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1-Introduction

Lecture 1 Introduction
Background
Linear y=mx+c
Quadratic ax2+bx+c=0
Cubic ax3+bx2+cx+d=0

Systems of Linear equations

ax+by+c=0
Ix+my+n=0
Solution ?
Equation
Differential Operator
dy_1
dx X
Taking anti derivative on both sides
y=In x
From the past
B Algebra
® Trigonometry
W Calculus
B Differentiation
B Integration

Differentiation
» Algebraic Functions
» Trigonometric Functions
« Logarithmic Functions
« Exponential Functions
* Inverse Trigonometric Functions

B More Differentiation
« Successive Differentiation
» Higher Order
e Leibnitz Theorem
B Applications
« Maxima and Minima
« Tangent and Normal
B Partial Derivatives
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1-Introduction

y=f(x)

f(x.y)=0

z=f(x,y)
Integration

Reverse of Differentiation
By parts

By substitution

By Partial Fractions
Reduction Formula

Frequently required

Standard Differentiation formulae
Standard Integration Formulae

Differential Equations

Something New

Mostly old stuff
» Presented differently
* Analyzed differently
» Applied Differently

dy
5 =1
dx y
(y—x)dx +4xdy =0
d?y dyj
—+5| — 4 =g
dx? (dx y
u_ v 0
oy OX
ou ov
X—+Yy— =u
OX oy
ou du _au
7 T a2 Te =0
ox: ot ot
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2-Fundamentals of Differential Equation

Lecture 2 Fundamentals of Differential Equation

Fundamentals
% Definition of a differential equation.

% Classification of differential equations.
% Solution of a differential equation.
% Initial value problems associated to DE.

% Existence and uniqueness of solutions
Elements of the Theory
B Applicable to:
e Chemistry
Physics
Engineering
Medicine
Biology
e Anthropology
B Differential Equation — involves an unknown function with one or more of its
derivatives
B Ordinary D.E. — a function where the unknown is dependent upon only one
independent variable
Examples of DEs

dy
- _5 =1
dx y
(y—x)dx+4xdy =0
d’y dyj
=Yy | —ay =¢
dx? (dx y
M N 0
oy OX
ou ov
X—+Yy— =u
OX oy
2 2

Specific Examples of ODE’s
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2-Fundamentals of Differential Equation

the growth equation;
the pendulum equation;

the van der Pol equation;

the LCR oscillator equation;

a Riccati equation.

B The order of an equation:
e The order of the highest derivative appearing in the equation

d?y . (dyY’
Y512 4 —¢"
e (dxj y

4 2

Ordinary Differential Equation

If an equation contains only ordinary derivatives of one or more dependent variables,
w.r.t a single variable, then it is said to be an Ordinary Differential Equation (ODE). For
example the differential equation

d’ dy \’ )
Kgﬁrs(d—i) 4y =e

is an ordinary differential equation.

Partial Differential Equation
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2-Fundamentals of Differential Equation

Similarly an equation that involves partial derivatives of one or more dependent
variables w.r.t two or more independent variables is called a Partial Differential Equation
(PDE). For example the equation

o'u o
az —4 + —2 = O
ox"  oX

is a partial differential equation.

Results from ODE data
B The solution of a general differential equation:
o f(t,y,y’,...,y(n)=0
e isdefined over some interval | having the following properties:
B y(t) and its first n derivatives exist for all tin I so that y(t) and its
first n - 1 derivates must be continuous in |
B y(t) satisfies the differential equation for all tin |

General Solution — all solutions to the differential equation can be represented in
this form for all constants

Particular Solution — contains no arbitrary constants

Initial Condition

Boundary Condition

Initial Value Problem (IVP)

Boundary Value Problem (BVP)

IVP Examples

B The Logistic Equation
e p’=ap-—bp2
e with initial condition p(t0) = pO; for p0O = 10 the solution is:
e p(t)=10a/(10b + (a— 10b)e-a(t-t0))
B The mass-spring system equation
e X +(@/m)yx’+(k/mx =g+ (F(t)/m)
BVP Examples

e Differential equations

By’ + 9y =sin(t)
e with initial conditionsy(0) =1, y’(2p)=-1
e y(t) = (1/8) sin(t) + cos(3t) + sin (3t)

m oy’ +p2y=0
e with initial conditions y(0) = 2, y(1) = -2
* y(t) = 2cos(pt) + (c)sin(pt)

Properties of ODE’s
B Linear — if the nth-order differential equation can be written:
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2-Fundamentals of Differential Equation VU

e an(t)y(n) + an-1(t)y(n-1) + ...+ aly’ +a0(t)y = h(t)

B Nonlinear — not linear
X3y’ ")3-x2y(y’’)2+3xy +5y=eX
Superposition
W Superposition — allows us to decompose a problem into smaller, simpler parts and
then combine them to find a solution to the original problem.

Explicit Solution
A solution of a differential equation

2 2
F(x,y,dy S M}O

dx d T dx?
that can be written as y = f(x) is known as an explicit solution .
Example: The solution y = xex is an explicit solution of the differential equation
ﬂ — ZQ +y=0
dx?>  dx

Implicit Solution
Arelation G(x,y) is known as an implicit solution of a differential equation, if it defines
one or more explicit solution on I.

Example: The solution x2 + y2 - 4=0 is an implicit solution of the equation y’ = - x/y
as it defines two explicit solutions y=+(4-x2)1/2
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3-Separable Equations VU

Lecture 3 Separable Equations

The differential equation of the form

dy
= f(x,
™ (x,y)

is called separable if it can be written in the form

Y heog(y)
X

To solve a separable equation, we perform the following steps:
1. We solve the equation g(y) =0 to find the constant solutions of the equation.

2. For non-constant solutions we write the equation in the form.

dy
—— =h(x)dx
ay)
Then integrate Jﬁdy = Ih(x)dx

to obtain a solution of the form
G(y)=H(Xx)+C
3. We list the entire constant and the non-constant solutions to avoid repetition..

4. If you are given an IVP, use the initial condition to find the particular solution.

Note that:
(@) No need to use two constants of integration becauseC, —C, =C..

(b) The constants of integration may be relabeled in a convenient way.
(c) Since a particular solution may coincide with a constant solution, step 3 is
important.

Example 1:
Find the particular solution of
d 21
e Y=
X X

Solution:
1. By solving the equation
y?-1=0
We obtain the constant solutions
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3-Separable Equations VU

y==+1
2. Rewrite the equation as
dy  dx
y2-1 X
Resolving into partial fractions and integrating, we obtain
1Hi_i}dyzpdx
2)|y-1 y+1 X

Integration of rational functions, we get

L=ty ke
2 |y+1|
3. The solutions to the given differential equation are
L= x4c
2 |y+1|
y = =1

4. Since the constant solutions do not satisfy the initial condition, we plug in the
condition

y =2 When x =1 inthe solution found in step 2 to find the value of C .

2 3

The above implicit solution can be rewritten in an explicit form as:
3+ x?
3-x°

Example 2:
Solve the differential equation

dy =1+ iz
dt y
Solution:

1. We find roots of the equation to find constant solutions

1
1+—2:0

y
No constant solutions exist because the equation has no real roots.
2. For non-constant solutions, we separate the variables and integrate

dy
——=|dt
Jl+1/y2 -[

Si 1 y' g1
ince = =1-
1+1/y*  y*+1 y>+1

10
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3-Separable Equations VU

dy 1
————=Yy—tan
Thus J1+1/y2 y (y)
So that y—tan'(y)=t+C

It is not easy to find the solution in an explicit form i.e. Y as a function of t.
3. Since 3 no constant solutions, all solutions are given by the implicit equation

found
in step 2.
Example 3:
Solve the initial value problem
d
d_il =1+t* +y* +t%y?%, y(0)=1
Solution:
1. Since 1+t2 +y? +t2y? = (1+t°)1+y?)
The equation is separable & has no constant solutions because 3 no real roots of

1+y? =0,

2. For non-constant solutions we separate the variables and integrate.

Y @rt2)at
1+y

Jlfzﬂ = [(+t)dt

3

tan " (y) =t+%+C

t3
y =tan(t+§+cj

3. Since 3 no constant solutions, all solutions are given by the implicit or explicit
equation.

Which can be written as

4. The initial condition y(0) =1 gives

V4
C=tan"'() ==
@) 1

The particular solution to the initial value problem is
] ts T

tan~(y) =t+—+—

3 4

. .. t*
or in the explicit form y =tan ‘[+§+Z

11
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3-Separable Equations VU

Example 4:

Solve
(L+x)dy — ydx =0

Solution:

Dividing with (1+ )y, we can write the given equation as
dy__y
dx  (1+x)

1. The only constant solutionis Y =0

2. For non-constant solution we separate the variables

dy dx
y 14X
Integrating both sides, we have
dy ( dx
J v J1ex

In|y| = In[l+ X +c,
y = oINX+C _ Infl+x] (G,
or y =|1+xmq:=ieq@+x)

C
y=C(1+x), C=zxe?

If we use In | C | instead of C; then the solution can be written as
INn|yl=In|1+x]|+In|c|

or In|yl=Injc(+x)
So that y=c(l+Xx).
3. The solutions to the given equation are
y = c(l+x)
y =0
Example 5

12
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3-Separable Equations
Solve
xy*dx + (y2 + Z)e’SXdy =0.
Solution:
The differential equation can be written as
4
dy _ (_ XeSX) A
dx y2+2
4
1. Since Zy 5 — y =0. Therefore, the only constant solutionis Y = 0.
Y+
2. We separate the variables
2
y +2 « _ _
xe¥dx + 2 —dy=0 or xe’ dx+(y 242y 4)dy=0
Integrating, with use integration by parts by parts on the first term, yields
1 3x 1 3x -1 2 -3
—xe’—=e’ —y T ——y7T =cC
3 9 y 3 y 1
3x 9 6
e™(3x-1)=—+—+c where 9c,=c
y 'y
3. All the solutions are
e¥(3x—1)=—+—+c
y y’
y = 0
Example 6:
Solve the initial value problems
d d
@ =0~ yO=1 & J=(-1, y0=10
and compare the solutions.
Solutions:
1. Since (y —1)> =0 = y =1. Therefore, the only constant solution is y = 0.
2. We separate the variables
dy -2
=dx or(y-1)?dy = dx
(y-2)°
Integrating both sides we have
13
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3-Separable Equations VU

[(y-1) %y = fox

_1)y2+1
=0 e
-2+1
or —L—X+C
y-1
3. All the solutions of the equation are
S B
y-1
y =1

4. We plug in the conditions to find particular solutions of both the problems

(@) y(0)=1= y =1when x = 0. So we have

1 1
——=O+c:>c=—6:>0=—oo

The particular solution is

e y-1-0
y-1
So that the solution is Y = 1, which is same as constant solution.
(b) y(0)=1.01= y =1.01 when x=0.So we have

- =0+c=c=-100
1.01-1
So that solution of the problem is
—i: Xx-100 = y =1+
y-1 100 — x

5. Comparison: A radical change in the solutions of the differential equation has
Occurred corresponding to a very small change in the condition!!

Example 7:

Solve the initial value problems

gy _ ay (e _
(a) OIX_(y 1°+0.0, y(0)=1 (b) ™ (y-1-0.0, y(0)=1.

Solution:

(a) First consider the problem

dy 2

o (y-1°+0.01, y(0)=1
X

We separate the variables to find the non-constant solutions

14
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3-Separable Equations

dy
(\/TC)l)2 +(y-1)

Integrate both sides

=dx

dy-1) g
J(\/O_Ol)2 +(y -1y _jd

So that ! tan™ y—-1 =X+C

0.01 +/0.01

an ‘1(y0—._011j =/0.01(x +c)

yof_oll = tan[v/0.01(x + c)]

or y =1++0.01 tan \/0.01(X+C)J
Applying y(O) =1=y=1 when x=0, we have

tan(0)=+/0.01(0+¢c)=0=c

Thus the solution of the problem is

y =1++/0.01 tan(J0.0l x)

(b) Now consider the problem

dx
We separate the variables to find the non-constant solutions

dy =dx
(y-1)° ~(~o.01)
‘ d(y-1) =Idx
(y-1)° ~(~o.01)

1 |y 1- \/0_01|_

24001 "ly—1+ 001
Applying the condition y(O)—1:> y=1when x=0

Y (y—17-001 y(©) -1

15
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3-Separable Equations

! % %zc:c 0

nY ~1=V00L 5 501X
y—-1++/0.01
y—-1-+0.01 e?/00
y-1+4001 1

Simplification:

a ¢ a+b c+d

—_—— Yy — = —

b d a-b c-d
y-1-4001+y-1+001 2V00X 3
y—-1-40.01-y+1-4/0.01 2V0.01X _4

oy_2 2001 4

2001 2001 _4
y—1 02/001 ¢

~J0.01 o2J001_4
2-/0.01
e +1
y-1= VO-O{WMJ

2./0.01 +1J

—— e
N O'Ol[ezw/o.ml

By using the property

Comparison:

The solutions of both the problems are

@y=  1+4001 tan( 0.01 x)

2~/0.01 _|_1

Again a radical change has occurred corresponding to a very small in the differential

equation!

VU
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3-Separable Equations

Exercise:

Solve the given differential equation by separation of variables.

1 y_(2y+3J2
" dx  4x+5

2. sec® xdy+cscydx=0
3. e’sin2xdx+cos x(e2y - y)dy =0

dy ~ xy+3x-y-3
dx xy—-2x+4y-8

dy _xy+2y-x-2
dx xy—-3y+x-3

1 1

6. y(a—x2)ody=(4+y?)odx

7. (x+\/§)%:y+\/§

Solve the given differential equation subject to the indicated initial condition.

8. (e +1)sinxdx = (1+cosx)dy, y(0)=0
9. (1+ x4)dy+ x(1+4y2)dx:0, y(1)=0

1
10.  ydy= 4x(y2 + 1)5 dx y(0)=1

17
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4-Homogeneous Differential Equations
Lecture 4 Homogeneous Differential Equations
A differential equation of the form
dy
—=f(y)
dx
Is said to be homogeneous if the function f(x,y) is homogeneous, which means
n
f (tX,ty) =t'f (X1 Y) For some real number n, for any numbert .
Example 1
Determine whether the following functions are homogeneous
Xy
fxy)=—7"=
X" +y
g(x,y) = In(— 3y /(X + 4xy2))
Solution:
The functions f (X, y) is homogeneous because
t2
FOY) = 55 o = 5oy = F(X,Y)
t°(X“+y°) x°+y
Similarly, for the function g(X, y) we see that
—3t°x%y —3x%y
g(tx,ty) =In| o~ |=N —— [=9(X,y)
t°(x° +4xy°) X* + 4xy
Therefore, the second function is also homogeneous.
Hence the differential equations
dy
— = f (X,
3 T 0Y)
dy
—=g(xy)
dx
Are homogeneous differential equations
18
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4-Homogeneous Differential Equations VU

Method of Solution:

To solve the homogeneous differential equation

dy
— = f(x
” (X, Y)
We use the substitution
voY
X

If f(x,y)is homogeneous of degree zero, then we have

f(x,y)=f@Lv)=F()
Since y' = xv' + v, the differential equation becomes
x% +v=~1@Qv)
dx
This is a separable equation. We solve and go back to old variable y through Y = XV.

.........................................

Summary:

1. Identify the equation as homogeneous by checking f (tx,ty) =t" f (x,y);

2. Write out the substitutionv = % ;

3. Through easy differentiation, find the new equation satisfied by the new functionv ;
dv

Xx—+v="Ff@Qv
™ @v)

4. Solve the new equation (which is always separable) to find V ;

5. Go back to the old function y through the substitution Y = VX;

6. If we have an IVP, we need to use the initial condition to find the constant of
integration.

o Slnce we have to solve a separable equation, we must be careful about the

constant solutions.
o If the substitution y =vx does not reduce the equation to separable form then the

equatlon is not homogeneous or something is wrong along the way.

ﬂ_—2x+5y
dx 2X+Y

It is easy to check that the function

—2X+5
f(x,y)=——=>)

2X+Yy
is a homogeneous function.

19
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4-Homogeneous Differential Equations

v==>
X

. Differentiating w.r.t X , we obtain

, — 2X +5xv
XV +V=

—2+5v

2X 4+ XV

2+V

which gives

—2+5v

& _if
dx x\ 2+v

_Vj

This isa separable At this stage please refer to the CautionI

—4In|y-2x|+3In|y-x| = C
4= y3m 2= X‘ In|x|+c
X X
2] —x|
Y= +nf =Inx+Inc, c=Inc,
X | X |
_ -4 _ 3
In (y Xix) |+In 3X) |:Inc1x
In (y—ix) y X) |_Inc1x
X
(y=2x" (y-=x)°
e =C,X
x(y—2x)"(y—x)* =¢,x
(y-2x)"(y-x)’=c,

Note that the implicit equation can be rewritten as

(y—x)° =Cy(y - 2x)°

20
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4-Homogeneous Differential Equations VU

‘Equations reducible to homogenous form:

The differential equation

dy ax+by+c,
dx a,x+b,y+c,
is not homogenous. However, it can be reduced to a homogenous form as detailed below

b

a
Case1: =1
b,

a

2

We use the substitution iz = a,x + b,y which reduces the equation to a separable

equation in the variables X and Z . Solving the resulting separable equation and
replacing z witha, X + b,y , we obtain the solution of the given differential equation.

a b
Case 2;: — # —+

a'2 2

In this case we substitute

X=X +h, y=Y +k
Where h and K are constants to be determined. Then the equation becomes

dy aX+bY+ah+bk+c,
dX a,X+b,Y +a,h+b,k+c,

We choose hand K such that
ah+bk+c =0

a,h+bk+c, :O}

This reduces the equation to

dy a,X+bY

dX  a,X +b,Y

Which is homogenous differential equationin X andY , and can be solved accordingly.
After having solved the last equation we come back to the old variables X and Y .

.....................................

21
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4-Homogeneous Differential Equations
Solve the differential equation

dy 2x+3y-1

dx  2x+3y+2
Solution:

A b, .
Since — =1=— we substitute Z = 2X + 3y, so that
a?_ bZ

dy _ 1(% _ 2}

dx 3\dx
Thus the equation becomes

1(dz |- _2 -1

3\.dx Z+72
. dz —-z+7
ie. — =

dx. z+2
This is a variable separable form, and can be written as

Z+2
dz =dx
—-z+7

Integrating both sides we get

~72-9In(z-7)=x+A
Simplifying and replacing Z with2X + 3y, we obtain

—In(2x+3y-7)" =3x+3y+ A
or (2x+3y—-7)° =ce®™),  c=e"
Example 4
Solve the differential equation

22
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4-Homogeneous Differential Equations

dy (x+2y—4)

dx 2x+y-5
Solution:
By substitution

X=X +h, y=Y +k

The given differential equation reduces to

dY (X +2Y)+(h+2k-4)
dX  (2X +Y)+(2h+k—5)
We choose h and K such that

h+2k-4=0, 2h+k-5=0

Solving these equations we have:h = 2, k =1. Therefore, we have

dy X +2Y
dX 2X+Y
This is a homogenous equation. We substitute Y =VX to obtain
2
Xd—V:1 v or {ZJFVZ}dV:d—X
dX 2+V 1-V X

Resolving into partial fractions and integrating both sides we obtain
210-V) 2(1+V) X

—gln(l—V)+%ln(1+V)= In X +In A

or

Simplifying and removing (In ) from both sides, we get

1-v)y/@+Vv)=CX? C=A"

© Copyright Virtual University of Pakistan



4-Homogeneous Differential Equations

—gln(l—v)+%ln(l+v):lnx +InA

INA-V) 72 +In(1+V )2 = In XA
In1-V) 72 (1+V )2 =In XA
@-V)72(1+V)2 = XA

taking power "—2"onboth sides
@-V) (1+V) " =X2A"

Y
utv =—
P X

-1
a—if@+1j =X 2A?
X X

(X—YT[X+Y)12X2A2
X X

(X-Y)
X+Y
say,c =A™

3
(X=Y) _,
X+Y
put X =x-2,Y=y-1
(x+y-1)°/x+y-3=c

X —3+1 — X -2 A72

Y

Now substitutingV =— , X =x—-2,Y =y -1

X

(x—y-1°*/(x+y-3)=C

and simplifying, we obtain

This is solution of the given differential equation, an implicit one.

Exercise

Solve the following Differential Equations

1.i(x* +y*)dx—2x’ydy =0

2
2.yzl+x—2+1
dx x vy

-y
3. {xze X 4 szdx = xydy

24
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4-Homogeneous Differential Equations

4. ydx+£ycos§ - xjdy =0

5. (x3 +yi X2 +y? )jx—xywlx2 +y’dy=0

Solve the initial value problems

6.(3x2 +9xy+5y2)dx—(6x2 +4xy)dy=0, y(2) =6

7. (X+M)ﬂ=y, y(ijzl

dx 2
8. (x+ yey’x)dx—xey’xdyzo, y1) =0
9. ﬂ—izcoshl, y@@) =0
dx x X

25
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5-Exact Differential Equations VU

Lecture 5 Exact Differential Equations

Let us first rewrite the given differential equation

dy
— = f (X,
™ (X,Y)

into the alternative form

M (X, y)dx+ N(x,y)dy=0 where f(x,y)= _Mxy)

N (X, y)
This equation is an exact differential equation if the following condition is satisfied
M _oN
oy  OX

This condition of exactness insures the existence of a function F(X,y) such that

OF oF
&—M(x,y),a—N(x,y)

‘Method of Solution:
If the given equation is exact then the solution procedure consists of the following steps:

R , oM  ON
Step 1. Check that the equation is exact by verifying the condition _8y = &
— , oF
Step 2.. Write down the system ™ =M(X,Y), 2_': =N(x,Y)

y

.......................

equation then

F(x.y) = [M(x, y)dx+6(y)

The function €(y) is an arbitrary function of Y, integration w.r.to X; Y being
constant.

[t

oo
oy oy
O =NGx Y~ 2 M y)ox

(™ y)dx)+0(y) = N, y)

All the solutions are given by the implicit equation
F(x,y)=C
- If you are given an IVP, plug in the initial condition to find the constant C.
‘Caution: | X should disappear from &'(y) . Otherwise something is wrong!

vl thuubetes
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5-Exact Differential Equations VU

.......................................

...................................

Solve (3x2y + 2)dx + (x3 + y)dy =0

M =3x’y+2 and N=x>+y

M _ax2, N _ gy
oy OX

. oM  ON

ie. —=—
oy  oX

Hence the equation is exact. The LHS of the equation must be an exact differential i.e. 3

a function f (X, y)such that

i:3x2y+2:M
OX

ﬂ=x3+y=N
oy

Integrating 1% of these equations w. r. t. x, have

f(x,y)=x%y+2x+h(y),

where h(y)is the constant of integration. Differentiating the above equation w. r. t. y and

using 2nd, we obtain

Comparing §_h'(y) =y is independent of x.

or.

Integrating, we have

2

h(y) =2

2

Thus f(x,y):x3y+2x+y7

Hence the general solution of the given equation is given by

27
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2

ie. x3y+2x+y7:c

Note that we could start with the 2™ equation

ﬂ=x3+y=N
oy

to reach on the above solution of the given equation!

.......................................

...................................

Solve the initial value problem

(2ysin xcosx + y? sin xJdx + (sin® x— 2y cos x Jdy = 0.

M = 2ysinxcosx + y’sin x

and N =sin’ x—2ycosx
ﬁ = 2sin XCos X + 2ysin X,
@ = 2siN XCOoSX + 2ysin X,
OX

This implies ﬂz@
oy  OXx

Thus given equation is exact.

Hence there exists a function f (x, y) such that

(;i =2ysinxcosx+ y’sinx=M
X

a =sin®x-2ycosx=N

Integrating 1% of these w. r. t. x, we have

f(x,y) =ysin® x—y?cosx+h(y),

Differentiating this equation w. r. t. y substituting in % =N

28
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5-Exact Differential Equations

sin® x —2ycosx + h’(y) =sin® x — 2y cos x

h'(y)=0 or h(y)=c,

Hence the general solution of the given equation is

i.e.

f(xy)=c,

o) 2
ysin®x—y“cosx=C, where C=c, —c,

Applying the initial condition that when x =0, y = 3, we have

since

-9=c¢

y?cosx—ysin®x=9

is the required solution.

Solve the DE

Solution:

(ezy —ycos xy)dx+(2xe2y —XCOSXY + Zy)dy =0

The equation is neither separable nor homogenous.

Since,

and

M (x,y)=e? —ycosxy
N(x,y)=2xe?’ —xcosxy + 2y

oM 2 . oN
— =2e"” +xysin xy—cosxyza—
X

Hence the given equation is exact and a function f (x,y) exist for which

M (X, y)=% and N(x, y):%

which means that

a
OX

=e?” —ycosxy and %:2xe2y—xcosxy+2y

Let us start with the second equation i.e.

a_ 2xe®) — XCcosxy + 2y

Integrating both sides w.r.to y, we obtain

f(x,y)= 2xIe2ydy — xJcosxydy + 2] ydy

Note that while integrating w.r.to y, X istreated as constant. Therefore
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5-Exact Differential Equations
f(x,y)=xe® —sinxy +y® +h(x)
hisan arbitrary function of x . From this equation we obtain ? and equate itto M
X
af _ e2y hr A
o 8 T ycosxy+ (x)=e® —ycosxy
So that h'(x)=0=h(x)=C
Hence a one-parameter family of solution is given by
xe? —sinxy+y*+c=0
Example 4
Solve 2Xy dX+(X2 —1)dy =0
Solution:
Clearly M(x,y)=2xy and N(x,y)=x*-1
Therefore ™M =2X= N
oy OX
The equation is exact and 3 a function f(x,y) such that
of
i=2xy and —=x"-1
OX oy
We integrate first of these equations to obtain.
f(xy)=x*y+g(y)
Here g(y) is an arbitrary function y . We find % and equate it to N(x, y)
of
—=x"+g'(y)=x"-1
oy
g'(y)=-1=g(y)=-vy
Constant of integration need not to be included as the solution is given by
f(x,y)=c
30
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5-Exact Differential Equations
Hence a one-parameter family of solutions is given by
x’y—y=c
Example 5
Solve the initial value problem
(cosxsin X — xyz)dx+ y(l— xz)dy =0, y(O) =2
Solution;
M (X,y) =cosx.sin X — X y?
Since )
N(xy) = yl-x?)
oy OX
Therefore the equation is exact and 3 a function f(x,y) such that
af - 2 af 2
— =CO0SX.SIN X—X and —=Yy(@d-Xx
x y Y y(1—x%)
Now integrating 2™ of these equations w.r.t. * Y’ keeping * X constant, we obtain
2
f(x,y)= y7(1— x? )+ h(x)
Differentiate w.r.t. * X * and equate the result to M (X, Y)
of :
P —xy? +h'(x) = cosxsin x — xy?
X
The last equation implies that.
h'(x) = cos xsin x
Integrating w.r.to X, we obtain
. 1
h(x)= —I(cosx)(—sm X Jdx = —5c0s" X
Thus a one parameter family solutions of the given differential equation is
2
y 2y 1 2
—1-x“)-—=cos" x=c
2 ( ) 2 1
or
31
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y?(1—x?)—cos?x =c

where 2C,; has been replaced by C. The initial condition y =2 when x =0 demand, that

4(1)-cos®(0)=csothat c=3. Thus the solution of the initial value problem is

yz(l— xz)—cos2 X=3

32
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Determine whether the given equations is exact. If so, please solve.

1. i(siny—ysinx)dx +(cosx + xcos y)dy = 0

2. (1+ In x +%]dx = (1-In x)dy

3. (yln y—e‘xy)dx+(1+ln yjdy =0
y

4, (2y—1+0053xjﬂ+%—4x3 +3ysin3x=0
X dx x

1 1 y X
5. | =+—=- dx+| ye¥ + dy=0
[x x2 x2+y2j (y x2+y2J y

Solve the given differential equations subject to indicated initial conditions.

6. (eX +y)dx+(2+x+ yey)dy=0, y(0) =1

3y?—x*\dy x
7. —+ =0, =1
y® de 2y* o

2

1+y

+cosx—2ny%= y(y +sin x), y(0)=1

9. Find the value of k, so that the given differential equation is exact.
(2xy* —ysinxy +ky* ) dx—(20x° +xsin xy)dy =0

10. (6xy3 +cosy)dx— (kxzy2 —xsin y)dy =0

33
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6-Integrating Factor Technique

Lecture 6 Integrating Factor Technique

If the equation

M (X, y)dx+ N(x,y)dy =0

is not exact, then we must have

oM  ON
[ ¢ JR—
oy  OX

u(x, yYM(x, y)dx+u(x, y)N(x,y)dy =0
becomes exact. The function u (X, y) (if it exists) is called the integrating factor (IF) and
it satisfies the equation due to the condition of exactness.

oM ou OoN ou
Zu+—M="-u+—N
oy OX OX

This is a partial differential equation and is very difficult to solve. Consequently, the
determination of the integrating factor is extremely difficult except for some special
cases:

Show that i1/(x* + y?)iis an integrating factor for the equation (x2 + y2 - x)dx— ydy =0,

and then solve the equation.

Solution: Since M=x*+y*-Xx, N=-y
Therefore ™M =2y, N =0
oy OX
soth oM . ON
that A, T AL
0 tha oy ox

and the equation is not exact. However, if the equation is multiplied by 1/(x* +y?) then

the equation becomes

X y
1- dx — dy=0
[ x2+y2j X% +y? y

Now M=1- X and N =- y

34
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Therefore oM = 2xy = oN

N (eey2f

So that this new equation is exact. The equation can be solved. However, it is simpler to

observe that the given equation can also written

xdx + ydy
——7 2 =0
X" +Yy

2 2
or d{x—ﬂxzi)}zo

Hence, by integration, we have

dx or dx—%d[ln(x2 +y2)]:0

Xx—Inyx*+y® =k

Case 1
When Jan integrating factor u (x), a function of X only. This happens if the expression
oM ©ON
oy  OX
N

is a function of x only.
Then the integrating factor u(x,y) is given by

oM ON

de

u=exp N

...........................

N _oM
ox oy
M
isa function of Y only. Then IF u(x,y) is given by
N _oM
oX oy
u=exp| | ————d
P M y

...........................
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XM +yN =0
1
Then u= M VN YN
Case 4:

If the given equation is of the form
yf (xy)dx + xg(xy)dy =0
and XM - yN + O

Then u — 1
XM — yN

Once the IF is found, we multiply the old equation by u to get a new one, which is exact.

Solve the exact equation and write the solution.

‘Advice: If possible, we should check whether or not the new equation is exact?:

Summary:

passeeeseasassanasannang

.......................

M (X, y)dx+ N(x,y)dy =0

provided the equation is not already in this form and determine M and N .

M _oN
oy oX

oM ©ON

oy OX
N

If this expression is a function of X only, then
oM oN

de
N

u(x) =exp

Otherwise, evaluate

oN oM

ox oy

M
If this expression is a function of y only, then
oN oM

u(y) =exp J%dy

36
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In the absence of these 2 possibilities, better use some other technique. However, we
could also try cases 3 and 4 in step 4 and 5

.........................

XM + yN =0
If h U—#
yes then XM + yN

.......................

yf (xy)dx +xg(xy)dy =0
and whether XM —yN =0

1
XM — yN

If yes then u=

Solve the differential equation

dy  3xy+y’
dx X% + Xy

Solution:
1. The given differential equation can be written in form

(Bxy + y?)dx + (x* + xy)dy =0

Therefore
M(X,y) =3xy +y°
N(X,Yy) = X*+ Xy
2. Now ﬂ:3x+2y,@:2x+y.
oy OX
oM _ N
oy  OX

37
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oM  oON

oy ox _
N

1

X

which is a function of x only.
4.Therefore, an IF u (x) exists and is given by

1

—dx
u(x) = ejX =e"™ = x

5. Multiplying the given equation with the IF, we obtain

(3x%y + xy?)dx + (x* + x*y)dy =0

which is exact. (Please check!)

6. This step consists of solving this last exact differential equation.

38
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Solution of new exact equation::

oM oN

1. Since — =3x* + 2xy = x the equation is exact.
2. We find F (x, y) by solving the system
(Z—I):( =3x%y +xy?
F sy x2y.

3. We integrate the first equation to get

2

X
F(x,y)=x3y+7y2+9(y)

obtain

%zx3 +X°y+0'(y) = x* +x°y

— &' =0 No dependence on x.
5. Integrating the last equation to obtain @ = C | Therefore, the function | F (X, Y)

S

2
F(><,y)=><3y+x7y2

We don't have to keep the constant C, see next step

6. All the solutions are given by the implicit equation : F (X, y)=Clie.

2.,2
x‘?’y+X2y =C

Note that it can be verified that the function

1
uxy) = 2xy(2X +Y)

is another integrating factor for the same equation as the new equation

2 1 2
3Xy + dx + X5 +xy)dy =0
2Xy(2X + y)( YY) 2Xy(2X + y)( xy)dy

is exact. This means that we may not have uniqueness of the integrating factor.

.........................................
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(x2 —2X+ 2y2)dx +2xydy =0

Solution:
M = x> — 2x+ 2y?
N = 2xy
ﬂ — 4y’@ — 2y
oy OX
oM ON
S—E—
oy  OXx
The equation is not exact.
M, —N _
Here e _Ay-2y 1
N 2Xy X
Therefore, I.F. is given by
u= exp( dej
X
U=X
~ LFisx.

Multiplying the equation by x, we have

(x3 —2x% + 2xy2)dx+ 2x?ydy =0

This equation is exact. The required Solution is

x*o2x* L,
TR

3x* —8x* +12x°y* =¢
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Solve

dx+[§—sin yjdy =0

Solution:

Here

Now

Therefore, the IF is

U(y)zemfd—Jzy

Multiplying the equation by y, we have

ydx + (x—ysiny)dy =0

or ydx + xdy — ysin ydy = 0.

or .d(xy) — ysin ydy =0

Integrating, we have

Xy +ycosy—siny=c

‘Which is the required solution..

.......................................

(xzy— 2xy2 )jx—(x3 —3x2y)dy =0

Solution: Comparing with

41
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. Mdx+ Ndy =0

we see that

M= x2y — 2xy2 and N= —(x3 —3x2y)
Since both M and N are homogeneous. Therefore, the given equation is homogeneous.
Now

XM + yN = x3y—2x2y2 —x3y+3x2y2 = x2y2 #0

Hence, the factor u is given by

1 1
U= U= N
Xy XM + yN

Multiplying the given equation with the integrating factor u, we obtain.

(i—gjdx— %—E dy=0
y X ye vy

Now
le—z and N:_—;(+§
y X y y
and therefore
oM 1 ON
oy oy o

Therefore, the new equation is exact and solution of this new equation is given by

X _2In|x|+3n|y|=C
y

Solve y(xy+2x2y2)1|x+ x(xy—xzyz)dyzo
Solution:
The given equation is of the form

yf (xy)dx + xg(xy)dy =0

Now comparing with

. Mdx+ Ndy =0

We see that

M :y(xy+2x2y2) and N=x(xy—x2y2)

Further

42
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XM —yN = x2y2 +2x3y3 —x2y2 +x3y3

= 3x3y3 = 0
Therefore, the integrating factor u is
1 1
U=r303 U=
3X7y XM — yN

Now multiplying the given equation by the integrating factor, we obtain

Y1 2, 21 1)y g
3 x°y x 3 xy® vy

Therefore, solutions of the given differential equation are given by

_ L o omx|=m|yleC
xy

where 3Cy=C

Exercise
Solve by finding an I.F

1. xb(s\( + Sx) = xby — ybx

y —sin X
X

A 2y)dx+(xy3 +2y* —4x)dy =0

(
4, (x2 + yz)dx+ 2xydy =0

2. dy+ dx=0

5. (4x + 3y2)dx +2xydy =0

6. (3x2y* +2xy)x+ (2x3y* Jdy = 0

7. ﬂzezx +y-1
dx

8. (3xy+y?Jx+(x? +xy)dy =0
9. ydx+(2xy—e‘2y)dy=0

10.(x + 2)sin ydx + x cos ydy = 0
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Lecture 7 First Order Linear Equations

The differential equation of the form:

a(x)% +b(x)y =c(x)

is a linear differential equation of first order. The equation can be rewritten in the
following famous form.

% p(x)y = q(x)
X

where p(X) and q(X) are continuous functions.

Method of solution:
The general solution of the first order linear differential equation is given by

_Ju()g(x)dx+C
- u(x)
Where U(x) = exp (] p(x)dx)

The function U(X) is called the integrating factor. If it is an I\VP then use it to find the
constant C.

Summary:

1. Identify that the equation is 1 order linear equation. Rewrite it in the form

& pdy =a(
X

if the equation is not already in this form.
2. Find the integrating factor

u(x) = eI POO

3. Write down the general solution

_[ u(x)q(x)dx+C
u(x)

4. If you are given an IVP, use the initial condition to find the constant C.

y:

5. Plug in the calculated value to write the particular solution of the problem.

Example 1:

Solve the initial value problem
44

© Copyright Virtual University of Pakistan



7-First Order Linear Equations

Solution:

y' +tan(x)y = cos®(x),

y(0)=2

1.The equation is already in the standard form

with

2. Since

dy

5 POy =0a(x)
X

p(x) = tan x

q(X) = cos’X

[ tan x dx = —In cos x = In sec x

Therefore, the integrating factor is given by

3. Further, because

tan x dx

u(x) = e/ = Secx

Isecxcosz Xdx = Icosx dx =sin x

So that the general solution is given by

sinx+C :
y=>———=(sin x+C)cosx
Secx

4. We use the initial condition Y(0) = 2 to find the value of the constant C

y(0)=C=2

5. Therefore the solution of the initial value problem is

Example 2: Solve the IVP

Solution:

y = (sin x +2)cos x

dy 2t y =
dt 1+t27  1+t?’

y(0)=0.4

1.The given equation is a 1* order linear and is already in the requisite form

45
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dy

4 TPy =a(x)

2t

1412
2

1+1t2

H— thjdtz—ln|1+t2|
1+t

Therefore, the integrating factor is given by

p(t) =~

with

q(t) =

2. Since

_27"2 dt
1+t

u(t) =eJ =(1+t*)"

3. Hence, the general solution is given by

) j u(t)g(t)dt + C
- u(t)

Jumanat :J

——dt
(1+1%)?

(2

Now

(L+12)?

(.

2 ;2 2
dt:2 l_i_t—ztzdtzz 12— t22dt
@+t 1+t°  (Q+t°)

The first integral is clearly tan™"t . For the 2™ we will use integration by parts

with t as first function and 2 (1+t2)2 as 2™ function.

2
L“dt:t(— 12j+f 12dt:— tz
1+t°) 1+t 1+t 1+t

+tan™'(t)

J%dt=2tan-l(t)+ t
Q+t°) 1+t

-1 -1
- —tan™(t) = tan~ () +

1+t2

The general solution is:
g 1+t2

y=(1+t2)(tan'1(t)+

4. The condition y(0) = 0.4 gives C=0.4

rc]

5. Therefore, solution to the initial value problem can be written as:

y=t+(L+t*)tan"(t) + 0.4(1+1?)

Example 3:

Find the solution to the problem

cos’tsint.y’ =—cos’t.y+1, y(%)

0

Solution:
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1. The equation is 1% order linear and is not in the standard form

Therefore we rewrite the equation as

dy
dx

+p(x)y =q(x)

!

cos t

1

sint

Y o tsint

2. Hence, the integrating factor is given by

u(t):(Jsint

cost

:eln|s'nt|=sint

3. Therefore, the general solution is given by

Since

. 1
JSII’] tzidt‘f‘c
cos“tsint

y:

sint

Jsint%dtzj 12 dt =tant
cost sint cos"t

Therefore

_tant+C 1 C

- = +—
sint cost sint

=sect+Ccsct

(1) The initial condition y(7z/4) =0 implies

which gives C =-1.

J2+cyd2=0

(2) Therefore, the particular solution to the initial value problem is

Example 4

Solve

Solution:
We have

y =sect —csct

(x+2y3)&= y

dy

dy_ Y

dx

X+2y°

47
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This equation is not linear in y . Letusregard X as dependent variable and y as
independent variable. The equation may be written as

dx  x+2y°
dy y

or %—EX:ZyZ
dy 'y

Which is linear in x

e

Multiplying with the IF = l we get
y

Integrating, we have

is the required solution.
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Example 5
Solve
(x—l)s%+4(x—l)2 y=x+1
Solution:

The equation can be rewritten as

ﬂ+ 4  x+1
dx x—ly_(x_l)?a
4
Here P(X):—.
x—1

Therefore, an integrating factor of the given equation is

IF =exp Ui’iﬂ = exp [In(x—1)4]= (x-1)"

Multiplying the given equation by the IF, we get

(x—1)* %+4(x—1)3y =x%-1

or %[y(x—l)“']z x2 -1

Integrating both sides, we obtain

. X
) (AN
y(x—1) 3 X+HC

which is the required solution.
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Exercise

Solve the following differential equations

n ﬂ+(2x+ljy e

dx X
2. ﬂ+3y =3x%e ¥
dx
3 xﬂ+(1+xcotx)y=x
L

dy X n+1
4, 1)——-ny= 1
(x+ )dx ny =e*(x+1)

1
(1+ x2)2

5. (1+ xz)%+4xy =

0. £+ rsecd = cosd
do

-2X
ﬂ+ _1-e
dx e*

=X

+€

8. dx= (3ey - 2x)dy

Solve the initial value problems

9. % =2y +x(e¥ —e*)  y(0)=2

10. x(2+ x)%+ 20+ x)y =1+3x*, y(-1)=1
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Lecture 8 Bernoulli Equations

A differential equation that can be written in the form
dy
dx

+p(X)y =q(x)y"

is called Bernoulli equation.
Method of solution:

For N = 0,1the equation reduces to 1% order linear DE and can be solved accordingly.

n
For N # 0,1 we divide the equation with Y to write it in the form
o dy
dx

y" 2+ p(x)y " =q(x)

and then put

Differentiating w.r.t. ‘x’, we obtain

Vi=@-n)y"y’

Therefore the equation becomes

% +@-n)p(x)v =(2—-n)q(x)
X

This is a linear equation satisfied by V . Once it is solved, you will obtain the function
1
(1-n)

y=v

If n>1, then we add the solution y =0 to the solutions found the above technique.
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Summary:
1.1dentify the equation

dy

ot P(X)y = a(x)y"
X

as Bernoulli equation.
Find n. If N = 0,1 divide by y"and substitute;

2. Through easy differentiation, find the new equation

% +(@—n) p(x)v = (L-n)q(x)
X

3. Thisis a linear equation. Solve the linear equation to find v.

y — V%l_n) .

4. Go back to the old function y through the substitution

6. 1f n>1, then include y = 0 to in the solution.

7. 1f you have an IVVP, use the initial condition to find the particular solution.

dy 3
Example 1: Solve the equation X =y+ty

Solution:
1. The given differential can be written as

dy 3
dx y=y

which is a Bernoulli equation with
p(x)=-1,q(x) =1, n=3.

Dividing with y*we get

dy

—v?=1
dx y

y—3

Therefore we substitute

2. Differentiating w.r.t. ‘x” we have
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So that the equation reduces to

3. Thisisa linear equation. To so

ady 1

dx 2
ﬂ+2v:—2
dx

Ive this we find the integrating factor u(x)

U(X) :eIde _

er

The solution of the linear equation is given by

Since

Therefore, the solution for V is given by

4. Togo back toy we substitute iy, — y—2.

DE is

5. Since n >1 we include the i Y = Oiin the solutions. Hence, all solutions are

Example 2:

ju(x)q(x)dx+c jeZX 2)dx+¢
(X) e2x
62" (—2)dx = —e**
_ Aa2X
B

y = i(Ce‘2X

1

_ 1)‘5

, y =+(Ce™*

~1) %

Solve

dy
- X
dx+xy y

Solution: In the given equation we identify

Thus the substitution W=

P(x)

< |~

, q(x)=x and n=2,

y ' gives

dwl

dx X

w=-X.

The integrating factor fo

r this linear equation is

_de
X:

=Infx| _

eln\x\’1

:X_

Hence

(;jx [x‘lw]

Integrating this latter for

m, we get

Therefore the general solution of the given
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8-Bernoulli Equations

Since

w=y

X TW=—X+C or W=—x>+CX.
) 1
, We obtainy =—or
W
B 1
—x% +cx

For n >0 the trivial solution y =0 is a solution of the given equation. In this example,
y =0 isa singular solution of the given equation.

Example 3:

Solve:

ﬂﬂLi
dx 1—x?

N[

1

Solution: Dividing (1) by yE , the given equation becomes

Put

Then (2) reduces to

;ldy X 1
Ve i
1 1
y2—vor sy W _V
2 dx dx
dv X X
—+ V=—
dx 20-x?) 2

This is linear in V.

I.LF = exp[fﬂli(?)dx} = exp[:llln(l— xz)] = (1— x? )7

-1

Multiplying (3) by

or

-1

ﬁ—xﬂf,

Integrating, we have

1)

()

3)
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VU

or

or

is the required solution.
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8-Bernoulli Equations VU

Exercise

Solve the following differential equations

1 xﬂ+y:y2Inx
dx
dy 3
=4+ y=X
2 dx y =Xy
dy X.,2
= —y=¢
3 dx y y
dy 3
o i—=—=ylxy" -1
‘ dx y(y )
dy 2
o X—=—-1+Xx)y=x
s X (L+x)y =xy
6. x2ﬂ+y2:xy
dx

Solve the initial-value problems

o dy 4
Y ogyo3vt y()=
X —2xy =3y y(1)

d
o y1/2d_§Jr y3/2 —1 y(0)=4

10. Z—ZX—
X
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8-Bernoulli Equations

o Sometimes a differential equation can be transformed by means of a substitution
into a form that could then be solved by one of the standard methods i.e. Methods
used to solve separable, homogeneous, exact, linear, and Bernoulli’s differential

equation.

o An equation may look different from any of those that we have studied in the
previous lectures, but through a sensible change of variables perhaps an

SUBSTITUTIONS

apparently difficult problem may be readily solved.

o Although no firm rules can be given on the basis of which these substitution could
be selected, a working axiom might be: Try something! It sometimes pays to be

clever.

Example 1

The differential equation

is not separable, not homogeneous, not exact, not linear, and not Bernoulli.
However, if we stare at the equation long enough, we might be prompted to try the

substitution

Since

y(L+ 2xy)dx + x(1—2xy)dy = 0

u
u=2xy or y=—
2X

dy = xdu —udx
2x?

The equation becomes, after we simplify

we obtain

2u2dx + (1—u)xdu = 0.

2In|Y —u™ —Inju=c

VU
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8-Bernoulli Equations

where €°was replaced by C; . We can also replace 2¢, by Co if desired

Note that

The differential equation in the example possesses the trivial solution Y = 0, but then
this function is not included in the one-parameter family of solution.

Example 2
Solve

2xyy+ 2y? =3x—6.

dx
Solution:
2 y Y

The presence of the term YE promptsustotry U =Y
Since

du d

[ 2y_y

dx dx
Therefore, the equation becomes
Now xd—u+2u=3x—6

dx

or du n 2 u=3— 6

dx x X
This equation has the form of 1* order linear differential equation

d

1Py =Q(¥)

dx

6

with P(x) zé and Q(x) = 3—;
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8-Bernoulli Equations

Therefore, the integrating factor of the equation is given by

2
I.F= ejxdx :e'”X2 = X°

Multiplying with the IF gives

%[xzu]: 3x* —6x

Integrating both sides, we obtain

x2u=x3-3x% +c¢

or x2y? =x3-3x% +c.
Example 3
Solve
dy X y/x
7 y —
dx y
Solution:
If we let
uY
X

Then the given differential equation can be simplified to

ue— Ydu =dx
Integrating both sides, we have
Jue_ Udu = de

Using the integration by parts on LHS, we have

—ue Y_eUoxic

or

u+l=(c - X)eu Where ¢,=-¢

We then re-substitute

DY
X

and simplify to obtain

y+x:x(cl—x)eylx

Example 4
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8-Bernoulli Equations

Solve
2 2
M =2X ﬂ
dx? dx
Solution:
If we let
= y’
Then
du/dx=y"
Then, the equation reduces to
du
— =2xu?
dx
Which is separable form. Separating the variables, we obtain
du
— = 2xdx
u

Integrating both sides yields

Iu_zdu =I2xdx

or —ut=x%+ 012
The constant is written as ¢’ for convenience.
Since ut=1/y
dy 1
Therefore VT T
dx  x°+cf
dx
or dy == 2 2
X“ +¢f
dx
Jay= _J 2 2
X" +¢g
4 X
y+c, =——tan" —
1 C,
Exercise

Solve the differential equations by using an appropriate substitution.
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8-Bernoulli Equations

1. ydx + (1+ ye*)dy =0
2 (2+e/Y Jdx+20—x/ y)dy =0
dy
3. 2xcsc2y — = 2x—In (tany)
dx
a. W1 sinxe )
dx
5 yﬂ+2xlnx:xey
dx
6. x2ﬂ+2xy:x4y2 +1
dx
7. xeV W2y — 2
dx
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9-Practice Examples

Lecture 9 Practice Examples

2 2
Example 1: y'= X Ty

Xy
2 2
Solution: dy: X Ty
dx Xy
put y=wx then dy =wW+X aw
dx X
dw  X*+w?°x® _ 1+w?
W+HX —— = =
X XXW W
dw 1
WH+HX —= — +W
dx w
wdw= d_X
X

Integrating

2
=Inx+Inc

2

y
2x°
y? =2x?In|xc]|

=In|xc|
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dy _ (ZJ_ )

Example 2: —=
P dx

dy (2\/_ )

Solution: —ZL=

put y=wx

dw _ (2 XWX -XW)
dx

WX

X
W+xd—W:2«/W -W
x — —2\/_ 2W

dw _ d_x
2(Jw-w) X
J dw  _ d_X

2(Jw-w)

dw _rdx
Fadman x
put  Jw=t

1 dx

We getj‘ﬁdt:_f?
-In|1-t|=In|x|+In|c|
-In|1-t|=In|xc|
(1-t)*=xc
(1-w)*=xc
(1-/y/x) " =xc
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Example 3: (2y?*x-3)dx+(2yx? +4)dy=0
Solution:(2y®x-3)dx+(2yx? +4)dy=0

Here M=(2y?*x-3) and N=(2yx?+4)
1\ =<
Tf L

— =(2y?x-3) and — =(2yx*+4)
T Ty

Integrate w.r.t. X'
f(X,y)=x?y?-3x+h(y)
Differentiate w.r.t. 'y’
hILE =2x?y+h'(y)=2x?y+4=N
Ty
h'(y)=4
Integrate w.r.t. 'y’
h(y)=4y+c
X?y?-3x+4y=C,

2

d 2xyet)

Example 4: L S yz -
dx y2 +y2e(x/y) +2X2e(x/y)

) dx yz _I_yze(x/y)2 +2X2e(x/y)2
Solution: —= .

dy 2xye®
put x/y=w

Aftersubsitution

dw _ 1+e"
dy 2we"
dy _ 2we"’
7 e
Integrating

dw

Inly|=In|1+e" |+Inc
Inly|=Injc(1+e""))|

y=c(1+e®"")

64
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9-Practice Examples

2
Example 5: dy T A 32

dx xInx Inx

2
Solution:; d_y + Y - 3L

dx  xInx  Inx
dy 1 3x?

T y="

dx xInx Inx
3x?

1
p(X)=—— and qg(x)=—
xInx Inx

I.F=exp(Iﬁdx)=lnx

Multiply both side by Inx

Inxd—y+£y:3x2
dx X

a4 (yInx)=3x"
dx

Integrate
ylnx= ﬁ +C
3
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Example 6: (y?e* +2xy)dx-x*dy=0
Solution:Here M=y®e* +2xy  N=-x*

M:Zye" +2X, M:—2x
Ty fix
Clearly M, IN

Ty 1x

The given equation is not exact
divide the equation by y* to make it exact

Now IM __ 2x _ IN
Ty y 1Ix
Equation is exact
2
E:|:ex+2_x:| E:|:_X_2:|
x y Ty y

Integrate w.r.t. X'
2

f(x.y)=e*+ -
y
2

X
e*+—=c

y
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Example 7:

XCOSX g—y +y(Xsinx+cosx)=1
X

Solution: xcosx g_y +y(Xsinx+cosx)=1
X

dy [ xsinx+cosx } 1

—+y =

dx ~|  Xcosx XCOSX

dy +y[tanx+1/x|= 1

dx ~- XCOSX

I.LF = exp( _[ (tanx+1/x)dx)=xsecx

XSecxX dy +yxsecx [ tanx+1/x | = Xoeex
dx XCOSX

dy 2
xsecx — +y [ xsecxtanx+secx | =sec”x

dx
dix [ xysecx|=sec’x

Xysecx=tanx+c
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Example 8: xe® d_y+ezy:|n_x
dx X
Solution: xe® d_y+ezy:|n_X
dx X
put e2y =u
262y d—y:d_u
dx dx
X du Inx
——+y=—
2 dx X
d—u+gu:2|n_z(
dx X X

Inx

Here p(x)=2/x And Q(X)=—

| F=exp([ 2 dx)=x?
X

X d_u +2xu=2Inx
dx

d

(x*u)=2Inx
Integrate
x*u=2[xInx-x]+c

XZeZy :2[X|nX—X]+c

X2
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Example 9: dy +ylny=ye
dx

X

Solution: dy +ylny=ye”
dx

ld_y+|ny:eX
y dx

put Iny=u

Integrate
2X

e*.u= +C
2X

e”lny= +C
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dy =2X-Intany

Example 10: 2xcsc2y —==
dx

Solution:2xcsc2y j—y =2X-Intany
X

put Intany=u

dy =sinycosy du
dx dx
2xsinycosy du _

2sinycosy dx

2X-U

X d_u =2X-U
dx

d_u+£u:2
dx X

I.F =exp( J' 1/xdx)=x

xd—u +U=2Xx
dx

d

— (Xu)=2x
dx
XU=x2+c
u=x+cx™

Intany=x+cx™

70
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Example 11:2—y +X+y+1=(x+y)’e*
X

Solution: g—y+x+y+1:(x+y)2e3x
X

Put x+y=u

d_u+u:u2e3x

dx

M ru=uze™ (Bernouli's)
dx

1 du 1 4

— 4+ =e

u® dx u
putl/u=w

I.F:exp(j -dx)=e™

X dW _We-x :_e2x
dx

.

d -X 2X
— (e W)=-e
I ( )

Integrate
2%

e”*w=

+C

1 _e3X

u

+ce”

71

© Copyright Virtual University of Pakistan

VU



9-Practice Examples

Example 12: g—y =(4x+y+1)°
X

Solution: dy =(4x+y+1)?
dx

put 4x+y+1=u

du=dx

u?+4
Integrate
1

~tant 2 =x+c
2

tan™ % =2X+C,

u=2tan(2x+c,)
AX+y+1=2tan(2x+c,)
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Example 13:(x+Yy)~ g—y =a”’
X

Solution: (x+y)2 &Y =52
dx
put Xx+y =u
du
uz (&Y _1y)=a2
(dx )
>, du

u® —-u®=a?
dx
2
u
du=dx
uz+a?
Integrate
2 2 2
-u”+a‘-a
du=|] dx
2
-~ a .
| (1—m)du—jdx

L u
u-atan™ — =x+c
a

X+
Y —X+C
a

(x+y)-atan™
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dy

Example 14: 2y —Z +x*+y” +x=0

dx
Solution: 2yd—y+x2 +y? +x=0
dx
put x*+y*=u
du-2x+u+x:0
dx
du
— +U=X
dx

|.F=Exp( j dx)=e*

du
e* d— +ue* =xe*
X

d X X
— (€ U)=Xe
” (e"u)

Integrating
e*u=xe"-e* +c

74
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Example 15:y +1=e*Ysinx
Solution: y +1=e*¥sinx
put x+y=u

du .
— =e""sinX
dx

%duzsinxdx
e

e"du=sinxdx
Integrate

e" =-cosx+cC
u=In|-cosx+c|
X+y=In|-cosx+c|
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Example 16: x*y’y'+x°y®=2x°-3
Solution: x*y?y'+x°y®=2x3-3

put x°y®=u

dy du

3x°y*+3x%y® = =——

Y Y dx dx
dy du

3x’y? = =—-3x°y°®

Y dx dx Y

ay2 dy _xdu 5 s
dx 3 dx

XU 533

3 dx

d—u:6x2—9/x

dx

Integrate

u=2x°>-9lnx+c
x3y®=2x°-9Inx+c
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Example 17:cos(x+y)dy=dx
Solution:cos(x+y)dy=dx

put x+y=v or 1+ d_y = d_v , we get

dx dx
cosv[d—V -1]1=1
dx

CcCOoSsV dv=[1- 1
1+cosv 1+cosv

dx= ]dv

dx=[1- = sec? ¥ 1dv
2 2
Integrate
\Y,
X+Cc=V-tan —
2

X+
X+Cc=v-tan Ty

77
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10-Applications of First Order Differential Equations

Lecture 10  Applications of First Order Differential Equations

of equations that describe the system adequately. This set of equations is called a Model
for the phenomenon. The basic steps in building such a model consist of the following
steps:

assumptions should describe the relationships among the quantities to be studied.

Step 2: iCompletely describe the parameters and variables to be used in the model:.

parameters and variables (from Step 2).

The mathematical models for physical phenomenon often lead to a differential equation
or a set of differential equations. The applications of the differential equations we will
discuss in next two lectures include:

o Orthogonal Trajectories.
Population dynamics.
Radioactive decay.
Newton’s Law of cooling.
Carbon dating.

Chemical reactions.

000000

etc.

‘arthogonal Trajectories

@-.We.know.that.that-the-solutions.of-a-1.order.differential-equation..e.d..separabile
& VVB-KNOWL-That- Thal- eSO O NS - OF- &4 OFASL--GLITerential-- 8 Uat O Ry 8.¢--separalt

equations, may be given by an implicit equation

F(x,y,C)=0
with 1 parameter C , which represents a family of curves. Member curves

can be obtained by fixing the parameter C. Similarly an n™ order DE will
yields an n-parameter family of curves/solutions.

F(X’ Y1C11C11""Cn)=0

o The question arises that whether or not we can turn the problem around: Starting
: with an n-parameter family of curves, can we find an associated n™ order
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10-Applications of First Order Differential Equations

differential equation free of parameters and representing the family. The answer in

most cases is yes.

o Letustry to see, with reference to a 1-parameter family of curves, how to proceed

if the answer to the question is yes.

VU

1. Differentiate with respect to x, and get an equation-involving x, y,

the new equation.

ﬂ and C.
dx

2. Using the original equation, we may be able to eliminate the parameter C from

3. The next step is doing some algebra to rewrite this equation in an explicit form

a For illustration we consider an example:

IHlustration
Example

Find the differential equation satisfied by the family

X°+y?=CX

Solution:

1. We differentiate the equation with respect to x, to get

2x+2yﬂ:C
dx

2. Since we have from the original equation that

2 2
C— X +Yy
X
then we get
2 2
2x+2yOly S
dx X

3. The explicit form of the above differential equation is
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ﬂ_yZ_XZ
dx 2Xy

This last equation is the desired DE free of parameters representing the given family.

Let us consider the example of the following two families of curves

y = mX
X2+y2:C2

The first family describes all the straight lines passing through the origin while the second
family describes all the circles centered at the origin

If we draw the two families together on the same graph we get

s W ey
SN

N
N
NS
SRS

/X
7NN,

i

Clearly whenever one line intersects one circle, the tangent line to the circle (at the point
of intersection) and the line are perpendicular i.e. orthogonal to each other. We say that
the two families of curves are orthogonal at the point of intersection.
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‘Orthogonal curves::

Any two curves C, and C, are said to be orthogonal if their tangent lines T, and T, at
their point of intersection are perpendicular. This means that slopes are negative
reciprocals of each other, except when T, and T, are parallel to the coordinate axes.

Orthogonal Trajectories (OT)::
When all curves of a family 3, : G(x,y,c,)=0 orthogonally intersect all curves of

another family 3,: H(X,y,c,)=0 then each curve of the families is said to be
orthogonal trajectory of the other .

As we can see from the previous figure that the family of straight lines Y =MmMX and the§

2 2 2
family of circles X +Y = C* are orthogonal trajectories.

Orthogonal trajectories occur naturally in many areas of physics, fluid dynamics, in the
study of electricity and magnetism: etc. For example the lines of force are perpendicular
to the equipotential curves i.e. curves of constant potential.

‘Method of finding Orthogonal Trajectory::

Consider a family of curves 3. Assume that an associated DE may be found, which is
given by:

dy
—=T(xy)
dx
dy
Since & gives slope of the tangent: to a curve of the family 3 through (X, y).
Therefore, the slope of the line orthogonal to this tangent is — ﬁ So that the
slope of the line that is tangent to the orthogonal curve through (Xx,y)is given by
—%. In other words, the family of orthogonal curves are solutions to the
X,y
differential equation
dy 1
dx  f(xy)
The steps can be summarized as follows:

Summary:
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In order to find Orthogonal Trajectories of a family of curves 3 we perform the
following steps:

Step 1. Consider a family of curves J and find the associated differential equation.
Step 2. Rewrite this differential equation in the explicit form

dy
2 = f(x,
™ (x,y)

dy__ 1
dx  f(x,y)

Step 4.. Solve the new equation. The solutions are exactly the family of orthogonal
curves.
Step 5. A specific curve from the orthogonal family: may be required;, something like an:

Example 1

Find the orthogonal Trajectory to the family of circles
x2 1 yz _C?

