "logit") /// 
    title("Coke-Pepsi Choice Models") 

 

* out of sample forecasting 
regress coke pratio disp_coke disp_pepsi in 1/1000 

predict phat2 

generate p2 = (phat2 >=.5) 
tabulate p2 coke in 1001/1140,row 

 

probit coke pratio disp_coke disp_pepsi in 1/1000 
estat classification in 1001/1140 

 

logit coke pratio disp_coke disp_pepsi in 1/1000 
estat classification in 1001/1140 

 

log close 
 

********** Chapter 16.3 Multinomial logit 

 
log using chap16_mlogit, replace text 

 

use nels_small, clear 
 

* summarize data 

describe 
summarize grades, detail 

tab psechoice 

 
* estimate model 

mlogit psechoice grades, baseoutcome(1) 

 
* compute predictions and summarize 

predict ProbNo ProbCC ProbColl 

summarize ProbNo ProbCC ProbColl 
 

* predicted probabilities 

margins, predict(outcome(1)) at(grades=6.64) 
margins, predict(outcome(2)) at(grades=6.64) 

margins, predict(outcome(3)) at(grades=6.64) 

margins, predict(outcome(1)) at(grades=2.635) 
margins, predict(outcome(2)) at(grades=2.635) 

margins, predict(outcome(3)) at(grades=2.635) 

 
* marginal effects 

margins, dydx(grades) at(grades=6.64) 

margins, dydx(grades) 
margins, dydx(grades) at(grades=2.635) 

margins, dydx(grades) predict(outcome(2)) at(grades=6.64) 

margins, dydx(grades) predict(outcome(2)) at(grades=2.635) 
margins, dydx(grades) predict(outcome(3)) at(grades=6.64) 

margins, dydx(grades) predict(outcome(3)) at(grades=2.635) 

 
log close 

 

********* Conditional logit 
 

log using chap16_clogit, replace text 

use cola, clear 
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* examine data 

describe 
summarize  

list in 1/9 

 
* create alternatives variable 

sort id, stable 

by id:gen alt = _n 
 

* view some observations 

list in 1/3 
 

* summarize by alternative 

bysort alt:summarize choice price feature display 
 

* label values 

label define brandlabel 1 "Pepsi"  2  "SevenUp" 3 "Coke"  
label values alt brandlabel 

 

* estimate model 
asclogit choice price, case(id) alternatives(alt) basealternative(Coke) 

 

* post-estimation 
estat alternatives 

estat mfx 

estat mfx, at(Coke:price=1.10 Pepsi:price=1 SevenUp:price=1.25) 
 

log close 

 
********** Ordered probit 

 

log using chap16_oprobit, replace text 
use nels_small, clear 

 

* summarize data 
summarize grades, detail 

tab psechoice 

 
* estimate model 

oprobit psechoice grades 

 
* marginal effects 

margins, dydx(grades) at(grades=6.64)  predict(outcome(3)) 

margins, dydx(grades) at(grades=2.635) predict(outcome(3)) 
log close 

 

********** Poisson Regression 
log using chap16_poisson, replace  

use olympics, clear 

 
* keep 1988 results 

keep if year==88 

keep medaltot pop gdp 
describe 

 

* log variables 
gen lpop = ln(pop) 

gen lgdp = ln(gdp) 

 
* estimate poisson model 

poisson medaltot lpop lgdp 
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* marginal effects at median of log variable 

margins, dydx(*) at((median) lpop lgdp) 

 
* predicted number of medals at medians 

margins, predict(n) at((median) lpop lgdp) 

 
log close 

 

********** Tobit  
log using chap16_tobit, replace text 

 

* using simulated data 
 

use tobit, clear 

 
* examine data 

describe 

summarize 
summarize if y>0 

 

* regression 
reg y x 

reg y x if y>0 

 
* tobit 

tobit y x, ll 

 
* tobit using Mroz data 

 

use mroz, clear 
 

* examine data 

describe lfp hours  educ exper age kidsl6 
summarize lfp hours  educ exper age kidsl6 

histogram hours, frequency title(Hours worked by married women) 

 
summarize hours  educ exper age kidsl6 if (hours>0) 

summarize hours  educ exper age kidsl6 if (hours==0) 

 
* regression 

regress hours  educ exper age kidsl6 

regress hours  educ exper age kidsl6 if (hours>0) 
 

* tobit 

tobit hours  educ exper age kidsl6, ll 
 

* tobit scale factor 

scalar xb = _b[_cons]+_b[educ]*12.29+_b[exper]*10.63+_b[age]*42.5+_b[kidsl6]*1 
scalar cdf = normal( xb/_b[/sigma]) 

display "x*beta = " xb 

display "Tobit scale Factor: cdf evaluated at zi = " cdf 
display "Marginal effect of education = " _b[educ]*cdf 

 

quietly tobit hours  educ exper age kidsl6, ll 
 

* marginal effect on E(y|x) 

margins, dydx(educ) at(educ=12.29 exper=10.63 age=42.5 kidsl6=1) predict(ystar(0,.)) 
 

* marginal effect on E(y|x,y>0) 

margins, dydx(educ) at(educ=12.29 exper=10.63 age=42.5 kidsl6=1) predict(e(0,.)) 
 

 

********** Heckit 
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use mroz, clear 

 

generate lwage = ln(wage) 
 

* ols 

regress lwage educ exper if (hours>0) 
 

* probit 

generate kids = (kidsl6+kids618>0) 
probit lfp age educ kids mtr 

predict w, xb 

 
* Inverse Mills Ratio 

generate imr = normalden(w)/normal(w) 

 
* Heckit two-step 

regress lwage educ exper imr 

 
* Heckit two-step automatic 

heckman lwage educ exper, select(lfp=age educ kids mtr) twostep 

 
* Heckit maximum likelihood 

heckman lwage educ exper, select(lfp=age educ kids mtr) 

 
log close 
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APPENDIX A

Mathematical Tools 

CHAPTER OUTLINE 
A.1 Stata math and logical operators 
A.2 Math functions  
A.3 Extensions to generate 
A.4 The calculator  

A.5 Scientific notation 
A.6 Numerical derivatives and integrals  
Key Terms  
Appendix A do-file 

A.1 STATA MATH AND LOGICAL OPERATORS 

The basic arithmetic, logical and relational operators are 

                                                         Relational 

         Arithmetic              Logical            (numeric and string) 

    --------------------     ------------------     -------------------- 

     +   addition                &   and               >   greater than 

     -   subtraction             |   or                <   less than 

     *   multiplication          !   not               >=  > or equal 

     /   division                ~   not               <=  < or equal 

     ^   power                                         ==  equal 

     -   negation                                      !=  not equal 

 
    A double equal sign (==) is used for equality testing. 

    The order of evaluation (from first to last) of all operators is !, ^, 

- (negation), /, *, - (subtraction), +, != (or \=), >, <, <=, >=, ==, &, 

and |. 

 
Enter help operators in the Command window. 
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A.2 MATH FUNCTIONS 

Stata offers many math functions. Enter help math functions. Some common ones, as listed in 
Stata help, are: 
 
    abs(x) 

       Description:  returns the absolute value of x. 

    ceil(x) 

       Description:  returns the unique integer n such that n - 1 < x < n. 

                     Also see floor(x), int(x), and round(x). 

    exp(x) 

       Description:  returns the exponential function of e^x.  This function 

                     is the inverse of ln(x). 

    floor(x) 

       Description:  returns the unique integer n such that n <= x < n + 1. 

                     Also see ceil(x), int(x), and round(x). 

    int(x) 

       Description:  returns the integer obtained by truncating x toward 0; 

    ln(x) 

       Domain:       1e-323 to 8e+307 

       Range:        -744 to 709 

       Description:  returns the natural logarithm of x.  This function is 

                     the inverse of exp(x). 

    log(x) 

       Description:  returns the natural logarithm of x, which is a 

                     synonym for ln(x). 

    max(x1,x2,...,xn) 

       Description:  returns the maximum value of non-missing x1, x2, ..., xn.   

    min(x1,x2,...,xn) 

       Description:  returns the minimum value of non-missing x1, x2, ..., xn. 

    mod(x,y) 

       Description:  returns the modulus of x with respect to y. 

                     mod(x,y) = x - y*int(x/y) 

    round(x,y) or round(x) 

       Description:  returns x rounded in units of y or x rounded to the 

                     nearest integer if the argument y is omitted. 
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    sqrt(x) 

       Description:  returns the square root of x. 

    sum(x) 

       Description:  returns the running sum of x treating missing values as 

                     zero. 

    trunc(x) is a synonym for int(x). 

A.3 EXTENSIONS TO GENERATE 

There are some extensions to generate called egen functions. Enter help egen. The functions 
work only with egen. The syntax is 

egen [type] newvar = fcn(arguments) [if] [in] [, options] 

Some useful ones are: 

        count(exp)                                     (allows by varlist:)   

            creates a constant (within varlist) containing the number of 

            nonmissing observations of exp.  Also see rownonmiss() and 

            rowmiss(). 

        kurt(varname)                                  (allows by varlist:)   

            returns the kurtosis (within varlist) varname. 

        max(exp)                                       (allows by varlist:)   

            creates a constant (within varlist) containing the maximum value 

            of exp. 

        mean(exp)                                      (allows by varlist:)   

            creates a constant (within varlist) containing the mean of exp. 

        median(exp)                                    (allows by varlist:)   

            creates a constant (within varlist) containing the median of exp. 

            Also see pctile(). 

        min(exp)                                       (allows by varlist:)   

            creates a constant (within varlist) containing the minimum value 

            of exp. 

        pctile(exp) [, p(#)]                           (allows by varlist:)   

            creates a constant (within varlist) containing the #th percentile 

            of exp.  If p(#) is not specified, 50 is assumed, meaning medians. 

            Also see median(). 
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        sd(exp)                                        (allows by varlist:)   

            creates a constant (within varlist) containing the standard 

            deviation of exp.  Also see mean(). 

        skew(varname)                                  (allows by varlist:)   

            returns the skewness (within varlist) of varname. 

        std(exp) [, mean(#) std(#)] 

            may not be combined with by.  It creates the standardized values 

            of exp.  The options specify the desired mean and standard 

            deviation. The default is mean(0) and std(1), producing a variable 

            with mean 0, standard deviation 1. 

        total(exp)                                     (allows by varlist:)   

            creates a constant (within varlist) containing the sum of exp. 

            Also see mean(). 

A.4 THE CALCULATOR 

Stata includes a handy calculator that we use many times in this manual. It is called display. Enter 
help display. For example, as a hand calculator: 
 

display 2 + 2 

 
and you can include dialog within quotes, 
 

display "two plus two = " 2 + 2 

 
Will display in the Results window 
 
 two plus two = 4 

A.5 SCIENTIFIC NOTATION 

Stata automatically uses scientific notation for very large numbers. For example 
 

di 1000000*100000000 

 1.000e+14 

 
The outcome 1.000e+14 is 1.000 times 1014. 
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A.6 NUMERICAL DERIVATIVES AND INTEGRALS 

In Principles of Econometrics, 4th Edition, Appendix A.3, some rules for derivatives are given. 
Stata has a function that will carry out derivatives numerically. See Exercise A.8 in POE4 for an 
illustration of how it is done. The derivative of a function at a point is the slope of the tangent at 
that point. If � �f x  is a function, and 0� �  is a small numerical value, then derivative at xi is 
approximately 

 
� � � �

2
i if x f xdy

dx
 � � � �

L
�

 

 
How to choose � is a problem, and there are many variations, all of which are outside the scope of 
this book. You might check http://en.wikipedia.org/wiki/Numerical_differentiation for an 
introduction and suggested references.  

The Stata command for numerical derivatives is dydx. See help dydx for the basic syntax.  
 

dydx yvar xvar [if] [in] , generate(newvar) [dydx_options] 

 
To illustrate we use the function 2 8 16y x x� �   from page 643 of POE4. Clear memory and use 
range to generate a sequence of x values, x = 0, 1, …., 8. The syntax of range is  
 

range varname #first #last [#obs] 

 
 

clear 

range x 0 8 9     //create x 

Generate the values of y and label with the function description, then plot the twoway graph. 
 

gen y = x^2 - 8*x + 16   //generate function 

label variable y "x^2-8*x+16"  //label 

twoway connected y x   //graph 

 

0
5
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15

x^
2-

8*
x+

16

0 2 4 6 8
x
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The derivative of this function is created using dydx, generating a new variable called dy with the 
derivative values at each point. 

 
dydx y x, gen(dy)    //derivative 

An elasticity at a point (x, y) is the function slope at that point times x/y. Use the round function 
to round the function to two decimal places. 

 
gen elas=round(dy*x/y,.01)   //elasticity 

The true derivative of the function is 2 8dy dx x� � . Create this variable and list the values 
created so far. 

 
gen dytrue = 2*x - 8   //true derivative 

list 

 

 
 

For a function of several variables a partial derivative is the derivative holding all else constant. 
For example, consider the function 2

2 3 2 3 14y x x z�    . To calculate the partial derivative we 
fix z at a specific value, say z = 2, and then compute the derivative of the resulting function of a 
single variable. 

 
scalar z0 = 2    //specific value 

gen y2 = 3*x^2+2*x+3*z0+14  //new function at z0 

dydx y2 x, gen(dy2)   //partial derivative 

gen dy2true = 6*x + 2  //true partial at z0 

list x dy2 dy2true 

 

      
  9.   8   16    8      4        8  
  8.   7    9    6   4.67        6  
  7.   6    4    4      6        4  
  6.   5    1    2     10        2  
      
