Practice Questions Lecture #6

Question # 1:

Express
$$\vec{b} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$
 as a linear combination of $\vec{s} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{t} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$

Question # 2

Determine whether the set of vectors $\vec{v}_1 = (1, 2, -1)$, $\vec{v}_2 = (3, -3, 4)$ and $\vec{v}_3 = (2, -1, -2)$ will span R^3 ?

Question #3

Determine whether the set of vectors $\vec{v}_1 = (1,3,1,1)$, $\vec{v}_2 = (1,2,1,0)$ and $\vec{v}_3 = (1,1,0,0)$ will span R^{3} ?

Question #4

Determine whether the set of vectors $\vec{v}_1 = (1, -1, 4)$, $\vec{v}_2 = (-2, 1, 3)$ and $\vec{v}_3 = (4, -3, 5)$ will span R^{3} ?

Question # 5

Let $\vec{v}_1 = \begin{vmatrix} 1 \\ 2 \\ -3 \end{vmatrix}$, $\vec{v}_2 = \begin{vmatrix} -1 \\ 1 \\ 4 \end{vmatrix}$ and $\vec{z} = \begin{vmatrix} h \\ 2 \\ -3 \end{vmatrix}$. If \vec{z} can be generated by \vec{v}_1 and \vec{v}_2 , then find value of 'h'.