Solution:

The given equation represents a family of concentric circles centered at the origin.
Step 1. We differentiate w.r.t. * X " to find the DE satisfied by the circles.

d
2y L ox—0
dx
Step 2. We rewrite this equation in the explicit form
dy X
dx y
Step 3. Next we write down the DE for the orthogonal family
dy _ 1y
dx —(x/y) x

Step 4.This is a linear as well as a separable DE. Using the technique of linear
equation, we find the integrating factor

1
—| = dx
u(x)=eJX 1
X

which gives the solution
y.u(x)=m

or
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10-Applications of First Order Differential Equations

Find the Orthogonal Trajectory to the family of circles

X°+y>=2CXx

d X* +y?
yWoxoc, =XV
dx 2X
2. The explicit differential equation associated to the family of circles is
dy y*-x?

dx 2Xy
3. Hence the differential equation for the orthogonal family is
dy  2xy
dx  x*-y?

4. This DE is a homogeneous, to solve this equation we substitute V = Y/ X

or equivalently :Y =VX.  Then we have
d dv 2X 2v
_XZX__+de 2y2: 2
dx dx X“ -y 1-v

Therefore the homogeneous differential equation in step 3 becomes

dv 2V
X— 4V =

dx 1-— V2
Algebraic manipulations reduce this equation to the separable form:
3

dv_1]jv+v
dx x|1-v?
The constant solutions are given by

Vvl =0 = v(1+v2) =0

The only constant solutionis V=0.

To find the non-constant solutions we separate the variables

2
1 V3dv:1dx
V+V X

Integrate
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)
Jl V3dv:fldx
V+V X

Resolving into partial fractions the integrand on LHS, we obtain
1-v¥  1-v® 1  2v

VIRV v(1+v2) vV 14V2

Hence we have

2
Jl_"3 dv:Hl—lz"z}d v=In|v|-In[vZ +1]
V. 1+v

V+V
Hence the solution of the separable equation becomes

In|v|-=In[v’ +1]=In|x|+InC

which is equivalent to
\"
= Cx
Ve +1
where C # 0. Hence all the solutions are
v =0
Vv
5 = CX
ve+1
- Y
We go back to y to get: Y = 0:and y2 T xZ which is equivalent to
y =0
x> +y>= my

5. Which is x-axis and a family of circles centered on y -axis. A geometrical
view of both the families is shown in the next slide.
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Population Dynamics:

Some natural questions related to population problems are the following:

o What will the ipopulation of a certain country after e.g. ten years?
o How are we protecting the resources from extinction?

The easiest population dynamics model is the exponential model. This model is based
on the assumption:

The rate of change of the population is proportional to the existing population.

If P(t) measures the population of a species at any time T then because of the above
mentioned assumption we can write
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dP

kP
dt

where the rate K is constant of proportionality. Clearly the above equation is linear as
well as separable. To solve this equation we multiply the equation with the integrating

E[P e kt} =0
dt

factor e kt to obtain

Integrating both sides we obtain

Pe_kt:C or P:Cekt

If Py is the initial population then P(0) = P, . So that C = P, and obtain

P(t) = P, ekt

Clearly, we must have k>0 for growth and k <O for the decay.
Illustration

The population of a certain community is known to increase at a rate proportional to the
number of people present at any time. The population has doubled in 5 years, how long
would it take to triple?. If it is known that the population of the community is 10,000
after 3 years. What was the initial population? What will be the ipopulation in 30 years?:

Solution:

Suppose that P, is initial population of the community and P(t) the population at any

time T then the population growth is governed by the differential equation

dP
— —kP
dt
As we know solution of the differential equation is given by
P(t) =P, ekt

Since: P(5) = 2P, . Therefore, from the last equation we have

2P, =P, e5k :>e5k =2
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This means that
0.69315
5k =In2=0.69315 or k= =0.13863
Therefore, the solution of the equation becomes
P(t)=P e0.13863t
= 1o
If tl is the time taken for the population to triple then
3p, —p, (013864 _ 01386, _ g
| = In3 = 7.9265~ 8 years
0.1386
Now using the information i P(3) = 10,000, we obtain from the solution that
_ o .(0.13863 )(3) 10,000
10,000 =R, e =B, = —e0'41589
Therefore, the initial population of the community was
P, ~ 6598
Hence solution of the model is
P(t) = 6508¢0-13863t
So that the population in 30 years is given by
P(30) = 65986(30)(0'13863) _ 6598a%1589
or P(30)= (6598 )(64.0011)
or P(30)~ 422279
88
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Lecture 11  Radioactive Decay

In physics a radioactive substance disintegrates or transmutes into the atoms of another
element. Many radioactive materials disintegrate at a rrate proportional to the amount:

then the rate of change of A(t) with respect to time T is given by
dA
dt

where K is a constant of proportionality. Let the initial amount of the material be A, then

kKA

A(0) = A, . As discussed in the population growth model the solution of the differential
equation is

At) = Aet

The constant K can be determined using half-life of the radioactive material.

The half-life of a radioactive substance is the time it takes for one-half of the atoms in an
initial amount A, to disintegrate or transmute into atoms of another element. The half-
life measures stability of a radioactive substance. The longer the half-life of a substance,

the more stable it is. If T denotes the half-life then

Ay
AT)=—
) 5
Therefore, using this condition and the solution of the model we obtain
A kt
— = e
> =%
So that KT=-In2

Therefore, if we know T , We can get K and vice-versa. The half-life of some important
radioactive materials is given in many textbooks of Physics and Chemistry. For example

the half-life of C —14 is 5568 + 30 years.:

Example 1:
A radioactive isotope has a half-life of 16 days. We have i30 g at the end of 30 days.
‘How much radioisotope was initially present?

Solution: Let A(t) be the amount present at time t and A, the initial amount of the

isotope. Then we have to solve the initial value problem.
dA
E =kA A30)=30

We know that the solution of the I\VP is given by

A = Aek!
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If T the half-life then the constant is given K by

kT=-In2 or k__ln_2__|n_2
T 16
Now using the condition A(30) =30 , Wwe have
So that the initial amount is given by
30In 2

A, =303 —30e 16 110049

Example 2:

A breeder reactor converts the relatively stable uranium 238 into the isotope plutonium

................

plutonlum has disintegrated. Find the half-life of this isotope if the rate of dlsmtegratlon
is proportional to the amount remaining.

Solution:

Let A(t) denotes the amount remaining at any time t , then we need to find solution to
the initial value problem

dA -
G KA A=A

which we know is given by

At) = Aekt

If 0.043% disintegration of the atoms of A; means that 99.957% of the substance:

A(5) = (0.99957 )A0

So that
AeloK = (0.99957) A,
15k = in(0.99957)
or = 99957 _ 4 90002867
once A(t) = A ¢~ 000002867 t

If T denotes the half-life then : A(T) = % . Thus
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A _ Ae~ 0.00002867 T . 1 o—0.00002867 T
2 2
—0.00002867 T = (2) =—In2
= In2 24,180 years
0.00002867

Newton's Law of Cooling
From experimental observations it is known that the itemperature T (t) of an object

changes at a rate proportional to the difference between the temperature in the body and

the temperature T, of the surrounding environment. This is what is known as Newton's
law of cooling.

If initial temperature of the cooling body is T, then we obtain the initial value problem
dT

e k(T-T,), T(O)=T,

where Kk is constant of proportionality. The differential equation: in the problem is linear:

as well as separable.;

Separating the variables and integrating we obtain
dT

B PR

T-T,

This means that

In|T-T, |=kt+C
T-T =ekt*C

T =T, +C,eM where C, =¢°

Now applying the |n|t|al condition T(O) :TO, we see that C; =T, =T, . Thus the

solution of the initial value problem is given by

T(t) :Tm + (I-O _Tm)ekt

Hence, If temperatures at times tl and tz are known then we have

T(t)-T, = (T,-T,)e"" , T(t,)-T, = (T, T, )¢

So that we can write

T(t)-T, ek(tl _tz)
T(tz) _Tm -
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This equation provides the value of K if the interval of time * t1 —t2 > is known and vice-

VErsa.

Example 3:

Suppose that a idead body was discovered at midnight in a room when its temperature

was 80 °F. The temperature of the room is kept constant at 60 °F . Two hours later the

temperature of the body dropped to 75° F . Find the time of death.
Solution:
Assume that the dead person was not sick, then

T(0)=98.6°F=T,and T, =60°F
Therefore, we have to solve the initial value problem

‘Z—I =k(T -60), T(0)=98.6

We know that the solution of the initial value problem is
kt

T(t) :Tm + (TO _Tm)e

T(t)-T, _ ek(t1 -t5)

T(tz) _Tm

The observed temperatures of the cooling object, i.e. the dead body, are

T(t)=80°F and T(t,)=75°F

Substituting these values we obtain

So that

80_60:e2k as t, —t. =2 hours
75-60 1 2
1 4
k==In—=0.1438
So 23

Now suppose that t1 and t2 denote the times of death and discovery of the dead body
then

T(t,)=T(0)=98.6°F and T(t,)=80°F
For the time of death, we need to determine the interval 1, =1, =1, . Now
T(t,)-T, :ek(tl‘tz) _ 986-60 _ ki,
T(t,)-T, 80— 60

1, 38.6

t,=—Inh——=~4.573
or = o0

Hence the time of death is 7:42 PM..

‘Carbon Dating:
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radiation on nitrogen.:

The ratio of C-14 to ordinary carbon in the atmosphere appears to be constant.

The proportionate amount of the isotope in all living organisms is same as that in
the atmosphere.

When an organism dies, the absorption of C —14 by breathing or eating ceases.
Thus comparison of the proportionate amount of C —14 present, say, in a fossil
with constant ratio found in the atmosphere provides a reasonable estimate of its

age.

The method has been used to date wooden furniture in Egyptian tombs.

o Since the method is based on the knowledge of half-life of the radio active C —-14
(5600 vyears approximately), the initial value problem discussed in the
radioactivity model governs this analysis.

Example:

A ffossilized bone is found to contain 1/1000:0f the original amount of C—14. Determine

the age of the fissile.:

Solution:

Let A(t) be the amount present at any time t and A, the original amount of C-14.

Therefore, the process is governed by the initial value problem.

dA
GoKA A0 =A

We know that the solution of the problem is

At) = A ekt

Since the half life of the carbon isotope is 5600 years. Therefore,

So that

A(5600) = %

A

> = Ae2%00K o1 5600k = —In2

k =—0.00012378

Hence

93

VU

© Copyright Virtual University of Pakistan



11-Radioactive Decay

A(t) = Ae

—(0.00012378)t

If T denotes the time when fossilized bone was found then A(t) =

Therefore

Ay

1000

A
1000~ v

— (0.00012378)t

= —0.00012378t =-In1000

~In1000
0.00012378

= 55,800 years
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Lecture 12  Application of Non Linear Equations

As we know that the solution of the exponential model for the population growth is
P(t) = P, ekt
P, being the initial population. From this solution we conclude that

(@ If k>0 the population grows and expand to infinity i.e. lim Ft)g) = +0
00

(b) If k <0 the population will shrink to approach 0, which means extinction.

Note that:

(1) The prediction in the first case (k >0) differs substantially from what is actually
observed, population growth is eventually limited by some factor!

(2) Detrimental effects on the environment such as pollution and excessive and
competitive demands for food and fuel etc. can have inhibitive effects on the population
growth.

Logistic equation:

Another model was proposed to remedy this flaw in the exponential model. This is called
the logistic model (also called Verhulst-Pearl model).

Suppose that a >0 is constant average rate of birth and that the death rate is proportional
to the population P(t) at any time . Thus if %z—f is the rate of growth per individual
then

1dP_
P dt

where b is constant of proportionality. The term —bP2, b >0: can be interpreted as

a—bP or dd_Ft): P(a—bP)

inhibition term. When b =0, the equation reduces to the one in exponential model.
Solution to the logistic equation is also very important in ecological, sociological and
even in managerial sciences.

Solution of the Logistic equation:

The logistic equation

dP
— =P(a-bP
pra )

can be easily identified as a nonlinear equation that is separable. The constant solutions
of the equation are given by

P(a-bP)=0

= P=0 and Pzg
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For non-constant solutions we separate the variables

_ P
P(a—bP)
Resolving into partial fractions we have
Va, bla lyp_ g
P a-DbP
1 1
Integrating —In|P[-=In|a-bP|=t+C
a a
In =at+aC
a—DbP
or P__ c,e® where C, =eaC
a—bP
Easy algebraic manipulations give
aCleat aC,
P(t)= at —at
1+bCee bC, +e
Here C,is an arbitrary constant. If we are given the initial condition P(0)=P,, P, ¢%
we obtain iC, = P(t))P . Substituting this value in the last equation and simplifying, we
a—Dbr,
obtain
aP,
P(t) = T
bP, + (a—bPR,)e
i aP, a
lim P(t)=—2=— imi
Clearly U (t) bP, b’ limited growth

ai. . . . .
Note that : P = b is a singular solution of the logistic equation.

Special Cases of Logistic Equation:
1. Epidemic Spread

Suppose that one person infected from a contagious disease is introduced in a fixed
population of n people.

L dx . . .
The natural assumption is that the rate aof spread of disease is proportional to the

number X(t) of the infected people and number Y(t) of people not infected people.
Then
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dx

— =kXx

dt d
Since X+y=n+1

Therefore, we have the following initial value problem

% =kx(n+1-x), x(0)=1

The last equation iis a special case of the logistic equation and has also been used for
the spread of information and the impact of advertising in centers of population.

2. A Modification of LE:

A modification of the nonlinear logistic differential equation is the following

dP
—=P(a-bInP
pranll )

has been used in the studies of solid tumors, in actuarial predictions, and in the growth
of revenue from the sale of a commercial product in addition to growth or decline of
population.;

students. If it is assumed that the rate at which the virus spreads is proportional not only

to the number x of mfected students but also to the number of istudents not mfected

days x(4) =50.

Solution

Assume that no one leaves the campus throughout the duration of the disease. We must
solve the initial-value problem

% =kx(1000-x), x(0)=1

We identify

'a=1000k and b=k:
Since the solution of logistic equation is

aP,
bP, + (a—bP,)e &

P(t) =

Therefore we have
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1000 k 1000

X0 = - |
k +999 ke 1000Kt 1 | 9991000kt

1000

1+ 9994000k

-1 In 19 _ 0.0009906.

~ 4000 999

50 =

We find

Thus

1000

X(t) =
1+ 999 0-9906 t

Finally

X(6) = 1000 =276 students:

1+ 099 —>-9436

‘Chemical reactions::

In a first order chemical reaction, the molecules of a substance A decompose into smaller:

.....................................

substance that has not undergone conversion. The disintegration of a radioactive
substance is an example of the first order reaction. If X is the remaining amount of the

substance A at any time t then
dX
dt

k <0 because X is decreasing.

k X

In a 2" order reaction two chemicals A and B react to form another chemical C at a
rate proportional to the product of the remaining concentrations of the two chemicals.

If X denotes the amount of the chemical C that has formed at time t. Then the
instantaneous amounts of the first two chemicals A and B not converted to the
chemical C are «—X and L — X, respectively. Hence the rate of formation of

chemical C is given by

© =kla-x)(8-X)
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where k is constant of proportionality.

.................................

‘A compound C is formed when two chemicals A and B are combined. The resulting

reaction between the two chemicals is such that for each gram of A, 4 grams of B are
used. It is observed that 30 grams of the compound C are formed in 10 minutes.
Determine the amount of C at any time if the rate of reaction is proportional to the
amounts of A and B remaining and if initially there are 50 grams of A and 32 grams

of B . How much of the compound Cis present at 15 minutes? Interpret the solution as
t >

Solution:

and b grams of B then

a+b=2 aa b=4a
Solving the two equations we have

a=§=2(1/5) o b:§:2(4/5)

In general, if there were for X grams of C then we must have

X 4
a=— and b =—
5 9)
Therefore the amounts of A and B remaining at any time t are then

50—£and BZ—EX
5 5

respectively .

Therefore, the rate at which chemical C is formed satisfies the differential equation

B a[0- % m-2x]
dt 5 5

or
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dX
s k(250— X)(40—X), k=44/25
We now solve this differential equation.
By separation of variables and partial fraction, we can write
ax _ kdt
(250 — X )40 - X))
B 1/210 dX + 1/210 dX = kdt
250— X 40— X
[ 220~ %~ 210kt+ c,
40- X
250- X
— = cze210kt Where ¢, =e®
40— X
When t =0, X =0, so it follows at this point that C, = 25/4 . Using X =30 at
t =10, we find
210k = L In 88 =0.1258
10 25
With this information we solve for X :
1—e™ 0.1258t
X (t) =1000
o5 _ 40— 0.1258t
Itis clear that as e_0'1258t —0 as t —> 00, Therefore X —40 as t —> 0. This
fact can also be verified from the following table that X — 40 as t —> 0.
t | 10|15 20 25 30 35
X 30| 34.78 | 37.25 | 38.54 | 39.22 | 39.59
This means that there are 40 grams of compound C formed, leaving
50—%(40) =42 gramsof chemical A
100
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and

32——%(40):() gramsof chemical B

Miscellaneous Applications

The velocity V of a falling mass M | subjected to air resistance proportional to
instantaneous velocity, is given by the differential equation

dv
m— =mg — kv
dx
Here k > 0 is constant of proportionality.

The rate at which a drug disseminates into bloodstream is governed by the
differential equation

o _
dt

Here A, B are positive constants and X(t) describes the concentration of drug i

A — Bx

the bloodstream at any time t.
The rate of memorization of a subject is given by

dA
=M =A) kA

10
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Here k, >0, k, >0 and A(t) is the amount of material memorized in time t,

M is the total amount to be memorized and M — A is the amount remaining to
be memorized.
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Lecture 13  Higher Order Linear Differential Equations

Preliminary theory

o A differential equation of the form
dn dn-t d
an () =2 +an_g () =+ +ay(x) > + a9 (X)y = 9(¥)

dx" dx" dx

or a0y +a,_ 1y o+ 2 0y +ag () = 9(x)
where ag(X),a1(X),...,a,(X),g(x)are functions of x and a,(x) =0, is
called a linear differential equation with variable coefficients.
o However, we shall first study the differential equations with constant coefficients
i.e. equations of the type
dny +an_1 dn 1y
dx" dx" L
where Qdg,dq,...,dnyare real constants. This equation is non-homogeneous
differential equation and
a If g(x) =0 then the differential equation becomes

n n-1
anu+an_1d y+---+a1%

dx" dx" 1
which is known as the associated homogeneous differential equation.

an

+"'+al?+aOY=9(X)
X

+agy =0

Initial -Value Problem
For a linear nth-order differential equation, the problem:

n n—ly dy

Solve: an(x)u+an_1(x)d —1 +-+ap(X)=—+ag(x)y =9(x)

dx"
Subjectto:  Y(X)=VYe Y (X)) = VoY (X)) = Yo
Yo yO/ youoy y{;*1 being arbitrary constants, is called an initial-value problem (I'\VP).

The specified values y(X,)=Yo, ¥ (%) = Yor-. Y (%) =Y, are called initial-

conditions.
For n =2 the initial-value problem reduces to
d?y dy
Solve: ar(X)—=+a;(x)—+apg(x)y = g(x
2( )OIX2 1.( )dx 0(¥)y=9(x)

Subjectto: V(X)) =VYor-oes Y (Xo) = Ve
Solution of VP
A function satisfying the differential equation on | whose graph passes through (X,,Y,)

such that the slope of the curve at the point is the number vy, is called solution of the
initial value problem.
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Theorem: Existence and Uniqueness of Solutions

Let ap(x),an_1(X).... aq(x),ag(x)and g(x) be continuous on an interval | and let
a,(x)#0, Vxel.If x=xy el, then a solution y(x) of the initial-value problem exist

on | and isunique.

Example 1

Consider the function y= 32X 4 e72X _3x
This is a solution to the following initial value problem

y' -4y =12x, y(0)=4,y'(0)=1

d? _
dx
d2y
and d—2—4y =122 + 472 —12e2X — 472 +12x =12x
X
Further y(0)=3+1-0=4 and y'(0)=6-2-3=1
Hence y =32 +e72X _3x

is a solution of the initial value problem.
We observe that

The equation is linear differential equation.
The coefficients being constant are continuous.
The function g(x) =12x being polynomial is continuous.

o The leading coefficient a,(x) =10 for all values of Xx.

00O

Hence the function y = 3e?X +e72X _3x isthe unique solution.

Example 2
Consider the initial-value problem

I

3y" +5y" —y' +7y =0,

ym =0, y'®=0 y'@=0
Clearly the problem possesses the trivial solution y =0.
Since
o The equation is homogeneous linear differential equation.
o The coefficients of the equation are constants.
o Being constant the coefficient are continuous.
o The leading coefficienta, =3+ 0.

Hence y =0 is the only solution of the initial value problem.

104

© Copyright Virtual University of Pakistan



13-Higher Order Linear Differential Equations

Note: If a, =07
If a,(x) =0 inthe differential equation

dny n—ly

d dy _
an (x)m(—n+an_1(><) = Tt () o +ao()y = 9(x)

for some x e 1 then

o Solution of initial-value problem may not be unique.
a Solution of initial-value problem may not even exist.

Example 4
Consider the function
y = ox? +x+3
and the initial-value problem
x2y” —2xy/ +2y=06
y(0) =3, y'(0)=1
Then y'=2cx+1 and  y"=2c
Therefore x2y" —2xy’ +2y = x?(2¢) — 2x(2cx +1) + 2(cx® + x + 3)

— 20x% — 4cx% — 22X+ 20X +2X+ 6

= 6.
Also y(0)=3 = ¢(0)+0+3=3
and y/ (0)=1 = 2c(0)+1=1

So that for any choice of c, the function'y' satisfies the differential equation and the
initial conditions. Hence the solution of the initial value problem is not unique.

Note that

The equation is linear differential equation.
The coefficients being polynomials are continuous everywhere.
The function g(x) being constant is constant everywhere.

0O 00D

The leading coefficient a, (x) = x>?=0at x=0e (—00,00).

Hence a,(x) =0 brought non-uniqueness in the solution
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Boundary-value problem (BVP)

For a 2™ order linear differential equation, the problem

dzy

dx?
Subjectto:  y(@)=y,, y®)=y

is called a boundary-value problem. The specified values y(a) =vy,, and y(b) =y, are

called boundary conditions.

Solve: a, (x) + al(x)% +ag(X)y =9(x)

Solution of BVP

A solution of the boundary value problem is a function satisfying the differential equation
on some interval | , containing a and b, whose graph passes through two points (a, y,)

and (b, y,).

Example 5
Consider the function
y =3x% —6x+3
We can prove that this function is a solution of the boundary-value problem
x*y" —2xy’ +2y =8,
y =0, y(@2)=3
2
Since y=6x—6, u:6
dx dx2
2 d?y dy 2 2 2
Therefore XS —— —2X—+42y =6x° —-12x° +12X+6X° -12x+6=6
d)(2 dx
Also y@0)=3-6+3=0, y(2)=12-12+3=3

Therefore, the function'y'satisfies both the differential equation and the boundary
conditions. Hence vy is a solution of the boundary value problem.

Possible Boundary Conditions

For a 2" order linear non-homogeneous differential equation
2

az(x)%w(x)%ao(x)y:g(x)

all the possible pairs of boundary conditions are

y(@) =Y, y(b) =y,
y' () =ys, y(b) = y1,
y(@) =y, y'(0)=y'1,
y' (@) = s, y'(0) =y

where y,, v, Y, and y; denote the arbitrary constants.

In General
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All the four pairs of conditions mentioned above are just special cases of the general
boundary conditions

1Y@+ Ay’ (@) =n
azy(®)+ By’ (B) =77
where al!az’ﬁliﬂZ € {0’1}

Note that
A boundary value problem may have

o Several solutions.
o A unique solution, or
o No solution at all.

Example 1
Consider the function

Y = C; COS4X +C, Sin4X
and the boundary value problem
y" +16y=0, y(0)=0, y(r/2)=0
Then
y' = —4c, sin4x + 4c, Cos4x

y" =-16(c, cos4x +c, sin 4x)
y" =-16y
y" +16y =0
Therefore, the function
y =C, COS4X +C, Sin 4x
satisfies the differential equation

y" +16y=0.

Now apply the boundary conditions
Applying y(0)=0
We obtain

0=cycos0+cysin0

=C = 0
So that

y=cC,Ssin4x.
But when we apply the 2™ condition y(z/2) =0, we have

0=c,sin2z

Sincesin 2z =0, the condition is satisfied for any choice of c,, solution of the problem is
the one-parameter family of functions

y =C, sin4x
Hence, there are an infinite number of solutions of the boundary value problem.

Example 2
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Solve the boundary value problem
y" +16y=0
T
0 =0,y % -0
Solution:
As verified in the previous example that the function
Y = C; COS4X + C, Sin4X
satisfies the differential equation
y" +16y=0
We now apply the boundary conditions
y(0)=0=0=c¢c; +0
and y(7z/18)=0=0=0+c,
SO that Cl = O = C2
Hence
y=0
is the only solution of the boundary-value problem.
Example 3
Solve the differential equation
y" +16y=0
subject to the boundary conditions
y(0)=0, y(z/2)=1
Solution:
As verified in an earlier example that the function
y = C; COS4X + C, Sin4X
satisfies the differential equation
y/ +16y=0
We now apply the boundary conditions
y(0)=0=0=c¢c; +0
Therefore ¢ =0
So that y =C, Sin4x
However y(r/2)=1=1c,sin2r =1
or 1=¢,.0=1=0
This is a clear contradiction. Therefore, the boundary value problem has no solution.
Definition: Linear Dependence
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A set of functions

{100, f200,., ()}

is said to be linearly dependent on an interval | if 3 constants Cq,C,,...,C, not all zero,
such that

qfi(x)+cofro(X)+---.4+c, fr(x)=0, Vxel

Definition: Linear Independence

A set of functions
{00, f2(0,.... f (0}
is said to be linearly independent on an interval | if
() +c fro(X)+---+c,f,(x)=0, Vxel,
only when
c,=¢C,=--=¢C, =0.

Case of two functions:

If n=2 then the set of functions becomes
{f10, F200}

If we suppose that
¢ fi(X)+cyfr(x)=0

Also that the functions are linearly dependent on an interval | then either ¢; #0 or
c, #0.

Let us assume that c, # 0, then

mm=—%nau

Hence f,(x) isthe constant multiple of f,(X) .
Conversely, if we suppose

fi(x)=c3 f2(x)
Then D f(x)+c,f,(x) =0, ¥xel

So that the functions are linearly dependent because c, = —1.

Hence, we conclude that:
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o Any two functions f;(x)and f,(x)are linearly dependent on an interval | if and
only if one is the constant multiple of the other.

o Any two functions are linearly independent when neither is a constant multiple of
the other on an interval I.

o Ingeneral a set of n functions {fl(x), fo(X),..., fn(x)} is linearly dependent if at
least one of them can be expressed as a linear combination of the remaining.

Example 1
The functions

f1(x) =sin 2x, VX € (—o0, o)

f5(X) =sinxcosx, VX e (-0, )

If we choose c; :% and ¢, = -1 then

. : 1., .. .
C; SiN 2X +C, Sin XCOSX :E(Zsm X COSX) — sin xcosx =0

Hence, the two functions f;(x) and f,(x) are linearly dependent.
Example 3
Consider the functions

f,(x) =cos’x, f,(x)=sin’x, Vxe (-z/2,z/2),

f,(x) =sec*x, f (X)= tan’x, VXe (—712,712)
If we choose ¢; =c, =1,¢3 =-1,¢4 =1, then

Cy f1(X) + €2 fo (X) + €3 f3(X) + ¢4 T4(X)
=, C0S? X +C, Sin? x+c3sec2 X +C4 tan? x

= cos? X +sin?

=1-1+0=0
Therefore, the given functions are linearly dependent.
Note that

X+ —1—tan? x + tan? x

The function f;(x) can be written as a linear combination of other three functions

f,(x), f,(x) and f,(x) becausesec® x = cos? x +sin? x + tan” x.

Example 3
Consider the functions
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fi(X) =1+x, V xe (—o0,)
fo(x)=%X, VXe (—o,0)

f3(x) = x2, Vxe (—o0,0)

Then
¢ fi(X) +cy fa(X)+c3f3(x) =0
means that
1+ x)+c2x+c3x2 =0
or cl+(c1+cz)x+c3x2 =0
Equating coefficients of x and x? constant terms we obtain
Cl = 0 = C3
Cl + C2 = 0
Therefore Cp=Cy=C3=0

Hence, the three functions f;(x), f,(x) and f3(x) are linearly independent.

Definition: Wronskian

Suppose that the function f,(x), f,(x),..., f,(x) possesses at least n—1 derivatives then
the determinant

fi fy i
it fa
TR P fn-t

is called Wronskian of the functions f,(x), f,(x),..., f,(x)and is denoted by
W(f,(0), 00, F(0))-
Theorem: Criterion for Linearly Independent Functions

Suppose the functions f,(x), f,(x),..., f,(x) possess at least n-1 derivatives on an interval
. If

W(f (x), f,(x),...., T, (x)) =0
for at least one point in 1, then functions f,(x), f,(x),..., f,(x) are linearly independent
on the interval 1| .
Note that
This is only a sufficient condition for linear independence of a set of functions.

In other words

If f,(x), f,(x),..., f,(X) possesses at least n—1 derivatives on an interval and are
linearly dependent on | , then
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W(f (X)) To(X)seo, T (X)) =0, Wxel

However, the converse is not true. i.e. a Vanishing Wronskian does not guarantee linear

dependence of functions.

Example 1
The functions
f1(x)=sin? x
f,(x)=1-cos2x
are linearly dependent because

sin? x = %(1—c052x)

We observe that for all x € (—o0,0)

W (fy(x), f5(x))= sin®x  1-cos2x

2sinxcosx  2sin 2x

=2sin? xsin 2x — 2sin Xcos X
+25in X COS X COS 2X

=sin 2x[25in2 X —1+c0s2x]

=sin 2x[23in2 X —1+cos? X —sin? X]

=sin 2x[sin? x + cos? x —1]
=0

Example 2

Consider the functions

f,(x)=e™", f,(x)=e"2", m, =m,
The functions are linearly independent because
Cl fl(X) + C2 f2 (X) = 0

if and only if cg=0=c, as my=m,

Now for all xeR
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m, X m,X

W(emlx,emzx): ° ©
me™  mye™

=(m, - ml)e(m1+m2)x
0

Thus f, and f,are linearly independent of any interval on x-axis.

Example 3
If «and £ are real numbers, S =0, then the functions
y, =e” cosfxandy, =e”sin X
are linearly independent on any interval of the x-axis because

W(e“x cos X, e” sin ﬂx)

e™ cos A e sin /X

— B sin A+ o™ cos X o™ cos X+ ae™ sin X
:,692‘”‘(0032 fx+sin? ,Bx): )i S}

Example 4
The functions

f(x)=e*, f,(x)=xe*, and f,(x)=x?e*

are linearly independent on any interval of the x-axis because for all x € R, we have

e xe* x2e*
W(e™, xe*,x%e)=|e*  xe* +e” x2e* + 2xe”
X xe¥+2e* x%e* +4xe* +2e*
=2e¥* %0
Exercise

1. Given that
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4.
S.
6.
7.

y=ce*+ce”

is a two-parameter family of solutions of the differential equation
y'—y=0
on (— oo,oo), find a member of the family satisfying the boundary conditions
y(0)=0, y(®)=1.
Given that
Yy =C; +C, COSX + C3SiN X
is a three-parameter family of solutions of the differential equation
y"+y'=0
on the interval (— oo,oo), find a member of the family satisfying the initial
conditions y(z)=0, y'(z)=2,y"(z)=-1.
Given that
y =C;X+CyXInx
is a two-parameter family of solutions of the differential equation
x2y" —xy'+y=00n (—o0,). Find a member of the family satisfying the initial
conditions
y)=3 y@)=-1.
Determine whether the functions in problems 4-7 are linearly independent or
dependent on (- oo, ).

fi(x)
1(%)
f,(x)
fi(x)=e*, fy(x)=e7, f3(x)=sinhx

x, f,(x)=x% f,(x)=4x-3x
0, fo(x)=x, fz(x)=e*
cos2x, f,(x)=1 f,(x)=cos’x

—
Il

Show by computing the Wronskian that the given functions are linearly independent
on the indicated interval.

8.
9.

tanx, cotx;  (-oo,m)

eX, X, &M (~o0,)

10. x,xInx,x2Inx; (0,00)
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Lecture 14  Solutions of Higher Order Linear Equations

Preliminary Theory

o In order to solve an nth order non-homogeneous linear differential equation

d n d n-1 d
2,005 Y +a,, (05 T 2,00 + 2, (K = g4

dx" dx"*
we first solve the associated homogeneous differential equation
a (X)d_”y+ a 1(x)d "y +ot al(x)ﬂ+ a,(x)y =0
ldx™ T Tdx™! dx

o Therefore, we first concentrate upon the preliminary theory and the methods of
solving the homogeneous linear differential equation.

o We recall that a function y= f(x) that satisfies the associated homogeneous
equation

d ny d n—1y dy
3,005 L, 0 L e () oy (x)y =0

is called solution of the differential equation.

Superposition Principle

Suppose that ¥;,Y,,..., Y, are solutions on an interval | of the homogeneous linear
differential equation

n n-1
a,(x) %Y "y

d
+ an—l (X) n-1 ) y
dx

+o-+ay(x &+ao(x)y:0

Then
y= Clyl(x)+ Czyz(x)"'""" CoYn (X)’
C1,Cy,...,C, being arbitrary constants is also a solution of the differential equation.

Note that

o A constant multiple y=c,y,(x) of a solution y,(x) of the homogeneous linear
differential equation is also a solution of the equation.

o The homogeneous linear differential equations always possess the trivial solution
y=0.

o The superposition principle is a property of linear differential equations and it
does not hold in case of non-linear differential equations.
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Example 1

The functions
y, =e*,y, =c¥, and y, =e*
all satisfy the homogeneous differential equation
d’y o d%y
dx®* dx®

on (— oo,oo). Thus y,,y, and y; are all solutions of the differential equation

+11ﬂ—6y =0
dx

Now suppose that
y =c.e* +c,e”* +c,e™.

Then

o

Y e+ 20,62 + 3.6

X

o

2

@Y _ ce +4c,e% +9c,e™.
X2

o [

o

3

QY et +8c,e% + 27c,e™.
dx®

Therefore

3 2
dy_gd%y g dy o

dx® dx? X
= cl(ex —6e* +11e* —6eX)+ 02(8e2X — 24e%X 4 2202 —6e2x)

+cgl27e3* —54e3* + 33e5X — ge3X

=c,(12-12)e* + ¢, (30— 30)?* +c5(60 - 60)e>
=0

Thus y =c,e* +c,e” +ce™.

is also a solution of the differential equation.
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Example 2
The function

2

y=X
is a solution of the homogeneous linear equation

x’y" —3xy'+4y =0

on (0,0).
Now consider
y =cx’
Then y'=2cx and y"=2c
So that x2y" —3xy’ + 4y = 2cx® —60x? +4cx* =0

Hence the function
y =cx’

is also a solution of the given differential equation.

The Wronskian

Suppose that y;,y, are 2 solutions, on an interval I , of the second order homogeneous
linear differential equation

d?y _ dy
aZW+a1&+aoy:0
Then either W(y,,y,)=0, Vxel
or W(y,,y,)#0, Vxel
To verify this we write the equation as
d?y Pdy
+—+Qy =0
dx®>  dx R
Yi Yy bt
Now Wy y,)= % ,2 =Y1¥Y2 = Y1¥e
Yyi Y2

Differentiating w.r.to X, we have

dﬂ_ "o\
dx =Y1¥Y2 — V1Yo

Since y,andy, are solutions of the differential equation

d’y Pdy
—+—+Qy =0
dx*>  dx i
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Therefore
yi +Py; +Qy; =0
Yz +Py; +Qy, =0
Multiplying 1% equation by y,and 2™ by y, the have
Y1¥2 + Py1y, +Qy1y, =0
Y1Y2 +Py1yz +Qy1y, =0
Subtracting the two equations we have:

(Y1Y5 = Yoy1)+ P(y,Y5 = yiy,) =0

or aw +PW=0
dx
This is a linear 1% order differential equation in W , whose solution is
W= Ce—dex

Therefore
o Ifc=0 then W(y,,y,)#0, Vxel

o Ifc=0 then W(y,,y,)=0, Vxel

Hence Wronskian of y, and vy, is either identically zero or is never zeroon | .

In general

If v;,¥,,...,y,are n solutions, on an interval |, of the homogeneous nth order linear

differential equation with constants coefficients

an%jtan_l Z:nif+---+a1%+aoy:0
Then
Either W(Y,,Y,,....¥,)=0, ¥xel
or W(Y,,Y,,..., ¥, )% 0, Vxel

Linear Independence of Solutions:
Suppose that
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Yir Yoo Yn

are n solutions, on an interval |, of the homogeneous linear nth-order differential
equation

d ny d n—ly dy
a,(x) o + an—l(x)w +et al(x)& +a,(x)y =0

Then the set of solutions is linearly independent on | if and only if
W(ylvyz,...,yn);to
In other words

The solutions
Yi:¥YoreoaYn

are linearly dependent if and only if
W(ylyyz,..., yn):O, Vx el

Fundamental Set of Solutions
A set
Wi Yareea Yol

of n linearly independent solutions, on interval |, of the homogeneous linear nth-order
differential equation

d" dnt d
a_(x) dx’¥ + an_l(x)rn_)ll et al(x)d—i +a,(x)y=0

is said to be a fundamental set of solutions on the interval | .
Existence of a Fundamental Set

There always exists a fundamental set of solutions for a linear nth-order homogeneous
differential equation

n n-1
an(x)OI Y ia 1(x)u+---+al(x)

an n-. an—l + a0 (X)y = O

dx
on an interval I.

General Solution-Homogeneous Equations
Suppose that

Wi Yoo Yal
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is a fundamental set of solutions, on an interval I, of the homogeneous linear nth-order

differential equation

dn dnfl d
0 (X) iy + Bna(X) g () g

Then the general solution of the equation on the interval 1 is defined to be

Y =Cya (%) + €y, (%) + -+ ¢y, ()
Here c,,c,,...,c, are arbitrary constants.
Example 1

The functions

3x

y,=e”" and vy, — e 3X

are solutions of the differential equation

y'=9y=0
3X )
Since W(esx,e_ng: e3 € =—6=%0, vVxel
3 X —3e_3x

Therefore y,andy, from a fundamental set of solutions on(—ao,0). Hence general

solution of the differential equation on the (—ao,) is

y =c.e®* +c,e ¥
Example 2
Consider the function y = 4sinh3x —5e 3X
Then y' =12cosh3x +15¢ X y" = 36sinh3x — 456~ X
" __ H _3X " _
= y _9(4smh3x—5e j or y" =9y,
Therefore y"—9y =0
Hence y = 4sinh3x —5e X

is a particular solution of differential equation.

y'=9y=0

The general solution of the differential equation is

3X —-3X
y=ce“" +c,e

Choosing C,=2,C,=—7
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We obtain y = 263X _7¢73X

y = 263X _ g™ 3X _5e3X

3X _ —3X
y:{e;}se—w

y =4sinh 3x— 53X

Hence, the particular solution has been obtained from the general solution.

Example 3
Consider the differential equation
3 2
9y 64 11 ¥ 6y-0
dx dx dx
and suppose that y, = eX, y, = e2X and y, = e3X
2 3
Then %:ex:d {lz—d };1
dx dx dx
a3y, d%y . dy X anX X X
Therefore -6 > +11—=-6y; =e” —6e” +11e™ —6e
dx® dx dx
ddy, d%y  dy X X
or -6 +11 -6y =12e” -12¢™ =0

dx3 dx? dx
Thus the function vy, is a solution of the differential equation. Similarly, we can verify
that the other two functionsi.e. y, and Yy, also satisfy the differential equation.

Now for all xeR

eX e2x e3x

W(ex,ezx,e3x)= eX 2e2X 3e3x :2e6X¢0 VXxel
eX 4e2x 9e3x

Therefore y;, y, and y;form a fundamental solution of the differential equation on
(~o0,0). We conclude that
y=ceX +c,e?X +ce3X

is the general solution of the differential equation on the interval (—oo,).

Non-Homogeneous Equations
A function y ,that satisfies the non-homogeneous differential equation
n n-1
a (x)u +a _1(x)d—i/
dx" dx"~
and is free of parameters is called the particular solution of the differential equation

d
+...+al(x)d_3xf+ao(x)y =g(x)
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Example 1
Suppose that
Yp =
Then y'[') =0
So that
yr+9y, =0+9(3)
=27
Therefore
Y, =3
is a particular solution of the differential equation
yp +9y, =27
Example 2
Suppose that
Yy, = X3 — x
Then y, =3x* -1, yr =6x
Therefore x2y'b +2xy', —8yp = x2 (6x)+ 2x(3x2 —1) —8(
= 4x3 1 6x
Therefore
yp —x3 _x

is a particular solution of the differential equation

x%y" +2xy’ —8y = 4x® + 6x

Complementary Function

The general solution
Yo =C1Y, TCYp +ooHC Y

of the homogeneous linear differential equation

X3—X

)
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d"y d"ty dy
(0% va, (08 Y o va (0 a0y =0

is known as the complementary function for the non-homogeneous linear differential
equation.

d" dnt d
a,(x) dxgl + an—l(X)Fn_i/ toeet al(x)d_i(/ +ay(x)y = g(x)
General Solution of Non-Homogeneous Equations

Suppose that
o The particular solution of the non-homogeneous equation

d"y d"ty dy
a, (X)dT + anfl(X)W +oot al(x)& +ay(x)y = g(x)
s ¥y
o The complementary function of the non-homogeneous differential equation

d" dnt d
8, () +a,, (X)L -+ ay (X)L + ay(x)y =0
dx dx

an—l

Ye =CY1 +Co¥Yo +-+CpY,.

o Then general solution of the non-homogeneous equation on the interval 1 is given

by
Y=YetYp
or
Y = C1Y1 (%) + €Yo (})+ -+ € Yo (}) + ¥, (¥) = yo () + v (x)
Hence
General Solution = Complementary solution + any particular solution.
Example
Suppose that
__ 11
P 12 2
! 1 " m
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3 2
d y3p —6d y2p +11dyp -6y, = O—O—E+E+3x = 3X
dx dx dx 2 2
Hence
_ 11
yp 12 2
is a particular solution of the non-homogeneous equation

3 2
M—6u+11ﬂ—6y = 3X
dx®  dx? dx

Now consider

Yo =c1e” + Coe2X 1 cae3X
Then
d
Ye _ ceX +2c,e2X +3cqeX
z
d
Je _ cieX +4c,e?X +9cqeX
d3x
d
Yo _ cie” +8c 02 + 27c5ex
dx®
Since,
d? d? d
);C -6 );C +11 Ye -6Y¢
dx dx dx

= ce" +8c,e” +27c,e’ - 6(cleX +4c,e” + 9cse3x)
+11(cleX +2c,7" + 303e3x)— 6(cleX +C,7% + cSeSX)
=12c,e* —12ce* +30c,e** —30c,e”* +60c,e> —60c,e*
=0

Thus y. is general solution of associated homogeneous differential equation

d’y _d’y . dy
Y 62V 1% _gy-0
dx® dx2+ dx Y

Hence general solution of the non-homogeneous equation is

11 1
—ceXtc,e?X e Tt

=y _ +
y=Y.+Y 12 2

p

Superposition Principle for Non-homogeneous Equations
Suppose that
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ypl,yp2 ,...,ypk
denote the particular solutions of the k differential equation
a, (X)y(n) +a,, (X)y(nil) Tt (X)y, +a, (X)y = gi (X)'
i=12,...k,onaninterval | . Then
= X)+ X)+ -+ X
Yp =Yp, (+yp, ()+-+yp ()

is a particular solution of

n n-1
an(x)y( ) +a _l(x)y( ) +-a(x)y +a, (x)y =g, (x)+ g, (x)+--+ g, (x)

Example
Consider the differential equation

y' =3y +4y = 16X + 24x -8+ 262X 4 2xeX _e*
Suppose that

yp1:_4X2, yp2 :ezx, yp3 :Xex
Then yn =3y, +4y, =—8+24x-16x’
Therefore y = _4x2

is a particular solution of the non-homogenous differential equation
y" -3y’ +4y=-16x*+24x -8
Similarly, it can be verified that

2X
y =e and y _ =xe
) P3

are particular solutions of the equations:

y’ —3y’ ' +4y = 2e**
and y"-3y'+ 4y = 2xe* —e*
respectively.

X

+y . +Yy :—4x2+e2X+xeX
P P, P, P,
is a particular solution of the differential equation

y" =3y +4y = -16x* + 24x -8+ 262X 4 2xeX _ X

Hence y =y

Exercise

Verify that the given functions form a fundamental set of solutions of the differential
equation on the indicated interval. Form the general solution.

11. y" -y -12y =0; e, e, (~o0,x)
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12. y"—2y'+5y=0; e*cos2x,e*sin2x, (—oo,o0)
13. X2y"+xy' +y=0; cos(lnx),sin(Inx), (0,)
14. 4y" -4y +y=0; e"? xe*'?, (—o0,)

15. x?y"—6xy'+12y =0; x°, x* (0,)

16. y" -4y =0; cosh2x, sinh2x, (—o0,)

Verify that the given two-parameter family of functions is the general solution of the non-
homogeneous differential equation on the indicated interval.

17. y"+y=secx, Y =C;COSX+Cysinx+xsinx+(cosx)in(cosx), (~z/2,71/2).

18. y' —4y'+4y=2e2X +4x-12, y=ce?* +cxe?* +x%?X +x—-2

2

19. y"—7y' +10y = 24eX, y=ce?* +c,e”* +6eX, (—o00)

-1/2

20. X2y +5xy' +y=%X2 =X, y=¢X +c2x_1+ix2—%x, (0,0)
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Lecture 15 Construction of a Second Solution

General Case
Consider the differential equation

2

d
2, (%)

We divide by a,(x) to put the above equation in the form

y" +P(X)y' +Q(x)y =0
Where P(x) and Q(x) are continuous on some interval | .

Z+a1(x>%+ao(x>y=o

Suppose that y,(x) # 0, ¥V x el is a solution of the differential equation
Then v, +Py, +Qy, =0
We define y=u(x)y, (X) then

y'=uy +yu’,y =uyl+ 2yl + yu”

y” + Py/ +Qy = u[ylﬂ + Pyll +Qy1]+ ylu” + (2y1/ + Pyl)u/ =0

Z€ero

This implies that we must have
y,u” + 2y, +Py)u’ =0
If we suppose w =u’, then
y, W + 2y, + Py )w=0
The equation is separable. Separating variables we have from the last equation
.dWW+(2y—1/+ P)dx =0

1
Integrating

In|w| + 2Iny,| = —I Pdx+c

In‘wylz‘ = —f Pdx+c
wy;” = Cle_j i

cle_I PaX
) )/12
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ce” | Pdx

Y12

or u' =

Integrating again, we obtain
e—dex
u=cy de +Cy
Y1
o~ Pdx
Hence y =u()y1(x) =c1y1(x) | ———dx+cay1(x).
Y1
Choosing c¢; =1andc, =0, we obtain a second solution of the differential equation
e | Pdx
Y2 =Yy1(%) —de
Y1

The Woolskin

—[Pdx

e
Y1 % 7 X

( - !

W (y; (x),y5 (x))= oI Pax o~ Pdx

ooy yiszx
1 Y1

_eIPAX g wx

Therefore y, (x) and y,(x) are linear independent set of solutions. So that they form a
fundamental set of solutions of the differential equation

y" +P(X)y' +Q(x)y =0
Hence the general solution of the differential equation is
y(x)=c¢; ¥ (X)+¢,y,(x)
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Example 1
Given that
Yy, =X
is a solution of
x’y" —3xy’ +4y =0

Find general solution of the differential equation on the interval (0, ).

Solution:
The equation can be written as

3 4
y =2y +—y=0,
X X

The 2™ solution vy, is given by

—J.de
€
Y2 = Y1(X) >—dx
Y1
3|d
(e I X/ X , elnx3

or Yo =X 7 dx =X X

X X

y, = xzjidx: x2In x
X

Hence the general solution of the differential equation on (0,oo) is given by

y=¢Y, +tCY,

or y=¢, X*+¢,x*Inx

Example 2
Verify that
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is a solution of
x°y" +xy’ +(x* =1/4)y =0

on (0, 7). Find a second solution of the equation.

Solution:
The differential equation can be written as

1 1
y" +;y/ +(1—R)y=0

The 2™ solution is given by

e—J.de
Ya=W1 ;—dx
Y1
[
_sinx| e"*

Therefore y, =

W | e
&

B —sinxJ X dx
Jx J xsin?x

_ ZSInXx jcscz xdx
Jx

—sin X COS X

= (-cotx) =——

NS ¥
Thus the second solution is
COS X
0

Hence, general solution of the differential equation is

(el

Order Reduction

Example 3
Given that
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y, =%
is a solution of the differential equation
XZy// _ 6y — 0’
Find second solution of the equation
Solution
We write the given equation as:
y// _ X_Z y — 0
6
So that P(x) = 3
Therefore
e—j Pdx
Y2 = Y1 | — X
Y1
- _[8
sle "
Y, =X de
6
3 e
Y, =X Fdx
Therefore, using the formula
e—j Pdx
Y2 = Y1 | — X
Y1
We encounter an integral that is difficult or impossible to evaluate.
Hence, we conclude sometimes use of the formula to find a second solution is not

suitable. We need to try something else.
Alternatively, we can try the reduction of order to find y, . For this purpose, we again
define
y(x)=u(x)y1(x) or y=u(x).x’
then

y' = 3x%u + X3’

y" = x3u” +6x%u’ +6xu
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Substituting the values of y, y"in the given differential equation

x2y" -6y =0
we have
X% (x3u" + 62U’ + 6xu) —6Ux° =0
or x°u” +6x%u" =0
6
or u"+—u'=0,
X
If we take w=u’then
W+ 2w=0
X

This is separable as well as linear first order differential equation inw. For using the
latter, we find the integrating factor

Jl
6| —dx
LF=e /X —gblnx_y®6

Multiplying with the IF = x® , we obtain

x®w' + 6x°w =0
d
or —(x’w) =0
dx
Integrating w.r.t. > X’, we have
xow=c,
C
or u ==
X
Integrating once again, gives
Cl
u= —5—5 + CZ
X
Therefore y=ux®=—2+¢,x°

g oL
2 = X2
Thus the second solution is given by
y, =~
2 = X2

Hence, general solution of the given differential equation is
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y=0CYy1 +CY>
ie. y:c1x3 +c2(1/x2)
Where c; and c,are constants.
Exercise
Find the 2™ solution of each of Differential equations by reducing order or by
using the formula.
Loy'-y' =0, vy =1
2. y'+2y'+y=0; y, =xe”
3. y"+9y=0; vy, =sinx
4, y"-25y=0; y, =e*
5. 6y"+y —y=0, vy, =e"?
6. x’y" +2xy' -6y=0; y,=x’
7. 4x°y"+y=0; y,=x"’Inx
8. A-x¥)y"-2xy'=0; 'y, =1
9. x°y" —3xy’ +5y=0; 'y, =x*cos(Inx)
10. @+x)y" +xy' —y=0; vy, =x
© Copyright Virtual University of Pakistan 140

VU



16-Homogeneous Linear Equations with Constant Coefficients VU

Lecture 16 Homogeneous Linear Equations with Constant
Coefficients

We know that the linear first order differential equation

ﬂ+my:0

dx
m being a constant, has the exponential solution on (- oo, o)

y = Cle—mx
The question?

o The question is whether or not the exponential solutions of the higher-order
differential equations

any™ +a,_1y" D o vayy’ vy +agy =0,
exist on (— oo, ).

o Infactall the solutions of this equation are exponential functions or constructed
out of exponential functions.

Recall

That the linear differential of order n is an equation of the form

dny n—ly

d dy _
an(x)w(—n+an_1(x) ] Tty (x) g a0y =9(x)

Method of Solution
Taking n = 2, the nth-order differential equation becomes

d’y _ dy
—+a,—+4a,y=0
Yaxe x| oo
This equation can be written as
2
ad—¥+bﬂ+cy:0
dx dx

We now try a solution of the exponential form

a

y=e™
Then
y'=me™and y” = mZem
Substituting in the differential equation, we have
e™(am? +bm+c) =0
Since e™ %0, Vxe (— o0, oo)

Therefore am? +bm+c=0
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This algebraic equation is known as the Auxiliary equation (AE).The solution of the
auxiliary equation determines the solutions of the differential equation.

Case 1: Distinct Real Roots

If the auxiliary equation has distinct real roots m, and m,then we have the following two
solutions of the differential equation.

My X Moy X
yy=e L andy, =e 2
These solutions are linearly independent because

Y1 Y2
/

_ (my +my)x
=(m-> =m )e
Y1 Y2/ ( : !

W(y1,Y2) =

Since m; = myand e(™*™) o
Therefore W(y;,y,)# 0 Vx e (—o0,)

Hence

o y,andy, form a fundamental set of solutions of the differential equation.

o The general solution of the differential equation on (—oo,) is

y =ce™* +c eMX

Case 2. Repeated Roots

If the auxiliary equation has real and equal roots i.e

m=my, My with my =my

Then we obtain only one exponential solution

y = ce™

To construct a second solution we rewrite the equation in the form
b c
y'+=y'+—-y=0
a a
Comparing with y"+Py'+Qy=0

We make the identification
p_D
a

Thus a second solution is given by
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b
e—_[ Pdx e—gx
mX
Yo =V 5 dx=e 5 dx
Y1 e

Since the auxiliary equation is a quadratic algebraic equation and has equal roots

Therefore, Disc. =b? —4ac =0

We know from the quadratic formula

_ —b++/b?-4ac

m
2a
b
we have 2m=——
a
Therefore
mx eme mx
Yy, =€ JeZdex: xe

Hence the general solution is
y =cie™ +coxe™ = (¢ +cox)e™
Case 3: Complex Roots

If the auxiliary equation has complex roots « +if then, with
m=a+ifandm,=a—-ip
Where o >0 and S >0 are real, the general solution of the differential equation is
y = Cle(a+iﬂ)x N Cze(a—iﬁ)x
First we choose the following two pairs of values of ¢, andc,
Cp=Cy =1
cp=1cr, =-1
Then we have
Y = ela+if)x | o(a=-ip)x
Yo = e(a+iﬂ)x _e(a—iﬂ)x
We know by the Euler’s Formula that
e =cosf+ising, Oer
Using this formula, we can simplify the solutions y;and y,as

yp =e% (e +e7%) = 26% cos i
yp = (e — e = 2ie® sin px
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We can drop constant to write

y; =e®cosp, yo =e®sin s
The Wronskian
W(e“" cospx, € sin ,Bx)z Be?™ £0 VX

Therefore, e cos(B x), e sin(S x)

form a fundamental set of solutions of the differential equation on (—oo,0).

Hence general solution of the differential equation is

y =™ cos Bx +c,e” sin B

or y =e%(c, cos B +C, sin /X)
Example:
Solve
2y"-5y'-3y=0
Solution:

The given differential equation is

2y"—5y'-3y =0
Put y=e™
Then yr — memx1 yrr — m2emx

Substituting in the give differential equation, we have

(Zm2 —5m—3)emx =0
Sincee™ =0 V x, the auxiliary equation is
2m? -5m-3=0 as e™ %0

(2m+1)(m-3)=0=m= —%, 3
Therefore, the auxiliary equation has distinct real roots
1
m, =3 and m, =3

Hence the general solution of the differential equation is

y= Cle(—1/ 2)X i CZe3x
Example 2
Solve y"—10y'+25y =0
Solution:
We put y=e™
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Then y' =me™, y" = mZeMX

Substituting in the given differential equation, we have
(m? —10m+25)e™ =0
Sincee™ = 0V x, the auxiliary equation is
m2 —10m+25 =0
(m-5)2=0=>m=5,5
Thus the auxiliary equation has repeated real roots i.e
ml = 5 = m2
Hence general solution of the differential equation is
y =ce™ +cxe™
or y = (Cy +Cyx)e>X
Example 3
Solve the initial value problem
y"—4y'+13y =0
y(0)=-1, y'(0)=2
Solution:
Given that the differential equation
y'—4y'+13y =0
Put y=emX
Then y'=me™, y" = m2eM
Substituting in the given differential equation, we have:
(m? —4m+13)e™ =0
Sincee™ = 0Vx, the auxiliary equation is

m2 -4m+13=0

By quadratic formula, the solution of the auxiliary equation is

+ /16 —
m= # =243
Thus the auxiliary equation has complex roots
m1=2+3i, m2 =2—3i

Hence general solution of the differential equation is
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y =e?*(c, cos3x +c, sin3x)
Example 4
Solve the differential equations

(@) y'+k?y=0
(b) y'—k?y=0
Solution
First consider the differential equation
y"+ k2y =0,
Put y=e™
Then y' =me™ and y” =m2e™

Substituting in the given differential equation, we have:
(m2 +k2) e™ =0
Sincee™ = 0Vx, the auxiliary equation is
m?+k?=0
or m = ki,
Therefore, the auxiliary equation has complex roots
m; =0+ki, m, =0-Ki
Hence general solution of the differential equation is
y = C, CoskX+c, sinkx
Next consider the differential equation

d?y
~k’y=0

dx® Y
Substituting values y and y”, we have.

(mz _ kz}}mx ~0
Sincee™ = 0, the auxiliary equation is

m? —k? =0

= m=zk

Thus the auxiliary equation has distinct real roots
m = +k, my = —k
Hence the general solution is

y= clekX +02e_kx.

Higher Order Equations
If we consider nthorder homogeneous linear differential equation

dny dn—ly dy

a +ap_q +...+a1&+a0y:0

n
dx" dx" L
Then, the auxiliary equation is an nthdegree polynomial equation
-1

a,m" +a,_m"
Case 1: Real distinct roots

+...+aym+ag =0
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If the roots my, m,,...,m, of the auxiliary equation are all real and distinct, then the
general solution of the equation is

y=cie™* +ce™* + . +c e
Case 2: Real & repeated roots
We suppose that m, is a root of multiplicity n of the auxiliary equation, then it can be
shown that

eMX xeMX . xN~leMX
aren linearly independent solutions of the differential equation. Hence general solution of

the differential equation is
y =cie™ +coxe™* 4. +c,x"leMX

Case 3: Complex roots
Suppose that coefficients of the auxiliary equation are real.
o We fix nat6, all roots of the auxiliary are complex, namely

o ®if, aEif; axip;
= Then the general solution of the differential equation
y =e“*(c, cos B x+c¢, sin Bx) +e“*(c, cos B,X + ¢, Sin f3,X)
+€"%(C5 COS B,X +C; Sin f,X)
o If n=6, two roots of the auxiliary equation are real and equal and the remaining 4
are complex, namely o tif, arxifs
Then the general solution is
y =% (c) cos X + Cy sin BX) + €92 (C3 COS By X + Cq SiN BoX) + cse™* + coxe™X
o If m =a+if isacomplex root of multiplicity k of the auxiliary equation. Then
its conjugate m, =a —if is also a root of multiplicity k . Thus from Case 2 , the
differential equation has 2k solutions
e(a+iﬂ)x’ Xe(a+iﬁ)x' Xze(a+iﬁ)x’m,Xk—le(a+i,8)x
e(a—iﬁ)x’ xe(a—iﬂ)x, X2e(a—iﬂ)x’m,Xk—le(a—i,b’)x

o By using the Euler’s formula, we conclude that the general solution of the
differential equation is a linear combination of the linearly independent solutions

e® cos X, xe® cosf, x2e® cosf,...,x< Le® cos
e® sin A, xe® sin A, x2e® sin A, ..., xk e sin Ak

o Thusif k =3 then
y= e“x[(cl +CoX +c3x2)cos[)’x + (dl +doX+ d3X2)Sin ,Bx]

Solving the Auxiliary Equation

Recall that the auxiliary equation of nthdegree differential equation is nthdegree
polynomial equation

o Solving the auxiliary equation could be difficult
P.(m)=0, n>2
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o One way to solve this polynomial equation is to guess a root m;. Thenm—m; is a
factor of the polynomial P, (m) .

o Dividing with m —m, synthetically or otherwise, we find the factorization
Pn(m) = (m—my) Q(m)
o We then try to find roots of the quotient i.e. roots of the polynomial equation

Q(m) =0

o Notethatif m, = P is a rational real root of the equation

P(m)=0, n>2
then p is a factor of agand q ofa,.

o By using this fact we can construct a list of all possible rational roots of the
auxiliary equation and test each of them by synthetic division.

Example 1

Solve the differential equation
y"+3y"—-4y=0

Solution:

Given the differential equation

ym + 3y” _4y — 0
Put y=e™
Then y/ :memx’yll :mzemx and y/// :m3emx

Substituting this in the given differential equation, we have
(m3 +3m? —4)e™ =0
Since e™ %0

Therefore m3+3m2—4=0

So that the auxiliary equation is

m3 + 3m2 -4=0
Solution of the AE

If we take m =1 then we see that
m3+3m2-4=1+3-4=0
Therefore m =1 satisfies the auxiliary equations so that m-1 is a factor of the polynomial
m3 +3m? —4
By synthetic division, we can write

m3 + 3m?2 —4:(m—1)(m2 +4m+4)
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or m3+3m2—4:(m—1)(m+2)2
2
Therefore m3+3m2-4=0
= (M-D)(M+2)% =0
or m=1-2,-2
Hence solution of the differential equation is
y =cgeX +Cpe?X +caxe X
Example 2
Solve

3y"” +5y" +10y' —4y =0
Solution:
Given the differential equation

3y"” +5y" +10y' —4y =0

Put y=e™
Then y/ :memx’y// :mzemx and y/// _ m3(_:‘mx
Therefore the auxiliary equation is
3m3 +5m2 +10m-4=0
Solution of the auxiliary equation:
a) a, =-4and all its factors are:
p: +1,+2,+4
b) a, =3and all its factors are:
q: +1, £3
c) List of possible rational roots of the auxiliary equation is
E: -1’17-2’ 2’-4!4!__]-1£’__2’gl__4’£
q 333 3 33

d) Testing each of these successively by synthetic division we find
1/s3 5 10 -4
3 1 2 4
3 6 12 | 0

Consequently a root of the auxiliary equation is

m=1/3
The coefficients of the quotient are

3 6 12

Thus we can write the auxiliary equation as:

(m—1/3)(3m2 +6m +12): 0

m-L-0 o 3m2i6m+12=0
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Therefore m=1/3 or m=-1+i/3

Hence solution of the given differential equation is

y =ced/IX e~ X(02 C0s+/3X + €3 sin \/§x)
Example 3
Solve the differential equation

4
d Z/+2g+y=0
dx dx

Solution:
Given the differential equation

4
d—Z/ + 2% +y=0
dx dx
Put y=e™
Then y' =me™, y" = m2eM

Substituting in the differential equation, we obtain
(m4 +2m? +1) e™ =0
Sincee™ % 0, the auxiliary equation is

m* +2m2 +1=0

(m?+1)%=0
= m=di, *i
m=mg=i and my =my =—Ii

Thus iis aroot of the auxiliary equation of multiplicity 2 and sois—i.