  5.   4    0    0      .        0  
  4.   3    1   -2     -6       -2  
  3.   2    4   -4     -2       -4  
  2.   1    9   -6   -.67       -6  
  1.   0   16   -8      0       -8  
      
       x    y   dy   elas   dytrue  
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Numerical intergrals are a computing challenge, because we must find the area under a curve 
between certain limits. An introduction to the concepts can be found at 
http://en.wikipedia.org/wiki/Numerical_integration. The Stata function for numerical integration 
is integ. Using help integ we find the syntax 

 
integ yvar xvar [if] [in] [, integ_options] 

 
To illustrate we use the simple function y = 2x discussed in POE4, Appendix A.4.1. Clear 
memory and create 101 x and y values between 0 and 1. 

 
clear 

range x 0 1 101   //create x 

gen y = 2*x    //generate y=f(x) 

Create a new variable containing integral values from x = 0 up to each point, and list some. 
 

integ y x, gen(iy)   //integral 

list in 41/51    //list integral values  

 

 
 

      
  9.   8    50        50  
  8.   7    44        44  
  7.   6    38        38  
  6.   5    32        32  
      
  5.   4    26        26  
  4.   3    20        20  
  3.   2    14        14  
  2.   1     8         8  
  1.   0     2         2  
      
       x   dy2   dy2true  
      

      
 51.    .5     1     .25  
      
 50.   .49   .98   .2401  
 49.   .48   .96   .2304  
 48.   .47   .94   .2209  
 47.   .46   .92   .2116  
 46.   .45    .9   .2025  
      
 45.   .44   .88   .1936  
 44.   .43   .86   .1849  
 43.   .42   .84   .1764  
 42.   .41   .82   .1681  
 41.    .4    .8     .16  
      
         x     y      iy  
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KEY TERMS 

arithmetic operators generate range 
derivative integ relational operators 
display integral scientific notation 
dydx logical operators twoway 
egen math functions  

APPENDIX A DO-FILE [APPX_A.DO] 

* file appx_a.do for Using Stata for Principles of Econometrics, 4e 

cd c:\data\poe4stata 

* Stata do-file  

* copyright C 2011 by Lee C. Adkins and R. Carter Hill  

* used for "Using Stata for Principles of Econometrics, 4e"  
* by Lee C. Adkins and R. Carter Hill (2011) 

* John Wiley and Sons, Inc. 

* setup 

version 11.1 

capture log close 
set more off 

* open log file 
log using appx_a, replace text 

clear 

********** numerical derivatives 

range x 0 8 9     //create x 
gen y = x^2 - 8*x + 16    //generate function 

label variable y "x^2-8*x+16"   //label 

twoway connected y x    //graph 
dydx y x, gen(dy)    //derivative 

gen elas=round(dy*x/y,.01)   //elasticity 

gen dytrue = 2*x - 8    //true derivative 
list 

* partial derivative 

scalar z0 = 2     //specific value 

gen y2 = 3*x^2+2*x+3*z0+14   //new function at z0 
dydx y2 x, gen(dy2)    //partial derivative 

gen dy2true = 6*x + 2    //true partial at z0 

list x dy2 dy2true 

********** numerical integrals 

clear 
range x 0 1 101    //create x 

gen y = 2*x     //generate y=f(x) 

integ y x, gen(iy)    //integral     
list in 41/51     //list integral values  

log close 
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APPENDIX B

Probability Concepts 

CHAPTER OUTLINE 
B.1 Stata probability functions 
B.2 Binomial distribution 
B.3 Normal distribution  
     B.3.1 Normal density plots  
     B.3.2 Normal probability calculations  
B.4 Student’s t-distribution  
     B.4.1 Plot of standard normal and t(3)
     B.4.2 t-distribution probabilities  
     B.4.3 Graphing tail probabilities  
B.5 F-distribution  
     B.5.1 Plotting the F-density  

     B.5.2 F-distribution probabililty calculations 
B.6 Chi-square distribution  
     B.6.1 Plotting the chi-square density  
     B.6.2 Chi-square probability calculations  
B.7 Random numbers  
     B.7.1 Using inversion method  
     B.7.2 Creating uniform random numbers  
Key Terms  
Appendix B do-file 

B.1 STATA PROBABILILTY FUNCTIONS 

Stata includes many built in functions for probability density functions (pdfs) and cumulative 
distribution functions (cdfs). Type help functions and then select density functions 
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Among those we will use are: 
 
    binomial(n,k,p) 

       Description:  returns the probability of observing (k) or fewer 

                         successes in (n) trials when the probability of a 

                         success on one trial is p. 

 
    chi2(n,x) 

       Description:  returns the cumulative chi-squared distribution with n 

                         degrees of freedom.  

    chi2tail(n,x) 

       Description:  returns the reverse cumulative (upper-tail) 

                         chi-squared distribution with n degrees of freedom. 

                         chi2tail(n,x) = 1 - chi2(n,x) 

    F(n1,n2,f) 

       Description:  returns the cumulative F distribution with n1 numerator 

                         and n2 denominator degrees of freedom. 

    Fden(n1,n2,f) 

       Description:  returns the probability density function for the F 

                         distribution with n1 numerator and n2 denominator 

                         degrees of freedom. 

    Ftail(n1,n2,f) 

       Description:  returns the reverse cumulative (upper-tail) F 

                         distribution with n1 numerator and n2 denominator 

                         degrees of freedom.  Ftail(n1,n2,f) = 1 - F(n1,n2,f) 

    invchi2(n,p) 

       Description:  returns the inverse of chi2():  if chi2(n,x) = p, then 

                         invchi2(n,p) = x. 

    invchi2tail(n,p) 

       Description:  returns the inverse of chi2tail(): if chi2tail(n,x) = p, 

                         then invchi2tail(n,p) = x. 

    invF(n1,n2,p) 

       Description:  returns the inverse cumulative F distribution: if 

                         F(n1,n2,f) = p, then invF(n1,n2,p) = f. 

    invFtail(n1,n2,p) 

       Description:  returns the inverse reverse cumulative (upper-tail,)  

                         F distribution: if Ftail(n1,n2,f) = p, then 

                         invFtail(n1,n2,p) = f. 
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    invnormal(p) 

       Description:  returns the inverse cumulative standard normal 

                         distribution: if normal(z) = p, then  

                         invnormal(p) = z. 

    invttail(n,p) 

       Description:  returns the inverse reverse cumulative (upper-tail), 

                         Student's t distribution: if ttail(n,t) = p, 

                         then invttail(n,p) = t. 

    normal(z) 

       Description:  returns the cumulative standard normal distribution. 

    normalden(z) 

       Description:  returns the standard normal density. 

    normalden(x,m,s) 

       Description:  returns the normal density with mean m and standard 

                         deviation s. 

                         normalden(x,0,1) = normalden(x) 

                         normalden(x,m,s) = normalden((x-m)/s)/s 

    tden(n,t) 

       Description:  returns the probability density function of Student's t 

                         distribution. 

    ttail(n,t) 

       Description:  returns the reverse cumulative (upper-tail, survival) 

                         Student's t distribution; it returns the  

                         probability T > t. 

B.2 BINOMIAL DISTRIBUTION 

A binomial random variable X is the number of successes in n independent trials of identical 
experiments with probability of success p. Given the number of trials n and the probability of 
success p, binomial probabilities are given by 
 

� � � � (1 )x n xn
P X x f x p p

x
�� �

� � � �� �
� �

 

 
where 

� �
!

! !
n n
x x n x

� �
�� � �� �
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is the “number of combinations of n items taken x at a time,” and n! is “n factorial,” which is 
given by � �� � � �� �! ( 1 2 2 1n n n n� � � � . Suppose that the n = 13 games the LSU Tigers play are 
all independent and in each game they have the probability p = 0.7 of winning. What is the 
probability of them winning at least 8 games during the season? The answer is 
 

� � � � � � � �
13

8
8 1 7 1 7

x
P X f x P X F

�
 � � � � � ��  

 
Using the Stata function binomial we can compute the probability of 7 or fewer wins to be 0.165 
using.  
 

scalar prob1 = binomial(13,7,.7) 

di "probability <= binomial(13,7,0.7) is " prob1 

 
 

 
The probability of more than 7 wins is then 0.8346 using  
 

scalar prob2 = 1 - binomial(13,7,.7) 

di "probability > binomial(13,7,0.7) is " prob2 

 
 

B.3 NORMAL DISTRIBUTION 

B.3.1 Normal density plots 

First, let us plot the normal density function using a twoway function which plots � �y f x� . It 
makes no difference if x and y are existing variables. The Stata function normalden returns the 
value of the standard normal density � �xA  for a given x. To plot the density over # $5, 5�  use  
 

twoway function y = normalden(x), range(-5 5)    /// 

 title("Standard normal density")     /// 

 saving(normal_pdf.emf, replace) 

 
The saving option will save the graph to disk as an “enhanced metafile.” If the extension *.emf is 
omitted then the graph is saved as a Stata graph (*.gph). The *.emf format is useful when graphs 
are inserted into Microsoft Word documents as pictures, which is how we are doing it. The plot 
appears on the following page. We have saved the graph so that we can access it later. It will 
appear in your default directory, which for the authors is c:\data\poe4stata. We will not 
include this option in future graphs in this Appendix, but it is often a good idea. 

The plot of any normal density can be obtained by modifying the command only slightly. 
Enter help normalden to find a normalden(x,s) for a normal density with mean 0 and standard 
deviation s, and normalden(x,m,s) for a normal density with mean m and standard deviation s. 
In this graph we illustrate the use of different line patterns (lpattern). The options are: 

probability <= binomial(13,7,0.7) is .16539748

probability > binomial(13,7,0.7) is .83460252
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    blank               dot                 longdash_shortdash  tight_dot 

    dash                longdash            shortdash           vshortdash 

    dash_3dot           longdash_3dot       shortdash_dot 

    dash_dot            longdash_dot        shortdash_dot_dot 

    dash_dot_dot        longdash_dot_dot    solid 

 
To recall these at any time enter into the command line graph query linepatternstyle. The 
line width is controlled with lwidth. The options are listed with graph query linewidthstyle : 
 
    medium    medthin   thick     vthick    vvthick   vvvthick 

    medthick  none      thin      vthin     vvthin    vvvthin 

 
We will have a different legend for the 3 curves. For help with legends enter help 
legend_option. We have used the graph separator notion || rather than () because it clearly 
demarks the end of one function and the beginning of another 

 
twoway function y = normalden(x), range(-5 5)     /// 

 || function y = normalden(x,0.8),     /// 

   range(-5 5) lpattern(dash)     /// 

 || function y = normalden(x,1,0.8),     /// 

   range(-5 5) lpattern(dash_dot)    /// 

 ||, title("Normal Densities")      /// 

  legend(label(1 "N(0,1)") label(2 "N(0,0.8^2)")  /// 

  label(3 "N(1,0.8^2)"))  

 

B.3.2 Normal probability calculation 

Now calculate some normal probabilities. The cdf for the standardized normal variable Z is so 
widely used that it is given its own special symbol, � �( )z P Z z
 � � . It is used in probability 
calculations as 
 

[ ] a b b aP a X b P Z� 	 � 	 � 	 � 	� � � � � �� � � � � � 
 �
� � � �� �� � � �� � � � � �
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The Stata function normal computes the function � �( )z P Z z
 � � . To compute the left tail 

probability # $ � �1.33 1.33P Z � � 
  use 
 

scalar n_tail = normal(1.33) 

di "lower tail probability N(0,1) < 1.33 is " n_tail 

 
The result is 

 
 

 
For example, if � �~ 3,9X N , then 
 

# $ # $ � � � �4 6 0.33 1 1 0.33 0.8413 0.6293 0.2120P X P Z� � � � � �
 �
 � � �  
 
The commands are 

 
scalar prob = normal((6-3)/3) - normal((4-3)/3) 

di "probability 3<=N(3,9)<=6 is " prob 

 
The result is 
 
 probability 3<=N(3,9)<=6 is .21078609 

 
To compute percentiles of the standard normal distribution which are used as critical values for 
tests or in the calculation of interval estimates, use invnormal. For example, for the 95th 
percentile of the standard normal distribution use 

 
scalar n_95 = invnormal(.95) 

di "95th percentile of standard normal = " n_95 

Producing 
 

95th percentile of standard normal = 1.6448536 

B.4 STUDENT’S t-DISTRIBUTION

B.4.1 Plot of standard normal and t(3)

The t-density function can be similarly plotted. The t-distribution shape is determined by a single 
parameter called the degrees of freedom. To plot the t-density for 3 degrees of freedom use the 
tden function to generate the density values, and plot them as above. In fact we can overlay this 
plot against the standard normal to illustrate the differences 
 

lower tail probability N(0,1) < 1.33 is .90824086
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twoway function y = normalden(x), range(-5 5)     /// 

 || function y = tden(3,x), range(-5 5) lpattern(dash)   /// 

 ||, title("Standard normal and t(3)")      /// 

  legend(label(1 "N(0,1)") label(2 "t(3)"))    

 

 

B.4.2 t-distribution probabilities 

Calculating t-distribution probabilities is accomplished using the Stata function ttail. This 
function returns the probability in the upper tail of the t distribution. For example, to compute 
the probabilities that a t(3) random variable will be greater than 1.33, and then less than 1.33, use 

 
scalar t_tail = ttail(3,1.33) 

di "upper tail probability t(3) > 1.33 = " t_tail 

di "lower tail probability t(3) < 1.33 = " 1 - ttail(3,1.33) 

 
These commands produce  

 
upper tail probability t(3) > 1.33 = .13779644 

 lower tail probability t(3) < 1.33 = .86220356 

 
Percentiles for the t-distribution use the Stata function invttail. To compute the 95th, and 5th, 
percentiles for the t(3) distribution use 

 
scalar t3_95 = invttail(3,.05) 

di "95th percentile of t(3) = " t3_95 

di "5th percentile of t(3) = " invttail(3,.95) 

