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8.2.1 Calculation of Adomian Polynomials

It is well known now that Adomian decomposition method suggests that the un-
known linear function ¥ may be represented by the decomposition series

U=y iy, (8.10)

n=0
where the components u,,n > 0 can be elegantly computed in a recursive way.
However, the nonlinear term F(u), such as w203 u®, sinu, e, uuy, u?, etc. can be

expressed by an infinite series of the so-called Adomian polynomlals A, given in
the form ~
u) = An(uo,ur,uz, ), (8.11)
n=0

where the so-called Adomian polynomials 4, can be evaluated for all forms of
nonlinearity. Several schemes have been introduced in the literature by researchers
to calculate Adomian polynomials. Adomian introduced a scheme for the calcu-
lation of Adomian polynomials that was formally justified. An alternative reliable
method that is based on algebraic and trigonometric identities and on Taylor series
has been developed and will be examined later. The alternative method employs
only elementary operations and does not require specific formulas.

The Adomian polynomials 4, for the nonlinear term F () can be evaluated by
using the following expression

1 d" &
A= an lF (z””’)] L n=0,1.2,-. (8.12)
: i=0 A=0

The general formula (8.12) can be simplified as follows. Assuming that the nonlinear
function is F(u), therefore by using (8.12), Adomian polynomials [3] are given by

Ao = ( )7
Al—ul (uo),
A — F/ F//
2 = waF' (up) + u] (u0), 8.13)
A3—u3F’(u0)+u1u2F”(uo) 3‘ FW( )
1
Ay = ugF' (ug) + (5; u2+u1u3)F/(uo)+2'u1u2F"/(uo) 2 F Y (o).

Other polynomials can be generated in a similar manner.

Two important observations can be made here. First, 4y depends only on ug, A
depends only on u( and u;, A, depends only on ug,u; and u», and so on. Second,
substituting (8.13) into (8.11) gives

F(u) =Ao+41+ A2+ A3+
:F(u0)+(u1 +u2+u3+---)F/(uo)
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1
+ 5(”% + 2uyuy 4 2uyuz + s + -V F" (ug) + - -

1
+ 5(14% + 314%142 + 3u%u3 + 6uupuz + - .)F”’(uo) 4.
1
= F(u()) + (u — uo)F/(u()) + E(u — uo)zF//(uO) -

The last expansion confirms a fact that the series in 4, polynomials is a Taylor series
about a function uo and not about a point as is usually used. The few Adomian
polynomials given above in (8.13) clearly show that the sum of the subscripts of the
components of u of each term of 4,, is equal to n. As stated before, it is clear that 4
depends only on ug, A; depends only ug and u;, A, depends only on ug,u; and u,.
The same conclusion holds for other polynomials.

In the following, we will calculate Adomian polynomials for several forms of
nonlinearity that may arise in nonlinear ordinary or partial differential equations.

Calculation of Adomian Polynomials 4,,

I. Nonlinear Polynomials

Case 1. F(u)=u’

The polynomials can be obtained as follows:
Ao = F(uo) = ug,

Ay = w1 F'(uo) = 2uouy,

1
Ay = urF' (up) + 5u%F”(uO) = Quguy + 13,

1
yu?F"/(uo) = 2uouz + 2uuy.

Az = u3F’(u0) + MluzFH(uo) +
Case2. F(u)=1u’

The polynomials are given by
Ao = F(up) = u},

A1 = ulF’(ug) = SM%ul,

1
Ay = urF' (up) + EM%FU(MO) = 3uduy + Sugu?,

1
Az = usF' (up) + uguaF" (ug) + gu?F"/(uo) = 3u%u3 + 6uguiur + u?

Case3. F(u)=u*
Proceeding as before we find

_ 4
Ao_u()v
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A= 4u(3)u1,
Ay = 4u(3)u2 + 6u(2)u%,
Az = 4u8u3 + 4u*§u0 + 12u(2)u1u2.

In a parallel manner, Adomian polynomials can be calculated for nonlinear polyno-
mials of higher degrees.

