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Chapter 1

SECTION 2

1. (@) (W2-D)=i(l=2i) =2 —i—i-~2 ==2i:
(b) (2,-3)(=2,)=(=4+3,6+2)=(-18);

1 1 1 1
(C) (3#1)(3!_1)(5110)“(10’0)(5&1'6)“(2!1)*

2. (a) Re(iz)=Reli(x+iy)]=Re(-y+ix)=-y=~Imgz;

(b) Im(iz) =Im[i(x+iy)]=Im(—-y+ix)=x=Rez.

3. I+’ =(0+2)(1+2)=(1+2)-1+(1+Dz=1-(1+2)+z(1+2)

=l+z42z+2° =1+22+2".
4. Ifz=1%ithen 22 -2z+2=(1%i)’ =20t +2=+2i-2F2i+2=0.

5. To prove that multiplication is commutative, write

212y = (X Y1 )(X35 ;) = (XX, = 31Y50 YiXy + X))
= (X% — VoY1 Yo Xy + Xo0) = (X5, 3,)(x, 3) = 2,2

6. (a) To verify the associative law for addition, write

(4 +2,) + 23 = [(x, ) + (3, )1+ (5, 3) = (3 + X5, 3+ 3,) + (X3, 05)
=((x + ) + X5, (3 + 3) + 33) = (%, + (2, + X3), y + (Y, T 3))
= (XY (0 + x5, 9, +93) = (0, Y) + (X, ¥,) + (x5, 5)]
=2 +(2, +23)



(b) To verify the distributive law, write

2(2) +2,) = (x, I(x, 3) + (X5, )] = (6L, 90X, + X5, 9, + ;)
= (XX; + XX, = VY = VY, VX + YX, + XY, + XY,)
= (XX = Yy + XX, =YYy, YX, + Xy, + yx, + Xy,)
= (XX, =YY YX, + Xy,) + (xx, = yy,, yx, + xy,)
= (X, V)X, ¥) + (X, 9)(x,, ;) = 22, + 22,.

9. (-Dz=(-1,0)(x,y)=(~x,~y)=-2Z.

11. The problem here is to solve the equation z° + z+1=0 for z = (x,y) by writing

(x, y)(x,y)+(x,y)+(1,0) = (0,0).

Since

(x* =y +x+1,2xy+y)=(0,0),
it follows that

x'~y*+x+1=0 and 2xy+y=0.

By writing the second of these equations as (2x+ 1)y =0, we see that either 2x+1=0 or

y=0. If y=0, the first equation becomes x>+ x+1=0, which has no real roots
(according to the quadratic formula). Hence 2x+1=0, or x=-1/2. In that case, the first

equation reveals that y* =3/4, or y=1+/3/2. Thus

Zﬂ(x,y)t(-%,i“?].

SECTION 3

L (@ 1t2i,2-i (+200G+4) (2-d(=5)_-5+10i —5-10i 2

WS, sy

3-4i 5i (3-4)3B+4)  (5)(=50) 25 25 5’

(b) 31 S5t S5i 1

Wit i

A-D2-D)G-i) (-3003-0) -10i 2
(c) (1-)*=[(1-DA-DF =(=2i)* =-4.

1 1
2. —— = ﬂi-zm-f-:—:z (z #0).




. (22,0z:32,) = 4l2,(232.)) = 31[(2,23)2, 1 = 2,[(232,)24)] = 41 25(2,24)) ) = (2,23 )(2,2,)-

1) (1 (1) 1 1
6- [EL)(ZQ ) = ZI(MJZZ[M) = ‘ZIZZ WJ (M} = ZIZZ(“M) = ELZ_?“ (Z3 * 0, 24 7 0).
Z3 Z4 Z3 24 \ Z3 24 2324 2324
2z [z Yz Z 1 Z y_{ 2 Z
7. o o B | (w-)m e 3 z(m): i 8 (ZZ" ): e 9 .lz,...._}_., (‘22 ;‘:ng ;‘_—0)'
ZQZ \ 22 Z Zg Z Zz ‘ZZ z:_;

SECTION 4

: 2 .
1. (a) z, =2i, H =70

(b) z,=(=3,1), z,=(/3,0)




(c) z=(-31), z,=(L4)

4G+

(d) z,=x +iy,, 7,=x—1y

Inequalities (3), Sec. 4, are

Rez<IRezZl<lzl and Imz<IlImzli<lzl.

These are obvious if we write them as

x<ixlsyx?+y’ and y<Iy<+/* +y.

In order to verify the inequality 21zl 2IRe zl+1Imzl, we rewrite it in the following ways:

V252 + 7 2 1xl+ 1y,
2(x* + y*) 212l + 2xdiyl + 1P,
|xP = 2lxliyl + 1y 20,
(Ixi—=1y)* 20.

This last form of the inequality to be verified is obviously true since the left-hand side 1s a
perfect square.




5. (a) Rewrite Iz—1+il=1as [z—(1-§)|=1. This is the circle centered at 1—i with radius 1.
It is shown below.

6. (a) Write lz—-4il+1z+ 4il=10 as lz— 4il+1z - (—4i)l= 10 to see that this is the locus of all
points z such that the sum of the distances from z to 4i and ~4i is a constant. Such a
curve is an ellipse with foci +4i.

(b) Write Iz —1l=lz+il as iz ~1l=lz—~(~i)| to see that this is the locus of all points z such

that the distance from z to 1 is always the same as the distance to —i. The curve is,
then, the perpendicular bisector of the line segment from 1 to —i.

SECTION 5

1. (a) T+3i=3+3i=z-3i;

(b) iz=iZ7=-iZ;

(c) Q+iy=(2+1) =Q2-i)=4—4i+i*=4-4i—1=3-4i;

(d) 127 +5)(W2 = )I=12Z + 511W2 = il=122+ 5142+ 1 = /3 127+ 51.

2. (a) Rewrite Re(Z—~i)=2 as Re[x+i(—-y-1)]=2, or x=2. This is the vertical line
through the point z =2, shown below.




(b} Rewrite 127 +il=4 as 2

| .. : I .
=4, or iz——|=2. This is the circle centered at —2— with

-

3. Write z, = x, +iy, and z, = x, +iy,. Then

f+i
2

radius 2, shown below.

=2 =(x +iy)—(x, +iy,) =(x —x,) + iy, — )

= (X, —Iz)—i()’; -¥,)=(x, —iy;)—(-xz —1y,) =2, 2,
and

E;E-'_z- = (X, + 1y, (X, +iy,) = (X%, — 3y y,) iy x; + x,5,)
= (X%, =y y,) =X, + X 3,) = (x, — iy Ux, —iy,) = Z,Z,.

4, (a) 22,2, =(3,2,)2, = 42,2 = (z, zz)z3 = 2125 235

3 _To ===

b) F=F = =nm=(To)T7)=1ezi=2".

b) |2 |= FA NN VA

% | 12751 12,1z,

7. In this problem, we shall use the inequalities (see Sec. 4)
|IRe zI<Izl and |zl + 2, + 23| < {zi|+lzzi+ [zgj,
Specifically, when 1zI< 1,

Re(2+2+2°) <12+ 2+ 1S 24121+ = 2+1zl+12P S 2+ 1+ 1= 4.



9, First write z* —47z° +3=(z* = 1)(z°* = 3). Then observe that when lzl=2,

127 = 12|21l = |1zf 1| =14 - 1I=3
and
2% =312 [12%1-3l| = |12 -3| =14 - 3I=1.

Thus, when zl= 2,
1z -~ 47> + 3=z —1Hz2 = 31>3-1=3.

Consequently, when z lies on the circle izl=2,

1 1 j

1
=478 +3] 128 =472 +317 3

10. (a) Provethat zisreal & 7 =1z

(&) Suppose that Z =z, so that x—iy=x+1iy. This means that i2y=0, or y=0.
Thus z=x+i0=x, or z is real.
(=>) Suppose that z isreal, sothat z=x+i0. Then Z=x-i0=x+i0=z.

(b) Prove that z is either real or pure imaginary < z° =7’

(&) Suppose that 7°=z°. Then (x—iy)’ = (x+£y)2, or i4xy=0. But this can be
only if either x=0 or y=0, or possibly x=y=0. Thus z is either real or pure

imaginary.

(=) Suppose that z is either real or pure imaginary. If z is real, so that z = x, then

7" = x* =z’. If z is pure imaginary, so that z =iy, then 7° = (—iy)’ = (iy)’ = z°.

11. (a) We shall use mathematical induction to show that

L+ 2+t =L+, e+ Z (n=2,3,..).

This is known when n=2 (Sec. 5). Assuming now that it is true when n = m, we may
write

Gtz btz vz, =tttz )z,

=(g+z++2,)+7,,

=545 T) 4 2

o

=T+ g, + T



(b) In the same way, we can show that

22,702, =%, 2, 2, (n=2,3,..)

This 1s true when n =2 (Sec. 5). Assuming that it is true when n = m, we write

ZIZQ T 'Zmzm—ﬂ ~ (ZIZQ " 'Zm )Zmﬂ == (ZIZE " 'Zm) Zmﬂ

=(Z22, " Z,)Zms1 =822 Ty T -

Z+2Z

13. The identities (Sec. 5) zZ =lzI* and Rez = enable us to write 1z - z,I= R as

(z—2(Z-%)=R%,
ZE”(ZEO"'E;)"'Z@EQ =R,
i2I° — 2Re(2Z,) + Iz, = R”.

— Sarrieiel

14. Since x = z-lz-z and y= ZH*Z , the hyperbola x* —y* =1 can be written in the following
i
ways:
(E_Lg)z . (?"2)2 =1
2 2i ’
22 +27+47 s -2 +7 1
4 4 ”
27° +27° -1
4 ?
2 +7 =
SECTION 8

1. (a) Since

i
ar = argi — arg(—2 — 2i),
g(--z--zi) g1 —arg( )

one value of arg( l ) is — ( 3”), or §£ Consequently, the principal value is
—2 —2i 2 4 4

5n 3
— =27, Or ——,
4 4

(b) Since

&rg(\[g —i)® = 6arg(x/§ — 1),



4.

one value of arg(v/3 —i)° is 6(---67£), or —x. So the principal value is -7+ 27, or 7.

The solution @ = 7 of the equation le® —1l=2 in the interval 0< 0 <27 is geometrically
evident if we recall that ¢ lies on the circle izl=1 and that le” — 11 is the distance between
the points ¢ and 1. See the figure below.

Here z=re” is any nonzero complex number and n a negative integer (n=-1,-2,...).

Also, m=-n=1,2,.... By writing

) ) < — |
(Zm) 1 z(rmelma) 1:*"‘;;8!( mé)

and

—~I\m Fl i{—-ﬂ)_m l " i{—mb) l H{—mid)
(z7 )" =|—e =~ e = .
r

aian] Akl

we see that (z")"'=(z™")". Thus the definition z" =(z™")™ can also be written as
znﬂ(zm)”t.

First of all, given two nonzero complex numbers z; and z,, suppose that there are complex
numbers ¢, and ¢, such that z, = ¢,c, and z, = ¢,C,. Since

lz.l=lcllc,i and lz,l=l¢lic,l=lcllc,l,

it follows that {z,1=lz,l.
Suppose, on the other hand, that we know only that iz, 1=lz,l. We may write
z, =rexp(if,) and 2z, =rexp(i6,).

If we introduce the numbers

c,=r, exp(f 6 ; 92) and c, = exp(i O ; 6, ),

we find that

C,C, =1, exp(i % ; % )exp(i % ; % ) =r,exp(i0,) = z,




10

and

¢,C, =T, exp(f % ; % )exp(—i O ; % ) =r exp6, =z,.

That is,

z,=cc, and 2z, =¢C,.
If S:1+z+z2+~--+z’*, then

S—zS=(+z+224+2) = (z+ 2 + L+ 4+ =1-7"".

Hence S =— , provided z #1. That is,

l_zn-H
142427+ 47" = e

|—z

Putting z =" (0 < 8 <27) in this identity, we have

_ int)e

l_eiﬂ

i29+'“+€iﬂ9 — 1

1+e° +e

Now the real part of the left-hand side here is evidently

I+cosB@+cos20+---+cosnl;

and, to find the real part of the right-hand side, we write that side in the form

ex wig ex --‘E —eX @n+ D6
1-expli(n+1)8] PLT'3 L2 '

1 —exp(0) exp(-—i g-) exp(—-i g) — exp[i -g-)

(z#1).



11

which becomes
g .. 6 Cn+1)6 . 2n+1)0
COS— — 811 — — COS — {sin :
2 2 2 2 1
-2isin2 ¢
2
or
[Sin£+8in(2n+1)9 + 7 cosgwcos(—zn+l~)6*
2 2 1 L 2 2 J
Zsine
2

The real part of this is clearly

. (2n+1)0
; Sin
+ 29 .
2 2 sin —
2

and we arrive at Lagrange’s trigonometric identity:

<in (2n+1)0
1

1+ cos@+cos20+--+cosnf = — + - 26 (0<@<2m).

2s1n—
2

. We know from de Moivre's formula that

(cos @ +isin 0)’ = cos30 +isin 36,
or

cos’ 0+ 3cos’ O(isin ) + 3cos B(isin 6)° + (isin 0)° = cos30 + isin 36.
That 1s,
(cos’ @ —3cos Bsin’ 0) + i(3cos” Osin @ - sin’ 8) = cos 30 + isin 36.

By equating real parts and then imaginary parts here, we arrive at the desired trigonometric
identities:

(a) cos30 =cos’ 0—-3cosBsin’ @; (b) sin30 =3cos” Osin @ —sin’ 6.
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SECTION 10

1. (a) Since 2i= Zexp[i(—;-r— + an')] (k=0,%1,%£2,...), the desired roots are

(21')”2 e ‘\/Eexp[f(
That is,
inl/4 | n ..
¢, = 2e™* = \/_2—(005—;1—+ isin Z) - ﬁ(m
and

—7—c-+k7r)
4

ay

il

¢, = (\/565324)35” = —Cy = —(1+1),

c, being the principal root. These are sketched below.

(b) Observe that 1 —+/3i = 2 eXp i(-—--—;—r- + 2k

L )

(1-/3i)"* =2 exp

e

The principal root is

and the other root is

Cl :(ﬁe*fﬂfﬁ)efﬂ' :"‘“CO —

These roots are shown below.

{
6

¢, =V2e ™ = ﬁ(cas%-—ising)m\/ﬁ(? .

—£+knj

(k=0,%t1,%2,...). Hence

b |

L

V3 —i

=

(k =0,1).

(k=0,1).
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2. (a) Since —16 =16expli(n+2kn)] (k=0,11,12,...), the needed roots are

(-—16)” 4 zexp[i(g + %E) (k=0,1,2,3).

The principal root is

c, =2e™* = 2(003-} +isin Z) = 2(-—-—-——~ + -——-—-) =2(1+1i).

The other three roots are
¢, = (2™ e™? = ¢ji =21+ D)i ==2(1 =),

c, = (2" *)e™ = —c, = —2(1 + 1),
and

c; = (2™ e ™ = ¢ (=) = V21 + D(=i) =2 (1 - i).

The four roots are shown below.

(b) First write —8 —8+/3i = léexp[i(--gf- + Zk:rc) | (k=0,t1,%2,...). Then

The principal root is

c, =2¢ " = 2(008% - isin-g-) = z(ﬁ - }--) =+/3 -i.



14

3.

The others are

¢, = (27 ™%)e™? = i =1+ /3i,
cg — (Zeminfﬁ)efjr — ___CO — __(‘\/'5 . I),
¢, = (2e7™)eP™? = ¢ (—i) = —(1 +/30).

These roots are all shown below.

(a) By writing —1 = lexpli(w + 2kn)] (k=0,%t1,%2,...), we see that

. 2kn 1
(—1)"" = exp[z “;

The principal root is

int3 T .. 1 1++3i
Co =€ = =COS—+ISIn—= .
2
The other two roots are
Cl — Eig — _1
and
- o r .. 1w 1-4/3i
Cz —_ e:Sm’S — ezEﬂ:e ini3 = COS— ~ { SIN — = ‘
3 3 2

All three roots are shown below.

(k=0,1,2).
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(b) Since 8 =8expli(0+2km)]} (k=0,%1,%2,...), the desired roots of 8 are

86 =+/2 exp(f%’f-) (k=0,1,2,3,4,5),

the principal one being
¢, =2,
The others are

C, = \/Eemﬁ = \/_2‘(008% + iSiﬂg) = \/5(

2 N2

- ~igl3N _in __ ..{E.._*‘ _E AN 1 \/g _ 1""'\/§i
cz—-(\/fe )e --\/—2-(009,3 ISIH3)( = \/5(2 , z)-—-- NI

and

4. The three cube roots of the number z, = =42 + 4+/2i = Sexp(igf) are evidently

(z9)'"” = 2exp i‘(E + g—’-‘-@) (k =0,1,2).

In particular,

¢, = Zexp(i%)r: V24D,
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S.

~1++/3i

With the aid of the number @, = S we obtain the other two roots:

(a)

(b)

¢, = Cy); = V2(1+ i)(ﬂl -{:2\[3}) = (V3 +D+(V3- ]')ia

V2
e = (e <] O3 1%% (V3 -Di (-—-1 J; «/'5:) _(V3-1) Eﬁf i

Let a denote any fixed real number. In order to find the two square roots of a+i in
exponential form, we write

A=la+il=vVa*+1 and o= Argla+i).

Since
a+i= Aexpli(o + 2km)] (k=0,£1,%2,...),

we see that

s

(a+ ) = =vA exp| i(% + kn‘)] (k=0,1).

That is, the desired square roots are

‘\/XBEMZ and ﬂeiaizeix — ___ﬁefmz‘

. - : aOa =« .
Since a + 1 lies above the real axis, we know that O < a <&, Thus 0< ;- < --i- and this

tells us that cos(%—) >0 and sin(%—) > 0. Since coso = -i-—-, it follows that

CDSg_m\/l+cosa “__L\/1+_§_1___\/A+a
A2

2 2 A ~24A
and
Sing_m\/ri-—cosa :_}_\/1” a _:__\/A-—-a‘
2 2 V2V A +24A
Consequently,

iﬂeiﬂrﬁ

Il

| o VA+a . NA-a
i\fﬁ(cos—-z-ﬂsm 2) i((\/Zx/A \/2\/1‘1]

4L

\[“

il

(VA+a+ivA—-a).



17

6. The four roots of the equation z'+4 =0 are the four fourth roots of the number —4. To
find those roots, we write —4 = 4expli(n + 2k7)] (k=0,%1,12,...). Then

— 4t =4/2 exp I(Z k;)] V2" 4 (k=0,1,2,3).

To be specific,

| 1
c. =24 = 2(c05£+isin£)m 2(-—-—--—+i-———-—-—)m1+i,
: V2| cos+ising |=V2| = +igs

¢, =cpe™ =(1+i)i=—1+i,

¢, =ce” =(1+i)(~1)=~1~1,

c,=ce " = (14 i) (~i) =11
This enables us to write

' +4=(2-¢))(z—¢)(z-¢)(z-¢)
=[(z-¢)(z-c)l' (z—¢,)(z—c,)}
=[z+)~ill(z+D+i]-[(z—-D)~il(z- 1)+ 1]
=[z+ 1)’ +1]-[(z-D)* +1]
= (2" +224+2)(2* -2z +2).

7. Let ¢ be any nth root of unity other than unity itself. With the aid of the identity (see
Exercise 9, Sec. 8),

1+z4 77 +-+7"" =

(z#1),

we find that

l4+c+C* 44" = = . = {),

9. Observe first that

maed _ i(0+2km)]" i(-0-2km) _ 1 i=0) . i(2km)
(z') --[”Q/; exp — ._ Wexp - ;{l/-exp -




an

N 1 exp i(=0+2kr) 1 ox i(-0) ox :(Zk.n'),
r m r m m

where k= 0,1,2,...,m—1. Since the set

exp L2A) (k=0,12,....m-1
m
is the same as the set
exp k1) (k=0,12,....m-1),
m
but in reverse order, we find that (z"")" = (z™)"™.

SECTION 11

. (a) Writelz-2+ils1as lz—-(2-i)=1 to see that this is the set of points inside and on the
circle centered at the point 2 - i with radius 1. It is not a domain.

. 3 . : . ..
(b) Write 122 +31>4 as |z -| ——1}]> 2 1o see that the set in question consists of all points

exterior to the circle with center at —3/2 and radius 2. It is a domain.
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(c) Write Imz>1 as y>1 to see that this is the half plane consisting of all points lying
above the horizontal line y = 1. It is a domain.

(d) Theset Imz=1

(e) Theset 0<argz < -g (z # 0) 1s indicated below. It is not a domain.

The set 1z — 4121zl can be written in the form (x —4)® + y* 2 x* + y*, which reduces to

x < 2. This set, which 1s indicated below, is not a domain. The set is also geometrically
evident since it consists of all points z such that the distance between z and 4 is greater
than or equal to the distance between z and the origin.




. (a) The closure of the set —r <argz < s (z = 0) is the entire plane.

(b) We first write the set |Rezi<lzl as le<\/x2 +y°, or x*<x’+y’ But this last

inequality is the same as y” > 0, or |y{> 0. Hence the closure of the set |Rezl<!zl is the
entire plane.

: X -1 , X
(c) Since -—-=-§:=-—£§—= — _)?2, the set Re|—| =— can be written as ———
z 2Z lz° x"+y Z X"+ y
(x* -=2x)+y* 2 0. Finally, by completing the square, we arrive at the inequality
x -1 + y* = 1%, which describes the circle, together with its exterior, that is centered

at z =1 with radius 1. The closure of this set is ttself,

< —, Or
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(d) Since z° =(x+iy)’ =x* —y* +i2xy, the set Re(z*) >0 can be written as y* < x?, or
tyl<lxl. The closure of this set consists of the lines y=®x together with the shaded
region shown below.

The set S consists of all points z such that Izl< 1 or 1z —2I< 1, as shown below.

Since every polygonal line joining z, and z, must contain at least one point that is not in §, it
1s clear that S is not connected.

We are given that a set § contains each of its accumulation points. The problem here is to
show that § must be closed. We do this by contradiction. We let z, be a boundary point of §

and suppose that it is not a point in S. The fact that z, is a boundary point means that every
neighborhood of z, contains at least one point in §; and, since z, is not in S, we see that
every deleted neighborhood of § must contain at least one point in S. Thus z, is an
accumulation point of S, and it follows that z, is a point in S. But this contradicts the fact

that z, 1s not in §. We may conclude, then, that each boundary point z, must be in 5. That
1S, S 18 closed.



22

Chapter 2

SECTION 12

|
72 +1

1. (a) The function f(2)= is defined everywhere in the finite plane except at the

points z=+i, where z°+1=0.

f'l\

(b) The function f(z)=Arg is defined throughout the entire finite plane except for the

\ %/
point z=0.

2

Z+2Z
imaginary axis. This is because the equation z+Z =0 1is the same as x=0.

(c}) The function f(z)=

is defined everywhere in the finite plane except for the

1
(d) The function f(z)= is defined everywhere in the finite plane except on the

1—1z

circle 1zI=1, where 1-1z*=0.

. +Z Z— .
3. USll’lg X = < > and y-“-"-'"'"é":%', write
i

f()=x" -y =2y+i(2x~2xy)

+2)° (@=2) L (2+Dz-Z
_(z+z)  (2—2) +i(2=F)+i(z+T) (2+2X2—2)
4 4 2
2 =2 2 2
=t et 2 b =T 4 2k
2 2 2 2

SECTION 18

5. Consider the function

N LY
2 X4

f@=| = i
2 ) \X~W,

where z=x+1iy. Observe that if z=(x,0), then

(z#0),

( 0 2
x+i
f(2)= : ) =1;
\x-—-zO
and if z=(0,y),
. \?
O+
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But if z=(x,x),

—1.

Cerie Y (125
f(2)= x+1x) =(lﬂ

‘\xﬂix 1-—-i)

This shows that f(z) has value 1 at all nonzero points on the real and imaginary axes but

value —1 at all nonzero points on the line y=x. Thus the limit of f(z) as z tends to 0
cannot exist.

P

10. (a) To show that lim : 431)2 =4, we use statement (2), Sec. 17, and write
2300 (7
( 2
4 1) 4
Z
lim — 2 ;=4
=0 () @0 (1-z)
—=]
<)
(b) To establish the limit hm : 11)3 oo, we refer to statement (1), Sec. 17, and write
z—l Z—
fim —— =lim (z~1)’ =0
z-31 1/(3__1)3 PR | ’
2*+1
(c) To verify that m 1 = oo, we apply statement (3), Sec. 17, and write
ey 4o z_
|
_.._1 y
fim —4—— = im === 0
z2—0 (1\2 230 ]_.].z2
~ | +1
<
11. In this problem, we consider the function
T(z)= ath (ad—bc#0).

cz+d
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(a) Suppose that c=0. Statement (3), Sec. 17, tells us that lim T(z)=<e since

Z—yom

1 +
fim —— = im ST % - S o,
z->0 T(l/z) =0 g4+ bz a
(b) Suppose that c#0. Statement (2), Sec. 17, reveals that lim T(z):i since
Lo C
4 )
1 +
P N i bz a
7-50 \Z/ -0 C+dz C

Also, we know from statement (1), Sec. 16, that lm 7T(z)=c< since

zwsr-d/ <

m —— = m £ _o
erdfe T(z) wdfc az+b

SECTION 20

1. (a) If f(z)=3z"-2z+4, then

d d d
f;(z)zm(3z2__2z+4)___3____zz g +-f-i-4 3(22:) 2(1)"1"0 6z—-2.
dz dz dz dz

(b) If f(2)=(1-42%), then

f’(z)z3(1-4zz)2§(1--4zz)=3(1--432)2(“8@=--—24z(1--—-4z2)2..
Z

(c) If f(z)ﬁ;;_;_l1 (z;t—-;—} then

(2z+ 1)-4--(2-— 1)—(z— 1)-—5{-(2z +1)

()= dz dz _R2z+Dhh)—-(z-Dh2 3 |
(2z+1)° (2z+1)° (2z+1)
(d) If f(z)—(Hz) (z#0), then
Z
N PTIEN I N LR
f’(z)_:z iz (1+2z°) (1'*:5.) dzzr Z24(1+Z_2)3(23)*(1+Z2)42Z

(z3)? ) (z%)?