Now a=0and g=1
Hence the general solution of the differential equation is
Ox[

y =e *[(c] +Cpx) cosx + (dy +doX)sin x|

or Y =C1 COS X + 0 SiN X+ CoXCOSX + do XSiN X
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Exercise

Find the general solution of the given differential equations.
1. y"-8y=0

y" =3y’ +2y=0

y' +4y' ~y=0

2y" -3y +4y =0

"

4y" +4y" +y' =0

y/// + 5y// — O

o o A W N

7. y" +3y" —4y' —12y=0
Solve the given differential equations subject to the indicated initial conditions.

8. y"+2y" -5y’ —6y=0, y(0)=y'(0)=0,y"(0)=1

4
0. zxf -0, y(0)=2,y'(0) =3,y (0) = 4,y" (0) =5
4y
10. Ot —y=0, y0)= y/(O) _ y”(O)zo, y”/(O)zl
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Lecture 17 Method of Undetermined Coefficients
Superposition Approach

Recall

1. That a non-homogeneous linear differential equation of order n is an equation of the
form

dny dn—ly dy
a +a +-4a,—+3a,y=09(x
n an n-1 an—l 1 dX oy g( )
The coefficients a,,a,,...,a,can be functions ofx. However, we will discuss

equations with constant coefficients.

2. That to obtain the general solution of a non-homogeneous linear differential equation
we must find:

o The complementary function Yoo which is general solution of the associated

homogeneous differential equation.
o Any particular solution y 0 of the non-homogeneous differential equation.

3. That the general solution of the non-homogeneous linear differential equation is given

by

General solution = Complementary function + Particular Integral

Finding
Complementary function has been discussed in the previous lecture. In the next three
lectures we will discuss methods for finding a particular integral for the non-
homogeneous equation, namely

o The method of undetermined coefficients-superposition approach

o The method undetermined coefficients-annihilator operator approach.
o The method of variation of parameters.

The Method of Undetermined Coefficient

The method of undetermined coefficients developed here is limited to non-homogeneous
linear differential equations

o That have constant coefficients, and
o Where the function g(x) has a specific form.

The form of g(x)
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The input function g(x) can have one of the following forms:
o A constant function K.
o A polynomial function
o An exponential function €
o The trigonometric functions sin(3 x), cos(S x)

o Finite sums and products of these functions.
Otherwise, we cannot apply the method of undetermined coefficients.

The method
Consist of performing the following steps.

Step 1
Step 2

Step 3
Step 4
Step 5
Step 6

Determine the form of the input function g(x) .
Assume the general form of yIO according to the form of g(x)

Substitute in the given non-homogeneous differential equation.
Simplify and equate coefficients of like terms from both sides.
Solve the resulting equations to find the unknown coefficients.
Substitute the calculated values of coefficients in assumed y 0

Restrictionon g ?
The input function gis restricted to have one of the above stated forms because of the

reason:

o The derivatives of sums and products of polynomials, exponentials etc are again
sums and products of similar kind of functions.

o The expression ayp”+byp’+cyp has to be identically equal to the input

function g(x) .
Therefore, to make an educated guess, Y, isassured to have the same formasg .

Caution!

o Inaddition to the form of the input function g(x) , the educated guess for yp must

take into consideration the functions that make up the complementary function Yer

o No function in the assumed yp must be a solution of the associated homogeneous

differential equation. This means that the assumed y,, should not contain terms

that duplicate terms in Yo

Taking for granted that no function in the assumed Y, is duplicated by a function in Yoo

some forms of g and the corresponding forms of y , are given in the following table.

Trial particular solutions
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Number | The input function g(x) The assumed particular solution yID
1 Any constant e.g. 1 A
2 5Xx+7 Ax+B
3 3x% -2 AX? + BX+C
4 x3—x+1 Ax3+Bx2+Cx+D
5 sin4x Acos4x+ Bsin 4x
6 C0S4x Acos4x+ Bsin 4x
7 e5X AedX
8 _ 9\a0X S5X
(9x—-2)e (Ax+B)e
9 w2a5X (AXZ + Bx+C)e®
10 e3X gin 4x Ae3X cosax + B e3X sin 4x
11 5x2 sin 4x (Alx2 +Bx+C,)cos4x+ (A2x2 +B,x+C,)sin4x
12 xe3X cosax (Ax + B)e3X cosdx + (Cx + D)e3X sin4x

If g(x)equals a sum?

Suppose that

o Theinput function g(x)consists of a sum of m terms of the kind listed in the
above table i.e.

g(x) = g1(x)+ g2 (x)+ -+ g (x)
o The trial forms corresponding to g4 (x), g5(x), ..., gy (x) be Yo, Yp, Y, -

Then the particular solution of the given non-homogeneous differential equation is
Yp=Y¥Yp, t¥p, 't ¥p,

In other words, the form of Yp is a linear combination of all the linearly independent

functions generated by repeated differentiation of the input function g(x) .
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Example 1
Solve y' +4y’ —2y =2x*> -3x+6

Solution:

Complementary function
To find Yoo we first solve the associated homogeneous equation

y" +4y’ -2y =0
We put y:emx’ y’:memx, y”:mzemx
Then the associated homogeneous equation gives

(m?+4m-2)e™ =0

Therefore, the auxiliary equation is
m?+4m-2=0 as e™ 20, Vvx
Using the quadratic formula, roots of the auxiliary equation are
m=-2+6
Thus we have real and distinct roots of the auxiliary equation
m, -—2-.6 and m, ——2+46
Hence the complementary function is

—(2+/6)x ‘e e(—2+\/€)x

y_ =ce

C
Next we find a particular solution of the non-homogeneous differential equation.

Particular Integral

Since the input function
g(x) = 2x% —3x+6

is a quadratic polynomial. Therefore, we assume that
Yp = Ax*+Bx+C
Then y, =2Ax+B and y," =2A
n / 2
Therefore y, +4y, -2y, =2A+8Ax+4B—-2Ax" -2Bx-2C

Substituting in the given equation, we have

2A+8AX+4B—2Ax* —2Bx—2C = 2x* —3x+6
or —2Ax* + (8A—2B)x+(2A+4B —2C) = 2x* —3x +6
Equating the coefficients of the like powers of X, we have
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-2A=2, 8A-2B=-3, 2A+4B-2C=6
Solving this system of equations leads to the values
A=-1 B=-572, C=-9.
Thus a particular solution of the given equation is

5
y, =—X’ —Ex—9.

Hence, the general solution of the given non-homogeneous differential equation is given
by

Y=Y, *tYp
(-2 +/6)x

2 —(2+/6)x

5
or y =—X —Ex—9+cle +Coe

Example 2
Solve the differential equation

y" —y' +y=2sin3x
Solution:

Complementary function
To find Yoo we solve the associated homogeneous differential equation

y// . y/ +y= 0
Put y=eMX yromeMX yr_ m2eMX
Substitute in the given differential equation to obtain the auxiliary equation
L
m?>-m+1=0 or mzl—'z‘/§

Hence, the auxiliary equation has complex roots. Hence the complementary function is

y. = o/ 2)x C, COS£X+ c, sin ﬁx
c 2 2

Particular Integral
Since successive differentiation of
g(Xx) =sin3x
produce sin3x and co0s3x
Therefore, we include both of these terms in the assumed particular solution, see table
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y 0 = Acos3x + Bsin 3x.
Then y'IO =—-3Asin 3x + 3B cos3x.
y”p =-9Ac0s3x —9Bsin 3x.

Therefore y," =y, +y, =(-8A—3B)cos3x + (3A—8B)sin 3x.
Substituting in the given differential equation

(-8A—-3B)cos3x + (3A—8B)sin3x = 0cos3x + 2sin 3x.
From the resulting equations

—-8A-3B=0, 3A-8B=2
Solving these equations, we obtain

A=6/73,B=-16/73
A particular solution of the equation is

y = £c053x — Esin 3x
P73 73
Hence the general solution of the given non-homogeneous differential equation is
y= e/ 2)X C Cosﬁx+c2 sin éx + 2 cosax—Osinax
2 2 73 73
Example 3
Solve y" =2y’ —3y = 4x -5+ 6xe*
Solution:

Complementary function
To find Yoo we solve the associated homogeneous equation

y// _2y/ _3y:O

Put y:emx, ylzme X’ yn=m2emx

Substitute in the given differential equation to obtain the auxiliary equation
m’-2m-3=0
= (mM+)Y(mM-3)=0
m=-13
Therefore, the auxiliary equation has real distinct root
m, =-1, m2 =3

m

Thus the complementary function is
_~Aa—X 3X
Yo =Ci& T Hc,eT.

Particular integral
Since g(x) = (4x—5)+6xe2x =0,(X)+9,(x)
Corresponding to g, (X) yIO =Ax+B
1
Corresponding to g, (x) yp =(Cx+ D)ezx
2
The superposition principle suggests that we assume a particular solution

Yp=Yp, *¥p,
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ie. yp:Ax+B+(Cx+D)e2X

Then y, = A+2(Cx+D)e?* +Ce?

y, =4(Cx+D) e2X 4 4ce?X

Substituting in the given
yp! —2y,/ ~3y, = 4Cxe +4De? +4Ce?* ~ 2A-4Cxe*

— 4De?* —2Ce?* —3Ax—3B —3CxeX —3De 2
Simplifying and grouping like terms

yp" —2y,' ~3y, =-3Ax—2A-3B -3Cxe?* + (2C - 3D)e?* = 4x—5+6xe? .
Substituting in the non-homogeneous differential equation, we have
—3Ax—2A—3B-3Cxe?* + (2C —3D)e?* = 4x—5+ 6xe>* + 062
Now equating constant terms and coefficients of X , xe?Xand e2* , We obtain
—-2A-3B=-5, -3A =4
-3C =6, 2C-3D=0
Solving these algebraic equations, we find
A=-4/3, B=23/9
C=-2, D =-4/3
Thus, a particular solution of the non-homogeneous equation is
Yp = —(4/3)x+(23/9) - 2 xe?* — (4/3)e*¥
The general solution of the equation is

y=Yc+Yp=Ce" X yce¥ —(4/3)x+(23/9) - 2x 2 - (4/3)e?*

Duplication between y, and y.?
a If a function in the assumed Yp is also present in y. then this function is a

solution of the associated homogeneous differential equation. In this case the
obvious assumption for the form of 'y, is not correct.

o In this case we suppose that the input function is made up of terms of nkinds i.e.
9(x) = 91(X) +g2(X) + -+ gn(x)
and corresponding to this input function the assumed particular solutionyyis
Yp =Yp, *¥p, -+ V¥p,
o Ifa Yp, contain terms that duplicate terms in y., then that Yp, must be multiplied

with x", n being the least positive integer that eliminates the duplication.

Example 4
Find a particular solution of the following non-homogeneous differential equation

y" —5y! 14y =8>
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Solution:

To find y,, we solve the associated homogeneous differential equation
y" -5y’ +4y =0
We puty = e™ in the given equation, so that the auxiliary equation is

m? —5m+4=0 = m=14

Thus ye =ce¥ +ce®
Since g(x) =8e*
Therefore, y, = Ae*

Substituting in the given non-homogeneous differential equation, we obtain

AeX —5Ae* +4Ae* =8eX
So 0=28e"
Clearly we have made a wrong assumption for Yp.aswe did not remove the duplication.

Since Ae” is presentiny. Therefore, it is a solution of the associated homogeneous
differential equation
y" —5y' +4y =0
To avoid this we find a particular solution of the form
yp = Axe”
We notice that there is no duplication between y. and this new assumption for y,

Now yp/ = Axe* + Ae*, yp” = Axe* + 2Ae*
Substituting in the given differential equation, we obtain
Axe* +2Ae* —5Axe” —5Ae* +4Axe* =8e*.

or —3Ae* =8e* = A=-8/3.
So that a particular solution of the given equation is given by
y, =—(8/3)¢"

Hence, the general solution of the given equation is

y=ce*+c,e” —(8/3) x e”

Example 5

Determine the form of the particular solution

@) y// —8y/ + 25y = 5xJe X —7¢ X
(b) y" +4y = xcosx.
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Solution:

(@) Tofind y; we solve the associated homogeneous differential equation
y" -8y +25y =0

Put y= eMX

Then the auxiliary equation is

m? —8m+25=0=>m=413;
Roots of the auxiliary equation are complex

ye = e (c, cos3x + ¢ sin 3x)
The input function is
g(x) =5x% X —7e ™% = (5x° —7)e ¥
Therefore, we assume a particular solution of the form
yp = (A3 + Bx? +Cx + D)e ™
Notice that there is no duplication between the terms in Yp and the terms inyc.
Therefore, while proceeding further we can easily calculate the value A, B,C andD.

(b) Consider the associated homogeneous differential equation
y" +4y=0

Since g(x) = xcosx

Therefore, we assume a particular solution of the form
Y, = (Ax+B)cosx+(Cx+ D)sin x

Again observe that there is no duplication of terms between y. and Yp

Example 6
Determine the form of a particular solution of

y" —y' +y=3x*—5sin 2x + 7xe**

Solution:
To find y¢, we solve the associated homogeneous differential equation
y// _ y/ +y=0
Put y = eMX
Then the auxiliary equation is
2 1+i/3

m--m+1l=0=>m=

2
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Therefore Yo = g1/ 2)x (cl cos? X+C2 sin ? XJ

Since g(x) =3x* =5sin2x + 7xe®* = g,(X) + g,(X) + g5(X)
Corresponding to g4 (x) = 3x2: Yp, = AX? +Bx+C
Corresponding to g, (x) = —5sin 2x: Yp, = Dcos2x + Esin 2x
Corresponding to g,(x) =7xe* : Yp, = (Fx+G) %

Hence, the assumption for the particular solution is
Yp=Yp *¥p, +Yp;

or Yp = AX? + Bx+C + D cos2x + E sin 2x + (Fx+G)e®*

No term in this assumption duplicate any term in the complementary function
ye =ce?X +cpe’

Example 7

Find a particular solution of
y// _2y/ +y=¢

Solution:

Consider the associated homogeneous equation
y' =2y’ +y=0

Put y=e™

Then the auxiliary equation is
m? —2m+1= (m—l)2 =0
=m =11
Roots of the auxiliary equation are real and equal. Therefore,

Yo =X +coxe”

Since g(x) =e*
Therefore, we assume that
y, = Ae*

This assumption fails because of duplication between y. and Yp- We multiply with X
Therefore, we now assume
yp = Axe*
However, the duplication is still there. Therefore, we again multiply with X and assume
Yp = AxZe*
Since there is no duplication, this is acceptable form of the trial y,,

1
Yp :Exzex

Example 8
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Solve the initial value problem
y” +y=4x+10sinx,

y(x) =0,y (z) =2

Solution

Consider the associated homogeneous differential equation
y' +y=0

Put y = emx

Then the auxiliary equation is

m?>+1=0=m==i
The roots of the auxiliary equation are complex. Therefore, the complementary function
IS

Yc =C1 COSX+Cp Sin X
Since g(x) =4x+10sin X = g1(x) + g2 (x)
Therefore, we assume that
Yp, =AX+B, yp, =Ccosx+ Dsinx
So that Yp = Ax+B+Ccosx+Dsinx

Clearly, there is duplication of the functions cosxandsin x . To remove this duplication
we multiply Yp, with x . Therefore, we assume that

Yp = Ax+B+C xcosx + Dxsin x.

y, =—2Csin x—Cxcos x + 2D cos x — Dxsin x

So that yp” +Yp = Ax+ B —2Csin x+2Dxcosx

Substituting into the given non-homogeneous differential equation, we have
Ax+ B —2Csin x +2Dx cosx = 4x+10sin x

Equating constant terms and coefficients of x ,sinx, xcosx, we obtain
B=0, A=4, -2C=10, 2D=0

So that A=4,B=0,C=-5 D=0

Thus y, = 4X—5XCc0osx

Hence the general solution of the differential equation is
Y =Yc +Yp =C1COSX+CpSiN X +4 X-5XCOSX

We now apply the initial conditions to find c; andcs.
y(r)=0=cycosz+Cysinz+4rxr—5rcosz =0

Since sinz =0,cosz =-1

Therefore =97

Now y/ =—97sin X+ Cy COSX + 4 +5Xsin X —5c0sX

Therefore y/ (r)=2=-9zsinz+cCypcosz+4+5xsinzr—5c0Sz =2
’ Co = 7.

Hence the solution of the initial value problem is
Yy =97 COSX + 7Sin X+ 4X —5X COSX.

Example 9
Solve the differential equation
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v —6y! 19y =6x2 +2-12e3
Solution:
The associated homogeneous differential equation is

y” —6y/ +9y=0
Put y =™
Then the auxiliary equation is
m?—6m+9=0=m=33
Thus the complementary function is
y, =c,e® +c,xe*
Since g(x) = (x? +2) —12e> = g1 (X) + g2 (X)
We assume that
Corresponding to g4 (X) = X2 +2: Yp, = AX? +Bx+C

- . 3
Corresponding to g, (X) = —12e3¥: Yp, = De”
Thus the assumed form of the particular solution is

Yp = Ax? + Bx+C + De*

3

The function e**in Y p, Is duplicated between y. andy,. Multiplication with x does not

remove this duplication. However, if we multiply Yp, with x2, this duplication is

removed.
Thus the operative from of a particular solution is
yp = AX? + Bx+C + Dx%e>
Then Y}, = 2AX+ B +2Dxe> +3Dx%e>*
and yr =2A+2De™ +6Dxe™ +9Dx’e™

Substituting into the given differential equation and collecting like term, we obtain
yp! —6y," +yp =9A%? + (-12A+9B)x+2A~6B + 9C + 2De> =6x? +2-12*

Equating constant terms and coefficients of X, x2 and e3 yields
2A—-6B+9C=2, -12A+9B=0
9A =6, 2D =-12
Solving these equations, we have the values of the unknown coefficients
A=2/3,B=8/9,C=2/3 and D=-6

Thus yp:gx2+§x+z—6x2e3x
3 9 3
Hence the general solution
2 8 2
Y=Yc+Yp= e +ooxe¥ + 2x% + —x+ = —6x%e>,

Higher —Order Equation
The method of undetermined coefficients can also be used for higher order equations of
the form
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dny dn—ly dy

a,—+a, , ——+..+a —+a,y=g(X
n an n-1 an_]_ 1 dX Oy g( )

with constant coefficients. The only requirement is that g(x) consists of the proper kinds
of functions as discussed earlier.

Example 10

Solve y
Solution:

To find the complementary function we solve the associated homogeneous differential
equation

" +y" =e*cosx

y/// + y// — O
Put y=e™ y =me™, y" = m2e™
Then the auxiliary equation is
m3+m? =0
or m2(m+1):0:>m=0,0,—1

The auxiliary equation has equal and distinct real roots. Therefore, the complementary
function is

Yo =Cy +CoX+Cge
Since g(x) =e*cosx
Therefore, we assume that
Y, = Ae* cosx + Be" sin x
Clearly, there is no duplication of terms between y. and Yp-
Substituting the derivatives of y, in the given differential equation and grouping the like
terms, we have
y," +y," =(-2A+4B)e* cosx+ (-4A—2B)e” sin x =e* cosx.
Equating the coefficients, of e* cosx and e* sin x, yields
—2A+4B=1-4A-2B=0
Solving these equations, we obtain
A=-1/10,B=1/5
So that a particular solution is
Yp =C1+CoX+Cge " —(1/10)e* cosx+ (1/5)e* sin x
Hence the general solution of the given differential equation is
Yp =Cp +CoX+Cge " —(1/10)e™ cosx + (1/5)e™ sin x

Example 12

Determine the form of a particular solution of the equation
yun + ym — 1_e—X

Solution:

Consider the associated homogeneous differential equation
yHH + ylll — 0

The auxiliary equation is
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m*+m3=0=m=0,0,0,-1
Therefore, the complementary function is

Ye = C1 +CoX+CaX2 +Cqe ¥

Since g(x) =1-e* = g (x) + g2 (%)
Corresponding to g; (x) =1: Yp,=A

X

Corresponding to g, (x) = —e~*: Yp, =Be*

Therefore, the normal assumption for the particular solution is
X

yp = A+Be

Clearly there is duplication of
0] The constant function between y. and Ypy:

(i) The exponential function e~ * between Yy and Yp,:
To remove this duplication, we multiply yplwith x3 and Yp, with x . This duplication

can’t be removed by multiplying with X and X2 Hence, the correct assumption for the
particular solution 'y, is

Yp = AxS + Bxe X

Exercise

Solve the following differential equations using the undetermined coefficients.

1. %y”+y’+y:x2+2x

2. y" 8y’ + 20y =100x? — 26xe*

3.y 13y =—48x2e%

4, 4y" —4y' —3y=cos2x

5. y" +4y=(x*-3)sin2x

6. y' -5y =2x*—4x* —x+6

7. y" -2y’ +2y =e?(cosx—3sin x)
Solve the following initial value problems.

8. y'+4y'+4y=(B+xe™, y(0)=2y'(0)=5
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d?x

9. o +o’x=F,cosyt,  x(0)=0,x'(0)=0

10. y" 18y =2x-5+872%, y(0)=-5, y/(0)=3,y"(0)=—4

© Copyright Virtual University of Pakistan

159

VU



18-Undetermined Coefficient: Annihilator Operator Approach VU

Lecture 18 Undetermined Coefficient: Annihilator
Operator Approach

Recall

1. That a non-homogeneous linear differential equation of order n is an equation of the
form

d ny d n—ly dy
ap ——+an_ +--+a;—+agy =0g(X
N O 1 gy F20Y=9()
The following differential equation is called the associated homogeneous equation
n n-1
an d y+an_1d y+---+a1ﬂ+a0y=0
dx" dx" 1 dx

The coefficients a,,a,,...,a,can be functions ofx. However, we will discuss
equations with constant coefficients.

2. That to obtain the general solution of a non-homogeneous linear differential equation
we must find:
o The complementary function Yoo which is general solution of the associated

homogeneous differential equation.
o Any particular solution y 0 of the non-homogeneous differential equation.

3. That the general solution of the non-homogeneous linear differential equation is given
by

General Solution = Complementary Function + Particular Integral

o Finding the complementary function has been completely discussed in an earlier
lecture

o In the previous lecture, we studied a method for finding particular integral of the
non-homogeneous equations. This was the method of undetermined coefficients
developed from the viewpoint of superposition principle.

o In the present lecture, we will learn to find particular integral of the non-
homogeneous equations by the same method utilizing the concept of differential
annihilator operators.

Differential Operators
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o In calculus, the differential coefficient d/dx is often denoted by the capital letter
D. So that

dy
2-pD
dx y

The symbol D is known as differential operator.

o This operator transforms a differentiable function into another function, e.g.
D(e*) = 4e**, D(Bx3 —6x2) =15x% —12x, D(c0s2X) = —2sin 2X

o The differential operator D possesses the property of linearity. This means that if
f, g are two differentiable functions, then
D{af (x) + bg(x)}= aDf (x) + bDg(x)
Where a and b are constants. Because of this property, we say that D is a linear
differential operator.

o Higher order derivatives can be expressed in terms of the operator D in a natural

manner:
d?y d(d
dex dx\dx

Similarly
3 n
OI—;/:D3y,...,u=D”y
dx d"x

o The following polynomial expression of degree n involving the operator D
a,D"+a, D" 1+...+aD+ag

is also a linear differential operator.
For example, the following expressions are all linear differential operators

D+3, D?+3D-4,5D%-6D? +4D

Differential Equation in Terms of D

Any linear differential equation can be expressed in terms of the notation D . Consider a
2" order equation with constant coefficients

ay” +by’ +cy =g(x)

2
Since ﬂsz,uzDzy
dx d)(2

Therefore the equation can be written as
aD2y+bDy+cy =g(x)
or (aD” +bD +¢)y = g(X)

Now, we define another differential operator L as
L=aD? +bD+c
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Then the equation can be compactly written as
L(y) = 9(x)
The operator L isa second-order linear differential operator with constant coefficients.

Example 1
Consider the differential equation

y" +y +2y=5x-3
Since ﬂ = Dy,d—2y

dx d)(2
Therefore, the equation can be written as

(D? +D+2)y =5x—3
Now, we define the operator L as

L=D?+D+2
Then the given differential can be compactly written as
L(y)=5x-3

Factorization of a differential operator

o An nth-order linear differential operator
L=a,D" +a, 4D" 1+ -+aD+ag
with constant coefficients can be factorized, whenever the characteristics

polynomial equation

L=a,m" +a, ;m" 1+ -+am+ag

can be factorized.

a The factors of a linear differential operator with constant coefficients commute.

Example 2

€)] Consider the following 2™ order linear differential operator
D®+5D+6
If we treat D as an algebraic quantity, then the operator can be factorized as
D? +5D+6= (D +2)(D +3)
(b) To illustrate the commutative property of the factors, we consider a twice-
differentiable function y = f (x). Then we can write

(D? +5D+6)y =(D+2)(D+3)y =(D+3)(D+2)y

To verify this we let
w=(D+3)y=y' +3y

Then

(D+2)w =Dw+2w
or (D+2)w =(y” +3y/)+(2y/ +6Y)
or (D+2)w= y” +5y/+6y
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or (D+2)(D+3)y = y" +5y/+6y

Similarly if we let
w=(D+2)y=(y' +2y)

Then (D+3)w= DW+3W:(y// +2y/)+(3y/ +6Y)
or (D+3)w= y” +5y/+6y
or (D+3)(D+2)y=y" +5y/+6y

Therefore, we can write from the two expressions that
(D+3)(D+2)y=(D+2)(D+3)y

Hence (D+3)(D+2)y=(D+2)(D+3)y

Example 3
(a) The operator D2 —1 can be factorized as
D?2-1= (D+1)(D-1).
or D2-1 = (D-1)(D+1)

(b) The operator D? + D +2 does not factor with real numbers.

Example 4

The differential equation
y'+4y'+4y=0

can be written as
(D?+4D+4)y=0

or (D+2)D+2)y=0

or (D+2)y=0.

© Copyright Virtual University of Pakistan

162

VU



18-Undetermined Coefficient: Annihilator Operator Approach

Annihilator Operator

Suppose that
o L isa linear differential operator with constant coefficients.
oy =f(x) defines a sufficiently differentiable function.
o The function fis such that L(y)=0
Then the differential operator L is said to be an annihilator operator of the function f.

Example 5
Since

Dx=0, D?x=0, D°x? =0, D*x® =0
Therefore, the differential operators
D, D%, D3, D4, ..

are annihilator operators of the following functions

k(aconstand, x, X2, xS, ...

In general, the differential operator D" annihilates each of the functions
1, %x2,..., x"1
Hence, we conclude that the polynomial function
Co +CX+++Cp_gX" 7
can be annihilated by finding an operator that annihilates the highest power of x.

Example 6

Find a differential operator that annihilates the polynomial function
y =1-5x2 +8x5.

Solution

Since D*x*® =0,

Therefore D4y= D4(1—5x2 +8x3)=0.

Hence, D? is the differential operator that annihilates the function y.

Note that the functions that are annihilated by an nth-order linear differential operator L
are simply those functions that can be obtained from the general solution of the

homogeneous differential equation
L(y)=0.

Example 7
Consider the homogeneous linear differential equation of order n

(D-a)"y=0
The auxiliary equation of the differential equation is
(m-a)" =0
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= m=a,,...,a (N times)

Therefore, the auxiliary equation has a real root « of multiplicityn. So that the
differential equation has the following linearly independent solutions:

e X xeX x2gaX  yN-laax

Therefore, the general solution of the differential equation is

ax ax 2_.ax n-1_ox
y=Ce" +CyXe"" +C3X7e”" +---+CpX e

So that the differential operator
(D-a)"

annihilates each of the functions

a X

aX

aX (2.0X n—leax

e T, xem T, Xxrem .., X

Hence, as a consequence of the fact that the differentiation can be performed term by
term, the differential operator

(D-a)"

annihilates the function

ax ax 2 oX n-1_.oax
y=C ™" +C,xe™" +CXe™" +---4 X e

Example 8

Find an annihilator operator for the functions
(a) f(x) =™

(b) g(x) = 462X —pxe?*
Solution

(@) Since

(D-5)e™X =5e°X —5e>X =,
Therefore, the annihilator operator of function f is given by
L=D-5
We notice that in thiscasea =5, n=1.

(b) Similarly
(D-2)? (4e2x —6xe2X)= (D? —4D +4)(4e>*) — (D? — 4D + 4) (6%e>)
or  (D-2)2(4e?* —6xe?* J=306?X ~326%* + 48xe?* — dBxe?* + 24?* — 24e?*
or (D—2)2(4e2X —6xe2x): 0
Therefore, the annihilator operator of the function g is given by
L=(D-2)?
We notice that in this case =2 =n.

Example 9
Consider the differential equation
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(D2 —2aD+(a2 +ﬁ2))ny:0
The auxiliary equation is
(m2 —2am+(a2 +,82))n =0

= m2—20zm+052+,b’2 =0

Therefore, when «, £ are real numbers, we have from the quadratic formula

_ Zai\/4a2 —4(052 +ﬂ2)
2

m

=axif

Therefore, the auxiliary equation has the following two complex roots of multiplicity n.

m=a+iff, my=a—-if

Thus, the general solution of the differential equation
following linearly independent solutions

e%X cos Bx, xe®X cos BX, x2e®X cos BX, -
e?Xsin Bx, xe®* sin Bx, x2%%*sin Bx, --

Hence, the differential operator
(D2 —2aD+(a2 +ﬂ2))“
is the annihilator operator of the functions
e%X cos Bx, Xe®X cos Bx, x%e%X cos BX,

e%Xsin Bx, xe®Xsin Bx, x%e%Xsin Bx,

Example 10
If we take

a=-1 f=2,n=1
Then the differential operator

(D2 —2aD+(a2 +,82))n
becomes D% +2D+5.

Also, it can be verified that
D2 +2D+5)e *cos2x =0

D2 +2D+5)e Xsin2x=0

Therefore, the linear differential operator

D2+2D+5
annihilates the functions

is a linear combination of the

-, X" e o5 Bx

n—leax

. X sin X

<o, XN 1@ o5 Bx
-, X" 12X sin Bx
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y1(x)=e"* cos2x

yo(x)=e"*sin2x

Now, consider the differential equation
(0% +2D+5)y =0

The auxiliary equation is
m? +2m+5=0
=>m=-1+2i

Therefore, the functions
y1(x)=e "X cos2x
yo(x)=e"*sin2x

are the two linearly independent solutions of the differential equation
(D2 +2D+5)y=0,

Therefore, the operator also annihilates a linear combination of y; and y,, e.g.

5y; —9ys =5e % cos 2x —9e % sin 2x.

Example 11
If we take
a=0 =1, n=2

Then the differential operator

(D2 —2aD+(a2 +,82))n
becomes

(D? +1)%2 =D* +2D? +1

Also, it can be verified that
(D4 +2D? +1)cosx =0
(0* +2D2 +1)sinx =0
and
(D4 +2D? +1)xcosx =0
(0% +2D2 +1ksinx =0
Therefore, the linear differential operator

D% +2D% +1
annihilates the functions
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COS X, sin X
XCOSX, XSinXx

Example 12
Takinga =0, n =1, the operator

(D2 —2aD+(a2 +,82))n
becomes

D? + g2

Since (D2 +ﬁ2)cosﬁx:—,82 cosﬁx+,6’2 cospx=0
(D2+ﬁ2kmﬁx=—ﬂ2gnﬁx+ﬁzgnﬁx=o

Therefore, the differential operator annihilates the functions
f(x)=cosgx, g(x)=sinpgx

Note that
o If alinear differential operator with constant coefficients is such that

L(y1)=0.  Lly2)=0
i.e. the operator Lannihilates the functions yjand y,. Then the operatorL
annihilates their linear combination.

Llcyya () +coy,(x)]=0.
This result follows from the linearity property of the differential operator L .

o Suppose that Lyand L, are linear operators with constant coefficients such that
Li(y1)=0, La(y2)=0

and Li(y2) =0, La(y1)=0

then the product of these differential operators L;L, annihilates the linear sum
y1(x)+y2 (%)

So that LiLo[y1 () + y2(x)]=0

To demonstrate this fact we use the linearity property for writing
Lilo(y1 +Y2)=Lika(yr)+ LiLa(y2)

Since L, =Ly

therefore Lilo(ys+Y2) = LaLa(yr)+LiLa(y2)

or LiLo(ya+Y2) = Lolla(yo)]+ LalLlo (¥2)]

Butwe knowthat  Ly(y;)=0, Ly(yp)=0

Therefore LiLy(yy +y2)=Ly[0]+ L4[0] =0
Example 13

Find a differential operator that annihilates the function
f(X)=7—-Xx+6sin3x
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Solution
Suppose that
Y1(X) =7 =X, Yo(X)=6sin3x
Then
D%y () -D%(7-x) =0
(D2 +9)y,(x) = (D2 +9)sin 3x=0
Therefore, DZ(D2 +9) annihilates the function f (x).
Example 14

Find a differential operator that annihilates the function
f(x) =63 4 xeX

Solution
Suppose that

yi(x) =673, y,(x)=xe¥
Then

(D+3)y; = (D+3)e™> =p,
(D-1)?y, = (D-1)>xe* =0.

Therefore, the product of two operators
(D+3)D-1)?

annihilates the given function  f (x) = e~>X + xe*

Note that
o The differential operator that annihilates a function is not unique. For example,

(D-5)e> =0,
(D-5)(D+1)e>* =0,

(D-5)D%> =0
Therefore, there are 3 annihilator operators of the functions, namely
(D-5), (D-5)(D+1), (D-5)D?

o When we seek a differential annihilator for a function, we want the operator of
lowest possible order that does the job.

Exercises

Write the given differential equation in the form L(y)= g(x), where Lis a differential
operator with constant coefficients.

1. ﬂ+5y:9sinx
dx
2. 4ﬂ+8y=x+3
dx
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3 2
3 9 _ 4% 5,
dx®  dx?  dx
d’y _d%  _dy
4, ——-2——+7——-6y=1-sinx

a3  dx?  dx

Factor the given differentiable operator, if possible.

5. 9D% -4

6. D?-5

7. D°®+2D?%-13D +10
8. D*-8D?+16

Verify that the given differential operator annihilates the indicated functions
9. 2D-1; y=4e¥?
10. D* + 64; y=2C0S8x-55in 8x

Find a differential operator that annihilates the given function.

11. x + 3xe%*
12. 1+sinX
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Lecture 19 Undetermined Coefficients: Annihilator
Operator Approach

The method of undetermined coefficients that utilizes the concept of annihilator operator
approach is also limited to non-homogeneous linear differential equations

o That have constant coefficients, and

o  Where the function g(x) has a specific form.

The form of g(x) :The input function g(x) has to have one of the following forms:

o A constant functionk .
o A polynomial function

o An exponential function eX

o The trigonometric functions sin( 3 x), cos(f x)
o Finite sums and products of these functions.
Otherwise, we cannot apply the method of undetermined coefficients.

The Method

Consider the following non-homogeneous linear differential equation with constant
coefficients of order n

dny dn—ly dy
—24a,,——+-+a—+3a,y = g(X
n an n-1 an,]_ 1 dX Oy g( )

If L denotes the following differential operator

a

L=a,D"+a, (D" 1+ +aD+a,
Then the non-homogeneous linear differential equation of order n can be written as

L(y) =9(x)
The function g(x)should consist of finite sums and products of the proper kind of
functions as already explained.

The method of undetermined coefficients, annihilator operator approach, for finding a
particular integral of the non-homogeneous equation consists of the following steps:

Step 1 Write the given non-homogeneous linear differential equation in the form
L(y) =9(x)
Step 2 Find the complementary solution Y. by finding the general solution of the
associated homogeneous differential equation:
L(y)=0
Step 3 Operate on both sides of the non-homogeneous equation with a differential
operator Ly that annihilates the function g(x).
Step 4 Find the general solution of the higher-order homogeneous differential equation
LiL(y) =0
Step 5 Delete all those terms from the solution in step 4 that are duplicated in the
complementary solutiony,, found in step 2.
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Step 6 Form a linear combination Y, of the terms that remain. This is the form of a
particular solution of the non-homogeneous differential equation

L(y)=9(x)
Step 7 Substitute ¥, found in step 6 into the given non-homogeneous linear differential
equation
L(y) = 9(x)

Match coefficients of various functions on each side of the equality and solve the
resulting system of equations for the unknown coefficients iny, .

Step 8 With the particular integral found in step 7, form the general solution of the given
differential equation as:

Y=Y +tY,

Example 1
2
Solve d Z+3ﬂ+2y:4x2.
dx dx
Solution:
2

Step 1 Since Q:D , u:Dzy

dx dx?

Therefore, the given differential equation can be written as
(D2 +3D+2 )y =4x2

Step 2 To find the complementary function y., we consider the associated homogeneous

differential equation
(D2+3D+2)y=0

The auxiliary equation is
m’ +3m+2=(m+1)(m+2)=0
= m =-1-2

Therefore, the auxiliary equation has two distinct real roots.
m=-1,m,=-2,

Thus, the complementary function is given by

Yo =C1€ X 4 cye” 2X
Step 3 In this case the input function is

g(x) = 4x°
Further D3g(x) =4D%x? =0

Therefore, the differential operator D3 annihilates the function g . Operating on both sides
of the equation in step 1, we have

D3(D? +3D +2)y = 4D3x?
D3(D? +3D +2)y=0
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This is the homogeneous equation of order 5. Next we solve this higher order equation.

Step 4 The auxiliary equation of the differential equation in step 3 is
m®(m? +3m+2)=0
m3(m+1)(m+2) =0
m=0,0,0,-1,—-2

Thus its general solution of the differential equation must be

Y =Cy +CpX+CaXx? +Cge % + X

Step 5 The following terms constitute y,
cie X +cge X

Therefore, we remove these terms and the remaining terms are
C +CoX+ C3X2

Step 6 This means that the basic structure of the particular solution Yp is
Yp = A+ Bx+Cx2,

Where the constantsc, , ¢, and c, have been replaced, with A, B, and C, respectively.

Step 7 Since yp = A+ Bx+Cx?
y!, = B +2Cx,
y, =2C
Therefore Yl +3y} +2y, =2C +3B + 6Cx + 2A+ 2Bx+ 2Cx
or Yy +3Y} +2yp = (2C)x? + (2B + 6C)x + (2A+3B + 2C)

Substituting into the given differential equation, we have
(2C)x? + (2B + 6C)X + (2A+3B +2C) = 4x% + 0x +0
Equating the coefficients of X2 , X and the constant terms, we have
2C = 4
2B + 6C =0

2A+3B+2C =0
Solving these equations, we obtain
A=7, B=-6 C=2

Hence Yp =7 —6x+2x2
Step 8 The general solution of the given non-homogeneous differential equation is
Y=Yc+VYp

y=cie X +cre X +7-6x+2x°

Example 2
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2
Solve d—y—3ﬂ —8e3 4+ 4sin x
dx2 dx
Solution:
2
Step1l Since ﬂ = Dy, u = D2y

dx dx2
Therefore, the given differential equation can be written as

(D2 —3D)y = 863X + 4sin x

Step 2 We first consider the associated homogeneous differential equation to find y.
The auxiliary equation is
m(m-3)=0=m=0,3
Thus the auxiliary equation has real and distinct roots. So that we have
Ye=C + Cze3x
Step 3 In this case the input function is given by
g9(x) =8> +4sinx
Since (D-3)(8e%) =0, (D? +1)(4sinx) =0
Therefore, the operators D—3 and D® +1 annihilate 8 and 4sin x , respectively. So
the operator (D —3)(D2 +1) annihilates the input function g(x). This means that
(D—-3)(D? +1)g(x) = (D—3)(D? +1) (8> +sinx) =0
We apply (D —3)(D? +1) to both sides of the differential equation in step 1 to obtain
(D-3)(D? +1)(D? -3D)y =0.
This is homogeneous differential equation of order 5.

Step 4 The auxiliary equation of the higher order equation found in step 3 is
(m—=3)(m? +1)(m* -3m) =0
m(m-3)°(m* +1) =0
=>m=0, 3 3, +i

Thus, the general solution of the differential equation

y =c; +Ce> +caxe + ¢y cosX + Cg Sin X

Step 5 First two terms in this solution are already present in y.

cy +Cpe X

Therefore, we eliminate these terms. The remaining terms are

caxe>X + ¢4 COS X+ Cg Sin X

Step 6 Therefore, the basic structure of the particular solution 'y, must be

Yp = Axe®* + Bcosx + Csin x
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The constants c3 c4and cghave been replaced with the constants A, BandC,
respectively.

Step 7 Since Yp = Axe®* + Bcosx + Csin x

Therefore Yp—3Yp = 3Ae3X 4+ (-B-3C)cosx+(3B—C)sin x
Substituting into the given differential equation, we have

3Ae +(—B—3C)cosx+(3B—C)sin x =83 +4sinx.
Equating coefficients of 3%, cosx andsin x , we obtain

3A=8 -B-3C=0,3B-C=4

Solving these equations we obtain
A=8/3, B=6/5 C=-2/5

yp =—Xe™" +—-CO0SX——=SInX.
3 5 5

Step 8 The general solution of the differential equation is then

_ 3x,8,.3x 6 2 .

Y =0 +Ce™ +2Xe™ +ZCOSX—¢SINX.
Example 3

dzy —X
Solve —2+8y=5x+26 .

dx
Solution:

Step 1 The given differential equation can be written as
(D? +8)y =5x+2e X

Step 2 The associated homogeneous differential equation is
(D? +8)y =0
Roots of the auxiliary equation are complex

m=+2y2i
Therefore, the complementary function is

Ve = cos2v/2 X +Cp Sin 242 x

Step 3 Since D?x=0, (D+1)e X =0

Therefore the operators D? and D +Zlannihilate the functions 5x and2e™. We apply
D*(D +1) to the non-homogeneous differential equation

D*(D+1)(D*+8)y=0.
This is a homogeneous differential equation of order 5.

Step 4 The auxiliary equation of this differential equation is
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m?(m+1)(m? +8) =0
—=m=0,0,-1,+22i
Therefore, the general solution of this equation must be
Y = C; COS 242X +Cy SiN 242X +C3 +C4X +C5e %

Step 5 Since the following terms are already presentin y.

¢, €05 2+/2x + ¢, sin 2+/2x
Thus we remove these terms. The remaining ones are

C3 +CyX+Cge

Step 6 The basic form of the particular solution of the equation is
X

yp =A+Bx+Ce"
The constants cg3,c4and cghave been replaced with A,BandC .

X

Step 7 Since yp =A+Bx+Ce"

Therefore yp +8yp =8A+8Bx+9Ce ™
Substituting in the given differential equation, we have
8A+8Bx+9Ce X =5x+2e %

Equating coefficients of x, e”*and the constant terms, we have
A=0,B=5/8 C=2/9

5 2

Thus =—X+—¢

Yp=g "y
Step 8 Hence, the general solution of the given differential equation is

Y=Yc*VYp
or y=clcoszﬁx+czsin2J§x+§x+§e‘x.
Example 4

2

Solve d—2y+y:xcosx—cosx

dx
Solution:

Step 1 The given differential equation can be written as
(D2 +1)y = XCOSX — COSX

Step 2 Consider the associated differential equation
(D? +1)y=0
The auxiliary equation is
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m?+1=0 =>m=+i

Therefore Y. =C, COSX +C, Sin X
Step 3 Since (D? +1)*(xcosx) =0
(D*+1)°cosx=0 ; -~ x=0

Therefore, the operator (D? +1)*annihilates the input function
XCOS X — COS X

Thus operating on both sides of the non-homogeneous equation with (D? +1)?, we have
(D* +1)*(D*+1)y =0

or (D*+1)°%y=0

This is a homogeneous equation of order 6.

Step 4 The auxiliary equation of this higher order differential equation is
m? +)3 =0=m=i,i,i,—i,—i,—i
Therefore, the auxiliary equation has complex roots1, and —1I both of multiplicity 3. We
conclude that
Yy = C, COSX + C, SiN X + C,X COS X + C,XSiN X + C,X* COS X + C,X” Sin X

Step 5 Since first two terms in the above solution are already present in y.

C, COSX +C, Sin X
Therefore, we remove these terms.

Step 6 The basic form of the particular solution is
Yp = AXcosx + Bxsinx + Cx? cosx + Ex? sin

Step 7 Since Yp = AXcosx + Bxsin x + Cx2 cosx + Ex? sin x

Therefore
y'l’O +Yp =4EXcosx —4Cxsinx + (2B +2C)cosx + (—2A+ 2E)sin x
Substituting in the given differential equation, we obtain
4Excosx —4Cxsin x+ (2B + 2C)cosx + (—2A+ 2E) sin X = XCOSX — COSX
Equating coefficients of xcosx, xsin x,cosx and sin x, we obtain
4E = 1 -4C =0
2B+2C=-1, —-2A+2E=0
Solving these equations we obtain
A=1/4, B=-1/2,C=0, E=1/4

Thus Yp zlxcosx—ixsinx+£xzsinx
2 4

4

Step 8 Hence the general solution of the differential equation is

2

, 1 1 . 1 .
y:clcosx+czsmX+Zxcosx—5xsmx+Zx sinXx.
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Example 5
Determine the form of a particular solution for
2
a%y L%, y =10e "% cosx
dx2 dx
Solution

Step 1 The given differential equation can be written as
(D? —2D +1)y =10e~X cosx

Step 2 To find the complementary function, we consider
y'—-2y'+y=0

The auxiliary equation is
m?2-2m+1=0=m-1)%2=0=>m=11

The complementary function for the given equation is
Yo =X +coxe”

Step 3 Since (D2 +4D +5)e > cosx =0

Applying the operator (D?+4D +5) to both sides of the equation, we have
(D?* +4D +5)(D* -2D +1)y =0

This is homogeneous differential equation of order 4.

Step 4 The auxiliary equation is
(M? +4m +5)(m? —=2m+1) =0
= m=-2+i,11
Therefore, general solution of the 4™ order homogeneous equation is
y =ce% +coxeX +cge X cos X+ 482X sin X
Step 5 Since the terms c,e* +c,xe” are already present in y,, therefore, we remove these

and the remaining terms are c3e_2X COSX + c4e_2X sin x

Step 6 Therefore, the form of the particular solution of the non-homogeneous equation is
Yp = Ae X cosx + Be X sin x

Note that the steps 7 and 8 are not needed, as we don’t have to solve the given
differential equation.

Example 6
Determine the form of a particular solution for
3 2
A7y 497 4 W 52 gy ax2e2X 4 365K,
dx®  dx®  dx
Solution:

Step 1 The given differential can be rewritten as
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(0% -4D2 +4D)y =5x? - 6x-+ 4x%e2* + 3

Step 2 To find the complementary function, we consider the equation
(D3 —4D? +4D)y =0

The auxiliary equation is
m3 —4m? +4m=0
m(m? —4m+4) =0

mm-2)°>=0=m=0,2,2

Thus the complementary function is

Yo =€ +Cpe?X +caxe

Step 3 Since g(x) =5x% —6x + 4x2e?* + 3>
Further D*(5x* -6x) =0

(D—-2)*x%* =0

(D—-5)e™ =0

Therefore the following operator must annihilate the input function g(x) . Therefore,
applying the operator D*(D —2)*(D —5) to both sides of the non-homogeneous equation,
we have

D*(D-2)*(D-5)(D®-D*+4D)y=0
or D*(D-2)°(D-5)y=0
This is homogeneous differential equation of order 10.

Step 4 The auxiliary equation for the 10" order differential equation is
m*(m-2)°(m-5)=0
=m=0,0,0,0,2,2,2,2,25

Hence the general solution of the 10" order equation is

2 2,2 3,2 4.2

Y =Cq +CpX+CaX? +C4X° +C5e?* +cgxeX +c7x%e?* +cgx’eX +cox’e o

X +C0€

Step 5 Since the following terms constitute the complementary function y., we remove

these ¢y +cse? +cgxe?

Thus the remaining terms are

2 3,2X 4.2

X 4 cgx3e?X +coxte®* +¢yge™

CoX +03X2 + C4X3 + C7X26

Hence, the form of the particular solution of the given equation is
Yp = Ax+Bx% +Cx3 + Ex%e?X + Fx%?* + Gx*e?X + He>X
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Exercise
Solve the given differential equation by the undetermined coefficients.
1. 2y"-7y"+5y=-29
2. y"+3y'=4x-5
3. y'+2y +2y =5
4. y"+4y=4cosx+3sinx—8
5. y'+2y' +y=x%"
6. y"+y=4cosx—sinx
7. y'—y'"+y —y=xe*-e*+7
8. y"+y=8cos2x—4sinx, y(z/2)=-1, y'(x/2)=0
9. y"-2y"+y'=xe*+5, y(0)=2, y'(0)=2, y"(0)=-1
10. y® —y" =x+e*, y(0)=0, y'(0)=0, y"(0)=0, y"(0)=0
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Lecture 20 Variation of Parameters

Recall

o That a non-homogeneous linear differential equation with constant coefficients is
an equation of the form
d n y d n—ly dy
ap ——+an_ +--+a;—+agy =0g(X
N o 1 gy F20Y=9()
o The general solution of such an equation is given by

General Solution = Complementary Function + Particular Integral
o Finding the complementary function has already been completely discussed.

o In the last two lectures, we learnt how to find the particular integral of the non-
homogeneous  equations by using the undetermined coefficients.

o That the general solution of a linear first order differential equation of the form
dy
—+P(X)y = f(x
™ (x)y = f(x)

is given by y= eI PdX _[eI Pdx ¢ (x)dx+ole_I Pdx

Note that

a In this last equation, the 2" term

Ye =G1€
is solution of the associated homogeneous equation:

%+ P(x)y=0

— [Pdx

o Similarly, the 1% term
Yp = el de.jeI PoX ¢ (x)dx

is a particular solution of the first order non-homogeneous linear  differential
equation.

o Therefore, the solution of the first order linear differential equation can be written
in the form

Y=Yc*VYp
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In this lecture, we will use the variation of parameters to find the particular integral of the
non-homogeneous equation.

The Variation of Parameters

First order equation
The particular solution Yp of the first order linear differential equation is given by

Yp = el de.jej Pl ¢ (x)dx

This formula can also be derived by another method, known as the variation of
parameters. The basic procedure is same as discussed in the lecture on construction of a
second solution

Since yp = e_I P

is the solution of the homogeneous differential equation
dy
vl P(x)y =0,

and the equation is linear. Therefore, the general solution of the equation is
y= Clyl(x)

The variation of parameters consists of finding a function u,(x) such that

Yp =Up(X) Ya(X)

is a particular solution of the non-homogeneous differential equation

%+P(x) y=f(x)

Notice that the parameter c; has been replaced by the variable U,. We substitute Yp in

the given equation to obtain
dy; duy
Ug| ==+ P(x +y;— = f(x
1{ dx ( )YJ Y1 dx (x)

Since vy, is a solution of the non-homogeneous differential equation. Therefore we must
have

B 4 p(x)y, =0

So that we obtain

This is a variable separable equation. By separating the variables, we have

du, :de

Y1 ()

Integrating the last expression w.r.to X, we obtain
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u,(X) :J%lx)dx :IeJPdX - (x)dx

Therefore, the particular solution 'y, of the given first-order differential equation is .

y= ul(X)yl
or Yp :e_IPdX.J'eIPdX.f(x)dx
f(x)
u, = dx
Jyl(X)

Second Order Equation
Consider the 2" order linear non-homogeneous differential equation

a, (X)y” +a (X)y’ + 8, (X)y = g(X)
By dividing with a, (x), we can write this equation in the standard form
y"+P(x)y’ +Q(x)y = f(x)
The functions P(X), Q(X) and f (X) are continuous on some interval | . For the
complementary function we consider the associated homogeneous differential equation
y"+P(x)y’ +Q(x)y =0
Complementary function
Suppose that y, andy, are two linearly independent solutions of the homogeneous
equation. Then Y, andy, form a fundamental set of solutions of the homogeneous
equation on the interval | . Thus the complementary function is
Ye = C1y1(x)+coy2(x)
Since y, and y, are solutions of the homogeneous equation. Therefore, we have
yi+P (x)y; +Q(x)yy =0
y5 +P(x)ys +Q(x)y, =0
Particular Integral

For finding a particular solutiony , we replace the parameters c;and c,in the

p
complementary function with the unknown variables u;(x) andu,(x). So that the
assumed particular integral is

Yp = (%) Y2 (%) +Us (X) Y2 (%)
Since we seek to determine two unknown functions u;andu,, we need two equations

involving these unknowns. One of these two equations results from substituting the
assumed Y, in the given differential equation. We impose the other equation to simplify

the first derivative and thereby the 2™ derivative of Yp-
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Yp =UrY1+ YU +UpYs +UsYp =Uryg +UpYs +UrYy +UsY5

To avoid 2™ derivatives of U, andU, , we impose the condition
Ujy; +uzys =0

Then Yp =U1y1 +UzY>
So that

Yp =U1Y7 +Ujy; +Uzys +UzY5
Therefore

Yp+PYp+Qyp= Uyl +Uuy;  + Upyz + UpY;

+Puy; + Pupy, + Quyy; + Qupy,

Substituting in the given non-homogeneous differential equation yields

Upy1 +Uy1 +UpYs +UzY5 + Pupyp +Puyys +Quqy; +Quyy, = F(X)

!

or uly; +Py; +Qy J+u,[y; + Py, +Qy,]+ury; +usy, = f(x)

Now making use of the relations
y;+ P (x)y; +Q(x)y, =0
Y5 +P(x)yz +Q(x)y, =0
we obtain
ugy; +uzys = f(x)
Hence u;and u, must be functions that satisfy the equations
uiy; +uzy, =0
upy;  + Upyy = f(x)
By using the Cramer’s rule, the solution of this set of equations is given by

' Wl ' WZ
U =—, U, =—~
W w

WhereW , W, and W, denote the following determinants

Wi — 0 vy yi O
() v yi f(x)

The determinant W can be identified as the Wronskian of the solutions y; and y, . Since
the solutions y, and y, are linearly independent on | . Therefore

W(y,(x),y,(x))=0, V xel.

Y1 Y2

W: ! !
Y Y2

. Wy =
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Now integrating the expressions for u; anduj, we obtain the values of u,andu,, hence
the particular solution of the non-homogeneous linear differential equation.

Summary of the Method
To solve the 2™ order non-homogeneous linear differential equation

a,y"+ aly’ +ayy = g(x),

using the variation of parameters, we need to perform the following steps:

Step 1 We find the complementary function by solving the associated homogeneous
differential equation

ay"+ary’ +agy=0
Step 2 If the complementary function of the equation is given by
Yo =CY1tCY2

then y, and y, are two linearly independent solutions of the homogeneous differential
equation. Then compute the Wronskian of these solutions.

Y1 Y2
yi Y2
Step 3 By dividing with a,, we transform the given non-homogeneous equation into the
standard form

W =

y"+P(x)y’ +Q(x)y = f(x)
and we identify the function f(x).
Step 4 We now construct the determinants W; andW, given by
0 v y O
FO) 2 i f(x)

Step 5 Next we determine the derivatives of the unknown variables u, and u, through
the relations

W1: ) 2=

’ Wl ' WZ
Ul =), U2 =

W w
Step 6 Integrate the derivativesu; and u to find the unknown variables u, andu,. So

that
ulzjvidx, UZ:J'V&dx
W w

Step 7 Write a particular solution of the given non-homogeneous equation as
Yp TUiys +U2Y2

Step 8 The general solution of the differential equation is then given by
Y=Ye+Yp =CY1+C2Y2 + Uy +U2Y2.
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Constants of Integration

We don’t need to introduce the constants of integration, when computing the indefinite
integrals in step 6 to find the unknown functions of u, and u,. For, if we do introduce

these constants, then
Yo = +a)y+ (U, +b)y,
So that the general solution of the given non-homogeneous differential equation is

Yy=Y.+tY¥Y,=CY,+CY, +(U1 +a1)y1 +(U2 +b1)y2

or y=(cr+a)yr+(co+by)yo +pys +Upy,

If we replace ¢ +aqwith Cyand ¢, +b; withC,, we obtain

y=Cqy1 +Coyp +U1y; +UsYo

This does not provide anything new and is similar to the general solution found in step 8,
namely

y=0GYy, +GY, +uy +u,y,

Example 1
Solve y'—4y' +4y =(x+1)e.

Solution:

Step 1 To find the complementary function
y'—4y'+4y =0
Put yzemxly¢=memxiy”=m2€mx
Then the auxiliary equation is
m? —4m+4=0
(m-2P=0=>m=2,2
Repeated real roots of the auxiliary equation
y.=ce” + c,xe*
Step 2 By the inspection of the complementary function y., we make the identification

y; =e?* and y, = xe?*

er Xer

__4x
2x 2x 2x| e # O' VX
2e 2xe”" +e

Therefore W(y,, yz)=W(ezx’Xezx):

Step 3 The given differential equation is
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y" —4y' +4y = (x+1)e?*
Since this equation is already in the standard form

y"+P(x)y +Q(x)y = f(x)
Therefore, we identify the function f (x) as

f(x)=(x +1)e2X

Step 4 We now construct the determinants

W, = 0 xe™ ——(x+1)xe4X
Pol(x+1)e” 2xe™ e |
e?* 0
W, = = 1)e*
* 26 (x+1)e” (x+1)e

Step 5 We determine the derivatives of the functions u; and u, in this step

;W (x+1)xe®

2
ulzwz— oo =—X =X
W, (x+1)e*
u, W _ (x+D)e™ +4Ze =x+1
W e
Step 6 Integrating the last two expressions, we obtain
3 2

x> x
u, =I(—x2 —x)dx:—?—?

X2
u, :j(x+1)dx =7+x.

Remember! We don’t have to add the constants of integration.
Step 7 Therefore, a particular solution of then given differential equation is

3 2 2
y o= XXX | Xy [xe2X
p 3 2 2

3 2
o o %+X7}2x

Step 8 Hence, the general solution of the given differential equation is

_ _ 2X 2X X_s _2 2X
y—yC+yp—Cle +C,Xe +[6+ je

Example 2
Solve 4y" + 36y = cSC3X.
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Solution:

Step 1 To find the complementary function we solve the associated homogeneous
differential equation

4y"+36y=0=y"+9y =0
The auxiliary equation is
m2 +9=0= m=+3i
Roots of the auxiliary equation are complex. Therefore, the complementary function is
Yo = €1 €0S3X +Cp Sin3x
Step 2 From the complementary function, we identify
y1 =C0S3X, Yo =Sin3x
as two linearly independent solutions of the associated homogeneous equation. Therefore

C0S3X sin 3x
—3sin3x 3co0s3x

W (cos3x,sin 3x) =

Step 3 By dividing with 4, we put the given equation in the following standard form
y"+9y = 1csc3x.
4
So that we identify the function f(x) as

1
f = — 3
(x)==csc3x

Step 4 We now construct the determinants W; and Wo

0 sin3x

W, =1 :——csc3x-sin3x:—1
-ZCSC3X 3c0Ss3x 4

COS3X 0
B _1cos3x

~ |-3sin3x %CSC?)X ~ 4sin3x

2

Step 5 Therefore, the derivatives ujand u5 are given by

, W 1 , W, 1 cos3x
u].:_:__7 u2:—:— -
W 12 W 12 sin3x

Step 6 Integrating the last two equations w.r.to X, we obtain
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Ug —— 1y and Usp :iln|sin3x|
12 36

Note that no constants of integration have been added.
Step 7 The particular solution of the non-homogeneous equation is

1 1. i
=——XC0S3X+—(sin3x)In|sin 3x
Step 8 Hence, the general solution of the given differential equation is

y=Y¢+Yp =C1C083X+Cy sinBX—%xc053x+3—16(sin3x)ln|sin3x|

Example 3

n

Solve y'—y=

Solution:

Step 1 For the complementary function consider the associated homogeneous equation
y'-y=0

To solve this equation we put

y = emx y, -m emx y” _ m2emx

Then the auxiliary equation is:
m?-1=0=>m=x1

The roots of the auxiliary equation are real and distinct. Therefore, the complementary
function is

Yo = creX +ce X

Step 2 From the complementary function we find

X J—
y1=¢€", yp==¢
The functions y; and y, are two linearly independent solutions of the homogeneous
equation. The Wronskian of these solutions is

W(ex, e_x):

X

eX  e7*
eX —e7 X

=2

Step 3 The given equation is already in the standard form
y'+p(x)y'+Q(x)y="f(x)
1

Here f(x)==
X
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Step 4 We now form the determinants

—X
wi=| 0 & —ex)
1/x —e X
X
w,=| & 0 l_exy
e’ 1/x

Step 6 We integrate these two equations to find the unknown functions u; and u,.

ulzlje—dx, uzz—lje—dx
2) X 2) X

The integrals defining u, and u, cannot be expressed in terms of the elementary functions
and it is customary to write such integral as:

Xt Xt
ul:EJ ert, u, = EJ ert

Step 7 A particular solution of the non-homogeneous equations is

X
1 et 1 5 X gt
yp:EEJ' _t dt—Ee J Tdt
Xo

XO

Step 8 Hence, the general solution of the given differential equation is

1 e 1 X et
y=yc+yp=clex+cze_x+5exj Tdt——e_xj Tdt

XO
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Exercise

Solve the differential equations by variations of parameters.
1.