 
Producing the results 

 
 upper tail probability t(3) > 1.33 = .13779644 

 lower tail probability t(3) < 1.33 = .86220356 
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B.4.3 Graphing tail probabilities 

For students, illustrating tail probabilities is a useful skill. Find the 95th percentile of the t(38) 
distribution. 

 
di "95th percentile of t(38) = " invttail(38,.05) 

The 95th percentile then is 
 

95th percentile of t(38) = 1.6859545 

 
For the plot we first generate a graph of the tail area, to the right of 1.686, and recast the graph 
to an area plot. Second we add the t-density function, a title and locate some text along the 
horizontal axis. The place(s) option places the text to the “south”. 

 
twoway function y=tden(38,x), range(1.686 5)    /// 

  color(ltblue) recast(area)    /// 

 || function y=tden(38,x), range(-5 5)    /// 

  legend(off) plotregion(margin(zero))   /// 

 ||, ytitle("f(t)") xtitle("t")     /// 

  text(0 1.686 "1.686", place(s))    /// 

  title("Right-tail rejection region") 

 
 
For a two-tail p-value, with the probability that a value from the t(38) distribution will be greater 
than 1.9216 or less than �1.9216 use 

 
twoway function y=tden(38,x), range(1.9216 5)    /// 

  color(ltblue) recast(area)     /// 

 ||  function y=tden(38,x), range(-5 -1.9216)    /// 

  color(ltblue) recast(area)     /// 

 ||  function y=tden(38,x), range(-5 5)     /// 

 ||, legend(off) plotregion(margin(zero))    /// 

  ytitle("f(t)") xtitle("t")     /// 

  text(0 -1.921578 "-1.9216", place(s))    /// 

  text(0 1.9216 "1.9216", place(s))    /// 

  title("Pr|t(38)|>1.9216")  
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.1

.2
.3

.4
f(t

)

-5 0 5
t

Right-tail rejection region



Probability Concepts   563 

 

B.5 F-DISTRIBUTION

B.5.1 Plotting the F-density 

The F-distribution is said to have m1 numerator degrees of freedom and m2 denominator degrees 
of freedom. The values of m1 and m2 determine the shape of the distribution. This random values 
is takes only positive values, so to plot it create a new variable that goes from near 0 to near 6. As 
an example we plot the F(8, 20) density using the twoway function with Fden() 
 

twoway function y = Fden(8,20,x), range(0 6)    /// 

  legend(off) plotregion(margin(zero))   /// 

  ytitle("F-density") xtitle("x")    /// 

  title("F(8,20) density")    

 

 

B.5.2 F-distribution probability calculation 

Probability calculations use the functions Ftail(), which returns upper-tail probabilities, and 
F(), which the cumulative distribution function. For example, to compute the probability that a 

-1.9216 1.92160
.1

.2
.3

.4
f(t

)

-5 0 5
t

Pr|t(38)|>1.9216

0
.2

.4
.6

.8
F-

de
ns

ity

0 2 4 6
x

F(8,20) density



564   Appendix B 

random value from the F(8,20) distribution will be greater than 3.0, which is 0.02203345, using 
either approach 
 

scalar f_tail = Ftail(8,20,3.0) 

di "upper tail probability F(8,20) > 3.0 = " f_tail 

di "upper tail probability F(8,20) > 3.0 = " 1-F(8,20,3.0) 

 

 
 

The 95th percentile of the F(8,20) density function is calculated using invFtail(). This function 
works with the upper tail, so the 95th percentile leaves 5 percent of the probability in the upper 
tail. 
 

scalar f_95 = invFtail(8,20,.05) 

di "95th percentile of F(8,20) = " f_95 

 
 95th percentile of F(8,20) = 2.4470637 

B.6 CHI-SQUARE DISTRIBUTION 

B.6.1 Plotting the chi-square density 

The chi-square density function is not included as a simple function in Stata. We will take this 
opportunity to use some of the function is Stata to program this density from a formula. The chi-
square density function is  
 

� � 0.5 1 0.5
/2

1 for 0
2 ( / 2)

m x
mf x x e x

m
� �� �

M
 

 
This formula can be found in statistics books, or web. One reference is 
http://en.wikipedia.org/wiki/Chi-square_distribution. In this expression m is the degrees of 
freedom parameter that controls the shape of the density function. The term � �M 	  represents the 
gamma function from mathematics. You may have not encountered it before, but it is 
generalization of the factorial (!) function. Stata has a function lngamma that computes the natural 
logarithm of this function. 
 

lngamma(x) 

 Description:  returns the natural log of the gamma function of x. For 

 integer values of x > 0, this is ln((x-1)!). 

 
Clear memory, and set the number of observations to 101. Generate some x values, from near 0 to 
about 20. Specify a scalar df to be 7, for the degrees of freedom. 
 

upper tail probability F(8,20) > 3.0 = .02203345
. di "upper tail probability F(8,20) > 3.0 = " 1-F(8,20,3.0)

upper tail probability F(8,20) > 3.0 = .02203345
. di "upper tail probability F(8,20) > 3.0 = " f_tail
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clear 

set obs 101 

gen xc = _n/5 

scalar df = 7 

 
Generate a new variable that is the value of the chi-square density function 
 

gen chi2_pdf =(1/(2^(df/2)))*(1/exp(lngamma(df/2)))* /// 

  xc^(df/2 - 1)*exp(-xc/2) 

 
Plot the density function using no markers, tick marks from 0 to 21 in increments of 2. 
 

twoway (connected chi2_pdf x, msymbol(none)), /// 

 xlabel(0(2)21) title(Chi-square density with 7 df) 

 

B.6.2 Chi-square probability calculations 

Cumulative probabilities use the chi-square cdf function chi2(). Compute the probability that a 
chi-square with 7 degrees of freedom takes a value greater than 15 
 

scalar chi2_tail = 1 - chi2(df,15) 

di "upper tail probability chi2(7) > 15 is " chi2_tail 

 
Yielding 

 
 upper tail probability chi2(7) > 15 is .0359994 

 
Chi-square percentiles can be obtained using invchi2() or the upper tail version 
invchi2tail(). To compute the 95th percentile for the chi-square distribution with 7 degrees of 
freedom use 

 
scalar chi2_95 = invchi2tail(df,.05) 

di "95th percentile of chi2(7) = " chi2_95 

 
Producing 
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95th percentile of chi2(7) = 14.06714 

B.7 RANDOM NUMBERS 

The generation of random numbers is serious business and best left to professionals. The normal 
users, such as your authors, do not generate random values from first principles when required. 
Always use the random number generators in Stata. These are 

 
    runiform() 

       Description:  returns uniform random variates. 

    rbeta(a, b) 

       Description:  returns beta(a,b) random variates 

    rbinomial(n, p) 

       Description:  returns binomial(n,p) random variates, where n is the 

                     number of trials and p is the success probability. 

    rchi2(df) 

       Description:  returns chi-squared, with df degrees of freedom, random 

                     variates. 

    rgamma(a, b) 

       Description:  returns gamma(a,b) random variates, where a is the 

                     gamma shape parameter and b is the scale parameter. 

    rhypergeometric(N, K, n) 

       Description:  returns hypergeometric random variates.   

    rnbinomial(n, p) 

       Description:  returns negative binomial random variates.  

    rnormal() 

       Description:  returns standard normal (Gaussian) random variates 

    rnormal(m) 

       Description:  returns normal(m,1) (Gaussian) random variates 

    rnormal(m, s) 

       Description:  returns normal(m,s) (Gaussian) random variates 

    rpoisson(m) 

       Description:  returns Poisson(m) random variates, where m is the 

                     distribution mean. 
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    rt(df) 

       Description:  returns Student's t random variates, where df is the 

                     degrees of freedom. 

 
Nevertheless we believe that should you use random numbers it is important to have a general 
idea of how they are created. We consider the simplest case of using the “inversion method.”  

B.7.1 Using inversion method 

Suppose you wish to obtain a random number from a specific probability distribution, with pdf 
� �f y  and cdf � �F y .  

 
The Inversion Method: Step by Step 

1. Obtain a uniform random number 1u  in the � �0,1  interval. 

2. Let � �1 1u F y�  

3. Solve the equation in step 2 for 1y . 

4. The value 1y  is a random number from the pdf � �f y .  

The inversion method can be used to draw random numbers from any distribution that permits 
you to carry out step 3. The solution is often denoted � �1

1 1y F u�� , where 1F �  is called the 
inverse cumulative distribution function. 

Suppose the target distribution, from which we want a random number, is 
� � 2 , 0 1f y y y� ! ! . The cdf of Y is � � � � 2 , 0 1P Y y F y y y� � � ! ! . Set a uniform random 

number � � 2
1 1 1u F y y� �  and solve to obtain � � � �1 21

1 1 1y F u u�� � . The value 1y  is a random 

value, or a random draw, from the probability distribution � � 2 , 0 1f y y y� ! ! . 
To illustrate in Stata let us create 1000 values y1 from the triangular density. We use the 

uniform random number generator runiform() with a specific seed value to create the uniform 
random variable u1. 

 
clear 

set obs 1000 

set seed 12345 

gen u1 = runiform() 

label variable u1 "uniform random values" 

 
histogram u1, bin(10) percent 

gen y1 = sqrt(u1) 

histogram y1, bin(10) percent 
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As a second example let us consider a slightly more exotic distribution. The extreme value 
distribution is the foundation of logit choice models that are discussed in Principles of 
Econometrics, 4th Edition, Chapter 16. It has probability density function 

 
� � � � � �� �exp exp expf v v v� � � � �  

 
 The extreme value cdf is � � � �� �exp expF v v� � � . Despite its complicated looking form, we can 

obtain values from this distribution using � � � �� �1 ln lnv F u u�� � � � . To plot this density and 
create 10,000 random numbers and a histogram using 
 

clear 

set obs 10000 

set seed 12345 

gen u1 = runiform() 

gen v1=-3+(_n-1)*13/10000 

gen fev1 = exp(-v1)*exp(-exp(-v1)) 

twoway line fev1 v1, ytitle("Extreme value density") 

gen ev1 = -log(-log(u1)) 

histogram ev1, bin(40) percent kdensity kdenopts(gaussian) 
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B.7.2 Creating uniform random numbers 

A standard method for creating a uniform random number is the linear congruential generator1. 
Consider the recursive relationship 

 
� �1 modn nX aX c m��   

 
where a, c and m are constants that we choose. It means, nX  takes the value equal to the 
remainder obtained by dividing 1naX c�   by m. It is recursive relationship because the nth value 
depends on the n�1st. That means we must choose a starting value 0X , which is called the 
random number seed. Everyone using the same seed, and values a, c and m, will generate the 
same string of numbers. The value m determines the maximum period of the recursively 
generated values. The uniform random values falling in the interval � �0,1  are obtained as 

n nU X m� . To illustrate we choose 0 1234567X � , a = 1664525, b = 1013904223, and 322m � , 
and create 10,000 values of two uniform random numbers u1 and u2. 

 
clear 

set obs 10001 

gen double u1 = 1234567 

gen double u2 = 987654321 

scalar a = 1664525 

scalar c = 1013904223 

scalar m = 2^32 

replace u1 = (a*u1[_n-1]+c) - m*ceil((a*u1[_n-1]+c)/m) + m if _n >1 

replace u1 = u1/m 

replace u2 = (a*u2[_n-1]+c) - m*ceil((a*u2[_n-1]+c)/m) + m if _n >1 

replace u2 = u2/m 

label variable u1 "uniform random number using seed = 1234567" 

label variable u2 "uniform random number using seed = 987654321" 

list u1 in 1/4 

drop if _n==1 

histogram u1, bin(20) percent 

summarize u1 

histogram u2, bin(20) percent 

summarize u2 

 
The summary statistics and histogram for u2 are 
 

 
1 A description and link to sources is http://en.wikipedia.org/wiki/Linear_congruential_generator 
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KEY TERMS 

binomial distribution inversion method random number generator 
chi2 invFtail random numbers 
chi-square distribution invnormal rarea 
degrees of freedom invttail runiform() 
density functions legend seed 
extreme value distribution lngamma set seed 
F distribution lpattern t distribution 
Fden lwidth tden 
Ftail modulus title
gamma function msymbol ttail 
histogram normal Twoway function 
invchi2 normal distribution xlabel 
invchi2tail normalden  

APPENDIX B DO-FILE [APPX_B.DO] 

* file appx_b.do for Using Stata for Principles of Econometrics, 4e 

cd c:\data\poe4stata 

* Stata Do-file  

* copyright C 2011 by Lee C. Adkins and R. Carter Hill  
* used for "Using Stata for Principles of Econometrics, 4e"  

* by Lee C. Adkins and R. Carter Hill (2011) 

* John Wiley and Sons, Inc. 

