Solution of Practice Questions Lecture # 6

Question # 1:

Express
$$\vec{b} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$
 as a linear combination of $\vec{s} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{t} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$

Solution:

To express \vec{b} as a linear combination of \vec{s} and \vec{t} , the scalars c_1 and c_2 should be determined as following:

$$\vec{b} = c_1 \vec{s} + c_2 \vec{t}$$

$$(2,4) = c_1 (1,2) + c_2 (3,4)$$

$$(2,4) = (c_1 + 3c_2, 2c_1 + 4c_2)$$

The following system of equations is obtained by equating the corresponding entries:

$$c_{1} + 3c_{2} = 2$$

$$2c_{1} + 4c_{2} = 4$$
multiply first equation by 2 and subtract from second
$$2c_{1} + 6c_{2} = 4$$

$$2c_{1} + 4c_{2} = 4$$

$$\frac{- - - -}{2c_{2} = 0}$$

$$c_{2} = 0$$
Put in first equation
$$\therefore \quad c_{1} = 2$$

$$(2,4) = 2(1,2) + 0(3,4)$$

Question # 2

Hence

Determine whether the set of vectors $\vec{v}_1 = (1, 2, -1)$, $\vec{v}_2 = (3, -3, 4)$ and $\vec{v}_3 = (2, -1, -2)$ will span R^3 ?

Solution:

To show that the given vectors span \mathbb{R}^3 , choose a general vector from \mathbb{R}^3 , let $\vec{u} = (u_1, u_2, u_3) \in \mathbb{R}^3$ and determine if we can find scalars c_1 , c_2 , c_3 so that $\vec{u} \in \mathbb{R}^3$ can be written as a linear combination of the given vectors. That is,

$$\vec{u} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + c_3 \vec{v}_3$$

(u_1 , u_2 , u_3) = c_1 (1, 2, -1) + c_2 (3, -3, 4) + c_3 (2, -1, -2)

The following system of equations is obtained by doing some vector algebra:

$$u_{1} = c_{1} + 3c_{2} + 2c_{3}$$
$$u_{2} = 2c_{1} - 3c_{2} - c_{3}$$
$$u_{3} = -c_{1} + 4c_{2} - 2c_{3}$$

Writing in matrix form

 $\begin{bmatrix} 1 & 3 & 2 \\ 2 & -3 & -1 \\ -1 & 4 & -2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$

Now we determine if this system is consistent (i.e have at least one solution) for every possible choice of $\vec{u} = (u_1, u_2, u_3) \in \mathbb{R}^3$. We know that the system will be consistent for every possible choice of $\vec{u} = (u_1, u_2, u_3)$ provided the coefficient matrix is invertible and that will be checked by computing the determinate of the coefficient matrix. So that

$$\det(A) = 45 \neq 0$$

Therefore the coefficient matrix is invertible and so this system will have solution for every choice of $\vec{u} = (u_1, u_2, u_3)$ which in turns determine that the given set of vectors span R^3 .

Question # 3

Determine whether the set of vectors $\vec{v}_1 = (1,3,1,1)$, $\vec{v}_2 = (1,2,1,0)$ and $\vec{v}_3 = (1,1,0,0)$ will span R^3 ?

Solution:

(1	1	1)	\rightarrow	(1)	0	0)	\rightarrow	(1	0	0)		(1	0	0)	\rightarrow	(1	0	0`
3	2	1		3	2	1		0	2	1	\rightarrow	0	1	0		0	1	0
1	1	0		1	1	0		0	1	0		0	2	1		0	0	1
(1	0	0)		(1)	1	1)		0	1	1)		0	1	1)		0	0	1

At this point, it is clear the rank of the matrix is 3, so the vectors span a subspace of dimension 3, hence they span R^3 .

Question #4

Determine whether the vectors $v_1 = (1, -1, 4)$, $v_2 = (-2, 1, 3)$, and $v_3 = (4, -3, 5)$ span R³.

Solution:

$$\begin{bmatrix} 1 & -2 & 4 \\ -1 & 1 & -3 \\ 4 & 3 & 5 \end{bmatrix} \xrightarrow{R_2 + R_1, R_3 - 4R_1} \begin{bmatrix} 1 & -2 & 4 \\ 0 & -1 & 1 \\ 0 & 11 & -11 \end{bmatrix} \xrightarrow{-R_1, 1/11R_3} \begin{bmatrix} 1 & -2 & 4 \\ 0 & 1 & -1 \\ 0 & 1 & -1 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & -2 & 4 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

It is in Echelon form, where it can be seen that 3rd row does not contain any Pivot . so it cannot span $R^{3}\!.$

Question # 5

Let
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} -1 \\ 1 \\ 4 \end{bmatrix}$ and $\vec{z} = \begin{bmatrix} h \\ 2 \\ -3 \end{bmatrix}$. If \vec{z} can be generated by \vec{v}_1 and \vec{v}_2 , then find value of 'h'.

Solution:

Consider
$$\vec{c}_1 \vec{v}_1 + \vec{c}_2 \vec{v}_2 = \vec{z}$$
.
Therefore, $\vec{c}_1 \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix} + \vec{c}_2 \begin{bmatrix} -1 \\ 1 \\ 4 \end{bmatrix} = \begin{bmatrix} h \\ 2 \\ -3 \end{bmatrix}$
 $\vec{c}_1 - \vec{c}_2 = h$ e.q.(1)
 $2\vec{c}_1 + c_2 = 2$ e.q.(2)
 $-3\vec{c}_1 + 4\vec{c}_2 = -3$ e.q.(3)

Multiply equation 2 by 3 and multiply equation 3 by 2 and then add both equations

$$\frac{6\vec{c}_1 + 3c_2 = 6}{-6\vec{c}_1 + 8\vec{c}_2 = -6}$$
$$\frac{-6\vec{c}_1 + 8\vec{c}_2 = -6}{11\vec{c}_2 = 0}$$
$$\vec{c}_2 = 0$$

Put the value of \vec{c}_2 in equation 3 we get

$$\vec{c}_1 = 1$$

Now put the value of $\ \vec{c}_1 \ and \ \vec{c}_2$

1 - 0 = hh = 1