2.

3.

7.

8.

y"+y=tanx
y"+y =secxtanx

y”+y:se02x

y"—y=9x/e
y”—2y’+y=eX/(1+x2)
4y¢r_4y¢+ y=eX/2 /1_X2

"

y" + 4y’ =sec2x

2ym _ 6y!l — X2

Solve the initial value problems.

9.

2y"+y —y=x+1

10. y" -4y’ +4y = (12x2 —GX)eZX
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Lecture 1

Introduction and Overview

What is Algebra?

History:
Algebra is named in honor of Mohammed Ibn-e- Musa al-Khowarizmi. Around 825, he

wrote a book entitled Hisb al-jabr u'l muqgubalah, (“"the science of reduction and
cancellation™). His book, Al-jabr, presented rules for solving equations.

Algebra is a branch of Mathematics that uses mathematical statements to describe
relationships between things that vary over time. These variables include things like the
relationship between supply of an object and its price. When we use a mathematical
statement to describe a relationship, we often use letters to represent the quantity that
varies, since it is not a fixed amount. These letters and symbols are referred to as
variables.

Algebra is a part of mathematics in which unknown quantities are found with the help of
relations between the unknown and known.

In algebra, letters are sometimes used in place of numbers.

The mathematical statements that describe relationships are expressed using algebraic
terms, expressions, or equations (mathematical statements containing letters or symbols
to represent numbers). Before we use algebra to find information about these kinds of
relationships, it is important to first cover some basic terminology.

Algebraic Term:

The basic unit of an algebraic expression is a term. In general, a term is either a product
of a number and with one or more variables.

For example 4x is an algebraic term in which 4 is coefficient and x is said to be variable.

Study of Algebra:

Today, algebra is the study of the properties of operations on numbers. Algebra

generalizes arithmetic by using symbols, usually letters, to represent numbers or
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unknown quantities. Algebra is a problem-solving tool. It is like a tractor, which is a
farmer's tool. Algebra is the mathematician's tool for solving problems. Algebra has
applications to every human endeavor. From art to medicine to zoology, algebra can be a
tool. People who say that they will never use algebra are people who do not know about
algebra. Learning algebra is a bit like learning to read and write. If you truly learn
algebra, you will use it. Knowledge of algebra can give you more power to solve

problems and accomplish what you want in life. Algebra is a mathematicians’ shorthand!

Algebraic Expressions:

An expression is a collection of numbers, variables, and +ve sign or —ve sign, of
operations that must make mathematical and logical behaviour.

For example 8x*+9x—1 is an algebraic expression.

What is Linear Algebra?

One of the most important problems in mathematics is that of solving systems of linear
equations. It turns out that such problems arise frequently in applications of mathematics
in the physical sciences, social sciences, and engineering. Stated in its simplest terms, the
world is not linear, but the only problems that we know how to solve are the linear ones.
What this often means is that only recasting them as linear systems can solve non-linear
problems. A comprehensive study of linear systems leads to a rich, formal structure to
analytic geometry and solutions to 2x2 and 3x3 systems of linear equations learned in
previous classes.

It is exactly what the name suggests. Simply put, it is the algebra of systems of linear
equations. While you could solve a system of, say, five linear equations involving five
unknowns, it might not take a finite amount of time. With linear algebra we develop
techniques to solve m linear equations and n unknowns, or show when no solution exists.
We can even describe situations where an infinite number of solutions exist, and describe
them geometrically.

Linear algebra is the study of linear sets of equations and their transformation properties.
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Linear algebra, sometimes disguised as matrix theory, considers sets and functions, which
preserve linear structure. In practice this includes a very wide portion of mathematics!
Thus linear algebra includes axiomatic treatments, computational matters, algebraic
structures, and even parts of geometry; moreover, it provides tools used for analyzing
differential equations, statistical processes, and even physical phenomena.

Linear Algebra consists of studying matrix calculus. It formalizes and gives geometrical
interpretation of the resolution of equation systems. It creates a formal link between
matrix calculus and the use of linear and quadratic transformations. It develops the idea
of trying to solve and analyze systems of linear equations.

Applications of Linear algebra:

Linear algebra makes it possible to work with large arrays of data. It has many
applications in many diverse fields, such as

e Computer Graphics,

e Electronics,

e Chemistry,

e Biology,

e Differential Equations,

e Economics,

e Business,

e Psychology,

e Engineering,

e Analytic Geometry,

e Chaos Theory,

e Cryptography,

e Fractal Geometry,

e Game Theory,

e Graph Theory,

e Linear Programming,

e Operations Research
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It is very important that the theory of linear algebra is first understood, the concepts are
cleared and then computation work is started. Some of you might want to just use the
computer, and skip the theory and proofs, but if you don’t understand the theory, then it
can be very hard to appreciate and interpret computer results.

Why using Linear Algebra?

Linear Algebra allows for formalizing and solving many typical problems in different
engineering topics. It is generally the case that (input or output) data from an experiment
is given in a discrete form (discrete measurements). Linear Algebra is then useful for
solving problems in such applications in topics such as Physics, Fluid Dynamics, Signal
Processing and, more generally Numerical Analysis.

Linear algebra is not like algebra. It is mathematics of linear spaces and linear functions.
So we have to know the term "linear" a lot. Since the concept of linearity is fundamental
to any type of mathematical analysis, this subject lays the foundation for many branches
of mathematics.

Obijects of study in linear algebra:

Linear algebra merits study at least because of its ubiquity in mathematics and its
applications. The broadest range of applications is through the concept of vector spaces
and their transformations. These are the central objects of study in linear algebra

1. The solutions of homogeneous systems of linear equations form paradigm
examples of vector spaces. Of course they do not provide the only examples.

2. The vectors of physics, such as force, as the language suggests, also provide
paradigmatic examples.

3. Binary code is another example of a vector space, a point of view that finds

application in computer sciences.

Solutions to specific systems of differential equations also form vector spaces.

Statistics makes extensive use of linear algebra.

Signal processing makes use of linear algebra.

N oo g &

Vector spaces also appear in number theory in several places, including the

study of field extensions.
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8. Linear algebra is part of and motivates much abstract algebra. Vector spaces
form the basis from which the important algebraic notion of module has been
abstracted.

9. Vector spaces appear in the study of differential geometry through the tangent
bundle of a manifold.

10. Many mathematical models, especially discrete ones, use matrices to represent
critical relationships and processes. This is especially true in engineering as

well as in economics and other social sciences.

There are two principal aspects of linear algebra: theoretical and computational. A major
part of mastering the subject consists in learning how these two aspects are related and

how to move from one to the other.

Many computations are similar to each other and therefore can be confusing without
reasonable level of grasp of their theoretical context and significance. It will be very

tempting to draw false conclusions.

On the other hand, while many statements are easier to express elegantly and to
understand from a purely theoretical point of view, to apply them to concrete problems
you will need to “get your hands dirty”. Once you have understood the theory sufficiently
and appreciate the methods of computation, you will be well placed to use software

effectively, where possible, to handle large or complex calculations.
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Course Segments:

The course is covered in 45 Lectures spanning over six major segments, which are given

below;

Linear Equations
Matrix Algebra
Determinants
Vector spaces

Eigen values and Eigenvectors, and

o ok~ w N oE

Orthogonal sets

Course Objectives:

The main purpose of the course is to introduce the concept of linear algebra, explain the
underline theory, explain the computational techniques and then try to apply them on real

life problems. Broad course objectives are as under;

e To master techniques for solving systems of linear equations

e To introduce matrix algebra as a generalization of the single-variable algebra of
high school.

e To build on the background in Euclidean space and formalize it with vector space
theory.

e To develop an appreciation for how linear methods are used in a variety of
applications.

e To relate linear methods to other areas of mathematics such as calculus and,
differential equations.
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Recommended Books and Supported Material:

I am indebted to several authors whose books I have freely used to prepare the lectures

that follow. The lectures are based on the material taken from the books mentioned

below.
1. Linear Algebra and its Applications (3" Edition) by David C. Lay.
2. Contemporary Linear Algebra by Howard Anton and Robert C. Busby.
3. Introductory Linear Algebra (8" Edition) by Howard Anton and Chris Rorres.
4. Introduction to Linear Algebra (3" Edition) by L. W. Johnson, R.D. Riess and
J.T. Arnold.
5. Linear Algebra (3" Edition) by S. H. Friedberg, A.J. Insel and L.E. Spence.

6. Introductory Linear Algebra with Applications (6" Edition) by B. Kolman.

I have taken the structure of the course as proposed in the book of David C. Lay. | would
be following this book. I suggest that the students purchase this book, which is easily
available in the market and also does not cost much. For further study and supplement,
students can consult any of the above mentioned books.

I strongly suggest that the students also browse on the Internet; there is plenty of support
material available. In particular, 1 would suggest the website of David C. Lay;

www.laylinalgebra.com, where the entire material, study guide, transparencies are readily

available. Another very useful website is www.wiley.com/college/anton, which contains a

variety of useful material including the data sets. A number of other books are also
available in the market and on the internet with free access.

I will try to keep the treatment simple and straight. The lectures will be presented in
simple Urdu and easy English. These lectures are supported by the handouts in the form
of lecture notes. The theory will be explained with the help of examples. There will be
enough exercises to practice with. Students are advised to follow the course on daily

basis and do the exercises regularly.
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Schedule and Assessment:

The course will be spread over 45 lectures. Lectures one and two will be introductory and
the Lecture 45 will be the summary. The first two lectures will lay the foundations and
would provide the overview of the course. These will be important from the concept

point of view. | suggest that these two lectures should be viewed again and again.

The course will be interesting and enjoyable, if the student follow it regularly and
complete the exercises as they come along. To follow the tradition of a semester system
or of a term system, there will be a series of assignments (Max eight assignments) and a

mid term exam. Finally there will be terminal examination.

The assignments have weights and therefore they have to be taken seriously.
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Lecture 2
Backaground

Introduction to Matrices

Matrix: A matrix is a collection of numbers or functions arranged into rows and columns.

Matrices are denoted by capital letters A,B,...,Y,Z. The numbers or functions are called
elements of the matrix. The elements of a matrix are denoted by small lettersa,b,...,y,z.

Rows and Columns: The horizontal and vertical lines in a matrix are, respectively, called
the rows and columns of the matrix.

Order of a Matrix: The size (or dimension) of matrix is called as order of matrix. Order of
matrix is based on the number of rows and number of columns. It can be writtenas r xc; r

means no. of row and ¢ means no. of columns.

If a matrix has m rows and n columns then we say that the size or order of the matrix
ismxn.If A isamatrix having m rows and ncolumns then the matrix can be written as

a.ll a12 “oe a.ln

8.21 a22 e a2n
A=

Adn1 An2  --- Qpn

The element, or entry, in the ith row and jth column of a mxn matrix A is written as ajj

2
For example: The matrix A:(O A

3
6) has two rows and three columns. So order of A
will be 2x3

Square Matrix: A matrix with equal number of rows and columns is called square matrix.

4 7 -8
For Example The matrix A=|9 3 5 | has three rows and three columns. So it is a
1 -1 2

square matrix of order 3.

Equality of matrices: The two matrices will be equal if they must have

a) The same dimensions (i.e. same number of rows and columns)
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b) Corresponding elements must be equal.

4 7 -8 4 7 -8
Example: The matrices A=|9 3 5 | and B=|9 3 5 | equal matrices
1 -1 2 1 -1 2

(i.e A = B) because they both have same orders and same corresponding elements.

Column Matrix: A column matrix X is any matrix having n rows and only one column.

Thus the column matrix X can be written as

b1
byq
X = | b3y | =[bjz]nx1

bnl
A column matrix is also called a column vector or simply a vector.

Multiple of matrix: A multiple of a matrix A by a nonzero constant k is defined to be

[ ka]_]_ ka12 oo ka]_n }
ka21 ka22 oo ka2n
kA=l . | = [KaijImxn
| kapy kamo e kamn |

Notice that the product kA is same as the product Ak . Therefore, we can write kA = Ak ..

It implies that if we multiply a matrix by a constant k, then each element of the matrix is to

be multiplied by k.
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Example 1:
2 -3 10 -15
(a) 5. 4 ~1|=[20 -5
1/5 6 1 30
1 et
(b) el.|-2|=]-2¢
4 4et

Since we know that kA = Ak . Therefore, we can write
2] |23t 2
o3t _ _ o3t
5| |5e~3t 5

Addition _of Matrices: Only matrices of the same order may be added by adding
corresponding elements.
If A=[a;j] and B =[bj;] are two mxn matrices then A+ B =[ajj +bj;]

Obviously order of the matrix A + B is mxn

Example 2: Consider the following two matrices of order 3x 3
2 -1 3 4 7 -8
A=| 0 4 6 |, B=|9 3 5
-6 10 -5 1 -1 2

Since the given matrices have same orders, therefore, these matrices can be added and their
sum is given by

2+4 -1+7 3+(-8) 6 6 -5
A+B=| 0+9 4+3 6+5 |=| 9 7 11
-6+1 10+(-)) -5+2 -5 9 -3

Example 3: Write the following single column matrix as the sum of three column vectors
3t* - 2¢'
t? + 7t
5t
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Solution:
3t°-2¢' | (3t*) (oY) (-2¢') (3 0) (-2
247t |=| 2 |+ 7t|+] O |=|1|t®+|7|t+| O |
5t 0 5t 0 0 5 0

Difference of Matrices: The difference of two matrices A and B of same order mxn is
defined to be the matrix A—B = A+ (-B)

The matrix — B is obtained by multiplying the matrix B with—1. Sothat-B=(-1)B

Multiplication of Matrices: We can multiply two matrices if and only if, the number of
columns in the first matrix equals the number of rows in the second matrix.

Otherwise, the product of two matrices is not possible.

OR

If the order of the matrix A is mxn then to make the product AB possible order of the
matrix B must benx p. Then the order of the product matrix AB ismx p. Thus

Amxn * Bnx p =~ Crnx p

If the matrices A and B are given by

aj; ap v A byg b - by
apy axp v A bp1 oy -+ by
A: ) B:
[@m1 8m2 - 8mn _bnl bro - bnp_
Then
a;q @ - ag ||bn b2 - byp
p; apy - A&y |[P21 P22 - byp
AB =
[@m1 8m2 - amn__bnl bro - bnp_
a11b11+a12b21+"'+a'1nbn1 a11b1p+a12b2p+"‘+ainbnp
_ a21b11+a22b21+"'+a2nbn1 a21b1p"'aZZpr""""'aannp
_am1b11+am2b21+”'+amnbn1 a‘mlblp_'_amZpr-'_'”_'_amnbnp_
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n
=1 > aikhy
k=1 nxp

Example 4: If possible, find the products AB and BA, when

4 7 9 -2
ST
35 6 8

5 8
—4 -3
(b) A=|1 0], B:[ J
2 0
2 7

Solution: (a) The matrices A and B are square matrices of order 2. Therefore, both of the
products AB and BA are possible.

4 7Y9 -2\ (4-9+7-6 4-(-2)+7-8) (78 48
AB: = =
3 56 8 3-9+5.-6 3-(-2)+5-8 57 34

9 -2\4 7 9-4+(-2)-3 9:-7+(-2)-5 30 53
Similarly BA= = =
6 8 \3 5 6-4+8-3 6-7+8-5 48 82

Note: From above example it is clear that generally a matrix multiplication is not
commutative i.e. AB = BA .

(b) The product AB is possible as the number of columns in the matrix A and the number of
rows in B is 2. However, the product BA is not possible because the number of column in the
matrix B and the number of rows in A is not same.

5 8
4 -3
AB=|1 0 ( j
2 0
2 7
5.(-4)+8-2  5-(-3)+8:0) (-4 -15
=|1-(-4)+0-2  1.(-3)+0-0 |=|-4 -3
2.(-4)+7-2 2-(-3)+7-0) |6 -6

78 48 30 53
AB = , BA=
57 34 48 82

Clearly AB = BA
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—4 -15
AB=|-4 -3
6 -6

However, the product BA is not possible.

Example 5:
2 -1 3)-3 2-(3)+(-1)-6+3-4 0
(a) 0 4 5| 6 |= O(—3)+46+56 =| 44

1 -79)\4) \1.(-3)+(-7)-6+9-4) |-9

-4 2\ X —4x+2y
L)
3 8y 3X+8y

Multiplicative Identity: For a given any integern, the nxn matrix

100 --0
010 --0
=001 --0
000 --1

is called the multiplicative identity matrix. If A is a matrix of ordernxn, then it can be
verifiedthat | -A=A-1=A

0 1 are identity matrices of orders 2 x 2 and 3 x 3

o - O
= O O

1

10
Example: I:[ j =0
0

9 -2
respectively and If B :[ ] then we can easily prove that Bl = IB =B

6 8
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Zero Matrix or Null matrix: A matrix whose all entries are zero is called zero matrix or
null matrix and it is denoted by O.

00
0 00

For example Oz{ J; Oz( J; O0=/00
0 00

00

and so on. If Aand O are the matrices of same orders, then A+O=0+A=A

Associative Law: The matrix multiplication is associative. This means that if A, B and
Caremx p, pxrand rxn matrices, then A(BC) = (AB)C

The result isa mxn matrix. This result can be verified by taking any three matrices which
are confirmable for multiplication.

Distributive Law: If B and C are matrices of order rxn and A is a matrix of order mxr,
then the distributive law states that
A(B+C)=AB+ AC
Furthermore, if the product (A+ B)C is defined, then
(A+B)C=AC+BC

Determinant of a Matrix: Associated with every square matrix A of constants, there is a
number called the determinant of the matrix, which is denoted by det(A) or |A|

3 62

Example 6: Find the determinant of the following matrix A= 2 5 1

-12 4
Solution: The determinant of the matrix A is given by
3 6 2
det(A)=|2 5 1
-12 14
We expand the det(A) by first row, we obtain
3 6 2
5 1 |2 1 2 5
det(A)=|2 5 1= - +2
2 4 -1 4 -1 2
-12 14
or det(A) =3(20-2)-6(8+1) +2(4+5) =18
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Transpose of a Matrix: The transpose of mMxn matrix A is denoted by A and it is
obtained by interchanging rows of A into its columns. In other words, rows of A become the

columns of A", Clearly A" is nxm matrix.

all a12 e ain a11 a21 aml
Ay Ay Gy, A" = a%z .22 r.nz
If A=| : . ~ |, then
a ... a
aml am2 .. amn aln 2n mn

Since order of the matrix A ismxn, the order of the transpose matrix A" isnxm.

Properties of the Transpose:

The following properties are valid for the transpose;

. . (‘l')l'. A
e The transpose of the transpose of a matrix is the matrix itself:
e The transpose of a matrix times a scalar (k) is equal to the constant times the

F
transpose of the matrix: (k4) = kAT
e The transpose of the sum of two matrices is equivalent to the sum of their
F_oar r
transposes: (4*'!) 4" +3

e The transpose of the product of two matrices is equivalent to the product of their
F_ progr
transposes in reversed order: (‘L‘E) 8 A

r
e The same is true for the product of multiple matrices: (‘-’5‘_")' pleolf- o

3 62

Example 7: (a) The transpose of matrix A=| 2 5 1|is A" =

N OO W
= o1 N
DN

-12 4
5)

(b)IfX =] 0|, then X" =[5 0 3]
3

Multiplicative Inverse: Suppose that A is a square matrix of ordernxn. If there exists an
nxn matrix B such that AB = BA = |, then B is said to be the multiplicative inverse of the

matrix A and is denoted by B = AL,
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1 4

For example: If A=
-1 1/2

5
J then the matrix B:[ ) is multiplicative inverse of A

2 10

1 4)\(5 =2 10
because AB = = =|
(2 10] (—1 1/2] (O 1]

Similarly we can check that BA =1

Singular_and Non-Singular Matrices: A square matrix A is said to be a non-singular
matrix ifdet(A) =0, otherwise the square matrix A is said to be singular. Thus for a

singular matrix A we must have det(A)=0

2 3 -1
Example: A= |1 1 0
2 -3

|Al = 2(5-0) -3(5-0) —1(-3-2)
=10 -15 +5 =0

which means that A is singular.

Minor of an element of a matrix:

Let A be a square matrix of order n x n. Then minorM; of the element a; € A is the

determinant of (n—1)x(n—1) matrix obtained by deleting the ith row and jth column
fromA.

2 3 -1
Example: If A= |1 1 0 | is a square matrix. The Minor of 3 A is denoted by
2 -3 5

1
M,, and is defined to be M,, = )

Cofactor of an element of a matrix:

Let A be a non singular matrix of order nxn and let C; denote the cofactor (signed minor)

of the corresponding entry ajj € A , thenitis definedtobe  Cjj = (—1)i+j Mjj
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2 3 -1
Example: If A= |1 1 0 | is a square matrix. The cofactor of 3e A is denoted by
2 -3 5
: : Lol 0
C,,and is defined to be C,,= =(-1) > & =-(5-0=-5

Theorem: If A is a square matrix of order nxn then the matrix has a multiplicative
inverse A~ if and only if the matrix A is non-singular.

1

Theorem: Then inverse of the matrix A is given by A=
det(A)

Cip"
1. For further reference we take n=2so that A is a 2x2 non-singular matrix given by
(311 alzJ
A=
ap1 a2
Therefore Cll =dyy, C12 =—anq, C21 =—-a12 and C22 =a. So that
tr
Al 1 a2 ~axn| 1 a —ap
det(A)(-ay, ay det(A)\-ap ay

81 @ 93
2. For a 3x3 non-singular matrix A=| a,; ay, a3

dz; Qagzp dz3

a2z a3 dz1 @23 a, a
Cyy = ,Clp =~ , C,=| % "#|andsoon,
azp dszz d31 asz3 dy Aay
1 Cll C21 C31
Therefore, inverse of the matrix A is given by A™ ~ oA C, C, C,|
e
C13 C23 C33
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1 4
Example 8: Find, if possible, the multiplicative inverse for the matrix A = ( j :

2 10
1 4
Solution: The matrix A is non-singular because det(A) = =10-8=2
2 10
1 1(10 -4 5 -2
Therefore, A ~exists and is given by A== =
2(-2 1 -11/2
1 1 45 -2 5-4 -2+2 10
Check: AaL = - _ oy
2 10)\-11/2 10-10 -4+5 01

1 5 -2)\1 4 5-4 20-20 10
AA_ = = = :I
-11/2)\2 10 -1+1 -4+5 01
Example 9: Find, if possible, the multiplicative inverse of the following matrix

2 2
A=
33
Solution: The matrix is singular because

2 2

det(A)=| |=2.3-2-3=0
3

Therefore, the multiplicative inverse A~Lof the matrix does not exist.

Example 10: Find the multiplicative inverse for the following matrix

2 20
A=l-2 1 1.
3 01

2 20
Solution: Since det(A)=|-2 1 1/=2(1-0)-2(-2-3)+0(0-3)=12%0
3 01

Therefore, the given matrix is non singular. So, the multiplicative inverse A~Lof the matrix
A exists. The cofactors corresponding to the entries in each row are

-2
~1 Cpp =-— =5 Cig=

3
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20 20 2 2
Cp1 =~ =-2, Copp= =2, Coz = =6
01 31 30
2 0 2 0 2 2
Ca1 = =2, Ca2 =- =-2, Cg3= =6
11 - -2 1
1 -2 2 1/12 -1/6 1/6
Hence A*z% 5 2 -2|=|5/12 1/6 -1/6

-3 6 6 -1/4 1/2 1/2
We can also verify that A-AT=AT A=

Derivative of a Matrix of functions:
Suppose that

At =[aj® ]

is a matrix whose entries are functions those are differentiable on a common interval, then
derivative of the matrix A(t) is a matrix whose entries are derivatives of the corresponding

entries of the matrix A(t). Thus

d_A 3 daij
dt | dt
mxn
The derivative of a matrix is also denoted by A'(t).

Integral of a Matrix of Functions:

Suppose that A(t) = (aij (t))rnxn Is @ matrix whose entries are functions those are continuous

on a common interval containingt, then integral of the matrix A(t) is a matrix whose entries
are integrals of the corresponding entries of the matrix A(t) . Thus
t
t
J asyds=| f; ay(o)s

tO mxn

sin 2t

Example 11: Find the derivative and the integral of the following matrix X (t) = e3t

8t-1

©Virtual University Of Pakistan 23



2-Introduction to Matrices VU

Solution: The derivative and integral of the given matrix are, respectively, given by

t
d (sin20) [sin 2sds
—(sin
dg 2cos 2t ° : —1/2cos2t+1/2
X't)=| —@*) [=| 3% | and [X(s)ds=| [e®ds |=|1/3¢*-1/3
dt 0 2
d 8 0 4t° —t
—(8t-1) ¢
dt [8s—1ds
0
Exercise:
Write the given sum as a single column matrix
2 -1 3t
Lostt |+(t-1)-t|-2 4
-1 3 -5t
1 -3 4 t —t 2
2. 12 5 -=1|l2t-1(+| 1 |- 8
0 -4 -2 —t 4 -6
Determine whether the given matrix is singular or non-singular. If singular, find AL
3 21
3. A={4 1 0
-2 5 -1
4 1 -1
4, A= 6 2 -3
-2 -1 2
Find ax
dt
L 2t —4cos 2t
5. x - Esm —4cos
—3sin 2t +5cos 2t
e® cosut 2 t
6. If A(t)= then find (a) j A(t)dt, (b) j A(s)ds.
2t 3t?-1 0 0

7. Find the integraI_Z[B(t)dt if B(t)—[ o 2}
' 1 1/t 4t
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Lecture 3

Systems of Linear Equations

In this lecture we will discuss some ways in which systems of linear equations arise, how
to solve them, and how their solutions can be interpreted geometrically.

Linear equations:

A line in R? (2-dimensions) can be represented by an equation of the form ax+ay=>Db

(where a;, a, not both zero). Similarly a plane in R® (3-dimensional space) can be
represented by an equation of the form ax+a,y+a,z=b (where a;, ay, az not all zero).

A linear equation in n variables X, X,,---, X, can be expressed in the form
aX, +aX, +---+ax =b (1)

where a,,a,,--+,a,and b are constants and the ““a’s™” are not all zero.

Homogeneous linear equation:

In the special case if b = 0, Equation (1) has the form ax +a,x,+:--+a,x, =0 (2)
This equation is called homogeneous linear equation.

Note: A linear equation does not involve any products or square roots of variables. All
variables occur only to the first power and do not appear, as arguments of trigonometric,
logarithmic, or exponential functions.

Examples of Linear Equations:

1) The equations
2% +3%,+2=%, and Xx,= 2(\/§+ x1)+ 2x, are both linear

2 The following equations are also linear
X+3y="7 X, —2X, —3X;+X, =0

%X_y+3z:—1 X+ X4+ X =1

(3)  Theequations 3x, —2x,=xX, and Xx,= 4\/2—6

are not linear because of the presence of X; X, in the first equation and \/Z in the second.

System of linear equations:
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A finite set of linear equations is called a system of linear equations or linear system. The
variables in a linear system are called the unknowns.

For example,
4% —X, +3%, =-1
3%, + X, +9%, =4
is a linear system of two equations in three unknowns X, X», and Xs.

General system of linear equations:
A general linear system of m equations in n-unknowns X;, X,,---, X, can be written as

X HaX, oot X, =y
Ay X + &%, +o0+3,, X, =D,

" (3)

amlxl +am2X2 +“'+amnxn = bm

Solution of a system of linear equations:
A solution of a linear system in the unknowns X;, X,,---, X, is a sequence of n numbers

that when substituted for X, X,,--+, X, respectively, makes every equation in the system
a true statement. The set of all solutions of a linear system is called its solution set.

Linear System with Two Unknowns:

When two lines intersect in R?, we get system of linear equations with two unknowns

ax+by=c

For example, consider the linear system
a,x+b,y=c,

The graphs of these equations are straight lines in the xy-plane, so a solution (x, y) of this
system is infect a point of intersection of these lines.

Thus, there are three possibilities:

1. The lines may be parallel and distinct, in which case there is no intersection and
consequently no solution.

2. The lines may intersect at only one point, in which case the system has exactly
one solution.

3. The lines may coincide, in which case there are infinitely many points of
intersection (the points on the common line) and consequently infinitely many
solutions.

Consistent and inconsistent system:
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A linear system is said to be consistent if it has at least one solution and it is called
inconsistent if it has no solutions.

Thus, a consistent linear system of two equations in two unknowns has either one
solution or infinitely many solutions — there is no other possibility.

Example: consider the system of linear equations in two variables
X, —2X, ==1, =X +3X,=3

Solve the equation simultaneously:

Adding both equations we get x, =2, Put x, = 2 in any one of the above equation we

get x, =3. So the solution is the single point (3, 2). See the graph of this linear system

X2
2__
e X
T 11 1
I, —+ 3
Iy (@)

This system has exactly one solution

See the graphs to the following linear systems:

(@ x-2x,=-1 (b) x-2x,=-1
—X +2X, = 3 -X+2X,= 1
X2 X2
I 2 |
2_/ —/
B T T
Iy T
I (a) (b)
(@) No solution. (b) Infinitely many solutions.
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Linear System with Three Unknowns:

Consider r a linear system of three equations in three unknowns:
ax+by+cz=d,
ax+by+cz=d,
axX+by+cz=d,

In this case, the graph of each equation is a plane, so the solutions of the system, If any
correspond to points where all three planes intersect; and again we see that there are only
three possibilities — no solutions, one solution, or infinitely many solutions as shown in
figure.

1 : Solution space is a line Solution space is a plane
Solution space is {0]. through the origin. through the origin.

Theorem 1: Every system of linear equations has zero, one or infinitely many solutions;
there are no other possibilities.

X—-y=1

Example 1:  Solve the linear system
2X+Yy=6

Solution:
Adding both equations, we getx:%. Putting this value of x in 1st equation, we

gety =§ . Thus, the system has the unique solution x = % y= f.

3

Geometrically, this means that the lines represented by the equations in the system

intersect at a single point (%%) and thus has a unique solution.

X+ y=4

Example 2:  Solve the linear system
3Xx+3y=06

Solution:
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Multiply first equation by 3 and then subtract the second equation from this. We obtain
0=6
This equation is contradictory.

Geometrically, this means that the lines corresponding to the equations in the original
system are parallel and distinct. So the given system has no solution.

4x -2y =1

Example 3:  Solve the linear system
16x—-8y =4

Solution:

Multiply the first equation by -4 and then add in second equation.

-16x+8y=-4
16x—-8y= 4
0 =0

Thus, the solutions of the system are those values of x and y that satisfy the single
equation 4x—-2y =1

Geometrically, this means the lines corresponding to the two equations in the original
system coincide and thus the system has infinitely many solutions.

Parametric Representation:

It is very convenient to describe the solution set in this case is to express it
parametrically. We can do this by letting y = t and solving for x in terms of t, or by
letting x = t and solving for y in terms of t.

The first approach yields the following parametric equations (by taking y=t in the
equation 4x—-2y=1)

4x-2t=1 y=t
X EJrlt y=
4 2"

We can now obtain some solutions of the above system by substituting some numerical
values for the parameter.

Example: Fort =0 the solution is (%,0). For t = 1, the solution is (%,1) and for t=-1

the solution is(—%,—l) etc.
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X— y+2z=5
Example 4:  Solve the linear system 2x—2y+4z=10
3x—-3y+6z=15

Solution:
Since the second and third equations are multiples of the first.

Geometrically, this means that the three planes coincide and those values of x, y and z
that satisfy the equation x— y+2z =5 automatically satisfy all three equations.

We can express the solution set parametrically as

X=5+t-2t,,y=t, z=t,
Some solutions can be obtained by choosing some numerical values for the parameters.

For example if wetake y=t =2 and z=t, =3 then

X=5+t —-2t,
=5+2-2(3)
=1

Put these values of X, y, and z in any equation of linear system to verify

X— y+2z=5
1-2+2(3)=5
1-2+6=5
5=5

Hence x =1,y =2, z =3 is the solution of the system. Verified.

Matrix Notation:

The essential information of a linear system can be recorded compactly in a rectangular
array called a matrix.

X, —2X,+ % =0
Given the system 2X,—8%X; = 8
—4X, 45X, +9%; =9
1 -2 1
With the coefficients of each variable aligned in columns, the matrix | 0 2 -8
-4 5 9

is called the coefficient matrix (or matrix of coefficients) of the system.
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An augmented matrix of a system consists of the coefficient matrix with an added column
containing the constants from the right sides of the equations. It is always denoted by A,

1 -2 1 0
Ab=10 2 -8 8
-4 5 9 -9

Solving a Linear System:

In order to solve a linear system, we use a number of methods. 1st of them is given
below.

Successive elimination method: In this method the X, term in the first equation of a
system is used to eliminate the X, terms in the other equations. Then we use the X, term

in the second equation to eliminate the X, terms in the other equations, and so on, until
we finally obtain a very simple equivalent system of equations.

X, —2X,+ % =0
Example 5:  Solve 2X,—8X;= 8
—4X, +5X, + 9%, =-9

Solution: We perform the elimination procedure with and without matrix notation,
and place the results side by side for comparison:
X, —2X,+ X% =0 1 -2 1 O
2X,—8X;= 8 0 2 -8 8
—4X, +5X, +9X%; =9 -4 5 9 -9

To eliminate the x, term from third equation add 4 times equation 1 to equation 3,
4%, —8X,+4%, =0
—4X, +5X, +9%;, =-9
—3X, +13x, =-9

The result of the calculation is written in place of the original third equation:

X, —2X, + X, =0 1 -2 1 0
2X, —8X, =8 0 2 -8 8
-3X, +13%x; = -9 0 -3 13 -9
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Next, multiply equation 2 by % in order to obtain 1 as the coefficient for X,

X, —2X,+ X;=0 1 -2 1 0
X, —4x, =4 0 1 -4 4
-3X, +13x, = -9 0 -3 13 -9

To eliminate the x, term from third equation add 3 times equation 2 to equation 3,

The new system has a triangular form

X, —2X, +X; =0 1 -2 1 0
X, —4X, =4 0 1 -4 4
X; =3 0 0 1 3

Now using 3" equation eliminate the X3 term from first and second equation i.e. multiply
3" equation with 4 and add in second equation. Then subtract the third equation from first
equation we get

X, —2X, =-3 1 -2 0 -3
X, =16 0 1 0 16
X, =3 0 0 1 3

Adding 2 times equation 2 to equation 1, we obtain the result

X, =29 100 29
X, =16 010 16
X, = 001 3

This completes the solution.
Our work indicates that the only solution of the original system is (29, 16, 3).

To verify that (29, 16, 3) is a solution, substitute these values into the left side of the
original system for x;, X, and x3 and after computing, we get

(29) - 2(16) + (3)=29-32+3=0
2(16) - 8(3) =32 -24 =8
—4(29) +5(16) + 9(3) =—116 + 80 + 27 =—9

The results agree with the right side of the original system, so (29, 16, 3) is a solution of
the system.
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This example illustrates how operations on equations in a linear system correspond to
operations on the appropriate rows of the augmented matrix. The three basic operations
listed earlier correspond to the following operations on the augmented matrix.

Elementary Row Operations:

1. (Replacement) Replace one row by the sum of itself and a nonzero multiple of
another row.

2. (Interchange) Interchange two rows.

3. (Scaling) Multiply all entries in a row by a nonzero constant.

Row equivalent matrices:

A matrix B is said to be row equivalent to a matrix A of the same order if B can be
obtained from A by performing a finite sequence of elementary row operations of A.
If A and B are row equivalent matrices, then we write this expression mathematically as
A ~B.
1 -2 1 0 1 -2 1 0
For example 0 2 -8 8|~|0 2 -8 8| are row equivalent matrices
-4 5 9 -9 0 -3 13 -9
because we add 4 times of 1% row in 3" row in 1% matrix.

Note: If the augmented matrices of two linear systems are row equivalent, then the two
systems have the same solution set.

Row operations are extremely easy to perform, but they have to be learnt and practice.

Two Fundamental Questions:

1. Isthe system consistent; that is, does at least one solution exist?
2. If asolution exists is it the only one; that is, is the solution unique?

We try to answer these questions via row operations on the augmented matrix.

Example 6: Determine if the following system of linear equations is consistent
X, —2X,+ X =0
2X,—8X,= 8
—4X, +5X, + 9%, =-9

Solution:

First obtain the triangular matrix by removing X; and X, term from third equation and
removing x, from second equation.
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First divide the second equation by 2 we get

X, —2X,+ % =0 1 -2 1 O
X, —4x, = 4 0O 1 4 4
—4x, +5%, +9%, =9 -4 5 9 -9

Now multiply equation 1 with 4 and add in equation 3 to eliminate X; from
third equation.

X, —2X,+ %X =0 1 -2 1 O
X,—4x,= 4 0 1 -4 4
-3X, +13%x, =-9 0 -3 13 -9

Now multiply equation 2 with 3 and add in equation 3 to eliminate X, from
third equation.

X, —2X, +X; =0 1 -2 1 0
X, —4X%, =4 0 1 -4 4
X; =3 0 0 1 3

Put value of X3 in second equation we get

X, —4(3)=4

X, =16

Now put these values of x, and X3 in first equation we get
X, —2(16)+3=0

X, =29

So a solution exists and the system is consistent and has a unique solution.

Example 7:  Solve if the following system of linear equations is consistent.
X, —4X; =8
2%, —3X, + 2%, =1
SX —8X, +7X; =1

©Virtual University Of Pakistan 34



3-System of Linear Equations VU

Solution: The augmented matrix is
0 1 -4 8
2 -3 2 1
5 -8 7 1

To obtain Xy in the first equation, interchange rows 1 and 2:

2 3 2 1
0 1 48
5 8 7 1

To eliminate the 5X; term in the third equation, add -5/2 times row 1 to row 3:
2 -3 2 1
o 1 -4 8
0 -1/2 2 -3/2

Next, use the X, term in the second equation to eliminate the —(1/2) X, term from the third
equation. Add %2 times row 2 to row 3:

2 3 2 1
0 1 4 8
0 0 0 5/2

The augmented matrix is in triangular form.
To interpret it correctly, go back to equation notation:

2X, —3X, + 2%, =1
X, — 4%, =8
0=25

There are no values of X1, Xp, X3 that will satisfy because the equation 0 = 2.5 is never
true.
Hence original system is inconsistent (i.e., has no solution).
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Exercises:

1.

State in words the next elementary “row” operation that should be performed on the
system in order to solve it. (More than one answer is possible in (a).)

a. X +4x, —2x, +8x, =12 b. X, —3X,+5%,-2x,= 0
X, = TX; +2X, =4 X, +8X, =—4

X, — X, = 7 2X, =7

X, +3X, =-5 X,= 1

The augmented matrix of a linear system has been transformed by row operations into
the form below. Determine if the system is consistent.

15 2 -6
0 4 -7 2
00 5 0

Is (3, 4, —2) a solution of the following system?

OX — X, +2%;= 7
—2X, +6X, +9%, = 0
—7X, +5X, —3%X, =7

For what values of h and k is the following system consistent?

2%, — X, =h
—6x, +3x, =K

Solve the systems in the exercises given below;

X, +5X, = —4 X, —5X, + 4%, =-3
X, +4X, + 3%, =2 6. 2% —TX, +3%X; =2
2X +TX,+ X =-1 2% — X, — 71X =1
X, +2X, =4 2X, —4x, =-10
X, —3X, —3%; =2 8. X, + 3%, =2

X, + % =0 3%, +5X, +8x, =—6
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Determine the value(s) of h such that the matrix is augmented matrix of a consistent

linear system.
1 h -2
10.
-4 2 10

1 -3 h
9.

-2 6 -5
Find an equation involving g, h, and that makes the augmented matrix correspond to a
consistent system.

1 4 7 ¢ 2 5 -3 g
11.| 0 3 -5 h 1214 7 -4 h
2 5 -9 k 6 -3 1 kK

Find the elementary row operations that transform the first matrix into the second, and
then find the reverse row operation that transforms the second matrix into first.

1 3 -1][1 3 -1 0 5 3|15 2
13./0 2 4,0 1 -2 4.1 5 2,0 5 -3
0 3 4|0 -3 4 2 1 8 21 8

13 -1 5|1 3 -1 5
150 1 -4 2|0 1 -4 2
02 -5 -1/|0 0 3 -5
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Lecture 4

Row Reduction and Echelon Forms

To analyze system of linear equations we shall discuss how to refine the row reduction
algorithm. The algorithm applies to any matrix, we begin by introducing a non zero row
or column (i.e. contains at least one nonzero entry) in a matrix,

Echelon form of a matrix:

A rectangular matrix is in echelon form (or row echelon form) if it has the following three
properties:

1. All nonzero rows are above any rows of all zeros

2. Each leading entry of a row is in a column to the right of the leading entry of the
row above it.

3. All entries in a column below a leading entry are zero.

Reduced Echelon Form of a matrix:

If a matrix in echelon form satisfies the following additional conditions, then it is in
reduced echelon form (or reduced row echelon form):

4. The leading entry in each nonzero row is 1.
5. Each leading 1 is the only nonzero entry in its column.

Examples of Echelon Matrix form:

The following matrices are in echelon form. The leading entries (o) may have any
nonzero value; the started entries (*) may have any values (including zero).

2 3 2 1
1.]0 1 -4 8
0 0 0 5/2
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00*******
O***
0000*****
OO**
2. 3.0 000 o * * x x
0000
00000 o * * *
0000
00 0000O0O0O0 o
1 4 37 110
4, 6 5. 10 10
00 1 5 000
012 6 0
6.0 01 -10
000 0 1

Examples of Reduced Echelon Form:

The following matrices are in reduced echelon form because the leading entries are 1’s,
and there are 0’s below and above each leading 1.

100 29
1.0 1 0 16
001 1
i ] 0 1 * 000 * * 0 *]
10**
01 e 000100 * >0 *
2. 3.0 00010 * * 0 *
0000
000001 * >0 *
0000
- - 000000000 1 *
_ 01 201
100 4 100
00 0 1 3
4.10 1 0 7 510 1 0 6
00 0 00
001 -1 001
: 00 0 00

Note: A matrix may be row reduced into more than one matrix in echelon form, using
different sequences of row operations. However, the reduced echelon form one obtains
from a matrix is unique.

Theorem 1 (Uniqueness of the Reduced Echelon Form): Each matrix is row equivalent
to one and only one reduced echelon matrix.
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Pivot Positions:
A pivot position in a matrix A is a location in A that corresponds to a leading entry in an
echelon form of A.

Note: When row operations on a matrix produce an echelon form, further row operations
to obtain the reduced echelon form do not change the positions of the leading entries.

Pivot column:
A pivot column is a column of A that contains a pivot position.

Example 2:  Reduce the matrix A below to echelon form, and locate the pivot columns
0 -3 -6 4 9
-1 -2 -1 3 1

A=
-2 -3 0 3 -1
1 4 5 -9 -7
Solution: Leading entry in first column of above matrix is zero which is the pivot

position. A nonzero entry, or pivot, must be placed in this position. So interchange first
and last row.

1 P 4 5 -9 —7
-1 -2 -1 3 1
-2 -3 0 3 -1
0 -3 -6 4 9

L’ Pivot Column

Since all entries in a column below a leading entry should be zero. For this add row 1 in
row 2, and multiply row 1 by 2 and add in row 3.

Pivot
4 5 9 7

4 6 -6 R +R,
5 10 -15 -15 2R, +R,

-3 -6 4 9
I— Next pivot column

o O O -

Add -5/2 times row 2 to row 3, and add 3/2 times row 2 to row 4.
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1 4 5 -9 7 50 4 n
0 2 4 -6 -6 ot
0 0 0 0 0 3

—R,+R,
0 0 0 -5 0 2

Interchange rows 3 and 4, we can produce a leading entry in column 4.

Pivot
1 4 5 -9|-7 o kK *x *x x
0 2 4 -6|-6 0 o * * =*
General form
0O 0 0 - 0 o *
0O 0 O 0 O 00 00
| | | Pivot column

This is in echelon form and thus columns 1, 2, and 4 of A are pivot columns.

J Pivot positions
0 —3J—6 419

-1 211 3|1
-2 -3 0 3—/-1

R I I

Pivot columns

Pivot element:

A pivot is a nonzero number in a pivot position that is used as needed to create zeros via
row operations

The Row Reduction Algorithm consists of four steps, and it produces a matrix in
echelon form. A fifth step produces a matrix in reduced echelon form.

The algorithm is explained by an example.

Example 3:  Apply elementary row operations to transform the following matrix first
into echelon form and then into reduced echelon form.

0O 3 6 6 4 -5
3 -7 8 -5 8 9
3 912 -9 6 15
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Solution:

STEP 1: Begin with the leftmost nonzero column. This is a pivot column. The pivot
position is at the top.

0 3 6 6 4 -5
3 -7 8 -5 8 9
3 -9 12 9 6 15

Pivot column

STEP 2: Select a nonzero entry in the pivot column as a pivot. If necessary, interchange
rows to move this entry into the pivot position

Interchange rows 1 and 3. (We could have interchanged rows 1 and 2 instead.)

Pivot
34-9 12 -9 6 15

3 -7 8 5 8 9
0 3 6 6 4 -5

STEP 3: Use row replacement operations to create zeros in all positions below the pivot

Subtract Row 1 from Row 2.i.e.R, —= R,
Pivot
31-9 12 9 6 15
0 2 4 4 2 -6
0O 3 6 6 4 -5

STEP 4: Cover (or ignore) the row containing the pivot position and cover all rows, if
any, above it. Apply steps 1 -3 to the sub-matrix, which remains. Repeat the process until
there are no more nonzero rows to modify.

With row 1 covered, step 1 shows that column 2 is the next pivot column; for step 2,
we’ll select as a pivot the “top” entry in that column.
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Pivot
3 —JlZ -9 6 15
0 224 4 2 -6

0 -6 6 4 -5
Next pivot column

According to step 3 “All entries in a column below a leading entry are zero”. For this
subtract 3/2 time R, from R3

3 9 12 9 6 15 5
0 2 4 4 2 6 R-R,
0 0 0 0 1 4

When we cover the row containing the second pivot position for step 4, we are left with a
new sub matrix having only one row:

3 9 12 9 6 15
0 2 4 4 2 -6

O 0 0 O 1“4
Pivot

This is the Echelon form of the matrix.
To make it in reduced echelon form we need to do one more step:

STEP 5: Make the leading entry in each nonzero row 1. Make all other entries of that
column to O.

Divide first Row by 3 and 2™ Row by 2

1 3 4 -3 2 5 .
0 1 -2 2 1 3 R . IR
0 0 0 0 1 4

Multiply second row by 3 and then add in first row.

1 0 -2 3 5 -4
0 1 2 2 1 -3 3R, +R,
0 0 0 0 1 4

Subtract row 3 from row 2, and multiply row 3 by 5 and then subtract it from first row
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1 o -2 3 0 -24

0 1 -2 2 0o -7

0 0 0 0 1 4
This is the matrix is in reduced echelon form.

Rz - R3
R, —5R,

Solutions of Linear Systems:

When this algorithm applied to the augmented matrix of the system it gives solution set
of linear system.

Suppose, for example, that the augmented matrix of a linear system has been changed
into the equivalent reduced echelon form

10 51
01 1 4
00 0 O

There are three variables because the augmented matrix has four columns. The associated
system of equations is
X, -5x; =1
X, + X, = 4 (1)
0=0 which means x, is free

The variables x; and X, corresponding to pivot columns in the above matrix are called
basic variables. The other variable, X5 is called a free variable.

Whenever a system is consistent, the solution set can be described explicitly by solving
the reduced system of equations for the basic variables in terms of the free variables. This
operation is possible because the reduced echelon form places each basic variable in one
and only one equation.

In (4), we can solve the first equation for X, and the second for X,. (The third equation is
ignored; it offers no restriction on the variables.)

X, =1+5X%,

X, =4—X, 2

X, is free

By saying that x3 is “free”, we mean that we are free to choose any value for x3. When
X3 = 0, the solution is (1, 4, 0); when x3 = 1, the solution is (6, 3, 1 etc).

Note: The solution in (2) is called a general solution of the system because it gives an
explicit description of all solutions.
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Example 4: Find the general solution of the linear system whose augmented matrix has
1 6 2 -5 -2 -4

been reduced to o 0o 2 -8 -1 3
o o0 o o 1 7

Solution: The matrix is in echelon form, but we want the reduced echelon form
before solving for the basic variables. The symbol “~” before a matrix indicates that the
matrix is row equivalent to the preceding matrix.

1 6 2 -5 -2 4
o 0 2 -8 -1 3
o 0 0 o0 1 7
By R +2R;and R,+R, Weget

1 6 2 -5 0 10
~10 0 2 -8 0 10
o 0 0 0 1 7

By %Rz we get

1 6 2 -5 0 10
~0 0 1 -4 0

0O 0 0 0 1
By R —2R, we get

1 6 3 0 0
~0 0 1 -4

0 O 0 7

The matrix is now in reduced echelon form.
The associated system of linear equations now is

X, +6x, +3x, =0
X;—4X, =5 (6)
X =7

5

The pivot columns of the matrix are 1, 3 and 5, so the basic variables are Xy, X3, and Xs.
The remaining variables, X, and X4, must be free.
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Solving for the basic variables, we obtain the general solution:
-
X1 = -6Xy —3X4
X, 1S free
< X3 =5+ 4xy (7)
X4 1S free
Xs =7

\«
Note that the value of Xs is already fixed by the third equation in system (6).

Exercise:

1. Find the general solution of the linear system whose augmented matrix is
[1 -3 -5 0}
0 1 1 3

2. Find the general solution of the system

X, —2X, — X, +3%X,=0
—2X +4X, +5%, —5%, =3
3X, —6X, —6X; +8x, =2

Find the general solutions of the systems whose augmented matrices are given in
Exercises 3-12

3 1 0 25 . 1 -3 0 -5
' 2 0 36 ' -3 7 0 9
[0 3 6 9 1 3 -3 7
5. 6.
-11 -2 -1 39 41
1 2 -7 1 2 4
7. -1 -1 1 8. -2 -3 -5
2 1 5 2 1 -1

©Virtual University Of Pakistan 46



4-Row Reduction and Echelon Forms VU

10 90 4
2 -4 3
01 3 0-1
9. -6 12 -9 10.
00 0 1 -7
4 -8 6
00 0 01
1 -2 00 7 -3 10 -5 0 83
0 1 0031 01 4 106
11. 12.
0 0 015 4 00 0 0 10
0 0 000 O 00 0 O0 OO

Determine the value(s) of h such that the matrix is the augmented matrix of a consistent
linear system.

1 4 2 1 h 3
13. 14.
3 h -1 2 81
Choose h and k such that the system has (a) no solution, (b) a unique solution, and (c)

many solutions. Give separate answer for each part.

15. X1 +hx, =1 16. X -3x,=1
2X1+3x2 =k 2X1 + hxo =k
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Lecture 5

Vector Equations

This lecture is devoted to connect equations involving vectors to ordinary systems of
equations. The term vector appears in a variety of mathematical and physical contexts,
which we will study later, while studying “Vector Spaces”. Until then, we will use vector
to mean a list of numbers. This simple idea enables us to get to interesting and important
applications as quickly as possible.

Column Vector:

“A matrix with only one column is called column vector or simply a vector™.

2
}, V=[2 3 5] =[3], Wz[w1 W, W, WJT are all
5

3

eg. U=[3 —1]T :[

column vectors or simply vectors.

Vectors in R?:

If Ris the set of all real numbers then the set of all vectors with two entries is denoted

byR>=RxR.
3
For example: the vector U=[3 —1] :{ J eR’®

Here real numbers are appeared as entries in the vectors, and the exponent 2 indicates that
the vectors contain only two entries.

Similarly R® & R* contains all vectors with three and four entries respectively. The
entries of the vectors are always taken from the set of real numbers R. The entries in
vectors are assumed to be the elements of a set, called as Field. It is denoted by F .
Algebra of Vectors:

Equality of vectors in R?:

Two vectors in R? are equal if and only if their corresponding entries are equal.

u, v, ) :
If u= ]Vz{ :|ER then u=viff ju=v,| A |u,=V,
u

4] [4
So # as 4=4 but 6 -3
6| |3
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y

both representing the position of a point with respect to origin.
Addition of Vectors:

X
Note: In fact, vectors { } in R? are nothing but ordered pairs (X, y)of real numbers

Given two vectors u and v in R? their sum is the vector u + v obtained by adding

corresponding entries of the vectors u and v.

u V. [u V u, + V.
For u=| "|,v=| "|eR®*Then u+v=| *|+| *|=| * ! |eR?
u, v, U, v, u, +V,
1 2 1+2 3]
+ = =
For example, 9 5 9.5 3]

Scalar Multiplication of a vector:

Given a vector u and a real number c, the scalar multiple of u by c is the vector cu

obtained by multiplying each entry in u by c.
3 3 15
For example, if u :[ J and c¢c=5 then cu :5{ J { 5}

Notations: The number c in cu is a scalar; it is written in lightface type to distinguish it

from the boldface vector u.

1 2
Example 1: Given u :{ 2}and v:[ 5]find 4u, (-3)v,and4u+ (-3)v

Solution: 4u == F } = {4X1 } = { 4 } (-3)v = (_3){2 } = [_6}
-2 4 x (—2) -8 -5 15
And  4u+(-3)v= { ‘ }{_6} - {_2}
-8 15 7
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) ) ) 3.
Note: Sometimes for our convenience, we write a column vector { in the form

(3, -1). In this case, we use parentheses and a comma to distinguish the vector (3, -1)

from the 1x 2 row matrix [3 -1], written with brackets and no comma.
3 3
Thus 1 #[3 -1] but 1 =(3,-1)

Geometric Descriptions of R?:

Consider a rectangular coordinate system in the plane. Because each point in the plane is

determined by an ordered pair of numbers, we can identify a geometric point (a, b) with

a L
the column vector{b} . So we may regard R? as the set of all points in the plane.

See Figure 1. X2
(2,2)
X1
(-2, -1). (3,-1)
Figure 1 Vectors as points.

Vectors in R%:

Vectors in R® are 3x1 column matrices with three entries. They are represented
geometrically by points in a three-dimensional coordinate space, with arrows from the
origin sometimes included for visual clarity.

Vectors in R"™:
If n is a positive integer, R" (read “r-n”) denotes the collection of all lists (or ordered

n- tuples) of n real numbers, usually written as nx1 column matrices, such as
T
u= [ul u2 ...un]

The vector whose entries are all zero is called the zero vector and is denoted by O.

(The number of entries in O will be clear from the context.)
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Algebraic Properties of R":

For all u, v, w in R" and all scalars c and d:

0] u+v=v+u (Commutative)
@M (u+v)y+w=u+(v+w) (Associative)
(i) u+0=0+u=u (Additive Identity)
(iv) u+(-u)=(-u)+u=0 (Additive Inverse)
where —u denotes (-1)u
(v) c(u+v)=cu+cv (Scalar Distribution over Vector Addition)
(vi) (c+d)u=cu+du (Vector Distribution over Scalar Addition)
(vii) c(du) = (cd)u
(viii)  1lu=u

Linear Combinations: Given vectors vy, Vs, ..., Vp in R" and given scalars cy, ¢, ..., Cp

the vector defined by
Y =CV +CV, +--+CpV,
is called a linear combination of vy, ... , v, using weights c, ..., Cp.
Property (ii) above permits us to omit parentheses when forming such a linear
combination. The weights in a linear combination can be any real numbers, including
zero.

Example:

-1 2
For v, :{ } Vv, = { }  If w=§v1 —lv2 the we say that w is a linear combination of
1 1 27 2

vy and v.
Example: As(3,5,2)=3(1,0,0)+5(0,1,0)+2(0,0,1)
(3,5,2)= 3V, +5V,+ 2V, where V;=(1,0,0), vV,=(0,1,0) v;,=(0,0,1)

So (3,5, 2) is a vector which is linear combination of V,, V,, V,

1 2 7
Example5: Leta =|-2|,a,=/5|,and b=| 4 |
-5 6 -3
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Determine whether b can be generated (or written) as a linear combination of a; and a,.
That is, determine whether weights x; and x; exist such that
Xia;+Xoa,=b (@D)
If the vector equation (1) has a solution, find it.
Solution: Use the definitions of scalar multiplication and vector addition to rewrite the

vector equation

X 2X, 7
= —2X, [+| 95X, |=
—5% 6X, -3

[ X, +2X, 7
= ~2x, +5x, [=| 4 )
| —5x, +6X, -3

X, +2X, =7
= —-2% +5%, =4 (3)
—5X, +6X, =-3

We solve this system by row reducing the augmented matrix of the system as follows:

1 2 7
-2 5 4
-5 6 -3

By R, +2R, ;R; +5R,

1 2 7
0 9 18
~|0 16 32

1 1),
By | —|R,;| — R
y(gj : (16j :
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1 2 7
~0 1 2
01 2

ByR,-R,;R —2R,

s
o o K
o+ o
o N oW

The solution of (3) is x; = 3 and x, = 2. Hence b is a linear combination of a; and a,, with
weights x; = 3 and x; = 2.
Spanning Set:

If vi, . .. , vpare in R", then the set of all linear combinations of vy, . .. , vy is
denoted by Span { vi, . .. , vp } and is called the subset of R" spanned (or generated) by
Vi, ... ,Vp. Thatis, Span {vi, ..., Vp}isthe collection of all vectors that can be written
inthe form  Cvy + Covo + ... + CpVp, With cy, . . ., Cp scalars.

If we want to check whether a vector b is in Span {vi, ... , Vv, } then we will see whether
the vector equation

X1V1 +XaVo + ... + XpVp = b has a solution, or

Equivalently, whether the linear system with augmented matrix [ v, ... ,vp, b] hasa
solution.
Note:
(1) The set Span { vy, . .. , vp} contains every scalar multiple of v,

because cvy = cvy + Ovy + .... + Ov, i.e every cv; can be written as a linear
combination of vy, ... , Vv,

(2) Zero vector=0 e Span{

V1’V2"“Vn} as O can be written as the linear combination of

V,V

1 Var©

-V, that is OV = OFv1+OFv2 +---+0Fvn here for the convenience it is mentioned
that O, is the vector(zero vector) while O is zero scalar (weight of all v,,v,,---v,) and in
particular not to make confusion that O, and 0. are same!

A Geometric Description of Span {v} and Span {u, v}:
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Let v be a nonzero vector in R®. Then Span {v} is the set of all linear combinations of v
or in particular set of scalar multiples of v, and we visualize it as the set of points on the
line in R® through v and 0.

If u and v are nonzero vectors in R®, with v not a multiple of u, then Span {u, v} is the
plane in R?® that contains u, v and 0. In particular, Span {u, v} contains the line in R®
through u and 0 and the line through v and 0.

1 5 -3
Example 6: Leta =|-2|,a,=|-13|,andb=| 8
3 -3 1

Then Span {ay, a2} is a plane through the origin in R%. Is b in that plane?

Solution: First we see the equation x;a; + X,a, = b has a solution?

To answer this, row-reduce the augmented matrix [a; a, b]:

1 5 3
-2 -13 8
3 3 1
By R, +2R,
1 5 3
~0 -3 2
0 18 10
By R, +6R,
1 5 3
~ 10 3 2
0 0 -2

Last row = 0x, = -2 which can not be true for any value of x, e R

= Given system has no solution

~beSpan{a.,a,} and

in geometrical meaning, vector b does not lie in the plane spanned by vectors

a and a,
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Linear Combinations in Applications:

The final example shows how scalar multiples and linear combinations can arise when a
quantity such as “cost” is broken down into several categories. The basic principle for the

example concerns the cost of producing several units of an item when the cost per unit is

number cost B total
of units| |perunit| |cost

Example 7: A Company manufactures two products. For one dollar’s worth of product

known:

B, the company spends $0.45 on materials, $0.25 on labor, and $0.15 on overhead. For
one dollar’s worth of product C, the company spends $0.40 on materials, $0.30 on labor
and $0.15 on overhead.

45 40
Letb=|.25 and c¢=|.30 |, then b and c represent the “costs per dollar of income”
15 15

for the two products.

a) What economic interpretation can be given to the vector 100b?
b) Suppose the company wishes to manufacture x; dollars worth of product B and X,
dollars worth of product C. Give a vector that describes the various costs the

company will have (for materials, labor and overhead).

Solution:
45 45
(@) We have 100b=100{.25|=|25
.15 15

The vector 100b represents a list of the various costs for producing $100 worth of product

B, namely, $45 for materials, $25 for labor, and $15 for overhead.

(b) The costs of manufacturing x; dollars worth of B are given by the vector x;b and the
costs of manufacturing x, dollars worth of C are given by x,c. Hence the total costs

for both products are given by the vector x;b + x.c.
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Vector Equation of a Line:

Let xo be a fixed point on the line and v be a nonzero vector that is parallel to the required
line. Thus, if x is a variable point on the line through X, that is parallel to v, then the

vector X — X is a vector parallel to v as shown in fig below,
JI.'P
x—xa
X
Xg
_:-"'fﬂ‘ v
= X
(b)
_]-’ [
r=zxpt+
X g
— v x =i
- X

So by definition of parallel vectors x— X, =1tv for some scalar t.
t is also called a parameter which varies from —o to +oo. The variable point x traces
out the line, so the line can be represented by the equation
X=Xg = tV -=-m-mmmmemem- (1) (oo <t < +00)
This is a vector equation of the line through X, and parallel to v.
In the special case where xo = 0, the line passes through the origin, it simplifies to
X=1tv (oo <t < 400)

Parametric Equations of a Line in R?:

Let x = (X, y)e R?* be a general point of the line through Xo = (Xo, Yo) € R®> which is
parallel to
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v = (a, b)e R?, then eq. 1 takes the form
(X, y) - (Xo, Yo) =t(a, b) (-0 <t <+o0)
= (X-Xo,Y-Yo)=(ta,th) (—oo<t<+w)
= X=Xo+at, y=yo+bt (—oo<t<-+w)
These are called parametric equations of the linein R” .

