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About the Handouts 
 
The following books have been mainly followed to prepare the slides and handouts: 
 
1. Spiegel, M.R., Theory and Problems of Vector Analysis: And an Introduction to Tensor 

Analysis. 1959: McGraw-Hill. 
2. Spiegel, M.S., Theory and problems of theoretical mechanics. 1967: Schaum. 
3. Taylor, J.R., Classical Mechanics. 2005: University Science Books. 
4. DiBenedetto, E., Classical Mechanics: Theory and Mathematical Modeling. 2010: 

Birkhäuser Boston. 
5. Fowles, G.R. and G.L. Cassiday, Analytical Mechanics. 2005: Thomson Brooks/Cole. 
 
The first two books were considered as main text books. Therefore the students are advised to 
read the first two books in addition to these handouts. In addition to the above mentioned books, 
some other reference book and material was used to get these handouts prepared.  
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Module No. 51 
 

Selected Example/Problem 2: Volume 
Integral 

 

Problem Statement 

If �⃗� =  (2𝑥2 − 3𝑧)𝚤̂  −  2𝑥𝑦𝚥̂  −  4𝑥𝑘� , evaluate  

�∇. �⃗�𝑑𝑉
𝑅

 

the closed region bounded by the planes 𝑥 =  0, у =  0, 𝑧 = 0 and 2𝑥 +  2у + 𝑧 = 4. 

 

Solution 

Since �⃗� =  (2𝑥2 − 3𝑧)𝚤̂  −  2𝑥𝑦𝚥̂  −  4𝑥𝑘� ,  

Thus 

∇. �⃗� = �
𝜕
𝜕𝑥

𝚤̂ +
𝜕
𝜕𝑦

𝚥̂ +
𝜕
𝜕𝑧
𝑘�� . �(2𝑥2 − 3𝑧)𝚤̂  −  2𝑥𝑦𝚥̂  −  4𝑥𝑘�� 

=
𝜕(2𝑥2 − 3𝑧)

𝜕𝑥
−
𝜕2𝑥𝑦
𝜕𝑦

−
𝜕4𝑥
𝜕𝑧

 

= 4𝑥 − 2𝑥 = 2𝑥 

�∇. �⃗�𝑑𝑉 = � � � 2𝑥𝑑𝑧𝑑𝑦𝑑𝑥

4−2𝑥−2𝑦

0

2−𝑥

0

2

0𝑅

 

Using equation 2𝑥 +  2у + 𝑧 = 4 for limit 

Integrating w.r.t z we obtain, 

= 2� � 𝑥|𝑧|0
4−2𝑥−2𝑦𝑑𝑦𝑑𝑥

2−𝑥

0

2

0

= 2� � 𝑥(4 − 2𝑥 − 2𝑦)𝑑𝑦𝑑𝑥 =
2−𝑥

0

2

0

� � (8𝑥 − 4𝑥2 − 4𝑥𝑦)𝑑𝑦𝑑𝑥
2−𝑥

0

2

0

 

= �(8𝑥|𝑦|02−𝑥 −
2

0

4𝑥2|𝑦|02−𝑥 − 4𝑥 �
𝑦2

2
�
0

2−𝑥

)𝑑𝑥 = � 8𝑥(2 − 𝑥) − 4𝑥2(2 − 𝑥) − 2𝑥(2 − 𝑥)2𝑑𝑥
2

0
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= � 8𝑥 − 8𝑥2 + 2𝑥3𝑑𝑥
2

0

 

= �4𝑥2 −
8
3
𝑥3 +

𝑥4

2
�
0

2

  

= 16 −
64
3

+ 8 = −
8
3
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Module No. 52 
 

Divergence Theorem 
 
Divergence theorem is also called Gauss’s divergence theorem. Gauss’s divergence theorem has 

wide applications in physics and engineering and is used to derive equation governing the flow 

of fluids, heat conduction, wave propagation and electrical fields. 

In words the divergence theorem may states that the surface integral of the normal component of 

a vector function 𝐴 taken over a closed surface S is equal to the integral of the divergence of 

𝐴 taken over the region R enclosed by the surface. 

We can write it mathematically as 

 

Statement 

It states that if R is the region bounded by a closed surface S and 𝐴 is a vector point function 

with continuos first partia derivatives, then 

�𝑨��⃗ .𝒏�𝒅𝑺 = �𝛁.𝑨��⃗ 𝒅𝑽
𝑹𝑺

 

Where 𝑛� is outward drawn unit normal to S. 

 

Proof 

If 𝐴 is expressed as 𝐴 = 𝐴1𝚤̂ + 𝐴2𝚥̂ + 𝐴3𝑘� , then the divergence theorem can be written 

component wise as 

  

�(𝐴1𝚤̂ + 𝐴2𝚥̂ + 𝐴3𝑘�).𝑛�𝑑𝑆 = �(
𝜕𝐴1
𝜕𝑥

+
𝜕𝐴2
𝜕𝑦

+
𝜕𝐴3
𝜕𝑧

)𝑑𝑉
𝑅𝑆

 

To establish this relation, we will prove that the respective integrals on each sides are equal. 

We prove this for a closed surface S, which has the property that any line parallel to the 

coordinate axes cuts S in at most two points. Under this assumption, it follows that S is doubled 

valued surface over its projection on each of the coordinate planes. 
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Let 𝑅’ be the projection of S on the xy-plane. Divide the surface S into the lower and upper parts 

𝑆1 and 𝑆2 and assume the equations of 𝑆1 and 𝑆2 to be 𝑧 = 𝑓1(𝑥,𝑦) and 𝑧 = 𝑓2(𝑥,𝑦) respectively. 

Consider 

�
𝜕𝐴3
𝜕𝑧

𝑑𝑉 =
𝑅

�
𝜕𝐴3
𝜕𝑧

𝑑𝑧𝑑𝑦𝑑𝑥
𝑅

 

= �� �
𝜕𝐴3
𝜕𝑧

𝑑𝑧

𝑧=𝑓2(𝑥,𝑦)

𝑧=𝑓1(𝑥,𝑦)

�
𝑅′

𝑑𝑦𝑑𝑥 = �|𝐴3(𝑥,𝑦, 𝑧)|𝑧=𝑓1(𝑥,𝑦)
𝑧=𝑓2(𝑥,𝑦)

𝑅′

𝑑𝑦𝑑𝑥    

= �{𝐴3[(𝑥,𝑦, 𝑓2(𝑥,𝑦))]− 𝐴3[(𝑥,𝑦,𝑓1(𝑥,𝑦))]}
𝑅′

𝑑𝑦𝑑𝑥                                                          (1)  

For the upper part 𝑆2 = 𝑑𝑦𝑑𝑥 = cos 𝛾2𝑑𝑆2 = 𝑘� .𝑛�2𝑑𝑆2, since the normal 𝑛� to 

𝑆2 𝑚𝑎𝑘𝑒𝑠 𝑎𝑛 𝑎𝑐𝑢𝑡𝑒 𝑎𝑛𝑔𝑙𝑒 with k. For the lower part 𝑆1 ,𝑑𝑦𝑑𝑥 = −cos 𝛾1𝑑𝑆2 = 𝑘� .𝑛�1𝑑𝑆1,   since 

the normal 𝑛�1 to 𝑆1 , makes an angle 𝛾1 with −𝑘�. 

Then 

�𝐴3��𝑥,𝑦,𝑓2(𝑥,𝑦)��
𝑅′

= �𝐴3
𝑆2

𝑘� .𝑛�2𝑑𝑆2 

And 

�𝐴3��𝑥,𝑦,𝑓1(𝑥,𝑦)��
𝑅′

= −�𝐴3
𝑆1

𝑘� .𝑛�1𝑑�1 

and therefore the equation (1) becomes 
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�
𝜕𝐴3
𝜕𝑧

𝑑𝑉 =
𝑅

�𝐴3
𝑆2

𝑘� .𝑛�2𝑑𝑆2 + �𝐴3
𝑆1

𝑘� .𝑛�1𝑑𝑆1 

�
𝜕𝐴3
𝜕𝑧

𝑑𝑉 =
𝑅

�𝐴3
𝑆

𝑘� .𝑛�𝑑𝑆                                                                                              (2) 

Similarly, by projecting S on the yz and zx coordinate plane, we obtain respectively, 

�
𝜕𝐴1
𝜕𝑧

𝑑𝑉 =
𝑅

�𝐴1
𝑆

𝚤̂.𝑛�𝑑𝑆                                                                                                (3) 

�
𝜕𝐴2
𝜕𝑧

𝑑𝑉 =
𝑅

�𝐴2
𝑆

𝚥̂.𝑛�𝑑𝑆                                                                                                 (4) 

By adding equation (2),(3) and (4), we obtain 

�
𝜕𝐴1
𝜕𝑧

𝑑𝑉 + �
𝜕𝐴2
𝜕𝑧

𝑑𝑉 + �
𝜕𝐴3
𝜕𝑧

𝑑𝑉 =
𝑅𝑅𝑅

�𝐴1
𝑆

𝚤̂.𝑛�𝑑𝑆 + �𝐴2
𝑆

𝚥̂.𝑛�𝑑𝑆 + �𝐴3
𝑆

𝑘� .𝑛�𝑑𝑆  

Which is equal to  

�(
𝜕𝐴1
𝜕𝑥

+
𝜕𝐴2
𝜕𝑦

+
𝜕𝐴3
𝜕𝑧

)𝑑𝑉
𝑅

= �(𝐴1𝚤̂ + 𝐴2𝚥̂ + 𝐴3𝑘�).𝑛�𝑑𝑆
𝑆

 

or  

�(𝐴1𝚤̂ + 𝐴2𝚥̂ + 𝐴3𝑘�).𝑛�𝑑𝑆 = �(
𝜕𝐴1
𝜕𝑥

+
𝜕𝐴2
𝜕𝑦

+
𝜕𝐴3
𝜕𝑧

)𝑑𝑉
𝑅𝑆

 

Hence the theorem. 
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Module No. 53 
 

Divergence theorem in Rectangular Form 
 
As we studies earlier about the rectangular coordinate system and rectangular coordinates. The 

Cartesian coordinate system (𝑥,𝑦, 𝑧) is also called rectangular system. In this article, we will 

express the gauss’s divergence theorem in the form of Cartesian coordinates. 