C2z(+2°Y[42° - (1+27)]  2(1+2%)(3z°-1)
- 4 - 3 "
Z F4




25

If wzl/z (z#0), then

| | -Az
Aw= f(z4+Az)— [ () =————= e
/ / 2+Az 7z (2+A7)z
Hence
dwmlnn--——-Awmlim ! m——}—-.

2

dz 40 Az A-0(z4A7)z 7

4. We are given that f(z )=g(z,)=0 and that f(z ) and g'(z)) exist, where g'(z )#0.
According to the definition of derivative,

f(2)—f(z,) ___]]mf(z)

f(z,)=Im
2-32, 2 - z Iy 7 z
Similarly,
¢z )= 1]mg(z) g(z) g(z)
I, Z“""‘ZO z-——)zﬂz Z
Thus
hnf(z)_ﬁnf(z)/(z-zg) gng(z)/(z 2) f(
2, g(z) % g(2)/(2-2,) g’fﬂ 82/ (z-2)) gz,
SECTION 23

1. (a) f(R)=Z=x—i. Sou=x,v=—y.
Inasmuch as ux---vy=>1:--1, the Cauchy-Riemann equations are not satisfied

anywhere.

(b) f(D)=z2-Z=(x+iy)—(x—iy)=0+i2y. So u=0,v=2y.
Since u_= v, = 0 =2, the Cauchy-Riemann equations are not satisfied anywhere.

(c) f(2)=2x+ixy". Here u=2x,v=xy’.
uI=Vy=$2=2xy=$xyml.

U ==v =0=—y’ = y=0.
Substituting y=0 into xy=1, we have 0=1. Thus the Cauchy-Riemann equations do

not hold anywhere.
(d) f(z)=€e’e™? =e*(cosy—isiny)=e*cosy—ie*sny. So u=e*cosy, v=—e"siny.
uxmvyz:»e cosy=—¢’ cosy=>2e cosy=0=>cosy=0. Thus

y:-’é”-mx (n=0,%1,£2,..).

U ==v =-—e¢ ' sny=e¢'siny=>2e¢ sny=0=siny=0. Hence
y=nm (n=0,+1,%£2,..).
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Since these are two different sets of values of y, the Cauchy-Riemann equations cannot
be satisfied anywhere.

1 17 2 X -
3. (a) f(@=—=——=——=———ti—2— So
z2 z2Z IzIP x"+y" x"+y
¥ e 4
u-—~x2+ 2 and v= L
Y X +Yy
Since
y'=x° ~2 Xy
U =———-——=y  and U =—————=—y (x*+y* #0),
(x“+yy 7 (xT+y%)
f’(z) exists when z#0. Moreover, when z #0,
2 2 2 2
20 o) — .Y —X . 2xy xT-i2xy—y
JR)=u 4w =i =
(x"+y )" (T +y%) (x"+y°)
_ (x—iy)* _ __(__f)i__ ___(f_)g_ _ |

L] wnivn NSRRI

@E+y)Y (@ @'Q@)° 2

(b) f()=x"+iy’. Hence u=x"andv=y". Now

=v =2x=2y=>y=x and u =-v =0=0.

X

So f’(z) exists only when y=x, and we find that

fx+ix)=u (x,x)+w (x,x)=2x+i0=2x.
(c) f(D=zImz=(x+iy)y=xy+iy’. Here u=xyandv=1y*. We observe that

uxmvy=>y=2y=>y=0 and u ==v =5 x ={().

Hence f'(z) exists only when z=0. In fact,

f'(0)=u_(0,0)+ (0,0)=0+i0=0.

1 /
4. (a) f(z)ﬂ—lg-m —1;-(:0349]% -—-é—sinétﬂ] (z#0). Since
< \7 \ 7

4 4
ry =—-cos48=v and uy =——snd46=-rv ,
r ?"4 8 [ rd, r

o’

e



f1s analytic in its domain of definition. Furthermore,

, | 4 4 )
fl(D=eu +iv y=e | ——cos40+i—sin40
r r 5 g
Y r )
4 4
=——¢ " (c0s40—isin40) =——e e
Y r
-4 4 4
rSe;‘S& (miﬂ)ﬁ Zs :

(b) f(z)*—"\/;emm\/;cosgﬁ\/;shlg (r>0,a<0<a+2x). Since
\ v 2-’ “-—-v-—z"

Jr e Jr . 6

ru =-——COs—=V, and U, ==———SN—==rv ,
2 2 2 2

f 1s analytic in its domain of definition. Moreover,

\
f’(z)me“fﬁ(ur+ivr)me“f6(———1-—cos-9-+i-}-—~shlg |
WNr 2 2l 2,

( A
S c059+zsm-€ -—-——-e"‘eem
A 2) 2r
1

2\/;39’2 B 2f(z)"

(c) f(2)= ?#9 ccrs(lnr}+ if“e sm(ln rz (r>0,0<0<2m). Since

I v

—e Y cosnr)=-rv,,

r

ru, =—e ’sin(lnr)=v, and u,

f

fis analytic in its domain of definition. Also,

()= e"‘e(u +iv )=e [ e sm(lnr) f_ﬁ.ﬁg_n_fl]
r r

! [e cos(Inr) +ie” sm(lnr)]_l-]:iél

I‘E’

5. When f(z)=x"+i(1-y)’, we have u=x’ andv=(I1-y)’. Observe that

u =v =35’ ==3(1-y)’ =x"+(1-y)’=0 and u =-v =>0=0.
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Evidently, then, the Cauchy-Riemann equations are satisfied only when x=0 and y=1.
That 1s, they hold only when z = i. Hence the expression

f’(z):ux + =3x% +i0=3x"
is valid only when z = i, in which case we see that f'(i)=0.

6. Here u and v denote the real and imaginary components of the function f defined by means
of the equations

—2

z2°/z when z#0,
f(2)=

0 when z=0.

Now
3 2 3 2
x'=3xy° |y -3x
x’+y x‘+y

W

i ¥

when z#0, and the following calculations show that

u (0,0)= v, (0,0) and u (0,0)=-v (0,0):

i u(0+Ax,0)-u(0,0) Ax

u (0,0)= = m —=1,
X Ax—0 Ax A0 Ay

u (0,0)= fm 200+ 2=uO00) . 9 o,
¥ Ay—>0 Ay 8y-0 Ay

v (0,0)3 . E(Oi A},O)“V(0,0) — lim —(-}—ﬂO,
. Ar—0 Ax A0 Ax

v (0,0)= im X2HTVOD) _y By
Y Ay—0 Ay Ay—>0 Ay

7. Equations (2), Sec. 23, are

u cos@+u sml=u ,
x ¥y r

—u rsn@+u rcosb=u .
x ¥y )
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Solving these simultaneous linear equations for #_and u , we find that

Siné . cosf
U =u cos@-uy —— and u =y sn@+u :
x F ) b r g
r r
Likewise,
siné . cost
v =v c080—v —— and v =v smf+v
X F ﬁ }" y r 9 r

Assume now that the Cauchy-Riemann equations in polar form,

mr :Ve, u9=-rvr,

are satisfied at Z,- It follows that

sinf cosé . ,, cosf
u =u cosé—u =y +v Sn@=v sn@+vy =y,
x r e e r r o ¥y
r r r
,, cos@ sin@ sin @
uw =u Siné+u =y -—y COs@=~| v cos@—v = -
y r g 7 g 7 ro r 8 7 x

(a) Write f(z)=u(r.8)+i(r,6). Then recall the polar form

of the Cauchy-Riemann equations, which enables us to rewrite the expression (Sec. 23)

f(z)=e"u +iv)

for the derivative of f at a point z =(r,,6) in the following way:

2 _~if I _ """i . m""’i .
f(zo)-e | =V, ——u, mmm (u6+w9)--z (ue+w9).
£)
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(b) Consider now the function

fy=taLolow o Loso-isng)= 258 ;500
VAR ¢ r r r r
With
r r

the final expression for f’(z ) in part (a) tells us that

f(2)=—

<

e )t
d\r ) Z\rR) 27
when z#0.

10. (a) We consider a function F(x,y), where

———]

--t( sin@ cas@)__ 1((3039-“1'83119]

r r

Z+Z z—2
X = and y= .
2 2i

Formal application of the chain rule for multivariable functions yields

OF _9F dx 9F dy aF"lj oF( 1) _1f9F ,BF)

mm--mm~m+

dy\ 2i) 2\ox dy)

(b) Now define the operator
o 1fa .9
— +i— |,

suggested by part (a), and formally apply it to a function f(z)=u(x,y)+iv(x,y):
(of .2 f) 19f idf

= =

|
z 2{dx dy) 20x 29y

=i S i oo i v )

If the Cauchy-Riemann equations W =Vv.,u ==v_ are satisfied, this tells us that

of 97 =0.



31

SECTION 25

1. (a) f(2)=3x+y+i(3y—x) is entire since
| N \, R

i P

U =3=yv and u =l=-v.
X y ¥

X

(b) f(z)=smxcoshy+icosxsinhy is entire since
\-—-__-v..m_..-f \-————V-—-——.—}

i ¥V

A

u =cosxcoshy=v  and uy=sinxsinhy=--v.

— —y - -_"’ -—}J m -)} * am -—}) * » »
(c) f()=e’ smx—ie”’cosx=e¢ sznx—i—zg e cosxz is entire since

"

“ v

ux=e"”cosx=vy and uy=--—-e'"”sin.x=wv.

X

(d) f(z)=(z"—2)e e is entire since it is the product of the entire functions

g(z2)=2z°-2 and h(z)=e"e™¥ =¢ *(cosy—isiny)=e *cos y+i(—e * sin y).
S N e’ Nt

The function g is entire since it is a polynomial, and 4 is entire since

ux=--—-e"‘cosy=vy and uyz-—-—e""sinymwv.

X

2. (a) f(z)=xy+iy is nowhere analytic sincé
R
U =v =>y=] and U ==v, = x=0,
which means that the Cauchy-Riemann equations hold only at the point z=(0,1)=i.

(c) f(2)=e’e” =€’ (cosx+isinx)=e’ cosx+ie’sinx is nowhere analytic since
e s’ S, e
U y

ux=vyﬁweysmxze”shlxﬁZe}’shlmeﬂsinxﬂO
and

U ==v = e’ cosx=—e’ cosx =2e’ cosx=0=>cosx=0.
More precisely, the roots of the equation snx=0 are nx (n=0,%1,%2,.), and

cosnt=(~1)"#0. Consequently, the Cauchy-Riemann equations are not satisfied
anywhere.

7. Suppose that a function f(z)=u(x,y)+w(x,y) is analytic and real-valued in a domain D.
Since f(z) is real-valued, it has the form f(z)=u(x,y)+i0. The Cauchy-Riemann equations

=V U =V thus become uxm(},uymo; and this means that u(x,y)=a, where a is a

X

(real) constant. (See the proof of the theorem in Sec. 24.) Evidently, then, f(z)=a. That is,
f is constant in D.
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SECTION 26

1. (a) 1t is straightforward to show that uﬂ+uw=0 when u(x,y)=2x(l-y). To find a

harmonic conjugate v(x,y), we start with u (x,y)=2-2y. Now
U =y =V = 22y =3y(x,y) =2y~ y" +P(x).
Then

U ==v == 2x=—@'(x) =>¢'(x)=2x =>¢(x)=x"+c.

Consequently,
Wx, ) =2y-y +(x*+c)=x" -y +2y+c.
(b) 1t 1s straightforward to show that  tu = 0 when u(x,y)=2x—-x"+3xy’. To find a

harmonic conjugate v(x,y), we start with u_(x,y)=2-3x"+3y". Now

u =v =y = 2-3x" 43y = v(x,y)=2y-3x"y+y’ +o(x).

Then
U =—v =0xy=0xy-90’"(x)=290'(x)=0=¢(x)=c.

¥ x
Consequently,
v(x,y)=2y-3x"y+y +c.

(c) It is straightforward to show that un+u}ym0 when u(x,y)=snhxsany. To find a

harmonic conjugate v(x,y), we start with u _(x,y)=coshxsiny. Now

U =v =y = coshxsm y => v(x,y) =—coshxcos y+¢(x).
Then

u =—v =>sinhxcosy= sinhxcosy—@'(x) = ¢'(x)=0= ¢(x) =c.

Consequently,
v(x,y)=-—coshxcos y+c.

(d) 1t is straightforward to show that uﬂ+uﬂm0 when u(x,y)= 2,}’ -~ To find a

X +y
: : ‘ 2xy
harmonic conjugate v(x,y), we start with u_(x,y)=—=————Now
' (x"+y’)
2
U =y =y = w4 = V(X,y)= a +0(x).

X y y (x2+y2)2 x2+y2
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Then
52 ____yz e ___yz
U =—v = = — =0 (X)=2¢'(x)=0=20(x)=c.
y (x2+y2)2 (x2+y2)2
Consequently,
X
v(x,y)= —*c.
X +Yy

Suppose that v and V are harmonic conjugates of u in a domain DD. This means that

u =v, u =-v and u =V, u =-V.
X ¥ y X X }’ }’ X

If w=v-V, then,

w=y -~V =—y +u =0 and w =v =V =y —u =0.
A X X }’ _'}’ Yy ¥y ¥ A X

Hence w(x,y)=c, where c 1s a (real) constant (compare the proof of the theorem in Sec. 24).
That 1s, v(x,y)-V(x,y)=c.

Suppose that 4 and v are harmonic conjugates of each other in a domain D. Then

u =y, u=—y and v=u, v =—u.
X ¥ y X X ¥ ¥ X

It follows readily from these equations that

ux-—-O, uymO and v =0, vy:O.

Consequently, u(x,y) and v(x,y) must be constant throughout D (compare the proof of the
theorem in Sec. 24).

The Cauchy-Riemann equations in polar coordinates are

ru =V, and U, ==rv,

¥

Now

mr =v9 mmw+ur==ver
and

U, == DU, =1V .
Thus

2 ey vy -
ru +m tu, =w -
and, since v, =V, We have

2
r uw+mr+uﬂ€-0,
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which is the polar form of Laplace's equation. To show that v satisfies the same equation,
we observe that

1 | 1
U =—TV =DV =——U =DV =—U ——U
& r r r 8 "w rz & y or
and
ru =V, =V, =N

Since u, =u , then,

2 — — — =
rv o+ v =u n, w, 0.

If u(r,@)=Inr, then

This tells us that the function u=Inr is harmonic in the domain r>0,0<8<27x. Now it

: : . 1
follows from the Cauchy-Riemann equation ru_=v_ and the derivative u =— that v =1,

,
thus v(r,08)=0+¢(r), where ¢(r) is at present an arbitrary differentiable function of r. The

other Cauchy-Riemann equation u, =—rv_ then becomes 0=-r¢’(r). That is, ¢’(r)=0; and

we see that ¢(r)=c, where ¢ is an arbitrary (real) constant. Hence v(r,0)=0+c is a
harmonic conjugate of u(r,8)=Inr.
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Chapter 3

SECTION 29

2

1. (a) expRi3mi)=e’exp(X3mi)=—e’, since exp(t3mi)=—1.

2+ ( 1 ( m\ T .. 75\’
(b) exp =} eXp— || exp— |=+ve| Cos—+isin—
4 . 2 4, 4 4

(1 \ 1’;

=\E e e | = = (14+0).
W2 \/—,/ V2

(c) exp(z+mi)=(expz)exprmi)=—expz, since expzmi=-—L.

3. First write
exp(Z)=exp(x—iy)=e"e™® =e" cos y—ie*sin y,
where z=x+iy. This tells us that exp(Z)=u(x,y)+#(x,y), where
u(x,yy=e cosy and v(x,y)=—e"siny.

Suppose that the Cauchy-Riemann equations u_= v, and u =-v_are satisfied at some point

z=x+1y. It is easy to see that, for the functions u and v here, these equations become cos

y = 0 and sin y = 0. But there is no value of y satisfying this pair of equations. We may
conclude that, since the Cauchy-Riemann equations fail to be satisfied anywhere, the function

exp(Z) 1s not analytic anywhere.

4. The function exp(zz) is entire since it is a composition of the entire functions z* and expz;

and the chain rule for derivatives tells us that

£ el )

Alternatively, one can show that exp(zz) 1s entire by writing

exp(zz) = exp[(x + iy)z] = e:a;po(:m:2 - yz)exp(£2xy)

-exp(x -y )cas(ny)Hexp(x —-y )sm(2xy)

and using the Cauchy-Riemann equations. To be specific,

U =2x e-’:zt:p(;z:2 - yz)ccrs(2xy) - Zye;w(,'r::2 - yz)sih(2xy) =V,
and
U, = ~-~---2ye;‘q:>(.wc2 - yz)cos (2xy) — 2xexp(x2 - yz)sin(hy) =-—V_.
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Furthermore,
—;zexp(zz): U +iv = 2(x+z};)[exp(x2 — yz)cos(ny)H e:rqt)(.ac2 —~ yz)ﬁ'n(hy)]
=2z exp(z2 )
We first write
Iexp(Zz +1 )I ziexp[Zx +i(2y+ 1)]‘ =g
and
Iexp(izz)l = lexp[~21y+i(x2 - y2 )]I =e 7,
Then, since
lexp(2z+ i) +exp(£z2)l < lexp(22+ i)l+‘exp(fzz)l ,
it follows that

[eﬁp(Zz + f)+exp(i32)l <o 4 e%zxy'
First write
lex‘p(zz)l - lﬁxp[(x -+ iy)z ]! v Iexp(xz " y2)+52xy| — exp(x2 - yz)

and
exp(iz ) =exp(x” +y*).

Since x*—y*<x*+y?, it is clear that exp(x*—y*)<exp(x’+y*). Hence it follows from the
above that

<exp(lz ).

iexp(zz)
To prove that lexp(-—-2z)l <l Rez>0, write
lexp(HZz)‘ = Iexp(-—-Zx ~i2 y)l =exp(—~2x).

It is then clear that the statement to be proved is the same as exp(—2x)<1&> x>0, which is
obvious from the graph of the exponential function in calculus.



8.

(a)

(b)

(c)

Write e =—2 as e*e” =2¢™. This tells us that

e"=2 and y=m+2nn
That is,

x=m2 and y=02n+Dxn
Hence

z=In2+2n+ Vi

Write e =14+v3i as e'e” =2¢"™?, from which we see that

e =2 and ym~§~+2nn
That is, '
(1
x=In2 and y=|2n+-|x
. 3
Consequently,
.
z=h2+(2n+-- Tl
3,

Write exp(2z—1)=1 as e”"'¢"” =1¢'° and note how it follows that

e”'=1 and 2y=0+2nn

Evidently, then,
1
x=— and v=nxn
5 y
and this means that
1 .
Z==+nr
2

9. This problem is actually to find all roots of the equation

exp(Z)=exp(iz) .

To do this, set z = x + iy and rewrite the equation as

ix

e e ¥ =g'e”,
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(n=0,x1,%£2,.).

(n=0,21%2,.).

(n=0,£1,12,..).

(n=0,£1,%2,.).

(n=0,t1,%£2,.).

(n=0,£1,1£2,..).

(n=0,£1,42,.).

(n=0,%1,%2,.);

(n=0,11,%£2,..).
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10.

12.

13.

Now, according to the statement in italics at the beginning of Sec. 8 in the text,

e’=¢’ and -—x=x+2nrx,
where » may have any one of the values n=0,%1,%12,... Thus

y=0 and x=nm (n=0,x1,12,..).
The roots of the original equation are, therefore,

I=nr (n = O,il,i 2,)

(a) Suppose that e° is real. Since e‘=e"cosy+ie*sny, this means that e siny=0.

Moreover, since e* is never zero, siny=0. Consequently, y=nn(n=0,x1,12,...); that
is, Imz=nn(n=0,+1,+£2,..)).

(b) On the other hand, suppose that e is pure imaginary. It follows that cosy=0, or that

T
y=-2--+nn(n=0,il,i2,...). That is, Irnzm%+nzr(n=0,il,i2,,..).
We start by writing
1 z 7 x—p X .=y
P R S S RS
z & lzF x"+y" xT+y" x4y

Because Re(e‘)=e" cosy, it follows that

Y Y ( \

Re(e“z)mexp[-gf-z COS 2”")’2 = eXp 2.1: 2)ms 2y = |
X+y" ) \XT+yT \ X"ty \X Ty

Since e is analytic in every domain that does not contain the origin, Theorem 1 in Sec. 25
ensures that Re(e'*) is harmonic in such a domain.

If f()=u(x,y)+w(x,y) is analytic in some domain D, then

s i{x,y)

e’ = "N cosy(x, )+ sinv(x, y).

Since ¢’ is a composition of functions that are analytic in D, it follows from Theorem 1 in
Sec. 26 that its component functions

w(x,y) o

U(x,y)=e"" cosv(x,y), V(x,y)=e sinv(x,y)
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are harmonic in D. Moreover, by Theorem 2 in Sec. 25, V(x,y) is a harmonic conjugate of
U(x,y).
14, The problem here is to establish the identity

(expz)” =exp(nz) (n=0,%£1,12,..).

(a) To show that it is true when n=0,1,2,..., we use mathematical induction. It is obviously

true when n=0. Suppose that it is true when n=m, where m i1s any nonnegative
integer. Then

(expz)™" =(expz)” (expz) = exp(mz)expz = exp(mz +z) = exp[(m+1)z].

(b) Suppose now that n 1s a negative integer (n=-1,-2,...), and write m=-n=12,.... In
view of part (a),
/ \™
1 1 1 1
(expz)" = = T e T = exp(nz).
\6XPz )  (expz)” exp(mz) exp(-nz)
SECTION 31
1. (a) Log(—ei)=Inl—eil+iArg(-ei)=Ie -’5 '....1-%5.
(b) lgg(l—i)mmll—il+iArg(1—i)mh\[gnfim%}n}-%i

2. (a) bge=he+i(0+2nm)=14+2nni (n=0,21,12,..).

~ \ f {
(b) logi=nl+i| —+2nnx 2n+— |mi (n=0,£1,+2,..)).

2 )\ 2

I}

4 4
(c) bg(—1+\/§i):lr12+i1 2'55+2mr):h12+2[ n+-;;)m (n=0,£1,%2,...).
\ \

3. (a) Observe that

Log(1+i)? = Log(2i) = h12+-§-i

and

r
2Log(1+i)=2| mV2+iZ |=m2+Zi
\ 4 2

Thus
Log(1+i)’ =2Log(1+).
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3.

(b} On the other hand,

Log(~14i)* = Log(~2i) =In2— =

and
.

2Log(-1+i)=2| In 2+i§£)mm2+3£a

\

Hence

2

4

Log(—1+i)* # 2Log(—1+1i).

(a) Consider the branch

2

A
bgz=inr+io r>0,£<9<-—9~£ :
4 4,
Since
( n
log(i*y=log(~)=Inl+ir=ri and 2logi=2 lnl+i-5—)=zfi,
\.
we find that log(i*)=2logi when this branch of logz is taken.
(b) Now consider the branch
( 3n liz)
logz=Ihr+i0 r>0,—<f<—|.
N 4 4
Here
( S )
bg(i)=log(-D=hl+ir=ni and 2logi=2| hl+i— |=57i.
\ 2
Hence, for this particular branch, log(i*)#2logi.
(a) The two values of i? are ™" and ¢”>™*. Observe that
. (4 ( 1
bog(e™Y=In1+i| —+2nzx |=] 2n+— |mi (n=0,%1,%+2,.)
4 X 4
and
(5 ) 3
log(e”™*y=Inl+i| —+2n7 |=] Cn+D+— |7 (n=0,+1,£2,..).
\ 4 ) 4
Combining these two sets of values, we find that
(1)
log(i"*)=| n+— |mi (n=0,+1,+2...).
.4
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On the other hand,
I o (z Y[ 1)
~logi=— nl+if —+2n7 | |=| n+— |7 (n=0,+1,%+2,..).
2 2 \2 JI L4
1
Thus the set of values of log(i'*) is the same as the set of values of —z-k)gi, and we may
wrife
log(fm)x-é-logi.
(b) Note that
bog(i)=log(~D=Inl+(r+2nn)i=2n+Dri (n=0,+1,£2,..)
but that
[ )
2logi=2| nl+i} —+2n7 | |=(dn+1)mi (n=0,t1,£2,..).
) \ 2 J
Evidently, then, the set of values of log(i %) is not the same as the set of values of 2logi.
That 1s,
log(i*)# 2logi.

inl2 __»

7. To solve the equation logz=in/2, write exp(logz)=exp(in/2), or z=e¢ I,

10. Since In(x*+y?) is the real component of any (analytic) branch of 2logz, it is harmonic in
every domain that does not contain the origin. This can be verified directly by writing

u(x,y)=In(x"+y") and showing that u_(x,y)+ u_(x,)=0.

SECTION 32

1. Suppose that Rez >0OandRez, >0. Then

z,=rexpi® and z =rexpi@,,
where

-£<@]<£ and -£<@2<£.
2 2 2 2
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The fact that «-—-n'-::@l +®2 <7 enables us to write

Log(z,z,) = Logl,r,) exp i(©, + ©,)] = In(rr,) +i(O, + O,)
= (nr, +i0,)+(Inr, +i0,) = Log(r, exp i©,) + Log(r, exp iO,)

= Logz, +Logz,.