Parametric Equations of a Line in R®:

Similarly, if we let x = (x, y, z) € R® be a general point on the line through
Xo = (X0, Yo, Zo) € R® that is parallel to v = (a, b, ¢) € R?, then again eq. 1 takes the form
(X, Y, 2) = (Xo, Yo, Zo) + t(a, b, ) (—o0 <t < +0)
= X=Xptat, y=yo+bt, z=zp+ct (—o<t<+own)

These are the parametric equations of the linein R®

Example 8:

(a) Find a vector equation and parametric equations of the line in R? that passes

through the origin and is parallel to the vector v = (-2, 3).

(b) Find a vector equation and parametric equations of the line in R® that passes
through the point Po(1, 2, —3) and is parallel to the vector v = (4, -5, 1).

(c) Use the vector equation obtained in part (b) to find two points on the line that are
different from Py.

Solution:

@) We know that a vector equation of the line passing through origin is x = tv.
Let x = (x, y) then this equation can be expressed in component form as
x,y)=t(-2,3)
This is the vector equation of the line.
Equating corresponding components on the two sides of this equation yields the

parametric equations X=-2t, y=3t
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(b) The vector equation of the line is x = Xg + tv.
Let x = (X, Y, 2), Here xo = (1, 2, =3) and v = (4, -5, 1), then above equation can
be expressed in component form as
x,y,2)=(1,2,-3)+t(4,-5,1)

Equating corresponding components on the two sides of this equation yields the

parametric equations

X=1+4t y=2-5t z=-3+t

(d) Specific points on a line can be found by substituting numerical values for the

parameter t.

For example, if we take t = 0 in part (b), we obtain the point (x, y, z) = (1, 2, -3),
which is the given point Po.

t = 1 yields the point (5, -3, -2) and

t = -1 yields the point (-3, 7, — 4).

Vector Equation of a Plane:

Let xo be a fixed point on the required plane W and v; and v, be two nonzero vectors that
are parallel to W and are not scalar multiples of one another. If x is any variable point in
the plane W. Suppose vi and v, have their initial points at Xo,, we can create a
parallelogram with adjacent side’s t;v; and tyv, in which x — X is the diagonal given by
the sum

X —Xg =t1vq + tovo

or, equivalently, X =Xo+tivy + vy ---mmmmmmemee e (1)

where t; and t, are parameters vary independently from —oo to + o,

This is a vector equation of the plane through X, and parallel to the vectors v, and v,. In
the special case where xo = 0, then vector equation of the plane passes through the origin
takes the form
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X =tivy + vy (—o0 <t < 400,—00 <1, < +00)

Parametric Equations of a Plane:

Let x = (X, y, ) be a general or variable point in the plane passes through a fixed point
Xo = (Xo, Yo, Zo) and parallel to the vectors v, = (ai, by, €1) and vz = (a, b, ¢2), then the
component form of eq. 1 will be
(X, Y, 2) = (Xo, Yo, Zo) * t1(a1, by, c1) +ta(az, b, C2)

Equating corresponding components, we get

X = Xp +aity + ast;

Y = Yo + bity + bty (—o0 <t, < +00,—00 < t, < +00)

Z=179+Cit; + Coty

These are called the parametric equations for this plane.
Example 9: (Vector and Parametric Equations of Planes)

@) Find vector and parametric equations of the plane that passes through the origin of
R® and is parallel to the vectors vy = (1, -2, 3)and v, = (4, 0, 5).

(b) Find three points in the plane obtained in part (a).
Solution:

@ As vector equation of the plane passing through origin is x = tyvy + tov,.
Let x = (X, Y, z) then this equation can be expressed in component form as
xy,2)=t(1,-2,3)+t,(4,0,5)
This is the vector equation of the plane.
Equating corresponding components, we get
X=t+4t;,, y=-2t1, z=3t1+50
These are the parametric equations of the plane.
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(b) Points in the plane can be obtained by assigning some real values to the
parameters t; and t,:

t;=0andt, =0  produces the point (0, 0, 0)

t;=-2andt; =1 produces the point (2, 4, -1)

tp=%andt, =% produces the point (5/2, -1, 4)

Vector equation of Plane through Three Points:

If X0, X1 and x, are three non collinear points in the required plane. Then obviously the
vectors v = X3 — Xp and v, = X, — Xo are parallel to the plane. So a vector equation of the
plane is

X = Xp + t1(X1 — Xo) + t2(X2 — Xo)
Example: Find vector and parametric equations of the plane that passes through the
points. P(2, — 4, 5), Q (-1, 4, -3) and R(1, 10, -7).
Solution:

Let x = (X, Y, z), and if we take Xo, X1 and X, to be the points P, Q and R respectively, then
X, —X =PQ=(-3,8,-8) and x,—x,=PR=(-114,-12)

So the component form will be
(X,y,2)=(2,-4,5)+t,(-3,8,-8) +1,(-1,14,-12)

This is the required vector equation of the plane.

Equating corresponding components, we get
x=2-3t —t, y=—4+8t +14t, z=5-8t 12t

These are the parametric equations of the required plane.

Question:  How can you tell from here that the points P, Q and R are not collinear?

Finding a VVector Equation from Parametric Equations

Example 11: Find a vector equation of the plane whose parametric equations are
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X=4+5 -t,, y=2-t +8t,, z=t +t,

Solution: First we rewrite the three equations as the single vector equation

(x,y,2)=(4+5t, -t,,2—t +8t,,t +t,)
= (X%Y,2)=(4,2,0)+ (5, -t 1) + (-t,,8t,,t,)
= (X,Y,2)=(4,2,0)+t,(5-11) +t,(-18,1)

This is a vector equation of the plane that passes through the point (4, 2, 0) and is parallel
to the vectors v; = (5, -1, 1) and v, = (-1, 8, 1).

Finding Parametric Equations from a General Equation

Example 12: Find parametric equations of the plane x —y + 2z = 5.

Solution: First we solve the given equation for x in terms of y and z
X=5+y-2z
Now make y and z into parameters, and then express x in terms of these parameters.
Lety=tjandz=t,
Then the parametric equations of the given plane are
X=5+1-2t, y=t1, z=1

Exercises:

1. Provethatu+v=v+uforanyuandvinR".

2. For what value(s) of h will y be in Span {v1, v,, v3} if

1 5 -3 -4
v, =-1], v, =| -4 v;=| 1 |,and y=
-2 —7 0 h
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Determine if b is a linear combination of as, a,, and as.

1 -2 —6 11
3.a4=|0,a,=(3 |,a,=|7 |,b=]-5
1 -2 9

—4 2 3

4. a=|0 [,a,=|3 |,a=(5 |,b=|-7

-2 8 -4 -3

Determine if b is a linear combination of the vectors formed from the columns of the

matrix A.
1 0 2 -5 1 0 5 2
5, A=|-2 5 0/,b=|11 6. A=|-2 1 -6|,b=|-1
2 5 8 -7 0 2 8 6

In exercises 3-6, list seven vectors in Span {vi, v,}. For each vector, show the weights on
vy and v, used to generate the vector and list the three entries of the vector. Give also

geometric description of the Span {vi, v,}.

5 1 —2 1
7 v,=[-1], v,=|1 8 v=[0| v,=|0
3 -5 1 2
2 -3 -3.7 5.8
9. v=| 6| Vv,=-9 10. v,=|-04| v,=/21
—4 6 11.2 53
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1 -5 3

11. Let &, =|3 |,a,=|-8|, b=|-5| . For what value(s) of h is b in the plane spanned
-1 2 h

by a; and a,?
1 -2 h

12. Let v,=|0 |,v,=|1 |,andy=|-3|. For what value(s) of h is y in the plane
-2 7 -5

generated by v; and v,?

2 2 h
13. Let u { J and L} Show that {k} is in Span{u, v} for all h and k.
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Lecture 6

Matrix Equations

A fundamental idea in linear algebra is to view a linear combination of vectors as the
product of a matrix and a vector. The following definition will permit us to rephrase some
of the earlier concepts in new ways.

Definition: If A isan mxn matrix, with columns ay, ay, ... , a, and if x is in R", then the
product of A and x denoted by Ax, is the linear combination of the columns of A using

the corresponding entries in x as weights, that is,

Ax=[a, a, .. a] ! [=xa&+Xa,+..+X,3,
X

n

Note that Ax is defined only if the number of columns of A equals the number of entries

in x.
Example 1
) 4
1 2 -1 1 2 -11 [4 6 -77 [3
a) 3|=4| |+3 +7 = |+ + =
0 5 3 . 0 -5 3 0| |-15| 21| |6
2 -3 4 2 -3 8 21| [-13
b)80M=48+70=32+0=32
-5 2 -5 2 -20 14 -6

Example 2:  For vy, Vo, vz in R™, write the linear combination 3v; — 5v, + 7v3 as a
matrix times a vector.
Solution: Place vy, v, v3 into the columns of a matrix A and place the weights 3, -5,
and 7 into a vector X.

3
That is, v, —5v,+7v; =[v, v, v,]| -5|=Ax

7
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We know how to write a system of linear equations as a vector equation involving a

linear combination of vectors. For example, we know that the system

X 2% - X =4 . . 1 2 -1 4
is equivalent to X | [+ % +X, =
—5X, +3%, =1 0 -5 3 1

Writing the linear combination on the left side as a matrix times a vector, we get

Xl
1 2 -1 4
X, | =
0 5 3 1
X3

Which has the form Ax = b, and we shall call such an equation a matrix equation, to

distinguish it from a vector equation.

Theorem: 1 If A is an mxn matrix, with columns ay, a; ,... , a, and if b is in R™, the
matrix equation Ax = b has the same solution set as the vector equation

X1@1 + Xpa2 + ... + Xp@an=b
which, in turn, has the same solution set as the system of linear equations whose
augmented matrixis [a, a, .. a, b]

n

Existence of Solutions: The equation Ax = b has a solution if and only if b is a linear

combination of the columns of A.

1 3 4 b,
Example3: Let A=|-4 2 —6|andb=|b,|.
-3 -2 -7 b,

Is the equation Ax = b consistent for all possible by, b, bs?

Solution Row reduce the augmented matrix for Ax = b:

4R, +R,,3R +R,

1 3 4 b 1 3 4 b,
4 2 -6 b, |~| 0 14 10 b, +4b
3 -2 -7 b, 0 7 5  b,+3b
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R, — 1 R,
— 2 -
1 2 4 b
4 0 14 10 b+h
0 0 0 b

The third entry in the augmented column is b, —%bz +h,.

The equation Ax = b is not consistent for every b because some choices of b can make

b, —%bz +b, nonzero.

The entries in b must satisfy b, — +-b, + b, = 0

This is the equation of a plane through the origin in R®. The plane is the set of all linear

combinations of the three columns of A. See figure below.

Spran {a),a0,83]}

%3

x]

The equation Ax = b fails to be consistent for all b because the echelon form of A has a
row of zeros. If A had a pivot in all three rows, we would not care about the calculations
in the augmented column because in this case an echelon form of the augmented matrix
could not have arow suchas [0 0 0 1].
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Example 4: Which of the following are linear combinations of

S

6 -8
@ |5 4
(b) 0 0 © 6 0
00 3 8
Solution:

6 -8
(@) { 8}:aA+bB+cC

o 3 )i

| 4a+b -b+2c
| —2a+20+c —2a+3b+4c

= 4Ja+b=6 (1)
-b+2c=-8 2
2at+2b+c=-1 3)
-2a+3b+4c=-8 4

Subtracting (4) from (3), we obtain

-b-3c=7 (5)
Subtracting (5) from (2):

5¢=-15=c=-3

From (2), -b+2(-3)=-8 =>b=2

From (3), -2a+2(2)-3=-1=>a=1

Now we check whether these values satisfy (1).
41)+2=6
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6
It means that { } is the linear combination of A, B and C.

Thus

6 -8
=1A+2B-3C
-1 -8

00
(b) { 0}:aA+bB+cC

0
4 0 1 -1 0 2
=a +b +C
VIR N R

| 4a+b —-b+2c
| 2a+2b+c —2a+3b+4c

= 4da+b=0 1)
-b+2c=0 2
-2a+2b+c=0 (3)
-2a+3b+4c=0 (4)

Subtracting eq. 3 from eq. 4 we get
b+3c=0 (5)

Adding eq. 2 and eq. 5, we get

5c=0 = ¢=0
Putc=0ineq.5 weget b=0
Putb=c=0ineq.3,wegeta=0

= a=b=c=0

00
It means that {O 0} is the linear combination of A, B and C.

0 0
Thus =0A+0B+0C
0 0

6 0
(©) zaA+bB+cC
3 8
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4 0 1 -1 0 2
—a +b +C
AR N P F
_ 4da+b -b+2c
| —2a+20+c —2a+3b+4c

= 4da+b=6 Q)
-b+2c=0 2
-2a+2b+c=3 3)
-2a+3b+4c=8 4
Subtracting (4) from (3), we obtain
-b-3c=-5 (5)

Subtracting (5) from (2):
5c=5=c=1

From (2), -b+2(1)=0=>Db=2

From (3), 2a+2(2)+1=3=>a=1

Now we check whether these values satisfy (1).
4(1)+2=6

6 0
It means that {3 8} is the linear combination of A, B and C.

6 0
Thus =1A+2B +1C
3 8

Theorem 2: Let A be an mxn matrix. Then the following statements are logically
equivalent. That is, for a particular A, either they are all true statements or they are all

false.

(a) For each b in R™, the equation Ax = b has a solution.
(b) The columns of A Span R™.
(c) A has a pivot position in every row.
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This theorem is one of the most useful theorems. It is about a coefficient matrix, not an
augmented matrix. If an augmented matrix [A b] has a pivot position in every row, then

the equation Ax = b may or may not be consistent.

2 3 4 X,
Example 4: Compute Ax, where A=|-1 5 -3|and x=|X,
6 -2 8 X
Solution From the definition,
2 3 4lx 2 3 4
-1 5 B X |[=x|-1+X]| 5 [+X]-3
6 -2 8 |lx 6 —2 8

2X%, 3X, 4x,
=| =X [+| OX, [+|—=3X,
6X | | —2X, 8%,

2%, +3X, +4X,
=| =X, +5X, —3X,
| 6%, —2X, +8X,

Note:
In above example the first entry in the product Ax is a sum of products (sometimes called
a dot product), using the first row of A and the entries in x.
X
That is [2 3 4] %, |=[2% +3X, +4x,]
X3

Examples:
In each part determine whether the given vector span R®

(@ w=(2 2 2),v,=(0,03),
v;=(0,11)
(b) =B 14), v,=(2,-35),
v,=(5,-2,9),v,=(@ 4, -1)
Solufing, =1 2,6), v,= (3, 4, 1),
v;=(4,31),v,=(3,31)
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(@) We have to determine whether arbitrary vectors b= (b, b,, b,) in R® can be
expressed as a linear combination b =kyV, +K,V, +K,V, of the vectors v,,v,,V,

Expressing this in terms of components given by
(b, b,, b)) =k (2,2,2) +k,(0,0,3)+k,(0,1,1)
(b, b,, by) = (2k, + 0k, +0k,, 2k, + Ok, + ks, 2k, +3k, +k;)
2k, + 0k, + 0k, =b,
2k, + 0k, +k; =D,
2k, + 3k, +k; =b,

2 00

A=(2 0 1 has a non zero determinant
2 31

Now

det(A)=—6=0

Therefore v,,v,,v, span R®
(b) The set  S{v,v,,v,,v,}of vectors in R®* spans V=R® if
CV, +C,V, +CV, +C,v, =d,w, +d,W, +d,w, ... @

with

w, =(10,0)
w, =(0,1,0)
w, = (0,0,1)

With our vectors v,,v,,Vv,,v, equation (1) becomes
c,(3L4)+c,(2,-3,5)+¢c,(5,-2,9)+c,(1,4,-1) =d,(1,,0,0)+d,(0,1,0) +d,(0,0,1)
Rearranging the left hand side yields

3c, +2¢, +5¢, +1c, =1d, +0d, +0d,

1c, —3c, —2c, +4c, =0d, +1d, +0d,

4c, +5¢, +9¢, -1c, =0d, +0d, +1d,

32 5 1 100
1 3 -2 4 010
45 9 1001
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1 021 00 1
2

011 -101 1
2

0000 1 3 -2

The reduce row echelon form

1011 O > 3
17 17
011 -10 4 1
17 17
0000 1 % _% Corresponds to the system of equations

5 3
1c. +1c, +1c, = (—)d, +(—)d
, +1¢; +1¢, (17)2 (17)3

-4 1
1c, +1c, +-1c, = (—)d, +(—=)d
, +1¢, s (17)2 (17)3

7 11
0=1d, +(—=)d, + (-=)d
1+ () + ()4,

So this system is inconsistent. The set S does not spans the space V.

Similarly Part C can be solved by the same way as above.

Exercise:
3
1 5 -2 0 ) -7
1. Let A=-3 1 9 -5|x= 0 ,and b=| 9
4 -8 -1 7 0
-4

It can be shown that Ax = b. Use this fact to exhibit b as a specific linear

combination of the columns of A.

2 5 4 -3
Let A:{ },u:{ 1]and v:{5}.VerifyA(u+v): Au +Av.
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2 4 -6 2
3. Solve the equation Ax =b, with A=| 0 1 3 |,b=|5
-3 5 7 -3
-5 3 5
4. Letu=|-3|and A=| 1 1 |.Isuinthe plane in R® spanned by the columns of A?
-6 -2 -8
Why or why not?
8 4 3 5
5.Let u=[2|and A=|0 1 -1|. Isu in the subset of R® spanned by the columns of
3 1 2 0
A? Why or why not?

-3 1
6. Let A:{ 6 2} andb = {El } Show that the equation Ax = b is not consistent for all
o 2

possible b, and describe the set of all b for which Ax = b is consistent.

1 3 -2 -2
0 1 -1 5 - .

7. How many rows of A= 1 2 1 7 contain pivot positions?
1 1 0 -6

In exercises 8 to 13, explain how your calculations justify your answer, and mention an

appropriate theorem.

1 3 -4
8. Do the columns of the matrix A=| 3 2 -6 span R*?

-5 -1 8

1 3 2 2

. 0 1 -1 5 4
9. Do the columns of the matrix A= span R™?
-1 -2 1 7
1 1 0 -6
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0 0 2
10. Do the columns of the matrix A=|0 -5 1 | span R*?
4 6 -3
3 5
11. Do the columns of the matrix A=| 1 1 |span R*?
-2 -8

1 0 1
0 1 0 4
12. Let v, = 1 WV, = 0 WV, = ol Does {vi, V2, v3}span R™?
| 0| -1 -1
- 1 3
13.Letv,=|0 |,v,=|3 |,v,=|-2|. Does { Vi, vy, v3} span R*?
-1 -2

4 1 21|-1 4
14. It can be shownthat | -2 0 8 || 4 |=|18|. Use this fact(and no row operations)
3 5 -6 2 5

4 4 1 2
to find scalars ¢4, Cp, c3 such that {18 |=c,| -2 |+C,| 0 |+cC;| 8
5 3 5 -6
3 1 1
15. Let u=|8|,v=|3|,andw=|1|. It can be show that 2u — 5v — w = 0. Use this
4 1 3
31 1
fact(and no row operations) to solve the equation | 8 3 Lﬂ= 1.
4 1(-7%- |3

Determine if the columns of the matrix span R”.
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\4Y)

7 2

-5 8

5 -3 4 -9

6 10
-7 9

-2 7
2 15

11
-8

10

-9 5
7 =3

-5 12
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Lecture 7

Solution Sets of Linear Systems
Solution Set:
A solution of a linear system is an assignment of values to the variables xi, X,.... , X, such
that each of the equations in the linear system is satisfied. The set of all possible solutions

is called the Solution Set

Homogeneous L inear Systems

A system of linear equations is said to be homogeneous if it can be written in the form
Ax =0, where A is an mxn matrix and 0 is the zero vector in R".

Trivial solution:

A homogeneous system Ax = 0 always has at least one solution, namely, x = 0 (the zero
vector in R"). This zero solution is usually called the trivial solution of the homogeneous
system.

Nontrivial solution:

A solution of a linear system other than trivial is called its nontrivial solution.

i.e the solution of a homogenous equation Ax = 0 such that x # 0 is called nontrivial
solution, that is, a nonzero vector x that satisfies Ax = 0.

Existence and Uniqueness Theorem:

The homogeneous equation Ax = 0 has a nontrivial solution if and only if the equation
has at least one free variable.
Example 1  Find the solution set of the following system

3%, +5X, —4%x, =0
3%, +2X,—4%, =0
6Xx, + X, —8%, =0

Solution.
3 5 -4 X 0
LetA=|3 2 -4|, X=|x,| , b=|0
6 1 -8 X 0

3
The augmented matrix is
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3 5 4 0
3 2 4 0
6 1 -8 O

For solution set, row reduce to reduced echelon form

3 5 4 0
~f0 -3 0 O -1R +R,,—2R, + R,
0 9 0 O
3 5 4 0
~0 -3 0 0 -3R,+R,
0 0 0 O
1 0 4 0
3
~10 -1 0 O 1/3R,,1/3R,,5/3R, +R,
0 0 0 O
1 0 2 0
3
~10 1 0 O (-DR,
o 0 0 O

4
X, —§x3:0
X, =0
0 =0

It is clear that X3 is a free variable, so Ax = 0 has nontrivial solutions (one for each
choice of x3). From above equations we have,

X, :%xg, X, =0, with X3 free.

As a vector, the general solution of Ax = 0 is given by
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4 4 4

_X3 J— J—

X 3 3 3
X=X [=| 0 |=%X|0|=xv, where v=|0
X, X, 1 1

This shows that every solution of Ax = 0 in this case is a scalar multiple of v (it means
that v generate or spans the whole general solution).The trivial solution is obtained by
choosing x; = 0.

Geometric Interpretation:

Geometrically, the solution set is a line through 0 in R®, as given in the Figure below

X3

X2

O\

Note: A nontrivial solution x can have some zero entries so long as not all of its entries
are zero.

Example 2:
Solve the following system

10x, —3x, —2X, =0 (1)

Solution: We solve for the basic variable x; in terms of the free variables.
Dividing eq. 1 by 10 and solve for x

X1 = 0.3%x, + 0.2x3 where X, and x; free variables.

As a vector, the general solution is
X, 0.3x, +0.2x, 0.3x, 0.2x,

X=X, |= X, = X, [+| O
X

X 0 Xy

3 3

©Virtual University Of Pakistan 78



7-Solution Sets of Linear System vuU

0.3 [0.2
=X,| 1 [+X] O (2
| 1
u v

This calculation shows that every solution of (1) is a linear combination of the vector u, v
shown in (2). That is, the solution set is Span {u, v}

Geometric Interpretation:

Since neither u nor v is a scalar multiple of the other so these are not parallel, the solution
set is a plane through the origin, see Figure below

X3
X3

X2
X1

Note:

Above examples illustrate the fact that the solution set of a homogeneous equation
Ax = 0can be expressed explicitly as Span {vi, Vo, ..., vy} for suitable vectors
Vi, Vo, ..., Vp(because solution sets can be written in the form of linear combination of
these vectors). If the only solution is the zero-vector then the solution set is Span {0}.

Example 3 (For Practice) Find the solution set of the following homogenous system
X, +3X, + X, =0
—4x -9%, +2%,=0

—3X, —6x,=0
Solution:
1 3 1 X 0
Let A=| -4 -9 2|, X=X/, b=|0
0 -3 -6 X, 0

The augmented matrix is
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-4 -9 2 0
0 -3 -6 0
1 3 0
{O 3 6 0 4R +R,,
0 3 6 0
1 3 1 0
~10 3 6 0 R, +R,
0 0 0O
1 -5 0
~1 0 1 2 0 %RZ , (3R, +R,
0 0 0
SO
X, —5x,=0
X, +2%, =0 N
0=0

From above results, it is clear that xs is a free variable, so Ax = 0 has nontrivial solutions
(one for each choice of x3).
From above equations we have,

X, =5X;, X, =—2X,;, With X3 a free variable.
As a vector, the general solution of Ax = 0 is given by

X 5X, 5 5
X=X, [=| =2%X; [=%| =2 |=XV, Wwhere v=|-2
X, X, 1 1

Parametric Vector Form of the solution:

Whenever a solution set is described explicitly with vectors, we say that the solution is in
parametric vector form:

The equation

X=su+tv (s,tinR)
is called a parametric vector equation of the plane. It is written in this form to
emphasize that the parameters vary over all real numbers.

Similarly, the equation X = x3v (with x3 free), or x = tv (with t in R), is a parametric
vector equation of a line.
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Solutions of Non-homogeneous Systems:

When a non-homogeneous linear system has many solutions, the general solution can be
written in parametric vector form as one vector plus an arbitrary linear combination of
vectors that satisfy the corresponding homogeneous system.

To clear this concept consider the following examples,

Example: 5. Describe all solutions of Ax = b, where

3 5 4 7
A=-3 -2 4| and b=|-1
6 1 -8 -4

Solution
Row operations on [A b] produce

'3 5 4 7
-3 2 4 -1
6 1 -8 —4
(3 5 -4 7
~l0 3 0 6 R +R,,—2R +R,
0 -9 0 -18
3 -4 7
~l0 1 0 2 3R2+R3,%R2
0 0 O
1 0 A
3
~l0 1 0 2 —5R2+R1,%R1
0 0 0 ©

X, —gxsz—l
OR X, =2
0 =0

Thus x, = —1+%x3, X, =2, and xs is free.
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As a vector, the general solution of Ax = b has the form

1 4 4 4]

w] | 7R [ 0] [ |3
X=X, |= 2 =2 |+ 0 |=|2|+x]0
Xy X, 0 X, 0 1

p v

The equation x = p + X3V, or, writing t as a general parameter,
X=p+tv (tinR) 3)
Note:
We know that the solution set of this question when Ax = 0 (example 1) has the
parametric vector equation
X =tv (tinR) 4)
With the same v that appears in equation (3) in above example.

Thus the solutions of Ax = b are obtained by adding the vector p to the solutions of
Ax = 0. The vector p itself is just one particular solution of Ax = b (correspondingtot=0

in (3)).

The following theorem gives the precise statement.

Theorem:

Suppose the equation Ax = b is consistent for some given b, and let p be a solution.
Then the solution set of Ax = b is the set of all vectors of the form

w = p + v, where vy is any solution of the homogeneous equation Ax = 0.

Example 6: (For pratice)

X\ +3X,+ % =1
—4X —9X, +2X, =-1

—3X, —6X, =—3
Solution:
1 3 1 X, 1
Let A=| -4 -9 2|, X=[x%| b=l
0 -3 -6 X, -3
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The augmented matrix is
1 3 1 1
-4 -9 -1
0 -3 -6 -3
1 3 1 1
~10 3 6 3 4R +R,,
' 0 3 6 -3
(1 3 1 1]
~10 3 6 3 R, +R,
0 0 0 0
1 3 1 1
~10 1 2 1 1 R,
0 0 0 0] 3
1 -5 -2
~10 1 2 1 (-3)R, +R,
0 0 0
SO
X, —5%=-2
X, +2%X, = 1
0=0
Thus x, =—-2+5%,, X, =1-2x,, and X3 is free.
As a vector, the general solution of Ax = b has the form
X, —2+5X, -2 oX,
X=X |=] 1=-2% |=| 1 |+]| -2 |=| 1 |[+X|-2
X, X, 0 X,
So we can write solution set in parametric vector form as
X= P+ XV
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Steps of Writing a Solution Set (of a Consistent System)
in a Parametric Vector Form

Step 1:
Row reduces the augmented matrix to reduced echelon form.

Step 2:
Express each basic variable in terms of any free variables appearing in an
equation.

Step 3:
Write a typical solution x as a vector whose entries depend on the free variables
if any.

Step 4:
Decompose x into a linear combination of vectors (with numeric entries) using
the free variables as parameters.

Exercise:

Determine if the system has a nontrivial solution. Try to use as few row operations as
possible.

1. X1—=5X+9%x3=0 2. 3X1+6Xo—4X3—X%X4=0
-X1+4X, —3%3=0 -5X1 +8x3+3x4=0
2X1—8Xo+9x3=0 8X1—Xo +7x4=0

3.5X1 =Xo+3x3=0
4, — 3%, + TX3=0

Write the solution set of the given homogeneous system in parametric vector form.

4. X1—3X—2%3=0 5. X1+ 2X, —7X3=0
Xo—X3=0 -2X1—3X2+9x3=0
“2X1+ 3Xo + TX3=0 —2X, + 103 =0

In exercises 6-8, describe all solutions of Ax = 0 in parametric vector form where A is
row equivalent to the matrix shown.

1 5020 4 160 8 -1 -2
|00 010 -3 Sjo01 34 6
0o 0 001 5 o000 0 1
0 0 000 O 000 0 0 O
8.1 -5 0 4]
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9. Describe the solution set in R® of x, — 4x, + 3x3 = 0, compare it with the solution set of
X1—4X, + 3X3=7.

10. Find the parametric equation of the line through a parallel to b.

SR

11. Find a parametric eguation of the line M through p and g.

SHEEH

5 10
12. Given A=| -8 -16 |, find one nontrivial solution of Ax = 0 by inspection.
|7 14
1 3
13. Given A=| 2 6 |, find one nontrivial solution of Ax = 0 by inspection.
39
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Lecture 8

Linear Independence

Definition:

An indexed set of vectors {vi, Vo, ... , Vp} in R" is said to be linearly
independent if the vector equation x,v, + X,v, +---+ X v, =0 has only the trivial solution.
The set {vi, vo, ..., Vp} is said to be linearly dependent if there exist weights cy, ...., Cp,
not all zero, such that ¢\, +¢c,v, +---+c,v, =0 (1)

Equation (1) is called a linear dependence relation among v ,..., vy, when the weights
are not all zero.

Example 1:
1 4 2
Letv,={2|, v,=|5]|, v;=|1
3 6 0

(a) Determine whether the set of vectors {vi, v, v3} is linearly independent or not.
(b) If possible, find a linear dependence relation among vy, vz, Va.

Solution:

(a) Row operations on the associated augmented matrix show that

-3 -3 0 (-2)R,+R,, (-3)R, +R,

3 -3 0| R,+R, 2

Clearly, x; and x; are basic variables and xs is free. Each nonzero value of x5 determines
a nontrivial solution.
Hence vy, vy, v3 are linearly dependent (and not linearly independent).

(b) To find a linear dependence relation among vi, Vv, va, completely row reduce the
augmented matrix and write the new system:
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1 420
0110 _—1R2
0000 3
1 -2 0
~ 1 1 0| R-4R,
0 0
X, —2%, =0
= X, +X% =0
0 =0

Thus X1 =2Xs3, X, =-X3, and Xxs is free.

Choose any nonzero value for xs, say, X3 = 5, then x; = 10, and x, = -5.
Substitute these values into XV, + X,V, + X,v, =0

= 10v;-5v,+5v3=0
This is one (out of infinitely many) possible linear dependence relation among vi, vz, Vs.

Example (for practice):

Check whether the vectors are linearly dependent or linearly independent

v, =(3,-1) v, =(-2,2)
Solution:

Consider two constants C, andC, . Suppose
6 (3.-1)+ ¢ (-2:2)=0

(3¢ - 26,6 +2¢,)=(0,0)
Now, set each of the components equal to zero to arrive at the following system of
equations.
3¢,—2¢,=0

-6 +2¢, =0
Solving this system gives to following solution,
¢, =0 =0

The trivial solution is the only solution and so these two vectors are linearly independent.

©Virtual University Of Pakistan 87



8-Linear Independence VU

Linear Independence of Matrix Columns:
Suppose that we begin with a matrix A:[a1 an] instead of a set of vectors. The

matrix equation Ax = 0 can be written as x,a, + X,a, +---+X.a, =0

Each linear dependence relation among the columns of A corresponds to a nontrivial
solution of Ax = 0.

Thus we have the following important fact.

The columns of a matrix A are linearly independent if and only if the equation
AX=0 has only the trivial solution.

01 4
Example 2: Determine whether the columns of A=|1 2 -1| are linearly
58 0
independent.
Solution. To study Ax = 0 row reduce the augmented matrix:
[0 1 4 O]
1 2 -10
58 0 0
1 2 -1 0]
~101 4 0 R,
_5 8 _
1 2 -1 0
~10 1 4 0 (-5)R, +R,
0 -2 5 0
(1 2 -1 0
~10 1 4 0] (2R, +R,
00 130

At this point, it is clear that there are three basic variables and no free variables. So the
equation Ax = 0 has only the trivial solution, and the columns of A are linearly
independent.

Sets of One or Two Vectors:

A set containing only one vector (say, v) is linearly
independent if and only if v is not the zero vector. This is because the vector equation
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x1v = 0 has only the trivial solution whenv 0. The zero vector is linearly dependent
because x;0 = 0 has many nontrivial solutions.

Example 3: Determine if the following sets of vectors are linearly independent.

Solution:

a) Notice that v, is a multiple of v1, namely, v, = 2v;.
Hence —2v; + v, = 0, which shows that {v, v,} is linearly dependent.

b) vi and v are certainly not multiples of one another. Could they be linearly dependent?
Suppose ¢ and d satisfy cv, + dv, =0

If ¢ =0, then we can solve for v; in terms of v,, namely, v, = (-d/c) v,. This result is

impossible because v; is not a multiple of v,. So ¢ must be zero. Similarly, d must also
be zero.
Thus {v1, v,} is a linearly independent set.

Note: A set of two vectors {vi, v2} is linearly dependent if and only if one of the vectors
is a multiple of the other.

In geometric terms, two vectors are linearly dependent if and only if they lie on the same
line through the origin. Figure 1 shows the vectors from Example 3.

X2

(6,2)

(3,1
X1
Linearly dependent

X2

3, 2) (6,2)

X1
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Figure 1 Linearly independent

Sets of Two or More Vectors:

Theorem (Characterization of Linearly dependent Sets):
An indexed set s ={v,,v,,---,v,} of two or more vectors is linearly dependent if and only

if at least one of the vectors in S is a linear combination of the others. In fact, if S is
linearly dependent, andv 0, then some v; (with j>1) is a linear combination of the

preceding vectors, v,,---,V, ;.

Proof:
If some v; in S equals a linear combination of the other vectors, then

v; can be subtracted from both sides of the equation, producing a linear dependence
relation with a nonzero weight (-1) on v, .

For instance, if vi = Covo + C3vs, then 0 = (=1)vq + Cavp +C3v3 + Ovy + ... + Ov,.
Thus S is linearly dependent.

Conversely, suppose S is linearly dependent. If vy is zero, then it is a (trivial) linear
combination of the other vectors in S.

If v=0 and there exist weights ci, ... , ¢y, not all zero(because vectors are linearly
dependent), such that

CiVi + CoVo +...+ Cpvp =0
Let j be the largest subscript for whichc; # 0. If j =1, then c,v1 = 0, which is
impossible becausev; # 0.

So j>1,and ¢V, +---+CVv;+0v;,;+---+0v, =0

CjVj=—CV, —CpV, ==+ —C_V,

Note: This theorem does not say that every vector in a linearly dependent set is a linear
combination of the preceding vectors. A vector in a linearly dependent set may fail to be
a linear combination of the other vectors.
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3 1
Example4: Letu=|1|and v=|6 |.Describe the set spanned by u and v, and explain
0 0

why a vector w is in Span {u, v} if and only if {u, v, w} is linearly dependent.
Solution:

The vectors u and v are linearly independent because neither vector is a multiple
of the other, nor so they span a plane in R®. In fact, Span {u, v} is the xix.-plane
(with x3 = 0). If w is a linear combination of u and v, then {u, v, w} is linearly dependent.
Conversely, suppose that {u, v, w} is linearly dependent.

Some vector in {u, v, w} is a linear combination of the preceding vectors (sinceu=0).
That vector must be w, since v is not a multiple of u. So w is in Span {u, v}

X3

AN

X1 W

X2

Linearly dependent w in Span {u, v}.

X3
w

e

Linearly independent w not in Span {u, v}

Figure 2: Linear dependence in R.

This example generalizes to any set {u, v, w} in R® with u and v linearly independent. The
set {u, v, w} will be linearly dependent if and only if w is in the plane spanned by u and v.

Theorem:
If a set contains more vectors than there are entries in each vector, then the set
is linearly dependent. That is, any set {vi, Vy, ..., Vp} in R" is linearly dependent if p > n.

©Virtual University Of Pakistan 91



8-Linear Independence VU

2 4 -2
Example 5: The vectors [J { J, { 5 } are linearly dependent, because there are

three vectors in the set and there are only two entries in each vector.

Notice, however, that none of the vectors is a multiple of one of the other vectors. See
Figure 4.

X2

(=2.2)

(2,1)

X1

(41 _1)

Figure 4 A linearly dependent set in R?

Theorem:

If asetS={vy, Vy ..., Vp}inR"contains the zero vector, then the set is linearly
dependent.

Proof:

By renumbering the vectors, we may suppose that v; = 0.
Then (1)vyi+0v, + ... + 0vp, = 0 shows that S is linearly dependent( because in this
relation coefficient of v, is non zero).

Example 6. Determine by inspection if the given set is linearly dependent.

2 3
1 2 4 2 0 4 6
a lol, (1], (1] b 3], (o], c e
6 -9
6 9 8 5 0
10 15
Solution:

a) The set contains four vectors that each has only three entries. So the set is linearly
dependent by the Theorem above.

b) The same theorem does not apply here because the number of vectors does not exceed
the number of entries in each vector. Since the zero vector is in the set, the set is
linearly dependent by the next theorem.
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c) As we compare corresponding entries of the two vectors, the second vector seems to
be —3/2 times the first vector. This relation holds for the first three pairs of entries, but
fails for the fourth pair. Thus neither of the vectors is a multiple of the other, and
hence they are linearly independent.

Exercise:
3 —6 0 3
1. Letu=| 2 |,v=| 1 |,w=|-5|,and z=| 7
-4 7 2 -5

(1) Are the sets {u, v}, {u, w}, {u, z}, {v, w}, {v, z}, and {w, z} each linearly
independent? Why or why not?
(it) Does the answer to Problem (i) imply that {u, v, w, z} is linearly independent?
(iii) To determine if {u, v, w, z} is linearly dependent, is it wise to check if, say, w is a
linear combination of u, v and z?
(iv) 1s{u, v, w, z} linear dependent?

Decide if the vectors are linearly independent. Give a reason for each answer.

3||-3||6 1 3|10
2.10,|2 |,|4 3.13 |,|-5,|5
0|13 0 -2|1|6 —6

Determine if the columns of the given matrix form a linearly dependent set.

- i 4
1 3 =20 3 3
1 -7 7
4.3 10 -7 1 5.
1 3 =2
5 5 3 7
- 0 2 -6
1 1 0 4 1 -1 -3 0
-1 0 3 -1 0 1 5 4
6. 7.
0 2 1 1 -1 2 8 5
1 0 -1 3 '3 -1 1 3

For what values of h is vz in span {vi, v.} and for what values of h is {v, vy, v3} linearly
dependent?

1 —2 1 1 3 —2
8. v,={3 [\V,=|-6]|,v;=|2 9.v,=[3|,v,=]| 9 |,v,=| -6
-2 4 h 3 -1 h
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Find the value(s) of h for which the vectors are linearly dependent.

1 2| -1 1 -3/ |4
10. |3 |,| 4,1 11.|-5|,| 8 |,|h
=3({1]]|h -2||6||-8

Determine by inspection whether the vectors are linearly independent. Give reasons for
your answers.

o 2 61|10
{IqIH
12. , , , 13.|-5(,|5 |,|0
51111141 |-6
- - - 1 3 0
6 T
14.12 |,|1
8|2
2 3 5
- 1 -
15. Given A= 4l observe that the third column is the sum of the first two
1 0 1

columns. Find a nontrivial solution of Ax = 0 without performing row operations.

Each statement in exercises 16-18 is either true(in all cases) or false(for at least one
example). If false, construct a specific example to show that the statement is not always
true. If true, give a justification.

16. If vy, ..., vsare in R* and vs = 2v; + v, then {vi, Vo, v, V4 } is linearly dependent.

17. If vy and v, are in R* and v is not a scalar multiple of v, then {v1, v2} is linearly
independent.

18.. If vy, ..., vs are in R* and{vi, v», v} is linearly dependent, then {vi, Vo, V3, Va} is
also linearly dependent.

©Virtual University Of Pakistan 94



8-Linear Independence VU

8 -3 0 -7 2
-9 4 5 11 -7 .
19. Use as many columns of A= as possible to construct a
6 -2 2 -4 4
5 -1 7 0 10

matrix B with the property that equation Bx = 0 has only the trivial solution. Solve Bx =
0 to verify your work.
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Lecture 9

Linear Transformations

Outlines of the Lecture:

e Matrix Equation
e Transformation, Examples, Matrix as Transformations
e Linear Transformation, Examples, Some Properties

Matrix Equation:

An equation Ax = b is called a matrix equation in which a matrix A acts on a vector x by
multiplication to produce a new vector called b.

For instance, the equations

A b
and
1
4 -3 1 34| [o
{2 0 5 1} -1 {o}
3
A u o]

oo

Solution of Matrix equation:

Solution of the Ax = b consists of those vectors x in the domain that are transformed into
the vector b in range.

Matrix equation Ax = b is an important example of transformation we would see later in
the lecture.

Transformation or Function or Mapping:
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A transformation (or function or mapping) T from R " to R ™ is a rule that assigns to
each vector x in R" an image vector T(x) in R™.

T:R" > RT"

The set R " is called the domain of T, and R ™ is called the co-domain of T. For x in R"
the set of all images T(x) is called the range of T.

Example 1: Consider a mapping T:R*>—R® defined by T(x,y)=(-x,y). This
transformation is a reflection about y-axis in xy plane.
Here T(1,2) =(-1,2). T has transformed vector (1,2) into another vector (-1,2)

A
y
(=X, YY) Sommmmmmmmm oo (x,y)
» X
1 -3 ,
Example2: Let A=| 3 5|, uzu, ool 2| ccla|
-1 7 -5

and define a transformation T : R> — R® by T(x) = AX, so that

1 -3 X, —3X,

T(x)=Ax=3 5 [;ﬂ: 3X, +5X,
-1 7N | X+ X,

a) Find T (u), the image of u under the transformation T.
b) Find an x in R* whose image under T is b.

c) Is there more than one x whose image under T is b?
d) Determine if c is in the range of the transformation T.
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Solution: (a)
1 -3
2
Tu)=Au=| 3 5 LJ: 1
-1 7 -9
5
Here Tu=|1
-9
5
Here the matrix transformation has transformed u:{_ﬂ into another vector | 1
-9

(b) We have to find an x such that T (x) =b or Ax=b

1 -3 3
ie |3 5 {Xﬂ: 2 (1)
XZ
107 5

Now row reduced augmented matrix will be:

1 -3 3
3 5 2|-3R+R, R+R,
-1 7 -5
1 -3 3 .
- 8 1: :Z TR AR R
1 -3 3
~l0 1 -5|3R,+R
0 0 O
1 0 15
~10 1 -5
00 0

15
Hence x; = 1.5, x,=-0.5,and x :[ 5}.

The image of this x under T is the given vector b.

©Virtual University Of Pakistan



9-Linear Transformations VU

(c)  From (2) it is clear that equation
(1) has a unique solution. So there is exactly one x whose image is b.

(d)  The vector c is in the range of T if ¢ is the image of some x in R?, that is, if
c =T (x) for some x. This is just another way of asking if the system Ax = c is

consistent. To find the answer, we will row reduce the augmented matrix:

1 -3 3

3 5 2[-3R+R,R+R,

-1 7 5

(1 -3 3]

~10 14 -7 %RS,Rn

0 4 8]

3 .

~10 1 ~14R, +R,

0 14 -7

1 -3 3

~/0 1 2

0 0 -35
x—3=3
Ox +%, =2

Ox +0x, =—35=0=35hut 035
Hence the system is inconsistent. So c is not in the range of T.

So from above example we can view a transformation in the form of a matrix. We’ll
see that a transformation T : R" — R™ can be transformed into a matrix of order
mxn and every matrix of order mxn can be viewed as a linear transformation.

The next two matrix transformations can be viewed geometrically. They reinforce the
dynamic view of a matrix as something that transforms vectors into other vectors.

100
Example3: If A=[0 1 0/, then the transformation x — AX projects points in R
0 0O
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X, 1 0 0fx X,
onto the x x, —coordinate plane because X, >0 1 0f|x,|=]x,
Xq 0 0 Of]x 0
3
[ ]
° (4 X2

X1

A projection transformation

1 3
Example 4: Let A= {O J., the transformation T : R* — R? defined by T (x) = Ax is

called a shear transformation.

0 1 3|0] |6
The image of the point u = is T(u)= =1
2 0 1]/2] [2

o3 1 2]

Here T deforms the square as if the top of the square were pushed to the right while the
base is held fixed. Shear transformations appear in physics, geology and crystallography.
X2 X2

X1 X1

A shear transformation
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Linear Transformations:

We know that if A is mxn matrix, then the transformation x — Ax has the properties
A(u+V) = Au+ Av and A(cu) =cAu for all u, vin R" and all scalars c.

These properties for a transformation identify the most important class of transformations
in linear algebra.

Definition: A transformation (or mapping) T is linear if:

1. T(u+v)=T(u)+ T(v) forall u,vinthe domain of T;
2. T(cu)=cT(u) forall uandall scalars c.

Example 5: Every matrix transformation is a linear transformation.
Example 6: Let L:R® — R? be defined by L(x,y,2)=(x,Y).

we let u=(x,y,,z) and v=(X,,Y,,2,).

L(u+v)=L((X, Y1, 2) + (%5, Y51 2,))
= I—(X1+X2’ i+ Yo+ Zz)

:(X1+X2’y1+y2)
= (X11 yl) + (X21 yz) =L(u)+L(v)

Also, if k is a real number, then
L (ku) = L(kx;, ky,, kz,) = (kx;, ky;) = kL(u)
Hence L is a linear transformation, which is called a projection. The image of the vector

(or point) (3, 5, 7) is the vector (or point) (3, 5). See figure below.
ZA

(3.5.7)

3, 5)
x/
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Geometrically the image under L of a vector (a, b, ¢) in R¥is (a, b) in R? can be found by
drawing a line through the end point P(a, b, ) of u and perpendicular to R?, the xy-plane.
The intersection Q(a, b)of this line with the xy-plane will give the image under L. See
figure below

Q(a, b)
=L(u)

v

(a, b)
Example 7: Let L:R — R be defined by L(x) = x
Letxandyin R and

L(X+Y)=(X+y)? =x*+y>+2xy = X° + y> = L(X) + L(y)
= L(x+y)=L(X)+L(y)

So we conclude that the function L is not a linear transformation.

Linear transformations preserve the operations of vector addition and scalar
multiplication

Properties:

If T is a linear transformation, then
1. T0)=0
2. T(cu+dv) =cT(u) +dT(v)
3. T(cvp + ...+ Cpr) =ciT(vy) + ... + CpT(Vp)

for all vectors u, v in the domain of T and all scalars c, d.
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Proof:

1. By the definition of Linear Transformation we have T(cu) =cT(u) for all uand all
scalars c. Put c=0 we’ll get T(Ou)=0T(u) This implies T(0) =0

2. Just apply the definition of linear transformation. i. e
T(cu +dv) = T(cu) + T(dv) =cT(u) + dT(v)

Property (3) follows from (ii), because T(0) = T (Ou) =0T (u) = 0.
Property (4) requires both (i) and (ii):

OBSERVATION: Observe that if a transformation satisfies property 2 for all u, v and c,
d, it must be linear  (Take ¢ = d = 1 for preservation of addition, and take d = 0)

3. Generalizing Property 2 we’ll get 3

T(Cava + ...+ CpVp) = C1T(ve) + ... +CoT(Vp)

Applications in Engineering:

In engineering and physics, property 3 is referred to as a superposition principle.

Think of vy, ..., v, as signals that go into a system or process and T(v1), ..., T(vp) as the
responses of that system to the signals. The system satisfies the superposition principle if

whenever an input is expressed as a linear combination of such signals, the system’s
response is the same linear combination of the responses to the individual signals

Example 8: Given a scalar r, define T:R — R by
T (X) = x+1.
T is not a linear transformation (why!) because T (0) = 0 (by property 3)

Example 9: Given ascalar r, defineT : R> - R* by T (X) = rx.
T is called a contraction when 0<r <1
and a dilation when r >1.
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Let r = 3 and show that T is a linear transformation.
Solution: Letu, v be in R?and let ¢, d be scalars, then
T (cu +dv) =3 (cu + dv) Definition of T
= 3cu + 3dv
= (3u) +d(3v) Vector arithmetic
=T (u) +dT (v)
Thus T is a linear transformation because it satisfies (4).
Example 10: Define a linear transformation T : R* — R® by
0 -1 —X
1 0| x, X,
. i 4 2 6]
Find the images under T of u = L} V= LJ and u+v= 4l
0 -1][4] [-1 0 -1][2] [-3
Solution: T()= = , T(v)= =
1 0]J|1] |4 1 0][3] [2
0 -1][6 —4
Tu+v)= =
1 04 6
In above example T rotates u, v and u + v counterclockwise through 90°.
In fact, T transforms the entire parallelogram determined by u and v into the one
determined by T (u) and T (v)
Example 11: Let L: R*—R? be a linear transformation for which we know that
L (1,0,0)=(2,-1),
L(0,1,0)=(,1),and
L (0,0,1)=(-1, 2).
Then find L (-3, 4, 2).
Solution: Since (-3, 4, 2) = -3i + 4j + 2Kk,
L(-3,4,2) = L(-3i+4j+2k)=-3L(i)+4L())+2L(k)
=-3(2,-1)+4(3,1)+2(-1,2) = (4,11)
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Exercise

1. Suppose that T : R® — R? and T(x) = Ax for some matrix A and each x in R>. How
many rows and columns does A have?

1 0
2. Let A= {O J . Give a geometric description of the transformation x — AX.

3. The line segment from 0 to a vector u is the set of points of the form tu, where
0<t<1. Show that a linear transformation T maps this segment into the segment
between 0 and T(u).

2 00 1 5
4. Let A=|0 2 O|,u=| 0 |,and|-1|. Define T:R*>R3by T (x) = Ax. Find T (u)
0 0 2 -3 4

and T (v).

In exercises 5 and 6, with T defined by T (x) = Ax, find an x whose image under T is b,
and determine if x is unique.

1 0 3 1
1 0 -1 0
0 1 -4 -5
5A=3 1 -5|,b=|-5 6. b=
3 2 1 -7
-4 2 1 —6
-2 -1 -2 3

Find all x in R*that are mapped into the zero vector by the transformation x — Ax.

1 2 -7 5
1 3 4 3
01 40
7. A= 8./0 1 3 -2
1 0 1 6
376 -5
2 -1 6 8
1
9. Let b=|-1]| and let A be the matrix in exercise 8. Is b in the range of the linear
7

transformation x — Ax?
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(62 BN{e]

10. Let b= N and let A be the matrix in exercise 7. Is b in the range of the linear

-9
transformation x — Ax?

Let T (x) = Ax for x in R%
(a) On arectangular coordinate system, plot the vectors u, v, T (u) and T (V).
(b) Give a geometric description of what T does to a vector x in R®.

S AT TN [ e

13. Let T: R >R? be a linear transformation that maps
1 2] 3 1
u= [5} into {0 and mapsv = L} into{ 4}. Use the fact that T is linear find the images

under T of 2u, 3v, and 2u + 3v.

1
14. Let e = [0

0 3 —2
e, =L},yl =[_5]and Y, :{7 } Let T: R>>R?be a linear

7
transformation that maps e; into y; and maps e into y,. Find the images of {6} and {Xl }
X2

—7 3
15. Let x = {Xl },vl = L }and v, :{ 8}' Let T: R*—R? be a linear transformation that
X, -

maps X into xv, + x,v, . Find a matrix A such that T (x) is Ax for each x.
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Lecture 10

The Matrix of a Linear Transformation

Outlines of the Lecture:

e Matrix of a Linear Transformation.
e Examples, Geometry of Transformation, Reflection and Rotation
e Existence and Uniqueness of solution of T(x)=0

In the last lecture we discussed that every linear transformation from R" to R™ is actually
a matrix transformation x — AXx, where A is a matrix of order mxn. First see an example

10 1 0
Example 1: The columns of 1, :{0 J are e, = {O} ande, =L}.

Suppose T is a linear transformation from R? into R® such that

5 -3
T(e)=|-7| and T(e,)=| 8
2 0

with no additional information, find a formula for the image of an arbitrary x in R®.

: X, 1 0
Solution: Letx= " =X 0 +X, L = X8 + X,&,

Since T is a linear transformation, T (X) =xT (e,)+ X, T (e,)

5 -3 5%, —3X,
TX) =% | =7 |[+X%,| 8 |=]| -7x +8X%,
2 0 2% +0
5%, —3X,
Hence T(x)=|-7x, +8X,
2x,+0

Theorem: Let T:R" — R™ be a linear transformation. Then there exists a unique matrix
A such that T(x) = Ax forall x in R"
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In fact, A is the mxn matrix whose jth column is the vector T (ej), where ¢, is the jth
column of the identity matrix in R".

A=[T(e) ... T(e)]
Proof: Write
X, X, 0 0 1 0
| [0] |x 0 1 0
X= e I e R I e T R P R
x| 0] |0 X, 0 0 1
X
X2
=Xg+txe =g .og]. " [=[e . X
X

Since T is Linear, So

T(X)=T(xe +...+x,8,)=xT(e)+...+X,T(e,)

X
=[T) .. T()] : |=Ax (1)
X

n

The matrix A in (1) is called the standard matrix for the linear transformation T. We
know that every linear transformation from R" to R™ is a matrix transformation and vice
versa.

The term linear transformation focuses on a property of a mapping, while matrix
transformation describes how such a mapping is implemented, as the next three examples
illustrate.

Example 2: Find the standard matrix A for the dilation transformation T (x) = 3x,
xeR?.

Solution: Write
T(e)=3e = {3} and T(e,)=3e, = {O}

0 3
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X X+Yy
Example 3: Let L:R® — R?is the linear operator defined by L| |y | [=|y-2|.
z X+ 2

Find the standard matrix representing L and verify L (x) = Ax.

Solution:
The standard matrix A representing L is the 3 x 3 matrix whose columns are L (ej), L
(e2), and L (e3) respectively. Thus

1 1+0 1
L(e)=L||0||=|0-0|=|0|=col,(A)
0 1+0 1
[0]) [0+1] [1
L(e,)=L||1||=]|1-0 |=|1 |=col,(A)
10]) [0+0] |O
0]) [0+0] [O
L(e;))=L||{0||=]0-1|=|-1|=col,(A)
1)) |0+1] |1
1 1 0]
Hence A=0 1 -1
1 0 1]
11 0][x] [x+y
Now Ax=10 1 -1||y|=|ly-z|=L(x)
11 0 1]z X+2

Hence verified.

Example 4: Let T:R?>—R? be the transformation that rotates each point in R?
through an angle ¢, with counterclockwise rotation for a positive angle. We could show

geometrically that such a transformation is linear. Find the standard matrix A of this
transformation.

. 1 ) COS @ 0 . —sing
Solution rotates into | | , and rotates into .
0 sing 1 Cos @
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See figure below.

cose —sin
By above theorem A= { v q

sing cos@

X
(~sin @, COS Pl .J»-,_,
-~ N
/ .
/ \d \(cos @. 5in P)

!

9 3 x
i 1 j(1,0) !
\

!

A rotation transformation

Example 5: A reflection with respect to the x-axis of a vector u in R? is defined by the

wwrennio= 3]} 1]
R R i

10
Hence the standard matrix representing L is A= {O }

-1
Thus we have L(u) = Au = F 0 Hal } = {ai }
0 -1j|la,| [-q,

To illustrate a reflection with respect to the x-axis in computer graphics, let the triangle T
have vertices (-1, 4), (3, 1), and (2, 6).
3

-1
To reflect T with respect to x-axis, we let u, :[4 },uz :L

2
},us = {6} and compute the

images L (uj), L (u,), and L (us) by forming the products
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e L

1 01][3 3
AU2 = = ’
0 -1}|1 -1

Au, = =
o0 6

Thus the image of T has vertices (-1, -4), (3, -1), and (2, -6).

Geometric Linear Transformations of R?:

Examples 3-5 illustrate linear transformations that are described geometrically. In
example 4 transformations is a rotation in the plane. It rotates each point in the plane
through an angle ¢ . Example 5 is reflection in the plane.

Existence and Unigueness of the solution of T(x)=b:

The concept of a linear transformation provides a new way to understand existence and
uniqueness questions asked earlier. The following two definitions give the appropriate
terminology for transformations.

Definition: A mapping T :R" — R™ is said to be onto R™ if each b in R™ is the image of
at least one x in R".
OR

Equivalently, T is onto R™ if for each b in R™ there exists at least one solution of
T (x) = b. “Does T map R" onto R™?” is an existence question.

The mapping T is not onto when there is some b in R™ such that the equation T (x) = b
has no solution.

Definition: A mapping T :R" — R™ is said to be one-to-one (or 1:1) if each b in R™ is
the image of at most one x in R".
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OR

Equivalently, T is one-to-one if for each b in R™ the equation T (x) = b has either a
unique solution or none at all, “Is T one-to-one?” is a uniqueness question.

The mapping T is not one-to-one when some b in R™ is the image of more than one
vector in R". If there is no such b, then T is one-to-one.

Example 6: Let T be the linear transformation whose standard matrix is

1 4 8 1
A=0 2 -1 3
0 0 0 5

Does T map R* onto R3? Is T a one-to-one mapping?

Solution: Since A happens to be in echelon form, we can see at once that A has a pivot
position in each row.

We know that for each b in R* the equation Ax = b is consistent. In other words, the
linear transformation T maps R* (its domain) onto R®.

However, since the equation Ax = b has a free variable (because there are four variables
and only three basic variables), each b is the image of more than one x. That is, T is not
one-to-one.

Theorem: Let T:R" — R™ be a linear transformation. Then T is one-to-one if and only
if the equation T (x) = 0 has only the trivial solution.

Proof: Since T is linear, T (0) = 0 if T is one-to-one, then the equation T (x) = 0 has at
most one solution and hence only the trivial solution. If T is not one-to-one, then there is
a b that is the image of at least two different vectors in R" (say, u and v).

Thatis, T (u)=band T (v) =b.

But then, since T is linear T(u—v)=T(u)=b-b=0

The vector u — v is not zero, since u =V . Hence the equation T (x) = 0 has more than one
solution. So either the two conditions in the theorem are both true or they are both false.

Theorem: Let T:R" — R™ be a linear transformation and let A be the standard matrix
for T. Then

(@) T maps R" onto R™ if and only if the columns of A span R™;
(b) T is one-to-one if and only if the columns of A are linearly independent.
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Proof:

(a) The columns of A span R™ if and only if for each b the equation Ax = b is consistent —
in other words, if and only if for every b, the equation T(x) = b has at least one
solution. This is true if and only if T maps R" onto R™.

(b) The equations T (x) = 0 and Ax = 0 are the same except for notation. So T is one-to-
one if and only if Ax = 0 has only the trivial solution. This happens if and only if the
columns of A are linearly independent.

We can also write column vectors in rows, using parentheses and commas. Also, when

X

we apply a linear transformation T to a vector — say, X:L }:(xl,xz) we write

2

T(x,X,) instead of the more formal T ((x;,X,)).

Example 7:  Let T (X1, X2) = (3X1 + X2, bX1 + 7X2, X1 + 3X2).

Show that T is a one-to-one linear transformation.
Does T map R? onto R%?

Solution: When x and T (x) are written as column vectors, it is easy to see that T is
described by the equation

31 3%, + X,

5 7 Lﬂ: 5X, + 7X, 4)
1 3|-7 X, +3X,

so T is indeed a linear transformation, with its standard matrix A shown in (4). The
columns of A are linearly independent because they are not multiples. Hence T is one-to-
one. To decide if T is onto R®, we examine the span of the columns of A. Since A is 3x 2,
the columns of A span R® if and only if A has 3 pivot positions. This is impossible, since
A has only 2 columns. So the columns of A do not span R® and the associated linear
transformation is not onto R®,
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Exercises:

1. Let T :R®> — R? be transformation that first performs a horizontal shear that maps
e, into e, —.5¢, (but leaves e, unchanged) and then reflects the result in the x, — axis.

Assuming that T is linear, find its standard matrix.

Assume that T is a linear transformation. Find the standard matrix of T.
2. T:R* > R%T(,0)=(4,-1,2)and T(0,1) = (-5,3,-6)

3. T:R*>R*T(e)=(L4),T(e,) =(-2,9),and T (e,) = (3,—8), where ey, e,, and e; are
the columns of the identity matrix.

4. T : R* - R? rotates points clockwise through 7 radians.

5. T :R* - R? is a “vertical shear” transformation that maps e; into e; + 2e; but leaves
the vector e, unchanged.

6. T :R* > R? is a “horizontal shear” transformation that maps e into e, — 3e; but leaves
the vector e; unchanged.

7. T :R® > R?® projects each point (X1, X2, X3) Vertically onto the x;xz-plane (where x3=0).

8. T :R* — R? first performs a vertical shear mapping e; into e; — 3e,(leaving e,
unchanged) and then reflects the result in the x,-axis.

9. T :R* — R? first rotates points counterclockwise through 7 /4 radians and then
reflects the result in the x,-axis.

Show that T is a linear transformation by finding a matrix that implements the mapping.
Note that X3, X2, ... are not vectors but are entries in vectors.