Let 𝐴 = 𝐴1𝚤̂ + 𝐴2𝚥̂ + 𝐴3𝑘�  , and 𝑛� = 𝑛1𝚤̂ + 𝑛2𝚥̂ + 𝑛3𝑘� 

Then  

∇.𝐴 = �
𝜕
𝜕𝑥

𝚤̂ +
𝜕
𝜕𝑦

𝚥̂ +
𝜕
𝜕𝑧
𝑘�� . �𝐴1𝚤̂ + 𝐴2𝚥̂ + 𝐴3𝑘�� 

=
𝜕𝐴1
𝜕𝑥

+
𝜕𝐴2
𝜕𝑦

+
𝜕𝐴3
𝜕𝑧

 

and  

𝐴.𝑛� = �𝐴1𝚤̂ + 𝐴2𝚥̂ + 𝐴3𝑘��. �𝑛1𝚤̂ + 𝑛2𝚥̂ + 𝑛3𝑘�� 

The unit normal to S is 𝑛� = 𝑛1𝚤̂ + 𝑛2𝚥̂ + 𝑛3𝑘�. Then 𝑛� . 𝚤̂ = 𝑛1 = 𝑐𝑜𝑠 𝛼, 𝑛� . 𝚥̂ = 𝑛2 = 𝑐𝑜𝑠 𝛽 and  

𝑛� .𝑘� = 𝑛3 = 𝑐𝑜𝑠 𝛾 , where 𝛼,𝛽, 𝛾  are the angles which 𝑛� makes with the positive 𝑥,𝑦, 𝑧-axes or 

𝚤̂, 𝚥̂,𝑘�  directions respectively. The quantities 𝑐𝑜𝑠 𝛼 , 𝑐𝑜𝑠 𝛽, 𝑐𝑜𝑠 𝛾 are the direction cosines of 𝑛�.  

Hence 

𝐴.𝑛� = 𝐴1 cos𝛼 + 𝐴2 cos𝛽 + 𝐴3 cos 𝛾 

Using these values, Gauss’s divergence theorem can be written as 

�(
𝜕𝐴1
𝜕𝑥

+
𝜕𝐴2
𝜕𝑦

+
𝜕𝐴3
𝜕𝑧

)𝑑𝑉
𝑅

= �(
𝑆

𝐴1 cos𝛼 + 𝐴2 cos𝛽 + 𝐴3 cos 𝛾)𝑑𝑆 

is the required form of divergence theorem. 
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Module No. 54 
 

Verification of Divergence Theorem by an 
Example 

 
Problem Statement 
 
Verify the divergence theorem for 𝐴 = 4𝑥𝚤̂—  2𝑦2𝚥̂ + 𝑧2𝑘� taken over the region bounded by  

𝑥2  +  𝑦2 = 4, 𝑧 = 0 and 𝑧 =  3. 

Solution 

 

[1] 

As we know the divergence theorem is  

�𝐴.𝑛�𝑑𝑆 = �∇.𝐴𝑑𝑉
𝑉𝑆

 

�∇.𝐴𝑑𝑉
𝑉

= �(
𝜕𝐴1
𝜕𝑥

+
𝜕𝐴2
𝜕𝑦

+
𝜕𝐴3
𝜕𝑧

)𝑑𝑉
𝑉

 

= �(
𝜕4𝑥
𝜕𝑥

−
𝜕 2𝑦2

𝜕𝑦
+
𝜕𝑧2

𝜕𝑧
)𝑑𝑉

𝑉

= �(4 − 4𝑦 + 2𝑧)𝑑𝑉
𝑉

 

= � � �(4 − 4𝑦 + 2𝑧)𝑑𝑧𝑑𝑦𝑑𝑥
3

𝑧=0

√4−𝑥2

𝑦=−√4−𝑥2

2

𝑥=−2
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Here we use the given equation 𝑥2  +  𝑦2 = 4, for limits 

The surface S of the cylinder consists of a base 𝑆1 (𝑟 =  0), the top 𝑆2 (𝑟 =  3) and the convex 

portion 𝑆3(𝑥2  +  𝑦2 = 4). Then 

Surface Integral = �𝐴. 𝑛�𝑑𝑆
𝑆

= �𝐴.𝑛�𝑑𝑆1
𝑆1

+ �𝐴. 𝑛�𝑑𝑆2
𝑆2

+ �𝐴.𝑛�𝑑𝑆3
𝑆3

 

On Surface 𝑆1 (𝑧 = 0), 𝑛� = −𝑘� ,𝐴 = 4𝑥𝚤̂—  2𝑦2𝚥̂ 

Therefore 𝐴. 𝑛� = �4𝑥𝚤̂—  2𝑦2𝚥̂�. �−𝑘�� = 0 

⟹�𝐴.𝑛�𝑑𝑆1
𝑆1

= 0 

On Surface 𝑆2 (𝑧 = 3), 𝑛� = 𝑘� ,𝐴 = 4𝑥𝚤̂—  2𝑦2𝚥̂ + 9𝑘�  

Therefore 𝐴. 𝑛� = �4𝑥𝚤̂—  2𝑦2𝚥̂ + 9𝑘��. �𝑘�� = 9 

⟹�𝐴.𝑛�𝑑𝑆2
𝑆2

= 9�𝑑𝑆2
𝑆2

= 9(4𝜋) = 36𝜋 

Since we have 𝑥2  + 𝑦2 = 4 ⟹�𝑥2  +  𝑦2 = 2 = 𝑟, radius of the base of the cylinder. 

Therefore the area of the base of cylinder is 𝜋𝑟2 = 4𝜋 

On 𝑆3 (𝑥2  +  𝑦2 = 4). A perpendicular to 𝑥2  +  𝑦2 = 4 has the direction 

∇(𝑥2  +  𝑦2) = 2𝑥𝚤̂ + 2𝑦𝚥̂ 

Then a unit normal is 

𝑛� =
2𝑥𝚤̂ + 2𝑦𝚥̂
�4𝑥2 + 4𝑦2

=
2(𝑥𝚤̂ + 𝑦𝚥̂)

2�𝑥2 + 𝑦2
=

(𝑥𝚤̂ + 𝑦𝚥̂)

√4
=

(𝑥𝚤̂ + 𝑦𝚥̂)
2

  

Since 𝑥2  +  𝑦2 = 4 

𝐴.𝑛� = �4𝑥𝚤̂—  2𝑦2𝚥̂ + 𝑧2𝑘��.
(𝑥𝚤̂ + 𝑦𝚥̂)

2
= 2𝑥2 − 𝑦3 

�(2𝑥2 − 𝑦3)𝑑𝑆3
𝑆3

 

Since 𝑟 = 2 is the radius of the base of the cylinder 

So, using cylindrical coordinates, 𝑥 = 2 cos 𝜃, 𝑦 = 2 sin𝜃 ,𝑑𝑆3 = 2𝑑𝜃𝑑𝑧 

We have 
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�(2𝑥2 − 𝑦3)𝑑𝑆3 = � �[2(2 cos 𝜃)2 − (2 sin 𝜃)3]2𝑑𝑧𝑑𝜃
3

𝑧=0

2𝜋

𝜃=0𝑆3

 

= � 48 cos2 𝜃 − 48 sin2 𝜃
2𝜋

0

𝑑𝜃 = 48𝜋 

Then the surface integral=  0 +  36𝜋 +  48𝜋 =  84𝜋, agreeing with the volume integral and  

verifying the divergence theorem. 
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Module No. 55 
 

Another Example: Divergence Theorem 
 
Problem Statement 
Evaluate  

��⃗�.𝑛�𝑑𝑉
𝑅

 

where 𝐹 =  4𝑥𝑧𝚤̂ — 𝑦2𝚥̂  +  𝑦𝑧𝑘� and S is the surface of the cube bounded S by  

𝑥 = 0, 𝑥 =  1,𝑦 =  0, 𝑦 =  1, 𝑧 =  0, 𝑧 =  1. 

 

Solution 
By the divergence theorem, the required integral is equal to 

�𝐴.𝑛�𝑑𝑆 = �∇.𝐴𝑑𝑉
𝑅𝑆

 

𝛻.𝐴 = 𝛻. �4𝑥𝑧𝚤̂ —  𝑦2𝚥̂ +  𝑦𝑧𝑘�� 

=
𝜕4𝑥𝑧
𝜕𝑥

−
𝜕𝑦2

𝜕𝑦
+
𝜕𝑦𝑧
𝜕𝑧

 

�∇.𝐴𝑑𝑉
𝑅

= ��
𝜕4𝑥𝑧
𝜕𝑥

−
𝜕𝑦2

𝜕𝑦
+
𝜕𝑦𝑧
𝜕𝑧

�𝑑𝑉
𝑅

 

Now 

= �(4𝑧 − 2𝑦 + 𝑦)𝑑𝑉
𝑅

= �(4𝑧 − 𝑦)𝑑𝑉
𝑅

 

= ���(4𝑧 − 𝑦)𝑑𝑧𝑑𝑦𝑑𝑥
1

0

1

0

1

0

 

= ��2𝑧2 − 𝑦𝑧𝑑𝑦𝑑𝑥
1

0

1

0

= ��2 − 𝑦𝑑𝑦𝑑𝑥
1

0

1

0

 



11 
 

= �2𝑦 −
𝑦2

2
𝑑𝑥 = � 2 −

1
2
𝑑𝑥 =

3
2
�𝑑𝑥
1

0

=
3
2

|𝑥|01
1

0

1

0

=
3
2

 

Hence  

��⃗�.𝑛�𝑑𝑉
𝑅

=
3
2
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Module No. 56 
 

Further Example 1 of Divergence Theorem 
 

Problem Statement 
Prove the identity 

�∇𝜑𝑑𝑉 = �𝜑𝑛�𝑑𝑆
𝑆𝑉

 

 

Proof 

In the divergence theorem, let 𝐴  = 𝜑С�⃗  where С ���⃗ a constant vector is. Then 