II. Nonlinear Derivatives
Case 1. F(u) = (uy)?

Ag = u(z)x,

Ay =2up,uy,

Ay = 2up,uy, +ui

Az = 2ug,u3, +2uy 1, .
Case2. F(u)=u
The Adomian polynomials are given by

_ .3
A() = MOX’
2
A = 3u0xu1x,
_ 2,2 2
Ay = 3”0x”2x + 3uoxu1x,

— 3,2 3
Az =3ug uz, + 6ug 1 uy, +uy .

ELx(uz)

The Adomian polynomials for this nonlinearity are given by

Case 3. F(u) = uu, =

A() = F(uo) = Upuo,,

1
Ay = ELX(2u0u1) = ug, Uy +uouy,,

1
Ay = S L(2uguz + Up) = uo,uz + 1,1 + tr,uo,

Az = %Lx(2u0u3 +2uyun) = ug u3 +uy up + up Uy +u3 .

III. Trigonometric Nonlinearity

Case 1. F(u)=sinu

The Adomian polynomials for this form of nonlinearity are given by

Ay = sinuy,

A1 = uj cosuy,
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I, .
Ay = upcosuy— 5”1 sin u),

1
A3z = uzcosug — ujuy sinug — 3 u%cosuo

Case 2. F(u)=cosu

Proceeding as before gives

Ao = cosuy,
A] = —Uj sinuo,
_ : 2
Ay = —upsinug — Eu] cos i,
15
Az = —uzsinug — ujuy Cosug + — 3 T sinu.

IV. Hyperbolic Nonlinearity

Case 1. F(u) = sinhu

The A, polynomials for this form of nonlinearity are given by
Ao = sinhuy,

Ay = uy coshuy,

1
X ul sinhu,

Ay = upcoshug+ —
. I ;5

A3 = uzcoshugy + ujuy sinhug + §u1 coshuy.

Case 2. F(u) = coshu

The Adomian polynomials are given by

Ao = coshug,

Ay = uy sinhuy,

1
Ay = upsinhug+ — 2 il coshuo,

1
A3z = uzsinhug + ujur coshug + — T ”1 sinhuy.

V. Exponential Nonlinearity

Casel. F(u)=¢"

The Adomian polynomials for this form of nonlinearity are given by
Ay = "0

Al = uypeo
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1
Ay = (ur+ — T

up)e’,

1 U
A3_(u3+u1u2+3' ) 0
Case2. F(u)=e"

Proceeding as before gives

Ay = eiuo,
Ay = —uje 0,

1 u2)e Ho
AZ - ( uy + 5 ) ’

1
Az = (— u3—|—u|uz—§ ul)e ™,

VI. Logarithmic Nonlinearity
Casel. F(u)=Inu,u>0

8 Nonlinear Partial Differential Equations

The A, polynomials for logarithmic nonlinearity are give by

A():lnuo,
uj
Al =
Uo
uy  lug
M=o,
Uugp 2u0

Case2. F(u)=In(14+u),—1 <u<

The A, polynomials are give by
Ao = In(1 4+ uy),

Uy
A1:1+u0’
) 1 u?
T l4uy 2 (14up)?
Az = us Uy l u%
T+uy (14up)® 3 (1+ug)?

8.2.2 Alternative Algorithm for Calculating Adomian Polynomials

It is worth noting that a considerable amount of research work has been invested
to develop an alternative method to Adomian algorithm for calculating Adomian
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polynomials 4,. The aim was to develop a practical technique that will calculate
Adomian polynomials in a practical way without any need to the formulae intro-
duced before. However, the methods developed so far in this regard are identical to
that used by Adomian.

We believe that a simple and reliable technique can be established to make the
calculations less dependable on the formulae presented before.

In the following, we will introduce an alternative algorithm that can be used to
calculate Adomian polynomials for nonlinear terms in an easy way. The newly de-
veloped method in [15-16] depends mainly on algebraic and trigonometric identities,
and on Taylor expansions as well. Moreover, we should use the fact that the sum of
subscripts of the components of « in each term of the polynomial 4,, is equal to #.