10. T(X, Xy0 X5, X,) = (X, 4 X5, X, + X5, X3 + X, 0)
11, T(X, Xy, X5) = (3X, — X5, X, +4X, + X3)
12, T(X, Xy, X5, X,) = 3%, —4X, +8X,

13. Let T :R* — R? be a linear transformation such that T (x,, X,) = (X + X,, 4% +7X,) .
Find x such that T (x) =(-2, -5).

13. Let T : R? — R® be a linear transformation such that
T (X, X,) = (X, +2X,,— X, —3X,,— 3%, —2X,) . Find x such that T (x) =(-4, 7, 0).
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In exercises 14 and 15, let T be the linear transformation whose standard matrix is given.

14. Decide if T is one-to-one mapping. Justify your answer.

-5 10 5 4
8 3 -4 7
4 -9 5 -3

-3 -2 5 4

15. Decide if T maps R® onto R>. Justify your answer.

4 -7 3 7 5

6 8 5 12 -8
-7 10 -8 -9 14

3 5 4 2 -6
-5 6 -6 -7 3
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Lecture 11

Matrix Operations
(i-)th Element of a matrix
Let A be an mxn matrix, where m and n are number of rows and number of columns
respectively, then a; represents the i-th row and j-th column entry of the matrix. For

example a,, represents 1% row and 2™ column entry.
Similarly a,, represents 3" row and 2" column entry. The columns of A are vectors in
R™ and are denoted by (boldface) a,,a,,--,a,.

These columnsare A=[a, a, .. a,]
The number a; is the i-th entry (from the top) of j-th column vector a; .
Column
J
a, alj a,
Row i|a; ... & .. &,|=A
aml a‘mj amn
T
1 a‘j an
Figure 1 Matrix notation.
Definitions
A diagonal matrix is a square matrix whose non-diagonal entries are zero.
d, 0 - 0
5 0 d, -~ O
O 0 - d

The diagonal entries in A = [aij] are a,;,a,,, ay, -~ and they form the main diagonal
of A.
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10 0 O
2 00
50 00 0O .
For example 0 3 0 are all diagonal
07 0 0 16 O
0 0 11
00 0O

matrices.

Null Matrix or Zero Matrix

An mxn matrix whose entries are all zero is a Null or zero matrix and is always written
as O. A null matrix may be of any order.

0 00 00O
0 0O 00
0 00 00O
Forexample |0 O O 00
0 00 O0O
0 0O 00
0 00 0O
3x3 3x2 4x5

are all Zero Matrices

Equal Matrices

Two matrices are said to be equal if they have the same size (i.e., the same number of
rows and columns) and same corresponding entries.

Example 1 Consider the matrices

2 1 2 1 2 10
A= , B = , C=
{3 X+J {3 5} {3 4 o}

The matrices A and B are equal if and only if x+1 =5 or x = 4. There is no value of x for
which A = C, since A and C have different sizes.

If A and B are mxn matrices, then the sum, A + B, is the mxn matrix whose columns
are the sums of the corresponding columns in A and B. Each entry in A + B is the sum of
the corresponding entries in A and B. The sum A + B is defined only when A and B are of
the same size.

If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose columns
are r times the corresponding columns in A.

Note: Negative of a matrix A is defined as — A to mean (-1)A and the difference of A and
B is written as A-B, which means A + (-1) B.

4 05 111 2 -3
Example2 Let A= , B= , C=
-1 3 2 3 57 0 1

51 6
Then A+B=
2 89
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But A + C is not defined because A and C have different sizes.
111 2 2 2
2B=2 =
{3 5 7} {6 10 14}

4 05/ 22 2][2 -2 3
A-2B= - _
[—1 3 2} {6 10 14} {—7 -7 —12}

Theorem 1: Let A, B, and C are matrices of the same size, and let r and s are scalars.

a. A+B=B+A d. r(A+B)=rA+rB
b. (A+B)+C=A+(B+C) e (r+s)A=rA+sA
C. A+0=A f. r (sA) =(rs) A

Each equality in Theorem 1 can be verified by showing that the matrix on the left side
has the same size as the matrix on the right and that corresponding columns are equal.
Size is no problem because A, B, and C are equal in size. The equality of columns
follows immediately from analogous properties of vectors.

For instance, if the jth columns of A, B, and C are a;,b; and c;, respectively, then the
jthcolumnsof (A+B)+ Cand A+ (B +C) are

(a; +b;)+c, and a;+(b;+c;)
respectively. Since these two vector sums are equal for each j, property (b) is verified.

Because of the associative property of addition, we can simply write A + B + C for the
sum, which can be computed either as (A + B) + C or A + (B + C). The same applies to
sums of four or more matrices.

Matrix Multiplication:

Multiplying an mxn matrix with an nxp matrix results in an mxp matrix. If many
matrices are multiplied together, and their dimensions are written in a list in order, e.g.
mxn, nxp, pxq, gxr, the size of the result is given by the first and the last numbers (mxr).

Matrix Multiplication It is important to keep in mind that this definition requires the
number of columns of the first factor A to be the same as the number of rows of the
second factor B. When this condition is satisfied, the sizes of A and B are said to conform
for the product AB. If the sizes of A and B do not conform for the product AB, then this
product is undefined.

Definition: If A is an mxn matrix, and if B is an nx p matrix with columnsb,,---,b_,
then the product AB is the mx p matrix whose columns are Ab,,---, Ab

That is AB=Alb b, .. b,|=[Ab Ab, .. Ab,]|

p
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This definition makes equation (1) true for all x in RP. Equation (1) proves that the
composite mapping (AB) is a linear transformation and that its standard matrix is AB.
Multiplication of matrices corresponds to composition of linear transformations.

A convenient way to determine whether A and B conform for the product AB and, if so,
to find the size of the product is to write the sizes of the factors side by side as in Figure
below (the size of the first factor on the left and the size of the second factor on the
right).
A B = AB
m X s S X mxn

I Inside ’

If the inside numbers are the same, then the product AB is defined and the outside
numbers then give the size of the product.

2 3
Example 3: ComputeAB,WhereA:[1 5}and B:{1 ) 3

Solution: Here B =[b; b, bs], therefore

Abl{f i}[ﬂ Abz:[i —35}{—32] Abs:[i ‘35@
(M |
— | ]

11 0 21
AB=A b, b]=
o o w0 Y

ft1

Ab; Ab, Abs

Note from the definition of AB that its first column, Ab,, is a linear combination of the
columns of A, using the entries in by as weights. The same holds true for each column of
AB. Each column of AB is a linear combination of the columns of A using weights from
the corresponding column of B.

Example 4: Find the product AB for
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4 1 4 3
1 2 4

A= and B=|0 -1 3 1
2 6 0

2 7 5 2

Solution It follows from definition that the product AB is formed in a column-by-column
manner by multiplying the successive columns of B by A. The computations are

C1 CZ C3

1i204] |8 1 12
B 0 c2) = 4c, +0c, + 2, —(4){2}(0){ }(2){ } {8}
i 1

Similarly L2 4) 1 ‘(1){1}(1){ }(7){4} { }
o206 0 |2 0
fofol 2

2 o of|3[0L2) o) @lo] |

~

1
T 1T
I(J'I w -bl

4 1 4 3
1 2 4 12 27 30 13
Thus, AB = 0 -1 3 1|=
2 6 0 8 -4 26 12
2 75

Example 5: (An Undefined Product) Find the product BA for the matrices

4 1 4 3
1 2 4
= and B=|0 -1 3 1
2 6 0
2 7 5 2

Solution The number of columns of B is not equal to number of rows of A so BA
multiplication is not possible.

The matrix B has size 3x4 and the matrix A has size 2x3. The “inside” numbers are
not the same, so the product BA is undefined.

Obviously, the number of columns of A must match the number of row in B in order for a
linear combination such as Ab; to be defined. Also, the definition of AB shows that AB
has the same number of rows as A and the same number of columns as B.
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Example 6: If Ais a 3x5 matrix and B is a 5x2 matrix, what are the sizes of AB and
BA, if they are defined?

Solution: The product of matrices A and B of orders 3%5and ©%2 will result in
3x2 matrix AB.
But for BA we have 9%2 and 3><5, here number of columns inlst matrix are 2 which is

not equal to number of rows in 2nd matrix. So BA is not possible.
Since A has 5 columns and B has 5 rows, the product AB is defined and is a 3x2

matrix:
A B AB
S
* * * * * * * * *
* * * * * * * — * *
* * * * * * * * *
* *
3x x 2 3x2
Match
Size of AB

The product BA is not defined because the 2 columns of B do not match the 3 rows of A.
The definition of AB is important for theoretical work and applications, but the following
rule provides a more efficient method for calculating the individual entries in AB when
working small problems by hand.

Row-Column Rule for Computing AB

Explanation
If a matrix B is multiplied with a vector X, it transforms x into a vector Bx. If this vector
is then multiplied in turn by a matrix A, the resulting vector is A (Bx).

Multiplication Multiplication
/%N /%N
Xe ) °

Bx A(BX)
Multiplication by B and then A

Thus A(BX) is produced from x by a composition of mappings. Our goal is to represent
this composite mapping as multiplication by a single matrix, denoted by AB, so that
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A (BX) = (AB) Xmmmmmmmm oo e e (1)
Multiplication Multiplication
/pr /JE)N

Bx
Multiplication

A(BX)

by AB
Multiplication by AB

If Ais mxn, Bis nx p, and x is in R?, denote the columns of B by b,,--- , b and the
entries in x by X;,-++, X, , then BX=xb, + X,0, +---+x b,
By the linearity of multiplication by A,

A(BX) = A(Xb,) + A(X,b,) + - + A(X,b,)

= X, Ab, + X, Ab, +--- + X, Ab,

The vector A (Bx) is a linear combination of the vectors Ab,, -, Abp , using the entries in
x as weights. If we rewrite these vectors as the columns of a matrix, we have

A(Bx)=[ Ab, Ab, .. Ab,|x

Thus multiplication by [Ab1 Ab, .. Abp} transforms x into A(Bx).
We have found the matrix we sought!

Row-Column Rule for Computing AB

If the product AB is defined, then the entry in row i and column j of AB is the sum of the
products of corresponding entries from row i of A and column j of B. If (AB);; denotes the
(i, J) —entry in AB, and if Ais an mxn matrix, then

(AB);; = aub,; +a,b,; +...+ a;,b

in™~nj

To verify this rule, let B = [b1 bp}. Column j of AB is Ab;, and we can compute

Ab;. The ith entry in Ab; is the sum of the products of corresponding entries from row i of
A and the vector bj, which is precisely the computation described in the rule for
computing the (i, j) — entry of AB.
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Finding Specific Entries in a Matrix Product Sometimes we will be interested in
finding a specific entry in a matrix product without going through the work of computing
the entire column that contains the entry.

Example 7:  Use the row-column rule to compute two of the entries in AB for the
matrices in Example 3.

Solution: To find the entry in row 1 and column 3 of AB, consider row 1 of A and
column 3 of B. Multiply corresponding entries and add the results, as shown below:

AB—_)[Z 3}{4 3 :}F [] 2(6)+3(3)}_{D [] 21}

Lt 23|00 O IREEN

For the entry in row 2 and column 2 of AB, use row 2 of A and column 2 of B:

!
-»E iMi-i ﬂzﬁ%uwjiea 5}18 E E}

Example 8 Use the dot product rule to compute the individual entries in the product of

4 1 4 3
1 2 4
AB where A= and B=|0 -1 3 1]|.
2 60
2 7 5 2

Solution Since A has size 2x3 and B has size 3x4, the product AB is a 2x4 matrix of
the form

A*G(B) RAXC,B) LA)xCB) h(A)xc, ()
meq®)5MV%@)5MV%®)5MVq®J

wherer;(A) and r,(A) are the row vectors of A and c,(B),c,(B),c,(B) and c,(B) are
the column vectors of B. For example, the entry in row 2 and column 3 of AB can be

computed as
4 1 4 3
edeihomn

2 7 5 2
(2x4)+(6x3)+(0x5) =26
and the entry in row 1 and column 4 of AB can be computed as
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(1x3)+(2x1) +(4x2) =13

Here is the complete set of computations:
(AB),, = (1x4)+(2x0) + (4%x2) =12
(AB),, = (1x1)+(2x-1)+(4x7) =27
(AB),, = (1x4) +(2x3) +(4%x5) =30
(AB), = (1x3)+(2x1)+(4x2) =13
(AB),, = (2x4) +(6x0) +(0x2) =8
(AB),, = (2x1)+(6x-1) +(0x7) =-4
(AB),, = (2x4)+(6x3)+(0x5) =26
(AB),, =(2x3)+(6x1)+(0x2) =12

Finding Specific Rows and Columns of a Matrix Product
The specific column of AB is given by the formula

AB=Alb, b, - b]=[Ab AD, - Ab]

Similarly, the specific row of AB is given by the formula AB =| . |B

Example 9  Find the entries in the second row of AB, where

2 5 0
4 -6
-1 3 4
A= , B=|7 1
6 -8 -7
3 2
-3 0 9

8B

a,B

Solution: By the row-column rule, the entries of the second row of AB come from row 2

of A (and the columns of B):
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Ll 1

[ 0| (0O

2.5 0l 61 |-4+21-12 6+3-8] |5 1
Jes3lri 8 oped
MR 2 [ 1] 0 O

Example 10 (Finding a Specific Row and Column of AB)

1 2 4
Let A= and B=
2 6 0

Find the second column and the first row of AB.

Solution c,(AB)=Ac,(B)= 124 1
T2 0600 7

4 1

L(AB)=r(AB=[L 2 4]0 -1
2

Properties of Matrix Multiplication

4 1 4 3
0 -131
2 7 5 2

=[12 27 30 13

g w b
N P W

These are standard properties of matrix multiplication. Remember that I, represents the
mxm identity matrix and I_x=x for all x belong to R™.

Theorem 2 Let Abe mxn, and let B and C have sizes for which the indicated sums and

products are defined.

a. A(BC)=(AB)C (associative law of multiplication)
b. A(B+C)=AB+AC (left distributive law)

C. (B+C)A=BA+CA (right distributive law)

d. r (AB) = (r A)B = A(r B) (for any scalar r)

e. I, A=A=Al_, (identity for matrix multiplication)

Proof. Properties (b) to (e) are considered exercises for you. We start property (a)
follows from the fact that matrix multiplication corresponds to composition of linear

transformations (which are functions), and it
composition of functions is associative.

is known (or easy to check) that the

Here is another proof of (a) that rests on the “column definition” of the product of two

matrices. Let CZ[Cl Cp}

By definition of matrix multiplication BC = [BC1 BCp]

A(BC)=[ A(Bc,) .. A(Bc,)

]
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From above, we know that A(Bx) = (AB)x for all x, so
A(BC)=[(AB), .. (AB)c,]=(AB)C

The associative and distributive laws say essentially that pairs of parentheses in matrix
expressions can be inserted and deleted in the same way as in the algebra of real
numbers. In particular, we can write ABC for the product, which can be computed as
A(BC) or as (AB)C. Similarly, a product ABCD of four matrices can be computed as
A(BCD) or (ABC)D or A(BC)D, and so on. It does not matter how we group the matrices
when computing the product, so long as the left-to-right order of the matrices is
preserved.

The left-to-right order in products is critical because, in general, AB and BA are not the
same. This is not surprising, because the columns of AB are linear combinations of the
columns of A, whereas the columns of BA are constructed from the columns of B.

If AB = BA, we say that A and B commute with one another.

5 1 2 0
Example 11 LetA:{3 2}and B={4 3}

Show that these matrices don not commute, i.e. AB = BA.
Solution:
AB=5 112 0=10+4 0+3=14 3
{3 —2}{4 3} {6—8 0—6} {—2 —6}
2 0f|5 1 10+0 2-0 10 2
BA:L 3}{3 —2}{2%9 4—6}[29 —2}

For emphasis, we include the remark about commutativity with the following list of
important differences between matrix algebra and ordinary algebra of real numbers.

WARNINGS
1. In general, AB = BA.
2. The cancellation laws do not hold for matrix multiplication. That is, if
AB = AC, then it is not true in general that B=C .
3. If a product AB is the zero matrix, you cannot conclude in general that

either A=00orB =0.

Powers of a Matrix: If A isan nxn matrix and if k is a positive integer, A* denotes the
product of k copies of A, A* = A...A Also, we interpret A° as I.
k

Transpose of a Matrix: Given an mxn matrix A, the transpose of A is the nxm
matrix, denoted by A', whose columns are formed from the corresponding rows of A.

OR, if A is an m x n matrix, then transpose of A is denoted by A', is defined to be the nxm
matrix that is obtained by making the rows of A into columns; that is, the first column of
Alis the first row of A, the second column of A'is the second row of A, and so forth.

Example 12 (Transpose of a Matrix)
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The following is an example of a matrix and its transpose.
2 3

A=|1 4
5 6

a2 15
3 46

-5 2
Example 13 Let A= a b B=|1 3 C= 111l
e df B ' |35 27
0 4
1 -3
a ¢ 5 1 0 1 5
Then A = . B'= . C'=
b d 2 -3 4 1 -2
1 7

Theorem 3: Let A and B denote matrices whose sizes are appropriate for the following
sums and products.

a. (A)' =A

b. (A+B)' =A"+B'

c. For any scalar r,(rA)' =rA'

d. (AB)'=B'A'

The generalization of (d) to products of more than two factors can be stated in words as

follows.
“The transpose of a product of matrices equals the product of their transposes in

the reverse order.”
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Lecture 12

The Inverse of a Matrix

In this lecture and the coming next, we consider only square matrices and we investigate
the matrix analogue of the reciprocal or multiplicative inverse of a nonzero real number.

Inverse of a square Matrix

If Alisan nxn matrix, A matrix C of order nxn is called multiplicative inverse of A if
AC =CA=1 where | isthe nxn identity matrix.

Invertible Matrix

If the inverse of a square matrix exist. It is called an invertible matrix.
In this case, we say that A is invertible and we call C an inverse of A.
Note: If B is another inverse of A, then we would have

B=BI =B(AC)=(BA)C =IC=C.
Thus when A is invertible, its inverse is unique.

The inverse of A is denoted by A™, so that

AAT = and A'A=1
Note: A matrix that is not invertible is sometime called a singular matrix, and an
invertible matrix is called a non-singular matrix.

[2 5] -7 -5
Example1l:. If A= and C-= 3 9 , then

(2 57[-7 -5] [-14+15 -10+10] [1 ©

AC = = = and
3 -7][3 2| |21-21 15-14 | |0 1

ca |7 B2 5|_[14+15 -35+35] [1 0
|3 23 7] | 6-6 15-14 | |0 1

Thus C =A™,

©Virtual University Of Pakistan 128



12- Inverse of a Matrix VU

a b
Theorem Let A= { }
- c d

d -b
If ad —bc =0, then A is invertible or non singular and A™ = L
ad—bc|-c a

If ad —bc =0, then A is not invertible or singular.

The quantity ad —bc is called the determinant of A, and we write
det A=ad —hc

This implies that a 2x2 matrix A is invertible if and only if det A=0.

3 4
Example 2  Find the inverse of A:L_) 6]

Solution We have det A = 3(6) — 4(5) = -2 0.

6/(-2) —4/(—2)}{—3 2 }

6 -4
Hence A is invertible A™ :i - =
-5/(-2) 3/(-2)

-2|-5 3 5/2 -3/2

The next theorem provides three useful facts about invertible matrices.

Theorem
a. If Aisan invertible matrix, then A™ is invertible and (A?)™ = A

b. If Aand B are nxn invertible matrices, then so is AB, and the inverse of AB is
the product of the inverses of A and B in the reverse order. That is

(AB) = BA™

c. If Ais an invertible matrix, then so is AT, and the inverse of AT is the transpose of
Al Thatis (A")'=(A™Y)T

Proof:
(a) We must find a matrix C such that A™'C =1 and CA =1

However, we already know that these equations are satisfied with A in place of C. Hence
A is invertible and A is its inverse.

(b) We use the associative law for multiplication:
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(AB)(B*A ™) = A(BB)A™
= AIA™!
= AA™
=

A similar calculation shows that (B™'A™)(AB) =1 .
Hence AB is invertible, and its inverse is B*A™" i.e (AB)"=B"A™

Generalization
Similarly we can prove the same results for more than two matrices i.e

((AAA)-(A)) =ATAL " ATATAT

The product of nxn invertible matrices is invertible, and the inverse is the product of
their inverses in the reverse order.

Example 3: (Inverse of a Transpose). Consider a general 2x 2 invertible matrix and its

transpose:
a b . la ¢
A= and A =
c d b d

Since A is invertible, its determinant (ad — bc) is nonzero. But the determinant of A' is
also (ad — bc ), so Ais also invertible. It follows that

d _¢c
(At)—l _ ad —bbC ada— bc| (1)
- ad —bc ad-hc
d B b
Now Al | ad—bc ad —bc
¢ a
ad —bhc ad-hc
d _¢c
Therefore, (A = ad —bc ad-bc| )
B b a
ad —bc ad-hc

From (1) and (2), we have
( At)—l — ( A—l)t .

Example 4: (The Inverse of a Product). Consider the matrices

s el
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{7 6}
AB = :
9 8
Here g 6 4 3
(AB)™ =LAdj(AB) 1 =
| AB| 2|-9 7| |-% 1
3 -2 3 -2
at=1 adjay=1 - ,
| A -1 1| |-1 1

B‘1=iAdj(B)=l{2 —2}= 1 —1]
| B 2|-2 3 -1 3
R ST MR
S NN
Thus, (AB)*=B7*A*
Theorem: If A is invertible and n is a nonnegative integer, then:

(a) A" is invertible and (A" = A" = (A™)"
(b) kA is invertible for any nonzero scalar k, and (kA)* = k*A™,

Example 5 (Related to above theorem)

€)) Let
12 3 2] [3 -2
A= then A == Adj(A) = - -
13 Al 11 1|71 1

o T e M MR e
Also, AS:E ﬂﬁ ﬂﬁ ﬂzﬁé jﬂ

(A% = 1 [ 41 —30} :{ 41 —30} (A

- (1)(41)-(30)(15)|-15 11| |-15 11
(b)
12
Take A:{ } and k=3
31
3 6 3 -6] [-1/15 2/15
assas| | (kA" = (3A) = —— S e 0
9 3 9-54|-9 3 1/5 -1/15
g if1 -2
5/-3 1
11 =2] [-1/15 2/15
A=So k'At=3at=1 L - @
35/-3 1 1/5 -1/15
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From (1) and (2), we have
(BA)*=3"A"

There is an important connection between invertible matrices and row operations that
leads to a method for computing inverses. As we shall see, an invertible matrix A is row
equivalent to an identity matrix, and we can find A™ by watching the row reduction of A
to l.

Elementary Matrices
As we have studied that there are three types of elementary row operations that can be
performed on a matrix:
There are three types of elementary operations
e Interchanging of any two rows
e Multiplication to a row by a nonzero constant
e Adding a multiple of one row to another

Elementary matrix

An elementary matrix is a matrix that results from applying a single elementary row
operation to an identity matrix.

Some examples are given below:
1 0 0 0

1 0 3| |1 0 O

1 0 0 0 0 1
0 1 0|0 1 O

0 -3 0 1 0
0 0 1| |0 0 1

1 0 O

0

0
Multiply the Interchange the Add 3 times the  Multiply the
second row second and third row of I3to  first row of
of l,by -3.  fourth rows of I,.  the first row. I3 by 1.

From Def it is clear that elementary matrices are always square.

Elementary matrices are important because they can be used to execute elementary row
operations by matrix multiplication.

Theorem: If Ais an nxn identity matrix, and if the elementary matrix E results by
performing a certain row operation on the identity matrix, then the product EA is the
matrix that results when the same row operation is performed on A.

In short, this theorem states that an elementary row operation can be performed on a
matrix A using a left multiplication by and appropriate elementary matrix.
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Example 6: (Performing Row Operations by Matrix Multiplication). Consider the

1 0 2 3
matrix A=|2 -1 3 6
1 4 4 0

Find an elementary matrix E such that EA is the matrix that results by adding 4 times the
first row of A to the third row.

Solution: The matrix E must be 3x3 to conform for the product EA. Thus, we obtain E
100

by adding 4 times the first row of I, to the third row. This givesusE=|0 1
4 0
1 0 2 3 1 0 2
2 -1 3 6|={2 -1 3
1 4 40 5 4 12 12
times the first row of A to the third row.

D W e O

100

As a check, the product EAis EA=|0 1 O
4 0 1

4

So left multiplication by E does, in fact, add

If an elementary row operation is applied to an identity matrix | to produce an elementary
matrix E, then there is a second row operation that, when applied to E, produces I back
again.

For example, if E is obtained by multiplying the i-th row of I by a nonzero scalar c, then
I can be recovered by multiplying the i-th row of E by 1/c. The following table explains
how to recover the identity matrix from an elementary matrix for each of the three
elementary row operations. The operations on the right side of this table are called the
inverse operations of the corresponding operations on the left side.

Row operation on | that produces E Row operation on E that reproduces |
Multiply row i by ¢ #0 Multiply row i by 1/c

Interchange rows i and j Interchange rows i and |

Add c times row i to row j Add —c times row i to row j

Example 7: (Recovering ldentity Matrices from Elementary Matrices). Here are
three examples that use inverses of row operations to recover the identity matrix from

o 3l 7)o 1)

. Multiply
Multiply
the second the sscolr/];j
row by 7. rowy L.
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{ 1 0 } { 0 1 } { 1 0 }
— -
0 1 Interchange 10 Interchange 0 1

the first and the first and
second rows. second rows.
1 0 1 5 1 0
- -
0 1 0 1 0 1
Add 5 times Add -5 times
the second row

the second row

to the first. to the first.

The next theorem is the basic result on the invertibility of elementary matrices.

Theorem: An elementary matrix is invertible and the inverse is also an elementary

matrix.
1 0 10 1 00
Example8: Let E=[{0 1 0 0|, E={0 10
-4 0 01 0 05

Compute E;A, E2A, E3A and describe how these products can be obtained by elementary
row operations on A.

Solution We have

a b c d e f a b c
E,A=| d e f |, EA=la b c| EA={d e f
g—4a h-4b i-4c g h i 59 5h b5i

Addition of (-4) times row 1 of A to row 3 produces E;A. (This is a row replacement
operation.) An interchange of rows 1 and 2 of A produces E,A and multiplication of row
3 of A by 5 produces EzA.

Left-multiplication (that is, multiplication on the left) by E; in Example 8 has the same
effect on any 3xn matrix. It adds — 4 times row 1 to row 3. In particular, since E; | = E;,
we see that E; itself is produced by the same row operation on the identity. Thus
Example 8 illustrates the following general fact about elementary matrices.
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Note: Since row operations are reversible, elementary matrices are invertible, for if E is
produced by a row operation on I, then there is another row operation of the same type
that changes E back into 1. Hence there is an elementary matrix F such that FE = I. Since
E and F correspond to reverse operations, EF = 1.

Each elementary matrix E is invertible. The inverse of E is the elementary matrix of the
same type that transforms E back into I.

1 00
Example Find the inverseof E;=| 0 1 O
-4 0 1

Solution: To transform E; into I, add + 4 times row 1 to row 3.

1 00
The elementary matrix that does thatis E;*=| 0 1 0
+4 0 1

Theorem An nxn matrix A is invertible if and only if A is row equivalent to I,, and in
this case, any sequence of elementary row operations that reduces A to I, also transforms
I, into A™.

An Algorithm for Finding A™: If we place A and | side-by-side to form an augmented
matrix [A 1], then row operations on this matrix produce identical operations on A and I.
Then either there are row operations that transform A to I, and I, to A™, or else A is not
invertible.

Algorithm for Finding A™

Row reduce the augmented matrix [A 1]. If A'is row equivalent to I, then [A 1] is
row equivalent to [l A™]. Otherwise, A does not have an inverse.

0o 1 2
Example 9  Find the inverse of the matrix A={1 0 3|, if itexists.
4 -3 8
0 1 2100 1 0 3010
Solution [AI]l=(1 0 3 01 0(~/0 1 2 1 0 O0}|R,
4 -3 8 001 4 -3 8 001
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—4R +R, 3R, +R,
1 0 3 0 1 O 1 030 10
~10 1 2 1 0 0(~/01 21 0 O
0 -3 40 41 002 3 41
—2R, +R, -3R; +R,
103 0 1 O 1 0 0 -9/2 7 -3/2
~l01 2 1 0 O0O(|~f01 0 -2 4 -1
0 0 1 3/2 -2 1/2 0 01 3/2 -2 1/2
-9/2 7 -3/2
Since A~ 1, we conclude that A is invertible, and A* =| -2 4 -1
3/12 -2 1/2

It is a good idea to check the final answer:
0 1 2|-9/2 7 -=3/2

1 00
AA*=l1 0 3|| 2 4 -11|=010
4 -3 8| 3/12 -2 1/2 0 01

It is not necessary to check that A™A = | since A is invertible.

1 2 -3 1
. . . -1 3 -3 -2 .. .
Example 10 Find the inverse of the matrix A= s 0 , if it exists.
3 1 -2 5
1 2 -3 1 1 2 31
-1 3 -3 -2 0 5 -6 -
Consider detA= =
2 0 1 5 0 4 7 3
3 1 -2 5 0 5 7 2
operating R2 + Rl’ R3 -2R1, R4 -3Rl
5 -6 - 5 -6 -

Expand from firstcolumn =-4 7 3|=]1 1 2(=5(1-2)+6(1-0)-1(1-0)=0
S5 7 021011
As the given matrix is singular, so it is not invertible.
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1
Example 11 Find the inverse of the given matrix if possible A=| 2
3

1 0
Solution: detA=[2 1 =-1
31

As the given matrix is non singular therefore, inverse is possible.

1 0 1 1 0 0
2 11 010
311 0 01
1 0 1 1 0 0
01 -1 -2 10
0 1 -2 -3 01
R,—2R,R,—3R,

10 1 1
01 -1 -2
0 0 -1 -1 -1 1
RS_RZ

10 1 1
01 -1 -2
00 1 1 1 -1

MultiplyR, by -1

1 00 0 -1 1

010 -1 2 -1

0 01 1 1 -1
R1 - Rsv Rz + Ra

0
1
1

e
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0 -1 1
Hence the inverse of matrix Ais A*=|-1 2 -1
1 1 -1
1 2 2
Example 12 Find the inverse of the matrix A=|2 2 3
5 2 3
1 2 2
Solution detA={2 2 3/=6
5 2 3

As the given matrix is non singular, therefore, inverse of the matrix is possible.
We reduce it to reduce echelon form.

1 2 2 1 00

2 2 3 010

5 2 3 0 01

1 2 2 1 0 0

0 -2 -1 -2 10

0 -8 7 -5 0 1
R,-2R,R,-5R,

1 2 2 ! 0 O
0 1 1/2 1 -1/2 0
0o -8 -7 -5 0 1
multiply 2nd row by -1/2

12 2 1 0 0

0 1 1/2 1 -1/2 0
00 -3 3 4 1
R, +8R,

1 2 2 1 0 0
0 1 1/2 1 -1/2 O
0 0 1 -1 4/3 -1/3

Multiply 3rd row by -1/3
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_ 8 5
2 0 303
10 3/2 -7/6 1/6
0 -1 4/3 -1/3
00 0 -1/3 1/3]
10 3/2 -7/6 1/6
01 -1 4/3 —1/3_
R,-(1/2)R,,R -2R,
0 -1/3 1/3
Hence the inverse of the original matrix A" =({3/2 -7/6 1/6
-1 4/3 -1/3
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Exercises

In exercises 1 to 4, find the inverses of the matrices, if they exist. Use elementary row
operations.

_ 1 05
1. . 2} 2./1 1 0
59
- 3 2 6
1 4 -3 1 -1
3.|-2 -7 6 4 1
17 =2 -1 0
'3 4 -1 -1 3 4
511 0 3 6.2 4 1
2 5 4 -4 2 -9
-1 5 -7
7.Let A=| 2 5 6 |.Find the third column of A™ without computing the other
1 3 4
columns.
[-25 -9 -27
8.Let A=|546 180 537 |.Find the second and third columns of A without
1154 50 149

computing the first column.

9. Find an elementary matrix E that satisfies the equation.
(@EA=B (O EB=A (c)EA=C (d)EC=A

3 4 1 8 1 5 3 4 1
where A={2 -7 -1|,B=|2 -7 -1{,C=(2 -7 -1].
8 1 5 3 4 1 2 -7 3
1 0 -2
10. Consider the matrix A={0 1 0
00 2

(a) Find elementary matrices E; and E; such that E;E;A=I.
(b) Write A as a product of two elementary matrices.
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(c) Write A as a product of two elementary matrices.
In exercises 11 and 12, express A and A™ as products of elementary matrices.

2 11 110
11. A=|1 2 1 12. A=|1 1 1
11 2 011
0O 1 7 8
13. Factor the matrix A=| 1 3 3 8 | as A=EFGR, where E, F, and G are
-2 -5 1 -8

elementary matrices and R is in row echelon form.
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Lecture 13

Characterizations of Invertible Matrices

This chapter involves a few techniques of solving the system of n linear equations in n
unknowns.

Solving Linear Systems by Matrix Inversion

Theorem:-
If A is an invertible nxn matrix, then for each b in R", the equation Ax = b has the
unique solution x = A™b.
Proof:-
Let b be any vector in R". A solution must exists because when A™b is substituted for x
we have Ax = A (A *b) = Ib = b. So Ab is solution.
To prove that the solution is unique, we show that if u is any other solution, then u must
be A'b .i.e. u = A''b. Indeed, if Au = b, we can multiply both sides by A™ and obtain
A"Au=A"Db, lu=A"b, and u=A"D
Example 1:-
Solve the system of linear equations
X, +2X, +3%;, =5
2%, +5X, +3%X; =3
X, + 8x, =17
by inverse matrix method..
Solution:-
Consider the linear system
X, +2X, +3%X;, =5
2X, +5X, +3%X, =3
X, + 8x, =17

This system can be written in matrix form as Ax = b, where
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1 2 3 X, 5
A= 2 5 31 X= X2 y b= 3
10 8 X, 17

Here, det (A) =40-2(16-3)+3(0-5)=40-26-15=-1#0

Therefore, A is invertible. Now we apply the inversion algorithm:

2 3 1 0
5 3 010
1 0 8 0
1 2 3 1 00
1 -3 -2 1 O} -2R +R,, —1R +R,
0 -2 5 -1 01
12 3

-1 -5
3 1 0
-3 -2 1

5 2
-14 6 3
13 -5 -3|3R;+R,, -3R;+R,

OO OO0 PFr OO PFr OO Fr O o Pk

1 00
-3 -2 1 0|2R,+R,
0|
0

-1R

13 -5 -3|-2R,+R,

O kb O O FP N O FP N O -

[
L

>
AN

Il
[HEN
w

[
(S

I
w

Hence,

-40 16 9 || 5 1
Thus, the solution of the linear systemisx=A"'b=| 13 -5 -3| 3 [=|-1
5 -2 -1||17 2

Or, equivalently x, =1, x, =-1x, =2.
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Note: This method applies only when the number of equations = number of unknown

and fails if given matrix is not invertible.
Example 2:-

Solve the system of linear equation

X, +6X, +4X; =2

2X, +4X, =X, =3

=X +2X, +5%, =3

by inversion method.

Solution:-

This system can be written in matrix form Ax = b, where

1 6 4
A=[2 4 -1
-1 2 5

Here det (A)=1(20+2)-6(10-1)+4 (4+4)=22-54+32=0
Therefore, A is not invertible. Hence, the inversion method can not be used.

Theorem:-

If Ax = 0 is a homogeneous linear system of n equations in n unknowns, then the system

has only the trivial solution if and only if the coefficient matrix A is invertible.

Example 3:-
State whether the following system of linear equation has a solution or not?

X, +2X, +3%X, =0
2X, +5X, +3%x, =0

X, + 8%, =0
Solution:-
By Example 1, we get
1 2 3
A=|2 5 3| isaninvertible matrix.
1 0 8

Then, by Theorem (above) says that the homogeneous linear system
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X, +2X, +3X%, =0
2% +5X, +3%, =0

X +

8%, =0

has only the trivial solution.

Solving Multiple Linear Systems with a Common Coefficient Matrix

In many applications one is concerned with solving a sequence of linear systems

AX1:b1’ szzbz’ B AXk:bk (1)

each of which has the same coefficient matrix A. If the coefficient matrix A in (1) is

invertible,x, = A™b, x, =A™, -, X, =A"b, . However, this procedure cannot be

used unless A is invertible.

Theorem (Invertible Matrix_Theorem): Let A be a square nxn matrix. Then the

following statements are equivalent. (Means if any one holds then all are true).

@ A is an invertible matrix.
(b) A is row equivalent to the nxn identity matrix.
(© A has n pivot positions.
(d) The equation Ax = 0 has only the trivial solution.
(e) The columns of A form a linearly independent set.
()] The linear transformation x — AX is one-to-one.
(9) The equation Ax = b has at least one solution for each b in R".
(h)  The columns of A span R".
(i) The linear transformation x — Ax maps R" onto R".
() There is a nxn matrix C such that CA=1.
(k)  Thereisa nxn matrix D such that AD = 1.
()  ATisan invertible matrix.
Example 4:-
Show that the matrix
1 0 -2
A= 3 1 -=2|isinvertible.
5 -1 9

Solution:-
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By row equivalent,
1 0 -2 1 0 -2
A=0 1 4 (~/0 1 4
0 -1 -1 0 0 3
It shows that A has three pivot positions and hence is invertible, by the Invertible Matrix
Theorem (c).

Example 7 Find A'and show that A'is invertible matrix.

1 210

A 2 41 2

1 01 2
0112

Solution:-

1 210

A 2 4 01
1111

0 2 2 2

Now by row equivalent of A,

R2—2R1,R3—R1 st

12101 2 101 2 10
A_[2412 j00 12020 2
1012|020 2/ ]0o 0 -12
0112101 1 2/]0o1 1 2

Y R, -R, (-DR “R,+R
2 3 34
121 0]1ft2 1 0]ft2107]f[t21o0
01 0 -1/ |01 0 -1/ |0 10 -1| [0 1 0 -1
oo -1 2| loo0o 12| loo0o1 =2]001 -2
011 2|loo 1 3|[|loo0o1 3/|000 5

Here A has 4 pivot positions so by Invertible Matrix Theorem (c) A is invertible. Thus by
(1) Alis invertible.
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Find a Matrix from Linear Transformation:-

We can find a matrix corresponding to every transformation. In this section we will learn
how to find a matrix attached with a linear transformation.

Example:-

Let L be the linear transformation from R? to P, (Polynomials of order 2) defined by
T(X, y) =xyt+(x+y)t’

Find the matrix representing T with respect to the standard bases.

Solution:-

Let A = {(1,0),(0,1)} be the basis of R?, then

T(1,0) =t* = (0,0,1) (This triple represents the coefficients of polynomial t?)

Similarly, T (0, 1) = t = (0,0,1).Hence the matrix is given by

o O
A=1|0 0

1
Now we will proceed with a more complicated example.
Example:-

Let T be the linear transformation from R? to R? such that T(x, y) = (x , y + 2x). Find a
matrix A for T.

Solution:-

This matrix is found by finding T (1, 0) = (1, 2) and T (0, 1) = (0, 1) the matrix

. 1 0
ISA= )
2 3)

Important Note:-

It should be clear that the Invertible Matrix Theorem applies only to square matrices. For
example, if the columns of a 4x3 matrix are linearly independent, we cannot use the
Invertible Matrix Theorem to conclude any thing about the existence or nonexistence of
solutions to equations of the form Ax = b.

Definition (Inverse of a Linear Transformation) A linear transformation
T :R" — R" issaid to be invertible (left as well as right) if there exists a function

T':R" = R" such that
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T'(T(X)=xV xeR"
TT'(X)=xV xeR"
Here S is called inverse of linear transformation T.

Important Note:-

If the inverse of a linear transformation exits then it is unique.

Proposition:-
Let T :R" — R™be linear transformation, given asT (x) = Ax ,V xe R", where A is

a mxn matrix. The mapping T is invertible if the system y = Ax has a unique solution.
Case 1:

If m<n, then the system Ax =y has either no solution or infinitely many solution, for
any y in R™ Therefore y = Ax is non-invertible.

Case 2:

If m=n, then the system Ax =y has a unique solution if and only if Rank (A) =n.

Case 3:

If m>n, then the transformation y = Ax is non-invertible because we can find a vector

y in R™ such that Ax =y is inconsistent.

Exercises

1. Solve the system of linear equations
X, +X, +%X =8

2X, +3%, = 24

SX, +5X, + X, =8

by inverse matrix method.

S e

(a) Find A™ and use it to solve the equations Ax = by, Ax = by, AX = bz, AX = b,
(b) Solve the four equations in part (a) by row reducing the augmented matrix

[A b b b b,

3. (a) Solve the two systems of linear equations
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X, +2X, + X, =-1 X, +2X, + % =0
X, +3X, +2X%, =3 and X, +3X, +2X%, =0
X, +2X; =4 X, +2X%, =4

by row reduction.
(b) Write the systems in (a) as Ax = b; and Ax = by, and then solve each of them by the
method of inversion.

Determine which of the matrices in exercises 4 to 10 are invertible.

i} 50 3 2 3 4 5 -9 3
4_416} 5[7 0 2 6.2 3 4 7.10 3 4
L3 9 9 0 1 2 3 4 1 0 3
1 3 0 -1 100 0 7 -6 -4 1
g |0 1 -2 -1 12500 10{51 0 -2
2 6 3 2 368 0 10 11 7 -3
'3 5 8 -3 4 7 9 10 19 9 7 1
5 4 3 6 3]
7 6 5 9 5
1.8 6 4 10 4
9 89 -5 8
10 8 7 -9 7|

12. Suppose that A and B are nxn matrices and the equation ABx = 0 has a nontrivial
solution. What can you say about the matrix AB?

13. What can we say about a one-to-one linear transformation T from R" into R"?

14. Let T : R* - R’be a linear transformation given asT (x) = 5x, then find a matrix A
of linear transformation T.

In exercises 15 and 16, T is a linear transformation from R? into R?. Show that T is
invertible.

15. T(x,, X,) = (=5% +9X,,4%X, —7X,)

16. T (X, X,) = (6% —8X,,—-5X +7X,)
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Lecture 14

Partitioned Matrices

A block matrix or a partitioned matrix is a partition of a matrix into rectangular
smaller matrices called blocks.Partitioned matrices appear often in modern applications
of linear algebra because the notation simplifies many discussions and highlights
essential structure in matrix calculations. This section provides an opportunity to review
matrix algebra and use of the Invertible Matrix Theorem.

General Partitioning

A matrix can be partitioned (subdivided) into sub matrices (also called blocks) in
various ways by inserting lines between selected rows and columns.

Example 1:-
The matrix

w w
w w
A NN
A NN

can be partitioned into four 2x2 blocks

11 2 2 3 3 4 4
P11:111P12:2 2'P21:3 31P22:4 a)

The partitioned matrix can then be written as

; (P azj
PZl P22
Note:-

It is important to know that in how many ways to block up a ordinary matrix A? See the
following example in which a matrix A is block up into three different ways.

Example 3:-
Let A be a general matrix of 5x 3 order, we have
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Partition (a)

-ﬂu Lo ) 'l'u-

ay |dn oy
a4

I % O

[ On |0y Oy |

In this case we partitioned the matrix into four sub matrices. Also notice that we
simplified the matrix into a more compact form and in this compact form we’ve mixed
and matched some of our notation. The partitioned matrix can be thought of as a smaller
matrix with four entries, except this time each of the entries are matrices instead of
numbers and so we used capital letters to represent the entries and subscripted each on
with the location in the partitioned matrix.

Be careful not to confuse the location subscripts on each of the sub matrices with the size
of each sub matrix. In this case Aj; isa2x1 sub matrix of A, Az isa2x2 sub matrix of
A, Az isa 3x1sub matrix of A and Ay, isa 3x3sub matrix of A.

Partition (b)

(ay |on | &s]
23 | %a |9
Amlay |ap ﬂn-[ﬂllﬂalﬂl]
Ca | F2 | %
| g | Eg | Ty |

In this case we partitioned A into three column matrices each representing one column in
the original matrix. Again, note that we used the standard column matrix notation (the
bold face letters) and subscripted each one with the location in the partitioned matrix.

The c;in the partitioned matrix are sometimes called the column matrices of A.

Partition (c)

an
Sn
A=|ay
gy
oy

e |€ 8 [ &
NI

£ |88 |
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Just as we can partition a matrix into each of its columns as we did in the previous part
we can also partition a matrix into each of its rows. The r;in the partitioned matrix are
sometimes called the row matrices of A.

Addition of Blocked Matrices:-

If matrices A and B are the same size and are partitioned in exactly the same way, then it

is natural to make the same partition of the ordinary matrix sum A + B. In this case, each
block of A + B is the (matrix) sum of the corresponding blocks of A and B.
Multiplication of a partitioned matrix by a scalar is also computed block by block.

Multiplication of Partitioned Matrices:-

If A=A, A, and B=
A3 A3 BZl BZZ
1 2

and if the sizes of the blocks confirm for the required operations, then

1 2 1-11 2721 1-12 222
Av Adlrg g7 [ABatTABL AB,+AB
AB=|A, A, {Bﬂ Blz}: AuBiL+ALB,  ABL+ALB,
ASl A52 “ # ASlBll + A32 B2l ABl BlZ + A32 BZZ
It is known as block multiplication.
Example 3:-
Find the block multiplication of the following partitioned matrices:
o 1
3 -4 10 2 3 0 B
A=|-1 5 -3 1 4 =[A“ A“}, B=(-5 1 {B“}
5T J A, A, T ”
. O 2 -
Solution:-
8; a, &
AB:|:A.I.1 A.Z:||:Bll:|:|:AllBll+A.2821:| ' az a3
AZl A’ZZ BZl A21 Bll + A22 BZl aji azz ajz

This is a valid formula because the sizes of the blocks are such that all of the operations
can be performed:
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2 -1
B AR = 3 4 1 3 0l 0 2||4 -3 B -11 2
AiB, + A,B, = 1 5 _3 1 4llo 2| |32 3

-5 1
2 -1
4 -3

A,B,+A,B, =[2 0 —2] 3 0 +[1 6]{0 5 }=[18 5]

-5 1

Thus,
-11 2
AB:|:AllBll+AlZBZl:|: 32 3 AB:|:A11 AJ.2:||:Bll:|:|:AilBll+A12821:|

AQlBll + AZZ BZl 18 5 A21 A22 BZl AZl Bll + AZZ BZl

Note:- We see result is same when we multiply A and B without partitions

3 4 1 0 2|3 O -11 2
AB=-1 5 -3 1 4||-5 1 (=32 3
2 0 -2 1 6| 4 -3 18 5

Note:- Some time it more useful to find the square and cube powers of a matrix.

Example 4:-
Making block up of matrix

1 0 0 0 0 1]
01 0001
001001 )
A= , evaluate A“?
000100
000010
11100 1]
Solution:-

We partition A as shown below
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Now

Hence

1 0 0:0 0:1
0 1 0:0 0:i1 | o A 1
A= 0.9.1.0.9.1 = O3 I32 @) where A =|1
000100 Ajfoz 121 .
000010 1
111001
i |3 032 Ai IS 032 Ai |3+A1A1I 032 A1+A1
A* = Op 1, 04|04 1, O,|= Oy I, 0,
A" O, 1A O, 1 A'+A 0, A'A+L
2 11 2
L+AA'=|1 2 1|,A+A=|2[,A'+A'=[2 2 2]
1 1 2 2
A'A +1=[4]
(2 110 0 2]
1 2100 2
w |11 2002
0 00100
0 00010
2 2 2 0 0 4]

a b

-3 1 2
Example 6: LetA={ 4 5} and B=|c d|.

Verify that

Solution

1
e f

AB = col, (A)row, (B) + col, (A)row, (B) + col, (A)row,(B)

Each term above is an outer product.

By the ordinary row — column rule,

coll(A)rowl(B):{_le’}[a b]{_za _3b}(aﬂ aﬂj

b a21 a22
coIZ(A)rowz(B)z{_lJ[c d]{—flc —Zd}
col3(A)r0W3(B):{ﬂ[e f]:Es 523”
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a—4c+5e b-4d +5f

3 -3 2e —3b+d+2f
Thus Zcolk(A)rowk(B)z[ aretee s }
k=1

This matrix is obviously AB.

Toeplitz matrix:-

A matrix in which each descending diagonal from left to right is constant is called a
Toeplitz matrix or diagonal-constant matrix

Example:-
The matrix
al 2 3
4 a 1 2|. : .
A= is a Toeplitz matrix.
5 4 al
6 5 4 a

Block Toeplitz matrix:-

A blocked matrix in which blocks (blocked matrices) are repeated down the diagonals of
the matrix is called a blocked Toeplitz matrix.

A block Toeplitz matrix B has the form

"BL1) B(L2 B(L3) B(L4) B(L5)]
B(21) B@1) B(L2) B(L3) B(L4)
B=|B@31) B(21) B@LL) B(L2) B(L3)
B(41) B(31) B(21) Bl B(2)
B(G.1) B(41) BGBL BR1) BRI

Inverses of Partitioned Matrices:-

In this section we will study about the techniques of inverse of blocked matrices.

Block Diagonal Matrices:

A partitioned matrix A is said to be block diagonal if the matrices on the main diagonal

are square and all other position matrices are zero, i.e.
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D, 0 0
0 D, 0

A= )
0 0 D,

where the matrices D;, D, ..., Dy are square. It can be shown that the matrix A in (1) is
invertible if and only if each matrix on the diagonal is invertible. i.e.

DY 0 .. 0
ai | 0 D 0
0 0 D,

8 -7:0 0:0

1 -1:0 0:0

A=l0 0i3 1:0

0 0:i5 2:i0

|10 0:0 04
FindA™".
Solution:-

There are three matrices on the main diagonal, two are 2x2 matrices and one

islx1matrix.

In order to find A™, we evaluate the inverses of three matrices lie in main diagonal of A.

8 -7 31
LetA, = (1 J, A, = (5 2) and A, =(4) are matrices of main diagonal of A. Then
(_1 YJ
' -1 8 1 -7
A= AiiAﬂ = T [1 8) Similarly we can find inverses Az, and As;. Thus
) _ _
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1 -7 0 0:0

1 8 0 0 0

L 41|00 2 -10
0 0 -5 3:0

00 0 0 -
i 4

Block Upper Triangular Matrices:

A partitioned square matrix A is said to be block upper triangular if the matrices on the
main diagonal are square and all matrices below the main diagonal are zero; that is, the
matrix is partitioned as

All A12 Alk

0 A

A= where the matrices Aii, Az, ..., Ak are square.

O O .. A,

Note: The definition of block lower triangular matrix is similar.
Here we are going to introduce a formula for finding inverse of a block upper triangular
matrix in the following example.

Example 8:-
Let A be a block upper triangular matrix of the form

A{Al A,

0 A }where the orders of Ay and Ay are px p and g x q respectively. Find A™.
2

Solution:-

Bll BlZ . . 1
LetB = be inverse of A .i.e. A~ =B, then

21 22
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AB{AM AQHBM BH}{IP 0}
O A22 BZl BZZ O Iq

|:AllBll+A12821 AllBlZ+A12822j|:|:IP O:|

A,,B,, A,,B,, o I,
By comparing corresponding entries, we have
A;B, +A,B, =1, 1)
AB,+A,B,=0 2
A,B, =0 (3)
A,B,= 1, @)

Since Ay is a square matrix, so by Invertible Matrix Theorem, we have Ay is invertible.

Thus by eq.(4), B2 = A»™. Now by eqg. (3), we have B ,, = A,;O = O .Fromeq.(1)

A,B,, +0 = I

= AllBll =1

p
p

-1
= Bll = A11

Finally, form (2),
A11812 = _Alszz = _A12 Az_zl and Blz = _A1_11A12 Az_zl

Thus
-1 _ _ _
A1:|:All A12:| :{Anl _A111A12A221 (5)
0O A, 0 A}

Example 9:-
Find A of

4 7 -5 3

3 5 3 -2
A=

O o0 7 2

O 0 3 1
Solution:-

Let partition given matrix A in form
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4 7:-5 3
3 5i3 =2
A:
O 0:7 2
0 03 1
4 7 -5 3 7 2
Put A, = 3 5 yA, = 3 o and A,, = 3 1
. [-5 7 ) 1 -2
ThusAMl:{3 _4}andA221:L3 7}
Moreover,
A -la AQ‘I— -5 7 ||-5 3 1 -2 B -133 295
ot 3 40113 2(|-3 7| | 78 -173
So by (5), we have
-5 7 -133 295
Al 3 4 78 -173
o o 1 -2
O O -3 7
Exercises

In exercises 1 to 3, the matrices A, B, C, X, Y, Z, and I are all n x n and satisfy the

indicated equation

L[~ BJ[T o]_[o , [X o]fA 0
lc ooflx Y| |z o 'ly z]||B C
i A Z

X 00 1 0
3 }oo{}

Y 0 | 0 I

- B I

H

I
0

0
I

|

4. Suppose that Ay; is an invertible matrix. Find matrices X and Y such that the product

below has the form indicated. Also compute By,.

I 00 An A12 Bll Blz
X 10 A21 Azz =/ 0 Bzz
Y 0 1 A31 A32 0 Bsz
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|l 0 O | 0 O
5.Theinverseof [C | O0fis|Z | 0].Find X, Y and Z.
A B I X Y |

I O
6. Show that {A I} is invertible and find its inverse.

7. Compute X'X, when X is partitioned as [X; Xz].

In exercises 8 and 9, determine whether block multiplication can be used to compute the
product using the partitions shown. If so, compute the product by block multiplication.

, -2 1: 4 : -2 1
12 15 0 1.2 15 5 ¢,
8.(a) 0 _3%4 73| P W (b) 0 -3 42
7 -1.5 7 -1i5
Ll 5 6 1 1 5 6 1 .........................................
10 3:-3 f 0 3 -3
2 -4 1] 2 -5
3 -10 -3)|3 0 2 1 3{2 -13 -4
9 (a) (b)
2.1 451 35 | 0. .50 1 57
2 1 4] 1 4 |
3 11 0] .
10. Compute the product > all 1 6 2 using the column row-rule, and check

your answer by calculating the product directly.
In exercises 11 and 12, find the inverse of the block diagonal matrix A.

) 5200 0
2 10 0
3 2 0 0 31000
11. () A= ()|{0 0 5 00
00 3 4
000 2 7
001 -1
- 0001 4
_ 20000
51 0 0
10 o 01200
12. (a) A= (|0 3 7 0 0
00 2 -3
000 49
00 -3 5
L 0001 2
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In exercises 13 and 14, find the inverse of the block upper triangular matrix A.
2 1 3 6] -1 -1 2 5
1 17 4 2 1 -3 8
13. A= 14. A=
0 03 5 0 0 4 1
0 0 2 3] 0o 0 7 2
I B B B
15. Find B, given that ABA B 1A
10 C 0 G 0 C,
and
|20 B - 11 C - 1 1
Ao 171 29T
|20 C - 10 B - 2 1
=10 2190 2|%7|1 3
16. Consider the partitioned linear system
5 2 2 3|x 2
2 1:-3 1||x, _6I
10 4 1|x]| |0
0 1:0 2|x, 0
Solve this system by first expressing it as
A Bilu b . Au+Bv=Db
= or equivalently,
| Dilv 0 u+Dv=0
next solving the second equation for u in terms of v, and then substituting in the first
equation. Check your answer by solving the system directly.
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Lecture 15

Matrix Factorizations

Matrix Factorization

A factorization of a matrix as a product of two or more matrices is called Matrix
factorization.
Uses of Matrix Factorization
Matrix factorizations will appear at a number of key points throughout the course. This
lecture focuses on a factorization that lies at the heart of several important computer
programs widely used in applications.

LU Factorization or LU-decomposition
LU factorization is a matrix decomposition which writes a matrix as the product of a
lower triangular matrix and an upper triangular matrix. This decomposition is used to
solve systems of linear equations or calculate the determinant.
Assume A is an M*N matrix that can be row reduced to echelon form, without row
interchanges. Then A can be written in the form A = LU, where L is an M*M [ower
triangular matrix with 1’s on the diagonal and U is an M*N echelon form of A. For
instance, such a factorization is called LU factorization of A. The matrix L is invertible
and is called a unit lower triangular matrix.

1 0 0 Olfe * * * =

A * l 0 0 O ° * * *
|* * 1 0//0 0 0 o *
* % * 1110 0 0 0O
L U
LU factorization.
Remarks:

1) If Ais the square matrix of order m, then the order of both L and U will also be m.

2) In general, not every square matrix A has an LU-decomposition, nor is an LU-
decomposition unique if it exists.

Theorem: If a square matrix A can be reduced to row echelon form with no row
interchanges, then A has an LU-decomposition.

Note:

The computational efficiency of the LU factorization depends on knowing L and U. The
next algorithm shows that the row reduction of A to an echelon form U amounts to an LU
factorization because it produces L with essentially no extra work.

An LU Factorization Algorithm
Suppose A can be reduced to an echelon form U without row interchanges. Then, since
row scaling is not essential, A can be reduced to U with only row replacements, adding a
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multiple of one row to another row below it. In this case, there exist lower triangular
elementary matrices Ex, ..., Ep such that

E,...ElA=U (1)
So A=(E ..E)'U=LU
Where L=(Ep... E)* (2)

It can be shown that products and inverses of unit lower triangular matrices are also unit-
lower triangular. Thus L is unit-lower triangular.

Note that the row operations in (1), which reduce A to U, also reduce the L in (2) to I,
because E, ... EiL = (Ep...E))(Ep ... E;)? = I. This observation is the key to
constructing L.

Procedure for finding an LU-decomposition

Step 1 Reduce matrix A to row echelon form U without using row interchanges, keeping
track of the multipliers used to introduce the leading 1’s and the multipliers used to
introduce zeros below the leading 1’s.

Step 2 In each position along the main diagonal of L, place the reciprocal of the
multiplier that introduced the leading 1 in that position in U.

Step 3 In each position below the main diagonal of L, place the negative of the multiplier
used to introduce the zero in that position in U.

Step 4 Form the decomposition A = LU.

Example 1: Find an LU-decomposition of

6 -2 0
A=19 -1 1
3 7 5

Solution: We will reduce A to a row echelon form U and at each step we will fill in an
entry of L in accordance with the four-step procedure above.

6 -2 0 *
A=19 -1 1 *
13 7 5 * o
* denotes an unknown entry of L.
6 0 0]

0
1 |« multiplier =1 ** 0
5

* O
¥ O O

—%
*x K *x

~ I—\wln—\

|
wl—

<« multiplier =-9
<« multiplier =-3

|§||§||—\ w«:H

0
1
5

oo N
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—1
1= 0 6 0 0
0 1 %emultiplier:% 9 20
0 8 5 s
1 -1 0 6 00
0 1 3|« multiplier=-8 9 2 0
0 [o] 1 3 8 *
1 -1 0 6 0 0

U=|0 1 3 |« multiplier=1 L=/9 2 O
0 0 381

(No actual operation is performed here since there is already a leading 1 in the third row.)
So

o

_1
3

A=LU =

w O o
o N O

0|1
01]/0
110

= N

1
0
OR

Solution: We will reduce A to a row echelon form U and at each step we will fill in an
entry of L in accordance with the four-step procedure above.

6 -2 0 * 00
A=l9 -1 1 * * 0
3 7 5 * ok ok
* denotes an unknown entry of L.
6 -2 0
6 6 6 . 6 0 0
~9 -1 1 =R, * * 0
3 7 5 ° * ox %
1 1 0
3
=9 -1 1
3 7
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Q

Q

Q

9-9(1)

1 0

0
0

1
5

© N WL

[EY
| © NN WL
o o N, o

g N

1
3

-1

1-9(3) 1-90)

1

3-3(1) 7-3('5) 5-3(0)

o

N | =

R, —9R,
R, —3R,

w ©O© o

* N O

¥ O O

w O o

w ©O© o

o N O

* O

*

* O O

* O O
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1 -3 0 6 0 0
U=/0 1 3 |« multiplier=1 L=|9 2 0
0 0 3 81
So
6 0 0||1 -5 O
A=LU=|9 2 0|0 1 3
3 8 1{|0 0 1
(2 -4 -2 3]
6 9 -5 8
Example 2 Find an LU factorizationof A= 2 -7 -3 9
4 -2 -2 -1
|6 3 3 4|
Solution i i
2 -4 -2 3 1 0 0O
6 -9 -5 8 * 0 0O
A=12 -7 -3 9 * 100
4 -2 -2 -1 *x x 10
-6 3 3 4| *ox oo 1
* denotes an unknown entry of L.
1 -2 -1 gemultiplier% (2 0 0 0 O]
6 9 5 8 © 1000
2 7 -3 9 Lo
4 2 2 -1 R
* oxoxox ]
-6 3 3 4] L ]
1 -2 -1 3 2 0 0 0 O]
0 3 1 _21 «multiplier—6 6 1 0 0 O
0 -3 -1 6 <~ multiplier —2 2 *1 00
0 6 2 -7 «multiplier —4 4 * * 1 0
0 -9 -3 13 «multiplier 6 6 * * * 1
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2 00 0 O]

6 3 00 O

1 00

*

* * 1 O

1

6 * * *

1
3

™|

-2 -1

1

1 [« multiplier

p 11
3 3
-1

0

-3

0

-3 13

-9

0

_ O oo o«
o o o o o O 0o 0o o -
O O o - % o o o W « o o o v Qg
o o « % % O o 4 o o O o 4 o o
o m M o O o m M o o m M o O
N © N T @ N © N T @ N © N T ©
L | L
Il
~
o
© — | O —
™ o
: 2 ! !
= T = 3 ks
o = o = =
s 2= 2 2
2 5 2 E 3
%m% e e
1 T 1 T 1
3_21_35:_um._3_21_351m3_21_3510
T Hdlmo oo 7 Admo oo 7 Adlmo o o
R - o oo ¢ - o oo Y - O o o
— © oo o - © oo o - © o o o
Il
D

Thus, we have constructed the LU-decomposition

5
1

2 0 0 0 O

31 0 O

2

_50000
6 -9 010 1[0 0 O

4 6 0

A=LU =

167
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Example 3 Find LU-decomposition of A=

Solution

(_

2
3
1 |«
2
0

6 -2
-3

-12 8
6 0

“— multiplieré

multiplier — 3

< multiplier 12
« multiplier 6

1
multiplier — =
P 2

1
*

* = O

*

* *

* = O O

o O O

1

* denotes an unknown entry of L.