�∇. (𝜑С�⃗ )𝑑𝑉 = �𝜑С�⃗ . 𝑛�𝑑𝑆
𝑆𝑉

 

Since ∇. �𝜑С�⃗ � = (∇𝜑).С�⃗ ) = С�⃗ .∇𝜑 and 𝜑С�⃗ .𝑛� = С�⃗ . (𝜑𝑛�) 

Substituting these values in above integral, we get 

�С�⃗ .∇𝜑𝑑𝑉 = �С�⃗ . (𝜑𝑛�)𝑑𝑆
𝑆𝑉

 

Taking С�⃗  outside the integrals, 

С�⃗ .�∇𝜑𝑑𝑉 = С�⃗ .�(𝜑𝑛�)𝑑𝑆
𝑆𝑉

 

and since С is an arbitrary constant vector, 

�∇𝜑𝑑𝑉 = �(𝜑𝑛�)𝑑𝑆
𝑆𝑉

 

Hence the result. 
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Module No. 57 
 

Further Example 2 of Divergence Theorem 
 

A fluid of density 𝜌(𝑥,𝑦, 𝑧, 𝑡) moves with velocity 𝑣(𝑥, 𝑦, 𝑧, 𝑡). If there are no sources or sinks, 

prove that 

∇. 𝐽 +
𝜕𝜌
𝜕𝑡

= 0 

Solution 

Consider an arbitrary surface enclosing a volume V of the fluid. At any time the mass of fluid 

within V is  

𝑀 = �𝜌𝑑𝑉
𝑉

 

The time rate of increase of this mass is 

𝜕𝑀
𝜕𝑡

=
𝜕
𝜕𝑡
�𝜌𝑑𝑉
𝑉

= �
𝜕𝜌
𝜕𝑡
𝑑𝑉

𝑉

 

Let A = velocity ν at any point of a moving fluid  

Volume of fluid crossing 𝑑𝑆 in 𝛥𝑡 seconds = volume contained in cylinder of base 𝑑𝑆 and slant 

height 𝜈𝛥𝑡 

=  (𝜈𝛥𝑡).𝑛�𝑑𝑆 =  𝑣.𝑛� 𝑑𝑆 𝛥𝑡  

Then, volume per second of fluid crossing 𝑑𝑆 =  𝑣.𝑛�𝑑𝑆   

The relation of mass of fluid per unit time leaving V is 

�𝜌𝑣.
𝑆

𝑛�𝑑𝑆 

and the time rate of increase in mass is  

−�𝜌𝑣.
𝑆

𝑛�𝑑𝑆 = �∇.
𝑉

𝜌𝑣𝑑𝑉 

by the divergence theorem. Then 
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�
𝜕𝜌
𝜕𝑡
𝑑𝑉

𝑉

= −�∇.
𝑉

𝜌𝑣𝑑� 

�
𝜕𝜌
𝜕𝑡

+ ∇. (𝜌𝑣)𝑑𝑉
𝑉

= 0 

Suppose that ∭ 𝜕𝜌
𝜕𝑡

+ ∇. (𝜌𝑣)𝑑𝑉𝑉 = 0 for all the region V. If we suppose that 𝜕𝜌
𝜕𝑡

+ ∇. (𝜌𝑣)𝑑𝑉 >

0 at a point Ρ, then from the continuity of the derivatives it follows that 𝜕𝜌
𝜕𝑡

+ ∇. (𝜌𝑣)𝑑𝑉 > 0 in 

some region A surrounding Ρ. If Γ is the boundary of A then  

∭ 𝜕𝜌
𝜕𝑡

+ ∇. (𝜌𝑣)𝑑𝑉𝑉 > 0 which contradicts the assumption that the line integral is zero around 

every closed curve. Similarly the assumption 𝜕𝜌
𝜕𝑡

+ ∇. (𝜌𝑣)𝑑𝑉 < 0 leads to a contradiction. Hence 

the integrand 𝜕𝜌
𝜕𝑡

+ ∇. (𝜌𝑣)𝑑𝑉 must be equal to zer0. 

Hence from the continuity of the derivatives it follows that 

∇. 𝐽 +
𝜕𝜌
𝜕𝑡

= 0 

Where 𝐽 = 𝜌𝑣. 

The equation is called the continuity equation. If ρ is a constant, the fluid is incompressible and 

∇. 𝑣 = 0, i.e. ν is solenoidal.  

The continuity equation also arises in electromagnetic theory, where ρ is the charge density and 

𝐽 = 𝜌𝑣 is the current density.  
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Module No. 58 
 

Further Example 3 of Divergence Theorem 
 
Problem Statement 
Prove the relation: 

�∇ × 𝐵�⃗ 𝑑𝑉
𝑉

= �𝑛� × 𝐵�⃗
𝑆

𝑑𝑆 

where 𝐵�⃗  is any vector field. 

 

Proof 
Since the divergence theorem, 

�∇.𝐴𝑑𝑉
𝑉

= �𝐴.𝑛�𝑑𝑆
𝑆

 

let 𝐴  =  В��⃗  х С�⃗  where С�⃗  is a constant vector. Then 

�∇. (В��⃗  ×  С�⃗  )𝑑𝑉
𝑉

= �(В��⃗  ×  С�⃗  ).𝑛�𝑑𝑆
𝑆

 

Since 

∇. �В��⃗  ×  С�⃗  � = С�⃗ . �∇ × В��⃗ � and �В��⃗  ×  С�⃗  �.𝑛� = В��⃗  . �С�⃗  × 𝑛�� = �С�⃗  × 𝑛��.В��⃗ = С�⃗ . (𝑛� × В��⃗ ), 

Then the above integral will become 

�С�⃗ . �∇ × В��⃗ �𝑑𝑉
𝑉

= �С�⃗ . (𝑛� × В��⃗ )𝑑𝑆
𝑆

 

Taking С�⃗  outside the integral,  

С�⃗ .��∇ × В��⃗ �𝑑𝑉
𝑉

= С�⃗ .�(𝑛� × В��⃗ )𝑑𝑆
𝑆

 

and since С�⃗  Is an arbitrary constant vector, 
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�∇ × 𝐵�⃗ 𝑑𝑉
𝑉

= �𝑛� × 𝐵�⃗
𝑆

𝑑𝑆 

Hence the result. 
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Module No. 59 
 

Stokes’ Theorem 
 

In words we can state Stokes’ theorem as the line integral of the tangential component of a 

vector function 𝐴 taken around a simple closed curve C is equal to the surface integral of the 

normal component of the curl of  𝐴 taken over any surface S having C as its boundary. 

 

Statement 

It states that if S is an open, two sided surface bounded by a simple closed curve C, then if 𝐴 has 

continuous first partial derivatives 

� 𝐴.𝑑𝑟
𝐶

= ��∇ × 𝐴�. 𝑛�𝑑𝑆
𝑆

 

Where C is traversed in the positive direction. 

 

Proof 

If 𝐴 is expressed as 𝐴 = 𝐴1𝚤̂ + 𝐴2𝚥̂ + 𝐴3𝑘� , then the divergence theorem can be written as 

�∇ × �𝐴1𝚤̂ + 𝐴2𝚥̂ + 𝐴3𝑘��𝑑𝑆
𝑆

= � 𝐴1𝑑𝑥 +
𝐶

𝐴2𝑑𝑦 + 𝐴3𝑑𝑧 

We will prove this theorem for a surface S which has the property that its projection on the xy, 

yz and zx planes are regions bounded by simple closed curves as shown in figure. 
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[1] 

Assume S to have representation 𝑧 = 𝑓(𝑥,𝑦) 𝑜𝑟 𝑥 = 𝑔(𝑦, 𝑧) 𝑜𝑟 𝑦 = ℎ(𝑥, 𝑧), where 𝑓,𝑔,ℎ are 

continuous and differentiable functions. 

Consider first 

� [∇ × (𝐴1𝚤̂)]
𝑆

.𝑛�𝑑𝑆 

Since,  

∇ × (𝐴1𝚤̂) = ��

𝚤̂ 𝚥̂ 𝑘�
𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

𝐴1 0 0

�� = �
𝜕𝐴1
𝜕𝑦𝑧

𝚥̂ −
𝜕𝐴1
𝜕𝑦

𝑘�� 

Therefore, 

[∇ × (𝐴1𝚤̂)].𝑛�𝑑𝑆 = �
𝜕𝐴1
𝜕𝑧

𝑛�. 𝚥̂ −
𝜕𝐴1
𝜕𝑦

𝑛�. 𝑘�� 𝑑𝑆                                                                                   (1) 

If 𝑧 = 𝑓(𝑥,𝑦)is taken the equation of S, then the position vector to any point of S is 

𝑟 = 𝑥𝚤̂ + 𝑦𝚥̂ + 𝑧𝑘� = 𝑥𝚤̂ + 𝑦𝚥̂ + 𝑓(𝑥,𝑦)𝑘� 

so that  

𝜕𝑟
𝜕𝑦

= 𝚥̂ +
𝜕𝑧
𝜕𝑦

𝑘� = 𝚥̂ +
𝜕𝑓
𝜕𝑦

𝑘� 

But 𝜕𝑟
𝜕𝑦

 is a vector tangent to S and thus perpendicular to 𝑛�, so that 

𝑛�.
𝜕𝑟
𝜕𝑦

= 𝑛�. 𝚥̂ +
𝜕𝑧
𝜕𝑦

𝑛�.𝑘� = 0 

or we can write 
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𝑛� . 𝚥̂ = −
𝜕𝑧
𝜕𝑦

𝑛�.𝑘� 

Substituting this value in equation (1), we obtain 

[∇ × (𝐴1𝚤̂)].𝑛�𝑑𝑆 = �−
𝜕𝐴1
𝜕𝑧

𝜕𝑧
𝜕𝑦

𝑛�.𝑘� −
𝜕𝐴1
𝜕𝑦

𝑛�.𝑘�� 𝑑𝑆 

= −�
𝜕𝐴1
𝜕𝑧

𝜕𝑧
𝜕𝑦

+
𝜕𝐴1
𝜕𝑦

� 𝑛�.𝑘�𝑑𝑆                                                                                                             (2) 

Now on S, 𝐴1(𝑥,𝑦, 𝑧) = �𝑥,𝑦,𝑓(𝑥,𝑦)� = 𝐹(𝑥,𝑦)                                                                           (3) 

Hence equation 𝜕𝐴1
𝜕𝑧

𝜕𝑧
𝜕𝑦

+ 𝜕𝐴1
𝜕𝑦

= 𝜕𝐹
𝜕𝑦

 and (2) becomes 

[∇ × (𝐴1𝚤̂)].𝑛�𝑑𝑆 = −
𝜕𝐹
𝜕𝑦

𝑛�.𝑘�𝑑𝑆 = −
𝜕𝐹
𝜕𝑦

𝑑𝑥𝑑𝑦 

Then  

� [∇ × (𝐴1𝚤̂)]
𝑆

.𝑛�𝑑𝑆 = �−
𝜕𝐹
𝜕𝑦

𝑑𝑥𝑑𝑦
𝑅

 

where R is the projection of S on the xy-plane. 