* setup 

          u2       10000    .5009009    .2877264   1.26e-06   .9998045

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize u2
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version 11.1 

capture log close 

* open log file 

log using appx_b, replace text 

clear 

* binomial probabilities 

scalar prob1 = binomial(13,7,0.7) 
di "probability <= binomial(13,7,0.7) is " prob1 

scalar prob2 = 1 - binomial(13,7,0.7) 
di "probability > binomial(13,7,0.7) is " prob2 

* plot standard normal density 
twoway function y = normalden(x), range(-5 5)     /// 

       title("Standard normal density")      /// 

    saving(normal_pdf.emf, replace) 

* plot several normal densities  

twoway function y = normalden(x), range(-5 5)     /// 
 || function y = normalden(x,0.8),      /// 

   range(-5 5) lpattern(dash)      /// 

 || function y = normalden(x,1,0.8),      /// 
   range(-5 5) lpattern(dash_dot)    /// 

    ||, title("Normal Densities")       /// 

     legend(label(1 "N(0,1)") label(2 "N(0,0.8^2)")    /// 
  label(3 "N(1,0.8^2)"))         

* compute normal probabilities 
scalar n_tail = normal(1.33) 

di "lower tail probability N(0,1) < 1.33 is " n_tail 

scalar prob = normal((6-3)/3) - normal((4-3)/3) 

di "probability 3<=N(3,9)<=6 is " prob 

* compute normal percentiles 

scalar n_95 = invnormal(.95) 

di "95th percentile of standard normal = " n_95 

* plot t(3) 

twoway function y = normalden(x), range(-5 5)      /// 
 || function y = tden(3,x), range(-5 5) lpattern(dash)    /// 

    ||, title("Standard normal and t(3)")       /// 

  legend(label(1 "N(0,1)") label(2 "t(3)"))    

* t probabilities 

scalar t_tail = ttail(3,1.33) 
di "upper tail probability t(3) > 1.33 = " t_tail 

di "lower tail probability t(3) < 1.33 = " 1 - ttail(3,1.33) 

* t critical values 

scalar t3_95 = invttail(3,0.05) 

di "95th percentile of t(3) = " t3_95 
di "5th percentile of t(3) = " invttail(3,0.95) 

* t(38) shaded tail graphs 
di "95th percentile of t(38) = " invttail(38,0.05) 

* one-tail rejection region 
twoway function y=tden(38,x), range(1.686 5)     /// 

   color(ltblue) recast(area)     /// 

    || function y=tden(38,x), range(-5 5)      /// 
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   legend(off) plotregion(margin(zero))    /// 

 ||, ytitle("f(t)") xtitle("t")      /// 

  text(0 1.686 "1.686", place(s))     /// 
  title("Right-tail rejection region")  

* two-tail p-value 
twoway function y=tden(38,x), range(1.9216 5)     /// 

   color(ltblue) recast(area)     /// 

    ||  function y=tden(38,x), range(-5 -1.9216)     /// 
   color(ltblue) recast(area)     /// 

    ||  function y=tden(38,x), range(-5 5)      /// 

    ||, legend(off) plotregion(margin(zero))     /// 
  ytitle("f(t)") xtitle("t")      /// 

  text(0 -1.921578 "-1.9216", place(s))    /// 

  text(0 1.9216 "1.9216", place(s))     /// 
  title("Pr|t(38)|>1.9216")   

* Plot F-density 
twoway function y = Fden(8,20,x), range(0 6)     /// 

  legend(off) plotregion(margin(zero))     /// 

  ytitle("F-density") xtitle("x")     /// 
  title("F(8,20) density")       

* F probabilities 
scalar f_tail = Ftail(8,20,3.0) 

di "upper tail probability F(8,20) > 3.0 = " f_tail 

di "upper tail probability F(8,20) > 3.0 = " 1-F(8,20,3.0) 

* F critical values 

scalar f_95 = invFtail(8,20,.05) 
di "95th percentile of F(8,20) = " f_95 

* Chi square density 
clear 

set obs 101 

gen x = _n/5 
scalar df = 7 

gen chi2_pdf = (1/(2^(df/2)))*(1/exp(lngamma(df/2)))*    /// 

    x^(df/2 - 1)*exp(-x/2) 

twoway line chi2_pdf x, xlabel(0(2)21)      /// 

  title("Chi-square density with 7 df")    

* chi-square probabilities 

scalar chi2_tail = 1 - chi2(df,15) 
di "upper tail probability chi2(7) > 15 is " chi2_tail 

* chi-square critical values 
scalar chi2_95 = invchi2tail(df,.05) 

di "95th percentile of chi2(7) = " chi2_95 

********** Appendix B.4 

* generating triangular distribution 
clear 

set obs 1000 

set seed 12345 
gen u1 = runiform() 

set seed 1010101 

label variable u1 "uniform random values" 
histogram u1, bin(10) percent 

gen y1 = sqrt(u1) 

histogram y1, bin(10) percent 
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* generating extreme value distribution 

clear 
set obs 10000 

set seed 12345 

gen u1 = runiform() 
gen v1=-3+(_n-1)*13/10000 

gen fev1 = exp(-v1)*exp(-exp(-v1)) 

twoway line fev1 v1, ytitle("Extreme value density")  

* random values 
gen ev1 = -log(-log(u1)) 

histogram ev1, bin(40) percent kdensity kdenopts(gaussian)  

* generating uniform random values 

clear 

set obs 10001 
gen double u1 = 1234567 

gen double u2 = 987654321 

scalar a = 1664525 
scalar c = 1013904223 

scalar m = 2^32 

replace u1 = (a*u1[_n-1]+c) - m*ceil((a*u1[_n-1]+c)/m) + m if _n >1 
replace u1 = u1/m 

replace u2 = (a*u2[_n-1]+c) - m*ceil((a*u2[_n-1]+c)/m) + m if _n >1 
replace u2 = u2/m 

label variable u1 "uniform random number using seed = 1234567" 
label variable u2 "uniform random number using seed = 987654321" 

list u1 in 1/4 
drop if _n==1 

histogram u1, bin(20) percent 

summarize u1 

histogram u2, bin(20) percent 

summarize u2 

log close 
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APPENDIX C

Review of Statistical Inference 

CHAPTER OUTLINE 
C.1 Examining the hip data 
     C.1.1 Constructing a histogram 
     C.1.2 Obtaining summary statistics 
     C.1.3 Estimating the population mean 
C.2 Using simulated data values 
C.3 The central limit theorem 
C.4 Interval estimation 
     C.4.1 Using simulated data 
     C.4.2 Using the hip data  
C.5 Testing the mean of a normal population 
     C.5.1 Right tail test 
     C.5.2 Two tail test 

C.6 Testing the variance of a normal population 
C.7 Testing the equality of two normal population 
       means 
     C.7.1 Population variances are equal 
     C.7.2 Population variances are unequal 
C.8 Testing the equality of two normal population 
       variances 
C.9 Testing normality 
C.10 Maximum likelihood estimation  
C.11 Kernel density estimator  
Key Terms  
Appendix C do-file 

C.1 EXAMINING THE HIP DATA 

Begin a Stata session with the usual commands, and open a log file. An example that is used 
throughout the Appendix is the “Hip data,” a sample of hip widths of 50 randomly selected U.S. 
adults. Open the data file hip.dta. 
 

use hip, clear 

describe 

 

 

C.1.1 Constructing a histogram 

When first obtaining data it is useful to examine it graphically and numerically. A histogram 
showing the percent of values falling in various intervals is obtained using 

y               double %10.0g                 hip width, inches

variable name   type   format      label      variable label
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histogram y, percent saving(hip_hist,replace) 

 

 
 
A handy feature of the Stata menu system is that you can enhance a command without knowing 
the exact syntax required. On the menu select Graphics > Histogram. 
 

 
 
Fill in the dialog box with selections and press OK. 
 

 
 
The result is 
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The Stata Review and Results windows indicate that the line command for this figure is 
 

histogram y, width(1) start(13) percent 

C.1.2 Obtaining summary statistics 

Detailed numerical summary statistics are obtained using 
 

summarize y, detail 

 
Enter into the command window help summarize. The Viewer box shows the command syntax 
and options. Further note the descriptions of items computed and what values are kept for “post-
estimation” usage. 

 
summarize saves the following in r(): 

    Scalars    

      r(N)           number of observations 

      r(mean)        mean 

      r(skewness)    skewness (detail only) 

      r(min)         minimum 

      r(max)         maximum 

      r(sum_w)       sum of the weights 

      r(p1)          1st percentile (detail only) 

      r(p5)          5th percentile (detail only) 

etc. 

      r(p99)         99th percentile (detail only) 

      r(Var)         variance 

      r(kurtosis)    kurtosis (detail only) 

      r(sum)         sum of variable 

      r(sd)          standard deviation 
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The saved values can be used in further statements in a Stata session, until they are overwritten by 
a subsequent Stata command. You must “use them or lose them” in pretty short order. 

C.1.3 Estimating the population mean 

There are several automatic Stata commands to carry out the basic data analysis. To estimate the 
population mean, and also create an interval estimate the command is mean varname. Using this 
command for the hip data we have: 
 

mean y 

 

 
 
In this output the Mean is  
 

iy y N� �  
 
The unbiased estimator of the population variance 2�  is 
 

� �2
2ˆ

1
iy y

N
�

� �
�

�  

 
You may remember this estimator from a prior statistics course as the “sample variance.” Using 
the sample variance we can estimate the variance of the estimator Y  as 
 

� �� 2ˆvar Y N� �  
 
The square root of the estimated variance is called the standard error of Y , called by Stata Std. 
Err., and is also known as the standard error of the mean and the standard error of the estimate, 
 

99%         20.4           20.4       Kurtosis       2.331534
95%        20.23          20.33       Skewness       -.013825
90%         19.7          20.23       Variance       3.265297
75%        18.55          20.23
                        Largest       Std. Dev.      1.807013
50%       17.085                      Mean            17.1582

25%        15.94          14.21       Sum of Wgt.          50
10%       14.835           13.9       Obs                  50
 5%         13.9          13.71
 1%        13.53          13.53
      Percentiles      Smallest

                      hip width, inches

. summarize y, detail

           y      17.1582   .2555503      16.64465    17.67175

                     Mean   Std. Err.     [95% Conf. Interval]

Mean estimation                     Number of obs    =      50
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� � � �� ˆse var /Y Y N� � �  

 
The 100(1�%)% interval estimator is  
 

ˆ
cY t

N
�

�  or � �secY t Y�  

 
where tc is the (1�%/2)-percentile of the t-distribution with N�1 degrees of freedom. 

C.2 USING SIMULATED DATA VALUES 

Using simulated data is an important tool for learning econometrics. There are a variety of ways 
to simulate data in Stata. The first command we will explore is drawnorm. This command will 
cause Stata to generate normally distributed random variables with given means, standard 
deviations and correlations. Enter help drawnorm for the syntax and options. For a dialog box, 
enter the command db drawnorm, or select the path 
 
Data > Create or change data > Other variable-creation commands > Draw sample from 
normal distribution 

 
The command defaults are to generate observations from uncorrelated normal random variables 
with zero means and variances (standard deviations) 1. These options can be changed in the 
dialog box. To create correlated normal variables we can specify the correlations between 
variables. It is customary to specify an array or matrix, a table, containing the correlations. If we 
call the correlations matrix C, it will be arranged as 
 

� � � �
� � � �

, ,
, ,

corr x x corr x y
C

corr y x corr y y
� �

� � �
� �

 

 
The correlation between a variable and itself is 1.0. If the correlation between x and y is to be 0.5, 
then  
 

1 .5
.5 1

C � �
� � �
� �

 

 
This matrix or array is symmetric, because the correlation between x and y is the same as the 
correlation between y and x. The Stata command to create this matrix, after clearing memory, is 
 

clear 

matrix C = (1, .5 \ .5, 1) 

 
Within the parentheses rows are separated by “\” and row elements are separated by commas “,”. 
Fill in the drawnorm dialog box as 
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Click the Option tab. There you will find an option for setting the random number generator 
seed. Random numbers are created by a complex algorithm that must have a starting value. See 
Appendix B of this manual for an explanation of random number generators. This starting value 
is called the seed. If seed is selected, then each time you issue a command, or series of 
commands, the stream of random numbers created will be the same. This can be useful if you are 
debugging a Do-file, or command sequence, and want to see if the results showing up are the 
same each time. If a seed is not specified, then Stata will pick one for you.  

 

 
 
The Stata command implied by the dialog box, which will create these 1000 pairs of random 
numbers, is 
 

drawnorm x y, n(1000) means(0 0) corr(C) sds(1 1) cstorage(full) 

 seed(12345) 

 
In this case we want the random numbers to have zero means and variance 1 so the options 
means() and sds() can be omitted. The simplified command would be 
 

drawnorm x y, n(1000) corr(C) seed(12345) 

 
Obtain the summary statistics and note that their means are near 0 and standard deviations are 
near 1.  
 

summarize x y 
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Another useful command for summary statistics is tabstat. To see the full syntax for this 
command enter help tabstat. For a dialog box enter db tabstat. Pointing and clicking will 
take you there too. On the Stata menu select  
 
Statistics > Summaries, tables, and tests > Tables > Table of summary statistics (tabstat) 
 
In the dialog box choose the statistics you desire. The drop down list under each statistic to 
display is quite complete. 
 
 

  
 
The equivalent Stata command is 
 

tabstat x y, statistics( mean median var semean ) columns(variables) 

The columns option is not required, so that the command can be reduced to 
 

tabstat x y, statistics( mean median var semean ) 

 

 
 
We can find the correlation between x and y using the correlate command, which can be 
abbreviated 
 

corr x y 

           y       1000   -.0074078    .9974661  -3.595466   3.582233
           x       1000   -.0445718    .9996242  -2.949586   2.776384

    Variable        Obs        Mean    Std. Dev.       Min        Max

se(mean)    .0316109  .0315426
variance    .9992486  .9949387
     p50   -.0193433 -.0278578
    mean   -.0445718 -.0074078

   stats           x         y
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The sample correlation is very close to the “true” value we specified. For a scatter diagram enter 
 

twoway scatter y x, saving(xynorm ,replace) 

 

 
 

Because there are no overlays the above command can be simplified to scatter y x. 