3. We are asked to show in two different ways that

()
4
log| -+ |=logz ~logz, (z, #0,z,#0).
\ <2 J
( - )
(a) One way is to refer to the relation arg] — |=argz —argz, in Sec. 7 and write
\zzj
Z | Z (Z )
log| =+ |=Inj—*[+iarg| —+ [=(Inlz I+iargz)—(Inlz, | +iargz )=logz —logz,.
%) Izz \ <2

1 : , i
(b) Another way is to first show that bg(w)zwbgz (z#0). To do this, we write z=re”
Ve

and then

1 1) (1)
log(-—-— =10g[-—-6"9 =In| — [+i(—0+2nm)=~[Inr+i(@-2nr)]=-logz,
<)

where n=0,%£1,£2..... This enables us to use the relation

bog(z,z,)=logz +logz,

and write

zi\ [ 1
log| — |=log| z,— |=logz +log| — |=logz —logz,.
sz \ Zz ZZ
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S. The problem here is to verify that
\
1
7" = exp(-——logz (n=-1,-2,.),
o

given that it 1s valid when n=12,... To do this, we put m=-n, where n is a negative

integer. Then, since m is a positive integer, we may use the relations z7' =1/z and 1/e*=¢™*

to write
r 1 N7l
zl!ﬂ — (z]/m)—l = | exp(“"lOgZ)

i m 3

| 1 ] 1 1

= y exp[——-log z) = exp(—--——logz) = exp(——logz).
| m ; m n
SECTION 33

1. In each part below, n=0,+1,12.....

( 1
(a) (1+i)"mexp[ilog(1+i)]mexp{i[h1\[2—+i Z+2mr) }
\ .
= exp “n2- £+2mr = eXp —£—2mr exp “In2|.
| 2 4 ) 4 2

Since n takes on all integral values, the term —2n7 here can be replaced by +2nzm. Thus

(n_ Y f 3

(1+i) =exp| ——+2n7r |exp| “n2 |
. 4 ) 2 )

iy

(b) (~1)"% = exp[-i-log(-l) = exp {-;rl- [In1+i(m + 2nn)]} = exp[(2n + 1)il.

gl

| (2 (
2. (a) P.V. i =exp(logi)=exp|i] nl+i— | |=exp| —— |.

(b) P.V. E(-—l—\@i)

i o -E - / 275\
= exp4 3nidog 5(-—-1--— 3i) -=exp| 37i| Ine—i— | |

J L \.

=exp(2m*)exp(i3n) =—exp(272).

, -
((3) P.V. (l—f)*ﬁ:exp[4Mg(l—f)]ﬁexp[4i In 2__1;) _menefamﬁ
\
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= e"[cos (41n2) + isin(4 InV2)] = e”[cos(21n 2) + isin(2In 2)].

Since —1+y3i=2¢>" , We may write

(—-1+ w/f;i)wz - eXp[-z-log(-—l + \/f;i) = &XPp {% In2+1 (gg— + Znn') }

= exp[In(2¥*)+ Bn + Drxi]l = 2\5 expl(3n + Dmil,

s [ * 8

where n=0,11,12..... Observe that if n is even, then 3n+1 is odd; and so exp[(3n+D)zi]=-1.
On the other hand, if n is odd, 3n+1 is even; and this means that exp[(3n+1)zi]=1. So only

two distinct values of (~1++/3i)*? arise. Specifically,

(—-1+\[?:i)3”2mi2\/£.

We consider here any nonzero complex number z in the exponential form z =r expiQ,

{ )
- O
where —7 <@ <7. According to Sec. 9, the principal value of " is {/;; exp i-f—- ; and,
N
according to Sec. 33, that value 1s
r ( 2P
1 ‘ | © ©
exp| —Logz |=exp —I-(mr0+i@ﬂ) :exp(hli/a)exp j—2 =3/r, exp i— 1.
K Ln \ n \ Fl J

These two expressions are evidently the same.

Observe that when c=a+bi is any fixed complex number, where ¢#0,+1,12,..., the power

i° can be written as

( V1
i“ =exp(clogi)=exp (a+bi) Inl+i £+2sz >
\2 J1)
(n' ) /i )}
=exp| —b| —+2nn |+ia| —+2nw (n=0,x1,12,..).
2 ) \2 J.

Thus

\
i€ |= exp[-—~b(~§+2n7{ ] (n=0,%1,42,.),
)

and it is clear that |i°l is multiple-valued unless b = 0, or ¢ is real. Note that the restriction

c#0,x1,+2,.. ensures that {“ is multiple-valued even when b = 0.



SECTION 34

1. The desired derivatives can be found by writing

d . d{e*—e™ 1({d ., d _,
—Sinz =~ e | = | ¥ e
dz dz 2i 2i\ dz dz

Lo oy € +e™
== -2"';(38 4+ 1e ) = = COSZ
and
d d|e“+e" ifd , d _,
—CO8 7 = —| — = | ——e"
dz dz 2 2\ dz dz
1 . iz v iz i E‘z""eﬂz .
= —{ 1™ —1e f— 2= - SIn Z.
2( ) ] 21

3. We know from Exercise 2(b) that

sin(z+z2)=s&nzmsz2+msmfnz2.

Ditferentiating each side yields

Cos(Z+2,)=C0SZCO8Z, —sinzsinzg,.

Then, by setting z =2, we have
cos(z, +2,) =€08z,€082, —sinz sinz,.

5. (a) From the identity sin’z+cos’z=1, we have

« 2 2

Sm“z cos 'z 1
—t+———=——— or I+t@an’z=sc’z.
COS“Z COS“7Z CO§8°7

(b) Also,

» 2 2
sm“z cos“z 1
——+——=——or, or l+cot’z=csc’z.
sn“z sn“z sin’z

7. From the expression

sinz = sin xcosh y + i cos xsinh y,

45
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we find that
|sinz P=sin® xcosh® y+ cos’ xsinh® y
= sin” x(1+ sinh® y) + (1—sin® x)sinh’ y
=sin’ x +sinh” y.
The expression
cosz=cosxcosh y+isinxsinhy,

on the other hand, tells us that

| cosz P= cos’ x cosh® y + sin” xsinh® y
= cos’ x(1+ sinh® y) + (1 - cos’ x)sinh® y

=cos’ x+sinh’ y.

Since sinh’y is never negative, it follows from expressions (15) and (16) in Sec. 34 that

(a) | lsinz P>sin*x, or Isinzl>lsinx!
and that
(b) lcosz*=cos?x, or lcoszl=lcosxl.

In this problem we shall use the identities
Isinz’=sin’ x+sinh’ y, lcoszl =cos’ x+sinh?y.
(a) Observe that
sinh® y=lsinz I’ ~sin® x <lsinz I’
and
Isinz = sin® x + (cosh® y — 1) = cosh® y — (1 - sin” x)
= cosh’ y — cos” x < cosh® y.
Thus
sinh’ y<lsinzI’<cosh®y, or Isinhyl<Isinzl<coshy.
(b) On the other hand,
sinh® y=IcoszF —cos’ x<lcosz I’
and
| cos z P= cos? x + (cosh’ y—1) = cosh? y — (1 - cos* x)

= cosh’ y - sin” x < cosh’ y.
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Hence
sinh® y <lcosz < cosh®y, or Isinhyl<lcoszI<coshy.

11. By writing f(z) = sinZ = sin(x — iy) = sinxcosh y — icos x sinh y, we have

J(@)=ulx,y)+w(x,y),
where
u(x,y)y=smxcoshy and v(x,y)=-—cosxsinhy.

It the Cauchy-Riemann equations u_= v, U ==v_areto hold, it is easy to see that

cosxcoshy=0 and sinxsinh y=0.

Since coshy is never zero, it follows from the first of these equations that cosx=0; that is,

;4 .. L
x=—+nr (n=0x1,1£2,..). Furthermore, since sinx is nonzero for each of these values of x,

2
the second equation tells us that sinhy=0, or y=0. Thus the Cauchy-Riemann equations

hold only at the points
T

z--=--2--+n;rz (n=0x1,£2,.)).

Evidently, then, there is no neighborhood of any point throughout which f is analytic, and we
may conclude that sin7 is not analytic anywhere.
The function f(z) = cosZ = cos(x —iy) = cos xcosh y +isin x sinh y can be written as

J@)=u(x,y)+w(x,y),
where
u(x,y)=cosxcoshy and v(x,y)=sinxsinhy.

If the Cauchy-Riemann equations U =v,u ==v hold, then

sinxcoshy=0 and cosxsinh y=0.

The first of these equations tells us that sinx=0, or x=nr(rn=0,%1,£2,..). Since cosnm #0,

it follows that snhy=0, or y=0. Consequently, the Cauchy-Riemann equations hold only
when

z=nm (n=0+1,%2,.).

So there is no neighborhood throughout which f is analytic, and this means that cosZ is
nowhere analytic.
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14. (a) Use expression (14), Sec. 34, to write

cos(iz) = cos(—y +ix) = cos ycoshx —isin ysinh x
and
cos(iz ) = cos(y + ix) = cos ycosh x — i sin ysinh x.

This shows that cos(iz) = cos(iZ) for all z.

(b) Use expression (13), Sec. 34, to write

sin(iz) = sin(—y + ix) = —sin ycosh x —icos ysinh x
and
sin(iz ) = sin(y + ix) = sin ycosh x + i cos ysinh x.

Evidently, then, the equation sin(iz) = sin(i7) is equivalent to the pair of equations
sin ycoshx =0, cosysinhx=0.

Since coshx is never zero, the first of these equations tells us that smy=0.

Consequently, y=nr (n=0,t1,£2,..). Since cosnmr=(~1)"#0, the second equation

tells us that sinhx=0, or that x=0. So we may conclude that sin(iz) = sin(iZ) if and
only if z=0+mr=nni (n=0,£1,£2,...).

15. Rewriting the equation sinz = cosh4 as sinxcoshy+icosxsinhy=cosh4, we see that we

need to solve the pair of equations

sinxcoshy=cosh4, cosxsinhy=0

for x and y. If y=0, the first equation becomes sinx = cosh4, which cannot be satisfied by

any x since sinx <1 and cosh4 >1. So y#0, and the second equation requires that cosx=0.
Thus

X = -g-—+mr (n=0x1%2,.).
Since
m(%mn}:(mi)",

the first equation then becomes (—1)" cosh y = cosh4, which cannot hold when n i1s odd. If n
is even, it follows that y=+4. Finally, then, the roots of sinz = cosh4 are

(ﬂ.’ A

v=| Z42nm |+4i (n=0%+122,.)
2 )
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16. The problem here is to find all roots of the equation cosz=2. We start by writing that
equation as cosxcoshy—isinxsinh y= 2. Thus we need to solve the pair of equations

cosxcoshy=2, sinxsinhy=0

for x and y. We note that y#0 since cosx=2 if y=0, and that is impossible. So the second
in the pair of equations to be solved tells us that sinx=0, orthat x=n7 (n=0%x1%2,..). The

first equation then tells us that (~1)" coshy=2; and, since coshy is always positive, n must
be even. That is, x=2n7r (n=0%£1,£2,..). But this means that coshy = 2, or y=cosh™ 2.
Consequently, the roots of the given equation are
z=2nn+icosh™?2 (n=0+1,%+2,..).
To express cosh™ 2, which has two values, in a different way, we begin with

y=cosh™ 2,0or coshy=2. This tells us that ¢’ +e™> =4; and, rewriting this as

(') —4(e”)+1=

we may apply the quadratic formula to obtain ¢’ =2%x+3, or y=In(2+ \/g). Finally, with the
observation that

-] (1
In(2—3)=In = In| ——= |=—In(24+/3) .
I 2+\/5 ..., 2+
we arrive at this alternative form of the roots:
c=2nm+iln(2+3) (n=0+1,42,.).
SECTION 35
1. To find the derivatives of sinhz and coshz, we write
d d 2~z ) 1 P
—sinhz = . __._‘f.l...( e )= L coshz
dz dz 2 ) 2 dz
and
(2 -z z -z
+ J—
4 oshg=[ €N _1d ey 22 Gnhg
dz dz L 2 2dz 2

3. Identity (9), Sec. 34, is sin’z+cos’z=1. Replacing z by iz here and using the identities

sin(iz) = isinhz and cos(iz) = coshz,
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we find that i’sinh®z +cosh®*z =1, or

cosh’z —sinh’z=1.

Identity (6), Sec. 34, is cos(z, + z,) = cosz, cos z, —sinz, sinz,. Replacing z; by iz, and z,

by iz, here, we have cos[i(z, + z, )] = cos(iz; ) cos(iz, ) — sin(iz; ) sin(iz, ). The same identities that
were used just above then lead to

cosh(z, + z,) = cosh z, cosh z, +sinh z, sinh z,.

We wish to show that

isinh xi<lcoshzi< coshx

in two different ways.

(a) Identity (12), Sec. 35, is lcosh zI* = sinh? x + cos® y. Thus Icosh zi* —sinh® x = 0; and this

(b)

(a)

(b)

(c)

tells us that sinh®x <lcoshzl*,orlisinhxi<icoshzl. On the other hand, since
lcoshz? = (cosh? x — 1) + cos® y = cosh” x — (1 — cos’ y) = cosh® x —sin’ y, we know that
lcosh zI> —cosh? x £ 0. Consequently, lcoshzl® < cosh® x, or IcoshzI< coshx.

Exercise 9(b), Sec. 34, tells us that Isinh yl<icoszl< coshy. Replacing z by iz here and
recalling that cosiz = coshz and iz = —y+ ix, we obtain the desired inequalities.

Observe that
ez+m' _ e—-(z-&-xﬁ) ezem' _ e-zemzi __ez + e*z ez _ emz
sinh(z + 7i) = - — = = - = —sinhz.
2 2 2 2
Also,
A TP R L L LT Y A T et +e "
cosh(z + i) = = = = = —coshz.
2 2 2 2
From parts (a) and (b), we find that
. sinh(z+ mi —sinhz  sinhz
tanh(z + i) = (z ) - = = tanh z.

cosh(z+ mi) -—coshz coshz

The zeros of the hyperbolic tangent function

sinh z
coshz

tanhz =
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are the same as the zeros of sinhz, which are z=nni (n=0,%1,£2,...). The singularities of

T .
tanhz are the zeros of coshz, or z= (E-‘— rm)z (n=0,21,+2,...).

15. (a)

(b)

Observe that, since sinhz =i can be written as sinh xcos y+icoshxsiny =i, we need to
solve the pair of equations

sinhxcosy=0, coshxsiny=1.

It x=0, the second of these equations becomes siny=1; and so ym-§+2n7£

(n=0,+1,%2,...). Hence
1Y .
zﬂ(2n+—2—)m (n=0,£1,%2,...).
¥/

If x#0, the first equation requires that cosy=0, or y= —2- +nn (n=0,+1,%£2,...).

The second then becomes (—1)"coshx =1. But there is no nonzero value of x satisfying
this equation, and we have no additional roots of sinhz =1.

. 1 . : 1 :
Rewriting coshz = > as coshxcosy+isinhxsiny= 5 we see that x and y must satisfy

the pair of equations

coshxcosy = -;:- , sinhxsiny=0.

If x=0, the second equation is satisfied and the first equation becomes cosy = %—-
Thus y= cos™ %— = ::-g- +2nw (n=0,£1,%£2,...), and this means that

z = (2::.4.—%-)7::‘ (n=0,£1,%+2,...).

If x#0, the second equation tells us that y = nx (n=0,%1,£2,...). The first then

1 . L. : .
becomes (~1)" coshx = > But this equation in x has no solution since cosh x =1 for all

x. Thus no additional roots of coshz = —;— are obtained.
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16. Let us rewrite coshz=-2 as coshxcosy+isinhxsiny=-2. The problem is evidently to
solve the pair of equations

coshxcosy=-2, sinhxsiny=0.

If x =20, the second equation is satisfied and the first reduces to cosy=-2. Since there

is no y satisfying this equation, no roots of coshz = ~2 arise.
If x#0, we find from the second equation that siny=0, or y=nx (n=0,%1,%2,...). Since

cosnm = (~1)", it follows from the first equation that (—1)" cosh x = —2. But this equation can
hold only when n is odd, in which case x = cosh™ 2. Consequently,

z=cosh™ 2+ (2n+ )i (n=0,x1,12,..).

Recalling from the solution of Exercise 16, Sec. 34, that cosh™ 2 = In(2 ++/3), we note that
these roots can also be written as

2=+ +3)+Q2n+ D7 (n=0,£1,£2,...).
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SECTION 38
2+ V¥ 2f \
1 1 2dt 1 1
2. (a) f----—i d::j ——1|dt=2i|—=—=-2iln2=—~—il4;
N\ A\ ? ) £ 2 2

(b) j edt=| —| =— cosS—+isin——1 (=

l
2i | 2 3 3 4’

s 1 1 x| 3
1 a4 — +
4

umad

(c) Since le " l=e¢™”*, we find that

1=b

r N P 1
je"z’dtzhm e dtr—-;hfl el =--]im(1-—-e" z):-----« when Re z > 0.

b—yo0 2] — b-yom
0 0 1,0 < Z

The problem here is to verify that

Zfe""’ge"mdﬂm 0 when m#n,
2n when m=n.

To do this, we write

[ = j “"ﬂde--j 'm0 g

0

and observe that when m#n,

-

r i{(m—n)6
/= e o | . | 0.
| im=n) | i(m=n) i(m—n)

When m=n, Ibecomes
21
= J de=2r;
and the verification 1s complete.

First of all,

n T ¥4
j’ eM¥ e = j e* cosxdx+i j ¢* sinxdx.
( {J £

But also,

el Aainkinkuink
L
—— “ “wplppliyeyi

1+ 1+ 1 - 2

J€(1+:}dem

% iy 17 n iz
- e ] e e —1 --e-*llt I+e”
¢ . ¢

+1

1+e”
2
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Equating the real parts and then the imaginary parts of these two expressions, we find that

ki
je"‘ cosx dx =

0

T i 4

I+e 1+e¢

3. (a) Suppose that w(?) 1s even. It is straightforward to show that u(r) and v(f) must be even.
Thus

a

j w(t)dt = j u(t)de+i T v(t)dt = Zj-u(t)dﬁ 20 Iv(t)dt

—a 0 0
=2 ju(t)dr+ ijv(t)dt |= wa(t)dt.
0 0 N 0

(b) Suppose, on the other hand, that w(?) 1s odd. It follows that u(r) and v(f) are odd, and so

_f w(t)dtz_[u(t)dt+i _f v(H)dt =0+10=0.
SECTION 39
1. (a)} Start by writing
I= [ w=dt= [ u(~tyde+i | v(-1)d.
—b —~b —b

The substitution 7=—¢ in each of these two integrals on the right then yields
a b

[= -—?u(r)dr- i I wW(T)dT= iu(f)d’:+ l J‘v(r)dr = jw(t)dt.
b a a

b a

That 1s,
~d b
j w(—t)dt = _[w(r)dr.
~h a

(b) Start with

= _?w(t)dt = ];.u(t)dt—!- l ‘Tv(t)dt

and then make the substitution ¢=@(7) in each of the integrals on the right. The result
18



B B b
= [ul (o)’ (DdT+i [VIBOW (7)d7 = [ Wil (1)d

&

That 1s,

b P
Jwindr=[wig(@)lp'(v)dr.

3. The slope of the line through the points (,a) and (f,b) inthe 7t plane is

So the equation of that line is

[—-a= "b-a (T—-).
p—-o

Solving this equation for ¢, one can rewrite it as

b—a af-ba
= R
p-a B-o

!
Since f=¢(7), then,

mbma aﬁ:ba
O(T) ﬁ—aﬂ— o :

4. If Z(t)=z[¢(1)], where z(£)=x(r)+iy(t) and t=¢(T), then

Z(T)=x|9(D) ]+ ple(7)].

Hence
2 d * d 7 ¥ s s
Z'(1) = E;-x[‘ﬁ’(f)] + t“&f‘;)’[‘?(f )= x1o(De"(7) + o' [o(T)e’(7)

= {x[o(D)]+ iy [9(T)}¢"(7) = 2’[¢(D)l¢’ (7).

55
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If w(t)=flz(1)] and f()=u(x,y)+w(x,y), z(&)=x(t)+iy(t), we have

w(t)= u[x(t),y(t_)]-r-iv[x(t), Wl

The chain rule tells us that

du , , dv , ,
——=y X'+uy and —=vy x'+v y,
d * g da ° ’

and so
w'())=(u x"+ u, y) +i(vxx' +V y.

In view of the Cauchy-Riemann equations u_= v, and u =-v, then,
W= x"—v Y)+i(v x +u y)=(u_+iv }x'+i).

That 1s,
w' () ={u [x(2), yOl+ [x(0), yONRX' )+’ @O)]= f[z0)]" (1)

when t=t .

SECTION 42

1.

(a) Let C be the semicircle z=2e” (0<0< 1), shown below.

Then

n

_[z+2dz==_" 1+2 dz=| L+ =2 |2ied6 = 2i [ (¢ + 1)d0
¢ z 'z U 2¢ )
"efe 1
=2 —+0 | =2i(i+7+i)=—4+ 27
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This 1s the same as part (@), except for the limits of integration. Thus

~2n
+2 e
j E—-—-—dz**2z[-—-——+9 =2({—i+2M—i—M)=4+271.

~ I

(c) Finally, let C denote the entire circle z=2¢” (0£0<2x). In this case,

I ii—-%dz = 4Ti,

the value here being the sum of the values of the integrals in parts (a) and (b).

(a) Thearcis C:z=1+e"” (®<<2x). Then

2 2n e;ze"lz”
Ddz= | (1+e” - Died0=i | £%d0 =
J.(z )dz = ;[( e )ie z‘J; 1[23”2:
1

_ _z__(eim __eiz:er): é_(l__ H=0.

(b) Here C.z=x(0<x<2). Then

12
xZ

L(z-— Ddz= _I(x*--l)dx = ':—é-—-x ={.

-0

In this problem, the path C is the sum of the paths C,, C,, C,, and C, that are shown below.

The function to be integrated around the closed path C is f(z)=me™. We observe that

C=C+C, +C +C and find the values of the integrals along the individual legs of the
square C,

(i) Since C,1s z=x(0<x<1),

|
fc e dr = Jr_[e“dx =g —1.
i
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(ii) Since C,1s z=1+iy (0 y <),

i i
.L: e dz = xje”“’"”’ )idy =e" i J e Vdy=2e".
2
0 0

(iii) Since C;1is z=(1-x)+i(0<x£1),

i 1
7 _ #4(1~x )i _ T ~X .
L}Re dz—-ﬂ_{’;e (-Ddx=me Je dx=e" —1.

0

(iv) Since C4is z=i(1-y)(0<y<D),
| I 1
<225 S ~w(l-yii y et | iZ —
L#Jre dz-ﬂje P ;)dy-mje "dy=-2.
0 0
Finally, then, since

jcn'e dz = J“% e “dz + L2 e “dz+ L‘; e “dz+ J‘C} e “dz,
we find that
| me*dz=4(e"-1).
4. The path C 1s the sum of the paths

C iz=x+ix’(-1£x<0) and C,:z=x+ix’ (0<x<]),
Using

f()=lonC, and f(z)=4y=4x"onC,

we have

L: f(z)dz mjc f(2)dz +L f(z)dz ﬁ} 1(1+i3x%)dx + }4;:3(1 +i3x°)dx
{ ~2 1 0

= de +3ij:x2dx+4jlx3dx + l2ijx5dx

-1 0

% 5
“[x]i +f[x3]i +[x4]; +2i[x6]; =1+i+1+2i=2+3i

5. The contour C has some parametric representation z=2z(t){(a<t<bh), where z(a)mz1

and z(b)=z,. Then

tza!zi"---*“bz“'(t*)e:i!tm z(1) bmz(b)--z(a)-“—-z ~Z,.
Jode= [z @ar=[z00 ] 7,
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To integrate the branch

77 =T (1z1>0,0<argz < 27)

around the circle C:z=e” (0<0<2x), write

2n n 2n
J‘C Z_H d7 = J‘C e(—i+£)bgz dr = J' e(-l+i){h1+i9) ieﬁ dO0=i J‘ e-;e-aefa dO=1i J' e-e d0 = i(1“ o2 )
0 0

0

Let C be the positively oriented circle lzl=1, with parametric representation
z=¢"(0<0<2r), and let m and n be integers. Then

2 2
am An ‘ .
L 27z = I(e‘e) (e““q) ie?d0=1i I g' Mo =18 g
f)

G

But we know from Exercise 3, Sec. 38, that

Te"’”ee“i"gdéﬂ O when m#n,
” 2r when m=n.

Consequently,

—n 0 when m+1#n,
I 2'z'dz=q
¢ 2ri when m+l=n.

Note that C is the right-hand half of the circle x*+y*=4. So, on C, x=44—y>. This

suggests the parametric representation C:z= «\f4-—- y* +iy(—2<y<2), to be used here. With
that representation, we have

2 ( A
- : -y .
Iczdz:i(\/d-yz—zy) \\/4_y-;-+1)dy
2 2 h
= [(~y+ndy+i|| =Z2=+a-y* |d
i(yyyfi[J4“2Jy)y
Y +4- dy ‘ ml(y)“z
= dy=4i| — = 4 A
z_j; \/4*_)’2 34 z:[ 4#);2 z[sm 5 |
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10. (a)

(b)

11. (a)

(b)

Since
J.C{, Jz—z )dz= T f(Re®)Rie®d6
and -
fcf (2)dz= j f(Re®)Rie*do,
we have N
Lﬂ f(z=z))dz= .L_: f(2)dz.
The results

j (z*zﬂ)""ldzmo(nmil,:t2,...) and I _dz ~= 27
Co “z-2,

are immediate consequences of part (a) and integrals (5) and (6) in Sec. 42.