By the Green’s theorem in the plane, the last integral equals ∮ 𝐹𝑑𝑥 Γ where Γ is the boundary of 

R. From equation (3), since at each point (𝑥, 𝑦) of Γ the value of F is the same as the value of 

𝐴1 at each point (𝑥,𝑦, 𝑧) of C, and since dx is the same for both curves, we must have 

� 𝐹𝑑𝑥
Γ

= � 𝐴1𝑑𝑥
𝐶

 

or  

� [∇ × (𝐴1𝚤̂)]
𝑆

. 𝑛�𝑑𝑆 = � 𝐴1𝑑𝑥
𝐶

                                                                                                        (4) 

Similarly, by projections on the other coordinate planes, we have 

� [∇ × (𝐴2𝚥̂)]
𝑆

. 𝑛�𝑑𝑆 = � 𝐴2𝑑𝑦                                                                                                        (5)
𝐶

 

� �∇ × �𝐴3𝑘���
𝑆

.𝑛�𝑑𝑆 = � 𝐴3𝑑𝑧
𝐶

                                                                                                      (6) 

Addition of equation (4), (5) and (6) gives us the required results and completes the theorem. 
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The theorem is also valid for surfaces S which may not satisfy the restrictions imposed above. 

For assume that S can be subdivided into surfaces 𝑆1,𝑆2,𝑆3, … … . . 𝑆𝑘 with boundaries 

𝐶1,𝐶2,𝐶3, … … . .𝐶𝑘  which do satisfy the restrictions. Then Stokes' theorem holds for each such 

surface. Adding these surface integrals, the total surface integral over S is obtained. Adding the 

corresponding line integrals over 𝐶1,𝐶2,𝐶3, … … . .𝐶𝑘, the line integral over С is obtained. 
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Module No. 60 
 

Stokes’ Theorem in Rectangular Form 
 
 
Let 𝐴 = 𝐴1𝚤̂ + 𝐴2𝚥̂ + 𝐴3𝑘�  and 𝑛� = 𝑛1𝚤̂ + 𝑛2𝚥̂ + 𝑛3𝑘� be the outward drawn unit normal to the 

surface S. If 𝛼,𝛽 and 𝛾 are the angles which the unit normal 𝑛� makes with the positive directions 

of 𝑥,𝑦 and 𝑧 axes respectively, then 

𝑛1 = 𝑛�. 𝚤̂ = cos𝛼 ,𝑛2 = 𝑛�. 𝚥̂ = cos𝛽 and  𝑛3 = 𝑛�.𝑘� = cos 𝛾. 

The quantities cos𝛼 , cos𝛽, and cos 𝛾 are the direction cosine of 𝑛�. Then 

𝑛� = cos𝛼 𝚤̂ + cos𝛽 𝚥̂ + cos 𝛾 𝑘� 

Thus 

∇ × 𝐴 = ��

𝚤̂ 𝚥̂ 𝑘�
𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

𝐴1 𝐴2 𝐴3

�� 

= �
𝜕𝐴3
𝜕𝑦

−
𝜕𝐴2
𝜕𝑧

� 𝚤̂ + �
𝜕𝐴3
𝜕𝑥

−
𝜕𝐴1
𝜕𝑧

� 𝚥̂ + �
𝜕𝐴2
𝜕𝑥

−
𝜕𝐴1
𝜕𝑦

� 𝑘� 

and  

�∇ × 𝐴�.𝑛�

= ��
𝜕𝐴3
𝜕𝑦

−
𝜕𝐴2
𝜕𝑧

� 𝚤̂ + �
𝜕𝐴1
𝜕𝑧

−
𝜕𝐴3
𝜕𝑥

� 𝚥̂ + �
𝜕𝐴2
𝜕𝑥

−
𝜕𝐴1
𝜕𝑦

� 𝑘�� . (cos𝛼 𝚤̂

+ cos𝛽 𝚥̂ + cos 𝛾 𝑘�) 

= �
𝜕𝐴3
𝜕𝑦

−
𝜕𝐴2
𝜕𝑧

� cos𝛼 + �
𝜕𝐴1
𝜕𝑧

−
�𝐴3
𝜕𝑥

� cos𝛽 + �
𝜕𝐴2
𝜕𝑥

−
𝜕𝐴1
𝜕𝑦

� cos 𝛾 

Also 

𝐴.𝑑𝑟 = �𝐴1𝚤̂ + 𝐴2𝚥̂ + 𝐴3𝑘�  �. (𝑑𝑥𝚤̂ + 𝑑𝑦𝚥̂ + 𝑑𝑧𝑘�) 

= 𝐴1𝑑𝑥 + 𝐴2𝑑𝑦 + 𝐴3𝑑𝑧 

and the stokes theorem becomes 
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� 𝐴1𝑑𝑥 + 𝐴2𝑑𝑦 + 𝐴3𝑑𝑧
𝐶

= ���
𝜕𝐴3
𝜕𝑦

−
𝜕𝐴2
𝜕𝑧

� cos𝛼 + �
𝜕𝐴1
𝜕𝑧

−
𝜕𝐴3
𝜕𝑥

� cos𝛽 + �
𝜕𝐴2
𝜕𝑥

−
𝜕𝐴1
𝜕𝑦

� cos 𝛾�𝑑𝑆
𝑆
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Module No. 61 
 

Verification of Stokes’ Theorem by an 
Example 

 

Problem Statement 

Verify Stokes' theorem for 𝐴  =  (2𝑥 —  𝑦)𝚤̂ —  𝑦𝑧2𝚥̂ — 𝑦2𝑧𝑘�, where S is the upper half surface 

of the sphere 𝑥2  + 𝑦2  +  𝑧2  =  1 and С is its boundary. 

 

Solution 
The stokes’ theorem is 

� 𝐴.𝑑𝑟
𝐶

= ��∇ × 𝐴�. 𝑛�𝑑𝑆
𝑆

 

we will verify the above statement using given vector function 𝐴. 

[1] 

Let we solve first ∮ 𝐴.𝑑𝑟𝐶  

The boundary С of S is a circle in the xy plane of radius one and center at the origin. Let 𝑥 =

 𝑐𝑜𝑠𝑡 ,𝑦 = 𝑠𝑖𝑛𝑡, 𝑧 =  0, 0 <  𝑡 <  2𝜋 be parametric equations of C.(since 𝑟 = 1) 

� 𝐴.𝑑𝑟
𝐶

= �(2𝑥 —  𝑦)𝚤̂ —  𝑦𝑧2𝚥̂ — 𝑦2𝑧𝑘�). (𝑑𝑥𝚤̂ + 𝑑𝑦𝚥̂ + 𝑑𝑧𝑘�)
𝐶
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= �(2𝑥 —  𝑦)𝑑𝑥 − 𝑦𝑧2𝑑𝑦 − 𝑦2𝑧𝑑𝑧
𝐶

 

Substitute𝑥 =  𝑐𝑜𝑠𝑡 ,𝑦 = 𝑠𝑖𝑛𝑡, 𝑧 =  0, 0 <  𝑡 <  2𝜋, we get 

� (2
2𝜋

𝜃=0

𝑐𝑜𝑠𝑡 − 𝑠𝑖𝑛𝑡)(−𝑠𝑖𝑛𝑡)𝑑𝑡 

= � (−2
2𝜋

𝜃=0

𝑠𝑖𝑛𝑡𝑐𝑜𝑠𝑡 + 𝑠𝑖𝑛2𝑡)𝑑𝑡 = � (− sin 2 𝑡)
2𝜋

𝜃=0

+ (
1 + cos2 𝑡

2
)𝑑𝑡 

= �
cos2 𝑡

2
+
𝑡
2
−

sin 2 𝑡
4

�
0

2𝜋

 =
1
2

+ 𝜋 −
1
2

= 𝜋 

Now, ∬ �∇ × 𝐴�.𝑛�𝑑𝑆𝑆  

∇ × 𝐴 = ��

𝚤̂ 𝚥̂ 𝑘�
𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

2𝑥 —  𝑦 —  𝑦𝑧2 — 𝑦2𝑧

�� 

= �
𝜕(— 𝑦2𝑧)

𝜕𝑦
−
𝜕(—  𝑦𝑧2)

𝜕𝑧
� 𝚤̂ − �

𝜕(— 𝑦2𝑧)
𝜕𝑥

−
𝜕(2𝑥 —  𝑦)

𝜕𝑧
� 𝚥̂ + (

𝜕(—  𝑦𝑧2)
𝜕𝑥

−
𝜕(2𝑥 —  𝑦)

𝜕𝑦
)𝑘� 

= (−2𝑦𝑧 + 2𝑦𝑧)𝚤̂ − (0 − 0)𝚥̂ + (0 + 1)𝑘� = 𝑘� 

Then  

��∇ × 𝐴�.𝑛�𝑑𝑆
𝑆

= �𝑘� .𝑛�𝑑𝑆
𝑆

= �𝑑𝑥𝑑𝑦
𝑅

 

(Since 𝑘� .𝑛�𝑑𝑆) 

= 4� � 𝑑𝑦𝑑𝑥 = 4��1 − 𝑥2𝑑𝑥
1

0

√1−𝑥2

0

1

0

 