C.3 THE CENTRAL LIMIT THEOREM 

The powerful central limit theorem is very frequently applied in econometrics. The theorem says: 
If 1, , NY Y�  are independent and identically distributed random variables with mean � and 

variance 2� , and /iY Y N�� , then � � � �NZ Y N� �	 �  has a probability distribution that 

converges to the standard normal N(0,1) as N N H. 
To illustrate this powerful result we will use simulated data. Clear memory, set the number of 

observations to 1000 and set the seed. 
 

clear 

set obs 1000 

set seed 12345 

 
Let the continuous random variable Y have a triangular distribution, with probability density 
function 
 

� � 2 0 1
0 otherwise

y y
f y

! !4
� 5
6

 

 

           y     0.4690   1.0000
           x     1.0000

                      x        y

(obs=1000)
. corr x y

-4
-2

0
2

4
y

-4 -2 0 2 4
x
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Draw a sketch of the pdf to understand its name. The expected value of Y is � � 2 / 3E Y	 � �  and 

its variance is � �2 var 1/18Y� � � . The Central Limit Theorem says that if 1, , NY Y�  are 

independent and identically distributed with density � �f y  then 
 

2 / 3
1/18N

YZ

N

�
�

 
 
has a probability distribution that approaches the standard normal distribution as N approaches 
infinity. To generate random numbers from a triangular density we will use a result Appendix B 
of this manual. If U is a uniform random number between 0 and 1, then Y U�  has a triangular 
distribution. Uniform random numbers are obtained using the Stata function runiform(). 
 

gen y1 = sqrt(runiform()) 

 
A histogram shows the shape of the distribution 
 

histogram y1, saving(triangle_hist ,replace) 

 
The distribution is not bell shaped, is it? 
 

 
 
Now create another 11 such variables using a forvalues loop. This looping device will repeat a 
series commands over consecutive values of the indexing variable. The rules for such a loop, 
quoting from Stata help documenation are: 
Braces must be specified with forvalues, and (1) the open brace must appear on the same line as 
forvalues; (2)  nothing may follow the open brace except, of course, comments; the first 
command to be executed must appear on a new line; and (3) the close brace must appear on a line 
by itself. 

Using rep as the indexing variable we can create y2-y12. In the second line we specify a 
generate command with the variable being y`rep’. Each pass through the loop rep is replaced 
by the values 2 through 12. 

 
forvalues rep=2/12 { 

0
.5

1
1.

5
2

2.
5

D
en

si
ty

0 .2 .4 .6 .8 1
y1
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 gen y`rep' = sqrt(runiform()) 

 } 

 
We will find the sample means of the first 3, first 7 and all 12 of these triangular variables. The 
central limit theorem says we should standardize the variables as 
 

2 / 3
1 /18N

YZ

N

�
�  

 
Using a foreach loop, which is similar to the forvalues loop, except it loops over a list of items, 
we can efficiently complete several tasks. First, use egen to create the means ybar3, ybar7 and 
ybar12 of a row of variables y1-yn.  Then, generate the variable ZN defined above. The 
histogram command includes normal so that a normal curve will be fitted to the histogram. Then 
summarize will show us details. Recall that for a normal variable Skewness is 0 and Kurtosis is 
3. 
 

foreach n in 3 7 12 { 

 egen ybar`n' = rowmean(y1-y`n') 

 gen z`n' = (ybar`n' - 2/3)/(sqrt((1/18)/`n')) 

 histogram z`n', normal saving(ybar`n'_hist , replace) 

 summarize z`n', detail 

 } 

 
Examining the histogram of z12, with a normal density function fitted over it, we find 
 

 
 
We have averaged together 12 very non-normal random variables and the result has a very 
symmetric bell shaped distribution.  
 

0
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.2
.3

.4
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z12
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For a standard normal random variable we should find a mean near zero and a standard deviation 
(and variance) near one. Also, the Skewness should be zero and the Kurtosis should be 3. Our 
values are very close to this. The result is even more impressive because the central limit really 
talks about averaging together a very large number of variables, and we have just used 12. 

C.4 INTERVAL ESTIMATION 

Let Y be a normally distributed random variable, � �2~ ,Y N 	 � . Assume that we have a random 

sample of size N from this population, 1 2, , , NY Y Y� . The estimator of the population mean is 

1

N

i
i

Y Y N
�

� � . Because we have assumed that Y is normally distributed it is also true that 

� �2~ ,Y N N	 � . The standardized random variable  

 

( 1)ˆ N
Yt t

N �

�	
�
�
�  

 
has a t-distribution with (N�1) degrees of freedom. The notation � �1Nt �  denotes a t-distribution 

with N�1 “degrees of freedom.” Let the critical value tc be the 100(1��/2)-percentile value 

� �1 2, 1Nt �% � . This critical value has the property that � � � �1 1 2, 1 1 2N NP t t� �% �
� �� � �%� � . If tc is a critical 

value from the t-distribution then, 
 

1
ˆc c
YP t t

N
� ��	
� � � � �%� �

�� �
 

 
Rearranging we obtain 
 

ˆ ˆ
1c cP Y t Y t

N N
� �� �

� � 	 �  � � %� �
� �

 

 
The 100(1�%)% interval estimator for � is  

99%     2.214441       2.815349       Kurtosis       3.188245
95%     1.540365       2.767131       Skewness      -.2156755
90%     1.207615       2.747086       Variance       .9721167
75%     .7039524       2.736392
                        Largest       Std. Dev.      .9859598
50%     .0323963                      Mean           .0038828

25%    -.6835418      -3.213517       Sum of Wgt.        1000
10%    -1.245175      -3.251922       Obs                1000
 5%    -1.586884      -3.636459
 1%    -2.549243      -3.697989
      Percentiles      Smallest

                             z12
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ˆ

cY t
N
�

�  or � �secY t Y�  

 
This interval estimator has center and width that vary from sample to sample.  

C.4.1 Using simulated data 

Clear memory, set the number of sample observations to 30, and set the seed value. 
 

clear 

set obs 30 

set seed 12345 

 
Draw 10 independent standard normal (0,1)N  random variables.  
 

drawnorm x1-x10 

 
We modify these to have mean 10 and variance 10, using the properties of the normal 
distribution. If ~ (0,1)iX N  then � �2~ ,i iY a bX N a b�  . Using a forvalues loop we create 10 

such variables. 
 

forvalues n=1/10 { 

 gen y`n' = 10 + sqrt(10)*x`n' 

 } 

 
To obtain 95% confidence interval estimates we can use the Stata command ci. Enter help ci in 
the Command window to see the syntax. To locate the dialog box, type db ci. To use the menu 
select  
 
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Confidence 
intervals
 
Fill in the ci dialog box 
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The Stata command is 
 

ci y1-y10 

 

 
 

The result shows the sample mean, the standard error and the 95% interval estimates. In this case 
interval 4 does not contain the true value of the population mean, which is 10. This is the outcome 
of sampling variation. If this interval estimation procedure is used many times 95% of the 
intervals obtained using this method will contain the true mean. Any one interval may or may not 
contain the true population mean. 

C.4.2 Using the hip data 

Automatic commands are wonderful, but the ability to click does not demonstrate or necessarily 
promote understanding. Clear memory, and open hip.dta. 
 

use hip, clear 

 
Use the automatic command ci to obtain an interval estimate for mean population hip width. 

         y10           30    9.547122    .5854969        8.349646     10.7446
          y9           30    10.96144    .6188641        9.695716    12.22715
          y8           30    9.523076    .4450133        8.612922    10.43323
          y7           30    9.085932    .5962659        7.866432    10.30543
          y6           30    10.09176     .611673        8.840744    11.34277

          y5           30    10.11062    .5154498        9.056411    11.16484
          y4           30    8.458479    .5744584         7.28358    9.633378
          y3           30    10.25851    .5594697        9.114271    11.40276
          y2           30    10.93521    .3674302        10.18373    11.68668
          y1           30    10.00381    .5808083         8.81592    11.19169

    Variable          Obs        Mean    Std. Err.       [95% Conf. Interval]
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ci y 

 

 
 

To demonstrate the details of this calculation, obtain detailed summary statistics. We have 
already seen these, so we can use the option quietly to suppress the output.  
 

quietly summarize y, detail 

return list 

 
Stata saves these quantities in an array called r(). You can view these values by entering return 
list in the Command window. Some of these scalar values are: 
 

 
 
We can use these values, and the formulas in POE4, to construct a 95% interval estimate.  
 

scalar ybar = r(mean) 

scalar nobs = r(N) 

scalar df = nobs - 1 

scalar tc975 = invttail(df,.025) 

scalar sighat = r(sd) 

scalar se = sighat/sqrt(nobs) 

scalar lb = ybar - tc975*se 

scalar ub = ybar + tc975*se 

 
Display the results 
 

di "lb of 95% confidence interval = " lb 

di "ub of 95% confidence interval = " ub 

 
The results are 

 
lb of 95% confidence interval = 16.644653 

ub of 95% confidence interval = 17.671747 

C.5 TESTING THE MEAN OF A NORMAL POPULATION 

Consider the null hypothesis 0 :H c	 � . If the sample data come from a normal population with 
mean � and variance 2� , then 

           y          50     17.1582    .2555503        16.64465    17.67175

    Variable         Obs        Mean    Std. Err.       [95% Conf. Interval]

           r(skewness) =  -.0138249736168214
                 r(sd) =  1.80701319692955
                r(Var) =  3.265296693877551
               r(mean) =  17.1582
              r(sum_w) =  50
                  r(N) =  50
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� �1~
ˆ N
Yt t

N �

�	
�
�  

 
If the null hypothesis 0 :H c	 �  is true, then 
 

� �1~
ˆ N
Y ct t

N �

�
�
�

 

 
The rejection regions are summarized as 
 

� If the alternative hypothesis 1 :H c	 �  is true, then the value of the t-statistic tends to 
become larger than usual for the t-distribution. Let the critical value tc be the 100(1��)-
percentile � �1 , 1Nt �% �  from a t-distribution with N�1 degrees of freedom. Then 

( ) 1cP t t� � �% , where % is the level of significance of the test. If the t-statistic is greater 
than or equal to tc then we reject 0 :H c	 �  and accept the alternative 1 :H c	 � . 

� If the alternative hypothesis 1 :H c	 !  is true, then the value of the t-statistic tends to 
become smaller than usual for the t-distribution. The critical value �tc is the 100�-
percentile � �, 1Nt % �  from a t-distribution with N�1 degrees of freedom such that 

( )cP t t� � � % , where % is the level of significance of the test. If t � �tc, then we reject 

0 :H c	 �  and accept the alternative hypothesis 1 :H c	 ! .  
� If the alternative hypothesis 1 :H c	 "  is true, then values of the test statistic may be 

unusually “large” or unusually “small.” The rejection region consists of the two “tails” of 
the t-distribution, and this is called a two-tail test. The critical value is the 100(1 2)� % -
percentile from a t-distribution with N�1 degrees of freedom, � �1 2, 1c Nt t �% �� , so that 

# $ # $ / 2c cP t t P t t � � � �% . If the value of the test statistic t falls in the rejection region, 
either tail of the � �1Nt � -distribution, then we reject the null hypothesis 0 :H c	 �  and 

accept the alternative  hypothesis 1 :H c	 " .  

C.5.1 Right-tail test 

To illustrate a right tail test, test the null hypothesis 0 : 16.5H 	 � . The alternative hypothesis is 

1 : 16.5H 	 � . Obtain the detailed estimates and carry out the calculation.  
 

use hip, clear 

quietly summarize y, detail 

scalar ybar = r(mean) 

scalar nobs = r(N) 

scalar df = nobs - 1 

scalar sighat = r(sd) 

scalar se = sighat/sqrt(nobs) 
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scalar t1 = (ybar - 16.5)/se 

scalar tc95 = invttail(df,.05) 

scalar p1 = ttail(df,t1) 

di "right tail test" 

di "tstat = " t1 

di "tc95  = " tc95 

di "pval  = " p1 

 
Producing the output 

 
right tail test 

tstat = 2.5756186 

tc95  = 1.6765509 

pval  = .00653694 

 
There is an automatic command for testing the mean of a normal population called ttest. Find 
the syntax by typing help ttest. To open the dialog box, type db ttest. This yields 
 

 
 
There are several tests depending on the problem. We are using a One-sample mean-comparison 
test. Open this dialog box, and fill it in as 

 

 
 
The required Stata command is (using == rather than =) 
 

ttest y==16.5 
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Lots of output is produced, including the t-statistic value 2.5756. For a right tail test the p-value is 
the area under the t-distribution with N�1 = 49 degrees of freedom. That value is shown to be 
0.0065.  

C.5.2 Two-tail test 

To illustrate a two tail test consider the null hypothesis is 0 : 17H 	 � . The alternative hypothesis 
is 1 : 17H 	 " .  
 

quietly summarize y, detail 

scalar t2 = (ybar - 17)/se 

scalar p2 = 2*ttail(df,abs(t2)) 

di "two tail test" 

di "tstat = " t2 

di "tc975  = " tc975 

di "pval  = " p2 

 
The result is 

 
two tail test 

tstat = .61905631 

tc975  = 2.0095752 

pval  = .53874692 

 
The automatic test is 
 

ttest y==17 

 

 
 

The test statistic value is 0.6191 and the two tail p-value is 0.5387. In the Stata output “!=” means 
“not equal to,” or “”.  

 Pr(T < t) = 0.9935         Pr(|T| > |t|) = 0.0131          Pr(T > t) = 0.0065
   Ha: mean < 16.5             Ha: mean != 16.5               Ha: mean > 16.5

Ho: mean = 16.5                                  degrees of freedom =       49
    mean = mean(y)                                                t =   2.5756

       y        50     17.1582    .2555503    1.807013    16.64465    17.67175

Variable       Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]

One-sample t test

 Pr(T < t) = 0.7306         Pr(|T| > |t|) = 0.5387          Pr(T > t) = 0.2694
    Ha: mean < 17               Ha: mean != 17                 Ha: mean > 17

Ho: mean = 17                                    degrees of freedom =       49
    mean = mean(y)                                                t =   0.6191

       y        50     17.1582    .2555503    1.807013    16.64465    17.67175

Variable       Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]

One-sample t test
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C.6 TESTING THE VARIANCE OF A NORMAL POPULATION 

Let Y be a normally distributed random variable, � �2~ ,Y N 	 � . Assume that we have a random 

sample of size N from this population, 1 2, , , NY Y Y� . The estimator of the population mean is 

iY Y N��  and the unbiased estimator of the population variance is � � � �22ˆ 1iY Y N� � � �� . 