The function f(z) is continuous on a smooth arc C, which has a parametric

representation z=z(t)(a<t<b). Exercise 1(b), Sec. 38, enables us to write

b B
[ flzo1z de=[ flz@ipow (©)dz,

where

Z(1)=z[¢(7)] (<< p).

But expression (14), Sec. 38, tells us that

2P’ (1)=2Z'(7);

and so

b B
[ flzon @de= fiznz @,

Suppose that C is any contour and that f(z) is piecewise continuous on C. Since C can

be broken up into a finite chain of smooth arcs on which f(z) is continuous, the
identity obtained in part (a@) remains valid.
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SECTION 43

1.

Let C be the arc of the circle 1z1=2 shown below.

Without evaluating the integral, let us find an upper bound for L dz . To do this, we

ezt -1
note that if z is a point on C,
|z2-1l2 uzzl-—-lleP .....1|=|4....1|=3_
Thus
L. .1
12°=1] 1°-1 3
.1 ) 1
Also, the length of Cis 2(4;@'):%. So, taking Mﬂ; and L=m, we find that

| L )em="
| 3

The path C is as shown in the figure below. The midpoint of C is clearly the closest point on

V2

( to the origin. The distance of that midpoint from the origin is clearly —, the length of C

2
being \/5 :
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\/E 17 1

Hence if z 1s any point on C, Izlz-—;. This means that, for such a point w:::r-FSéL
2| 1z

Consequently, by taking M =4 and L= \/5 , we have

jc—-fSMLmh/E.

3. The contour C is the closed triangular path shown below.

To find an upper bound for I_l‘c(eZ m'.'z")dzl, we let z be a point on  and observe that

le® ~7ZI<le” I+lZl:ex+\f.x2+y2.

But e* <1 since x<0, and the distance \_/;::2-1—):2 of the point z from the origin is always

less than or equal to 4. Thus le®*~z1<5 when zis on C. The length of C is evidently 12.
Hence, by writing M = 5 and L = 12, we have

I Jc(ez—f)dz!SMLmﬁo.

4. Note thatif |zl=R (R>2), then

1222 -U<21zP +1=2R*+1

and

2 +527 +4l=12> + 22+ 412 |12 1] 127 --~4|=(R2--1)(R2-~4).



Thus

272 —1
2 +57° +4

122711 < 2R +1
124 +5z22+41 (R*-1D(R*-4)

when |zI= R (R>2). Since the lengthof C_ is 7R, then,

R'( 1

: t e 2+__.._5_
f 22-1 | 7RQR*+D) _ R R) |
Cez*+522+4 | (RE—1)(R*—4) (1 Y, 4\
. RN R

and it is clear that the value of the integral tends to zero as R tends to infinity.

S. Here C_ is the positively oriented circle Izk=R(R>1). Ifzisapointon C_, then

Logz

2
4

*ImR+i@I<hR+l@I<x+mR

L -’.

R? R? R?

since —r<O=x. The lengthof C_ 1s, of course, 2rR. Consequently, by taking

+ink
m=" and L=27R,
R2
we see that
' ( \
Lo +InR
L ng dz1SML=2r ot .
B Q ! \, R J
Since
lim ﬂj-lql{: ]im l-/u-{euzo,
R-yo0 R R ]
it follows that
Lo
m &% 1z =0.
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Let Cp be the positively oriented circle Izl=p (0< p<1), shown in the figure below, and
suppose that f(z) is analytic in the disk IzI<1.

y

We let z7""% represent any particular branch

i |

( (
27 =exp m-l-logz}zexp[—-—i(m:wiﬂ) =--}--~exp --i-g) (r>0,0<8<q+2m)
. 2 2 J \/1—‘ . 2

of the power function here; and we note that, since f(z) is continuous on the closed
bounded disk |zI<1, there is a nonnegative constant M such that | f(z)I< M for each point 7

Lp L2 f(2)dz

in that disk. We are asked to find an upper bound for . 'To do this, we

observe that if z is a point on Cp .

IZ“mf(Z)' m'z—m I If(Z)l < %

Since the length of the path C, is 27p, we may conclude that

i M
J’Cp 7 f(2)dz | < 27 27MA[p.

Note that, inasmuch as M is independent of p, it follows that

lim{ z7"*f(2)dz=0.

p->0 Cﬂ
Consider the functions

h

P,,(x)=*:%*f(x+iw/lﬂ}r2 cos@) de (n=0,1,2,...),
O

where —1 < x<1. Since

x4 il cos B = /x> + (1= x%)cos? 8 <x* +(1- %) =1,

it follows that

Jc+i\/1—;\r2 cos @

< — <—[do=1
Pn(x)l<n_£ de x!d@
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SECTION 45

1.

The function z" (n = 0,1,2,...) has the antiderivative z"*' /(n+1) everywhere in the finite
plane. Consequently, for any contour C from a point z, to a point z,,

2 Fonet 152 n+l n+l 1

n n Z Z Z
J‘ z dZﬁJ‘Z d7 = S A (z;‘*‘-—z{”“)*
C n+1 n+l1l n+l1 n+1i
£y i - 7,
i "lf:?- f i .
fe“dz e™ e™ e i+l 1+
a — ] em— — — e .
@ | 7| — =

. : 2i
(z ) 1 1
=—l|l—t+ilgi=—+e=¢g+—,
€ e 4
: -2'T 1 1
7= dz =] SR —=Y1}
(c) !( e | =373

Note the function (z—z,)" " (n==%1,%2,...) always has an antiderivative in any domain that
does not contain the point z = z,. So, by the theorem in Sec. 44,

J.c:{, (2-2,)" "'dz=0

for any closed contour C, that does not pass through z,.

Let C denote any contour from z=-1 to z =1 that, except for its end points, lies above the
real axis. This exercise asks us to evaluate the integral

i
I= szdz,
~1
where z' denotes the principal branch

7' =exp(iLogz) (121> 0, - 7w < Argz < m).
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An antiderivative of this branch cannot be used since the branch is not even defined at
z =—1. But the integrand can be replaced by the branch

7' = exp(ilogz) (lzl >0, ---;E <argz< -'?’-2—75)

since it agrees with the integrand along C. Using an antiderivative of this new branch, we
can now write

ok
Z | . . i .
] = | = 2 [yt — (=it ] = [ pl+Drogt _ (1+1ylog(-1)
i+l i+1[() =D } £+1[ }
— ____1_____[3{:'4-1)(1;114-;0) _ e(m)anum)] _ ____1___*(1 B e_ge;,,) _ 14 g"‘:’f | [ — z
i+1 I+ 1 I4+i 1-—i
i+e™”
= ; (1-0).

SECTION 49

2. The contours C, and C, are as shown in the figure below.

In each of the cases below, the singularities of the integrand lie inside C, or outside of C,;
and so the integrand is analytic on the contours and between them. Consequently,

ch f()dz = _Lz f(2)dz.
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1 1
a) When = , the singularities are the points 7z =+—i.
(a) f(z) 322 +1 £ P ‘\/§
(b) When f(z)=— 2 , the singularities are at z=2nr(n=0,x1,12,...).
sin(z/ 2)

(c) When f(z2)= 1 < -, the singularities are at z =2nmi (n=0,21,%2,...).
—e

zz

(a) In order to derive the integration formula in question, we integrate the function e”
around the closed rectangular path shown below.

Since the lower horizontal leg is represented by z=x (—a £ x<a), the integral of
et along that leg is

Te"‘”zdx = 2}5‘3 dox.
O

t

Since the opposite direction of the upper horizontal leg has parametric representation
z=Xx+bi (—a < x < a), the integral of e along the upper leg is

{a i i {
_ (12 2 2 . 2 L2 . p2 .2
- j e Y e = _gb je P Ly N je * cos2bxdx + ie" j e sin2bxdx.
-~ a7 4 ¥ ; v IF
or simply

a

_2¢" J'e“””z cos2bx dx.

G

Since the right-hand vertical leg is represented by z=a+iy (0 <y <b), the integral of
et along it is

b
z .

b
anm ' 2# § 2 1 y
Je WY idy = je° je’” e Y dy.

{0

0
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Finally, since the opposite direction of the left-hand vertical leg has the representation
z=—a+iy (0 < y<b), the integral of et along that vertical leg is

b

b
a2 L2 2 9
wJ.e Caidy = —ie™ Jlef’” e ““dy.

0

0

According to the Cauchy-Goursat theorem, then,

a a b b
2 2 .2 .2 S .2 3 .
2_[3 “dx —2e” Ie Y cos2bxdx+ie” jey e Yy —ie™® fe” e ?dy =0;
(0 O 0 4
and this reduces to

r 2 2 r 2 2,12 ¢ 2

Je““ cos2bxdx =e™” Je”" dx+e @t )Ie” sin2aydy.

0 { O |

(b) We now let a-— o in the final equation in part (a), keeping in mind the known
integration formula

J.e““zdx = _\[—__75_
A 2
and the fact that
2 2 & pi 2 2 b 2
e [ sin2aydy| e (e dy— 0 as a— .
0 0
The result is
J.e""‘z cos2bxdx = «--'--\[2;?;»--.«3"”2 (b>0).
0

6. We let C denote the entire boundary of the semicircular region appearing below. It is made
up of the leg C, from the origin to the point z =1, the semicircular arc C, that is shown, and

the leg C; from z = -1 to the origin, Thus C=C, + C, +C,.
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We also let f(z) be a continuous function that is defined on this closed semicircular region
by writing f(0) =0 and using the branch

f(z)=re®” (r >0 --g- <0< 3;:)

of the multiple-valued function z'°. The problem here is to evaluate the integral of f(z)

around C by evaluating the integrals along the individual paths C, C,,and C, and then

adding the results. In each case, we write a parametric representation for the path (or a
related one) and then use it to evaluate the integral along the particular path.

(i) C,:z=re” (0£r<1). Then

1

j f(z)a'z“j«/; ldr = [i 3’2] =-§-,

0

(ii) C,:z=1-€°(0<0<m). Then

F T2 aenl”™ 2 2
d — 19!2 te'9d9 — £39!2d6 =il = i38i12 — N Ae T ‘
J’sz(z) Z h[ z_!; |5 | 3( i—1) 3( i)

(iii) =C,;: z=re”™ (0<r<1). Then

_L,Ef(Z)dz=-—--_[_Csf(z)dz=-—i«/_ (- l)dr-—-zj\/'dr._z[i m]ﬁ:%a

The desired result is

Jf@dz= |, fydz+ [ f@de+ [, f@de=2-2(1+iy+Zi=o0,

The Cauchy-Goursat theorem does not apply since f(z) is not analytic at the origin, or even

‘defined on the negative imaginary axis.

SECTION 52

1.

In this problem, we let C denote the square contour shown in the figure below.
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(a) ch_e(ﬁ?jz m27::12‘[ez"’*‘]mmr =2 i(—i) =27,
, -
(D) J C(;Sz dz = (c0s2)/ (z +8)dzm27ri[ iosz :Zm’(}-)
Cz(z" +8) C Z— 2" +8],-0 8
(c) zdz z/2 z—27r]_5-“ -Qm'(....l)— i
€2z+1 JCz—(~1/2) 2 emin2 4 2
coshz , ¢ coshz , 2mi[ d° ) o
(d) IC x dz = S dz 3t _dz3 coshz_zzﬁm-é-(())m().
tan(z / 2) tan(z / 2) 2 i [d (z)_
e dz = dz = tan| —
(€) -"c (z----;cﬂ)2 < ltl’(.z---;.vcﬁ)lJri < 1t | d7 2 d o,
=27 (-}-'-'Sec:2 -—Jf-‘-}-) = iﬂsecz(fﬁ) when -2 < x, <
2 2 2

Let C denote the positively oriented circle 1z —il= 2, shown below.

(a) The Cauchy integral formula enables us to write

J

dz dz

2+4 C(z—2i)z+20) B

J

1/(Z+?t)dzm
z— 21

271':'(

1

z4+ 21

2.

) = 27:2(
2 z=2i

(b) Applying the extended form of the Cauchy integral formula, we have

|

4;

)_ZE
a

dz dz 1/(z +2i)* 2mil d 1
_[ 2 2=j A2 T i 4z = 2
C(z"+4) C(z—20)"(z+2i) ¢ (z—2i) 1M dz (z+2i)" §,_,,
I -2 1 ~4mi -4 T
=2 - == ey
Lz+2i) | _,. @iy —@16)4d)i 16
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3. Let C be the positively oriented circle Izl= 3, and consider the function

257 =52
8= =——=ds (12l 3).

We wish to find g(z) when z =2 and when |zl > 3 (see the figure below).

We observe that

25t — 5 — 2
§ —

g(2) = j ds--zm[zs ~s-2] _ =2mi(4)=8mi.

On the other hand, when Iz > 3, the Cauchy-Goursat theorem tells us that g(z) =0.

3. Suppose that a function f is analytic inside and on a simple closed contour C and that z, is
noton C. If z; is inside C, then

J‘ f(2)dz
C

f(z)dz f f(z)dz
2, ¢

2mi |,
-z 1 /' (zo)-

=27if'(z,) and IC(Z o)

Thus

If’(z)dz J f(z)dz
C 7 Z‘O C(Z

The Cauchy-Goursat theorem tells us that this last equation is also valid when z, is exterior
to C, each side of the equation being 0.

7. Let C be the unit circle z=¢" (-7<0< ), and let a denote any real constant. The
Cauchy integral formula reveals that

e” az - .
IC“;dZ - z-—-O 271'1[ L:{} = 2 ni.
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On the other hand, the stated parametric representation for C gives us

az ’f i¢ % |
[ —dz= je"p(ie ) ied6 = i [expla(cos 8 +isin 6)1d6
C Z :

€

-7 -1
X n
=i [e"?%“"dg = i [ ¢***°[cos(asin B) + isin(asin 6)]d6
' 4 -
X /4
= — Ie‘“’“” sin(asin 8)do +i j.e‘“"’sg cos(asin 8)d0.
—r -7
eaz
Equating these two different expressions for the integral JC dz, we have
T r Z
- je“"s ?sin(asin 8)d6 + 15'_[&":“““:"M cos(asin 8)d0 =2 .

~-n -7

Then, by equating the imaginary parts on each side of this last equation, we see that

I e”“*? cos(asin 0)dO =2x:

—

and, since the integrand here is even,

je““’” cos(asin8)dl = r.
0

(a) The binomial formula enables us to write

P.(z)= 1 d° (ZZ B l)n 1 d" i(njzzn“u(“l)k*

ni2" dz" n!2" d7" fo\k

We note that the highest power of z appearing under the derivative is z*", and
differentiating it »# times brings it down to z". So P, (z) is a polynomial of degree n. ‘

(b) We let C denote any positively oriented simple closed contour surrounding a fixed point z.
The Cauchy integral formula for derivatives tells us that

n " ! 2 __ 1\
dﬂ(z2—1) LY g o) I (n=0,12,..).
dz 2ri‘c(s—2z2)"
Hence the polynomials P (z) in part (a) can be written
1 (s =1)"
P (2)= - ds n=0,1,2,...).
H( ) 2?1-!-1 ﬂi IC (S _ z)rH"l ( )



(c) Note that

(s"=D" _(s=1) (s+D)" _(s+1)

(S__l)n-i-l = (S I)ﬂ-i-i s —1 )

Referring to the final result in part (b), then, we have

| (s ......1) I (s +1)"
P(H= d *-—--—-2""-1 =0,1,2,...).
()= 27+ C(s-—---l)*'Hl 2" 27:1 C s-1 ’ 2° n )
Also, since
(s> = 1)" =D+ (s-1)
(s+ D" (s+ )™ s+1 7
we have
1 (s* —1)" | (s— 1) 1
P(-1)= = 2)" = (-1)" =0,12,...).
(D)= 2" mide(s+ 1) ds = 2" 2m C s+1 2”( yEED o )

9. We are asked to show that

H f(S)dS
f (z)-—-—-_f(s__z)

(a) In view of the expression for f'(z) in the lemma,

['(z+Az)= f'(2) _ 1 j‘!i_____ 1 1 f(s)ds

Az 2T -

_ 1 J- 2s—2)— Az
27 (s~ 2z~ Az)*(s—2)

Then

(s—z—Az)* (s—

2| Az

7 (5)ds

-y

[ (Z+Az) J'(z) 1 f(s)yds _ 1 2(s—z)— Az 2
f j (s—2-A2’(s—2) (s—2) ]

‘[3(.9 2)Az = 2(Az)’
2m (S-z—-Az) (s—2)

(s — z)° 27i Y,

f(s)ds

f(s)ds.
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(b) We must show that

yA
_"C 3(s—2)Az - 2(Az) f(s)ds

. (3Dl1A +21AzI°P M
(s —z—-Az)*(s—2)° N ‘ -

(d—1Az1V d°

Now D, d, M, and L are as in the statement of the exercise in the text. The triangle
inequality tells us that

13(s — 2)Az — 2(A2)°1< 3ls — 2l 1Azl + 21AzFP < 3DIAzZI + 21 Az,

Also, we know from the verification of the expression for f'(z) in the lemma that
s — 7z~ Azl 2 d -1 Azl> O; and this means that

(s =z — Az)*(s — 2’| 2 (d —|Azl)* d® > 0.
This gives the desired inequality.

(c) If welet Az tend to O in the inequality obtained in part (b) we find that

lim —— [ 28~ 2)Az—2(4A2) f(s)ds = 0.

8230 Qi IC (5~ 7~ A7) (s - 7)°

This, together with the result in part (a), yields the desided expression for £"(z).
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Chapter 5

SECTION 56

1. Let us use definition (2), Sec. 33, to show that the sequence

7 =24 (n=12,...
n
converges to —2. Observe that |7~ (-—-2)] = -—!5- Thus, for each £€> 0,
n

z,—(—=2)|<& whenever n>n,,

where n, is any positive integer such that n, 2 —

]
T

(=1)

nZ

2. Notethatif z =2+ (n=1,2,...), then

GZH = Argzzir: ~»0 and 92,;.._1 = AIgZZn,,l -0 (n=12,...)

Hence the sequence ©, (n=1,2,...) does converge.

3. Suppose that imz, =z. That is, for each € >0, there 1s a positive integer n, such that

n—yo0

|z, — zI< € whenever n > n,. In view of the inequality (see Sec. 4)

lz, —zl 2 liz -z,

it follows that liz I-zll< € whenever n > n,. That is, limlz |=izl.

o0

4. The summation formula found in the example in Sec. 56 can be written

- Z
zz" =-—— when Izl«l.
n=1 1"""Z
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If we put z = re”, where 0 < r <1, the left-hand side becomes

8

Z(re‘@)” = Zr"e‘”ﬂ = Zr"’ cosnf + iz r'sinng@;
n=1

n=} n=1 n=]

and the right-hand side takes the form

0 —if 9 2 . s
re”  l—re” re” —r _rcos@—r’+irsin6

1=re® 1=re™ 1-r(e®+e)+r? 1—2rcos@+r’

Thus

rcos@ —r’ i rsin @
1—2rcos@+r? 1-2rcos@+r*

Zr” cosn@ + iz r"sinn@ =
n=1 n=1

Equating the real parts on each side here and then the imaginary parts, we arrive at the
summation formulas

rsin @
1-2rcos@+r*"

rcos @ —r?
1—2rcos@+ r’

Zr" cosnf = and Zr"sinn@“
n=i n=1

where 0 < r < 1. These formulas clearly hold when r =0 too.

Suppose that Zz,,1 =35. To show that Ziﬁ; =S, we write z, =x_+iy, S=X+iY and
n=1 n=1i

appeal to the theorem in Sec. 56. First of all, we note that

ixn =X and iyn =Y.

n=) n=1

Then, since 2(“)’,,) = -Y, it follows that
n=1i

ifn = i('xn —iy,) = i[xn +i(-y,)l=X-iY =S§.
n=1

n=1 n=1
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8. Suppose that Zzn =5 and an = T. In order to use the theorem in Sec. 56, we write
n=1 =]

Z,=Xx,+ty,, S=X+iY and w, =u +iv, T=U+IiV.

Now
ixn = X, iyn =Y and iuﬂ =U, ivn = V.
n=| n=1 n=1 n=l
Since
i(xn +u,)=X+U and i()’u +v )=Y+V,
n=1 n=t
it follows that
i[(xn +u ) +i(y, +v)=X+U+i(Y + V).
n=t
That is,
i[(}gi +iy, )+, +iv,)]= X +iY +(U +iV),
n=1
or
i(zn +w,)=8+T.
n=1
SECTION 59

1. Replace z by z” in the known series

o0 2n

coshz = ; (;) : (Izl< e0)
to get
cosh(z*) = i 2" (Izl< o0).
n=0 (211)!
Then, multiplying through this last equation by z, we have the desired result:
zcosh(z%) = i 2 (lzl< o0),

n=0 (2?!)!



(b) Replacing z by z—1 in the known expansion

o= Zn
e = ) — (1zl< o9},
n=0 n!
we have
4 w=(z-1)
e = 2( ) (Izl< o).
n=0 ’I!
So
_ = (z—-1)"
e’ =¢" e = ez( ) (Iz1< o0).
n={ n!

We want to find the Maclaurin series for the function

f(9)=

_Z 1
Z +9 9 1+(z*79)

To do this, we first replace z by —(z* /9) in the known expansion

1 o=
oo S22 zu IZI< ] .
1-z ; ( )
as well as its condition of validity, to get
1 (—1
= 12 < /3).
1+(z*19) 2 32” ( )

Then, if we multiply through this last equation by -g, we have the desired expansion:

1@ =3 G (d<¥3)

Replacing z by z’ in the representation

2n+1

|< o0},
sinz = Mzﬂ‘( 1)” Gni D] (Izl< o0)
we have
4n+2
sin(z”) = Z( 1)” (1zi< o0).

o (2n +1)!
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Since the coefficient of z" in the Maclaurin series for a function f(z) is "™ (0)/ n!, this

shows that

F0)=0 and F2*D0)=0 (n=0,1,2,...).

7. The function L has a singulanty at z =1. So the Taylor series about z=1i is valid when

-2z
lz—il <+/2, as indicated in the figure below.

To find the series, we start by writing

1 1 _ 1 l
-z (I=D)=-(z—i) 1-i 1-(z=i)/A~i)

This suggests that we replace z by (z—1i)/ (1 —7)in the known expansion

L il (IzI< 1)
}.""'"Z ={}

and then multiply through by ---}--- The desired Taylor series is then obtained:

1—1
& (i)

1
lz—1l<+/2).
-z =)™ ( v2)

9. The identity sinh(z + #i) = —sinh z and the periodicity of sinhz, with period 2, tell us that
sinh z = —sinh{z + 7%i) = —sinh(z — 7i).

So, if we replace z by z — 7i in the known representation

sinhz=Y — (zl< o)
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and then multiply through by —1, we find that

2n+l

= (z— 7i)
~ (2n+1!

sinhz =~ (Iz — il o0),

13. Suppose that 0 <lzl<4. Then 0<1z/4i<1, and we can use the known expansion

{ "
= > 7" (Izl< D).
1z ,;0
To be specific, when 0< izl < 4,
1 1 1 I“z)” <SR TR TR T <N
= . - — — e e s o .
4z_z2 4z 1_—5 4z ;—0(4 ;4#!4 4‘Z ; 4:3—&—1 4‘Z s 4?1—1-2
4
SECTION 62
1. We may use the expansion
> zZn-H
sinz= ) (~1)" |zl< oo
;ﬁ( ) D (Izl< o)
to see that when 0< |zl < oo,
-1" 1 -n" 1
Z Sin e T 1+ . )
( ) 2(2n+1)' o 21(2n+1)? 4
3. Suppose that 1<lzl< e= and recall the Maclaurin series representation
S N
—=>7z (z<1).
1 = Z n=£ _
This enables us to write
L = _):(---) Z( - (1<lzi< o0).
1+ Z Z 1 + o nﬁ,ﬁ n=0 Zn

<

Replacing n by n—1 in this last series and then noting that

(.....,1)”“"1 — (“I)HMI (___1)2 — (Hl)nﬁ’
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we arrive at the desired expansion:

1 o (__l)ﬂ-!-i
— (1 <lzl< o0).
1+z ; z"
4. 'The singularities of the function f(z)= 2(11 ) are at the points z=0 and z=1. Hence
27(1-z

there are Laurent series in powers of z for the domains 0<lzl<1 and 1<lizi< o (see the
figure below).

To find the series when 0 <lzl< 1, recall that : P 22” (lIzi< 1) and write
—Z n={)
1 1 I « = .2 1 1 =, =, 1 1
Q== === 2+ 3 =Y
12) 72 1-z 22; ; 22z ; ;_0 z 7

As for the domain 1 <lzi< oo, note that 11/ zl <1 and write

1 1 1 (1Y = 1 = 1
f(2)= zz'l_(uz)“""?Z(;) "_2 n+3“"2_n"*

Z n=9 :;::G z ;3:3 Z
: . , +1 . . :
S. (a) The Maclaurin series for the function -—z—-—-—-—-l—- is valid when lzl< 1. To find it, we recall
Z —
the Maclaurin series representation
1 -,
—=>7z (Izi< 1)
1 - < n=0
1 :
for —— and write
-2

==Y 7"=-Yz"=-1-2) 7" (lz<1).
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(b) To find the Laurent series for the same function when I <lzl< oo, we recall the

Maclaurin series for -i—-l--— that was used in part (a). Since -}- < 1 here, we may write
—Z < |
1+}—
z+1 z 1) 1 N1y o1 &1
——e ={1l+— |—=14+—- - =) —+
z-1 1 2/, _1 Z ,; Z ; " ;z”“
Z Z
=Y 4+¥ i3 L (1 <Izl< o).
n=0%  p=1 & n=1<
7. The function f(7)= (Hl_ 7 has isolated singularities at z=0 and z =i, as indicated in
Zi+z

the figure below. Hence there is a Laurent series representation for the domain 0 <lzl< 1

and also one for the domain 1 <lzl< o, which is exterior to the circle 1zi=1.