The alternative algorithm suggests that we substitute # as a sum of components
uy,n > 0 as defined by the decomposition method. It is clear that 4 is always de-
termined independent of the other polynomials 4,,n > 1, where Ay is defined by

Ao = F(up). (8.14)

The alternative method assumes that we first separate 4y = F'(ug) for every nonlinear
term F (u). With this separation done, the remaining components of F'(u) can be ex-
panded by using algebraic operations, trigonometric identities, and Taylor series
as well. We next collect all terms of the expansion obtained such that the sum of
the subscripts of the components of # in each term is the same. Having collected
these terms, the calculation of the Adomian polynomials is thus completed. Several
examples have been tested, and the obtained results have shown that Adomian poly-
nomials can be elegantly computed without any need to the formulas established by
Adomian. The technique will be explained by discussing the following illustrative
examples.

Adomian Polynomials by Using the Alternative Method
I. Nonlinear Polynomials
Case 1. F(u)=u’
We first set .
U=y uy. (8.15)
n=0

Substituting (8.15) into F(u) = u?* gives

F(u) = (ug+uy + s+ uz 4+ ug +us +---)°. (8.16)
Expanding the expression at the right hand side gives

F(u)= u(% + 2uguy + 2uguy + u% + 2ugus + 2ujuy + - - - (8.17)
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The expansion in (8.17) can be rearranged by grouping all terms with the sum of the
subscripts is the same. This means that we can rewrite (8.17) as

Flu) = u(z) + 2uouy + 2uguy + u% + 2uguz + 2ujuy

~—
A A A - (8.18)
+ 2uoug + 2ugus + u5 + 2uous + 2ugug + 2uouz 4+ - -
Ay As
This completes the determination of Adomian polynomials given by
Ay = u%,
Ay = 2uguy,
Ay = 2upun + u%,
Az = 2ugusz + 2u uy,
Agq = 2uoug + 2u u3 + u%,
As = 2ugus + 2uug + 2upus.
Case2. F(u)=u’
Proceeding as before, we set
u= i Uy. (8.19)
n=0
Substituting (8.19) into F (1) = u* gives
F(u) = (up+uy +ur+uz+us+us+---)°. (8.20)
Expanding the right hand side yields
Fu) = ug + 3uéu1 + 3u(2)u2 + 3uou% + 3u%u3 + Ouguiur + u? 8.21)

+ 3u%u4 + 3u%u2 + 3u%uo + Ouguiuz - - -.

The expansion in (8.21) can be rearranged by grouping all terms with the sum of the
subscripts is the same. This means that we can rewrite (8.21) as

F(u) = ua +3u3u1+3u%u2+3uou%+3u%u3—|—6uou1u2+u?
— ——

Ao Ay Ao A3

8.22
+3”%u4+3u%u2+3u§u0+6u0ulu3+. .. ( )

Ay
Consequently, Adomian polynomials can be written by
A() = ug,
Al = 314(2)1/!1,

Ay = Su%uz + 3u0u%,
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Az = 3u%u3 + 6uguiur + u{’,

Ay = 3u%u4 + 3u%u2 + 3u%uo + 6uguus.
I1. Nonlinear Derivatives

Case 1. F(u) = u?

X

We first set }
Uy = 2 Up, -
n=0
Substituting (8.23) into F(u) = u? gives
F(”) = (Mox +uy, +uy, tusz +ug + - .)2_

Squaring the right side gives

F(u)= u(z)x + 2ug,u1, + 2ugun, + u%x + 2ug u3, +2uy Uy, + -

Grouping the terms as discussed above we find

F(u) = u(z)x +2u0xu1x+2u0xu2x+u%x
~ ~~ —.—,—

Ao A4 Ay

+ 2ug,u3, + 2uy us, + ui + 2ug us, + 2ug u3 4

A3 Ay

Adomian polynomials are given by

Ao = u(z)x,

Ay = 2up,uy,,

Ay = 2up,up, +ui

Az = 2upu3, + 2uy un,,

Ay = 2ug us, +2uy u3 + u%x.
Case 2. F(u) = uuy

We first set -
U= Yy,
nio
U = Y Un,.
n=0
Substituting (8.27) into F (#) = uu, yields