Let 𝑥 = sin 𝑡 ⟹ 𝑑𝑥 = cos 𝑡𝑑𝑡, 0 ≤ 𝑡 ≤ 𝜋
2� . Then 

��∇ × 𝐴�.𝑛�𝑑𝑆
𝑆

= 4� �1 − sin2 𝑡 cos 𝑡 𝑑𝑡

𝜋
2�

0

 

= 4� cos2 𝑡 𝑑𝑡 =
4
2
� (1 + cos 2𝑡)𝑑𝑡

𝜋
2�

0

𝜋
2�

0
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= �𝑡 +
sin 2 𝑡

2
�
0

𝜋
2�
 

= 2�𝜋 2� � = 𝜋 

and stokes’ theorem is verified. 
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Module No. 62 
 

Another Example: Stokes’ Theorem 
 

Problem Statement 
Prove 

� 𝑑𝑟
𝐶

× 𝐵�⃗ = �(𝑛� × ∇) × 𝐵�⃗  𝑑𝑆
𝑆

 

Proof 
Stokes ‘theorem is 

� 𝐴.𝑑𝑟
𝐶

= ��∇ × 𝐴�. 𝑛�𝑑𝑆
𝑆

 

In Stokes' theorem, let 𝐴  =  𝐵�⃗ × 𝐶 where С�⃗  a constant vector is. Then 

�(𝐵�⃗ × 𝐶).𝑑𝑟
𝐶

= ��∇ × (𝐵�⃗ × 𝐶)�.𝑛�𝑑𝑆
𝑆

 

� 𝑑𝑟. (𝐵�⃗ × 𝐶)
𝐶

= ���𝐶.∇�𝐵�⃗ − 𝐶(∇.𝐵�⃗ )�.𝑛�𝑑𝑆
𝑆

 

� 𝐶. (𝑑𝑟 × 𝐵�⃗ )
𝐶

= ���𝐶.∇�𝐵�⃗ �.𝑛�𝑑𝑆
𝑆

−��𝐶(∇.𝐵�⃗ )�.𝑛�𝑑𝑆
𝑆

 

𝐶.�(𝑑𝑟 × 𝐵�⃗ )
𝐶

= �𝐶. �∇(𝐵�⃗ .𝑛��𝑑𝑆
𝑆

−�𝐶. �𝑛�(∇.𝐵�⃗ )�𝑑𝑆
𝑆

 

𝐶.�(𝑑𝑟 × 𝐵�⃗ )
𝐶

= 𝐶.��∇�𝐵�⃗ .𝑛�� − 𝑛�(∇.𝐵�⃗ )�𝑑𝑆
𝑆

 

𝐶.��𝑑𝑟 × 𝐵�⃗ �
𝐶

= 𝐶.�(𝑛� × ∇) × 𝐵�⃗ 𝑑𝑆
𝑆

 

Since С is an arbitrary constant vector, therefore 
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� 𝑑𝑟
𝐶

× 𝐵�⃗ = �(𝑛� × ∇) × 𝐵�⃗  𝑑𝑆
𝑆

 

Hence the result. 

  



28 
 

Module No. 63 
 

Related Theorem: Stokes’ Theorem 
 

Theorem Statement 

Prove that a necessary and sufficient condition that∫ 𝐴.𝑑𝑟𝑐  = 0 for every closed curve С is that 

∇ × 𝐴  =  0 identically. 

 

Proof 

Sufficiently. Suppose ∇ × 𝐴  =  0. Then by the stokes’ theorem 

� 𝐴.𝑑𝑟
𝐶

= ��∇ × 𝐴�. 𝑛�𝑑𝑆
𝑆

 

Since ∇ × 𝐴  =  0, therefore ∬ �∇ × 𝐴�.𝑛�𝑑𝑆𝑆 = 0 

Hence 

� 𝐴.𝑑𝑟
𝐶

= 0 

Necessity. Suppose ∮ 𝐴. 𝑑𝑟𝐶 = 0 around every closed path C, and assume ∇ × 𝐴 = 0 at some 

point P. Then assuming ∇ × 𝐴 is continuous there will be a region with Ρ as an interior point, 

where ∇ × 𝐴 = 0. Let S be a surface contained in this region whose normal 𝑛� at each point has 

the same direction as∇ × 𝐴, i.e. ∇ × 𝐴 = 𝛼𝑛�  where α is a positive constant. Let С be the 

boundary of S. Then by Stokes' theorem 

� 𝐴.𝑑𝑟
𝐶

= ��∇ × 𝐴�.𝑛�𝑑𝑆
𝑆

= �𝛼𝑛�.𝑛�𝑑𝑆
𝑆

> 0 

which contradicts the hypothesis that ∮ 𝐴.𝑑𝑟𝐶 = 0 and shows that ∇ × 𝐴 = 0. 

Hence the theorem. 
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Module No. 64 
 

Related Theorem: Stokes’ Theorem 
 

Problem Statement 
 
Prove that 

� 𝜑𝑑𝑟
𝐶

= �𝑑𝑆 × ∇𝜑
𝑆

 

Solution 
 
By Stokes’ theorem, we have 

� 𝐴.𝑑𝑟
𝐶

= ��∇ × 𝐴�. 𝑛�𝑑𝑆
𝑆

 

Let 𝐴 = 𝜑𝐶  where 𝐶 is a constant non-zero vector, then 

� 𝜑𝐶. 𝑑𝑟
𝐶

= ��∇ × (𝜑𝐶)�.𝑛�𝑑𝑆
𝑆

 

or 

� 𝐶.𝜑𝑑𝑟
𝐶

= ��∇𝜑 × 𝐶�.𝑑𝑆
𝑆

 

since ∇ × 𝐶 = 0�⃗  

� 𝐶.𝜑𝑑𝑟
𝐶

= �∇𝜑.𝐶 × 𝑑𝑆
𝑆

= �𝐶 × 𝑑𝑆.∇𝜑
𝑆

= �𝐶.𝑑𝑆 × ∇𝜑
𝑆

 

or 

𝐶.� 𝜑𝑑𝑟 = 𝐶.�𝑑𝑆 × ∇𝜑
𝑆𝐶

 

Since 𝐶 is an arbitrary constant vector, therefore  

� 𝜑𝑑𝑟
𝐶

= �𝑑𝑆 × ∇𝜑
𝑆

 

Hence the result. 
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Module No. 65 
 

Further Example 2 of Stokes’ Theorem 
 
Problem Statement 
 
If  

𝐴 = 2𝑦𝑧𝚤̂ − (𝑥 + 3𝑦 − 2)𝚥̂ + (𝑥2 + 𝑧)𝑘� 
then using Stokes’ theorem, evaluate 

��∇ × 𝐴�.𝑛�𝑑𝑆
𝑆

 

over the surface of intersection of the cylinders 𝑥2 + 𝑦2 = 𝑎2, 𝑥2 + 𝑧2 = 𝑎2 which is included in 
first octant. 
 
Solution 
 
By Stokes’ theorem, we have 

��∇ × 𝐴�.𝑛�𝑑𝑆 = � 𝐴. 𝑑𝑟
𝐶𝑆

 

[1] 

= � (2𝑦𝑧𝚤̂ − (𝑥 + 3𝑦 − 2)𝚥̂ + (𝑥2 + 𝑧)𝑘�). (𝑑𝑥𝚤̂ + 𝑑𝑦𝚥̂ + 𝑑𝑧𝑘�)
𝐴𝐵𝐶𝐷𝐴

 

= � (2𝑦𝑧𝑑𝑥 − (𝑥 + 3𝑦 − 2)𝑑𝑦 + (𝑥2 + 𝑧)𝑑𝑧)
𝐴𝐵𝐶𝐷𝐴

                                                                            (1) 

For 𝐴𝐵, 𝑧 = 0 therefore 𝑑𝑧 = 0 and the integral (1) over the part of the curves becomes 

� −(
𝐴𝐵

𝑥 + 3𝑦 − 2)𝑑𝑦 = �−�𝑎2 − 𝑦2
𝑎

0

+ 3𝑦 − 2)𝑑𝑦 

Let 𝑥 = 𝑎 cos𝜃,𝑦 = 𝑎 sin 𝜃,  𝑑𝑦 = 𝑎 cos 𝜃𝑑𝜃,     0 ≤ 𝜃 ≤ 𝜋
2� , then 
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� −(
𝐴𝐵

𝑥 + 3𝑦 − 2)𝑑𝑦 = � −(

𝜋
2�

0

𝑎 cos 𝜃 + 3𝑎 sin𝜃 − 2)𝑎 cos 𝜃𝑑𝜃   

= � −�
𝑎2

2
(1 + cos 2𝜃) + 3𝑎2 sin 𝜃 cos 𝜃 − 2𝑎 cos 𝜃  �

𝜋
2�

0

𝑑𝜃 

= − �
𝑎2

2
�𝜃 +

sin 2𝜃
2

� +
3
2
𝑎2 sin2 𝜃 − 2𝑎 sin 𝜃�

0

𝜋
2

 

= − �
𝑎2

2
�
𝜋
2
� +

3
2
𝑎2 − 2𝑎� =

−𝑎2𝜋
4

−
3
2
𝑎2 + 2𝑎 

For 𝐵𝐶, 𝑥 = 0,𝑦 = 𝑎 therefore 𝑑𝑥 = 𝑑𝑦 = 0 and integral (1) over this part of the curve becomes 

� 𝑧𝑑𝑧 = �𝑧𝑑𝑧 =
𝑎2

2

𝑎

0𝐵𝐶

 

For 𝐶𝐷, 𝑥 = 0, 𝑧 = 𝑎 therefore 𝑑𝑥 = 𝑑𝑧 = 0 and the integral (1) over this part of the curve 
becomes 

� −(3𝑦 − 2)𝑑𝑦 = �−(3𝑦 − 2)𝑑𝑦 =
3𝑎2

2

0

𝑎𝐶𝐷

− 2𝑎 

For 𝐷𝐴, 𝑦 = 0 therefore 𝑑𝑦 = 0 and the integral (1) over this part of the curve becomes 

�(𝑥2 + 2)𝑑𝑧 = �(𝑎2 − 𝑧2 + 𝑧)𝑑𝑧
0

𝑎𝐷𝐴

 

= �𝑎2𝑧 −
𝑧3

3
+
𝑧2

2
�
𝑎

0

 

= −
2
3
𝑎3 −

𝑎2

2
 

Thus from equation (1), we get 

��∇ × 𝐴�.𝑛�𝑑𝑆 =
−𝑎2𝜋

4
−

3
2
𝑎2 + 2𝑎 +

𝑎2

2
+

3𝑎2

2
− 2𝑎 −

2
3
𝑎3 −

𝑎2

2
 

= −
𝑎2

12
(3𝜋 + 8𝑎) 

required solution. 
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Module No. 66 
 

Further Example 3 of Stokes’ Theorem 
 

Problem Statement 
If  

� 𝐸�⃗ .𝑑𝑟
𝐶

= −
1
𝐶
𝜕
𝜕𝑡
�𝐻. 𝑑𝑆
𝑆

 

where S is any surface bounded by the curve C, show that 

∇ × 𝐸�⃗ = −
1
𝐶
𝜕𝐻��⃗
𝜕𝑡

. 