To find each of these Laurent series, we recall the Maclaurin series representation

L iz” (lzl< ).

For the domain 0 <lzi< 1, we have

fzy== 1+1zz ="1“‘i(“22)n = i(“l)"zz”“’ - +i(-----"1)1”’zz"““]l -_.-i(ml)”“zz”*‘ o1
n=0 n=1 n={

Z 7 == Z Z

On the other hand, when 1 <izl< oo,

11 IS 1Y =D &
(z)m--—--~ -3 (__) - ntd 2ast
<

In this second expansion, we have used the fact that ()" =D (=2 = (=),



8. (a)

(b)

10. (a)

83

Let a denote a real number, where —1 < a <1. Recalling that

L =3y (z<1)
1....2 n=0

enables us to write

Or

a_ - 29““ (lal<lzl< o).

e —a
But
a a (cos@—a)—isin@ acos@—a’ —iasin6
e’ ~a (cos@-a)+isin@ (cos@—a)—isind 1—2acos@+a’
and
Z ae ™ = Za“ cosnf — iz a" sinno.
n=} n=] n=3}
Consequently,

asin @
1—2acos @ +a’

acos @ —a’

1—2acos 0+ a° and Zan sinng =

n=1

Za” cosnf =
n=1

when ~l<a<l.

Let z be any fixed complex number and C the unit circle w = ¢ (-7 < ¢ < 7) in the w

plane. The function
Y
fw)= exp[i(w - w]
2 W

iy

has the one singularity w =0 in the w plane. That singularity is, of course, interior to
C, as shown in the figure below.
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w plane

Now the function f(w) has a Laurent series representation in the domain 0 <lwl< oo,
According to expression (5), Sec. 55, then,

GXPF(W ) L) = 2./, (w' (0<iwi<eo),
2 w/| .
where the coefficients J (z) are
i CXp *'"2“ W~
Jn(Z)ﬂW ;I_‘i“—'v-? = dw (n-=0,:t1,..2,...).
2ni € W

Using the parametric representation w = e (~7z < ¢ < 1) for C, let us rewrite
this expression for J,(z) as follows:

{ = cXp E( 9 —-e"i'p)]

_ 2 cipgn r . ~ing
J.(2)= -2*-;-;2-;_” T > jetdo = —EELexp[zz sinle ""de.
That is,
| .
S ()=~ [ expl-i(ng - zsin ¢))d¢ (n=0,%1,42,...).

(b) The last expression for J (z) in part (a) can be written as

J (2)= 1 f[cos(nqb —Zs8in @) —isin(ng — zsin ¢)ld¢o
27 *

1 % _ i 5. .
5; __Lcos(m? — Z81n ¢)d¢ wz-’; _Lsm(ngb —~ zsin ¢)d¢

1 .7 i
= —2 | cos(n¢ — zsin ¢)d —{ n=0,%+1,12,...).
> f (ng ~ zsin §)dg — —— ( )
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That 1s,

J (z2) =—| cos(n¢ — zsin ¢)d¢ (n=0,+1,%£2,...).

e 1:)

1
n

11. (a) The function f(z) is analytic in some annular domain centered at the origin; and the
unit circle C: z=¢€" (-1 < ¢ < 1) 1s contained in that domain, as shown below.

For each point z in the annular domain, there is a Laurent series representation

n=4{ n=l 4
where
f (Z)dz f (efé) io f ig~ _—ing _
a,=——| j et j e ietd = _Lf(e e "™dp  (n=0,1,2,...)
and
f(z)dz f(~‘3¢) i _ 1 ¢ i\ _in _
n J' -rH-I 27& J. i¢(~n+1) ie ¢d¢ - %Lf(€¢)e ¢d¢ (ﬂ - 1’2’)

Substituting these values of a, and b, into the series, we then have

- 1 % | 4 o n o 1
f(z)ﬁ Z_Z__k_jf(eﬁb)e*médé 7" +;a%if(ei¢)ein¢d¢ ;’

n=0

or

S S PYNITONE B S (._E_.) e?Y
f1=55 [5@ap+ -5 [ s )[ SRS
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(b) Put z=¢" in the final result in part (a) to get

f(e*) = j f(e‘¢)d¢+---2 [ £ @® 4.0 ap,

nl,...

or

fle =5, J1Cio+ 3 [ 1% costn@ - p)1ap.
If u(0)=Re f("), then, equating the real parts on each side of this last equation yields
u(0) == [up)dp + L3 [u(@)cosin(6 - p)ldp,
27 3 7 Ari i

SECTION 66

1. Differentiating each side of the representation

1 "
— zu lzl< 1 .
) o

we find that
Ll _d5 o Nd o inznﬂl mi(nﬂ)zn (zl< 1)
(1-2z)° dz n=0 2=0 02 n=1 n=0 |

Another differentiation gives

(1 2z) dzz(n+l)z *Z(n+1)-—_z ”2”(”'*'1)3“ I""""'Z(J‘l'*'l)(i'i'f'2)z (Izl< D).
- n=%}

2. Replace z by 1/(1~z) on each side of the Maclaurin series representation (Exercise 1)

= i(n +1)z" (Izl< 1),

as well as in its condition of validity. This yields the Laurent series representation

L=y -l (1<lz —1I< oo),

ZZ n=2 (Z = l)n
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3. Since the function f(z)=1/z has a singular point at z =0, its Taylor series about z, =2 is

valid in the open disk [z — 2l< 2, as indicated in the figure below.

To find that series, write

1 1 _1

z 2+(z- 2) 2 1+(z-2)/2

to see that it can be obtained by replacing z by ~(z~2)/2 in the known expansion

- < n=(
Specifically,
L1sf a2
té 2 n={) 2 -
or

])n+l

...__!_2_,_: ﬂ*‘-"( 1) n(Z 2)n1 2(“

Thus

-----2(—-1) (n+1>("‘ 2)

Z n*ﬁ

Consider the function defined by the equations

f(2)= {

When z#0, f(z) has the power series representation

(n+1)(z—=2)

(sinz)}/z whenz#0,
when z=0.

(1zi< 1).

(lz-2i<2),

(Iz—2l<2).

(z—2l< 2).

(lz~2<2).
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Since this representation clearly holds when z = 0 too, it is actually valid for all z. Hence f
is entire.

6. Let C be a contour lying in the open disk Iw—1i<1 in the w plane that extends from the
point w =1 to a point w = z, as shown in the figure below.

0

w plane

According to Theorem 1 in Sec. 65, we can integrate the Taylor series representation

LS 1y w1y (w—1<1)
n=0

W

term by term along the contour C. Thus

_L ci:; = L;(*ﬂl)”(w“ D'dw = g(wl)”jc(w - 1) dw.

But
f.i_"}"_ﬁJ‘iiﬁﬁ[ngw]f:Logz-LoglzLogz
C W I Ww
and
z [ _ 1yt )R gyl
[Low=1r=[w-1yaw=| =D _@=D7
c 1 | n+l ], n+1
Hence
C (“l)n +1 c (“I)MI n
gz !;0”4“1( ) nz:l . (Z ) (Z )

and, since (—1)""' = (=1)""'(=1)? = (=1)**, this result becomes

ou "“"'l n+l
Logzmz( n) (z—-1" (lz—1li<]).
n=}



89

SECTION 67

1. The singularities of the function f(z)= are at z=0,xi. The problem here is to

22 +1)

find the Laurent series for fthat is valid in the punctured disk 0 <Izl< 1, shown below.

We begin by recalling the Maclaurin series representations

2 3
I . . AP
--1+”+2!+3!+ (Izl< o0)
and
SNPD R S (Izl< 1),
-z
which enable us to write
I 5 134
e =1+74+—2"4+—7"+ - |zl o0
5 . ( )
and
i
——=1-zt 7 =2+ (Izl< D).
z°+1

Multiplying these last two series term by term, we have the Maclaurin series representation

L

€ 1213

=l+z4+—2"+—2"+ -
2t +1 27 6
-7 —7-
z4+“
1 5
=l+z-—2' ==+,
2 6

which is valid when lzl< 1. The desired Laurent series is then obtained by multiplying each

. , 1
side of the above representation by —:




90

We know the Laurent series representation

e 7 e (0 <lzi< )

from Example 2, Sec. 67. Expression (3), Sec. 60, for the coefficients b, in a Laurent series

. ., .. ,.
tells us that the coefficient b, of — in this series can be written
Z
1 d
b, = <

2mi ¢ 7% sinhz”

where C 1s the circle I1zl=1, taken counterclockwise. Since b, = — -;—, then,
f zgfz =2zzi(-—-—l-)m--—7?—.
€z°sinhz 6 3

The problem here is to use mathematical induction to verify the differentiation formula

[f(2)g(D]" = Z(:)f"”(z)g‘"““(z) (n=1,2,...).

k=0

The formula is clearly true when n =1 since in that case it becomes

Lf(2)g(2)) = f(2)8'(2) + f'(2)g(2).

We now assume that the formula is true when # = m and show how, as a consequence, it is
true when n =m+ 1. We start by writing

[F(2)8@I™ = {lf (28" =[f(2)8'(2) + f(2)g()]™

=[f(2)8 @I +[f ()g(HI™

= i(:l) f(k)(z)g(mmk+l)(z) -+ i(f)f(kﬂ)(z)g(mmk)(z)
k=0 k=0

— i(:z) f(k) (z)g(mmk+l)(z) + i(k’i l)f{k)(z)g(m—k+l}(z)

={) k=1

b

= f(2)g"" () + f[[km) + (,: 1) @8 @)+ [ (2)g(2).
k=1
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But

(m) (m ) m! m! (m+1)! (m+l)
-+ = U T — — :
k) \k=1) km-k)! (k=Dm—k+1)! k\m+1-k)! \ &

and so

+1
[f(2)8()]"™" = f(2)8"™ () + Z(m . )f ©@g"" @+ ™ (2)8(2),

m
k=1

or

m+1 + 1
[f(z)g(z)](mH) — z(mk Jf(k)(z)g(mﬂ_k)(Z)*
k=0

The desired verification is now complete.

We are given that f(z) is an entire function represented by a series of the form

f(D)=z+a,z* +a, 2+ (Izl< o).

(a) Write g(z) = f[f(z)] and observe that

‘0 £70) ,  £70) ,
T I T

FLf@2)]=g(0)+=

(1zl< o),

It is straightforward to show that

g'(2) = fIf(D1f (),

g ()= Lf QU @Y + f L1 (2),

and

g7 (D)= "L @Y +2f @ F " @Qf "Lf D1+ F I DI @ F () + F I (D1 (2)-

Thus
g(0)=0, g'0)=1, g”"0)=4a, and g”(0)=12(a +a,),

and so
flf@Dl=z+2a,2° +2(a; +a)z’+ - (1zl< o0).
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(b) Proceeding formally, we have

flf@1= (D +a,lf (DT +a[f(2)T +--
=2+ a7 + a7+ )+ a,2+ a7 + a2+ +ay(z+a,2 +a ) e
=(Z+ a2z2 + a3z3+* )+ (f:zzzz2 + 2a§z3+~' )+ (a3z3+- )

=Z+ 2.':122:2 + 2(a§ +a3)z3+m.

(c) Since

3
. Z 1
Slnzmzmm3‘+---mz+0z2+(-— -é-)z3+~- (Izl< o),

the result 1n part (a), with g, =0 and a, = ---é—, tells us that

sin(sinz) =z — -;-23+--- (1zl< 00).

8. We need to find the first four nonzero coefficients in the Maclaurin series representation

1 = E ( Jr)
mzwz [Zl("‘" .
— n! 2

coshz

This representation is valid in the stated disk since the zeros of coshz are the numbers

7= (—-27f-+mr)i (n=0,11,£2,...), the ones nearest to the origin being z = igi. The series
contains only even powers of z since coshz is an even function; that is, E, , =0
(n=20,1,2,...). To find the series, we divide the series
2 4 6
AR » 1 4 1
coshz=1+—+—+—+=1+—2"+—7" +—7°+-. |zl< o0
21 4! 6! 2 24 720 ( :
into 1. The result is
1 1, 5, 61 . ( n]
=l=—2"+—2z -Z lzZh<—
coshz 2 24 720

or



Since

this tells us that

— —E“;Z +Z—!Z “ETZ
E, , E, 4 E§ ¢
E9+2!z +4!z +6!z+
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Chapter 6
SECTION 71
1. (a) Letus write
1 1
2 m-—--—-l-—z—l»(l--z+z2-z3+ )----1 l4z~7" +--
z+z2° z l+z 2z Z
The residue at z = 0, which is the coefficient of —1-, is clearly 1.
Z
(b) We may use the expansion
2 4 &
COSZEI“"E-"-I-E-—E-—-F'“
2t 41 6!
to write
zcos(—l-)“z(l—- OULESE I T I + .)_z_....l.. LS
Z 21 27 41 ¢ 6! Z® 2! z 41 7
The residue at z =0, or coefficient of -14-, is now seen to be——-;-.
Z

(c) QObserve that

z—sinz 1 . 1 2 7 | 22 7t
=—(Z=SINZ)=—|Z—| Z———F—— [Tt
Z Z Z ! | 315

(0O <lzi<1).
(Izl< o0)
N
6! z°
(0 <lzi< o).
(0 <lzl< o).

(1zl< o0)

Since the coefficient of — in this Laurent series is 0, the residue at z=0 is 0.
Z
(d) Write
cotz 1 cosz
z* 7% sinz
and recall that
P 4 2 4
COSZ‘:‘."l +E----—.-Hm —-Em_l_fmmu.
21 4! 2 24
and
3 5 3 5
Z Z
SiInzZ=72—— —-_...mz__i.].

(1zl< o0),



(e)
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Dividing the series for sinz into the one for cosz, we find that

~2_2_Z .. (0 <lzl< 7).

Thus

S W (0 <izi< 7).

Note that the condition of validity for this series is due to the fact that sinz =0 when

z=nx(n=0,£1,%2,...). Itis now evident that co:z has residué -—-215-. at z=0.
Z
Recall that
35
, 7 Z
smhz-—-—z+§-§-+g—-i~+m (I1zl< e0)
and
=1+z4+7 4+ (1zl< o).

|

There is a Laurent series for the function

sinh 7 | 1
— = —-(8inhz ( )
24(1__2:2) zd ( ) 1_22

that is valid for 0 <lzl<1. To find it, we first multiply the Maclaurin series for sinhz

(SinhZ)(l : 2)=(z+-1-z3+-~!--z5+m)(l+z2+z4+~~~=)

—Z 6 120
1 5 1
=7 — —_—
6° T120°
3 1 5
4=+
6
z5+..

NPy (0 <lzl< 1).
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We then see that

sinh 7 1 71
.,_..:m+wmnm+l-t-
Z

(1~ Z?) 226

This shows that the residue of sinhz /

In each part, C denotes the positively oriented circle 1zl= 3.

(a) To evaluate .L: exp(;z) dz,
Z

the Laurent series

we see that the required residue is —1. Thus

ZZ

J.c exp(=2) dz =27i(-1) = -2 ni.

]

24(1--z2) af z=0 is E

= 5 9

(0 <lzl<1).

we need the residue of the integrand at z =0. From

(0 <dzl< o0),

(c) Likewise, to evaluate the integral L z° exp(-—-)dz, we must find the residue of the

Z
integrand at z = (. The Laurent series

2 1y 11 1 1 1 1
2°exXpl — |=12 1+--l-~--+——~m—5-+ 3 3+4!.

which is valid for 0 <lzl< o0, tells us that the needed residue is

y 1) (1) i
exp| — |dz=2mi| — | =—.
fcz xp(z Z He )=

1

1

<

+)

-~1--. Hence
6
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(d) As for the integral I < +; dz, we need the two residues of
Cz* =2z
z+1 2+l
=27 2z-2)

one at z=10 and one at z=2. The residue at z =0 can be found by writing

() )2
z2(z~2) Z z—2 2 z) 1—-(z2/2)
2
m( 1--11] 1+£+%+H. ,
2 2 7z 2 2

which is valid when 0O <lzl< 2, and observing that the coefficient of 1 in this last
Z
product 1s ---%-. To obtain the residue at z =2, we write
¢+l (z-2)+3 ] _1_(1+ 3 ) 1
2(z—-2) z2—2 2+(z=2) 2 1+(z-2)/2

:_1_( 3 )rl 2-2 (z2-2)"

1+ — >
2 z2—2/] 2 2 )

which is valid when 0 <lz - 2l< 2, and note that the coefficient of 1 in this product

z—2
is -3- Finally, then, by the residue theorem,
[ = 2:::(-—--1-+ 3) 27
Cz° -2z 2 2
In each part of this problem, C is the positively oriented circle 1zl= 2.
5
(a) If f(z)'- ~=, then
-7
1 (1) 1 1 1 1 3 | S
— — | - . . S 1+Z b7 A= - , 75 s
zzf z) -7 & 1-7 z“( ) 'z

when 0 <lzl<1. This tells us that

j f(2)dz =2miRes -ﬂ%f(l)=27ri(-~1)=-2m
C 2=} Vi ré
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1

b} When = , we have

(b) f(z) [+ 72 we la
I 1 | 1
— fl — | =. - =]t 0 <<lzi<1),
sz(z) 1+z°  1-(=2%) H<d<h

Thus

jcf(z)dz =2niRes —t—f(-%) =27mi(0)=0.

z=0 7

(c) If f(z)=~1-—, it follows that -—15- f(—-l—)z-!- Evidently, then,
Z Z°\2/ Z

1

Lf(z)dz =2MmiRes — f(é) =27i(l) =2ni.

z=0 7

4. Let C denote the circle Izl=1, taken counterclockwise.

o n

L L] Z *
(a) The Maclaurin series e° = z—-—'- (Iz1< =) enables us to write
n=0 n.

Lexp(z + --i—-)dz o= fcezel’zdz = JC e”"'ii}- dz = i-—l‘- L z" exp(-l-)dz.

(b) Referring to the Maclaurin series for e® once again, let us write

| = 1 -1
z”exp(w)mz"x——-—l-;:x—-:z” ¢ (n=0,12,...).

<

Now the -1- in this series occurs when n~k=-1, or k=n+1. So, by the residue

Z
theorem,
J z" exp(-l—)dz = 27 1 (n=0,1,2,...).
¢ Z (n+1)!
The final result in part (a) thus reduces to
= 1

Lexp(z + l)dz = 2 7Ti

Z ety n+ 1)
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6. We are given two polynomials

P()=a,+az+a,z +-+az" (a, #0)
and
Q(zy=b,+bz+b,7" +--+b 7" (b, #0),
where m2n+2.
It 1s straightforward to show that

1 P(1/2) a"*+az" +az"t+-ta "

2 Qlz) bZ"+bz" T 4+b" 4 4b

(z#0).

Observe that the numerator here 1s, in fact, a polynomial since m—-n—-220. Also, since
b #0, the quotient of these polynomials is represented by a series of the form

d,+dz+d,z" +-- Thatis,

1 PQ/z)
O/ z)

=d, +dz+d, 2>+ (0 <lzl< R,);

I P(/2)
> Q(1/2)

Suppose now that all of the zeros of Q(z) lie inside a simple closed contour C, and
assume that C is positively oriented. Since P(z)/ Q(z) is analytic everywhere in the finite

plane except at the zeros of Q(z), it follows from the theorem in Sec. 64 and the residue just
obtained that

has residue 0 at z = ().

and we see that

ICP(Z)dz 2miRes k P(“Z)fzzm-ozo.

Q(2) =0 |7 Q(l/2)_
If C is negatively oriented, this result is still true since then

[2Q 4| PQ,
C

dz =0
O(z) CQ(z)
SECTION 72
1. (a) From the expansion
. z ¢ 7
e -1+-1--!~+§-g-+§-!~+~- (Izl< ),
we see that
| 1 1 1 1
zexpl - l=z+1l4+— —F—— ... 0 <izl< o0).
p(z) 21 z 31 Z7° ( )
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(b)

(c)

(d)

(e)

The principal part of zexp(}—) at the isolated singular point z =0 is, then,
Z

1 1 1
......,+........_...2..+...;
z 3!

1
2! Z

and z =0 1s an essential singular point of that function.

2

The isolated singular point of is at z=-1. Since the principal part at z=-1

1+z
involves powers of z+1, we begin by observing that

= +1) =2z-1=(z+ 1> =2(z+ 1) +1.

This enables us to write

2 2 -
z (z+1D)" =2(z+ 1D +1 =2+ 1) =2+ 1 |
1+z z+1 z+1
Since the principal part is -----1--i-, the point z =1 is a (simple) pole.
Z+
The point z =0 is the isolated singular point of EEE, and we can write
Z
. 3 5 2 4
sinz _1f 2 = _ . =1-2_4% _.. (0 <lzl< o),
zZ Z 3! 3! 3! 5!

The principal part here is evidently 0, and so z =0 is a removable singular point of the

function St
Z
The 1solated singular point of 02 is z=0. Since
Z
2 4 3
cosz 1 PRI SN P SN SN SN (0 <lzl< o),
Z Z 21 4! z 2! 4!
. .1 : . . COSZ
the principal part is —. This means that z =0 is a (simple) pole of .
Z Z
1 ~1

at 1ts

= , we find that the principal part of —
2-27 (z-2) PHICIPE PR 08 2y

1solated singular point z =2 is simply the function itself, That point is evidently a pole
(of order 3).

Upon writing
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2. (a) The singular pointis z=0. Since

_ 2 4 6 3
1 cashzm_}___ 1__(1+_;___+z g +) _ 1*1 Z Z

2 2] 21 41 6! )| 21z 41 6!
1 1
when O <lzl< oo, we have m=1and B = —-—i-;ﬂ--—é-.

(b) Here the singular point is also z=0. Since

Z z* 2t 31 41 5l
2 1 221 21 20 2
2 212 31 7 41 §1°

1-exp(22) 1 2z 277 2’7 2%t 27
; m—-—[l-—(1+———+ + + + dee

il
L

3
when O <lzl< oo, we have m=3 and B= --—257 = -—--g-.
: : exp(2z) . :
(¢) The singular point of 1) is z = 1. The Taylor series
z e
~ _ 200 1)\2 30w 133 N
exp(zz) 262‘(2“1)32 — 32 1+ 2(2 I) + 2 (Z 1) + 2 (Z d 1) e (|Zl< m)
It 21 31
enables us to write the Laurent series
2 2 B
exp(Zzz) = ¢* 1 ; +-%-——1-—+2-+—2——(z-1)+~- (0 <lz ~ i< 00),
(z=1) (z-1)*" 1! z—1 2! 3t |
2 2 2
Thus m=2 and B=e -1-;:23 *
3. Since f1s analytic at z,, it has a Taylor series representation
f(@)= f(z,)+ J ﬁ(’) (z2—2z,)+ J 2("20)(2_. zﬂ)2 o (lz—z,I< R,).
Let g be defined by means of the equation
J(2)
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(a) Suppose that f(z,)# 0. Then

1 | 1(z
Z) = | f(Zy)+—=

ACY N MC N CN,
2= 1! 2!

(2= 25)+-- (0 <dz—2z,l<R)).

This shows that g has a simple pole at Zo» With residue f(z,).

(b) Suppose, on the other hand, that f(z,)=0. Then

L[ f(z) f7(2y)
= - + - 4 -
8(z) Z_Zi 7 ZT %) 51 (27 %) _
fi;zo) f (Z{})( — 7)) (0 <lz—z,J< Ry).
Since the principal part of g at z, is just 0, the point z =0 is a removable singular
point of g.
S. Write the function
8a’z”
f(z) = (22 + ag)hg (d > 0)
as
8 3 2
f@=—2E where g()=2%2

(z — ai) (z+ai)®

Since the only singularity of ¢(z) is at z =—ai, ¢(z) has a Taylor series representation

6(2) = d(ai) + "3”:"’5 ) (7 - ‘?5”2(“‘) (z—ai)* +- (12— ail < 2a)
about z = ai. Thus
f(2)= z --lai) O(ai) + d (az) (z—ai)+ ¢”(az) (z—ai)* +- } (0<lz~ail<2a).

Now straightforward differentiation reveals that

16a’iz —8a’z” 16a°(z" — 4aiz —a )

P'(z)= o) and ¢7(z)=- (1 ai)
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Consequently,
é(ai) = —a’i, ¢>’(af)=---§-, and  ¢”(ai) = —i.
This enables us to write
| [ 2. . i ") i .
Z)= ail——(z—at)——(z—at) + - O<lz—ail<2a).
f@)= | i -5 - aD =S (2= a4 (0 <lz~ail<2a)

The principal part of f at the point z = ai 1s, then,

il2  al2 a’i
Z—ai (z—-ai)2 (z-—-ai)“’"

SECTION 74
. 542 . . . : o(2)
1. (a) The function f(z) 1 has an isolated singular point at z = 1. Writing f(z) = 1
Z ™ 7 -
where ¢(z) =2z’ +2, and observing that ¢(z) is analytic and nonzero at z =1, we see

that z=1 is a pole of order m =1 and that the residue there is B= ¢(1) = 3.

(b) If we write

3 3
f(z)=(— < )m[ atd, —, where ¢>(z)=%—,

27+1 z—(-l)
2

1. . : : : ,
we see that z = D) 1s a singular point of f. Since ¢(z) is analytic and nonzero at that

point, f has a pole of order m = 3 there. The residue is

B 97=1/2) 3

Al AR

2! 16

(c) The function
exXpz exXpz

22+t (z-m)z+ mi)

has poles of order m =1 at the two points z =x7ai. The residue at z= 7i is

Buexpm'_ -1 _ i
' 2m 2mi 2;

and the one at z=—7m1 18

_exp(—mi) -l i

~27i — 27 27

B,
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1/4

2. (a) Write the function f(z)= z+1 (121> 0,0 <argz < 2m) as
Z

1 |
- ~logz
f(z)mf%lz, where ¢(z)=z""=e*  (lzI>0,0<argz <27).
<

The function ¢(z) is analytic throughout its domain of definition, indicated in the
figure below.