6 0
* 1

0
0
1
*

0

— O O

* = O O
= O O O

*» = O O
= O O O
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L2 2
3 3 3
0 1 2 1
2 |« multiplier — 4
0 0 5 2 « multiplier 2
0 0 -10 12|
p L2 2
3 3 3
0o 1 2 +
2
2
0 O 1 5 <—multiplieré
0 0 -10 12|
1122
3 3 3
01 2 1
2
2
0 0 1 "5 [« multiplier 10
0 0 0 8]
p L2 2
3 3 3
1
0O 1 2 =
U= 2
2
0 0 1 5 <—multiplier§1
0 0 O 1 |
, L2
6 0 0 O s 3
-2 0 0}jj0 1
Thus A=LU = 2
-12 4 5 O
-6 -2 -10 8|0 0 1
0 0 O

o NI= Wl

r—lml

6 O
3 -2
-12 4
-6 -2
6 O
3 -2
-12 4
-6 -2
O O
-2 0
4 5
-2 =10
6 O
3 -2
-12 4
-6 -2

* = O O

— O O O * g O O

o

— O O O

— O O O

-10

o O O O
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2 4 -1 5
. o -4 -5 3 -8
Example 4 Find an LU factorization of A = 5 4 1
-6 0 7 -3
Solution
2 4 -1 5 -2
-4 -5 3 -8 1
A= L=
2 -5 4 1 8
-6 0 7 -3 1]
* denote
1 2 15 -1 |« mu,ltiplierl
2 2
-4 -5 3 -8 1
2 -5 4 1 8
-6 0 7 -3 1|
1 2 21 % -1
0 3 1 92 -3|¢ muli.,‘lp?ler 4
0 -9 -3 -4 10|¢ multq?ll?r -2
0 12 4 12 -5] « multiplier 6
1 2 1S -1
2 1
0 1 1 2 REkn multzplzerg
3 3
0O -9 -3 -4 10
|0 12 4 12 -5
1 2 LS -1
2 2
0 1 12 -1
3 3
00 0 2 1) multiplier 9
00 0 4 7] multiplier —12

-2

% =
* = O

— O O O

S an unknow

5

* = O

— O O O

* = O O * = O O

* = O O

}

entry of L.

}

— O O O — O O O

— O O O
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12—15—1
2 2 2 0 00
1 2
01 — = -1 -4 3 00
U = 3 3 L:2910
O 0 0 2 1 B
7 -6 12 0 4
_0 0 0 1 Z_(—multiplier%
12 L2
2 0 0 0 2 2
4 3 00llo1 ¥ 2 4
ThusA:LU:2 9 1 0 3 3
B 00 0 2 1
-6 12 0 4 -
00 0 1 -—
L 4 |

Matrix Inversion by LU-Decomposition
Many of the best algorithms for inverting matrices use LU-decomposition. To understand
how this can be done, let A be an invertible nxn matrix, let A" =[x, x, --- x,] be

its unknown inverse partitioned into column vectors, and let 1 =[e, e, --- e,] be then

nxn identity matrix partitioned into column vectors. The matrix equation AA™ =1 can
be expressed as

A[X1 X o Xn]:[el & - en]
[Axl AXZ Axn]:[el € - en]
which tells us that the unknown column vectors of A™ can be obtained by solving the n-
linear systems
Ax, =e, AX,=6,,--, AX, =¢e, (1%)
As discussed above, this can be done by finding an LU-decomposition of A, and then
using that decomposition to solve each of the n systems in (1*).

Solving Linear System by LU-Factorization

When A =LU, the equation Ax = b can be written as L (Ux) = b. Writing y for Ux, we can
find x by solving the pair of equations; Ly=band Ux=y (2%)

First solve Ly = b for y and then solve Ux =y for x. Each equation is easy to solve
because L and U are triangular.
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Procedure
Step 1 Rewrite the system Ax=basLUXx =D (3%
Step 2 Define a new unknown y by letting U x =y (4%)

And rewrite (3*)asLy=Db

Step 3 Solve the system L y = b for the unknowny.
Step 4 Substitute the known vector y into (4*) and solve for x.

This procedure is called the method of LU-Decomposition.

Although LU-Decomposition converts the problem of solving the single system A x = b
into the problem of solving the two systems, L y = b and U x =y, these systems are easy
to solve because their co-efficient matrices are triangular.

Example 5 Solve the given system (Ax =b) by LU-Decomposition
2X, +6X,+2%X, =2
—-3x, —8X, =2 (1)
4x, +9X, + 2%, =3

Solution We express the system (1) in matrix form:
2 6 2| x 2

-3 -8 0||x,|=|2
4 9 2| X% 3
A X = b
We derive an LU-decomposition of A.
2 6 2 100
A=-3 -8 0 L=* 1
4 9 2 * ox 1
1 3 1] 2 0
-3 -8 0 <—mu|tip|ier% * 1 0}
4 9 2] * 1
1 3 ] 2 00
0 1 <« multiplier3 -3 10
0 -3 -2 <« multiplier -4 4 * 1
1 3 1 2 0 0
0 1 3|« multiplier3 -3 1 0
0 01 4 -3 1
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1 31 2 0
Uu=0 1 3 <—mu|tip|ierE L=-3 1
0 01 ! 4 -3 7
2 6 2] [2 0 0f[1 31
Thus -3 8 0|=|-3 1 0}|0 1 3 (2
4 9 2| |4 3 7|0 01
A = L U
From (2) we can rewrite this system as
2 0 0|1 3 1||x 2
-3 1 0]|0 1 3||x,|=|2 (3)
4 -3 7]|0 0 1j[x 3
L U X = b

As specified in Step 2 above, let us define y1, y, and y; by the equation

1 3 1][x Y,
0 1 3(x|=|Y, 4)
10 0 1jx Ys
U X =y
which allows us to rewrite (3) as
2 0 0|y, 2
-3 1 0||y,|=|2 (5)
|4 -3 7]V, 3
L y =D
2y, =2
or equivalently,as -3y, +Y, =2

4y, -3y, +7y,=3

This system can be solved by a procedure that is similar to back substitution, except that
we solve the equations from the top down instead of from the bottom up. This procedure,
called forward substitution, yields

yi=1l, Vy.=5 y3=2
As indicated in Step 4 above, we substitute these values into (4), which yields the linear
system

=<

o B W
N
I
N Ol e

1 1
0 3
0 1

xX X
oS
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X +3X, +%X; =1
or equivalently, X, +3X; =5

X, =2
Solving this system by back substitution yields x; =2, x;=-1, X3=2

Example 6 It can be verified that

3 -7 -2 2 1 0 0 0][3 -7 =2 2
-3 5 1 0 -1 1 0 0|0 -2 -1 2
A: = :LU

6 -4 0 -5 2 -5 1 00 0 -1 1

-9 5 -5 12 -3 8 3 1]|]0 0 0 -1
=)
. L. 5
Use this LU factorization of A to solve Ax = b, where b = .
11

Solution The solution of Ly = b needs only 6 multiplications and 6 additions, because the
arithmetic takes place only in column 5. (The zeros below each pivot in L are created
automatically by our choice of row operations.)

1 0 0 0 -9 1000 -9
-1 1 00 5 0100 -

L b]= ~ =[I

[ ] 2 510 7 0010 v
-3 8 31 11 0 001

Then, for Ux = vy, the “backwards” phase of row reduction requires 4 divisions, 6
multiplications, and 6 additions. (For instance, creating the zeros in column 4 of [U y]
requires 1 division in row 4 and 3 multiplication — addition pairs to add multiples of row
4 to the rows above.)

3 7 =2 2 -9 1 00 0 3 3

0O -2 -1 2 -4 01 00 4 4
[U vy]= ~ . X=

0O 0 -1 1 5 0 01 0 -6 —6

O 0 0 -1 1 0 00 1 1 -1

To find x requires 28 arithmetic operations, or “flops” (floating point operations),
excluding the cost of finding L and U. In contrast, row reduction of [A b] to [I x] takes
62 operations.

Numerical Notes
The following operation counts apply to an nxn dense matrix A (with most entries
nonzero) for n moderately large, say, n > 30.
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1. Computing an LU factorization of A takes about 2n*/3 flops (about the same as
row reducing [A b]), whereas finding A requires about 2n* flops.

2. Solving Ly = b and Ux =y requires about 2n? flops, becausenxn triangular
system can be solved in about n? flops.

3. Multiplication of b by A™ also requires about 2n® flops, but the result may not be
as accurate as that obtained from L and U (because of round off error when
computing both A™* and Ab).

4. If A is sparse (with mostly zero entries), then L and U may be sparse, too,
whereas A™ is likely to be dense. In this case, a solution of Ax = b with an LU
factorization is much faster than using A™.

Example 7(Gaussian Elimination Performed as an LU-Decomposition)
In Example 5 we showed how to solve the linear system

2 6 2| x 2
-3 -8 0]|x,|=|2 (6)
4 9 2] X 3

using an LU-decomposition of the coefficient matrix, but we did not discuss how the
factorization was derived. In the course of solving the system we obtained the
1

intermediate vector y =| 5 |by using forward substitution to solve system (5).
2

We will now use the procedure discussed above to find both the LU-decomposition and
the vector y by row operations on the augmented matrix for (6).

2 6 22 * 0 0
[Ab]=|-3 -8 © 2 * * 0|=L (*=unknown entries)
4 9 2 3 * ko
(1 3 1 1] 2 00
3 80 2 * * 0
4 9 2 3] * ok *
13 1 1 2 00
01 3 5 3 * 0
0 3 2 -1 4 * *
13 11] 2 0 0
0135 3 1 0
0 0 7 14] 4 3 *
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1311 2 0 0
[Uly]=l0 1 3 5 -3 1 0|=L
0012 4 -3 7

These results agree with those in Example 5, so we have found an LU-decomposition of
the coefficient matrix and simultaneously have completed the forward substitution
required to find y.

All that remains to solve the given system is to solve the system Ux =y by back
substitution. The computations were performed in Example5.

A Matrix Factorization in Electrical Engineering

Matrix factorization is intimately related to the problem of constructing an electrical
network with specified properties. The following discussion gives just a glimpse of the
connection between factorization and circuit design.

Suppose the box in below Figure represents some sort of electric circuit, with an input

Vi

and output. Record the input voltage and current by [i } (with voltage v in volts and

1
V2

current i in amps), and record the output voltage and current by{I } Frequently, the

2

V. V.
transformation {_1}—{_2} is linear. That is, there is a matrix A, called the transfer
I1 |2

matrix, such tha{\_/z} = A{\_’l}

I, L

L I,

— —>—
input v, electric v, output
terminals circuit terminals
Figure A circuit with input and output terminals.

Above Figure shows a ladder network, where two circuits (there could be more) are
connected in series, so that the output of one circuit becomes the input of the next circuit.
The left circuit in Figure is called a series circuit, with resistance R; (in ohms);

The right circuit is a shunt circuit, with resistance R,. Using Ohm’s law and Kirchhoff’s
laws, one can show that the transfer matrices of the series and shunt circuits, respectively,
are
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1 -R 1 0
and
0 1 -1/R, 1

Transfer matrix Transfer matrix
of series circuit of shunt circuit
Example 8
a) Compute the transfer matrix of the ladder network in above Figure .
. . 1 -8
b) Design a ladder network whose transfer matrix is [ 0.5 & }
Solution

a) Let A; and A, be the transfer matrices of the series of the series and shunt circuits,
respectively. Then an input vector x is transformed first into Ai;x and then into
A, (A1X). The series connection of the circuits corresponds to composition of linear
transformations; and the transfer matrix of the ladder network in (note the order)

[ 1 olft -R][ 1 -R
AzAi_[—l/R2 J[o 1}_{—1/& 1+R1/Rj(6)

b) We seek to factor the matrix [ . } into the product of transfer matrices, such

as in (6). So we look for R; and R, to satisfy

1 R 1 [1 -8
[—1/R2 1+R1/Rj{—o-5 5}

From the (1, 2) — entries, Ry = 8 ohms, and from the (2, 1) — entries, 1/R, = 0.5 ohm and
R2 = 1/0.5 = 2 ohms. With these values, the network has the desired transfer matrix.

Note:

A network transfer matrix summarizes the input-output behavior (“Design
specifications™) of the network without reference to the interior circuits. To physically
build a network with specified properties, an engineer first determines if such a network
can be constructed (or realized). Then the engineer tries to factor the transfer matrix into
matrices corresponding to smaller circuits that perhaps are already manufactured and
ready for assembly. In the common case of alternating current, the entries in the transfer
matrix are usually rational complex-valued functions. A standard problem is to find a
minimal realization that uses the smallest number of electrical components.
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Exercises
Find an LU factorization of the matrices in exercises 1 to 8.
3 -1 2
2 5
1. [ } 2. -3 -2 10
-3 -4
' 9 -5 6
1 3 -5 -3
3 -6 3
-1 -5 8 4
3. 6 -7 2 4,
4 2 -5 -7
-1 7
-2 -4 7 5
(2 -6 6]
2 -4 4 2 -4 5 -7
5 6 -9 7 -3 6. 3 5 -1
-1 4 8 0 -6 4 -8
'8 -3 9|
2 -4 -2 3
1 4 -1 5
6 -9 -5 8
3 7 -2 9
7. 8. 2 -7 -3 9
-2 -3 1 -4
4 -2 -2 -1
-1 6 -1 7
6 3 3 4|
Solve the equation Ax = b by using LU-factorization.
3 -7 -2 [—7 (4 3 -5 2
9 A=|-3 5 1 |b=|5 10. A=|-4 -5 7 |,b=|-4
6 -4 0] | 2 |8 6 -8 6
2 -1 2] 1 2 -2 4 0
11. A=|-6 0 -2|,b=|0 12. A=|1 -3 1|,b=|-5
8 -1 5| 4 3 7 5 7
1 -2 -4 -3 1 1 3 4 0 1
2 -7 -7 -6 7 -3 6 -7 2 -2
13. A= b= 14. A= b=
-1 2 6 4 0 3 3 0 -4 -1
-4 -1 9 8 3 5 3 2 9 2
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Lecture 16

Iterative Solutions of Linear Systems

Consistent linear systems are solved in one of two ways by direct calculation (matrix
factorization) or by an iterative procedure that generates a sequence of vectors that
approach the exact solution. When the coefficient matrix is large and sparse (with a high
proportion of zero entries), iterative algorithms can be more rapid than direct methods
and can require less computer memory. Also, an iterative process may be stopped as soon
as an approximate solution is sufficiently accurate for practical work.

General Framework for an Iterative Solution of Ax = b:
Throughout the section, A is an invertible matrix. The goal of an iterative algorithm is
to produce a sequence of vectors,

X(O),X(l),..., X(k),...

that converges to the unique solution say x" of Ax = b, in the sense that the entries

- - - - - * - -
inx ) are as close as desired to the corresponding entries in x for all k sufficiently
large.

To describe a recursion algorithm that produces x** from x *) , we write A=M - N
for suitable matrices M and N, and then we rewrite the equation Ax =b as Mx - Nx = b
and

Mx = Nx+Db

If a sequence { x *) } satisfies
Mx® D = Nx® +b (k=0,1,..) (1)

and if the sequence converges to some vector X , then it can be shown that AX =b. [The
vector on the left in (1) approaches Mx*, while the vector on the right in (1) approaches
NX +b. This implies that Mx =Nx +b and AX =b.

For x*“*" to be uniquely specified in (1), M must be invertible. Also, M should be

chosen so that x*“*V is easy to calculate. There are two iterative methods below to
illustrate two simple choices for M.

1) Jacobi’s Method:

This method assumes that the diagonal entries of A are all nonzero.

Choosing M as the diagonal matrix formed from the diagonal entries of A. So next
N=M-A,

L @)= Mx&D = (M - A)xN + Db (k=0,1,...)

For simplicity, we take the zero vector as x© as the initial approximation.
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Example 1:
Apply Jacobi’s method to the system
10X, + X - X3 = 18
X1 +15x, + X3 =-12
X1+ X+ 20x3 = 17 2

Take x© = (0, 0, 0) as an initial approximation to the solution, and use six iterations (that
is, compute X, ..., x®).

Solution:
X Y1
For some k, let x® = | x, [=(xq, X2, X3) and x**Y =]y, |=(y1, y2, y3)
X3 Y3
Firstly we construct M and N from A.
Here
10 1 -1
A=l1 15 1
-1 1 20
Its diagonal entries will give
10 0 O
M=0 15 0| and
0 0 20

100 0 O 10 1 -1 0 -1 1
N=M-A=/0 15 O0|-/1 15 1|=|-1 0 -1
0 0 20| |-1 1 20 1 -1 0
Now the recursion: Mx*® =(M —A)x® +b  (here k=0,1,...6)
implies
100 0 Oy, 0 -1 1]/x 18
0 15 0|y, |=|-1 0 -1y x,|+|-12
0 0 20|y, 1 -1 0]|x 17
10y, 0x, —1x, +1x, 18
=15y, [=|-1x +0x, = X, |+|-12
20y, 1x, -1x, +0x, 17
10y, 0x, —1x, +1x, +18
=15y, |=| -1x +0x, — X, —12
20y, 1x, —1x, +0x; +17

Comparing the corresponding entries on both sides, we have
10y1 = -Xo+X3+18
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15y, =-x;3  -X3-—-12
20y3 =X1—Xo + 17
And

y1 = (- X2 + X3 + 18)/10
Y2 = (- X1—X3—12)/15 3
y3 = (X1 — X2 + 17)/20

1st lteration:

For k=0, put x @ = (x, X2, X3) = (0, 0, 0) in (3) and compute
x W= (y1, V2, ys) = (18/10, — 12/15, 17/20) = (1.8, -0.8, 0.85)

2" Iteration:
Fork =1, putx ®=(1.8, -.8, .85)

y1=[-(-0.8) + (0.85) + 18]/10 = 1.965
y»=[-(1.8) - (0.85) — 12]/15 = -0.9767
ys = [(1.8) — (-0.8) + 17]/20 = 0.98

Thus x @ = (1.965, -.9767, .98).

The entries in x ©® are used on the right in (3) to compute the entries in x ©®, and so on.
Here are the results, with calculations using MATLAB and results reported to four

decimal places:
x© @ K@ x® x@ X X(®

0 1.8 1.965 1.9957 | |1.9993 | |1.9999 2.0000
O |-8] [-9767| |-9963| | -.9995| |-.9999| | -1.0000
0| |.85 .98 9971 .9996 9999 1.0000

If we decide to stop when the entries in x © and x €~ differ by less than .001, then we
need five iterations (k = 5).

Alternative Approach:

If we express the above system as

10x; + Xo - X3 = :|.83X1=18_X—2+X3
10

X+ 15+ X =-12mx, = 2 hTK ‘1;‘1 —%

Xt K20 = 17mx =t AR +;‘6‘ X2

..the equivalent system is
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_18-x,+x,
10
X22—12—x1—x3
15
x3:17+X1_X2
20

Now put (X1,X2,X3)=(0,0,0)= X in the RHS to have
x1=(18-0+0)/10 = 1.80
Xz= (-12-0-0)/15 =-0.80
X3 = (17+0-0)/20 = 0.85
Which gives x = (1.80,-0.80,0.85) ----put this again on RHS of the equivalent system
to get
X;=(18+0.80+0.85)/10 =1.965
Xo= (-12-1.80-0.85)/15 = -0.9767
x3= (17+1.80+0.80)/20 = 0.98
So in the similar fashion, we can get the next approximate solutions: xX® x® x® and x©
Next example will be solved by following this approach.
Example 2:
Use Jacobi iteration to approximate the solution of the system
20 X, + X, =X, =17
X, —10x, + X, =13
—X; +X, +10x, =18
Stop the process when the entries in two successive iterations are the same when rounded
to four decimal places.

Solution:
As required for Jacobi iteration, we begin by solving the first equation for x;, the second
for X,, and the third for xs. This yields

17 1 1
=———X,+—X,=0.85-0.05x, +0.05x
%20 200 20" ? ’
13 1 1
X, =——+—X +—X, =—1.3+0.1x, +0.1x 4
TR RAET % : )
18 1 1
X, = —+4+—x ——x, =1.8+0.1x —0.1x
10100 10" % ?

which we can write in matrix form as
X, 0 -0.05 0.05( x 0.85

X, (=101 0 0.1 ||x, |+|-13 (5)
Xy 01 -01 0 ||x 1.8
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Since we have no special information about the solution, we will take the initial
approximation to be x, =X, = x, =0. To obtain the first iterate, we substitute these values

into the right side of (5). This yields

10.85
-1.3
| 1.8

To obtain the second iterate, we substitute the entries of y; into the right side of (5). This
yields

Y. =

[ X, 0 -0.05 0.05][0.85] [0.85] [ 1.005
y,=[%,|[=/01 0 01| -13|+[-1.3|=|-1.035
'x,| |01 -01 0 |18 1.8 2.015

Repeating this process until two successive iterations match to four decimal places yields
the results in the following table.

Yo Y1 Y2 Y3 Ya Y5 Y6 Y7
X1 0 0.8500 | 1.0050 | 1.0025 | 1.0001 | 1.0000 | 1.0000 | 1.0000
X2 0 -1.3000 | -1.0350 | -0.9980 | -0.9994 | -1.0000 | -1.0000 | -1.0000
X3 0 1.8000 | 2.0150 |2.0040 | 2.0000 | 1.9999 | 2.0000 | 2.0000

The Gauss-Seidel Method:

This method uses the recursion (1) with M the lower triangular part of A. That is, M has
the same entries as A on the diagonal and below, and M has zeros above the diagonal. See
Fig. 1. As in Jacobi’s method, the diagonal entries of A must be nonzero in order for M to
be invertible.

AN * * * * *N0 0 0 O
* A\ * * * * *N\0 0 0
A=| * * *\* =* M=| * * *\0 0
* ok Kk Kk \* * ok ok X\
* * *x K * * *k k K* *

Figure 01:The Lower Triangu_lar Part of A

Example 3:
Apply the Gauss — Seidel method to the system in Example 1 with
x @ =(0,0,0) and six iterations.

10x; + Xo - X3 = 18
X1+ 15X + X3=-12
X1+ X+ 20x3= 17 (6)

Solution:
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X Yi
For some k, let x® = | x, |=(x1, X2, X3) and x&* P =]y, |=(y1, y2, y3)
X3 Ys
Again, firstly we construct matrices M and N from the coefficient matrix A.
10 1 -1
Here A=|1 15 1
-1 1 20
Since matrix M is constructed by
1) taking the values along the diagonal and below the diagonal of coefficient
matrix A.
2) putting the zeros above the diagonal at upper trianular position.
So
10 0 O
M=|1 15 0
-1 1 20
Now,
10 0 O 10 1 -1| |0 -1 1
N=M-A=1 15 0 (-1 15 1 |=|0 0 -1
-1 1 20| |[-1 1 20 0 0 O
Now the recursion: Mx*™® =(M —A)x® +b  (here k=0,1...6)
implies
10 0 O}y 0 -1 1| x 18
1 15 0|y, |=|0 0 -1y x,|+|-12
-1 1 20|y, 0 0 0 |x]| [17
10y, O 0 X, + X%, | [ 18]
=| Yy, 15y, 0 |=| —-Xx |+]|-12
__y1 yz 20y3 0 17 i
10y, O 0 —X, + X, +18
=y 15y, 0 |=| -x-12
=Y, Y, 20y, 0+17
Comparing the corresponding entries on both sides, we have
10y; = -Xp + X3+ 18
y1+15y, = - X3 — 12
-y1 + Yo + 20y3 =17
This further implies as
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10y, = —X, — X, +18 =y, = (=X, + X, +18) /10
Yy, +15y, ==X, 12 =y, = (=Y, — X, —12) /15 p ----------- (7
-y, +Y,+20y,=17= vy, =(y,—-y,+17)/ 20

Another way to view (7) is to solve each equation in (6) for xi, X», X3, respectively and
regard the highlighted x’s as the values:

X1 = (- Xo + X3+ 18)/10

Xo = (' X1 — X3 — 12)/15

X3 = (Xl - Xy + 17)/20 (8)

Use the first equation to calculate the new x; [called y; in (7)] from x; and xs. Then use
this new x; along with x3 in the second equation to compute the new x,. Finally, in the
third equation, use the new values for x; and x, to compute x3. In this way, the latest
information about the variables is used to compute new values. [A computer program
would use statements corresponding to the equations in (8).]

From x @ = (0, 0, 0), we obtain
x1=[-(0)+(0) +18)/10= 18
|

xe=[-(1.8)] —(0)-12)/15=-92

X3 = [+(1.8) - (-.42) +17]/20 = .986

Thus x @ = (1.8, -.92, .986). The entries in x ) are used in (8) to produce x ® and so on.

Here are the MATLAB calculations reported to four decimal places:
x© 5@ x@ x® x@ ) x(®)

0| | 18 1.9906 | |1.9998 2.0000 2.0000 2.0000
0| |[-92| |-9984| |-9999| |-1.0000 |-1.0000| |-1.0000
0| |.986 9995 1.0000 1.0000 1.0000 1.0000

Observe that when k is 4, the entries in x ) and x ®~ differ by less than .001. The values
in x ® in this case happen to be accurate to eight decimal places.

Alternative Approach:

If we express the above system as

10X + Xo- Xg= 18 = X; = (- Xo + X3 + 18)/10 ------ (a)
X1+15X2+ X3:-12 = X2:(-X1—X3—12)/15 ------ (b)
X+ Xo+ 203 = 17= X3 = (X — Xp + 17)/20 ------ (c)

Ist Iteration:
Put x,=x3 =0 in (a)
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x;=18/10 =1.80
Put x;=1.80 and x5=0 in (b)

Xp = (-1.80-0-12)/15=-0.92
Put x,=1.80, X, =-0.92 in (c)
x3=(1.80+0.92+17)/20 = 0.9863

x1 1.8
So, | x2 |=|-.92|=x®
X3 .986

2nd iteration:

Put x, = -0.92, x3=0.9863 in (a)
x,=(0.92+0.9863+18)/10 = 1.9906

Put x,=1.9906(from 2" iteration) and x3=0.9863(from 1% iteration) in (b)
X»=(-1.9906-0.9863-12)/15 = -0.9984

Put x;=1.9906, x2=-0.9984(both from 2" iteration) in (c)
X3=(1.9906+0.9984+17)/20 = 0.9995

x1] [1.9906
So, | x2|=|-.9984 | = x®
x3 .9995

So in the similar fashion, we can get the next approximate solutions: xX® x® x® and x©
Next example will be solved by following this approach.

Example 4:
Use Gauss-Seidel to approximate the solution of the linear system in example 2 to four

decimal places.
Solution:
As before, we will take x, =X, =X, =0as the initial approximation. First we will

substitute x, = 0 and x3 = 0 into the right side of the first equation of (4) to obtain the new
X1, then we will substitute x; = 0 and the new X, into the right side of the second equation
to obtain the new X,, and finally we will substitute the new Xx; and new X, into the right
side of the third equation to obtain the new xs;. The computations are as follows:

X, = 0.85—(0.05)(0) + (0.05)(0) = 0.85

X, =—1.3+(0.1)(0.85) + (0.1)(0) =-1.215

X, =1.8+(0.1)(0.85) — (0.1)(-1.215) = 2.0065
Thus, the first Gauss-Seidel iterate is

0.8500

y, =| —1.2150
2.0065
Similarly, the computations for second iterate are
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x, = 0.85— (0.05)(~1.215) + (0.05)(2.0065) =1.011075
X, =—1.3+(0.1)(1.011075) + (0.1)(2.0065) = —0.9982425

X, =1.8+(0.1)(1.011075) — (0.1)(—0.9982425) = 2.00093175
Thus, the second Gauss-Seidel iterate to four decimal places is
1.0111

y, ~| —0.9982
2.0009

The following table shows the first four Gauss-Seidel iterates to four decimal places.
Comparing both tables, we see that the Gauss-Seidel method produced the solution to
four decimal places in four iterations, whereas the Jacobi method required six.

Yo Y1 Y2 Y3 Y4
X1 0 0.8500 1.0111 1.0000 1.0000
X2 0 -1.2150 -0.9982 -0.9999 -1.0000
X3 0 2.0065 2.0009 2.0000 2.0000

Comparison of Jacobi’s and Gauss-Seidel method:

There exist examples where Jacobi’s method is faster than the Gauss-Seidel
method, but usually a Gauss-Seidel sequence converges faster (means to say iterative
solution approaches to the unique solution), as in Example 2. (If Parallel processing is
available, Jacobi might be faster because the entries in x® can be computed
simultaneously.) There are also examples where one or both methods fail to produce a
convergent sequence, and other examples where a sequence is convergent, but converges
too slowly for practical use.

Condetion for the Convergence of both Iterative Mthods:

Fortunately, there is a simple condition that guarantees (but is not essential for)
the convergence of both Jacobi and Gauss-Seidel sequences. This condition is often
satisfied, for instance, in large-scale systems that can occur during numerical solutions of
partial differential equations (such as Laplace’s equation for steady-state heat flow).

An nxn matrix A is said to be strictly diagonally dominant if the absolute value of
each diagonal entry exceeds the sum of the absolute values of the other entries in the
same row.

In this case it can be shown that A is invertible and that both the Jacobi and Gauss-Seidel
sequences converge to the unique solution of Ax = b, for any initial x®. (The speed of
the convergence depends on how much the diagonal entries dominate the corresponding
row sums.)

The coefficient matrices in Examples 1 and 2 are strictly diagonally dominant, but the
following matrix is not. Examine each row:
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6 2 -3 |-6|> [2]|+ |-3]|
1 4 =2 4] > 1]+ |-2]
350 B1= 3|+ -]

The problem lies in the third row, because |8| is not larger than the sum of the
magnitudes of the other entries.

Note:
The practice problem below suggests a TRICK(rearrangement of the system of
equations) that sometimes works when a system is not strictly diagonally dominant.

Example 5:
Show that the Gauss-Seidel method will produce a sequence converging to the

solution of the following systems, provided the equations are arranged properly:
X1—3X2+ Xz=-2
—6X1 +4x, + 11x3 =1
51— 2% — 2x3=9
Solution:
The system is not strictly diagonally dominant, as for the 1% row
|coefficient of x| < |coefficient of x,|+|coefficient of x,|
or [ <|-3+[
so neither Jacobi nor Gauss- Seidel is guaranteed to work. In fact, both iterative methods
produce sequences that fail to converge, even though the system has the unique solution
X1 = 3, X2 = 2, x3 = 1. However, the equations can be rearranged as
BX1—2X— 2X3=9
X1—3X2+  Xz=-2
—6x; +4x, + 11x3=1
So,
for 1% equation (row);
|coefficient of x,| > |coefficient of x,|+|coefficient of x|
or [5>]-2+|-2|
For 2" equation(row);
|coefficient of x,| > [coefficient of x,|+|coefficient of x,|
or |-3>[1+]
For 3" equation(row);
|coefficient of x,|>|coefficient of x|+ |coefficient of x,|

or [11>|-6|+|4|

Now the coefficient matrix is strictly diagonally dominant, so we know Gauss-Seidel
works with any initial vector. In fact, if xX© = 0, then x® = (2.9987, 1.9992, .9996).
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Exercises:

Solve the system in exercise 1 to 3 using Jacobi’s method, with x® = 0 and three
iterations. Repeat the iterations until two successive approximations agree within a
tolerance of .001 in each entry.

. 4x +X, =7 ) 10x, —x, =25
X 45X, =-7 "X, +8x, =43
3% + X, =11 S0x — X, =149
3. =X —5X, +2X%, =15 4. x —-100x, +2x, =-101
3X, + 7%, =17 2X, +50%x, =98

In exercises 5 to 8, use the Gauss Seidel method, with X = 0 and two iterations.
Compare the number of iterations needed by Gauss Seidel and Jacobi to make two
successive approximations agree within a tolerance of .001.

5. The system in exercise 1 6. The system in exercise 2

7. The system in exercise 3 8. The system in exercise 4

Determine which of the matrices in exercises 9 and 10 are strictly diagonally dominant.

£ 4 [9 5 2
9. (a) [4 3} )| 5 -8 -1
-2 1 4
— 5 3 1
10. (a) {2 3} (b) |3 6 -4
1 -4 7

Show that the Gauss Seidel method will produce a sequence converging to the solution of
the following system, provided the equations are arranged properly:

X, —3X,+ Xyg=-2 —X +4X,— % =3
11. —6x +4x, +11x, =1 12. 4x - X, =10
5 X —2X,-2x%, =9 - X, +4X,;=6
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Lecture 17

Introduction to Determinant

In algebra, the determinant is a special number associated with any square matrix.
As we have studied in earlier classes, that the determinant of 2 x 2 matrix is defined as
the product of the entries on the main diagonal minus the product of the entries off the
main diagonal.. The determinant of a matrix A is denoted by det (A) or |A|

a b
For example: A= { }

c d
Then det (A) = ad-bc.
or |A| =ad - bc

1 2
Example: Find the determinant of the matrix A = {3 4}
1

A:
||‘3

2
4‘: 1x4-2x3 =4—6=—2

To extend the definition of the det(A) to matrices of higher order, we will use subscripted

entries for A.
a a
A:{ 11 12}
bp1 b

a1 92

det (A) =
) bpy b2

= a11bpp — A2bp1

This is called a 2x2 determinant.

The determinant of a 3x3 matrix is also called a 3x3 determinant is defined by the
following formula.

aj; a2 13
a1 42 423 1)
az] a3z aa3

For finding the determinant of the 3x3 matrix, we look at the following diagram.

2 1
az] azo
a a3
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We write 1% and 2" columns again beside the determinant. The first arrow goes from
ay1 to ag3 which gives us product: aj1a00a33 . The second arrow goes from as» to as;,

which gives us product: ajoap3azy . The third arrow goes from a3 to as which gives us
the product: a;3ax1a3, . These values are taken with positive signs.

The same method is used for the next three arrows that go from right to left downwards,
but these product are taken as negative signs.

= ap1appagz3+ad pap3az|+a3aazp - a13apaz) - ag1ap3agzp - apan1az;3

1 2 3
Example 2: Find the determinant of the matrixA=| -4 5 6
7 -89
1 2 3
detA=|-4 5 6
7 -89
1 2 312
=-4 5 6/-45
7 -8 97-8

=1x5x9 + 2x6x7 + 3x(-4)x(-8)-3x5x7 -1x6x(-8)-2x(-4)x9

=45+84+96 -105+48+72

=240

We saw earlier that a2x2 matrix is invertible if and only if its determinant is nonzero.

In simple words, a matrix has its inverse if its determinant is nonzero. To extend this
useful fact to larger matrices, we need a definition for the determinant of the nxn matrix.
We can discover the definition for the 3x3 case by watching what happens when an
invertible 3x 3 matrix A is row reduced.

Gauss’ algorithm for evaluation of determinants:

1) Firstly we apply it for 2x2 matrix say
2 3
A=
<
R; — R, — 2R, (Multiplying 1% row by 2 and then subtracting from 2" row)

2 3 ]2 3
{4—2(2) 3—2(3)H0 —3}

Now the determinant of this upper triangular matrix is the product of its entries on main
diagonal that is
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Det(A)=2(-3)-0x3 =-6-0 =-6
2) For 3x3 matrix say
-2 2 -3
B=-1 1 3
2 0 -1
By R!, = R, (Interchanging of 1% and 2" rows)
-1 1 3
~-2 2 -3
2 0 -1

R, — R, — 2R, (Multiplying 1% row by *-2” and then adding in the 2™ row)
R! — R, + 2R, (Multiplying 1* row by ‘2’ and then adding in the 3 row)

-1 1 3]
~10 0 -9
0 2 5|
By R,, — R,, (Interchanging of 2" and 3" rows)
-1 1 3]
~10 2 5
0 0 -9

Now the determinant of this upper triangular matrix is the product of its entries on main
diagonal that is

Det(B)=(-1)-2-(-9) =18

So in general,

For a 1x1matrix:
say, A=[a;] - we definedetA=a,, .

For 2x2 matrix:

{au aiz}
a21 a22
By R, >R, —[%} R, provided that a,, #0

1

a; a,
~ a
0 ay — i a,

. A =det A= product of the diagonal entries
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a21
=a, (azz __aizj = a8y, — 8,8,
a;
For 3x3 matrix say:
a; &, a5
a21 a22 a23
85 8y a5
By R, >R, —EﬁJ R, R, =R, —(&J R, provided that a,, #0
a a
a, a; a5
~1 0 858y, — 81,8y 8538, — A58y
a; a;
0 Ay — Q1,85 8855 — 358,
L a; a; ]
A58, — 1,85
By R, >R,—| —— R, provided that 2221~ %% _
Ay — 8,8y, a,
a;
a; a, a,
~lo Ay — &8y 8y38; — a3y a,# 0
a, a
A3pdy; — 8,85
0 0 853 — A58y, _ Ap3dyy — A58, Ay
a, a, B8y — 88y,
G
Which is in echelon form.Now,
A =det A= product of the diagonal entries
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=a, ( Ayl — &8y, j( 81855 — B3 _( A8y — &30y J[ 8308, — 84,83 j}
i 8y ay 8281 — 8,8,

_ _ A 853 — A58y _ . Ap3dyy — A58, A3y, — 8,85
N T e C et

1
= ;{(azzau - a12a21)(a11a'33 - a13a31) _(a23a11 - a13a21)(a32a11 - 312831)}

1

1
= ; {aizlazzaas — 818558383 — &858, 855 + 88,8385, — a23a121a32 T 838,885 + 83385838 — a12a21313a31}

1

1
= ; {afla22a33 — 8,8,5,8383; — 8,858,855 — azsaflasz T 888,85 + a13a21asza11}

1
Z&{

1

Q185,835 — 8y, Q385 — 81851853 — Ap38y;8;, +Ay33,8, + a13a21a32}

= Q185,853 + 81,8385, +8138,,8;, — 81,8y 853 — ;8385 — 385,85

Since A is invertible, A must be nonzero. The converse is true as well.

To generalize the definition of the determinant to larger matrices, we will use
2 x 2 determinants to rewrite the 3x3 determinant A described above. Since the
terms in A can be grouped as:

A = (2,885 — 84, 8,58,) — (24,8558 — a,3,35,) + (84388, — 438,3;,)
= an(azzass - azsasz) —a, (a21a33 - a23a‘3l) +a; (az1a32 - azza31)

a a a a a a
Azaﬂ-det{ 22 23}—812@8{ 21 23}+a13_de,{ 21 22}

ap Ay Ay Ay ay Ay
a, a a, a a, a
A=31 . 22 23 _ 21 23 +31 . 21 22
Tl Al Claw Ay ojay Ay
For brevity, we writteA=a,, -det A, —a,, -det A, +a,,-det A, (3)
a, a a, a
det(A)=|"2 % | det(A,)=| 2 2| and det(A,)=|?* 22
2 3 a3l 3 1 a32
where

Au; is obtained from A by deleting the first row and first column.

Az, is obtained from A by deleting the first row and second column.

Auz is obtained from A by deleting the first row and third column.

So in general, for any square matrix A, let A;; denote the sub-matrix formed by deleting
the ith row and jth column of A.

Let’s understand it with the help of an example.
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Example3:

1 4 3
Find the determinant of the matrix A={5 2 4
3 6 3

1 4 3

Solution: Given A=|5 2 4

3 6 3

1 4 3

|Al=b 2 4

3 6 3
=1‘2 4‘_4‘5 4+35 2
6 3 3 3 3 6

=1(2x3-4x6)—-4(5x3-4x3)+3(5x6—-2x3)
=1(6-24)-4(15-12) + 3(30-6)
=1(-18)—4(3) +3(24)

=-18-12+72
=42
1 -2 5 0
For instance, if A2 0 4 -1
31 0 7
0 4 -2 0

then Ags; is obtained by crossing out row 3 and column 2,

[1 TZ 5 OW 1 5 o0
2 o 4 -1| sothat Asz{z 4 1}
3T 0 7
: |

4 -2 0
We can now give a recursive definition of a determinant.

When n = 3, det A is defined using determinants of the 2x2submatrices A ;.
When n = 4, det A uses determinants of the 3x 3 submatrices A
In general, an nxndeterminant is defined by determinants of (n—1) x (n—1) sub matrices.
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Definition:

For n>2,the determinant of nxn matrix A =[a;]is the sum of n terms of the form
ta,; x (det A ;), with plus and minus signs alternating, where the entries a,,a,,,---,a,,
are from the first row of A.

Here for a;,
1=1,2,3,...,n (1<i<n)
j=12,3,....,.n (1<j<n)
In symbols,det A=a,, det A, —a,, det A, +...+(-1)""a,, det A, = > (-1)""a,; det A

j=1

Example 4:
1 5 0
Compute the determinantof A=|2 4 -1
0 -2 0
Solution:
Here A is nxn=3x3matrix such that
i=123
j=123

- det(A) =Y (-1)""'a,; det A ; and here j=1,2,3
j=1

3
- det(A) = (-1)"a; det A; = (-1)"a, det A, +(-1)"*ay, det A, + (-1)"a,, det A,

=

=a, det Au — a5 det A12 +ay; det A13

det A=1.det 4 -1 —5.det 2 -1 +0.det 2 4
-2 0 0 O 0 -2

4 -1

detA=1.
I

= 114(0) - (-1)(-2)1 -5 [ 2(0) - 0(-1)] +0[2(-2) - 4(0)]

=1(0-2) ~5(0—0) +0(—4 - 0) = —2

Minor of an element:

If A is a square matrix, then the Minor of entry a; (called the ijth minor of A) is
denoted by M;; and is defined to be the determinant of the sub matrix that remains when
the ith row and jth column of A are deleted.
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In the above example, Minors are the followings:

2 -1
0 O

4 -1

2 4
Mll_‘_z O ‘

" M“:‘ 0 -2

Cofactor of an element:
The number Cij=(-1)""M;; is called the cofactor of entry a;j(or the ijth cofactor of A).
When the + or — sign is attached to the Minor, then Minor becomes a cofactor.

In the above example, Cofactors are the followings:

C11 = (_1)l+1 M., C:12 = (—1)1+2 M 12 1 C13 = (_1)1+3 M 13
4 -1 2 -1 2 4
C.. = (=1 ’ C..=(=1)+2 C..=(-1 1+3
31 -4
Example 5: Find the minor and cofactor of the matrixA={2 5 6
1 4 8
31 -4
Solution: Here A=|2 5 6
1 4 8

The minor of entry a;; is

5 6
MH:F 5 6 =‘4 8‘:5><8—6x4=40—24=16
8

and the corresponding cofactor is
Cy= (_1)1+1M11 =M, =16
The minor of entry as; is

-4
3 4
M,, =|2 6= =26
2 6
and the corresponding cofactor is
C, =(-)**M,, =-M,, = — S
32 = 32 = 32 = 2 6 -
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Alternate Definition:
Given A=[a;;], the (i, j)-cofactor of A is the number C; given by

C;; = (-1)"'det A, (4)
Then detA=a,C,+a,C,+...+a,C,

This formula is called the cofactor expansion across the first row of A.

1
Example 6: Expand a 3x3 determinant using cofactor conceptA=(-4 5 6
7 -89
Solution: Using cofactor expansion along the first column;
! 2 3 5 6 2 3 2
-4 5 6= (1)(-1 1+1 —4)(-1 2+1 7Y (=1 341
7—89()()_8 9‘+( )()_8 9+()()56

Now if we compareit with the formula (4),

=1C,, + (-4)C,, +7C,,

6 3
= (O(-1)° ol (-4 (-1)° 9

2 2 3
PRI GICH 6‘

5
-8

5 6 2 3
=(1)(1)‘_8 9 +(7)(1)‘5 6

2 3
F(-4)(-1) ‘_8 ;

5 6

-1
‘—8 9

+4 +

8 o5 6
=1(45-(-48)) + 4 (18— (-24)) +7 (12 - 15)
=1(45+48)+4(18+24)+7(12-15)

= (1)(93) + (4)(42) + (7)(-3) = 240

Using cofactor expansion along the second column,
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1 2 3
142 -4 6 2+21 3 3+2 1 3
45 6=DT . FOEYTL I EBEDT 6‘
7 -89
5|4 6 J1 3 5|1 3
=(2)(-1 . 9‘+(5)(—1) . 9‘+(—8)(—1) 4 6‘
-4 6 1 3 1 3
=(2)(—1)‘7 9+(5)(1) . 9+(—8)(—1) ‘_4 6‘
‘—4 6| |1 3 1 3‘
=_2 +5 +8
7 9 |7 9 |4 6

=-2(-36 -42)+5(9-21)+8(6-(-12))

= (=2)(=78) + (5)(~12) + (8)(18) = 240

Theorem 1: The determinant of an nxn matrix A can be computed by a cofactor
expansion across any row or down any column. The expansion across the ith row using
the cofactors in (4) is

detA=4a,C,; +a,C,+--+4,C,

mn-=in

The cofactor expansion down the jth column is

detA=a,C, +a,,C, +-+a,C

nj = nj

The plus or minus sign in the (i, j)-cofactor depends on the position of a; in the matrix,

regardless of the sign of ajitself. The factor (—1)'*'determines the following
checkerboard pattern of signs:

Example 7: Use a cofactor expansion across the third row to compute det A, where
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1 5 0
A=|2 4 -1
0 -2 0

Solution: Computedet A=a,,C,, +4&,,C,, +a,,C,,

= (_1)%1 Ay det A31 + (_1)3+2 as, det Asz + (_1)%3 Ay det Asa

5 0 10
=0 —(-2

+0

15
2 4

=0+2(-1)+0=-2

Theorem 1 is helpful for computing the determinant of a matrix that contains many
zeros. For example, if a row is mostly zeros, then the cofactor expansion across that row
has many terms that are zero, and the cofactors in those terms need not be calculated.

The same approach works with a column that contains many zeros.

2 0 0 5
. -1 2 4 1
Example 8: Evaluate the determinant of A= 3 0 0 3
8 6 0O
2 0 0 5
-1 2 4 1
Solution: det(A) =
3 0 0 3
8 6 0 O

Expand from third column
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det(A) =0xC, +4xC,, +0xC,, +0xC,,

=0 +4xC,; +0+0

= 4xC,,
2 05
=4x(-1)**13 0 3
8 6 0

Expand from second column

2 5
:—4(0 + 0 + (—6)‘3 3U

2 5
= (-4) (—6)‘3 3‘

=-216

Example 9: Show that the value of the determinant is independent of &

sin@ cosd 0
A=| -coséd sin@ 0
cos@—sin@ sin@+cosd 1

sin@ cosd 0
Solution: Consider A=| -cosé& sin@ 0

cos@—sind sind+cosd 1
Expand the given determinant from 3™ column we have

=0-0+(-1)*°[sin?@ +cos’ F] =1
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'3 -7 8 9 -6
0 2 5 7 3
Example 10: Compute det A, where A=|0 0 1 5 0
0 0 2 4 -1
00 0 -2 0

Solution: The cofactor expansion down the first column of A has all terms equal to zero
except the first.

2 5 7 3
01 5 0

Thus detA=3 0 2 4 - -0C,,+0.C,, -0C,, +0C,,
0 0 -2 0

Henceforth we will omit the zero terms in the cofactor expansion.

Next, expand this 4x4 determinant down the first column, in order to take advantage of
the zeros there.

1 5 0
We have detA=3x2|12 4 -1
0 -2 0

This 3x3 determinant was computed above and found to equal 2.
Hence det A = 3x2x(-2) = - 12.

The matrix in this example was nearly triangular. The method in that example is easily
adapted to prove the following theorem.

Trianqular Matrix:

A triangular matrix is a special kind of m x n matrix where the entries either below or
above the main diagonal are zero.

1 4 2 I 00
0 3 4 2 8 0
0 0 1 4 9 7

is upper triangular and is lower triangular matrices.

Determinants of Triangular Matrices:

Determinants of the triangular matrices are also easy to evaluate regardless of size.

Theorem: If A is triangular matrix, then det (A) is the product of the entries on the main
diagonal.
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Consider a 4x4 lower triangular matrix.
a, 0 0 O]

a, a, 0 0
a31 a32 a33 0
L dy 8y 83 Ay _

A=

Keeping in mind that an elementary product must have exactly one factor from each row
and one factor from each column, the only elementary product that does not have one of
the six zeros as a factor is (a;,a,,8,,3,,) . The column indices of this elementary product

are in natural order, so the associated signed elementary product takes a +.

Thus, det (A)= a, x @, x8y;x 8y,
-2 5 7
Example 11: 0 3 8/=(-2)(3)(5)=-30
0 0 5
1 0 0 O
9 0 O
=1D)(9)(-1(-2) =18
e 4 o|F0EEE)
3 8 -5 -2
1 2 7 -3
01 4 1
=D)D)(2)(3)=6
0o s 2|F00QE
00

The strategy in the above Example of looking for zeros works extremely well when an
entire row or column consists of zeros. In such a case, the cofactor expansion along such
a row or column is a sum of zeros! So the determinant is zero. Unfortunately, most
cofactor expansions are not so quickly evaluated.

Numerical Note: By today’s standards, a 25x25matrix is small. Yet it would be
impossible to calculate a25x 25 determinant by cofactor expansion. In general, a cofactor
expansion requires over n! multiplications, and 25!~1.5x10%.

If a supercomputer could make one trillion multiplications per second, it would have to
run for over 500,000 years to compute a 25x25 determinant by this method.
Fortunately, there are faster methods, as we’ll soon discover.
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5 -7 2 2

Example 12: Compute 0 4
-5 -8 0 3

0 5 0 -6

Solution: Take advantage of the zeros. Begin with a cofactor expansion down the third
column to obtain a 3x3 matrix, which may be evaluated by an expansion down its first
column,

5 -7 2 2
0 3 0 -4 0 3 -4
= (-1)**2|-5 -8 3

5 8 0 3
0 5 -6

0 5 0 -6

3 -4
:2__12+1_5 :20
(-1)>( )‘5 _6‘

The -1 in the next-to-last calculation came from the position of the -5 in the3x3
determinant.
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Exercises:
Compute the determinants in exercises 1 to 6 by cofactor expansions. At each step,
choose a row or column that involves the least amount of computation.

6 0 0 5 1 2 5 2

1 7 2 -5 0 0 3 O
1. 2.

2 00 O 2 6 -7 5

8 3 1 8 5 0 4 4

3 5 -8 4 4 0 O

0 -2 3 -7 7 -1 0 O
3. 4.

0 0 1 5 2 6 3 O

0 0 0 2 5 8 4 -3

4 0 -7 3 -5 6 3 2 40

00 2 0 O 9 0 410
5 73 6 4 -8 6 8 5 6 71

5 0 5 2 -3 3 0 0 00O

00 9 -1 2 4 2 3 20

Use the method of Example 2 to compute the determinants in exercises 7 and 8. In
exercises 9 to 11, compute the determinant of elementary matrix. In exercises 12 and 13,

a b
verify that det EA = (det E) . (det A), where E is the elementary matrix and A= L } :

d
30 4 2 4 3 100 k 00
7. 23 2 s 2| 9 010 10 [0 10
05 - 1 4 - 0k 1 00 1
0 10 ]
1k} {01}
1. [1 0 0] 12 13,
0 1 10
00 1 -

3 1
14. Let A= 4 2}. Write 5A. Is det 5A = 5 det A?

a b
15. Let A= c d} and k be a scalar. Find a formula that relates det (kA)to k and det A.
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Lecture 18

Properties of Determinants

In this lecture, we will study the properties of the determinants. Some of them have
already been discussed and you will be familiar with these. These properties become
helpful, while computing the values of the determinants. The secret of determinants lies
in how they change when row or column operations are performed.

Theorem 3:(Row Operations): Let A be a square matrix.
a. If a multiple of one row of A is added to another row, the resulting
determinant will remain same.
b. If two rows of A are interchanged to produce B, then det B = —det A.
c. If one row of A is multiplied by k to produce B, then det B =k . det A.

The following examples show how to use Theorem 3 to find determinants efficiently.
a. If a multiple of one row of A is added to another row, the resulting determinant
will remain same.

Example:

&; ap d
A=|a, @, 8y

a31 a32 a33
Multiplying 2nd row by non — zero scalar say 'k'as
ka,, ka,, ka,;————adding this in st row then'A"becomes

a:l.l + kaZl a12 + ka'22 a13 + ka23
=| 8y Ay 3 R — R, +kR,
a31 a32 a33

If each element of any row(column) can be expressed as sum of two elements then the
resulting determinant can be expressed as sum of two determinants, so in this case

all alZ a13 kaZl ka22 ka23

A=1ay 8y aylt|ay 8y ay

a31 a32 a33 aSl a32 a33

all a12 a13 a‘21 a22 a23

A=la, a, ay|+kla, a, ay| Byusing property (c)of above theorem 3.

a31 a32 a33 a31 a32 a33
If any two rows or columns in a determinant are identical then value of this determinant
is zero. So in this case R =R,
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8, a, ag
L A=1a, ay,  ay+k(0)

83 8y g

8; dp
=@y 8, axj/=A

83 85 g

b. If two rows of A are interchanged to produce B, then det B = —det A.
Example 1:

1 2 3
A=l5 11
0 8 9
1 2 3
Now,detA=|5 1 1/=1(9-8)-2(45-0)+3(40-0)=1-90+120=31
0 89
2 1 3
Now interchange column 1st with 2" we get a new matrix, B=1 5 1
8 09
2 1 3
detB=|1 5 1/=2(45-0)-1(9-8)+3(0—-40)=90-1-120=-31
8 0 9

c. If one row of A is multiplied by k to produce B, then det B =k . det A.

1 2 3
A=|5 0 1

0 8 9
|A|=1(0-8) — 2(45—-0) + 3(40-0)

=—8-90+120=22

MultiplingR, by k, we get say

1k 2k 3k
B=|5 0 1

0 8 9
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|B|=k(40-0) — 2k (45— 0) +3k (40 -0)
=40k —90k +120k =22k
=k|A|
Example 2:
1 2 3 4
2 3 41
Evaluate A=
3 41 2
4 1 2 3
Solution:
1 2 3 4
2 3 41
det A=
3 41 2
4 1 2 3
1 2 3 4
o -1 -2 -7 , , ,
= 0 -2 -8 -10 by R, > R, +(-2)R,R;, > R, +(-3)R,R, = R, +(-4)R,
0 -7 -10 -13
-1 -2 -7
=1-2 -8 -10 expanding from Istcolumn
-7 -10 -13
1 2 7
=(-1)(-2)(-1)[1 4 5| taking (-1),(-2)and (-1)common from1ist,2nd,3rd rows
7 10 13
1 2 7
=(-2)0 2 -2| byR,’ >R, +(-)R,R,’ > R, +(-7)R,
0 -4 -36
=(-2) 2 _2‘ expanding by1st column
-4 -36
=(-2)(2)(-4) |i _91| taking 2and (-4) common from1st and 2nd rows respectively.
=16|1 _| by R, + (-1)R,
0 10
=160
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4 2 5 10
: . 116 3
Example 3: Evaluate the determinant of the matrix A= - 30 5
0 25 8
Solution:
4 2 510
1 16 3
detA=
7.3 0 5
0 25 8
1 16 3
=— 42 10 interchanging R, and R, (R/,)
7 3 5
0 25 8
1 1 6 3
0 2 T T2 By R 5R+(AR.R SR H(DR
0 -4 -42 -16
0 2 5 8
-2 -19 -2
=—|-4 -42 -16 expanding from 1st column
2 5 8
2 19 2
=(-1)*|4 42 16 taking (-1) asa common factor from R, and R,
2 5 8
2 19 2
=—|4 42 16
2 5 8
119 2
=-2|2 42 16
1 5 8
1 19 2
=(-2)0 4 12 ByR,’ >R, +(-2)R,R, >R, +(-1)R,
0 -14 6
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1 19 2

=(-2)|0 4 12 R,+(-2)R,R;+(-DR
0 -14 6

=—2‘4 expand from Ist column

= 2(24+168)=—384

X a+Xx b+c

Example 4: Without expansion, show that [Xx b+Xx c+a|=0

X C+X a+b

Solution:
X a+Xx b+c

X b+x c+a

X C+X a+b

X a+X—-X b+c

X b+x-x c+a|l ByC, »C,-C,
X C+X—-X a+b
X a b+c

X b c+a

X € a+b

Taking 'x'common fromC;
1 a b+c
=x1 b c+a
1 ¢ a+b
1 a+b+c b+c
=x[lL b+c+a c+al ByC, »C,+C,

1 c+a+b a+b

Now taking (a+b+c) common form C,
1 1 b+c
=x(a+b+c)l 1 c+a
1 1 a+b

=0 as column Ist and 2nd are identical (C, = C,). So its value will be zero.
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2 3101
11312
Example 5: Evaluate A=[2 1 2 3 4
3 2112
4 1100
Solution: Interchanging R; and R, we get
1 131 2
2 3101
A=-2 1 2 3 4
3 2112
41100
R, ->R,-2R,R’ >R, -2R,R, > R,-3R,R' > R, —4R,
1 1 3 1 2
0o 1 -5 -2 -3
=0 -1 4 1 0
0O -1 -8 -2 -4
0 -3 -11 -4 -8

expand from C1

1 -5 -2 -3
I
-1 -8 2 -4

3 -11 -4 -8

R, >R, +R,R/ >R +R,R/ >R, +3R,
1 5 -2 -3
b 9 1 -3

0 13 4 -7
0 —26 -10 -17

expand from C1

9 -1 -3
=—|-13 -4 -7
26 -10 -17
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taking (-1) common from Ist,2nd and 3rd row

9 1 3
=13 4 7
26 10 17
interchange Ist and 2nd Column(C;,)
1 9 3
=-|4 13 7
10 26 17
C,—>C,-9C,C,—>C,-3C,
1 0 0
=—|4 -23 -5
10 -64 -13
expand from Ist row
:-"23 '5 ‘ =—(299-320) =21
-64 -13

An Algorithm to evaluate the determinant:

Algorithm means a sequence of a finite number of steps to get a desired result. The word
Algorithm comes form the famous Muslim mathematician AL-Khwarizmi who invented
the word algebra.

The step-by-step evaluation of det(A) of order n is obtained as follows:

Step 1: By an interchange of rows of A (and taking the resulting sign into account) bring
a non zero entry to (1,1) the position (unless all the entries in the first column are zero in
which case det A=0).

Step 2: By adding suitable multiples of the first row to all the other rows, reduce the
(n-1) entries, except (1,1) in the first column, to 0. Expand det(A) by its first column.
Repeat this process.

Or continue the following steps.

Step 3: Repeat step 1 and step 2 with the last remaining rows concentrating on the second
column.

Step 4: Repeat step 1,step2 and step 3 with the remaining (n-2) rows, (n-3) rows and so
on, until a triangular matrix is obtained.

Step5: Multiply all the diagonal entries of the resulting triangular matrix and then
multiply it by its sign to get det(A)
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1 -4 2
Example 6: Compute det A, where A={-2 8 -9].
-1 7 0

Solution: The strategy is to reduce A to echelon form and then to use the fact that the
determinant of a triangular matrix is the product of the diagonal entries. The first two
row replacements in column 1 do not change the determinant:

1 4 2
detA=|-2 8 -9
-1 7 0
1 4 2
=0 0 -5 ByR, >R +2R,Ri—>R+R;
0 3 2
An interchange of rows 2 and 3 (R, ), it reverses the sign of the determinant, so
1 4 2
detA=-|0 3 2|=-D)(3)(-5)=15
0 0 -5

Example 7: Compute det A, where
2 -8 6 8

|3 -9 5 10
13 0 1 2|
1 -4 0 6

Solution: Taking’2’ common from 1% row
1 -4 3 4

3 9 5 10
-3 0 -2
1 4 6

A

detA=2

o -

-4 3 4
3 -4 2
0 6 2
0 3 2

det A=2 By R, »>R,-3R,R, >R, +3R,R, >R, —R,

o O O -
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1
0

detA=2

Example 8: Show that

Solution:

X 2
2 X
2 2
2 2
X+6
X+6
X+6
X+6

2
2
X
2

N N X DN

0
0

-4 3 4
3 -4 -2
& 5| BYRIOR-IR)
0O 0 1

=2{(MG)(-6)D}=-36

X DN DN DN

Taking

=(X+6)

=(X+6)

which is the triangular matrix and its determinant is the prodcut of main diagonal’s entries.

1

= = =

1
0
0

0

X+

N N X NN~ DN X NN DN
N X D N2 X D DN N

0

=(x+6)(x-2)°

2
22 (x+6)(x-2)°
X
2

X DN N DN

N NN X
N N X DN

By C,—>C,+(C,+C;+C,)

common from 1% column

2
2
2
X

0 X—2

By R, > R,-R,R; > R;,-R,R, > R,—R,
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3 -1 2

0 5 -3
-6 7 -7
5 -8 0

Example 9: Compute det A, where A=

3 -1 2 -5
. 5 -3 -6
Solution: A=
-6 7 -7 4
-5 -8 0 9
3 -1 2 -5
geta| O 2 T3 Ol g +2R,
0 5 -3 -6/° °
-5 -8 0 9
=0 asR, =R,
Examplel0: Compute det A, where
0o 1 2 -1

2 5 -7 3
0 3 6 2
-2 -5 4 =2
Solution:

A=

A=

—->R,+R,

By R},

Expanding from 1% row and 1% column

-5
—6
4
9

©Virtual University Of Pakistan

215



18-Properties of Determinants VU

5 -7 3
=—2]3 6 2

0 -3 1
=(~2 ){5(6 +6) — (~7)(3—-0) +3(-9-0)}
=54
Remarks:

Suppose that a square matrix A has been reduced to an echelon form U by row
replacements and row interchanges.