Solution 
As we know the Stokes’ theorem 

� 𝐴.𝑑𝑟
𝐶

= ��∇ × 𝐴�. 𝑛�𝑑𝑆
𝑆

 

by the Stokes’ theorem 

� 𝐸�⃗ .𝑑𝑟
𝐶

= ��∇ × 𝐸�⃗ �. 𝑑𝑆
𝑆

 

therefore 

��∇ × 𝐸�⃗ �.𝑑𝑆
𝑆

= −�
1
𝐶

𝑆

𝜕𝐻��⃗
𝜕𝑡

.𝑑𝑆 

or 

��∇ × 𝐸�⃗ +
1
𝐶
𝜕𝐻��⃗
𝜕𝑡
� .𝑑𝑆

𝑆

= 0 

This implies 

∇ × 𝐸�⃗ +
1
𝐶
𝜕𝐻��⃗
𝜕𝑡

= 0 

or 
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∇ × 𝐸�⃗ = −
1
𝐶
𝜕𝐻��⃗
𝜕𝑡

 

is required result. 
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Module No. 67 
 

Simply and Multiply Connected Regions 
 

Simply Connected Region 
A simple closed curve is a closed curve which does not intersects itself anywhere. For example 

the curve in the figure (i) is a simple closed curve  

 
 while the curve the curve in figure (ii) is not a simple closed curve. 

 
A region R which is said to be simply connected if any simple closed curve lying in R can be 

continuously shrunk to a point. For example, the interior of a rectangle as shown in figure (iii) is 

an example of simply connected region. 
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Multiply Connected Regions 
A region R which is not simply connected is called multiply connected. For example, the region 

R exterior to C2 and interior to C1 is not simply connected because a circle drawn within R and 

enclosing C2 cannot shrunk to a point without crossing C2 as shown in figure (iv). 

 
In other words, we can say that the regions which have holes are called multiply connected. 

 
 
 
 
 

  
 
 
 
 

 

  



36 
 

Module No. 68 
 

Green’s Theorem in the Plane 
 
We will consider the vector function of just 𝑥 and 𝑦 and derive a relationship between a line 

integral around a closed curve and a double integral over the part of the plane enclosed by the 

curve. 

 

Theorem Statement 
 

If R is simply-connected region of the xy-plane bounded by a closed curve C and if M and N are 

continuous functions of x and y having continuous derivatives in R, then 

� 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = ��
𝜕𝑁
𝜕𝑥

−
𝜕𝑀
𝜕𝑦

�𝑑𝑥𝑑𝑦
𝑅𝐶

 

where C is described in the positive (counter-clockwise) direction. 

 

Proof  
We prove the theorem for a closed curve C which has the property that any straight line parallel 

to the coordinate axes cuts C in at most two points as shown in figure. 

[1] 

Let the equation of the curves AEB and AFB be 𝑦 = 𝑓1(𝑥) and 𝑦 = 𝑓2(𝑥) respectively. If R is 

the region bounded by C, we have 
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�
𝜕𝑀
𝜕𝑦

𝑑𝑥𝑑𝑦
𝑅

= � � �
𝜕𝑀
𝜕𝑦

𝑑𝑦

𝑓2(𝑥)

𝑦=𝑓1(𝑥)

� 𝑑𝑥
𝑏

𝑥=𝑎

 

= �|𝑀(𝑥,𝑦)|𝑦=𝑓1(𝑥)
𝑦=𝑓2(𝑥)

𝑏

𝑎

𝑑𝑥   

= ��𝑀�𝑥,𝑓2(𝑥)� − 𝑀�𝑥,𝑓1(𝑥)��𝑑𝑥
𝑏

𝑎

 

= −�𝑀(𝑥,
𝑏

𝑎

𝑓1)𝑑𝑥 − �𝑀(𝑥,
𝑏

𝑎

𝑓2)𝑑𝑥 

= −� 𝑀𝑑𝑥
𝐶

 

Then,  

� 𝑀𝑑𝑥
𝐶

= −�
𝜕𝑀
𝜕𝑦

𝑑𝑥𝑑𝑦
𝑅

                                                                                                               (1) 

Similarly let the equation of the curves EAF and EBF be 𝑥 = 𝑔1(𝑦) and 𝑥 = 𝑔2(𝑦) respectively. 

Then 

�
𝜕𝑁
𝜕𝑥

𝑑𝑥𝑑𝑦
𝑅

= � � �
𝜕𝑁
𝜕𝑥

𝑑𝑥

𝑔2(𝑦)

𝑥=𝑔1(𝑦)

� 𝑑𝑦

𝑓

𝑦=𝑒

 

= �|𝑁(𝑥,𝑦)|𝑥=𝑔1(𝑦)
𝑥=𝑔2(𝑦)

𝑓

𝑒

𝑑𝑦   

= ��𝑁�𝑥,𝑔2(𝑥)� − 𝑁�𝑥,𝑔1(𝑥)��𝑑𝑦
𝑏

𝑎

 

= �𝑁(𝑥,
𝑏

𝑎

𝑔1)𝑑𝑦 + �𝑁(𝑥,
𝑏

𝑎

𝑔2)𝑑𝑦 

= � 𝑁𝑑𝑦
𝐶

 

Then, 
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�
𝜕𝑁
𝜕𝑥

𝑑𝑥𝑑𝑦
𝑅

= � 𝑁𝑑𝑦
𝐶

                                                                                                                    (2) 

Adding equation (1) and (2), we get 

� 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = ��
𝜕𝑁
𝜕𝑥

−
𝜕𝑀
𝜕𝑦

�𝑑𝑥𝑑𝑦
𝑅𝐶

 

Hence the theorem. 
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Module No. 69 
 

Related Example: Green’s Theorem 
 

Problem Statement 
Verify Green's theorem in the plane for  

�(𝑥𝑦 +  𝑦2) 𝑑𝑥 +  𝑥2 𝑑𝑦 
𝐶

 

where С is the closed curve of the region bounded by у = 𝑥 and у = 𝑥2. 

Solution 
The plane curves у = 𝑥 and у = 𝑥2 intersect at (0,0) and (1,1). Let 𝐶1 be the curve у = 𝑥2 and 

𝐶2 the curve у = 𝑥 and  let the closed curve C be formed from 𝐶1 and 𝐶2. 

The positive direction in traversing С is as shown in the adjacent diagram. 

[1] 

As we know the Green’s theorem 

� 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = ��
𝜕𝑁
𝜕𝑥

−
𝜕𝑀
𝜕𝑦

�𝑑𝑥𝑑𝑦
𝑅𝐶

 

By comparing the given relation with Green’s theorem, we get 

𝑀 = xy +  y2 and 𝑁 = 𝑥2, using these values , we must show Green’s theorem. 
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Now 

� 𝑀 𝑑𝑥 +  𝑁 𝑑𝑦 
𝐶

= �(𝑥𝑦 +  𝑦2) 𝑑𝑥 + 𝑥2 𝑑𝑦 
𝐶

 

Along the curve 𝐶1: у = 𝑥2,𝑑𝑦 = 2𝑑𝑥, while x varies from 0 to 1. The line Integral (1) equals to 

� 𝑀 𝑑𝑥 +  𝑁 𝑑𝑦 = �(3𝑥3  +  𝑥4)𝑑𝑥
1

0𝐶1

 

= �
3
4
𝑥4 +

𝑥5

5
�
0

1

=
3
4

+
1
5

=
19
20

                                                                 (2) 

Along the curve 𝐶2: у = 𝑥, 𝑑𝑦 = 𝑑𝑥, while x varies from 1 to 0. The line Integral (1) equals to 

� 𝑀 𝑑𝑥 +  𝑁 𝑑𝑦 = � 2𝑥2𝑑𝑥 + 𝑥2𝑑𝑥
0

1

= � 3𝑥2𝑑𝑥
0

1𝐶2

 

= |𝑥3|10 = −1 

Thus from equation (1) and (2), we have 

�(𝑥𝑦 +  𝑦2)𝑑𝑥 +  𝑥2 𝑑𝑦 
𝐶

=
19
20

− 1 = −
1

20
 

Now we will calculate the relation 

��
𝜕𝑁
𝜕𝑥

−
𝜕𝑀
𝜕𝑦

�𝑑𝑥𝑑𝑦
𝑅

 

since  

𝜕𝑀
𝜕𝑦

= 𝑥 + 2𝑦, and 
𝜕𝑁
𝜕𝑥

= 2𝑥  

then 

��
𝜕𝑁
𝜕𝑥

−
𝜕𝑀
𝜕𝑦

�𝑑𝑥𝑑𝑦 =
𝑅

�(2𝑥 − 𝑥 − 2𝑦)𝑑𝑥𝑑𝑦
𝑅

 

= � � (𝑥 − 2𝑦)𝑑𝑦𝑑𝑥
𝑥

𝑦=𝑥2

= �(𝑥4 − 𝑥3)𝑑𝑥
1

0

1

𝑥=0

 

integrating and applying limit, we get 
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=
1
5
−

1
4

= −
1

20
 

so the theorem is verified. 
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Module No. 70 
 

Green's Theorem in the Plane in Vector 
Notation 

 
 
First Vector Form (or tangential form) of Green’s Theorem 
We have Green’s theorem 

� 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = ��
𝜕𝑁
𝜕𝑥

−
𝜕𝑀
𝜕𝑦

� 𝑑𝑥𝑑𝑦
𝑅𝐶

                                                                                             (1) 

Now  

𝑀𝑑𝑥 + 𝑁𝑑𝑦 = (𝑀𝚤̂ + 𝑁𝚥̂). (𝑑𝑥𝚤̂ + 𝑑𝑦𝚥̂) = 𝐴. 𝑑𝑟 

where  

𝐴 = 𝑀𝚤̂ + 𝑁𝚥̂ and 𝑑𝑟 = 𝑑𝑥𝚤̂ + 𝑑𝑦𝚥̂. 