/“ Branch cut

X

Also,

1 tog(-1) i—{ln L+in)

o(—=1)=(~1)""* =4 = ¢ = ¢'™/* =cos-2+isin:1—“ # 0.

T n 141

V2

This shows that the function fhas a pole of order m =1 at z = -1, the residue there

being
B=¢(~1)= l\/%i
(b) Write the function f(z)= (ZI;“:_g 12)  as

From this, it is clear that f(z) has a pole of order m=2 at z=i. Straightforward
differentiation then reveals that
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(c) Write the function
1/2

f(z)= (z;+ 0 (1zI> 0,0 <argz < 27m)
as
¢(Z) ZHE
Z)=——= Wwhere ¢(z)= .
f= 0=
Since
¢' (Z) (Z+i)z~*”2 __42112
2z +i)
and
, 1 i - 1 i
iwlﬂ — "'*EM:-,.- , «1/2 — 4 TR
R R MR/ I
1/2 .
Z W 1=
Res————=¢'(i) = —=.
=i (22 +1)° ) 8+/2
3. (a) We wish to evaluate the integral
3
J' 32 +22 dz.
C(z—1)z"+9)

where C is the circle 1z — 21 =2, taken in the counterclockwise direction. That circle and
the singularities z =1, & 3i of the integrand are shown in the figure just below.

Observe that the point z =1, which is the only singularity inside C, is a simple pole of

the integrand and that
37° +2 32 +2 ] 1
Res ——— =— = -
=t (z—-1)(z"+9) 7+9 |, 2

According to the residue theorem, then,

f 32 +2 (1) .
> dz =2mi| — | = 7.
C(z—-1D(z"+9) 2
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(b) Let us redo part (a)when C is changed to be the positively oriented circle Izl = 4, shown
in the figure below.

In this case, all three singularities z=1, +3i of the integrand are interior to C. We
already know from part (a) that

It 1s, moreover, straightforward to show that

Res_ 32+2 _  32+2 _15+49i
=3 (z—1)(z2 +9) (z=-D(z+30i) ], _,, 12
and
3z° +2 322 +2 15— 49;
Res , = —
=3 (z—1)(2°+9)  (z2-1)(z~ 30) ).y 12

The residue theorem now tells us that
3 ‘ _ .
J‘ 3z +22 *dz=27ri(-—l-+15+491+15 491)m6m‘.
C(z—1)z"+9) 2 12 12
4. (a) Let C denote the positively oriented circle 1zl =2, and note that the integrand of the

integral IC pe ; - B has singularities at z =0 and z = —4. (See the figure below.)




(b)

To find the residue of the integrand at z =0, we recall the expansion

1 o L
T =24

and write

1

1

#

1

2(z+4) 47 ;14_& ] 4)

l «f z ”___ -
uzgiu=0(mz) “ugﬁ

(__1)n n—-3

4!1-!—1 z

Now the coefficient of — here occurs when 7 = 2, and we see that

Consequently,

I
Z
Res
[y =
7 (z+4)

|

1

=0 2(z+4) 64

( 1 ) i
27| = —,
64, 32
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(Izi<1)

(0 <lzi< 4).

Let us replace the path C in part {(a) by the positively oriented circle 1z + 2l = 3, centered
at —2 and with radius 3. It is shown below.

We already know from part (a) that

Res ——

1

=0 23(z+4) T 64

To find the residue at —4, we write

1

¢(2)

z+4) 7-(-4)

1

, Wwhere ¢(z)=-7.

<

This tells us that z=-—4 1s a simple pole of the integrand and that the residue there is
¢(—4)=-1/64. Consequently,

.

dz

T

2

1 1

64 o4

)=
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cosh mzdz

2
2(z°+1)
All three isolated singularities z =0,%i of the integrand are interior to C. The desired
residues are

5. Let us evaluate the integral IC , where C is the positively oriented circle lzl= 2.

coshzz cosh m]
Res—s——=— =L
z2={ Z(z + 1) Z + 1 2=0
COSh ﬂ,'z COSh ﬂv‘zﬁf 1
Re_S > — ) —
=i 22"+ z{z+1) Jdz=i 2
and
coshmz coshnz !
Re§————=—— )
I=—1 Z(z + 1) Z(Z o l) - 2= 2
Consequently,

j C"’Sl‘deZ = 2m‘(1+ L, 1)=4m‘,
C z(z"+1) 2 2

6. In each part of this problem, C denotes the positively oriented circle {zl= 3.

(a) 1t is straightforward to show that

. (3z+2) 1 ( 1) (3+22)°
f — "y h e —f IZ - .
1) 2(z=-1)(2z+5) then 2 / z) zZ(1—-2)X2+52z)

This function -%— f (-1-) has a simple pole at z=0, and
2" \Z

2
J. (3z+2) dz =2 Res[—-—l—z—f(l) :27&'(—9-)#97&’.
Cz(z—-1)(2z+5) =0 | 27"\ z 2

b

(b) Likewise,

... _ (=37 1 (_}_)_ z—3
1ff(z)--(1+z)(1+2z4), then zzf Z uﬂz(z+1)(z‘*+2)'

The function -—1-2- f (—-1-) has a simple pole at z =0, and we find here that
" \z

301 _
| ¢ U=32) dzxzniRes[izf(l)]:m( ;)m—-i’mf.

(1+ 21 +2z*) =0 | 2° "\
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(c) Finally,

The point z =0 1s a pole of order 2 of é—-— f (-}-) The residue is ¢’(0), where
2" \Z

ez

P(2) = 32
Since
.~ (1+27)e* —e*3z7°
¢ (Z) (1+ 23)2 4
the value of ¢°(0)is 1. So
3 1/z 3 |
ze P | AN S B NN
IC | +*z*3 dZ = 27 13303 -?{f(;)] = 2717!(1) = 271,
SECTION 76
1. (a) Write
CSCZ = -—-1--- = f_@_}., where p(z)=1 and g(z)=sinz.
sinz - g(2)

Since
p(0)=120, ¢(0)=sin0=0, and ¢’(0)=cosO=120,
z =0 must be a simple pole of cscz, with residue

pl0) 1 [

g0 1

(b} From Exercise 2, Sec. 67, we know that

1 1 S N
cscz=—+—z+ Al ST 0 <lzi< m).
z 3! [(3!)2 5! ( )
Since the coefficient of 1 here is 1, it follows that z =0 is a simple pole of cscz, the
L

residue being 1.
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2. (a) Write

z—sinhz  p(z)

— , where p(z)=z-sinhz and g(z)=z’sinhz.
z°sinhz  q(z)

Since
p(riy=mi#0, g(ni)=0, and q'(7mi)=n*=0,
it follows that
Re$z:§inhz _ p(Ei? _-;-_f.g.ﬁi_
=ni z°sinhz  q'(mwi) n° =«
(b) Write

exp(zt) _ _E_(E_)_, where p(z)=exp(zt) and ¢(z)=sinhz.

sinhz  q(2)

It is easy to see that

Reg SXPZ1) _ p(mi) _ Reg SXPD) _ p(=7)

= —exp(it) and = —eXxXp(—imt).
=ni ginhz  q'(7i) PUTH) =-mi sinhz  ¢'(~mi) P=iRE)
Evidently, then,
Res SXPED | po SXPED) _ o eXpUR) +exp(mimt) _ o oo
2= i smhz 2=~ i Slﬂhz 2
3. (a) Write
J (@)= ____p(z) , where p(z)=z and g(z)=cosz.
q(2)
Observe that
(4
q(-é-—-t—mr)m() (n=0,£1,12,...).

Also, for the stated values of n,

p(-—g + mr) = g +nn#0 and q’(-g- + mr) = --sin(—g- + rm) =(-1)"*" £0.
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So the function f(z) = *_ has poles of order m =1 at each of the points
COSZ

/{3

Z, m5+mr (n=0,x],%2,...).
The corresponding residues are
B__...__ {(Zn) — (___1)1'1+] zn
q'(z,)
(b) Write
_ p@) e _
tanhz = “(7, where p(z)=sinhz and g(z) = coshz.
g\ <

Both p and g are entire, and the zeros of g are (Sec. 34)

zm(-g-—+mr)i (n=0,+1,4+2,...)
In addition to the fact that q((-g- + mt) i) = (}, we see that
p((g— + rm')i) " sinh(—g-i + nm’) —icosnm = i(—1)" #0
and

q’[(—g— + nﬂ;)f) = sinh(-—g—i + nm’) =i{(-1)" #0.

So the points z = (-—;—- +mr)i (n=0,%1,12,...) are poles of order m =1 of tanhz, the

residue in each case being
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Let C be the positively oriented circle Izl= 2, shown just below.

(a) To evaluate the integral J:: tan zdz, we write the integrand as

(b)

tanz:-gg-z-)-, where p(z)=sinz and g(z)=cosz,

q(z)
and recall that the zeros of cosz are 7= -g— +nm (n=0,£1,12,...). Only two of those

zeros, namely z=xx/2, are interior to C, and they are the isolated singularities of
tan z interior to C. Observe that

Res tanz = ,1:1(71'/2) =~] and Restanz= ‘E:(-_n/z) = —
= q(mf2) kg m2)
Hence
jctanzdz=27ri(-—1--l)m-—47ri.
The problem here is to evaluate the integral . 4z . To do this, we write the
Csinh2z

integrand as

L -__~££-’-z-)-, where p(z)=1 and ¢(z)=sinh2z.

sinh2z  q(z)

Now sinh2z=0 when 2z=nmi(n=0,11,%2,...), or when

ni
7= 5 (n=0,%1,12,...).

Three of these zeros of sinh2z, namely 0 and + -7;-, are mnside C and are the isolated

singularities of the integrand that need to be considered here. It is straightforward to
show that

Res — : =L ©) = ! =
=0 sinh2z ¢q’(0) 2coshO

!
2?
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Res 1 __Hp(m'/Z) B 1 L 11
=ni2sinh2z ¢'(mi/2) 2cosh(mi) 2cosm 2
and
Res 1 p(=mij2) 1 . 1 1
==-m2sinh2z ¢q’(-mi/2) 2cosh(-m) 2cos(-m) 2
Thus

Within C,,, the function

has isolated singularities at

z2sinz

z=0 and z=*nm (n=12,...,N).

To find the residue at z =0, we recall the Laurent series for cscz that was found in
Exercise 2, Sec. 67, and write

1 1 1{1 1 [ 1 1],
=—CSCZ=—{—+—2+ 1274 p

Z’sinz 2 2z 317 [(3)? S J
__...._,_}5__,_}_._1..,_; 12_ 1 e (O <lzl< 7).
z 6z [(3)° 5!
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1

2%sinz

This tells us that

has a pole of order 3 at 7 =0 and that

Res 1 _ ]

=0 7%sinz 6

As for the points z=+nm (n=1,2,...,N), write

I _p@)
Z'sinz  g(z)

, where p(z)=1 and ¢(z) = z’sinz.
Since

p(iﬂﬂ) =1 (), q(inyz:) s O, and q’(inﬂ) = HZEZ cosnnm = (Ml)ﬂnszz # 0,

it follows that

l 1 (-D" _(=1)"
Res — no 2.2 PR
=tnn 7% ging (--1) nn (=)' nnm

S0, by the residue theorem,

dz 1" |
—dr =271 | -+ 2
ICH z7sin z [6 ; n’m’

Rewriting this equation in the form

2 (_1)n+l _-;?.- - _7_:_ dz

12 4idcw z%sing

and recalling from Exercise 8, Sec. 43, that the value of the integral here tends to zero as N
tends to infinity, we arrive at the desired summation formula:

6. The path C here is the positively oriented boundary of the rectangle with vertices at the
points 2 and +2 +i. The problem is to evaluate the integral

o=
c(Z* =1’ +3
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The isolated singularities of the integrand are the zeros of the polynomial
q(z)=(z* =1)* +3.

Setting this polynomial equal to zero and solving for z°, we find that any zero z of g(z) has

the property z> =1%+/3i. It is straightforward to find the two square roots of 14+/3i and

also the two square roots of 1—+/3i. These are the four zeros of g(z). Only two of those
ZEros,

: 3+1 _ i
2, = V2™ = and —Z7, =—+2e"° =

This polynomial ¢g(z) is, of course, the same g(z) as above; hence ¢g(z,) = 0. Note, too, that
p and g are analytic at z, and that p(z,)# 0. Finally, it is straightforward to show that

q(2)=4z (Z2 - 1) and hence that

q'(zy) = 42,z —1) = =246 +6+/2i 2 0.
We may conclude, then, that z, is a simple pole of the integrand, with residue

P(z) _ 1
q'(zo) 276 +6+/2i

Similar results are to be found at the singular point —Z,. To be specific, it is easy to see that

g’ (7)) =—q"(Z,) =—q"(z,) = 246 + 6+/2i 0,

the residue of the integrand at —Z, being
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p(—Z,) _ 1
q'(-7,) 26 +6+2i

Finally, by the residue theorem,

/1

dz , | 1
' =27 — e i
L (Z*-1*+3 (--246 +6v2i 246 +6\/§i) 2+/2

7. We are given that f(z)=1/[g(z)]’, where g is analytic at z,, q(z,) =0, and ¢’(z,)#0.
These conditions on g tell us that ¢ has a zero of order m=1 at z,. Hence
q(2) = (2 —2,)8(z), where g is a function that is analytic and nonzero at z,; and this enables
us to write

1
[g())

1@ = where 0(2) =

So fhas a pole of order 2 at 7z, and

’ 28’(2{})
R b - - . [ ]
z:zﬂsf(Z) ¢ (Zg) e )]3

But, since g(z) = (z—z,)g(z), we know that

g (2)=(z2—-2))8'(21)+g(z) and q”"(z)=(z2-2,)g"(2) +2g'(2).

Then, by setting z =z, in these last two equations, we find that

q'(zy)=8(z,) and g"(z,)=2g'(z,).

Consequently, our expression for the residue of fat z, can be put in the desired form:

R - 9G)
S O )P

8. (a) To find the residue of the function csc®z at z =0, we write

1
lg(D)]

csc’z = where ¢(z) = sinz.

Since g 1s entire, g(0) =0, and ¢’(0) =1# 0, the result in Exercise 7 tells us that

Rescsc’z = q’ (0)3 = (.
2=0 [g°(0)]
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(b) The residue of the function ! > at z =0 can be obtained by writing

(z+7)

l 1
(z+2?) [a@I"

where q(z)=z+7".

Inasmuch as g is entire, g(0)=0, and ¢’(0) = 1 # 0, we know from Exercise 7 that

Res 1 9 ) _

=0 (z+ zg)2 [q’(O)F
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Chapter 7

SECTION 79

1. To evaluate the integralj ;ix , we integrate the function f(z)= 21
X7 +1  t

closed contour shown below, where R > 1.

- around the simple

We see that
f dx dz
f 5 +j ; = 2B,
X+l Gz
where
| 1 1
B = Res —— =Res - 1 == e = —
=20+l = (z=i)(z+i) z+i| 2
Thus
T dx dz
j 2,1 T
X +1 rZ°+1

Now if z is a point on C,,

12> + H2 Nz ~1l= R* —-1;

and so
ki
j zdz ....'fR*- R >0 as R~ oo
[Cz 77 + 1 R -1 1.._m.]:..,,.
R2

Finally, then
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The integral J 2dx - can be evaluated using the function f(z)=—; 1 > and the same
(X7 +1) (z°+1)
simple closed contour as in Exercise 1. Here
T dx dz
_[ > 2+j —— = 2B,
S (X7 +1) G (z2°+1)
1 ,
where B =Res ———. Since
z=i (z +1)
| |
2 2 ¢(Z~u)2 * Whem ¢(Z) = R
(z°+1)° (z-1) (z+1)
we readily find that B=¢'(i) = -E:—;-, and so
i
jg dx = I dz
2 2T N4 2 2"
««-R(x +1) 2 YG(Z°+1)
If z is a point on C,, we know from Exercise 1 that
1272+ 1= R —1;
thus
x
3
j zdz =1 < fR == R >0 as R oo
CG(z"+1) (R" -1 i 1
R
The desired result is, then,
r dx r +  dx T
Jl 7,2 A OF J. R
S+ 2 ' (x*+1)° 4

We begin the evaluation of j :ii 1 by finding the zeros of the polynomial z* +1, which are
X

the fourth roots of —1, and noting that two of them are below the real axis. In fact, if we
consider the simple closed contour shown below, where R > 1, that contour encloses only
the two roots

and
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Now
t dx dz
...J;f“ +LH 7 = 2mi(B + By),
where
1 1
= Res- and B, =Res :
B =2 7 41 S 7t +1
The method of Theorem 2 in Sec. 76 tells us that z, and z, are simple poles of 41 l and
Z T+
that
1
Blzm 3.21_-_“& and BZS= 13*223-—-5&,
4z g, 4 4z, 7 4

since z; =—1and z; = —1. Furthermore,

1 171 i 1 i i
B B e — e —— s naava A oo e bbbl MM
3, 4(z,+zz) " ( ,_2+ r_2)+( ;--~2+ sz)] Wik

Hence
R
j dx mi_-" dz
me4+1 \[2— CRZ4+1
Since
I 4dz < fR -3 {) as R —» oo,
Gz’ +1| R -
we have
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x*dx

We wish to evaluate the integral I( DD We use the simple closed contour
X’ X

shown below, where R > 2.

2

We must find the residues of the function f(z)= < at its simple poles
/@) (2° + 1)(z2° +4) ple P
z=1 and z=2i. They are
) , .
Z 1
B =Res 2= _————
b s 1@ ‘___(z+a€)(:<:2+4)___'2:ﬁ_iE 6i
and
z° ) 1
B = Res f(z . =
=21 J(2)= (;52+l)(z:-t-211")“%&___"zii 3
Thus
g xdx 2dz
[——m——+] =27i(B, + B,),
LD +4) Ja( +1)(z +4)
or

e —

JP DT +4) 3 a1+ 4y

J-R x*dx 2 dz

Ifz is a point on C,, then
122+ 12Nz =11=R*~1 and 122 +4121z*-41= R* -4,

Consequently,

R(Zz+1)(zz+4)g(Rz—l)(Rz-fi)_[ _1_)( i) »0as R e
2 R2

T
J‘ 7° dz R’ R
c

and we may conclude that

I xtdx T T xtdx T
I 3 2 =, OI J 2 T3 =
TxT+D)(x*+4) 3 (x+D(x"+4) 6
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S. The integral j

xtdx

(x +9)(x* + 4)°

f(2)=

can be evaluated with the aid of the function

ZE

(2" +9)(Z* + 4)°

and the simple closed contour shown below, where R > 3.

We start by writing
R 2
f > ad dﬁ ey L_ < dz = =2mi(B, + B,),
2T +9)(x +4) e (2 +9)(2: +4)
where
2 2
B = Res and B, =Res
=3 (z° +9)(z* +4)° =20 (7% +9)(2 +4)
Now )
z° 3
Bl = oy D y =  *
(z+30)(z"+4) | _,, 50
To find B,, we write
2 2
" z 2 = ¢(Z) 7 % Where ¢(Z) = g) Z w32
P+ +4)Y (2 —21) (2" +9)z+2i)
Then
13
B, =¢'(2Ii)=
20 = 2000
This tells us that
T x° dx o J‘ 2° dz
2N +4)Y 100 o (2 +9)E+4)

Finally, since

we find that

=

J

nR’

x* dx

' (x° +9)(.x +4)

< >0 as R — oo,

J' 27 dz
G (z'+9)z* +4)*] (R*=9)R*-4)*

or | -
100 ) (x +9)(x +4)> 200
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In order to show that
V. j | xdx T

gt il

(2 + (2 +2x+2) "5

*

— )

we introduce the function

Z
(P + )" +2z+2)

f(z)=

and the simple closed contour shown below.
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Observe that the singularities of f(z) are at i, z,=-1+1i and their conjugates —i,

> O

Z, = —1~1i in the lower half plane. Also, if R>+/2, we see that
R
jf(x)d¥+jc f(z2)dz=2mi(B, + B)),
_R R
where
Z i 3
B. = Res Z)=Ew~— S SRR N
0 =% A L(zg—l-l)(z"*fo):lz% 10 10
and
z ) 1 1
B =Res = =
L /@ [(z+i)(zz+2z+2)_zzf 10 5
Evidently, then,
f x dx m____{r___j zdz
L HD+2x+2) 5 Y@+ +2z+2)
Since
zdz B zdz < R’
I 2 2 ”I 2 = | = 2 3
C(z® + 1) +22+2)| [P (@ +INz-20z2-%)| (R*—1)(R-+~2)

as R — oo, this means that

. xdx T
lim ; > = ——,
Roe d (X7 +1)(x" +2x+2) 3

This is the desired result.
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8. The problem here is to establish the integration formula I ;ix - 2T using the simple
X+ 1 3v/3
closed contour shown below, where R> 1.
¥
There is only one singularity of the function f(z)=— 1+ . namely z, = ¢, that is interior
7

to the closed contour when R>1. According to the residue theorem,

- + : + 3 =2miRes ,
z7+1 JYGhz7+1 G774 =2 7° +1

I dz dz dz 1
&

where the legs of the closed contour are as indicated in the figure. Since C, has parametric
representation z=r (0 <r < R),

and, since —C, can be represented by z = re*””> (0<r < R),

dz R IZJtHd e R d
j 3 j I e:zxfa . ""ezmj 31‘ :
G+l g +1 ! (re™’y +1 o +1
Furthermore,
Res : = lz i 73
2= 7 +1 3Z0 3e' "
Consequently,
R
dr 2mi dz
1 eIZJff:;
( )jr +1 3ei2m jC 7> +1
But
J :?Z < 31 7R >0 as R— oo
Gz +1f R -1 3

This gives us the desired result, with the variable of integration r instead of x:

) 311 o 3(e£2nf3 — pi4n/3 'e--iﬁzri3) 3(85251;3 _e~i23z3) - 3sin(27/ 3) - 3\/5*

T dr 2 i 2 i N i1 2
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9. Let m and n be integers, where 0 <m<n. The problem here is to derive the integration
formula

oo 2m
I '; dxz——rf-csc(zm-l—lﬂ}
X +1 2n 2n

(a) The zeros of the polynomial z°” +1 occur when z*” =—1. Since

(__1)“(2?:) — eXp, i(Zk + l)n'
2n

- el

(k=0,1,2,....2n—1),

it is clear that the zeros of z** +1 in the upper half plane are

¢, = exp[i-(gk;—vl)n (k=0,1,2,...,n-1)
n

g

and that there are none on the real axis.

(b) With the aid of Theorem 2 in Sec. 76, we find that

ZZZm C?m - 1
Res—; = "2 — -"————cf(“‘””)“ (k=0,12,....n-1)
=a 2" +1  2n¢)” 2n
Putting o= 2m + 1 7T, we can write
2n
cf“”“”)"” _ exp[i Rk+Dra2m-2n+1)
2n |
= exp 1(2}( +- 1)(2”’1 +- 1)75 eXp[“i(Zk + 1)”] — “e£(2k+1)a‘
3 2n .
Thus
zZm 1 ‘
Res = — g3k (k=0,1,2,...,n=1).

L=Cy Zbz +1 2n

In view of the identity (see Exercise 9, Sec. 8)

1__ n
sz“ < (z#1),
11—z



126

then,
n—1 Z2m . n—1 iZon — 0t
. y/4) l—e e
27 ) Res- = --me‘“E(e‘Z“ ) = —=e P
kOZ”C*Z "+ 1 { k=0 1 l—e e
T e'Fmthr o 210 o
n e%—e' n €%—e npnsina

R x2m ZZm 2m
j 5 ——dX+ | ———dz= 27&2Res -
_3}5 +1 CRZ +1 kﬂz“c:tz +1
or
R 2m 2m
X T L
J. 2n dx = - . “_" 2n dZ.
dexT +1 nsin G777 +1

Observe that if z is a point on C,,, then

1Z""1=R*™ and 12" +11> R* —1.

Consequently,

2m

| Z R*™ R™" RA(n—m)-t
dz| < 7R - = > U;
".CR ZZH +1 < R?n ___1 RMZH 1 1

and the desired integration formula follows.

10. The problem here is to evaluate the integral

'!;[(J:2 —a)} +1P°

where a 1s any real number. We do this by following the steps below.
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(a) Let us first tind the four zeros of the polynomial
g(2) =" -a) +1
Solving the equation g(z) =0 for z°, we obtain z* =a+i. Thus two of the zeros are

the square roots of a+ i, and the other two are the square roots of a—i. By Exercise 5,
Sec. 10, the two square roots of a +1i are the numbers

2y = \/W(\/A-i—aﬂ\/A a) and —z,,

AL AR

where A = \/az +1. Since (iz'.},)2 ng =a+1i=a-1, the two square roots of a—i, are
evidently

The four zeros of g(z) just obtained are located in the plane in the figure below, which
tells us that z, and —-Z, lie above the real axis and that the other two zeros lie below it.

(b) Let g(z) denote the polynomial in part (a); and define the function

1
f= [q())

which becomes the integrand in the integral to be evaluated when z = x. The method
developed in Exercise 7, Sec. 76, reveals that z, is a pole of order 2 of f. To be

specific, we note that g is entire and recall from part (a) that g(z,) = 0. Furthermore,
q'(z)=4z(z° —a) and 7z, =a+i, as pointed out above in part (a). Consequently,
q'(z,) =4z, (z§ -a) = 4iz, # 0. The exercise just mentioned, together with the relations
72 =a+i and 1+a’ = A?, also enables us to write the residue B of fat z,:

q°(z,) 12z§-—-4a_3z§-—-a Ha+i)—a a—-z —-z'(2a2+3)
[q'(zﬂ)]3 (4:‘29)3 16iz§ze 16i(a + z)zﬁ a—i 16A220 '

B =-

As for the point —Z,, we observe that

q'(-2)==q'(z) and ¢q"(-2)=4q"(2).
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Since q(—Z,) =0 and ¢’(-Z)) =—q(z,) = 4iZ, # 0, the point —Z, 18 also a pole of order
2 of f. Moreover, if B, denotes the residue there,

g 4% _ @) ___{ 4"(z) }____;E-
2 ? o 3 ? 3 4 3 I
la' (=2 [q'(z,)F  [[4'(z,)]

Thus
12' Imf-wa +i(2a’ +3) _’.
8A% | Z

hosss

B+B,=B-B =2iImB, =

.

