Practice Questions for Lecture #4

Question #1

Identify if the following matrices are in echelon form or reduced echelon form or not in both forms. Also give the reason to justify your answer.

	[1	2	3	4]			
a.	0	0	1	4			
	0	0	0	0			
Echelon Form							
	6	2	1	4]			
b.	0	0	0	0			
	0	0	4	0			

Neither Echelon nor Reduced echelon forms because row with all zero elements is not the last row. All non-zero rows are above any rows of all zeros.

	[1	0	0	0
c.	0	1	0	0
	0	0	1	0

Reduced echelon form because:

The leading entry in each nonzero row is 1.

Each leading 1 is the only nonzero entry in its column

 $d. \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix}$

Echelon form:

Each leading entry of a row is in a column to the right of the leading entry of the row above it.

All entries in a column below a leading entry are zero

e. $\begin{bmatrix} -1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ Echelon form:

f.
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{bmatrix}$$

Echelon form:

Question # 2

For the given linear system $\begin{bmatrix} 2 & 3 & 5 & 7 \\ 0 & 2 & 3 & 9 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, find the solution when free variable z = 0.

Solution:

Corresponding system of equation is

$$2x+3y+5z = 7 ---1$$

$$2y+3z = 9 ---2$$

as given $z = 0$
put this value of z in equation 2 we get

$$2y+0=9$$

$$y = 4.5$$

put the value of y and z in equation 1

$$2x+3(4.5)+0=7$$

$$2x+13.5=7$$

$$2x = 7-13.5 = -6.5$$

$$x = 3.25$$

Question # 3

Apply elementary row operations to transform the following matrix into the reduced echelon form:

$$A = \begin{bmatrix} 3 & 6 & 9 \\ 1 & 3 & 3 \\ 4 & 8 & 5 \end{bmatrix}$$

Solution:

$$A = \begin{bmatrix} 3 & 6 & 9 \\ 1 & 3 & 3 \\ 4 & 8 & 5 \end{bmatrix}$$

$$1/3R_{1}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 3 \\ 4 & 8 & 5 \end{bmatrix}$$

$$R_{2} - R_{1}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 4 & 8 & 5 \end{bmatrix}$$

$$R_{4} - 4R_{1}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 4 & 8 & 5 \end{bmatrix}$$

$$R_{4} - 4R_{1}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & -7 \end{bmatrix}$$

$$R_{1} - 2R_{2}$$

$$\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & -7 \end{bmatrix}$$

$$-1/7R_{3}$$

$$\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_{1} - 3R_{3}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Question #4

Apply elementary row operations to transform the following matrix into the echelon form:

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 1 & 2 & 2 \\ 4 & -1 & -4 \end{bmatrix}$$

Solution:

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 1 & 2 & 2 \\ 4 & -1 & -4 \end{bmatrix}$$
$$R_2 - R_1, R_3 - 4R_1$$
$$\begin{bmatrix} 1 & 3 & 2 \\ 0 & -1 & -1 \\ 0 & -13 & -12 \end{bmatrix}$$
$$-R_2$$
$$\begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & -13 & -12 \end{bmatrix}$$
$$R_3 + 13R_2$$
$$\begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Question # 5

Apply elementary row operations to transform the following matrix into

- a. Echelon form:
- b. Reduced Echelon form

$$A = \begin{bmatrix} 1 & -3 & -2 & 1 \\ -6 & 2 & 5 & 3 \\ 2 & 1 & 1 & -3 \end{bmatrix}$$

Solution:

$$A = \begin{bmatrix} 1 & -3 & -2 & 1 \\ -6 & 2 & 5 & 3 \\ 2 & 1 & 1 & -3 \end{bmatrix}$$

add 6 times the 1st row to the 2nd row add –2 times the 1st row to the 3rd row multiply the 2nd rowby-1/16 add –7 times the 2nd row to the 3rd row multiply the 3rd row by 16/31 $\begin{bmatrix} 1 & -3 & -2 & 1 \\ 0 & 1 & 7/16 & -9/16 \\ 0 & 0 & 1 & -17/31 \end{bmatrix}$

The matrix is in echelon form

To convert this in reduced echelon form add -7/16 times the 3rd row to the 2nd row add 2 times the 3rd row to the 1st row add 3 times the 2nd row to the 1st row

$$\begin{bmatrix} 1 & 0 & 0 & -33/31 \\ 0 & 1 & 0 & -10/31 \\ 0 & 0 & 1 & -17/31 \end{bmatrix}$$

Question #6

Find the general solution of a linear system whose augmented matrix is $\begin{pmatrix} 1 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix}$

Solution:

Corresponding system of linear equation

x + y = 33x + 2y = 1

Multiply equation 1 with 3 and subtract from sec ond 3x + 3y = 9 3x + 2y = 1 $\frac{- - - -}{0 + y = 8}$ put the value of y in first equation x + 8 = 3x = 3 - 8 = -5

Question # 7

Find the general solution of a linear system whose augmented matrix is $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ Corresponding system of linear equation

x + 0y = 00x + y = 0

x = 0y = 0