Fu) = (uo+uy+up+us+us+---)x
(o, +ur, + 1z, +uz, +ug +--).
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(8.23)

(8.24)

(8.25)

(8.26)

(8.27)

(8.28)
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Multiplying the two factors gives
F(u) = uouo, +uo, uy + uouy, + o, uz + g uy + g g + o, u3
+ uy U + up Uy + U3, U + U, Us + Ugls, + Ut U3 (8.29)
+ujuz, +usup, + -

Proceeding with grouping the terms we obtain

F(u) = uo uo~+uo,uy + i, uo+uo, up +uy uy + ua uo
~—~—

Ao A Ay
+ o uz 4wy Uy +up Uy +uz U

(8.30)
A3

+uo ug +uruz +up up +uz uy +ug o+

Ay
It then follows that Adomian polynomials are given by
Ao = uo,uo,
Ay = uo,uy + uy,uo,
Ay = ug up +uy uy +up uo,
Az = up,uz +uy Uz + up uy +uz U,
Ay = uo, Ug + Uy U3+ up Uy + Uz Uy + Ug, Ug.
II1. Trigonometric Nonlinearity

Case 1. F(u)=sinu

Note that algebraic operations cannot be applied here. Therefore, our main aim is to
separate Ag = F'(up) from other terms. To achieve this goal, we first substitute

U=y up, (8.31)
n=0
into F'(u) = sinu to obtain
F(u) = sinfug + (uy +up +u3 +ug +---)). (8.32)

To calculate Ay, recall the trigonometric identity
sin(6@ + ¢) = sin O cos ¢ + cos Osin@. (8.33)
Accordingly, Equation (8.32) becomes

F(u) = sinugcos(uj +up +uz+ug+--)

i 8.34
—|—COSu()Sln(u1+u2+u3+u4+...)_ ( )
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Separating F(ug) = sinug from other factors and using Taylor expansions for
cos(uy +up---) and sin(u; +uz + - --) give

1 1
F(u) = sinug (1—5(u1+u2+---)2+m(u1+u2—|—---)4—---)

| (8.35)
+ cosu ((ul +u2+-~~)—§(ul+u2+...)3+...>7
so that |
F(u) = sinug (1 — 2—!(u%+2u1u2—|—---)>
(8.36)

1 3
+cosug | (uy +uy+--+) — 21 4]
Note that we expanded the algebraic terms; then few terms of each expansion are

listed. The last expansion can be rearranged by grouping all terms with the same
sum of subscripts. This means that Eq. (8.36) can be rewritten in the form

. 1 .
F(u) = sinug+ uq cosug + uy cosug — —u? sinug
1
—— N—

2!
Ao 4
" (837)
+ uz cosugy — uuy Sinug — yu? cosug—+---
A3
Case 2. F(u) =cosu
Proceeding as before we obtain
. . 1,
F(u) = cosup — uy sinug + (—up sinug — —ujcosug)
—_——  N—— 2!
Ao 4 P
. (8.38)
+ (—ussinug — ujuz cosup + gu? sinug) + -+ -
A3
IV. Hyperbolic Nonlinearity
Case 1. F(u) = sinhu
To calculate the 4, polynomials for F'(u) = sinhu, we first substitute
u= 2 U, (8.39)
n=0

into F'(u) = sinhu to obtain
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F(u) =sinh(ug+ (u1 +up +uz +ug+--+)). (8.40)
To calculate 4, recall the hyperbolic identity
sinh(6 + ¢) = sinh 6 cosh ¢ + cosh O sinh ¢. (8.41)
Accordingly, Eq. (8.40) becomes

F(u) = sinhugcosh(u; +up +u3+us+---)

+ coshugsinh(uy +up +u3 +ug+--). (8.42)

Separating F(ug) = sinhuy from other factors and using Taylor expansions for
cosh(u; +up +---) and sinh(uy +up + - - -) give
F(u) = sinhug

1
X (1+2'(u1+u2+--~)2+4|(u1+u2+~~~)4+~~->

1
+coshug ((ul+u2—|—---)+§(u1+u2+...)3+...