(c) We now integrate f(z) around the simple closed path in the figure below, where
R>lzyl and C, denotes the semicircular portion of the path. The residue theorem tells

us that
S
Jfdx+ [ f(z)dz=27i(B, + B)
— N R
or
i dx T —a+i(2a* + 3)“ dz
I 2 T RTLL T "'I 2"
Rl(xT—ay +1° 4A Z, | ‘e [q(z)]
In order to show that
: dx
hm 5 — 0,

R dCr [q(2)]

we start with the observation that the polynomial g(z) can be factored into the form

q(2)=(z2-2 )2+ 2, )22 )z +Z).

Recall now that R> 1z,l. If z is a point on C,, so that 1zl= R, then

Iz + z,I2lizl—Iz,l = R~Iz,] and 1z £ Z12Hzl-1Z) 1 = R—Iz,l.
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This enables us to see that 1g(z)l = (R~Iz,])* when z is on C,. Thus

P 1

[T |~ (R-1z,1)°

for such points, and we arrive at the inequality

z
-
J‘ : 7 42| S dal 5= R,
alg@F | (R-z)) (1__ _lg.g)
R
which tells us that the value of this integral does, indeed, tend to 0 as R tends to oo.
Consequently,
" | A2 )
P.V. [ —; e S W el G N |
T Hx -a)y +1]7 44 Z, )

But the integrand here is even, and

_ . " "] _ A 3 s — -
1| —a+iQ2a +3)5m1m\5 dﬂa+3(2{z +3) JA+a z.w/A a |
Zg | JA+a+iNA-a «\/A+a*----n/A-»-«-av__I

o —

So, the desired result is

dx . r
[(x*—a)l +1F 824

Oty 3

(2a® +3WA+a+avA-a),

where A = \/az + 1.

SECTION 81
1. The problem here is to evaluate the integral f > cozsxeix —, where a>b>0. To do
T (xTHa ) x"+b7)
this, we introduce the function f(z)= 1 -, whose singularities ai and bi lie

(22 +a* )z + b))
inside the simple closed contour shown below, where R > a. The other singularities are, of
course, in the lower half plane.

Cr.
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According to the residue theorem,
R

e” dx '
+ | f(2)e“dz =27i(B, + B,),
L(x2+a2)(x2+b2) Cj
where
_ efz R ewa
B =Res[f(2)e"]=] - —— | = e
1 oy [f( ) ] li(z-i-ai)(zz +b2)_zzai Za(bz”az)i
and
B, =Res[f(2)e"] = eif- = e e’
2 b @ +a’Xz+bi)| . 2b(@ ~b*)i
That is,
R ix b ~-q
e” dx i1 e e :
= z)e“dz,
_L(x2+a2)(x2+b2) az-—bz( b a ) if( Je dz
or

R ~b ~4
cosxdx i1 e e -
= . e Re e“dz.
L(xz +a’* )P +b*)  a* - b ( b a ) {:,[f(z) ¢
Now, if z is a point on C,,

(IS M, where M, =

|
(R2 ___éz)(Rz _bz)

and le“l= e <1. Hence

TR
(Rz __az)(Rz _bz)

>0 as R~ oo,

ReLR f(2)e"dz < LR f(2)e dzl SMpnR =
So it follows that

o2 —-b -a
j 2 COZSJCC%;C N 2713 2 - - (a>b>0).
S xT+a’ ) xT+b) a —-b°\ b a
2. This problem is to evaluate the integral J‘cgs.f.:: dx, where a=20. The function
X

0

f(2)= 21 1 has the singularities *i; and so we may integrate around the simple closed
Z° +

contour shown below, where R> 1.
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We start with
R imx
e :
dx + 2Ye““dz = 2 miB,
.L - ! f(2)
where
e“ﬂ
B= Res 2)e™ = ..
[f( ) ] L+z“m 21
Hence
R eim:
dx = me™® — 2)e“dz,
_;L x*+1 (;.[ J@) ¢
or
COSax
dx=ne* —-Re 7)e'dz,
jx+1 Jﬂ)
Since
If(IS M, where M, = R21 3

we know that

|
ia : IR
Re jf(z)e ‘dy| < If(z)e“‘zdz <~
| 4 R -1
and so
_'. czsax dx = me ™
x“+1
That 1s,
[ de="e (a2 0).
x°+1 2
'To evaluate the integral I xsuf; dx, we first introduce the function
X
0
v
f(z)=

.z+3 (z—aXz—if

where z, =+/3i. The point z, lies above the x axis, and 7, lies below it. If we write

f(z)eEZZ — ¢(Z) Whﬂfﬁ ¢(Z) — Zexp(iQ,Z)
72— -7,
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we see that z, is a simple pole of the function f(z)e"* and that the corresponding residue is

B =¢(z)= l[gi ezli;iZﬁ) = ﬂ}{p(;}\@;) .

Now consider the simple closed contour shown in the figure below, where R > NES

i2z

around the closed contour, we have

Integrating f(2)e

i2x

R
X€ . i2z
I = +3dx:2mB, ----J.C‘Rf(z)e2 dz.
-R

Thus

R .
f xsinx
43

dx =1m(27iB) - Im | f(2)e™ dz.

~ R
Now, when z is a point on C,,

R

RZ

L f(DISM,, where M, = — 0 as R — oo

and so, by the theorem in Sec. 81,

lim J.C f(z)e**dz = 0.

R-yoo

Consequently, since

iIm j’cﬂ F(z)e™ dzl < ] jCR F(2)e'™ dz|,

we arrive at the result

=

I xsinx

2
Y x +3 5

1)

xsin x

dx = mexp(-2+/3), or J =3

dx = gexp(-&\@).
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0o

6. The integral to be evaluated is j

e

x° sinax

7 dx, where a>0. We define the function
x +4

3
f(z)= 4Z+ 2 ; and, by computing the fourth roots of —4, we find that the singularities
Z

zl w'\/iefxf4ﬂ1+f ﬂlld Z2 ﬁﬁef3xf4 mﬁefﬂf4efﬁfz x(l"l"i)im""l"l"i

both lie inside the simple closed contour shown below, where R>+/2. The other two
singularities lie below the real axis.

The residue theorem and the method of Theorem 2 in Sec. 76 for finding residues at simple

poles tell us that
R xs eiax _
| S—dx+ | fz)e*dz=27i(B,+B,),
HRx + 4 R
where
3 iaz 3 iaz, faz, ia(1+§) - fa
AN 1 € € € € €
B =Res———="—n= = e ==
=% 2" +4 4z 4 4 4
and
ZBeiaz zgeiazz eiaz:z eia(-1+i) ewaewia
BZ = Res T = = ==
Since

.. e re™Y
27i(B, + B,) = ntie “( > )mme “cosa,

we are now able to write

R 13 .
J‘.XTSIIIM

x'+4

dx = me “ cosa — ImJ’C f()e™dz.

-8
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Furthermore, if z is a point on C,, then

3
| f(I<M, where M, = R

R4

>0 as R oo

and this means that

Im jc f(2)e“dz| < jc f(2)e™dz]l— 0 as R —» oo,

according to limit (1), Sec. 74. Finally, then,

oo T
[ = dx = me™ cosa (a>0).
*ox'+4
T x'sinxdx
8. In order to evaluate the integral j ; > , we introduce here the function
(XTI (x" +9)
3
z * ] ] » » r
Z) = . Its singularities in the upper half plane are i and 3i, and we
f(2) D@ +9) g pper half p

consider the simple closed contour shown below, where R > 3.

Since
. ) ze” ] 1
Res| f(z)e" j=| — T e e
2= [f( ) ] (2 +iXz*+9) b 16e
and
3 iz i
- e 9
Res| f(2)e” |=| — —_— = ,
z=3i [f( ) ] l:(z:2 + 11Xz + 31) . 16¢’

the residue theorem tells us that

R 3 ix
x'e” dx ~ I 9
- + “dx = 2w ——+ ,
j (x> +1D)(x*+9) jcgf (2)e ( 16¢ 1663)

-~R

or
R

j x sin x dx 71'(9

(x> +1)(x*+9) 8e

> 1)--1m | f@etdz
-R R
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Now if z is a point on C,, then

| f()I< M, where M, = a as R — oo,

(R* =1)(R*-9)

So, in view of limit (1), Sec. 74,

Iz < iz 00 *
Im fCR f(z)edz| < L:R F(z)e“dz| — 0 as R — co;
and this means that
T x* sinx dx 7:( ) T x* sin xdx n (9 _1)
v (x*+D(x*+9) 8e A (x* + 1)(x +9) 166 e’ '
sin x dx : :
9. The Cauchy principal value of the integral J' can be found with the aid of the
X +4x+5
function f(z) = +£11 "y and the simple closed contour shown below, where R>+/5.
3
Using the quadratic formula to solve the equation z°+4z+5=0, we find that f has
singularities at the points z =—2+1 and 7, =—2—i. Thus f(2)= L -, where gz,
(2—z 02— 7))

is interior to the closed contour and Z, is below the real axis.

The residue theorem tells us that

¢ e%dx *
L X +4x4+5 ¥ Iﬁa J(z)edz =2miB,
where
B=Res e” = eizl” :
=ul(2=7)02-%Z)] (-7%)
and so
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or

R .
sin x dx T |
= ——sin2 -~ Im “dz.
Lx2+4x+5 e Jo, @z

Now, if z is a point on C,, then le®l=¢? <1 and

1
(R—Iz)(R-I1Z1) (R-+/5)*

If(OIS M, where M, =

Hence

Im L f(2)edz| <

— 0 as R — oo,

“dz| < MynR =

TR
(R—+/5)

and we may conclude that

* sinxdx T .
P.V. j 5 = ——Sin 2.
Y x"+4x+5 e

10. To find the Cauchy principal value of the improper integral I (x+1)cosx dx, we shall use
x*+4x+5
: +1 +1
the function f(z)= < = < , where z;, =—-2+i, and Z,=-~2-1, and

2 +4z+5 (z=-z0z-%)
the same simple closed contour as in Exercise 9. In this case,

(x+1)e dx e .
jx +4x+5 Lﬁf(z)e dz =27B,
where
BmReS" (z+De® | (z+De™ _ _(= 1+z)e"2’*
=a | (2-2)z-%)] (2-7) 2ei
Thus
(x+1)cosx . :
dx = Re(2miB) — “,
Ix +4x+5 #(2mb) Lﬁf(z)e
or

]ﬁ (x+1)cosx

}r .
= —{(SIn2 —cos2) — “dz.
-R X +4x+5 e ( ) -,.Cn J(z)e"dz

Finally, we observe that if z is a point on C,, then

R+1 _ R+1

SIS M where Mo = Rz (R-5)

— 0 as R — oo,
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The theorem in Sec. 81 then tells us that

Rejc f(2)e"dz| < L f(z)e"dz|— 0 as R —> oo,

and so

(x+Dcosx dx = ir—(sinZ — COS2).

P.V.| —
* x +4x+5 e

12. (a) Since the function f(z)=exp(iz®) is entire, the Cauchy-Goursat theorem tells us that its
integral around the positively oriented boundary of the sector 0<r<R,0<0<rn/4
has value zero. The closed path is shown below.

A parametric representation of the horizontal line segment from the origin to the point
Ris z=x (0£x < R), and a representation for the segment from the origin to the point

Re™* is 7 =re™* (0<r<R). Thus

Cr

R R

, 2 . 3 . .2
J.e"‘ dx+1 € dz-—-e“’m‘[e "dr =0,
0 0

Or

X KX

. 2 s _ 2 . 2
Ie“ dxme"”“je "dr—1 e" dz.
0 0 Cr

By equating real parts and then imaginary parts on each side of this last equation, we
see that

R
_fc‘.:()s():2 Ydx = " dr-Re _[C e dz
0

1 T
— | ¢

72! R
and

.2 . 2
dr-Im| €° dz.

1 R

J‘sin(xz)dx =
0
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(b) A parametric representation for the arc C, is z = Re® (00 < m/4). Hence

ni4 ni4
. 2 iR2I26 .. . pla 12 0 i0
I e“ dr = Je °" Rie'°df = iR Ie RTsin26,iR" c0s20,00 19
Cr 0 0

iR* c0526| _ 1 and le”|=1, it follows that

Since Ie

x/4

< R je——ﬁzsin29d9'
O

« 2
J. e* dz
Cr

Then, by making the substitution ¢ =280 in this last integral and referring to the form
(2), Sec. 81, of Jordan's inequality, we find that
R R n =«

.2 2
e” dzlﬁ.w e " "y < —. =— =3 as R — oo
L«R 2 ! P52 IR T 4R

(¢) In view of the result in part (b) and the integration formula

Ie"xzdx m{g,

it follows from the last two equations in part {(a) that

L=

J‘cx;as(xz)c:bc:----1~-~\/E and J'sin(xz)dxm 1\/5
. 2\V2 A 2¥2

SECTION 34

1. 'The main problem here is to derive the integration formula

==

j cos(ax) — cos(bx)

2

dx =Z(b-a) (@20,b20),
X 2

0

using the indented contour shown below.




Applying the Cauchy-Goursat theorem to the function

iz ibz
e —e
f(@) = ———,

<

we have
J, f@de+ |, f@)de+ [ f)de+ |, flz)de=

Or

J, f@dz+ [, fyde==[ f)de-[ frde.

Since L, and —L, have parametric representations
L:z=re’=r(p<r<R) and -L,:z=re"=—r(p<r<R),

we can see that

R iur ib -Iflr

Jf@de+ | f@de=] f@de=] | fyde=[—5" dr+f < ar

S

) dr =7 ,[ cos(ar) — . cos(br) dr.
r

p

J.(eiar + ewzar) ___ (e:'br + eﬂbr
r

Thus

ZR cos(ar) — cos(br) Jr = 7 J
J 7 r—“jcp f(z)dz - ch J(z)dz.
P

r

In order to find the limit of the first integral on the right here as p — 0, we write

. . y) . 3 ‘ , 2 ' 3 ]
f(z)m“*}g {4tz Gae) | Qaz) | )[4 02 02 Wo2)
z 2 3! 1t 2! 3! |

_ita=b)

Z
From this we see that z =0 is a simple pole of f(z), with residue B, =i(a—b). Thus

(0 <lzl < o),

lim | f(z)dz =~Byni =~i(a—b)mti = m(a—b).

p—0 4C

139
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2,

As for the limit of the value of the second integral as R — oo, we note that if z is a point on
C,, then

[~ TR

eI He™l e +e™ 1+1 2
) R R

f@)< Ve A -7

Consequently,

2 2n
& s T e Oy
J.Cgf(z)dzl_ 3 7R = -0 as R—> oo,

It is now clear that letting p — 0 and R — oo yields

dr = (b~ a).

p

27 cos(ar) —~ cos(br)

r

This is the desired integration formula, with the variable of integration r instead of x.
Observe that when a =0 and b =2, that result becomes

Jv ] — cai(Zx) dy=1.
) X
But cos(2x)=1-2sin’ x, and we arrive at
oG, 2
J'sm2 X
N X 2
Let us derive the integration formula
| ——dx = (o (-1<a<3),
(X7 +1) 4cos(ar/2)
where x° =exp(alnx) when x> 0. We shall integrate the function
val exp(alogz) ( T 3%)
Z)=— - = - — 1ZI> 0, - —<argz < — |,
A (Z°+1)°* (22 +1) g SHetsT

whose branch cut is the origin and the negative imaginary axis, around the simple closed
path shown below.
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Branch cut

By Cauchy's restdue theorem,

=1

IL1 f(Z}dZ + ICR f(Z)dZ +J.L2 f(dz+ j.Cp f{gydz= Z?FiRetSf(Z).
That 1s,

J, f@de+ | f@)de=2miResf(0)- [, f)de- |, f2)de.

Since

L:z=re®=r(p<r<R) and -L,:z=re" =—r(p<r<R),

the left-hand side of this last equation can be written

R a(lnr-i—;{l) Rea(inr+fr:) *
J.Ll f(z)dz_‘[_{'z f(Z)d ‘[ ’ (r2 +1)2 € dr
R 4:3 B ra
dr + ™" dr = (1+€"" dr.
jr v ;[(r2+1) r=(ire )j(?‘ AT
Also,
Res f@)=4°) where §(2)=-
FET (Z-«]—;)

the point z =i being a pole of order 2 of the function f(z). Stralghtforward differentiation
reveals that

: 7
- al(z+i)—2z
$i(z) - e(fx l)togz[ (Z ) . ,

(z+1)

il
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and from this it follows that

ReSf(Z) = —j um!ﬁ(l ;a).

We now have

iarn _ 71‘(1--&) fan
(1+e )j [ dr="g " - Jo f@dz= | fl2)dz

Once we show that

ilﬂl}g Icp f(2)dz=0 and }322 J-CR f()dz =

we arrive at the desired result:

‘T _n(l-a) gt .e""‘""‘” r(l-a) 2 ” (1-a)n
) (r +1) 2 N4 gw T g ey gan 4cos(am/2)

The first of the above limits is shown by writing

pa Epaﬂ
d e
Jg s A-pF 7 U=py

and noting that the last term tends to 0 as p — 0 since a+1>0. As for the second limit,

] |
Rﬂ n.Rr,H-l Td T R?’_a
z)dz| < R = S = —5;
J‘Ckf( ) | (R2—1)2 (Rz_l)z ......L 1 2
R\ g
and the last term here tends to 0 as R — oo since 3—a > 0.
3. The problem here is to derive the integration formulas
2 €
J‘V“lnx =2 and IQ:J‘ i}/’; dx = -2
X7 +1 6 X +1 V3
by integrating the function
173 (1/3)logz
1 #41 3n
f(z)""_--“"zz2 j_)?z“ ¢ z2+1c3gz (lzl>0,-£<argz<--



around the contour shown in Exercise 2. As was the case in that exercise,

J f@dz+ | f)dz=2miResf@)- | fyde-[ f2)de

wa

Since

¢(Z) e(HS)iogz ]ng

f(2)=——= where ¢(2)= —,
1 241

the point z =1 1s a simple pole of f(z), with residue

Res f(z) = ¢(i) = *e‘“’ﬁ

L=
The parametric representations

L:z=reé’=r(p<r<R) and —-L;:z=re"=—r(p<r<R)
can be used to write

R
dr and j f(z)dz = e”"?’jvm’:‘f \r
r

P

LI f(2)dz = f{ﬁnr

pr+

Thus

;V_lnr i3 ;V_lnr+m;V_ ;’r2
o J

r+1 r’+1 2

By equating real parts on each side of this equation, we have

Arinr

n.2

jwlﬂrdr+ cos(m/ 3)_[

“Refc f (Z)dz“ReL f(2)dz;

and equating imaginary parts yields

2
31n(E/3)IV_1nrdr+ ncr.)s(n/fi)j ;V_ %ces(n/é)
~Im L f(dz=Im[ f(2)dz.

3 1 1 V3

— g™ — -[cp f(z)dz -ICR f(2)dz.

ldr ?rsm(zr/3)f ;V_ ----—-2--~sin(7r/6)
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Now sin(n/3)ﬁ~§—, cos(n/B)r-—z—, 3111(71'/6):-5, ces(ﬂlé)m——i—-— and it is routine to

show that
lim | f(z)dz=0 and lim L f(z)dz=0.

p—20 4 R—3o0



Thus

J‘V—Inr ﬂ:\/gf Vr p _hn'z
27 r’+1 2 ort+1 4’
e 2
\/_J'V_lnr 7rJ‘ 2r drﬁnﬁ
29 7% 41 4
That i1s,
2
E-Il zr\/glzm_f_,
2 2 4
2
ﬂiﬁfgz”ﬁ.
2 2 4

Solving these simultaneous equations for I, and I,, we arrive at the desired integration
formulas. -

L.et us use the function

(log z)° ( r 37:)
= 121> 0, - — < argz < —
1) z2° +1 ¢ 2 &< 2

and the contour in Exercise 2 to show that

L=+

f (Inx)* n j Inx

- dx = - and > dx =0,
X7 +1 3 X +1

Integrating f(z) around the closed path shown in Exercise 2, we have
J f@dz+ [ fde=2miRes f)~ [ flydz~ [, flo)dz

Since

f(z)--—‘?i—-’: where @(z)= 1082

- [ 741

the point z =1 is a simple pole of f(z) and the residue is

logi Inl+in/2)? T’
Res f(z) = ¢'(i)‘“( 2i). = : ) =——,
g 21 21 8i

Also, the parametric representations

L,:zmremmr(psrﬂR) and —L:z=re"=-r(p<r<R)



enable us to write

J- f(Z)dZ J.(ln r) -dr and J f(Z)dZ J(lnr+lﬂ'} dr.
Since
I f(z)dz+j f(2)dz = 2] {(nr) dr-n' j +2m‘f Inr dr
re+1 g s
then,

jﬂm‘) dr-n j 2 [ g = B[ e[, e

r’+1 T + 1

Equating real parts on each side of this equation, we have

j(“”’) dr - zrjr — -----Rej f(2)dz=Re [ f()dz;

r’+1

and equating imaginary parts yields

27!! Inr drr-ImL f(z)dz-—lmjc f(2)dz.

It is straightforward to shew that

lim [ f(z)dz=0 and lim | f(z)dz=

p-—0 JC R0
Hence
I(Inr) Jr — EI 2r:h"
ro+1 re+
and
2 j Iny dr=0.
r’+1

Finally, inasmuch as (see Exercise 1, Sec. 79),

iy

P+l 2
we arrive at the desired integration formulas.

»

Tdr T
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x

5. Here we evaluate the integral
(x+a)x+b)

dx, where a>b>0. We consider the

o S, §

function

21;3 exp(«l 10g Z)
f(2)= = 3
(z+a)z+b) (z+a)z+Db)

(z1>0,0< argz < 27m)

and the simple closed contour shown below, which is similar to the one used in Sec. 77. The
numbers p and R are small and large enough, respectively, so that the points z =—a and
z = —b are between the circles.

Branch cut

X

A parametric representation for the upper edge of the branch cut from p to R is z=re"
(p £ r £ R), and so the value of the integral of f along that edge is

R exp[%(lnr+i0)m R
;[ (r+a)r+b) j(r+a)(r+b)

A representation for the lower edge from p tois R is z=re'”" (p <r < R). Hence the
value of the integral of f along that edge from R to p is

, -
R exp[—é—(lnr +i27) R Ay

| “dr =—¢*" [ dr.
’ (r+a)(r+b) p(r+a)(r+b)

According to the residue theorem, then,

f Vr
a (r+a)(r+b)

Yo
(r+a)r+b)

R
f f(2)dz— e | dr+ | f(2)dz=2mi(B, + B,),
P C
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where
ex {}*Ie (-—-a)“ ). #}*(lna + iﬂ:)”
B} - Rﬁsf(Z) = p?, g —— = p"'3 - e, 2 emm VE
z=-a —a+b a—b a—b
and
exp[ 1 log( b)- exp[ 1 (Inb+ ifc)-
Py - - inl3
B, = Res f(z) = —L2 o L3 | e Xb
z==b -b+a ~b+a a—b
Consequently,

(1 _ eszm:z)f r Jr = 2mie™*(Na -/b)

= If (2)dz - ff(z)dz..
C, Cr

p(r+a)(r+b) a—b
Now
| ip 273/pp
dz1< 270 = -3 O -y (}
| f e = oy 0P

and

| /R 2R 1

fcﬂf(z)dz s(R“a)(R;b)zﬂR_(Rwa)(Rmb) ’\/F >0 as R—> oo,
Hence

T 3\/'; y 27316‘?”3(3\[- 3\/_) ewm!i’: Zm(;{[— V_)
’ (r+a)(r+b) (1 EIEKH)(a b) e*—m/?’ (em!?r ‘-*1313)(& b)

n(Va—~A/b) n(Na -A/b) ZEV—;V_‘

m e oknbdt bl el m ‘alniakie il

_._311"1(?:/3)(& b) _\/:( _b) V3 a-b

Replacing the variable of integration r here by x, we have the desued result:

Vx dx;?__@.%"w
(x+a)x+b) V3 a-b

(a>b>0).

& Sy §
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6.

{(a) Let us first use the branch

1
_ exp| ——logz
EC L
27 +1 2 +1
and the indented path shown below to evaluate the improper integral
]—" dx
» N x(xP+1)
y

~R PO | P R «x
Branch cut

Cauchy's residue theorem tells us that
| f@de+ [ f@ydz+ [ fydz+ Jo, f(2)de=2miRes f(2),

or

J, f@dz+ [, f)d=2ziRes f(a)= [ f2)dz=[ f2)dz.