To test the null hypothesis 2 2
0 0:H � � �  we use the test statistic  

 
2

2
( 1)2

0

ˆ( 1) ~ N
NV �

� �
� 7

�  
 
If the null hypothesis is true then the test statistic has the indicated chi-square distribution with 
(N�1) degrees of freedom. If the alternative hypothesis is 2 2

1 0:H � � �  then we carry out a one-
tail test. If we choose the level of significance � = .05, then the null hypothesis is rejected if 

2
(.95, 1)NV � 7 , where 2

(.95, 1)N �7  is the 95th-percentile of the chi-square distribution with (N�1) 
degrees of freedom. 

To illustrate consider the null hypothesis that the variance of the hip population data equals 4. 
The Stata automatic test is sdtest. It specifies the null hypothesis in terms of the standard 
deviation, rather than the variance. Thus the null hypothesis is 0 : 2H � � . 

The test command, assuming the hip data are in memory, is 
 

sdtest y == 2 

 

 
 
The test statistic value is 39.9999 and the right tail p-value is 0.8168. To see the details, specify a 
scalar equal to the hypothesized variance. 
 

quietly summarize y, detail 

scalar s0 = 4 

scalar sighat2 = r(Var) 

scalar df = r(N)-1 

scalar v = df*sighat2/s0 

scalar chi2_95 = invchi2(df,.95) 

scalar chi2_05 = invchi2(df,.05) 

scalar p = 2*chi2(df,v) 

di "Chi square test stat = " v 

di "5th percentile chisquare(49) = " chi2_05 

di "95th percentile chisquare(49) = " chi2_95  

  Pr(C < c) = 0.1832         2*Pr(C < c) = 0.3664           Pr(C > c) = 0.8168
     Ha: sd < 2                   Ha: sd != 2                   Ha: sd > 2

Ho: sd = 2                                       degrees of freedom =       49
    sd = sd(y)                                             c = chi2 =  39.9999

       y        50     17.1582    .2555503    1.807013    16.64465    17.67175

Variable       Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]

One-sample test of variance



592   Appendix C 

di "2 times p value = " p 

 
The output is 

 
Chi square test stat = 39.999884 

5th percentile chisquare(49) = 33.930306 

95th percentile chisquare(49) = 66.338649 

2 times p value = .36643876 

C.7 TESTING THE EQUALITY OF TWO NORMAL POPULATION MEANS 

Let two normal populations be denoted � �2
1 1,N 	 �  and � �2

2 2,N 	 � . In order to estimate and test 

the difference between means, 1 2	 �	 , we must have random samples of data from each of the 
two populations. We draw a sample of size 1N  from the first population, and a sample of size 2N
from the second population. Using the first sample we obtain the sample mean 1Y  and sample 
variance 2

1�̂ ; from the second sample we obtain 2Y  and 2
2�̂ . How the null hypothesis 

0 1 2:H c	 �	 �  is tested depends on whether the two population variances are equal or not. 

C.7.1 Population variances are equal 

If the population variances are equal, so that 2 2 2
1 2 p� � � � � , then we use information in both 

samples to estimate the common value 2
p� . This “pooled variance estimator” is  

 
� � � �2 2

1 1 2 22

1 2

ˆ ˆ1 1
ˆ

2p

N N
N N

� �  � �
� �

 �  
 
If the null hypothesis 0 1 2:H c	 �	 �  is true, then  
 

� �
1 2

1 2
( 2)

2

1 2

~
1 1ˆ

N N

p

Y Y c
t t

N N

 �

� �
�

� �
� � �

� �

 

 
As usual we can construct a one-sided alternative, such as 1 1 2:H c	 �	 � , or the two-sided 
alternative 1 1 2:H c	 �	 " . 

C.7.2 Population variances are unequal 

If the population variances are not equal, then we cannot use the pooled variance estimate. 
Instead we use  
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� �1 2*

2 2
1 2

1 2

ˆ ˆ

Y Y c
t

N N

� �
�

� �


 

 
The exact distribution of this test statistic is neither normal nor the usual t-distribution. The 
distribution of t* can be approximated by a t-distribution with degrees of freedom 
 

� �
� � � �

22 2
1 1 2 2

2 22 2
1 1 2 2

1 2

ˆ ˆ

ˆ ˆ

1 1

N N
df

N N
N N

�  �
�
� �� �� �
� �� �
� �

 

 
This is called Satterthwaite’s formula.  

To illustrate the test for populations with equal variances, draw two samples from normal 
populations with means 1 and 2, using drawnorm.  
 

clear 

drawnorm x1 x2, n(50) means(1 2) seed(12345) 

 
Calculate the summary statistics.  
 

summarize 

 

 
 
Using this information you could compute the test statistic given in POE4. The automatic test 
uses the command ttest with an option.  
 

ttest x1 == x2, unpaired 

 
Unpaired means that the observations are not matched to each other in any way. The results are 
shown below. The difference between the two sample means is �0.82 and the t-statistic value is 
�4.4897 with 98 degrees of freedom. The two tail p-value is 0.0000 leading us to correctly reject 
the equality of the two population means. 
 

          x2         50    1.945904    .9256588   -.003253   4.517602
          x1         50    1.124799    .9030621  -.8845057   3.381427

    Variable        Obs        Mean    Std. Dev.       Min        Max
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To illustrate the test when we do not assume variances are equal, generate two normal variables 
that have N(1,1) and N(2,4) distributions. 
 

drawnorm x3 x4, n(50) means(1 2) sds(1 2) seed(12345) 

 
The command ttest now has the option unequal. 
 

ttest x3 == x4, unpaired unequal 

 

 
 
The degrees of freedom are calculated to be 71.069, and again the two tail test rejects the null 
hypothesis that the population means are equal. 

C.8 TESTING THE EQUALITY OF TWO NORMAL POPULATION VARIANCES 

Given two normal populations, denoted � �2
1 1,N 	 �  and � �2

2 2,N 	 � , we can test the null 

hypothesis 2 2
0 1 2: 1H � � � . If the null hypothesis is true, then the population variances are equal. 

The test statistic is derived from the results that � � � �1

2 2 2
1 1 1 1ˆ1 ~ NN �� � � 7  and 

� � � �2

2 2 2
2 2 2 1ˆ1 ~ NN �� � � 7 . The ratio 

 

 Pr(T < t) = 0.0000         Pr(|T| > |t|) = 0.0000          Pr(T > t) = 1.0000
    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0

Ho: diff = 0                                     degrees of freedom =       98
    diff = mean(x1) - mean(x2)                                    t =  -4.4897

    diff             -.8211052    .1828861               -1.184037   -.4581738

combined       100    1.535351    .0998996    .9989957    1.337129    1.733574

      x2        50    1.945904    .1309079    .9256588    1.682835    2.208973
      x1        50    1.124799    .1277123    .9030621    .8681512    1.381446

Variable       Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]

Two-sample t test with equal variances

 Pr(T < t) = 0.0052         Pr(|T| > |t|) = 0.0104          Pr(T > t) = 0.9948
    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0

Ho: diff = 0                     Satterthwaite's degrees of freedom =   71.069
    diff = mean(x3) - mean(x4)                                    t =  -2.6330

    diff             -.7670091    .2913039               -1.347843   -.1861754

combined       100    1.508303    .1499527    1.499527    1.210764    1.805842

      x4        50    1.891808    .2618158    1.851318    1.365669    2.417946
      x3        50    1.124799    .1277123    .9030621    .8681512    1.381446

Variable       Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]

Two-sample t test with unequal variances
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If the null hypothesis 2 2

0 1 2: 1H � � �  is true then the test statistic is 2 2
1 2ˆ ˆF � � � , which has an F-

distribution with ( 1 1N � ) numerator and ( 2 1N � ) denominator degrees of freedom. If the 
alternative hypothesis is 2 2

1 1 2: 1H � � " , then we carry out a two-tail test. If we choose level of 
significance � = .05, then we reject the null hypothesis if 

1 2(.975, 1, 1)N NF F � �  or if 
1 2(.025, 1, 1)N NF F � ��  

where 
1 2( , 1, 1)N NF% � �  denotes the 100�-percentile of the F-distribution with the specified degrees of 

freedom. If the alternative is one-sided, 2 2
1 1 2: 1H � � � then we reject the null hypothesis if 

1 2(.95, 1, 1)N NF F � � . 
Using the simulated variables x3 and x4, the test is carried out using the automatic command 

sdtest.  
 

sdtest x3 == x4 

 

 

C.9 TESTING NORMALITY 

The normal distribution is symmetric, and has a bell-shape with a peakedness and tail-thickness 
leading to a kurtosis of 3. Thus we can certainly test for departures from normality by checking 
the skewness and kurtosis from a sample of data. If skewness is not close to zero, and if kurtosis 
is not close to 3, then we would reject the normality of the population. In Principles of 
Econometrics, 4th Edition, Appendix C.4.2 we developed sample measures of skewness and 
kurtosis 
 

�

�

3
3

4
4

skewness S

kurtosis K

	
� �

�

	
� �

�

�
�

�
�

 

  Pr(F < f) = 0.0000         2*Pr(F < f) = 0.0000           Pr(F > f) = 1.0000
    Ha: ratio < 1               Ha: ratio != 1                 Ha: ratio > 1

Ho: ratio = 1                                    degrees of freedom =   49, 49
    ratio = sd(x3) / sd(x4)                                       f =   0.2379

combined       100    1.508303    .1499527    1.499527    1.210764    1.805842

      x4        50    1.891808    .2618158    1.851318    1.365669    2.417946
      x3        50    1.124799    .1277123    .9030621    .8681512    1.381446

Variable       Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]

Variance ratio test
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The Jarque-Bera test statistic allows a joint test of these two characteristics, 
 

� �2
2 3

6 4
KNJB S

� ��
� �� 
� �
� �  

 
If the true distribution is symmetric and has kurtosis 3, which includes the normal distribution, 
then the JB test statistic has a chi-square distribution with 2 degrees of freedom if the sample size 
is sufficiently large. If � = .05 then the critical value of the � �

2
27  distribution is 5.99. We reject the 

null hypothesis and conclude that the data are non-normal if JB � 5.99. If we reject the null 
hypothesis then we know the data have non-normal characteristics, but we do not know what 
distribution the population might have. 

Clear memory and open hip.dta.  
 

use hip, clear 

 
Stata offers number of automatic tests. The nature of the tests is beyond the scope of this book. 
They do offer one test that is similar to, but not exactly the same, as the Jarque-Bera test. It is 
implemented using 
 

sktest y 

 

 
 

The Jarque-Bera test follows, using the skewness and kurtosis values generated by summarize. 
 

quietly summarize y, detail 

scalar nobs = r(N) 

scalar s = r(skewness) 

scalar k = r(kurtosis) 

scalar jb = (nobs/6)*(s^2 + ((k-3)^2)/4) 

scalar chi2_95 = invchi2(2,.95) 

scalar pval = 1 - chi2(2,jb) 

di "jb test statistic " jb 

di "95th percentile chi2(2) " chi2_95 

di "pvalue " pval 

 
With output 

 
jb test statistic = .93252312 

95th percentile chi2(2) = 5.9914645 

pvalue = .62734317 

           y       50      0.9645         0.2898         1.17         0.5569

    Variable      Obs   Pr(Skewness)   Pr(Kurtosis)  adj chi2(2)    Prob>chi2
                                                           joint  
                    Skewness/Kurtosis tests for Normality
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C.10 MAXIMUM LIKELIHOOD ESTIMATION 

Stata offers powerful general command for maximizing likelihood functions. We have used 
maximum likelihood estimation many times already. For example, binary and multinomial choice 
models, such as probit, logit, and conditional logit are estimated using maximum likelihood. 
However it is possible to do maximum likelihood estimation “from scratch” using a likelihood 
function for a particular problem in which you are interested. Stata’s ml command will maximize 
a user supplied log-likelihood function. Enter help ml. These commands are beyond the scope of 
POE4. Advanced users may wish to consider Maximum Likelihood Estimation with Stata, 4th 
Edition, by Gould, Pitblado and Poi, Stata Press, 2010, which is available on www.stata.com. A 
few simple examples, based on examples from William Greene (2008) Econometrics Analysis, 6th 
Edition, can be found at http://www.principlesofeconometrics.com/poe4/usingstata.htm.  