. 1
= sinhu (1 + 5(u%+2u1u2+---)>

1
+coshu ((ul +u2+---)+§u%+...>.

By grouping all terms with the same sum of subscripts we find

1
F(u) = sinhug +u; coshug +us coshug + Eu% sinhu

Ay Ay

, ® (8.43)
~+ us coshugy + uyuy sinhug + yu% coshug+---.
A3
Case 2. F(u) = coshu
Proceeding as in sinhx we find
1
F(u) = coshug+u sinhu9+ uy sinhug + Eu% coshu
Ao 4 ~

’ (8.44)

1
+ ug sinh ug +ujuy coshug + 5”? sinhug+---.

43

V. Exponential Nonlinearity

Casel. F(u)=¢"
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Substituting
U= 2 U, (8.45)
n=0
into F'(u) = " gives
F(u) = eltoturtuatust) (8.46)
or equivalently
F(u) = loelmtutust) (8.47)

Keeping the term ¢*0 and using the Taylor expansion for the other factor we obtain

1
up+uy+uz+-- )+--->. (8.48)

F(u) =" x <l+(u1+uz+u3+-- )+ 2,(

By grouping all terms with identical sum of subscripts we find

1
Fu) = " +ue™ + (uy + —ul)e °+(u3+u1u2+3—ul)e”0

21
Ao A A 4
L b, (8.49)
+(u4+ulu3+2'u2+2|u|uz+4| Up)e 4.
Ay

Case2. F(u)=e™
Proceeding as before we find

1
F(u) = ¢+ (—up)e ™0+ (—uy + —ui)e ™

21
—_—
Ao A s
+ (—us +uuy — B u3)e "o
3! (8.50)
A3
1 1 o
+(— u4—|—u1u3—|—2' 2'u1u2+4' uf)e 0 4.
Ay
VI. Logarithmic Nonlinearity
Casel. F(u)=Inu,u>0
Substituting
U=y i, (8.51)

into F'(u) = Inu gives
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F(u) =In(uo+ui +up+uz+--+). (8.52)
Equation (8.52) can be written as

Uy up u
F(u):1n<u0(1+—]+—2+—3+--->).
Up Up Uo

(8.53)
Using the fact that In(o3) = In + In 3, Equation (8.53) becomes

F(u):lnu0+ln<l+ﬂ+2+@+~-->.
Uy U u

(8.54)
0 0

Separating F'(uo) = Inug and using the Taylor expansion for the remaining term we
obtain

2
u u u 1/ u u u
F(u)=lnu0+{(—l+—2+—3+--~> <_l+_2+_3+...)
Uup Uup Uup

2 \u u u
. C (8.55)
1 (uy u w3 L fur  u w3
+z{—+—+—+] — | —F+—F+ =+ +- ).
3 IZ0) IZ0) IZ0) 4 Uup IZ0) Ugp
Proceeding as before, Equation (8.55) can be written as
u u 1u? u uu 1ud
F(u)zlnu0+_l_~__2___é _’;_1_224___%4'_
~~ uo uy 2uy uo uy  Sup (8.56)
Ay ~~ —— —,
Ay Ay Az
Case2. F(u)=In(l+u),—1<u<l
In a like manner we obtain
U uy 1 u%
F(u) = In(1+ug)+ + - —
() L,_O)/ 14+uy 14ug 2(1+u0)2
Ao SN——
A1 Ay
(8.57)
u3 Uy 1 u? n
T+uy  (14u)? 3 (1+up)’
A3

As stated before, there are other methods that can be used to evaluate Adomian
polynomials. However, these methods suffer from the huge size of calculations. For
this reason, the most commonly used methods are presented in this text.