Since
Liz=re®=r(p<r<R) and —~L:z=re"=—r(p<r<R),

we may write

ot dr £ dr B N dr
J.’ﬂ /() +I% /(D)= ;!,- Vr(r® +1) I;[ Nr(r +1) (- l);[ Vr(rt+1)

Thus

R
. dr :
(1-i) J Troaan " 2HResf()- | f@dz- [ f)de

RY1

3

|zi> 0,--——-i-<argz<—-——-
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Now the point z =i 1s evidently a simple pole of f(z), with residue

1. ] ] 114 1
[ w27 exp| — = logi CXp| —5| i+ o

rd * 2 | L 2 2 I—I
Res = | = = . m = e = | e |
z=i /@) t__z-l-i .* 2i 21 21 22( J

Furthermore,

2

TP
(2)dz| € —= = >0 as p— 0

and

Ic f(2)dz| < ;:;/ﬁl = - 1
a (R -1 @(R"E

) »() as R— oo,

Finally, then, we have
)
’\/i 3

~f dr
(1”);[ Vr(r’ +1)

which is the same as

[ S—
D x(x*+1) N2
| T dx
b} To evaluate the improper integral , we now use the branch
(b) prop er ‘!}. \/;(xz +1)

|
172 eXp(---El(}g Z)

Z
= == 1zI>0,0<argz <27
f(z) 211 41 (12 g )

and the simple closed contour shown in the figure below, which is similar to Fig. 103 in
Sec. 84. We stipulate that p <1 and R> 1, so that the singularities z =% are between

C, and G,;.

Branch cut

X
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Since a parametric representation for the upper edge of the branch cut from p to R is
z=re" (p < r<R), the value of the integral of f along that edge is

r €XP ----1-~(lnr+ iO)] R

2 1
_[ — dr=j ~——dr.
i r-+1 pﬁ(r +1)

A representation for the lower edge from p tois R is (p £r < R), and so the value of
the integral of f along that edge from R to p is

XDl ——{Inr+1.2m
p ;(l 2r)

R | : R 1 R 1
L. 2dr=—e™"" dr = dr.
!: r*+1 e "[\/?(r2+1) ' !x/?(r%-l) '

Hence, by the residue theorem,

R 1 R 1 |
;’;'\/;(rﬁ 4 1) dr+ é‘;f(z)dz.*—;[,\[;(rZ + 1) dr + C{f(Z)dz = 27(71(31 + BZ)!

where
[ 1. ] 1 7\l
z-—m' exp “"’2'"1‘38‘ CXp uz(lnl+z-2~) il
B =Res f(z)= = — — = — — =
=K@ L-f—i 1. 2i 2i 2i
and
1 . 1 3
712 GXP[‘EIOE(“I)} exp[“a(lnl-f-l“{)] o314
B :"—-RES g p— v —— — — e SER—— —— e
2 Z =} f() I:z—ijlz::_i --21 —21 21

That 1s,

N

2 dr = n(e ™ — e Py — z)dz - z)dz.

| = - [ e [ 10
Since

| 2
I f(2)dz|< 27{92 = E\/ﬁ_) >0 as p— 0
1S Jp(l=p*) 1-p

and

[ fode|s ==X 0 a5 Ry e,

|7Ch VR(R* -1) @(R_g_)

R
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we now find that

e 1 6-55!4 _e—ESf;M e-i?zM +e-—-53m4em
J\f_z dr=1m e = I
s, Vr(rT +1) 2 2
3 }refft!‘l +e—~£§ri4 B ECOS(E) T
2 4) 2
When x, instead of r, is used as the variable of integration here, we have the desired
result;
[ —
I x(+1) N2
SECTION 85
1. Write
Tode f 1 dz .[ dz
P - c -l . = c ) .\ ’
2 3+4sind 5+4(z 23) 17 27° +5iz-2
i

where C is the positively oriented unit circle 1zl=1. The quadratic formula tells us that the
singular points of the integrand on the far right here are z=—i/2 and z=~2i. The point
z=—1i/2 is a simple pole interior to C; and the point z = —2i 1s exterior to C. Thus

2x - -
| a0 _.—..mRes{ L ‘..—..m[ L m27ci(--1-;)=2—{r—.
1 3+4sind e==il2{ 27° +5i7 — 2 ] 4z +5i 1, i 3i 3

2. To evaluate the definite integral in question, write

¢ deé B 1 dz 4izdz
_:Ll-l-sin29 j‘f -[634-632+1’

i~y iz
1-.{ , )
21

where C is the positively oriented unit circle 1zi=1. This circle i1s shown below.




152

Solving the equation (z*)* —6(z*)+1=0 for z* with the aid of the quadratic formula, we
find that the zeros of the polynomial z* —6z* +1 are the numbers 7z such that 7% =3+ 2+/2.

Those zeros are, then, z = +\/ 3+24/2 and z= i\/ 3—-24/2. The first two of these zeros are
exterior to the circle, and the second two are inside of it. So the singularities of the
integrand in our contour integral are

4 = \/3_" 2'\/5 and Zg = =2

indicated in the figure. This means that

T de
—=27i(B, + B,),
Ll+sin29 B+ 5)
where
417 4iz ] { ]
B, = Res e = =
' ea =62 +1 4712z -3 (3-2v2)-3 23
and
B RGS 413 ";4331L o 5 ! == “"—i—n
==z 7t — 62° +1 ---4:{; +12z, z7 -3 22
Since

: A i 21 2
Zm(B;+Bz)m2m( 72) 55 =+/2n7,

N

the desired result is

[—40__\an.

J 1+sin’ @

7. Let C be the positively oriented unit circle Izl=1. In view of the binomial formula (Sec. 3)

n 7 7! 2n 20
J‘sinz” 0do = 1 J.sz"1 0do = .....j t:lz s j (2=27) dz
2 iz 2 ( 1)'i Z

1 ~ T

- 1 & (2n in—k k_—1
22n+1 (__I)nijC;( k] (WZ ) 4 dZ

1 no(2n o
2y k=0 (k](ﬂl)kfczg Tz,
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Now each of these last integrals has value zero except when & = n:

ch z'dz =2mi.
Consequently,
f =12 7ti 1
ISinzn 040 = 2u+11 n’.(2ﬂ)¢( 1:.? 2 — gfﬂ).z n
o 27 (=) (n!) 27" (n)
SECTION 87

5. We are given a function f that is analytic inside and on a positively oriented simple closed
contour C, and we assume that f has no zeros on C. Also, fhas n zeros z, (k=L12,...,n)

inside C, where each z, is of multiplicity m,. (See the figure below.)

The object here is to show that

To do this, we consider the kth zero and start with the fact that

f(@)=(z—2,)" g(2),

where g(z) is analytic and nonzero at z,. From this, it is straightforward to show that

2f(2) _ mz  28(2) _m(z-z)+mz 8@ _ ., . 28'(z) | Mz

f@ z-z 8@ z-2z, gz) ¢ g -z
Since the term zg((:;) here has a Taylor series representation at z,, it follows that zjj: ((?
g\Z Z
has a simple pole at z, and that
Res 2/ (2) =m.Z,
=u  f(2)

An application of the residue theorem now yields the desired result.
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6.

(a) To determine the number of zeros of the polynomial z® —5z* + z* — 27 inside the circle
|zl= 1, we write

f(z)=-5z" and gq)=2"+72"-2z.
We then observe that when z is on the circle,
lf(=5 and g1zl +1zP + 21zl = 4.

Since 1f(z)l>1g(z)l on the circle and since f(z) has 4 zeros, counting multiplicities,
inside it, the theorem in Sec. 87 tells us that the sum

f@O+g)=2-5z" +72° =22
also has four zeros, counting multiplicities, inside the circle.
(b) Let us write the polynomial 2z* —2z° +22% ~27 +9 as the sum f(z)+ g(z), where
f(2)=9 and g(z)=2z'-27"+27" -2z,
Observe that when z is on the circle Izl=1,
If()=9 and lg(z) <2izl* +21zP + 21z + 2171 = 8.

Since 1f()l>1g(z)l on the circle and since f(z) has no zeros inside it, the sum
f(D)+8(2)=27" -22 +22° =2z +9 has no zeros there either.

Let C denote the circle Izl= 2.

(a) The polynomial z* +3z” +6 can be written as the sum of the polynomials

f(z)m?,z?’ and g(z)=z4+6.
On C,
If() =31z =24 and Ig()i=I1z*+6I<izl*+6=22.

Since |f(z)l>1g(z)l on C and f(2) has 3 zeros, counting multiplicities, inside C, it
follows that the original polynomial has 3 zeros, counting multiplicities, inside C.

(b) The polynomial z* -2z’ + 9z + z—1 can be written as the sum of the polynomials

f(z2)=9z" and g(2)=z'-27%+z~-1.
On C,

f(D=91z2=36 and lg(z)l=Iz* -~ 27> +z 1<z + 2z +lz+1 = 35.
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Since | f(2)l>lg(z)l on C and f(z) has 2 zeros, counting multiplicities, inside C, it
follows that the original polynomial has 2 zeros, counting multiplicities, inside C.

(¢) The polynomial z° +3z’ +z° +1 can be written as the sum of the polynomials

f()=2" and g(z)=32"+z7"+1.
On C,

| f(l=1zP=32 and lg(l=132"+2> + U3l + 1z +1=29.

Since 1f()I>1g(z)l on C and f(z) has 5 zeros, counting multiplicities, inside C, 1t
follows that the original polynomial has 5 zeros, counting multiplicities, inside C.

SECTION 89

1. The singularities of the function

25
F(s) =
(s) a2

are the fourth roots of 4. They are readily found to be
s=~/2e*"? (k =0,1,2,3),
V2, V2i, -+2, and -+v2i.

See the figure below, where 7 >+/2 and R> V2 + 7.

or

The function




156

has simple poles at the points

suﬁ\[f, slm\/ii, s, =—+2, and .5‘3““-\/55;

and
3 3 3 st 3 3 5.t 3
s 2s°e 25 e 1
ER&S[&’F(S)]mE €8 — ﬁz _— “Zme‘”
A=t 5=5, neo =5 s —4 = 4s 0 2
i 1 . | 1 _,
=—e 4=V 4 —e V¥ 4V
2 2 2
e“@‘ + e““ﬁ' ehﬁ: + emh@
= -+
2 2
= cosh/2¢ + cos/2t.

Suppose now that s is a point on C,, and observe that

Isl=ly + Re®I<y+R=R+7y and lsl=ly+Re®I2ly-Rl=R-y>42.

It follows that
12571 = 21sP < 2(R+y)?
and
s == lsl* —412(R-7) -4>0.
Consequently,
3
LF(s)l < 2(R+4y) ~>( as R — oo,
(R—-7) -

This ensures that

f(t)=cosh N2t + cos+/2t.

2. The polynomials in the denominator of

25 -2
(s+ 1)(s* + 25 +5)

F{s)=
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have zeros at s =1 and s =-112i. Let us, then, write

 e"(25-2)
(s+1)(s=s5)s-5)

est F( S)

where s, =~1+2i. The points —1, s,, and 5, are evidently simple poles of " F(s) with the
following residues:

- b ]

3“1(25"’"2‘)__‘_ ~f
L (s s s =F)_

B =Res e""'F(s)] =

=]

Bz — RBS[QHF(S)] _ € (231 - 23 — (_1__ L)ewtei%,
§=5) (Si -+ 1)(.5‘1 - Sl) 2 2

Sit gy Sy — i —_ ' ,,
B, =Res|e"F(s)] = == --{ e =(3~+i)e”‘e"'*"-
5=3, (& +1)5 —s) [ (5, +D(s—5)

It is easy to see that

B +B,+B,=—¢"’ +(~1 : )e"’eizf + (l + é—-)e“’e‘m

i2t ~i2t i2¢ ~{2t
- <41 € € e +e —tf
=—¢' +e ‘(n. - e )ze '(sin2t + cos 2t — 1).

21 2

Since

Isl=ly + Re®ISy+R=R+7y and lsl=ly+Re®I2ly—Rl=R-7y>+/5,
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we find that

125 =21 < 2Usl +2 S 2(R+ }) +2,

ls+ 12 Usl-112(R~-y)—-1>0,
and

15 + 25+ Sl=ts — slls =51 2 (lsl-1s,)* 2 [(R—1)* =5 | >0
Thus

25— 21

| 2(R+y)+2w
Is + 1ils* + 25 + 5|

[(R-7)-1][(R-7) ~+5]

A

[F(s)l =

>0 as R— oo,

and we may conclude that

f(®)=e"'(sin2f +cos2t —-1).

4. The function

2
82"a

= +ay

(a>0)

has singularities at s = tai. So we consider the simple closed contour shown below, where
y>0and R>a+7.

Upon writing

2
S2“a

F(s)= 9(s) where O(s) = 5
(s + at)

(s — ai)®
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we see that ¢(s) is analytic and nonzero at s, = ai. Hence s, is a pole of order m =2 of
F(s). Furthermore, F(s)= F(5) at points where F(s) is analytic. Consequently, 5, 1s also

a pole of order 2 of F(s); and we know from expression (2), Sec. 82, that

Res[e” F(5)]+ Res [e"F(s)] = 2Re[e™ (b, + b,1)].

Sn‘:Sﬂ S=.§'ﬂ

where b, and b, are the coefficients in the principal part

b, b,
-+ w2
s—ai (s—ai)
of F(s) at ai. These coefficients are readily found with the aid of the first two terms in the
Taylor series for ¢(s) about s, = ai:

¢’ (ai)
1!

F(s)= e ¢(s)= " [fﬁ’(ﬂi) +

- (5= i)+

plai) _ ¢'@i)

0 <ls - ail< 2a).
(s—ai) s—ai ( )

It is straightforward to show that ¢(ai)=1/2 and ¢’(ai)=0, and we find that b, =0 and

b, =1/2. Hence

irwiy

Res [eS’F (s)] +Res [eS‘F (s)] =2 Re[e‘“’ @- t) = tcosat.

S=Z8g § 54

eyl

We can, then, conclude that
f({f)=tcosat (a>0),
provided that F(s) satisfies the desired boundedness condition. As for that condition, when
z i1s a point on C,,
1Zl=ly+ Re®I<y+R=R+7y and lz=ly+Re®I2ly—RI=R-7y>a;
and this means that
122 -1z +a® S(R+ 7)Y +a® and 122 +d’i2 P -a*12(R-y) —a* > 0.

Hence
(R+7) +a°

[(R-7) -a°}

| F(2) < -3 as R — oo,



160

6. We are given

F(s)= Smh(xs) (O<x <),
s* coshs
which has isolated singularities at the points
5, =0, s = En—DT,  and 5, = @n—bz, (n=12,..).
2 2
This function has the property F(s) = F(5), and so
f(t)=Res|e le"F(s)]+ Z{Res le"F(s)]+Rese “F(s)]}
§=5y o LES
To find the residue at s, = 0, we write
. 3 ! ] 3 2
s;nh(xs)mxj+(,_ts2) [ 3!+ - _ux+xs 6+ (O<Isl~<-—7-t-).
s coshs s(1+s /2!+--) S+5 124

Division of series then reveals that s, is a simple pole of F(s), with residue x; and,

according to expression (3), Sec. 89,

Res|e” F(s)| = Res F(s) = x.

$=8g § =%

As for the residues of F(s) at the singular points s, (n=1,2,...), we write

F(s)= -EE(-%— where  p(s)=sinh(xs) and g(s) = s’ coshs.
)
We note that
p(s. )=1isin (2n - )mx 20 and g(s,)=0;

furthermore, since

g’(s) = 2scoshs + s° sinh s,

we find that

132 12 2
q'(s,)= @n-1ym isin (2n— 1)71: i(zn by 7 sin(mr-—-ﬁ)
4 4 2
1\ 2
= i(zn 41) & (sinnncosgmcosnnsin ”) (2n 41) ~-(—-1"i # 0.
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In view of Theorem 2 in Sec. 76, then, s_is a simple pole of F(s), and

Res F(s) = P:r(s") = 42-* (1) = 1N (2n-—-—1)n':;5‘
5=5, qg(s,) n (2n-1) 2

Expression (4), Sec. 89, now gives us

e il mol) 4 (=D @n=Dmx_ [.Q2n-Dm’
Iiesns [e F(s)]+ Iie&_ns [e F(s)]-ZRe{ 2 -1y sin 5 exp[z }

_ 82' (—1) 2Sin(2n—-l)mcgs(2n-——l)n‘t*
 (2n-1) 2 2

Summing all of the above residues, we arrive at the final resulit:

8w D" ., @n-1)nx (2n- Dzt
H)=X+— sin ~— COos
) 7172,,2,,__,1'(211“1)2 mTT 2

The function
1

scosh(s

F(s)=

/24 ?
)

"2 does not lie along the negative real axis, has

(2n—1)*n*
4

where it is agreed that the branch cut of s

12

isolated singularities at s, = 0 and when cosh(s""“) =0, or at the points s, =

(n=12,...). The point s, is a simple pole of F(s), as is seen by writing

1 1 ]

scosh(s?) 1+ 1214 (") 141 4] 54577248 124+

and dividing this last denominator into 1. In fact, the residue is found to be 1; and

expression (3), Sec. 89, tells us that

Res[e”F(s)|=Res F(s)=1.

S=5q 5=5p

As for the other singularities, we write

F(s)=2 ES; where p(s)=1 and ¢(s) = scosh(s'"?).
q\s)
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Now

pls,)=120 and g(s ) =0;

also, since

g’(s) = 1 g sinh(s"*) + cosh(s"?),

it is straightforward to show that

q,(sn):__@n-;l)nsin( n--—-) (2n — 1)7:( Iy 20,

2 4

So each point s, is a simple pole of F(s), and

4 (-1y
Rﬁf“””%i; nén..).l‘

Consequently, according to expression (3), Sec. 89,

1\ 1\2 2 -1
Res[e“F(s)]meS”’ Res F(s) = 4 ) exp Gn-ly e (n=12,...).
5=5, =5, T 2n—1 4 1
Finally, then,

f(t)=Res|e “F(s)]-s-zRes[ “F(s)],

CEIN

or

___ _1\2 2
f(t)=1+ 2( 1) [ (2n i)’”

Here we are given the function

coth(ms /2) cosh(rs/2)
st +1 (s* + 1)sinh(zs /2)’

F(s)=

which has the property F(s)= F(5). We consider first the singularities at s =+i. Upon

writing

 6(s) ~ cosh(ms/2)
F(s) - where ¢(S)“(S+i)sinh(7rs/2)’
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we find that, since ¢(i) =0, the point i is a removable singularity of F(s) [see Exercise 3
(b), Sec. 72]; and the same is true of the point —i. At each of these points, it follows that the
residue of e”F(s) is 0. The other singularities occur when ns/2=nmi (n=0,%£1,12,...),

or at the points s=2ni (n=0,%t1,1£2,...). To find the residues, we write

F(s)=£-£i)- where p(S)"-—-cosh(fi) and q(s):(s2+1)sinh(£)
q(s) 2 y)

and note that
p(2ni) = cosh(nmi) =cos(nm)=(~1)" #0 and q(2ni)=0.

Furthermore, since

's) = (5% + 1) Eco h(—-@-)+2 ’nh(ﬂ),
g (s)=(s )2 .s > § 81 5

we have
2 am—
q'(2ni)=(~4n" + 1)§cosh(nm) =(—4n’ + 1)325cos(nn) = - ”(4”2 D1y zo.
Thus
ResF(s)=2m) 2 _ | (n=0,£1,%2,...).
s=2ni q'(2m) n 4n°* —1

Expressions (3) and (4) in Sec. 89 now tell us that

ReS[BﬂF(S)] =Res F(s) = %

5=0 5=}
and

Egg[esfp(s)]+S§3§f[eﬂF(S)] = 2 Re 352:::( 72r . 4n21“ 1)

4 ‘_ cos2nt
T 4n* -1

i

(n=1,2,...).

The desired function of ¢ is, then,

o0

4 2
£(5) = 2 2 cos22nt

ﬂ: ?T,ml‘flnz-l.
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9. The function

sinh(xs''*)

s* sinh(s

F(s) = (O<x<],

172
)

172

where 1t 1s agreed that the branch cut of s'° does not lie along the negative real axis, has

1/2

isolated singularities at s=0 and when sinh(s'*)=0, or at the points s=-n'n’

(n=12,...). The point s =0 is a pole of order 2 of F(s), as is seen by first writing

sinh(xs”?) _ xs'? +(xs'?)’ 131+ (xs"?)’ /5040 x4+2°5/6+ 2757 1120+
s”sinh(s"?) .92[:;”2 +(s"%Y 131+ (s"%)° 1 5! +] s“+5 16451120 +---

and dividing the series in the denominator into the series in the numerator. The result is

: 142
S;n,h(xs uz) =x-—}5 +-—1-'-(ch3 --,x)1-+-~ (0 <lsl< %)
s sinh{(s ") s° 6 )
In view of expression (1), Sec. 82, then,
Res [e“F(s)] == i(x3 - X)+ Xt = v-l—x(xz -~ 1)+ xt
s=0 6 6

As for the singularities s =—n’z* (n=1,2,...), we write

F(s)= f{% where  p(s) =sinh(xs"*) and g(s) = s” sinh(s"?).
g(s

Observe that p(-n°n°)#0 and g(-n’n’)=0. Also, since

q’(s) =2s sinh(s'?) + %Ssm cosh(s"?),

it is easy to see that g’(—n’z’) # 0. So the points s =—-n’n’ (n=1,2,...), are simple poles

of F(s), and

p(s) | 2si_nh(xs”2) 2 ‘(WI)""‘"

Res F(s)= = SIn NATX =1,2,...).
2 2 (5) [q’(s)”:_ngﬂz Lsmcosh(sm)_ ., T on (n=12..)

yE-nR s=—n“R

Thus, in view of expression (3), Sec. 89,

1y -
SS&;[&”F@)] = 733 ‘ ( ’11)3 —e T

‘sinnmx (n=12,...).
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Finally, since

f(1)=Res|e “F(s)]+z Res [e"F(s)],

S-—*“‘H ﬂ:

we arrive at the expression

n+l

f(t)m-é—-x(xz--l)+xt “"23"2 e " sinnmx.
=]

The function

1 1
F(s)=— —
() s’ ssinhs

has isolated singularities at the points

S =0 and s =nmi, 5, =—nmi (n=1,2,...).

Now
ssinhs*—"s(s+és3+ )“s +-é—s4+ (0 <lsi< o),
and division of this series into 1 reveals that
1 1 1 I
F(s)=——| 5 +=+ |=——+ 0 <lsi< 7).
(5) s’ (s2 6 ) 6 (O<ls )

This shows that F(s) has a removable singularity at s,. Evidently, then, ¢* F(s) must also

have a removable singularity there; and so

Res[e"F(s)]=

$=8y

To find the residue of F(s) at s =nmi(n=1,2,...), we write

F(s)= 4 ES; where p(s)=sinhs—s and g(s)=s’sinhs
q(s

and observe that
pna)=-nni#0, qnai)=0, and q'(nmi)=n"n’*-D"" 20.

Consequently, F(s) has a simple pole at s , and

Res F(s)=2UM) ___—nm D ;019 ),
5=3, qg(nmi) n°n(-1) nnr
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Since F(s)= F(5), the points 5, are also simple poles of F(s); and we may write

Res [e“F (S)] + Res [eS‘F (s)] = 2 Re[ o) ie"™ | =2Rel =D (icosnmt —sinnnt)
$=8, $=8p nit nit

il — -

iy
= 2 (=D ~-SInnt.
ni

Hence the desired result is

f(£) =Res[e"F(s)]+ i{Res [e“F(s)]+Res[e*F <S)]}?
n=i T

or

___“__2_ oo (____l)nH ‘
f(t)--ﬂz ~ SIN N,

=l

11. We consider here the function

F(s) = —; Snh(xs) 0<x<1),
s(s” + @ )coshs
(2n—-Dx . .
where w>0and W # W, = — 5 (n=1,2,...). The singularities of F(s) are at

s=0, s=%xwi, and s=xwi (n=12,...).
Because the first term in the Maclaurin series for sinh(xs) is xs, it is easy to see that s =0 is

a removable singularity of ¢"F(s) and that

Res [e“F (s)] =0.

3:3{}

To find the residue of F(s) at s = @i, we write

_9(s) _ sinh(xs)
Fs)= s — Wl where  9(s) s(s+ wi)coshs

from which it follows that s = wi is simple pole and

Res F(s) = p(wi) = ‘sm%}(xcuz) = tSI;ICLDC |
5=k wi2wicosh(wi) 2w cosw

THE UNIVERSITY OF QUEENSLAND LIBRARY
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Since F(s)= F(5), then,

iy

sin@wx . sin ax sin wt
> e’ {=2 — Sin Wt = RREE—
200° COS W ] 200° COSW W Cos @

Ri S [es’F (s)} + Res [eS’F (S)] =2Re

&= (R

[ isinwx . ;.

As for the residues at s=w,i (n=1,2,...), we put F(s) in the form

F(s)= E%% where p(s) =sinh(xs) and g(s)= (s’ + w’s)coshs.
q(s

Now p(w i) =sinh(x®@,)=isinw,x # 0 and g(w,)=0. Also, since

g’ (s) = (s + w’s)sinhs+ (3s” + @’ )coshs,

we find that
¢'(w,i) = (—w)i + @’ w,i)sinh(®,)) = -0, (0" - ®])sinw, #0.

Hence we have a simple pole ats = w i, with residue

ON) isin@, x
ResF(S)mli( ”‘)m e
s=a, g (1) -0 (0 —,)sno,

Consequently,

. i isinw, x or sin @, xsin @, ¢
Res [e"F(s)]+ Res [e"F(s)|=2Re et Al e
s=a,i s~ 0, -W,(0° — W, )sinw, w,(0° —o,)sinw,

P i

. . T .
But sinw, = sm(nﬂ: - -5) = (—1)"", and this means that

n+l : .
Res[e"F(s)|+ Res [¢“F(s)] =25 SR G ASI0 O,F
S $= =0y @ W~ w;

n

Finally,

£ =Res[eF(5)]+ {Res [eF(s)]+ Res ["Fo)]} +

5o - OR
n=1

{Res_ le"F(s)]+ Res [e"F(s)]}.

$=@,F s=—@,i

That 1s,

i+l

Sin (x sin Wt = (—1 SIn@w. xsin . t
2 +2Z( ) ' ; D =,
" CoOS n=1} )] () *"'Ct)ﬂ

n

f@)=
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