C.11 KERNEL DENSITY ESTIMATOR 

Figure C.19 in POE4 shows histograms for two data sets. The data used are in the file kernel.dta. 
Let us generate similar, but not identical data. First, clear memory and set the number of 
observations to 500. 

 
clear 

set obs 500 

Specify means and standard deviations for two normal random variables, and draw random values 
using drawnorm. 

 
matrix m = (7,9,5) 

matrix sd = (1.5,.5,1) 

drawnorm x y1 y2, means(m) sds(sd) seed(1234567) 

Examine these variables 
 

summarize 

 
 

correlate  

 

          y2         500    4.992534    1.070694   2.044742   7.962709
          y1         500     9.00128    .5260826   7.367773   10.70334
           x         500    6.939916    1.549873   2.666413   11.98759

    Variable         Obs        Mean    Std. Dev.       Min        Max

          y2    -0.0763  -0.0185   1.0000
          y1     0.0004   1.0000
           x     1.0000

                      x       y1       y2
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Create a mixture variable from y1 and y2, where each observation has a random probability of 
being included. 

 
set seed 987654321 

gen u = uniform() 

gen p = (u > .5) 

gen y = p*y1+(1-p)*y2 

Now create Figure C.19, which is shown on the following page. 
 

histogram x, freq width(.25) xlabel(2(1)12) start(2) /// 

 title("X~N(7,1.5^2)") saving(n1, replace) 

histogram y, freq width(.25) xlabel(2(1)12) start(2) /// 

 title("Y mixture of N(9,0.5^2) & N(5,1)") saving(mix1,replace) 

graph combine "n1" "mix1", cols(2) ysize(4) xsize(6) /// 

 title("Figure C.19 Histograms of X and Y") saving(figc19,replace) 

 
Figure C.20 in POE4 shows the histograms with superimposed normal densities. These curves are 
obtained using the formula 

 

�
2ˆ1 1 �( ) exp

ˆ2 ��̂ 2�
xf x

� ��� �� �� �� �� �� �� �
 

 
True means and standard deviations are replaced by estimates. These figures, shown on the next 
page, are obtained by simply adding the normal option to the histogram. We have tinkered with 
settings for the histogram so that they will match text figure.  

 
histogram x, freq width(.25) xlabel(2(1)12) start(2) /// 

 normal title("X~N(7,1.5^2)") saving(n2, replace) 

histogram y, freq width(.25) xlabel(2(1)12)  start(2) /// 

 normal title("Y mixture of N(9,0.5^2) & N(5,1)") /// 

 saving(mix2,replace) 

graph combine "n2" "mix2", cols(2) ysize(4) xsize(6) /// 

 title("Figure C.20 Normal Parametric Densities") /// 

 saving(figc20,replace) 

 
Figure C.21 shows histograms for Y with different bin widths. These figures are shown on the 
page following the next. 

 
histogram y, width(1) freq xlabel(2(1)12) start(2) /// 

 title("bin width=1") saving(y1,replace) 

histogram y, width(.1) freq xlabel(2(1)12) start(2) /// 

 title("bin width=0.1") saving(y2,replace) 

graph combine "y1" "y2", cols(2) ysize(4) xsize(6) /// 

 title("Figure C.21 Different Bin Widths") /// 
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 saving(figc21,replace) 
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In Figure C.22 of POE4 we show the use of so called “kernel densities” superimposed upon the 
histograms. A kernel density is 

 

�
1

1( )
n

i

i

x xf x K
nh h�

�� �� � �
� ��

 
 

where K is a kernel, h is a smoothing parameter called the bandwidth and x are values over the 
domain of possible values. There are many kernel functions; one of them is Gaussian and is 
described as follows: 

 
21 1exp

22�
i ix x x xK
h h

� �� �� � � �� �� �� � � �� �� � � �� �
 

 
To see more about this in Stata enter help histogram. Scroll down in the Viewer box a bit to 
find information on Density plots. 

 

0
50

10
0

15
0

Fr
eq

ue
nc

y

2 3 4 5 6 7 8 9 10 11 12
y

bin width=1

0
10

20
30

Fr
eq

ue
nc

y

2 3 4 5 6 7 8 9 10 11 12
y

bin width=0.1

Figure C.21 Different Bin Widths



Review of Statistical Inference   601 

 
 

The Stata code for Figure C.22 is below. Note that we request a Gaussian kernel density in the 
options. 

 
histogram y, width(.25) freq xlabel(2(1)12)  start(2) /// 

 kdensity kdenopts(gauss width(1.5)) title("bandwidth=1.5") /// 

 saving(b1,replace) 

histogram y, width(.25) freq xlabel(2(1)12)  start(2) /// 

 kdensity kdenopts(gauss width(1)) title("bandwidth=1") /// 

 saving(b2,replace) 

histogram y, width(.25) freq xlabel(2(1)12)  start(2) /// 

 kdensity kdenopts(gauss width(.4)) title("bandwidth=0.4") /// 

 saving(b3,replace) 

histogram y, width(.25) freq xlabel(2(1)12)  start(2) /// 

 kdensity kdenopts(gauss width(.1)) title("bandwidth=0.1") /// 

 saving(b4,replace) 

graph combine "b1" "b2" "b3" "b4", cols(2) ysize(4) xsize(6) /// 

 title("Figure C.22 Nonparametric Densities") /// 

 saving(figc22,replace) 
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KEY TERMS 

bandwidth kdensity skewness 
central limit theorem kernel density sktest 
ci kurtosis  standard error 
confidence intervals mean summarize 
correlation matrix mean test summarize,detail 
drawnorm normality test tabstat 
Gaussian kernel post estimation test of two means 
histogram return list ttest 
hypothesis tests sdtest runiform() 
interval estimation set obs variance test 
Jarque-Bera test set seed  
kdenopts simulated data  

APPENDIX C DO-FILE [APPX_C.DO] 

* file appx_c.do for Using Stata for Principles of Econometrics, 4e 

cd c:\data\poe4stata 

* Stata do-file  

* copyright C 2011 by Lee C. Adkins and R. Carter Hill  
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Figure C.22 Nonparametric Densities
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* used for "Using Stata for Principles of Econometrics, 4e"  

* by Lee C. Adkins and R. Carter Hill (2011) 

* John Wiley and Sons, Inc. 

* setup 

version 11.1 
capture log close 

set more off 

********* examine hip data 

log using appx_c, replace text 

use hip, clear 

describe 

histogram y, percent saving(hip_hist,replace) 

* histogram using pull down menu 

histogram y, width(1) start(13) percent 

* summary statistics 

summarize y, detail 

* estimate mean 

mean y 

* generate several normal variables 

clear 
matrix C = (1, .5 \ .5, 1) 

drawnorm x y, n(1000) corr(C) seed(12345) 

summarize x y 
tabstat x y, statistics (mean median variance semean) 

corr x y 

twoway scatter y x, saving(xynorm ,replace) 

********* central limit theorem 

clear 
set obs 1000 

set seed 12345 

* generate triangular distributed value 

gen y1 = sqrt(runiform()) 

histogram y1, saving(triangle_hist ,replace) 

* 11 more 

forvalues rep=2/12 { 
   gen y`rep' = sqrt(runiform()) 

   } 

* standardize several and plot 

foreach n in 3 7 12 { 

   egen ybar`n' = rowmean(y1-y`n') 
   gen z`n' = (ybar`n' - 2/3)/(sqrt((1/18)/`n')) 

   histogram z`n', normal saving(ybar`n'_hist , replace) 

   graph export ybar`n'_hist.emf, replace 
   summarize z`n', detail 

   } 

* interval estimates 

* simulated data 

clear 
set obs 30 

set seed 12345 

drawnorm x1-x10 
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* transform 

forvalues n=1/10 { 
 gen y`n' = 10 + sqrt(10)*x`n' 

 } 

* compute interval estimates 

ci y1-y10 

* hip data 

use hip, clear 

* automatic interval estimate 

ci y 

* details of interval estimate 

quietly summarize y, detail 

return list 
scalar ybar = r(mean) 

scalar nobs = r(N) 

scalar df = nobs - 1 
scalar tc975 = invttail(df,.025) 

scalar sighat = r(sd) 

scalar se = sighat/sqrt(nobs) 
scalar lb = ybar - tc975*se 

scalar ub = ybar + tc975*se 

di "lb of 95% confidence interval = " lb 

di "ub of 95% confidence interval = " ub 

********* hypothesis testing 

* right tail test mu = 16.5 

* details 

use hip, clear 
quietly summarize y, detail 

scalar ybar = r(mean) 

scalar nobs = r(N) 
scalar df = nobs - 1 

scalar sighat = r(sd) 

scalar se = sighat/sqrt(nobs) 
scalar t1 = (ybar - 16.5)/se 

scalar tc95 = invttail(df,.05) 

scalar p1 = ttail(df,t1) 
di "right tail test" 

di "tstat = " t1 

di "tc95  = " tc95 
di "pval  = " p1 

* automatic version 
ttest y==16.5 

* two tail test mu = 17 

* details 

quietly summarize y, detail 
scalar t2 = (ybar - 17)/se 

scalar p2 = 2*ttail(df,abs(t2)) 

di "two tail test" 
di "tstat = " t2 

di "tc975  = " tc975 

di "pval  = " p2 
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* automatic version 

ttest y==17 

********* Testing the variance 

* automatic test 

sdtest y == 2 

* details 

quietly summarize y, detail 

scalar s0 = 4 
scalar sighat2 = r(Var) 

scalar df = r(N)-1 

scalar v = df*sighat2/s0 
scalar chi2_95 = invchi2(df,.95) 

scalar chi2_05 = invchi2(df,.05) 

scalar p = 2*chi2(df,v) 
di "Chi square test stat = " v 

di "5th percentile chisquare(49) = " chi2_05 

di "95th percentile chisquare(49) = " chi2_95  
di "2 times p value = " p 

********* testing equality of population means 
clear 

drawnorm x1 x2, n(50) means(1 2) seed(12345) 

summarize 

* assuming variances are equal 

ttest x1 == x2, unpaired 

* assuming variances unequal 

drawnorm x3 x4, n(50) means(1 2) sds(1 2) seed(12345) 
ttest x3 == x4, unpaired unequal 

* testing population variances 
sdtest x3 == x4 

* test normality 
use hip, clear 

********* Jarque_Bera test 
* automatic test 

sktest y 

* details 

quietly summarize y, detail 

scalar nobs = r(N) 
scalar s = r(skewness) 

scalar k = r(kurtosis) 

scalar jb = (nobs/6)*(s^2 + ((k-3)^2)/4) 
scalar chi2_95 = invchi2(2,.95) 

scalar pval = 1 - chi2(2,jb) 

di "jb test statistic = " jb 
di "95th percentile chi2(2) = " chi2_95 

di "pvalue = " pval 

********* kernel density estimation 

clear 
set obs 500 

* specify means and standard deviations 
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matrix m = (7,9,5) 

matrix sd = (1.5,.5,1) 

* draw normal random values 

drawnorm x y1 y2, means(m) sds(sd) seed(1234567) 

* examine 

summarize 

correlate  

* create mixture 

set seed 987654321 
gen u = uniform() 

gen p = (u > .5) 

gen y = p*y1+(1-p)*y2 

* Figure C.19 

histogram x, freq width(.25) xlabel(2(1)12) start(2)   /// 
 title("X~N(7,1.5^2)") saving(n1, replace) 

histogram y, freq width(.25) xlabel(2(1)12) start(2)   /// 

 title("Y mixture of N(9,0.5^2) & N(5,1)") saving(mix1,replace) 
graph combine "n1" "mix1", cols(2) ysize(4) xsize(6)   /// 

 title("Figure C.19 Histograms of X and Y") saving(figc19,replace) 

* Figure C.20 

histogram x, freq width(.25) xlabel(2(1)12) start(2)   /// 

 normal title("X~N(7,1.5^2)") saving(n2, replace) 
histogram y, freq width(.25) xlabel(2(1)12)  start(2)   /// 

 normal title("Y mixture of N(9,0.5^2) & N(5,1)")  /// 

 saving(mix2,replace) 
graph combine "n2" "mix2", cols(2) ysize(4) xsize(6)   /// 

 title("Figure C.20 Normal Parametric Densities")   /// 

 saving(figc20,replace) 

* Figure C.21 

histogram y, width(1) freq xlabel(2(1)12) start(2)    /// 
 title("bin width=1") saving(y1,replace) 

histogram y, width(.1) freq xlabel(2(1)12) start(2)    /// 
 title("bin width=0.1") saving(y2,replace) 

graph combine "y1" "y2", cols(2) ysize(4) xsize(6)    /// 
 title("Figure C.21 Different Bin Widths")    /// 

 saving(figc21,replace) 

* Figure C.22 

histogram y, width(.25) freq xlabel(2(1)12)  start(2)   /// 

 kdensity kdenopts(gauss width(1.5)) title("bandwidth=1.5")  /// 
 saving(b1,replace) 

histogram y, width(.25) freq xlabel(2(1)12)  start(2)   /// 
 kdensity kdenopts(gauss width(1)) title("bandwidth=1")  /// 

 saving(b2,replace) 

histogram y, width(.25) freq xlabel(2(1)12)  start(2)   /// 

 kdensity kdenopts(gauss width(.4)) title("bandwidth=0.4")  /// 

 saving(b3,replace) 

histogram y, width(.25) freq xlabel(2(1)12)  start(2)   /// 

 kdensity kdenopts(gauss width(.1)) title("bandwidth=0.1")  /// 
 saving(b4,replace) 

graph combine "b1" "b2" "b3" "b4", cols(2) ysize(4) xsize(6)  /// 
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 title("Figure C.22 Nonparametric Densities")   /// 

 saving(figc22,replace) 

log close 
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!missing, 47, 240 
#, 46, 172 
%td, 387 
%tm, 271, 387
%tw, 271
%ty, 271
_b[_cons] , 77, 105 
_b[varname], 105 
_se[_cons], 105 
_se[varname], 105 
2sls, 105 
ac, 279 
ADF test, 393 
adjusted R2, 177, 196 
AIC, 197, 291 
analysis of variance table, 71, 127, 

164, 176 
analytic weights, 258 
Arithmetic operators, 38, 547 
AR(1) error, 284, 287 
AR(p) model, 297 
ARCH, 426 
arch y options, 432 
arch(), 432 
archlm, lags(), 431 
archm, 438 
ARDL(p,q) model, 290 
areg varlist,  
absorb(var), 233 
arima, 309 
arithmetic operators, 38, 547 
asclogit, 517 
atmeans, 67, 90, 494 
augmented DF test, 393 
autocorrelation, 278 
autoregressive, 290, 297 
autoregressive conditional  

heteroskedastic, 426  
autoregressive error, 284 
autoregressive model, 297 
average marginal effect, 68, 79, 215, 