Also, if 𝐴 = 𝑀𝚤̂ + 𝑁𝚥̂, then 

∇ × 𝐴 = ��

𝚤̂ 𝚥̂ 𝑘�
𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

𝑀 𝑁 0

�� = −
𝜕𝑁
𝜕𝑧

𝚤̂ +
𝜕𝑀
𝜕𝑧

𝚥̂ + �
𝜕𝑁
𝜕𝑥

−
𝜕𝑀
𝜕𝑦

� 𝑘� 

so that (∇ × 𝐴).𝑘� = 𝜕𝑁
𝜕𝑥
− 𝜕𝑀

𝜕𝑦
 

Then from equation (1) Green’s theorem in the plane can be written 

� 𝐴.𝑑𝑟
𝐶

= �(∇ × 𝐴).𝑘�𝑑𝑅 

where 𝑑𝑅 = 𝑑𝑥𝑑𝑦 

A generalization of this surface to S in space having C as boundary leads quite naturally to 

Stokes’ theorem. This form of Green’s theorem is sometimes called Stokes’ theorem in the 

plane. 

The Green’s theorem in plane is a special case of Stokes theorem. 
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Second Vector Form (or normal form) of Green’s Theorem 
As we derive in first vector form of Green’s theorem  

𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 𝐴.𝑑𝑟 = 𝐴.𝑇�𝑑𝑠 

 

where 𝑇� = 𝑑𝑟
𝑑𝑠

=unit tangent vector to C as shown in figure. 

 

If 𝑛� is the outward drawn unit normal to C, then 𝑇� = 𝑘� × 𝑛�. so that 

𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 𝐴.𝑇�𝑑𝑠 = 𝐴. �𝑘� × 𝑛��𝑑𝑠 = �𝐴 × 𝑘��.𝑛�𝑑𝑠 

Since 𝐴 = 𝑀𝚤̂ + 𝑁𝚥̂, therefore 

𝐵�⃗ = 𝐴 × 𝑘� = (𝑀𝚤̂ + 𝑁𝚥̂) × 𝑘� = 𝑁𝚤̂ − 𝑀𝚥 ̂

and 

∇.𝐵�⃗ =
𝜕𝑁
𝜕𝑥

−
𝜕𝑀
𝜕𝑦

 

then the equation (1) becomes 

� 𝐵�⃗ .𝑛�
𝐶

𝑑𝑠 = �∇.𝐵�⃗
𝑺

𝑑𝑅 

where 𝑑𝑅 = 𝑑𝑥𝑑𝑦 

these are the required vector notations of Green’s theorem. 
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Module No. 71 
 

Green's Theorem in the Plane as Special case 
of Stokes' Theorem 

 

Green’s theorem can be expressed in the plane vector notations which are also named the 

tangential form or normal forms of Green’s theorem. 

The tangential form of Green’s theorem is also called the first vector form of Green’s theorem. 

This generalize form of Green’s theorem in plane also called Stokes’ theorem in the plane. Thus 

we can say that Green’ theorem is a special case of Stokes’ theorem when applied to a region in 

the xy-plane. 
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Module No. 72 
 

Gauss' Divergence Theorem as 
Generalization of Green's Theorem 

 

As we derive in first vector form of Green’s theorem 

𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 𝐴.𝑑𝑟 = 𝐴.𝑇�𝑑𝑠 

 

where 𝑇� = 𝑑𝑟
𝑑𝑠

=unit tangent vector to C as shown in figure. 

 

If 𝑛� is the outward drawn unit normal to C, then 𝑇� = 𝑘� × 𝑛�. so that 

𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 𝐴.𝑇�𝑑𝑠 = 𝐴. �𝑘� × 𝑛��𝑑𝑠 = �𝐴 × 𝑘��.𝑛�𝑑𝑠 

Since 𝐴 = 𝑀𝚤̂ + 𝑁𝚥̂, therefore 

𝐵�⃗ = 𝐴 × 𝑘� = (𝑀𝚤̂ + 𝑁𝚥̂) × 𝑘� = 𝑁𝚤̂ − 𝑀𝚥 ̂

and 

∇.𝐵�⃗ =
𝜕𝑁
𝜕𝑥

−
𝜕𝑀
𝜕𝑦

 

then the equation (1) becomes 

� 𝐵�⃗ .𝑛�
𝐶

𝑑𝑠 = �∇.𝐵�⃗
𝑺

𝑑𝑅 
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where 𝑑𝑅 = 𝑑𝑥𝑑𝑦 

these are the required vector notations of Green’s theorem. 

The generalization of Green’s theorem as Gauss’s divergence theorem is also called the second 

vector form (normal form) of Green’s theorem. 

Generalization of this to the case where the differential arc length ds of a closed curve С is 

replaced by the differential of surface area dS of a closed surface S, and the corresponding plane 

region R enclosed by С is replaced by the volume V enclosed by S, leads to Gauss' divergence 

theorem or Green's theorem in space. 

�𝐵�⃗ .𝑛�𝑑𝑆 = �∇.𝐵�⃗ 𝑑𝑉
𝑅𝑆
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Module No. 73 
 

Green’s First Identity 
 
 

Theorem Statement 
 

If 𝜑 and 𝜓 are scalar point functions with continuous second order derivatives in a region R 

bounded by a closed surface S, then 

�[𝜑∇2𝜓 + (∇𝜑)(∇𝜓)]
𝑅

𝑑𝑉 = �(𝜑∇𝜓)
𝑆

.𝑑𝑆 

Proof 
 

Since divergence theorem is 

�𝐴.𝑛�𝑑𝑆 = �∇.𝐴𝑑𝑉
𝑅𝑆

 

Now substitute  𝐴 =  𝜑∇𝜓 in the divergence theorem, we obtain 

�∇. (𝜑∇𝜓)𝑑𝑉
𝑅

= �(𝜑∇𝜓).
𝑆

𝑛�𝑑𝑆 = �(𝜑∇𝜓)
𝑆

𝑑𝑆                                                                         (1) 

But  

∇. (𝜑∇𝜓) = (∇𝜑). (∇𝜓) + 𝜑(∇.∇𝜓) = 𝜑∇2𝜓 + (∇𝜑)(∇𝜓) 

thus the equation (1) becomes 

�[𝜑∇2𝜓 + (∇𝜑)(∇𝜓)]
𝑅

𝑑𝑉 = �(𝜑∇𝜓)
𝑆

𝑑𝑆 

Hence the theorem. 

Alternative Forms of Green’s first Identity 
We know that 

∇𝜓.𝑛� =
𝜕𝜓
𝜕𝑛

 𝑎𝑛𝑑 ∇𝜑.𝑛� =
𝜕𝜑
𝜕𝑛
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Thus   

∇𝜓.𝑑𝑆 = ∇𝜓.𝑛�𝑑𝑆 =
𝜕𝜓
𝜕𝑛

𝑑𝑆 

and 

∇𝜑.𝑑𝑆 = ∇𝜑.𝑛�𝑑𝑆 =
𝜕𝜑
𝜕𝑛

𝑑𝑆 

Hence the Green’s first Identity can be written as 

�[𝜑∇2𝜓 + (∇𝜑)(∇𝜓)]
𝑅

𝑑𝑉 = �𝜑
𝜕𝜓
𝜕𝑛

𝑑𝑆
𝑆
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Module No. 74 
 

Green’s Second Identity 
 
If 𝜑 and 𝜓 are scalar point functions with continuous second order derivatives in a region R 

bounded by a closed surface S, then 

�[𝜑∇2𝜓 − 𝜓∇2𝜑]
𝑅

𝑑𝑉 = �(𝜑∇𝜓 − 𝜓∇𝜑)
𝑆

.𝑑𝑆 

Proof 

We have Green’s first identity 

�[𝜑∇2𝜓 + (∇𝜑)(∇𝜓)]
𝑅

𝑑𝑉 = �(𝜑∇𝜓)
𝑆

.𝑑𝑆                                                                               (1) 

Interchanging 𝜑 and 𝜓 in equation (1), we obtain 

�[𝜓∇2𝜑 + (∇𝜓)(∇𝜑)]
𝑅

𝑑𝑉 = �(𝜓∇𝜑)
𝑆

.𝑑𝑆                                                                               (2) 

Subtracting equation (2) from (1), we have 

�[𝜓∇2𝜑 + (∇𝜓)(∇𝜑)]− [𝜑∇2𝜓 + (∇𝜑)(∇𝜓)]
𝑅

𝑑𝑉 = �(𝜓∇𝜑) − (𝜑∇𝜓)
𝑆

.𝑑𝑆 

�[𝜑∇2𝜓 − 𝜓∇2𝜑]
𝑅

𝑑𝑉 = �(𝜑∇𝜓 − 𝜓∇𝜑)
𝑆

.𝑑𝑆 

which is called Green’s second identity or symmetrical theorem. 