493
aweight, 258 
bandwidth, 285 

baseoutcome, 511 
between estimator, 460 
BIC criterion, 196 
binary choice models, 489, 501 
binary operators, 172 
binomial distribution, 117, 557 
Breusch-Pagan test, 250, 462 
by, 18, 86 
bysort, 88, 223, 517 
c.variable, 45, 172
canon, 341 
canonical correlations, 337 
categorical variable, 45, 172, 512 
cd, 4 
cdf, 40, 493, 567 
censored data, 526 
censored regression, 528 
central limit theorem, 581 
chi2, 40, 565 
chi2tail(n,x), 40, 556 
chi-square distribution, 565 
Chow test, 221 
ci, 585 
clear, 6 
cnsreg, 192 
cointegration, 401 
collinearity, 203, 447  
combine graph, 387 
command syntax, 16 
command window, 16  
conditional logit, 515 
confidence interval, 117, 165, 587 
connected, 551 
constraint, 192 
corr, 150, 203, 581 
correlate, see corr 
correlation matrix, 447 
correlations, 127, 337 
correlogram, 281 
corrgram, 282 
coverage probability, 105 
Cragg-Donald F-test, 337 
create, 32 
cross equation hypotheses 

cumulative distribution function, 39, 
555

current path, 3 
D. operator, 274
data browser, 25, 55 
data editor, 7, 25  
data utilities, 8, 37 
date functions, 270 
db, 15 
db scalar, 137 
define, 43 
definition files, 4 
degrees of freedom, 556 
delay multiplier, 305 
delta method, 69, 171 
demand equation, 357 
density functions, 556 
derivative, 67, 551 
describe, 11 
dfk, 477 
dfuller, 396 
di, see display 
dialog box, see db
Dickey-Fuller (DF) test, see ADF test 
DID, 237 
difference estimator, 230 
difference operator, D., 274 
differences-in-differences, 237 
display, 41 
distributed lags, 276 
do selected, 32 
do-file, 30 
do-file editor, 30 
dofm, 387 
dofq, 387 
drawnorm, 342, 578 
drift, 396 
drop, 35 
dummy variables, 45 
dydx, 78, 173, 551 
e(df_r), 146 
e(mss), 146 
e(N), 146 
e(r2), 146 
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e(r2_a) , 198 
e(rank) , 198 
e(rmse) , 146 
e(rss), 146 
e(V), 72, 167 
edit, 73 
egen, 541 
elasticity, 66 
endogenous covariates, 323 
endogenous variables, 321, 324 
Engle-Granger test, 401 
ereturn list, 146 
estat, 72 
estat alternatives, 519 
estat bgodfrey, 284 
estat classification, 503 
estat dwatson, 308 
estat firststage, 328 
estat hettest, 252 
estat mfx, 519 
estat overid, 336 
estat ovtest, 203 
estat vce, 72, 94, 162 
estimates store, 199 
estimates table, 199 
esttab, 233 
exit, 3 
exogenous variables, 321, 330, 360 
expand, 479 
exponential function, 39 
exponential smoothing, 301 
expression builder, 34 
extreme value distribution, 568 
eyex, 67 
F distribution, 563 
factor variables, 45, 172 
Fden, 556 
fe, 453 
findit, 14 
finite distributed lag, 276 
first stage regression, 321, 364 
fixed effects, 233, 446 
foreach, 452 
forecast error, 124 
forecast error variance, 300, 434 
forecast error variance decomposition 

(FEVD), 417 
forecast standard error, 316 

forecasting, 299, 428 
format, 233, 271 
format %tm, 271, 387 
format %tq, 271 
forvalues, 294 
F-statistic, 183, 188
Ftail(J,N-K,fstat), 556 
F-test, 181, 188 
F-test critical value, 183 
functional form, 129, 141, 196, 200 
gamma function, 564 
GARCH in Mean (MGARCH), 437 
garch(), 435 
Gaussian kernel, 601 
gen, see generate  
generalized ARCH (GARCH), 433, 

435
Generalized Least Squares, 257, 260, 

398, 458 
generate, 32 
global, 231, 452 
global macro, 93 
GLS, 257, 260, 398, 458 
Goldfeld-Quandt test 
goodness-of-fit, 126, 176 
graph, 25 
graph combine, 85, 387 
graph editor, 132 
graph save, 27, 59 
graph twoway, 115, 248, 273, 387 
group effects, 478 
groupwise heteroskedastic, 267. 
HAC standard errors, 285 
Hausman test, 332, 463 
Hausman test, regression based, 348 
Hausman-Taylor model, 466 
HCCME, 257 
heckit, 533 
heckman, 536 
help, 9, 12 
help command, 50 
heteroskedasticity, 247 
heteroskedasticity robust, 255 
histogram, 27 
hypothesis tests, 106, 167 
i.variable, 45, 172 
ib1.group, 46 
ibn.group, 46 

identification, 270, 337, 367, 512 
if, 16 
impact multiplier, 305 
impulse response function, 417, 419 
imtest, white, 253 
in, 16
indicator variable, 45, 172, 212 
infinite distributed lag, 306 
instrument variables, 321, 323, 360  
instrumental variables estimation, 321 
integ, 553 
integral, 551 
integration, 551 
interaction variable, 46, 170, 213 
interim multiplier, 305 
interval estimate, 103 
invchi2, 41, 556, 565 
invchi2tail(n,p), 41, 556, 565 
inverse cdf, 39 
inverse Mills ratio, 533 
inversion method, 567 
invFtail(J,N_K,alpha), 41, 557 
invnormal, 41, 557 
invtail(df,alpha), 41, 557 
IRF, 417 
irf graph, 421 
irf table, 419 
irrelevant variables, 195 
ivreg2, 372 
ivregress, 323 
Jarque-Bera test, 135, 596 
joint significance test, 206 
k-class estimator, 370 
kdenopts, 601 
kdensity, 601 
keep, 35 
kernel, 285 
kernel density, 597 
keyword search, 13 
kurtosis, 17, 595  
L(0/4).varname, 274 
L. operator, 274, 306, 395
label, 8 
label define, 86 
label value, 86 
lag length, 277 
Lagrange multiplier, 250, 283, 418, 

429
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lags, 279, 284, 431
latent variable, 526, 533 
lcolor, 151 
left-tail test, 109 
legend, 85 
level(90), 165 
lfit, 70 
likelihood ratio test, 481, 505 
LIML, 370, 374 
lincom, 107 
linear combinations of estimates, 166 
linear probability model, 227, 502 
linear-log model, 129 
list, 56 
list in, 56 
LM test, 252, 284, 336 
ln, 34, 39 
lngamma, 564 
log, 21 
log close, 22 
log file, 21 
log using, 21 
logical operators, 547 
logit, 501, 507 
log-linear model, 80 
log-log model, 151 
lowess, 250 
lpattern, 132 
LR test, 505 
lrtest, 506 
lwidth, 76 
macro, 279, 294, 415, 483 
manage constraints, 192 
marginal effects, 67, 170, 215, 497, 

531
margins, 67, 494, 496 
margins, dydx, 494 
math functions, 38 
matrix, 166, 242, 578 
maximum likelihood estimation, 491, 

597
mean, 452 
mean equation, 428 
mean squared error, 347 
mean test, 592 
minimum eigenvalue statistic, 328 
missing values, 47, 125, 287 
mixed models, 478 

mlogit, 511 
model selection, 196, 291 
model, linear, 62  
model, log-linear, 80 
model, quadratic, 75 
modulus, 548 
Monte Carlo simulation, 93, 116, 374 
MSE, 347 
msymbol, 565 
multinomial logit, 509 
multiple linear regression, 160 
multiplier analysis, 305 
multivariate time series, 423 
Mundlak test, 465 
name(graph, replace), 387
natural log, 34-35, 548 
newey, 286 
Newey-West standard errors, 285-286 
nl, 287, 303 
nlcom, 89-90, 171, 225-226, 492
noconstant, 330, 396, 411 
nonlinear least squares, 287, 403 
nonstationary, 273, 385, 401 
normal, 40, 42, 493, 558 
normal distribution, 40, 91, 427, 558 
normalden, 490-493 
normality test, 595 
not equal to !=, 241, 547
omitted variables, 193, 200 
operators, 38, 273, 547 
oprobit, 521 
ordered probit, 521 
out-of-sample prediction, 508 
overall F-test, 185, 326, 455 
overidentifying instruments, 335 
pairwise correlations, 127, 232 
panel data, 442 
partial correlation, 329 
plot definition, 59-60 
poisson, 523-524, 566 
Poisson regression, 524-525 
pooled model, 444, 473 
postestimation, 63-64, 107, 124, 162, 

184, 214, 320 
prais, 309 
Prais-Winsten, 309 
predict, 64-65, 73, 124, 163 

predict ehat, residual, 65, 124, 138, 
249, 260, 281, 295, 335, 402 

predict yhat, xb, 65, 74, 163, 200, 
261, 438, 502 

prediction, 123, 148, 163, 508 
prediction interval, 123, 125, 150 
probit, 490-491, 497 
program, 94, 117, 197, 291, 345, 376 
program drop _all, 94, 117, 198 
program drop progname, 198 
pseudofunctions, 270 
p-value, 110-113, 137, 166, 252, 322, 

590
pwcorr, 127, 232 
q(1996q4), 389 
quadratic model, 75, 91 
quietly, 90, 131, 415 
R2, 126, 150, 176 
random effects, 458-467 
random number, 93, 342, 374, 566 
random number generator, 567 
random regressors, 319 
range, 16, 37, 56, 60, 62, 115 
range/delta, 60 
re, 548 
recast(area), 115, 562 
reduced form equations, 358, 366 
reg, see regress 
regional indicator variables, 220 
regress, 62-63, 161 
regress, coeflegend, 79 
rejection rate criterion, 337 
relational operators, 547 
relative bias criterion, 337 
replace, 21, 74 
RESET, 200-202 
reshape, 475 
residual diagnostic plots, 140 
residual plots, 249 
residuals, 63, 66, 124, 134, 251 
restricted regression, 187 
results window, 5, 11, 17, 67 
return list, 90, 129, 135 
return scalar, 94, 117 
review window, 5-6, 17-19, 20, 30 
right-tail test, 106, 111, 588 
rnormal(), 93, 116, 566 
robust cluster, 445 
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robust standard errors, 256, 326, 445 
runiform(), 566-567, 582 
rvpplot, 140, 148 
sample autocorrelations, 279, 281, 
Sargan statistic, 336 
Save, 7, 27, 32 
Saving, 27, 59 
SC criterion, 299 
Scalar, 41-43 
scalar dialog box, 43 
scalar list, 164, 184 
scatter, 28 
scatter diagram, 28-29, 58 
scheme, 408 
Schwartz criterion, 198 
scientific notation, 550 
sdtest, 591 
search, 13-14 
search command, 14 
seed, 93-95, 569 
seed, random number, 93-95 
seemingly unrelated, 472 
selection bias, 533 
selection equation, 533 
serial correlation, 277 
set more off, 31 
set obs, 74 93, 116 
set seed, 93, 116 
shell, 388 
sigmamore, 334 
simulate, 94-95, 118, 346 
simulated data, 336, 526, 578 
simultaneous equations, 357 
skewness, 17, 135, 596 
sktest, 596 
small, 324 
smcl format, 21-22 
sort, 76, 87, 131, 223, 451 
standard deviation, 12, 58, 69, 558, 

576, 584, 591 
standard error, 68, 72, 107 
standard error of forecast, 125, 146, 

150
standard normal distribution, 40, 42, 

324, 557,560, 582 
stationary, 385, 398 
std. dev., see standard deviation 
std. err., see standard error 

stdf, 124, 146 
Stock-Yogo critical values, 337, 363 
strong instruments, 342 
subsample, 253, 259, 389 
summarize, 11, 14-16 
summarize, detail, 17 
supply equation, 338, 357, 364 
SUR, 472 
sureg, 476 
surplus instruments, 326, 335 
syntax, 16-17 
t distribution, 42, 104, 560 
tabstat, 347, 377 
tabulate varname, gen(), 48, 232 
tarch(), 436 
tden, 115, 557 
test (hypoth 1)(hypoth 2), 207, 447 
test of two means, 592 
testparm varlist, 184 
text format, 21 
theta, 458 
threshold GARCH, 436 
time series plots, 272, 393 
tin(d1,d2), 390 
title, 26-28, 61, 69, 562 
tobit, 527 
tobit scale factor, 531 
total multiplier, 306 
TR2 form of LM test, 283, 429 
Translate, 23-24 
t-ratio, 167
treatment effects, 229 
trend, 396 
tsline, 389, 391 
tsset, 271 
tssmooth, 302 
tsvarlist, 387, 396 
ttail, 40, 557 
ttail(df,tstat), 40, 557 
ttest, 589-593 
two-stage least squares, 321, 359 
two-tail test, 109, 112, 590 
twoway, 29, 58-59 
twoway function, 115, 558 
two-way graph, 28 
twoway line, 580 
twoway scatter, 248-249, 581 
unary operators, 172 

use "data file", clear, 5 
valid instruments, 335 
varbasic, 417 
variables manager, 9. 35 
variables window, 7, 35 
variance, 58, 70 
variance covariance matrix, 72, 94, 

114, 162, 255 
variance equation, 262 
variance test, 591, 594 
varlmar, 418 
varmanage, 9 
varsoc, 418 
vce(cluster id), 445, 455, 459 
vce(robust), 256, 263, 325, 502 
vector autoregressive model, 412 
vector error correction model, 408 
volatility, 426 
Wald chi-square test, see Wald test  
Wald test, 185, 505 
weak instruments, 336-337 
weighted least squares, 248 
White's standard errors, 257 
White's test, 251 
wide data, 475 
within-sample forecasts, 302 
working directory, 4 
xb, 65, see predict 
xlabel, 70, 85 
xtdescribe, 443 
xtgls, 472 
xtmixed, 478 
xtpcse, 474 
xtreg, 453 
xtset, 442 
xtsum, 457 
xttest0, 463 
ylabel, 61-62 
yline(0), 139, 148, 249 
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