 

Alternative Forms of Green’s Second Identity 
We know that 

∇𝜓.𝑛� =
𝜕𝜓
𝜕𝑛

 𝑎𝑛𝑑 ∇𝜑.𝑛� =
𝜕𝜑
𝜕𝑛

  

Thus   

∇𝜓.𝑑𝑆 = ∇𝜓.𝑛�𝑑𝑆 =
𝜕𝜓
𝜕𝑛

𝑑𝑆 
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and 

∇𝜑.𝑑𝑆 = ∇𝜑.𝑛�𝑑𝑆 =
𝜕𝜑
𝜕𝑛

𝑑𝑆 

Hence the Green’s Second Identity can be written as 

�[𝜑∇2𝜓 − 𝜓∇2𝜑]
𝑅

𝑑𝑉 = �(𝜑
𝜕𝜓
𝜕𝑛

− 𝜓
𝜕𝜑
𝜕𝑛

)
𝑆

𝑑𝑆 
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Module No. 75 
 

Related Example: Green’s Theorem 
 

Problem Statement 
Evaluate  

� (10𝑥4 − 2𝑥𝑦3)𝑑𝑥 − 3𝑥2𝑦2𝑑𝑦

(2,1)

(0,0)

 

along the path 𝑥4  − 6𝑥𝑦3 =  4𝑦2. 

 

Solution 
A direct evaluation is difficult. By comparing it with Green’s Theorem, we get 

� 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = � (10𝑥4 − 2𝑥𝑦3)𝑑𝑥 − 3𝑥2𝑦2𝑑𝑦

(2,1)

(0,0)𝐶

 

here 𝑀 = 10𝑥4 − 2𝑥𝑦3 and 𝑁 = −3𝑥2𝑦2 and  

𝜕𝑀
𝜕𝑦

= −6𝑥2𝑦 =
𝜕𝑁
𝜕𝑥

 

it follows that the integral is independent of the path. Then we can use any path, for example the 

path consisting of straight line segments from (0,0) to (2,0) and then from (2,0) to (2,1). 

Along the straight line path from (0,0) to (2,0),𝑦 =  0,𝑑𝑦 =  0 and the integral equals 

� 10𝑥4𝑑𝑥 =
10
5
𝑥5 = 2(32) = 64

2

𝑥=0

 

Along the straight line path from (2,0)to (2,1),𝑥 =  2,𝑑𝑥 =  0 and the integral equals 

� −12𝑦2𝑑𝑦 = −12�
𝑦3

3
� = −4(1) = −4

1

𝑦=0

 

Then the value of the line integral 

� (10𝑥4 − 2𝑥𝑦3)𝑑𝑥 − 3𝑥2𝑦2𝑑𝑦

(2,1)

(0,0)

= 64 − 4 = 60 
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is the required solution. 
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Module No. 76 
 

Selected Problem 1: Green’s Theorem 
 

Problem Statement 
Prove that  

� 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0 

 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0  around every closed curve С in a simply-connected region if and only  

𝜕𝑁
𝜕𝑥

=
𝜕𝑀
𝜕𝑦

 

 everywhere in the region.  

 

Proof 
Assume that Μ and N are continuous and have continuous partial derivatives everywhere in the 

region R bounded by C, so that Green's theorem is applicable. 

Then 

� 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = ��
𝜕𝑁
𝜕𝑥

−
𝜕𝑀
𝜕𝑦

�𝑑𝑥𝑑𝑦
𝑅𝐶

 

Sufficient: If  
𝜕𝑁
𝜕𝑥

=
𝜕𝑀
𝜕𝑦

 

  in R, then Clearly  

� 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0 

Necessity:  suppose  

� 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0 
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 for all curves C. If 𝜕𝑁
𝜕𝑥
− 𝜕𝑀

𝜕𝑦
> 0 at a point Ρ, then from the continuity of the derivatives it 

follows that 𝜕𝑁
𝜕𝑥
− 𝜕𝑀

𝜕𝑦
> 0 in some region A surrounding Ρ. If 𝛤 is the boundary of A then 

� 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = ��
𝜕𝑁
𝜕𝑥

−
𝜕𝑀
𝜕𝑦

�𝑑𝑥𝑑𝑦
𝑅𝐶

> 0 

which contradicts the assumption that the line integral is zero around every closed curve. 

Similarly the assumption 𝜕𝑁
𝜕𝑥
− 𝜕𝑀

𝜕𝑦
< 0 leads to a contradiction. Thus 𝜕𝑁

𝜕𝑥
− 𝜕𝑀

𝜕𝑦
= 0 at all points on 

R. 
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Module No. 77 
 

Selected Problem 2: Green’s Theorem 

 
Problem Statement 
 

Show that the area bounded by a simple closed curve С is given by  

1
2
� 𝑥𝑑𝑦 − 𝑦𝑑𝑥
𝐶

 

Proof 
 

Since Green’s theorem is 

� 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = ��
𝜕𝑁
𝜕𝑥

−
𝜕𝑀
𝜕𝑦

�𝑑𝑥𝑑𝑦
𝑅𝐶

 

 
Put 𝑀 = −𝑦 and 𝑁 = 𝑥 in Green’s theorem, we get 

� 𝑥𝑑𝑡 − 𝑦𝑑𝑥 = ��
𝜕(𝑥)
𝜕𝑥

−
𝜕(−𝑦)
𝜕𝑦

� 𝑑𝑥𝑑𝑦 = 2�𝑑𝑥𝑑𝑦 = 2A
𝑅𝑅𝐶

 

� 𝑥𝑑𝑡 − 𝑦𝑑𝑥 = 2A
𝐶

 

or  

Area = A =
1
2
� 𝑥𝑑𝑦 − 𝑦𝑑𝑥
𝐶
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Hence the result. 

Now we will illustrate this formula through an example 

Example Statement 
Find the area of the ellipse 𝑥 =  𝑎 𝑐𝑜𝑠𝜃, у =  𝑏 𝑠𝑖𝑛𝜃  

Solution 
By making use of above result, 

Area = A =
1
2
� 𝑥𝑑𝑦 − 𝑦𝑑𝑥
𝐶

 

=
1
2
� (𝑎 𝑐𝑜𝑠𝜃)(𝑏 𝑐𝑜𝑠𝜃)
2𝜋

0

𝑑𝜃 − (𝑏 𝑠𝑖𝑛𝜃)(−𝑎 𝑠𝑖𝑛𝜃)𝑑𝜃 

 

=
1
2
� 𝑎𝑏 𝑐𝑜𝑠2𝜃
2𝜋

0

𝑑𝜃 + 𝑎𝑏𝑠𝑖𝑛2𝜃𝑑𝜃 =
1
2
� 𝑎𝑏 (𝑐𝑜𝑠2𝜃
2𝜋

0

+ 𝑠𝑖𝑛2𝜃)𝑑𝜃 

= 𝑎𝑏.
1
2
� 𝑑𝜃
2𝜋

0

= 𝑎𝑏𝜋 

is the required area. 
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Module No. 78 
 

Selected Problem 3: Green’s Theorem 
 
Problem Statement 
 

Evaluate  

�(𝑦 − sin 𝑥)𝑑𝑥 + cos 𝑥 𝑑𝑦
𝐶

 

where С is the triangle of the adjoining figure:  

i. Directly,  

ii. By using Green's theorem in the plane.  

 

Solution 
i. Along О𝐴, у =  0,𝑑𝑦 =  0 and the integral equals 

� (0 −

𝜋
2�

0

sin 𝑥)𝑑𝑥 + cos 𝑥 (0) =� |−sin𝑥𝑑𝑥 = cos 𝑥 |0
𝜋
2� = −1

𝜋
2�

0

 

 
Along 𝐴𝐵, 𝑥 = 𝜋

2�  ,𝑑𝑥 =  0 and the integral equals to 

�(𝑦 − 1)(0) + 0𝑑𝑦 = 0
1

0
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Along 𝐵𝑂, у =  2𝑥
𝜋

 ,𝑑𝑦 =  2
𝜋
𝑑𝑥 and the integral equals 

�(
2𝑥
𝜋
− sin 𝑥)𝑑𝑥 +

0

𝜋
2�

2
𝜋

cos 𝑥 𝑑𝑥 = �
𝑥2

𝜋
+ cos 𝑥 +

2
𝜋

sin 𝑥�
𝑥=𝜋 2�

0

 

= 1 −
𝜋
4
−

2
𝜋

 

Then the integral along С = −1 + 0 + 1 − 𝜋
4
− 2

𝜋
= −𝜋

4
− 2

𝜋
 

Hence 

�(𝑦 − sin 𝑥)𝑑𝑥 + cos 𝑥 𝑑𝑦
𝐶

= −
𝜋
4
−

2
𝜋

 

ii. Since the green’s theorem is 

� 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = ��
𝜕𝑁
𝜕𝑥

−
𝜕𝑀
𝜕𝑦

�𝑑𝑥𝑑𝑦
𝑅𝐶

                                                                                 (1) 

by comparing with the given integral, we get 

� 𝑀𝑑𝑥 + 𝑁𝑑𝑦 =
𝐶

�(𝑦 − sin 𝑥)𝑑𝑥 + cos 𝑥 𝑑𝑦
𝐶

 

𝑀 = 𝑦 − sin 𝑥, 𝑁 = cos 𝑥 ,
𝜕𝑀
𝜕𝑦

= 1 
𝜕𝑁
𝜕𝑥

= − sin 𝑥 

then the equation (1) becomes 

= �(𝑦 − sin 𝑥)𝑑𝑥 + cos 𝑥 𝑑𝑦
𝐶

= �(−sin𝑥 − 1)𝑑𝑥𝑑𝑦
𝑅

 

= �

⎣
⎢
⎢
⎡
� (−sin 𝑥 − 1)𝑑𝑦

2𝑥
𝜋

𝑦=0 ⎦
⎥
⎥
⎤
𝑑𝑥

𝜋
2�

𝑥=0

 

= � |−ysin 𝑥 − 𝑦|0
2𝑥
𝜋  𝑑𝑥

𝜋
2�

𝑥=0

 

� �−
2𝑥
𝜋

sin 𝑥 −
2𝑥
𝜋
�𝑑𝑥

𝜋
2�

𝑥=0
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�−
2
𝜋

(−𝑥 cos 𝑥 + sin 𝑥) −
𝜋2

2
�
𝑥=0

𝑥=𝜋 2�

 

= −
𝜋
4
−

2
𝜋

 

in agreement with part (i). 
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