If there are r interchanges, thendet(A) = (-1)" det(U)

Furthermore, all of the pivots are still visible in U (because they have not been scaled to
ones). If A is invertible, then the pivots in U are on the diagonal (since A is row
equivalent to the identity matrix). In this case, det U is the product of the pivots. If A is
not invertible, then U has a row of zero and det U = 0.

® o o o ® o o o

0 ® o o 0 ® o o
U= U=

0 0 e o 0 0 e o

0 0 0 e 0 00O

detU =0 detU =0

Thus we have the following formula:
(-1)".(Product of pivotsinU) When Aisinvertible
When Ais not invertible

det A= 1)

Example:
Case-01: For 2x2 invertible matrix

Reducing given 2x 2 invertible matrix into Echelon form as follows;

5

By interchanging 1% and 2™ rows(R,)

3 2
14 5} -+ one replacement of rows has occurred, ..r =1
3 2 4 3 2
“lo 7By R’ >R, 3 R,, we have desired row-echelon form:U = 71
L 3 3

Thus using the above formula as follows;
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det A= (-1)".(Product of pivotsinU) = (-1)! (3%) =-7

Case-02: For 2x 2 non-invertible matrix:
In this case say;

A:F 5}
8 10
~ [4 5} By R, — R, — 2R, desired row-echelon form is U = {4 5}
00 00
Here no interchange of rows has occurred. So,r =0 and
-.det A= (-1)".(Product of pivotsinU)=(-1)°(4-0)=0
Theorem 5: If A isan nxn matrix, then det AT = det A.
1 41
Example 11: IfA=|2 1 2|, find det(A)and det (A")
3 1 3
1 4 1
detA=2 1 2/=13-2)-4(6-6)+1(2-3)=1-0-1=0
3 1 3
Now
1 2 3
Al=l4 1 1
1 2 3
1 2 3
detA'=14 1 1/=13-2)-2(12-1)+3(8-1)=1-22+21=0
1 2 3
Remark:

Column operations are useful for both theoretical purposes and hand computations.
However, for simplicity we’ll perform only row operations in numerical calculations.

Theorem 6 (Multiplicative Property):

If A and B are nxn matrices, thendet(AB) = (det A)(det B).

6 1 4 3
Example 12: Verify Theorem 6 for A= L 2} and B= L 2}
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. 6 1|4 3 25 20
Solution: AB = =
- 3 2|1 2 14 13
anddet AB = 25.13—-20.14 = 325—-280 = 45
Since det A=9 and det B =5, (det A)(det B) =9.5=45=det AB
Remark:
det (A + B) # det A + det B, in general.
For example,
2 3 -2 -
If A= and B = 2 3 . Then
1 -5 -1 5
0 0
A+B= = det(A+B)=0
0 0
2 3| -2 -3
det A+detB = + =(-10-3)+(-10-3) =—-26 = det(A+ B)
1 -5 |-1 5
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Exercise:

Find the determinants in exercises 1 to 6 by row reduction to echelon form.

1 3 0 2 1 3 3 4
) -2 5 7 ) 0 1 2 -5
3 5 2 1 2 5 4 3
1 -1 2 3 -3 -7 -5 2
1 3 -1 0 -2
1 -1 30
0 2 4 -1 -6
0 1 5 4
3. 4 -2 -6 2 3 9
-1 2 8 5
3 7 3 8 7
3 -1 -2 3
3 5 5 2 7
1 3 1 5 3
1 -2 3 1
-2 -7 0 4 2
5 9 6
5 6 0 0 1 0 1
-1 2 -6 -2
0 0 2 1
2 8 6 1
0O 0 O 1

Combine the methods of row reduction and cofactor expansion to compute the
determinants in exercises 7 and 8.

2 5 -3 -1 2 5 4 1
3 0 1 -3 6 4 7 6 2
-6 0 -4 9 ' 6 2 4 0
4 10 -4 -1 -6 7 7 0
2 0 0 8
. ) L i 1 -7 50
9. Use determinant to find out whether the matrix is invertible 38 6 0
0 7 5 4

10. Let A and B be 3 x 3 matrices, with det A =4 and det B = -3. Use properties of
determinants to compute:

(@) detAB  (b)det7A  (c)detBT  (d) det AT
(e) det ATA
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11 Show that
a b a+b+c| ja b ¢
@la, b, a+b,+c,|=la, b, c,
a3 b3 a3+b3+c3 a3 b3 3
a+b a-b ¢ a b ¢
(b) |a,+b, a,-b, c,|=-2la, b, ¢,
ae+b3 as_bg C a, b3 Cs
12 Show that
a, +bt a,+bt a,+hbt a a, &
@@ |at+b at+b, at+b|=@1-t?)|b, b, b,
Cl CZ C3 Cl CZ C3
a b+ta, c+rb+sa| jla a a
(b) |a, b,+ta, c,+rb,+sa,|=|b b, b,
a, b,+ta, c,+rb,+sa,| [c, C, C,
1 x X

13.Showthat[1 y y?|=(y-x)(z-X)(z-Y)

1 z z

2
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Lecture 19

Cramer’s Rule, Volume, and Linear Transformations

In this lecture, we shall apply the theory discussed in the last two lectures to obtain
important theoretical formulas and a geometric interpretation of the determinant.

Cramer’s Rule: Cramer’s rule is needed in a variety of theoretical calculations. For
instance, it can be used to study how the solution of Ax = b is affected by changes in the
entries of b. However, the formula is inefficient for hand calculations, except for 2x2 or

perhaps 3x3 matrices.

Theorem 1 (Crammer’s Rule): Let A be an invertible nx» matrix. For any b in R", the

unique solution x of Ax = b has entries given by
x = 2AG) g
det 4

Example 1: Use Cramer’s rule to solve the system
3x,—2x, =6
—5x, +4x, =8
Solution: Write the system in matrix form, Ax = b

N

where
3 -2 X, 6
A= ,X= &b=
-5 4 X, 8
3 -2
detA:[ 4}212—10:2

6 -2 3 6
Ai(b){8 4},/12(19){_5 8}

Since det A = 2, the system has a unique solution. By Cramer’s rule,
_det4,(b) 24+16

X = =20
det A4 2

¥, = det 4, (b) _ 24+ 30 _ 97
det 4 2

1)

©Virtual University Of Pakistan

221



19-Cramer’s Rule, Volume, and Linear Transformations VU

Example 2: Consider the following system in which s is an unspecified parameter.
Determine the values of s for which the system has a unique solution and use Cramer’s

. . 3sx,—2x,=4

rule to describe the solution.
—6x, +sx, =1
Solution: Here
3s -2 4 4 -2 3 4
= , b= |, A®)= . A,(b
el e D) e

Since det 4 =35 -12=3(s +2)(s — 2)
the system has a unique solution when
det4+#0
=3(s+2)(s—2)=0
=s2-4%0
=s5#x2

For such an s, the solution is  (x;, x;), where
xlzdetAl(b): 4s+2 | G £4D

det 4 3(s+2)(s—2)
det4,(b)  3s+24 s+8

2T et 3542)(5-2) (5+2)(-2)

s # 12

Example 3: Solve, by Cramer’s Rule, the system of equations:
2x, —x, +3x, =1
X +2x,—x;=2

3x,+2x, +2x, =3

2 -1 3 1 1 -1 3
Solution: Here 4=|1 2 -1|,b=|2 ,Ai— 2 2 -1
3 2 2 3 2

2 1 3 2 -1 1

A,=\1 2 -1|,4,=|1 2 2

3 3 2 3 2 3
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D=det4=2-6-1-(-5)+3(-4)=5

D, =det4b=1-6+2-8+3(-5)=7

D, =det4,b=2-(7)-1-(5)+3(-3)=0
D, =det 4,b=2-(2) +1-(-3) +1(-4) = -3

So xlzﬂzz, xzzﬁzo, )cg):&——§
D 5 D D 5
Example 4: Use Cramer’s Rule to solve.
X+ 2x, =6
—3x, +4x, +6x, =30
- x,—2x,+3x;=8
Solution:
1 0 2 6
A=|-3 4 6[,b=|30
-1 -2 3 8
6 0 2 1 6 2 1 0 6
A4 =130 4 6[,4,=/-3 30 6 4,=/-3 4 30
8 -2 3 -1 -8 3 -1 -2 8
Therefore,
_ det(4b) -40 -10 _det(4,p) 72 18

T det(4) 44 11 T det(4) 44 11
_det(4,p) 152 38

BT det(4) 44 11

Note: For any nxn matrix A and any b in R", Jer Ai(b) be the matrix obtained from A by
replacing ith column by the vector b.

AB)=[a, .. b .. a]
T

ithcolumn

Formula for A" :

Cramer’s rule leads easily to a general formula for the inverse of nxn matrix A. The
jth column of A™ is a vector x that satisfies Ax = g
where g; is the jzi column of the identity matrix, and the iz entry of x is the (i, j)-entry of
A™. By Cramer’s rule,

{(i,j)—entryofA’l}zxij :M (2
det 4
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Recall that A; denotes the submatrix of A formed by deleting row j and column i. 4
cofactor expansion down column i of Ai(e;) shows that

det 4,(e;) = (-1)"/det4, =C, (3)
where C;i is a cofactor of A.
By (2), the (i, j)-entry of A™ is the cofactor Cii divided by det A.
[Note that the subscripts on C;j; are the reverse of (i, 7).] Thus

¢, G, .. C,
1[G Gy o Gy @

det 4 :

Cln CZn Crm

The matrix of cofactors on the right side of (4) is called the adjugate (or classical
adjoint) of A, denoted by adj A. (The term adjoint also has another meaning in advance
texts on linear transformations.) The next theorem simply restates (4).

Theorem 2 (An Inverse Formula):

Let A be an invertible nx#n matrix, then 4™ = adj A

det 4
Example:

For the matrrix say

2 3
A{ . 5}:detz4=10—(—3)=13

= A 'will also be a 2x 2 matrix
As
Aji =submatrix of 4 formed by deleting row j and column i

So in this case
4, = submatrix of 4 formed by deleting row 1 and column 1 =[5]

A4, = submatrix of 4 formed by deleting row 1 and column 2 =[—1]
A4,, = submatrix of 4 formed by deleting row 2 and column 1 =[3]

A4,, = submatrix of 4 formed by deleting row 2 and column 2 =[2]
and

det 4, (ej) =1 det(Aji) =C;
where e, is the jth column of identity matrix 7,

So in this case
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C,, =det 4,(e,) = (-1)*" det 4, = (+1)det[5] =5

C,, = det 4,(¢) = (-1)* det 4,, = (1) det[-1] = (-)(-) =1
C,, =det 4,(e,) = (-1)** det 4,, = (-1) det[3] = -3

C,, =det 4,(e,) = (-1)*** det 4,, = (+1) det[2] =2

By Cramer’s rule,

det 4. (e, C.
{(l',j)—entryofAfl} :x(/ — l(ej) _ Ji

det4  det4
So for the current matrix;

{(1,1) —entryof A‘l} =x, = det 4,(e) _ C, 5

det 4 det 4 E
) det 4(c,) C, -3

112 - t A 1 = = 1 2 = 21 [ —
{W2)—entryof 47} =x, detA  detA 13
) detA(e) C, 1

211 - t A 1 = = 2 1 = 12 [ —
(@D —entryof 47} =x, detA  detA 13

_det4,(e,) Cp 2

2,2)—ent A = <
(@ 2)—emmyof 4™} =xy == F = =13
Hence by using equation # 4, we get
C11 C21 i __3
A—1:|:xll X2 | | detd detA 1 |:C11 C21:|= 13 13

X X C, Cy =m G, G, 1 2
det4 detd 13 13
2 1 3
Example 5: Find the inverse of the matrix 4={1 -1 1
1 4 =2
Solution: The nine cofactors are
c.=+ 1tz ¢ =—‘1 1‘:3 c. =+ s
v N R R
1 3 2 3 2 1
C21=—4 _2‘=14, C22=+1 _2‘=—7, C23=—‘1 4=—7
C =+1 3:4 C :—2 3:1 C =+2 1JJ:_3
31 11 7 1 1 7 = 1 —

The adjoint matrix is the transpose of the matrix of cofactors. [For instance, C;> goes in
the (2, 1) position.] Thus
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C, Cy Cy| [-2 14 4
adid=|C, C, Cy,|=|3 -7 1
C, Cp Cy| |5 -7 -3

We could compute det A directly, but the following computation provides a check on the
calculations above and produces det A:

-2 14 472 1 3 14 0 O
(adjd).A=| 3 -7 1|1 -1 1 |=0 14 0 |=14]
5 -7 3||1 4 -2 0 0 14
Since (adj A) A =14 1, Theorem 2 shows that det A = 14 and
-2 14 4 -2/14 14/14 4/14
3 -7 1 |=|3/14 -7/14 1/14
5 -7 3| |5/14 -7/14 -3/14

Al = 1
14

Determinants as Area or Volume:

In the next application, we verify the geometric interpretation of determinants and we
assume here that the usual Euclidean concepts of length, area, and volume are already
understood for R and R®.

Theorem 3: If A is a 2x2 matrix, the area of the parallelogram determined by the
columns of 4 is|det 4|. If A is a 3x3 matrix, the volume of the parallelepiped determined

by the columns of A is |det 4|.

Example 6: Calculate the area of the parallelogram determined by the points (-2, -2),
0, 3), (4, -1) and (6, 4).

Solution:
Let A(-2,-2), B(0,3), C(4,-1) and D(6,4). Fixing one point say A(-2,-2) and find the
adjacent lengths of parallelogram which are given by the column vectors as follows;

0-(-2) 2
AB = =
3-(-2) 5
4—(-2
co| 47D _|6
-1-(-2) 1
So the area of parallelogram ABCD determined by above column vectors

2 6
det[ }
5 1

Now we translate the parallelogram ABCD to one having the origin as a vertex. For
which we subtract the vertex (-2, -2) from each of the four vertices. The new
parallelogram has the vertices say

=[2-30|=|-28| =28
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A'=(-2-(-2),-2-(-2))=(0, 0)
B'=(0-(-2),3-(-2))=(2, 5)
C'=(4-(-2),-1-(-2))=(6.1)
D'=(6-(-2),4-(-2))=(8, 6)

And fixing 4'(0,0) in this case, so

2-0 2
AIBI — —
ol s
6-0] [6
A'C = =
5-0] [5
See Fig below. The area of this parallelogram is also determined by the above columns

(2 6
det }
5 1

vectors = =[2-30|=|-28/=28

[

Translating a parallelogram does not change its area

Linear Transformations:

Determinants can be used to describe an important geometric property of linear
transformations in the plane and in R®. If T is a linear transformation and S is a set in the
domain of T, let T (S) denote the set of images of points in S. We are interested in how
the area (or volume) of T (S) compares with the area (or volume) of the original set S.
For convenience, when S is a region bounded by a parallelogram, we also refer to S as a
parallelogram.

Theorem 4: Let 7:R> — R’ be the linear transformation determined by a 2x2 matrix
A. If S'is a parallelogram in R, then

{area of T (S)} = |detA|. {area of S}
If T is determined by a 3 x 3 matrix A, and if S is a parallelepiped in R®, then

{volume of T (S)} = |detA|. {volume of S}

Example 7: Let a and b be positive numbers. Find the area of the region E bounded by

2 2
. . . X X.
the ellipse whose equation is —-+—2-=1.
a
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Solution: We claim that E is the image of the unit disk D under the linear transformation

0
A:D—E determined by the matrix 4 = B b} , given as

U X
Au =X whereu = eD,x= ek.

U, X,
0
| | | %
0 bllu, X,
Now Au = X :{Wl}:{xﬂ then
u, X,

=au,=x;, and bu,=x,

X X
Su="and u,="%
a

Since u € D (in the circular disk),it follows that the distance of u from origin will be less
than unity i-e
(uf‘ —O)+(u22 —O) <1

2 2
a b a b

Hence by the generalization of theorem 4,
{area of ellipse} = {area of A(D)} (here T = A)

= |det A|. {area of D}
=ab. 7 (1)*= rab

uz
X2

Lo, 1

a X]
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1 5
Example 8: Let S be the parallelogram determined by the vectors b, = [3} and b, = L} :

1 -1
and let 4= [0 5 } . Compute the area of image of S under the mapping x — Ax.

15
det{ }
31

image of S under the mapping x — Ax is |det A|. {area of S} = 2.14 = 28

Solution: The area of S is =14, and det A = 2. By theorem 4, the area of
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Exercises:

Use Cramer’s Rule to compute the solutions of the systems in exercises 1 and 2.

2x,+x, =7 2x,+x,+ x;,=4
1 -3x,+ x;,=-8 2. x,+ 2x;=2
x,+ 2x,=-3 3x,+x,+3x;,=-2

In exercises 3-6, determine the values of the parameter s for which the system has a
unique solution, and describe the solution.

6sx, +4x,=5 3sx,-5x,=3
: 4.
9x, +2sx, =-2 9x, +5sx, =2
sx, - 285%, = -1 2sx,+ x,=1
" 3x,+6sx,=4 " 3sx, +65x, =2

In exercises 7 and 8, compute the adjoint of the given matrix, and then find the inverse of
the matrix.

3 5 4 3 0
7.1 0 1 8.1-1 1 0
2 11 2 3

In exercises 9 and 10, find the area of the parallelogram whose vertices are listed.
9.(0,0), (5, 2), (6,4), (11, 6) 10. (-1, 0), (0, 5), (1, -4), (2, 1)

11. Find the volume of the parallelepiped with one vertex at the origin and adjacent
vertices at (1, 0, -2), (1, 2, 4), (7, 1, 0).

12. Find the volume of the parallelepiped with one vertex at the origin and adjacent
vertices at (1, 4, 0), (-2, -5, 2), (-1, 2, -1).

-2 -2
13. Let S be the parallelogram determined by the vectors b; = { 3} and b, = {5 } ,and

6 -2
let A= { 3 2 } . Compute the area of the image of S under the mapping X — AX.
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4 0
14. Let S be the parallelogram determined by the vectors b; = { 7} and b, = L} ,and
7 2 ) .
let A= 11l Compute the area of the image of S under the mapping x — AX.

15. Let T: R®— R® be the linear transformation determined by the matrix
a 00

A=|0 b 0|, wherea,b, care positive numbers. Let S be the unit ball, whose
0 0 ¢

bounding surface has the equationx,” +x,” +x;° =1.
2 2 2

a. Show that T (S) is bounded by the ellipsoid with the equation %+%+’% =1
a C

b. Use the fact that the volume of the unit ball is 47 / 3 to determine the volume of the
region bounded by the ellipsoid in part (a).
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Lecture 20

Vector Spaces and Subspaces

Case Example:

The space shuttle's control systems are absolutely critical for flight. Because the
shuttle is an unstable airframe, it requires constant computer monitoring during
atmospheric flight. The flight control system sends a stream of commands to
aerodynamic control surfaces.

Mathematically, the input and output signals to an engineering system are functions. It
is important in applications that these functions can be added, and multiplied by
scalars. These two operations on functions have algebraic properties that are completely
analogous to the operation of adding vectors in R" and multiplying a vector by a scalar,
as we shall see in the lectures 20 and 27. For this reason, the set of all possible inputs
(functions) is called a vector space. The mathematical foundation for systems
engineering rests on vector spaces of functions, and we need to extend the theory of
vectors in R" to include such functions. Later on, we will see how other vector spaces
arise in engineering, physics, and statistics.

Definition:Let V is an arbitrary nonempty set of objects on which two operations are
defined, addition and multiplication by scalars (numbers). If the following axioms are
satisfied by all objects u, v, w in V and all scalars k and I, then we call V a vector space.

Axioms of Vector Space:

1. Closure Property For any two vectorsu & v eV, impliesu +v €V
2. Commutative Property For any two vectorsu & v €V, impliessu+v=v+u
3. Associative Property For any three vectorsu, v,w eV, u+ (v+w)=(u+v) +w

4. Additive Identity For any vector u €V, there exist a zero vector 0 such that
O+u=u+0=u

5. Additive Inverse For each vector u €V, there exist a vector —u in V such that
-u+u=0=u+(-u)

6. Scalar Multiplication For any scalar k and a vector u eV impliesk u eV
7. Distributive Law For any scalar kifu & v eV, thenk (u+v) =ku+ kv
8. For scalars m, n and for any vectoru eV, (m+n)u=mu+nu

9. For scalars m, n and for any vector u €V, m (nu) = (mn) u =n (mu)
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10. For any vector u €V, 1u = u where 1 is the multiplicative identity of real numbers.

Examples of vector spaces: The following examples will specify a non empty set V and
two operations: addition and scalar multiplication; then we shall verify that the ten vector
space axioms are satisfied.

Example 1: Show that the set of all ordered n-tuple R" is a vector space under the
standard operations of addition and scalar multiplication.

Solution

(i) Closure Property:

Suppose that u = (uy, Uy, ..., Up) and v = (vy, V, ..., Vy) € R"

Then by definition, u + v = (uy, Uy, ..., Uy) + (V1, V2, ..., V)

= (Up+ Vq, Uz + Va, ..., Up+ V) e R" (By closure property)
Therefore, R"is closed under addition.

(i) Commutative Property

Suppose that u = (uy, Uy, ..., Up) and v = (vy, Vo, ..., Vy) € R"

Now u + v = (Ug, Uz, ..., Uy) + (V1, Vo, ..., Vp)

= (U1 + Vv, Uz + Vo, ...y Un+ V) (By closure property)

= (V1 +Ug, Vo + Up, ..., Vo + Up) (By commutative law of real numbers)
= (v, V2, ..., Vn) + (Ug, Uy, ..., Up) (By closure property)
=v+u

Therefore, R" is commutative under addition.

(iii) Associative Property
Suppose that u = (uy, Uy, ..., Up), V= (V1, V2, ..., Vn) and W = (W, Wy, ..., Wp) €R"

Now (u + V) +w = [(uy, Uy, ..., Un) + (V1, V2, ..., V)] + (W1, Wo, ..., Wy)

= (up+ vy, Uz + Vo, ..., Up+ V) + (Wg, Wa, ..., Wp) (By closure property)

= ((up + v1) + wy, (U + Vo) + Wy, ..., (Uy+ Vp) +Wy)) (By closure property)

= (up+ (vi +wy), Uz + (V2 + Wy), ..., Un+ (vp +W,)) (By associative law of real numbers)

= (U, Uz, ..., Up) + (V1 + Wy, Vo + Wy, ..., Vo + Wp) (By closure property)
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= (U1, Uz, ...y Un) + [(Ve, V2, .oy Vi) + (W1, Wa, ..., Wh)] (By closure property)
=u+(v+w)
Hence R" is associative under addition.
(iv) Additive Identity
Suppose u = (ug, Uy, ..., U)) € R". There exists 0 = (0, 0, ..., 0) € R" such that
0+u=(0,0,...,0)+ (u uy, ..., uy)
=0+u,0+uy..,0+up (By closure property)
= (us, Uz, ..., Up) = U (Existence of identity of real numbers)
Similarly,u+0=u
Hence 0 = (0, 0, ..., 0) is the additive identity for R".
(v) Additive Inverse
Suppose u = (Ug, Uy, ..., Uy) € R". There exists -u = (-uy, -Uy, ..., -Uy) eR"
Such that u + (-u) = (ug, Uy, ..., Uy) + (-Ug, -Uy, ..., -Up)
= (uz + (-u1), Uz + (-U2), ..., Un + (-Un)) (By closure property)
=(0,0,..,00=0
Similarly, (-u) +u=20
Hence the inverse of each element of R" exists in R".
(vi) Scalar Multiplication
If k is any scalar and u = (ug, Uy, ..., Uy) € R".
Then by definition, k u =k (ug, Uy, ..., u)) = (K ug, kK Uy, ..., kuy) € R"
(By closure property)
(vii) Distributive Law
Suppose k is any scalar and u = (ug, Uy, ..., Un), V.= (V1, V2, ..., V) € R"
Now k (u + v) =k [(u, Uy, ..., Un) + (V1, V2, .., Vn)]
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=K Ui+ vy, U+ vy, ..., U+ Vp) (By closure property)

= (k (Uup+ vy), kK (U + Vo), ..., kK (Uy+ vp)) (By scalar multiplication)

=(kup+ kv, kug+Kkvy, ..., ku, +kvp) (By Distributive Law)

=(kug kuy, ..., kuy) + (kvg, kvg, ..., kvy) (By closure property)

=Kk (ug, Uz, ..., Up) + K (V1, Vo, ..., Vp) (By scalar multiplication)

=ku+kv

(viii) Suppose k and | be any scalars and u = (ug, Uy, ..., Uy) € R"

Then (k+1)u=(k+1) (us, Uy, ..., Up)

= ((k + Duy, (k + Duy, ..., (k + Duy) (By scalar multiplication)

=(kur+1lug, kuy+1luy, ...,kuy+1up) (By Distributive Law)

=(kug, kuy, ..., kuy) + (Tug, Tuy, ..., Tuy) (By closure property)

=Kk (ug, Uz, ..., up) + 1 (Ug, Uy, ..., Up) (By scalar multiplication)

=ku+lu

(ix) Suppose k and | be any scalars and u = (uy, U, ..., Uy) € R"

Thenk (Iu) =k [l (ug, uy, ..., un)]

=k (lug luy, ..., lup) (By scalar multiplication)

=(k (Tuy), k (luy), ...,k (luy) (By scalar multiplication)

= ((k Duy, (k Dug, ..., (k Duy) (By associative law)

= (k1) (u, ug, ..., up) (By scalar multiplication)

=(klu

(X) Suppose u = (Ug, U, ..., Uy) € R"

Then1u =1 (uy, Uy, ..., Up)

= (1ug, 1uy, ..., 1uy) (By scalar multiplication)
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= (us, Uz, ..., Up) = U (Existence of identity in scalrs)
Hence, R" is the real vector space with the standard operations of addition and scalar

multiplication.

Note:The three most important special cases of R" are R (the real numbers), R? (the vectors
in the plane), and R® (the vectors in 3-space).

Example 2:Show that the set V of all 2x2 matrices with real entries is a vector space if vector
addition is defined to be matrix addition and vector scalar multiplication is defined to be
matrix scalar multiplication.

. u u V V W, w.
Solution: Suppose that u= { H 12} V= { 1 12}andw = { 1 12} cV
Uy Uz Va Vo Wor Wy
and k and | be two any scalars.

(i) Closure property To prove axiom (i), we must show that u + v is an object in V: that is,
we must show that u + v is a 2x2 matrix. But this follows from the definition of matrix

u, u vV, V u,+v,, U,+V
addition,Since U+V:|: 11 12:|+|: 11 12:|:|: 11 11 12 12j|
u21 u22 V21 V22 u21 +V21 u22 +V22
(By closure property)

(i) Commutative property Now it is very easy to verify the Axiom (ii)

u u v \Y u,, +v
u+v:{ 11 12}4{ 11 12}:{ 11 'n
Uy Up Vo Vo Up +Vy
— Vit VU }
[ Va1 FUy Vo HUy,

v,, Vv U, u
- 11 12}+|: 11 12j|:V+u
V21 V22 u21 u22

u, u V,, V W, W
(iii)Associativeproperty(u+v)+W:H 1 12}+{ 1 12D+{ 1 12}

u12 + V12

} (By closure property)
u22 +V22

(Commutative property of real numbers)

u21 u22 V21 V22 W21 W22

U, +V.., U,+V W, W
= 1 R 12}+{ 1 12} (By closure property)

_u21 + V21 u22 + V22 V\/21 W22

Uy + Vg )+ W
| (Upy +V,p )Wy,
Uy, + (v, + Wy, )
| Upy (Vo + Wy )

(U, +vy, )+ Wy, ]
(U, +V,, )+ Wy )

u12 + (V12 + W12 )_

Uz, +(Vyy + Wy, )

(By associative property of real numbers)
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— ull u12 + |:V11 + Wll V12 + W12 i|
V21 + W21 V22 + W22

‘u. u, | V., V W, W
— 11 12 +£|: 11 12j|+|: 11 12i|j:u+(v+w)
u21 u22 n V21 V22 W21 W22

Therefore, V is associative under “+’.
(iv) Additive Identity Now to prove the axiom (iv), we must find an object 0 in V such

00
that 0 + v=v + 0=v forall uinV. This can be done by defining 0= {O } :

0
O+U:|:O 0:|+|:ull u12:|:{0+u11 O+u12:|:|:ull u12:|:u
0 0 Uy Uy 0+uy, 0+uy, Uy Uy
and similarly u + 0 = u.

(v) Additive Inverse Now to prove the axiom (v) we must show that each object u in V
has a negative —u such that u + (-u) = 0 = (-u) + 0. Defining the negative of u to be

-u -u
-u= { 11 12} .
Uy -Up,
u +(_u ) — {un ulz]*_{'uu 'u12:| — |:u11 +('u11) u;, +('u12 ):| — {0 0} =0
Uy Uy “Uy -Uy, Uy, +('u21) Uy, +('u22) 00
Similarly, (-u) +u=0

(vi) Scalar Multiplication

Axiom (vi) also holds because for any real number k we have

u, u ku,, ku
ku= k{ H 12} = { H 12} (By closure property)
u21 u22 ku21 ku22

so that k u is a 2x2 matrix and consequently is an object in V.

(vii) Distributive Law:

k(u+v):k(|:ull u12:|+|:vll V12:|J
u21 u22 V21 V22
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— K {un TV Up +V12} K(uy +vyy ) K(ug, +vy, )}
Uy FVy Uy FTVy

_k(u21 +Vy ) KUy, +Vy, )

[kuy +kvy, o kug, +kvg, | [ kuy, o kug, N kv, kv,
ku,, +Kkv,, ku22+kv22_ ku,, Kku,, kv,, kv,

u u V \"
:k|: 11 12:|+k|: 11 12:|:ku+kv
u21 u22 V21 V22

(viii) (kK +Du=(k + |)|:U11 U12:|: |:(k + |)U11 (k + |)U12:|

n Uy | [(K+Duy (kK+1Nuy
_ {ku11 +lu, ku,+ Iulz} _ {ku11 kuu}+ {Iu11 Iulz}
ku,, +lu,,  ku,, +lu,, ku,, ku,, lu,, lu,,
— k|:u11 u12:|+||:u11 u12:|: ku+|u
Uy, Uy Uy Uy,
_ u, u lu,, lu
(|X) k(|U):k I|: 11 12:| :k|: 11 12:|
Uy, Uy |u21 |u22

— |:k(|u11) k(|u12 ):| — |:(k|)u11 (kl)u12:| — (k|)|:u11 u12:| — (kl)u
k(luy, ) k(luy, ) (kDuy,  (kNuy, Uy Uy

(x) Finally axiom (x) is a simple computation

1U: 1{U11 u12:|: |:1U11 lu12:|: |:u11 u12:|: u

u21 u22 1u21 1u22 u21 u22
Hence the set of all 2x2 matrices with real entries is vector space under matrix addition
and matrix scalar multiplication.

Note: Example 2 is a special case of a more general class of vector spaces. The arguments in
that example can be adapted to show that a set V of all mxn matrices with real entries,

together with the operations of matrix addition and scalar multiplication, is a vector space.
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Example 3: Let V be the set of all real-valued functions defined on the entire real
line(—o0,00). If f, geV, then f + g is a function defined by
(F+g) (xX) =f (X) + g (x), for all xeR.
The product of a scalar aeR and a function f in V is defined by
(@af) (x) =af(x), forall xeR.
Solution:
(i) Closure Property If f, geV, then by definition
(F+g) (X) = (x) + g (x) €V. Therefore, V is closed under addition.
(i) Commutative Property If fand g are in V, then for all xeR

f+9 (x)=f(x)+g(x (By definition)

=g (x)+f(x) (By commutative property)
=@+ K (By definition)

So that f+g=g+f

(iii) Associative Property If f, g and h are in V, then for all xeR

((fF+g)+h)(x)=({F+g) xX)+h(x) (By definition)

=(f(x) +g(x)) +h(x) (By definition)

=f(X)+ (g (x) + h (X)) (By associative property)
=f(xX)+(g+h) (X (By definition)
=({f+(@+h) X

And so (f+g)+h=f+(Q+h)

(iv) Additive Identity The additive identity of V is the zero function defined by

0 (x) =0, for all xeR because (0 + f) (x) =0 (x) + f (X) (By definition)
=0+f(x)=f(x) (Existence of identity)

i.e. 0+ f=f Similarly, f+0=f.

(v) Additive Inverse The additive inverse of a function fin V is (-1) f = -fe V because

(F+ (-f)) (x) = (x) + (-F) (X) (By definition)
=f(x)-f(X) (By definition)
=0 (Existence of inverse)
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i.e. f+ (-f) = 0. Similarly, (-f) + f=0.

(vi) Scalar Multiplication If fis in V and a is in R, then by definition (a f) (x) = a f (x)
eV.

(vii) Distributive Law If f, g are in V and aeR, then
@f+g)x)=af+g(x)=af(x)+gKx)=af(x)+ag(x)

= (af) (x) + (ag) (x) = (af+ag) (x) and, therefore, a (f +g) =af+ag
(viii) Let a, b in R and feV, then

(@+b)H ) =@+b)fx)=af(x)+bfx)=@f) X+ b0 KX =@f+bf)(x
Thus (@ +b)f=af+bf

(ix)a (b f) (x) = a (b f (x)) = (ab) f (x) showing that a (b f) = (a b)

X) (1. () = 1F(x) = f (x) (Existence of identity)
And so 1f=f

Hence V is a real vector space.

Example 4: If p(x)=a,+aXx+a,x*+...+a x"

and q(x)=b, +bx+b,x*+...+Db x"

We define

p(x)+q(x)=(a, +a,x+a,x*+...+a x")+(o, +bx+b,x* +...+b x")

=(a, +b, )+(a, +b, )x+(a, +b, )x* +..+(a, +h, )x" and for any scalar k,
kp(x)=k(a, +a,x+a,x* +...+a x")=ka, +ka,x + ka,x* +...+k a x"

Clearly the given polynomial is a vector space under the addition and scalar
multiplication.

Example 5: (The Zero Vector Space) Let V consists of a single object, which we define
by 0and 0 + 0 =0 and k 0 = 0 for all scalars k. It is easy to check that all the vector space
axioms are satisfied. We call V={0} as the zero vector space.

Example 6: (Every plane through the origin is a vector space)
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Let V be any plane through the origin in R®. We shall show that the points in V form a
vector space under a standard addition and scalar multiplication operations for vectors in
R,

From examplel, we know that R itself is a vector space under these operations. Thus,
Axioms 2, 3, 7, 8, 9 and 10 hold for all points in R* and consequently for all points in the
plane V. We therefore need only show that Axioms 1, 4, 5 and 6 are satisfied.

Since the plane is passing through the origin, it has an equation of the form
ax+by+cz=0 1)

Thus, if u = (u1, Uz, ug) and v = (vy, Vo, V3) are points in V, then
aup+bu,+cus=0andav; +bv,+cv3=0.

Adding these equations gives a (uy +vi) + b (U, +v) + ¢ (Uz +v3) =0

This equality tell us that the coordinates of the point
u+v=(up+ vy, Uy + Vy, Uz + V3)

satisfies (1); thus, u + v lies in plane V. This proves that the Axiom 1 is satisfied.

There exists 0 = (0, 0, 0) such that a (0) +b (0) + ¢ (0) = 0. Therefore, Axiom 4 is
satisfied.

Multiplying a u; + b uy + ¢ uz = 0 through by k gives
a (kup) + b (kup) + ¢ (kuz) =0

Thus, (kuy, k uz, k uz) =k (ug, Uz, uz) = k ueV. Hence, Axiom 6 is satisfied.

We shall prove the axiom 5 is satisfied. Multiplying a u; + b u, + ¢ uz = 0 through by -1
givesa (-1u) + b (-1up) + ¢ (-1ug) =0

Thus, (-ug, - Uy, - U3) = - (U, Uy, U3) = -ue V. This establishes Axiom 5.

Example 7: (A set that is not a vector space)
Let V=R? and define addition and scalar multiplication operation as follows. If
u=(u,,u,)andv=(v,,v, ) then define
u+v=(u,+v,,u,+v,) andif k is any real number then define ku = (ku,,0).
For any vector u €V, 1u =1(uy, U2) = (1 uy, 0) = (ug, 0) # u where 1 is the multiplicative

identity of real numbers. Therefore, the axiom 10 is not satisfied.
Hence, V=R? is not a vector space.

Theorem 1: Let V be a vector space, u a vector in V, and k is a scalar, then
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(i) Ou=0 (i) k0 = 0
(i) (1) u=-u (iv) Ifku=0thenk=0o0ru=0

Definition: A subset W of a vector space V is called a subspace of V if W itself a vector
space under the addition and scalar multiplication defined on V.

Note: If W is a part of a larger set V that is already known to be a vector space, then
certain axioms need not be verified for W because they are “inherited” from V. For
example, there is no need to check that u + v =v + u (Axiom 2) for W because this holds
for all vectors in V and consequently for all vectors in W. Other Axioms are inherited by
W from V are 3, 7, 8, 9, and 10. Thus, to show that a set W is a subspace of a vector space
V, we need only verify Axioms 1, 4, 5 and 6. The following theorem shows that even
Axioms 4 and 5 can be omitted.

Theorem 2: If W is a set of one or more vectors from a vector space V, then W is
subspace of V if and only if the following conditions hold.

(@) Ifuand v are vectors in W, thenu + visin W

(b) If k is any scalar and u is any vector in W, then k u is in W.

Proof: If W is a subspace of V, then all the vector space axioms are satisfied; in
particular, Axioms 1 and 6 hold. But these are precisely conditions (a) and (b).

Conversely, assume conditions (a) and (b) hold. Since these conditions are vector space
Axioms 1 and 6, we need only show that W satisfies the remaining 8 axioms. The vectors
in W automatically satisfy axioms 2, 3, 7, 8, 9, and 10 since they are satisfied by all
vectors in V. Therefore, to complete the proof, we need only verify that vectors in W
satisfy axioms 4 and 5.

Let u be any vector in W. By condition (b), k u is in W for every scalar k. Setting
k =0, it follows from theorem 1 that 0 u = 0 is in W, and setting k = - 1, it follows that
(-l)u=-uisinW. m|

Remark:

(1) The theorem states that W is a subspace of V if and only if W is closed under addition
and closed under scalar multiplication.

(2) Every vector space has at least two subspaces, itself and the subspace {0} consisting
only of the zero vector. Thus the subspace {0} is called the zero subspace.

Example 8: Let W be the subset of R® consisting of the all the vectors of the form
(a, b, 0), where a and b are real numbers. To check if W is subspace of R®, we first see
that axiom 1 and 6 of a vector space holds.

Let u=(a,,b,,0) and v=(a,,b,,0) be vectors in W then
u+v=(a,,b,0)+(a,,b,,0)=(a, +a,,b, +b,,0) is in W. Since the third component is
zero. Also c is scalar, and then cu = c(a,,b, ,0)= (ca,,cb; ,0) is in W. Therefore the 1 and
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6" axioms of the vector space holds. We can also verify the other axioms of vector space.
Hence W is a subspace.

Example 9: Consider the set W consisting of all 2x3 matrices of the form

a b 0
{O d} , Where a, b, c and d are arbitrary real numbers. Show that the W is a
c

subspace Mays.

_ _ a, b 0 a b, 0],
Solution: Consider u= V= in W
- 0 c d; 0 ¢, d,

a, b 0 a, b, O a,+a, b +b, 0 .
Then u+v= + = isin W.
0 ¢ d, 0 ¢, d, 0 c,+c, d, +d,
So that the (a) part of the theorem is satisfied. Also k is a scalar, and then
U= ka, kb, O
0 ke, kd,
Hence W is a subspace of Myys.

} is in W. So the (b) part of the above theorem is also satisfied.

Note: Let V is a vector space then every subset of V is not necessary a subspace of V.
For example, let V =R? then any line in R? not passing through origin is not a subspace of
R2. Similarly, a plane in R® not passing through the origin is not a subspace of R>.

Example 10: Let W be the subset of R® consisting of all vectors of the form (a, b, 1),
where a, b are any real numbers. To check whether property (a) and (b) of the above
theorem holds. Let u=(a,,b;,1)and v =(a,,b,,1)be vectors in W.

Then u+v=(a;b,,1)+(a,,b,,1)=(a, +a,,b, +b,,1+1) which is not in W because

the third component 2 is not 1. As the Ist property does not hold therefore, the given set
of vectors is not a vector space.

Example 11: Which of the following are subspaces of R®

(i) All vectors of the form (a, 0, 0)

(if) All vectors of the form (a, 1, 1)

(iii) All vectors of the form (a, b, c), whereb=a + ¢

(iv) All vectors of the form (a, b, ¢), whereb=a + ¢ +1

Solution: Let W is the set of all vectors of the form (a, 0, 0).

(i) Suppose u=(uz, 0, 0) and v = (v, 0, 0) are in W.

Thenu +v = (uy, 0, 0) + (v1, 0, 0) = (U + vy, 0, 0) which is of the form (a, 0, 0).

Therefore, u + veW

If k is any scalar and u = (ug, 0, 0) is any vector in W, then k u =k (ug, 0, 0) = (k uy, 0, 0)
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which is of the form (a, 0, 0). Therefore, k ueW. Hence W is the subspace of R®.

(ii) Let W is the set of all vectors of the form (a, 1, 1).

Suppose u= (uy, 1, 1) and v=(vi,1,)arein W. Thenu +v =(up, 1, 1) + (vq, 1,
1) = (uy + vy, 2, 2) which is not of the form (a, 1, 1). Therefore, u + vgW. Hence W is
not the subspace of R®.

(iii) Suppose W is the set of all vectors of the form (a, b, c), whereb=a +c¢
Suppose u = (uy, U + us, uz) and v = (v, v1 + v, v3) are in W.

Then u + v = (Ug, Uy + Us, Us) + (V1, V1 + V3, V3)
= (up + Vg, Uz + U3 + Vg + V3, Uz + V3)
= (ug + vy, (ug + vp) + (us + v3), us + v3), which is of the form (a, a + c, c).

Therefore, u + veW

If k is any scalar and u = (ug, u; + us, ug) is any vector in W, then

ku =Kk (uy, up + us, ug) = (k ug, k (up + us), k us) (By definition)

= (kug, kuy +kus, kus) (By Distributive Law)
Which is of the form (a, a + ¢, c). Therefore, k ue W. Hence W is the subspace of R®.

(iv) Let W is the set of all vectors of the form (a, b, c), whereb =a +c +1
Suppose u= (uz, U3 + uz+ 1, uz)and v =(vq, v + vz + 1, vg) are in W.
Thenu+v=(uy, up +uz+ 1, uz)+ (v, Vi +v3+1 v3)

:(U1+V1, Up+us+1+vy+vy+1, U3+V3)

= (U1 + Vyq, (U1 + V1) + (U3 + V3) +2, U3+ V3)

Which is not of the form (a, a + ¢ + 1, c). Therefore, u + v¢ W. Hence W is not the
subspace of R°.

Example 12: Determine which of the following are subspaces of Ps.

(i) All polynomials ag + a; x + a, x* + az x° for which ag = 0

(i) All polynomials ag + a, x + a, x? + az x° for which ag + a; + a; + a3 = 0

(iii) All polynomials ag + a1 X + a, x> + as X° for which ay, as, a,, and as are integers
(iv) All polynomials of the form ap + a; X, where ag and a; are real numbers.

Solution: (i) Let W is the set of all polynomials ag + a; X + a, x* + az x° for which ap =
0.

Suppose that u = ¢ + €1 X + € X? + ¢3 X° (where ¢ = 0) and v = by + by X + by X* + bs
x® (where by = 0) are in W. Then u + v = (Cg + C1X + CoX° + C3xX°) + (bo + byx + box? +
bax®) = (o + bo) + (C1 + b1)x + (C2 + bo)x? + (Cs + bs) x®, where ¢y + by = 0.
Therefore,u +v eW

If k is any scalar and u = co + ¢; X + ¢, X* + ¢3 X° (Where ¢o = 0) is any vector in W.
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Then k u =k (Co + C1x + Cox% + ¢3x°) = (kco) + (key) X + (kez) X2 + (kes) x° where
k co = 0. Therefore, k ue W. Hence W is the subspace of Ps.

(ii) Let W is the set of all polynomials ag + a;x + axx* + asx° for which
aota+a+az = 0.

Suppose that u = ¢ + €1 X + € X* + ¢3 X° (where ¢y + ¢1 + ¢, + ¢3 = 0) and
Vv =bg + by x + by X% + bz x® (where by + by + by + b = 0) are in W.

Now
U+V=(Co+CyX+Cpx+C3X°) + (bo + by X + by X2 + b3 x°)

= (Co + bg) + (C1 + b)) X + (Co + by) X* + (c3 + b3) X°

Where (Co+bg) + (C1+bs) + (Co+by) + (Ca+bz) = (Co+Cr+Co+Cs) + (Do+bi+bo+bs) =0+ 0
= 0. Therefore,u +v eW

If k is any scalar and u = co + €1 X + €, X* + C3 X° (where co + ¢ + ¢, + c3 = 0) is any
vector in W. Then k u =k (Co + c1x + Cox? + ¢3x°) = (Kco) + (key) X + (keo) X* + (kes) x°
Where (k co) + (kc1) + (kcy) + (keg) =k(co+cp+c,+¢c3) =k0=0

Therefore, k ue W. Hence W is the subspace of Ps.

(iii) Let W is the set of all polynomials ag + a; x + a, X* + a3 x° for which ao, a;, a,, and
az are integers.

Suppose that the vectors u = ¢y + ¢1 X + € X* + ¢3 X° (where o, C1, C,, and cs are
integers) and v = b + by X + by x* + bs x* (where by, by, by, and bs are integers) are in W.
Now

U+ V= (Co+CyX+CoX*+ C3X°) + (bo + by X + by x* + b3 X°)

= (o + bg) + (C1 + by) X + (Co + by) X° + (c5 + b3) X°, where

(co + bo), (c1 + by), (c2 + by), and (cs3 + b3) are integers (integers are closed under
addition). Therefore, u +v e W

If k is any scalar and u = co + €1 X + ¢, X* + ¢3 X° (Where cg, C1, C2, and cs are integers) is
any vector in W. Then k u = k (o + €1x + ¢ox2 + cax® = (Kco) + (kep) X + (keo) X2 +

(kcs) X3, where (k co), (k ca), (k c2), and (k c3) are not integers (product of real number and
integer). Therefore, k ug W. Hence, W is not the subspace of Ps.

(iv) Let W is the set of all polynomials of the form ao + a; x, where ay and a; are real
numbers. Suppose that u = ¢y + ¢ X (where ¢o and c; are real numbers) and
v = bo + by X (where by and b; are real numbers) are in W.

Thenu + v =(co + ¢y X) + (bp + by X) = (co + bp) + (C1 + by) X
Where (co + bo) and (c; + by) are real numbers.
Therefore,u +v eW
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If k is any scalar and u = ¢y + ¢ X (Where ¢o and c; are real numbers) is any vector in W.
Thenku =k (co+c1xX) =(kcop) + (kcy) X

Where (k co) and (k c1) are real numbers.

Therefore, k ue W. Hence W is the subspace of Ps.

Example 13: Determine which of the following are subspaces of M.
a b

(i) All matrices { d} wherea+b+c+d=0
c

(if) All 2 x 2 matrices A such that det (A) =0

a b
(iii) All the matrices of the form {O }
c

a
Solution: Let W is the set of all matrices {

b
}wherea+b+c+d:0.
c d

e f I m
(i)Supposeu:{ h}(wheree+f+g+h:0)andv:{ }

g n p
(Wherel +m+n+p=0)arein W.

e f I m e+l f+m
Thenu +v= + = (By definition)
g h n p] [g+n h+p

Where e+ 1)+ (f+m)+(g+n)+(h+p)
=(e+f+g+h)+(+m+n+p)=0+0=0
Therefore, u + veW

e f]
If k is any scalar and u = {g h (where e + f + g + h =0) is any vector in W.
e f] [ke Kf] -
Thenku=k = (by definition)
g h kg kh

Whereke +kf+kg+kh=k(e+f+g+h)=k0=0
Hence, k ue W. Therefore, W is subspace of M.

(ii) Let W is the set of all 2 x 2 matrices A such that det (A) =0
e f Il m
Suppose u = { } (Where det (u)=eh-fg=0)andv = { }
g h n p

(Wheredet (V) =lp-mn=0)areinW.

e f I m e+l f+m i
Thenu +v= + = (By definition)
g h n p g+n h+p

Wheredet(u+v)=(e+)(h+p)-(Ff+m)(g+n)
=eh+ep+lh+lp-fg-fn-mg-mn
=(eh-fg)+(Ip-mn)+ep+lh-fn-mg=ep+lh-fn-mg=#0
Therefore, u + v W. Therefore, W is not subspace of M.
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a b
(iii) Let W is the set of all matrices of the form L) }

c
e f I m _
Suppose u = andv = arein W.
0 ¢ 0 n

e f I m e+l f+m .
Thenu+v= + = (By definition)
0 g 0 n 0 g+n

a b
Which is of the form{O } Therefore, u + veW

c
. e f]. .
If k is any scalar and u = {0 is any vector in W.
g
e f] [ke Kkf] o
Thenku =Kk = (By definition)
0 g [0 ko]
. a b
Which is of the form 0 } Hence, kueW
c

Therefore, W is subspace of M.

Example 14: Determine which of the following are subspaces of the space F(-00,0).

(i) All f such that f (x) <0 for all x (ii) all f such that f (0) =0
(iii) All fsuch that f (0) =2 (iv) all constant functions
(v) All f of the form k; + kz sin x, where k; and k; are real numbers

(vi) All everywhere differentiable functions that satisfy f'+2f =0.

Solution: (i) Let W is the set of all f such that f (x) <0 for all x.

Suppose g and h are the vectors in W. Then g (x) <0 for all x and h (x) <0 for all x.
Now (g + h) (x) =g (x) + h (x) <0. Therefore, g+h eW

If k is any scalar and g is any vector in W. Then g (x) <0 for all x

Now (k g) (x) = k g (x), which is greater than O for negative real values of k.
~kgeW Vk<O.

Hence W is not the subspace of F (-c0,0) .

(ii) Let W is the set of all f such that f (0) = 0.

Suppose g and h are the vectors in W. Theng (0) =0and h (0) =0

Now (g + h) (0)=g (0) +h (0) =0+ 0=0. Therefore, g+ heW

If k is any scalar and g is any vector in W. Then g (0) =0

Now (kg) (0)=kg (0)=k0=0. ..kg € W . Hence W is the subspace of F(-c0,0).

(iii) Let W is the set of all f such that f (0) =2
Suppose g and h are the vectors in W. Theng (0) =2and h (0) =2
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Now (g +h) (0)=g(0)+h(0)=2+2 # 2..kg ¢ W . Hence W is not the subspace of
F(-00,0).

(iv) Let W is the set of all constant functions. Suppose g and h are the vectors in W.
Then g (X) =aand h (x) = b, where a and b are constants.

Now (g + h) (x) =g (x) + h (x) = a + b, which is constant. Therefore, g+ h eW

If k is any scalar and g is any vector in W. Then g (X) = a, where a is any constant.
Now (k g) (x) =k g (x) = k a, which is a constant. ..kg € W . Hence W is the subspace

of F(-00,00).

(v) Let W is the set of all f of the form k; + k; sin x, where k; and k; are real numbers
Suppose g and h are the vectors in W. Then g (X) = m1+mysin x and h (x) = n;+n; sin x,
where mz, my, n;and n, are real numbers.

Now (g + h) (x) =g (x) + h (X) = [my+mysin X]+[n1+nysin x] = (my+ny)+(my+ny) sin X
Which is of the form k; + k; sin x. Therefore, g+ h e W

If k is any scalar and g is any vector in W. Then g (x) = m; + m; sin x, where m; and m,
are any real numbers.

Now (k g) (X) =k g (x) =k [m1 + my sin X] = (k my) + (k my) sin x
Which is of the form k; + k; sin x. .".kg € W . Hence W is the subspace of F(-00,0).

(vi) Let W is the set of all everywhere differentiable functions that satisfy f'+2f =0.
Suppose g and h are the vectors in W. Then g'+2g =0 and h"+2h=0

Now (g+h)y+2(g+h)=g'+h'+2(g+h) =(g'+29)+(h"+2h)=0+0=0
Therefore, g+ h eW

If k is any scalar and g is any vector in W. Then g'+2g =0

Now (kg) +2(kg)=kg'+2kg =k(g'+2g)=k.0=0

-.kg € W . Hence W is the subspace of F(-c0,00).

Remark: Let n be a nonnegative integer, and let P, be the set of real valued function of
the form p(x)=a,+a,x+a,x’+..+a x" where a,,a,,a,,..,a are real numbers,
then P, is a subspace F(-00,0).

Example 15: Show that the invertible n x n matrices do not form a subspace of M , xn.

Solution: Let W is the set of invertible matrices in M , x . This set fails to be a subspace
on both counts- it is closed under neither scalar multiplication nor addition.

-1 2]
InM,_ ..

1 2
For example consider invertible matrices W = { } V= [ ) 5

2 5
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The matrix 0.U is a 2x2 zero matrix, hence is not invertible; and the matrix U + V has a
column of zeros, hence is not invertible.

Theorem: If Ax = 0 is a homogeneous linear system of m equations in n unknowns, then
the set of solution vectors is a subspace of R".

Example 16: Consider the linear systems

1 -2 3[x] [0 1 -2 3][x] [0
(@) 2 4 6|yl=|0 (b)-37-8}y20
3 6 9]/z| |0 2 4 -6]z]| |0
1 -2 3«x 0 0 0 of[x]| [
() 3 7 8| yl|=|0 (@0 0 0fyl|=
4 1 2|z 0 0 0 0]lz] |

Each of the systems has three unknowns, so the solutions form subspaces of R®.
Geometrically, this means that each solution space must be a line through origin, a plane
through origin, the origin only, or all of R,

Solution :(a) The solutions are x = 2s - 3t, y = s, z = t. From which it follows that
X=2y-3zorx-2y+3z=0.
This is the equation of the plane through the origin with n =(1, -2,3) as a normal vector.

(b) The solutions are x = -5t, y = - t, z = t, which are parametric equations for the line
through the origin parallel to the vector v =(-5, -1,1).

(c) The solutionisx =0,y =0, z = 0 so the solution space is the origin only, that is {0}.

(d)The solutions are x =r,y =, z=t. where r, s and t have arbitrary values, so the
solution space is all R®.

A Subspace Spanned by a Set: The next example illustrates one of the most common
ways of describing a subspace. We know that the term linear combination refers to any
sum of scalar multiples of vectors, and Span {vs, ... , vp} denotes the set of all vectors that
can be written as linear combinations of vy, ... , vp.

Example 17: Given v; and v, in a vector space V, let H = Span {v;, v,}. Show that H is a
subspace of V.

Solution: The zero vector is in H, since 0 = Ov; + Ov,. To show that H is closed under
vector addition, take two arbitrary vectors in H, say,
U=s55vi +Spvo, and w =tjvy + s

By Axioms 2, 3 and 8 for the vector space V.
U+ W = (S1v1 +S3Vp) + (t1va + tovp)
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=(si+t)vi+(s2+1) Ve
So u +w s in H. Furthermore, if c is any scalar, then by Axioms 7 and 9,
CU = C (S1v1 + SpVo) = (€S1) V1 + (CS2)V2

Which shows that cu is in H and H is closed under scalar multiplication.

Thus H is a subspace of V. O

Later on we will prove that every nonzero subspace of R®, other than R® itself, is either
Span {vi, vo} for some linearly independent v; and v, or Span {v} for v =0. In the first
case the subspace is a plane through the origin and in the second case a line through the

origin. (See Figure below) It is helpful to keep these geometric pictures in mind, even for
an abstract vector space.

X3

\1

Vo
/0

X1

X2

Figure 9 — An example of a subspace
The argument in Example 17 can easily be generalized to prove the following theorem.

Theorem 3: If vy, ..., vy are in a vector space V, then Span {vi, ..., vp} is a subspace of
V.

We call Span {vi, ..., vp} the subspace spanned (or generated) by {vi,... , vp}. Given
any subspace H of V, a spanning (or generating) set for H is a set {vi, ..., vp} in H such
that H = Span {v, ..., vp}.

Proof:

j=n j=n
The zero vector is in H, since 0 = Ov; + Ovo+ ...+0vn:ZOVJ. :O(ZVJ.J:O
-0 =0

To show that H is closed under vector addition, take two arbitrary vectors in H, say,
i=n

U = SV +SpVort... +tVn= > sV,
i=0
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and
k=n

W =tvy + vy L= Ztkvk
k=0

By Axioms 2, 3 and 8 for the vector space V.
i=n k=n

u+w= Z Sivi + Ztkvk = (51V1 +SoVo+...+SpVp )+( vy + thvo ---+thn)
i=0 k=0

p=n
= (51 + tr) Vi + (S2 + t2) Vot ...+ (Sn + tn) Vo= D (S, +1, )V,
p=0

So u + w is in H. Furthermore, if ¢ is any scalar, then by Axioms 7 and 9,

r=n
CU = C(S1V1 +SaVo+...+S,v )= (CS1) V1 + (CS2)Vot+...+(CSp )Vn=ZCS,Vr :
r=0

Which shows that cu is in H and H is closed under scalar multiplication.

Thus H is a subspace of V. O

Example 18: Let H be the set of all vectors of the form (a - 3b, b — a, a, b), where a and
b are arbitrary scalars. That is, let H = {(a — 3b, b — a, a, b): a and b in R}. Show that H

is a subspace of R*.

Solution: Write the vectors in H as column vectors. Then an arbitrary vector in H has the
form

a-3b 1 -3
b-a 4 -1 b 1
a 1 0
b 0 1
T T

Vl V2

This calculation shows that H = Span {vi, v,}, where v; and v, are the vectors indicated
above. Thus H is a subspace of R* by Theorem 3. O

Examplel8 illustrates a useful technique of expressing a subspace H as the set of linear
combinations of some small collection of vectors. If H = Span {vi, ..., vp}, we can think
of the vectors vy, ... , Vp in the spanning set as “handles” that allow us to hold on to the
subspace H. Calculations with the infinitely many vectors in H are often reduced to
operations with the finite number of vectors in the spanning set.
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Exercises:

In exercises 1-13 a set of objects is given together with operations of addition and scalar
multiplication. Determine which sets are vector spaces under the given operations. For
those that are not, list all axioms that fail to hold.

1. The set of all triples of real numbers (x, y, z) with the operations
Xy, 2+, y,2)=(x+x,y+y',z+z")and k(x,y,z) = (kx, y,z)

2. The set of all triples of real numbers (x, y, z) with the operations
x,y,2)+(X,y,2)=(x+x,y+y',z+z)andk(x,y,z)=(0,0,0)

3. The set of all pairs of real numbers (x, y) with the operations
(x,y)+(x',y)= (x+ X,y +y)andk(x,y) = (2kx, 2ky)

4.2The set of all pairs of real numbers of the form (x, 0) with the standard operations on
R“.

5. The set of all pairs of real numbers of the form (x, y), where x>0, with the standard
operations on R,

6. The set of all n-tuples of real numbers of the form (x, x, ..., X) with the standard
operations on R",

7. The set of all pairs of real numbers (x, y) with the operations.

(X, Y)+(X,y)=(x+x"+1,y+y +1)and k(x, y) = (kx,ky)

1
8. The set of all 2x2 matrices of the form b with matrix addition and scalar

multiplication.

a
9. The set of all 2x2 matrices of the form 0 with matrix addition and scalar

multiplication.

10. The set of all pairs of real numbers of the form (1, x) with the operations
@Y)+@y)=@Qy+y)andk(, y)=(1ky)

11. The set of polynomials of the form a + bx with the operations
(8, +a,x)+(b, +b,x)=(a, +b, )+(a, +b, )xandk(a, +a,x)=(ka, ) +(ka, )x

12. The set of all positive real numbers with operations x +y = xy and kx = x

13. The set of all real numbers (x, y) with operations
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(%, y)+(X,y")=(xx, yy )and k(x, y ) = (kx, ky )

14. Determine which of the following are subspaces of Mp.

(@) all n x n matrices A such that tr (A) =0

(b) all n x n matrices A such that A" = -A

(c) all n x n matrices A such that the linear system Ax =0 has only the trivial solution
(d) all n x n matrices A such that AB = BA for a fixed n x n matrix B

15. Determine whether the solution space of the system Ax = 0 is a line through the
origin, a plane through the origin, or the origin only. If it is a plane, find an equation for
it; if it is a line, find parametric equations for it.

101 1 1 -2 3
(@ A=l3 -1 0 () A=|-3 6 9
2 4 5 2 4 -6
1 2 3 i -6
(c) A=|2 5 3 @d A=|1 4 4
10 8 13 10 6

16. Determine if the set “all polynomial in p, such that p(0) = 0” is a subspace of P,, for
an appropriate value of n. Justify your answer.

S
17. Let H be the set of all vectors of the form | 3s |. Find a vector v in R® such that H =

2s
Span {v}. Why does this show that H is a subspace of R*?

5b+2c
18. Let W be the set of all vectors of the form b , Where b and c are arbitrary.

C

Findgvectors u and v such that W = Span {u, v}. Why does this show that W is a subspace
of R*?

[s+3t]

s-t
19. Let W be the set of all vectors of the form 2s-t | Show that W is a subspace of R*.
S -

4t
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1 2 4 3
20. Letv, ={ 0 |,v,=|1|Vv,=|2|,andw=]|1].
-1 3 6 2

(@) Is w in {va, vz, v3}? How many vectors are in {vi, v, V3}?
(b) How many vectors are in Span {vi, vy, v3}?
(c) Is w in the subspace spanned by {vi, v,, v3}? Why?

In exercises 21 and 22, let W be the set of all vectors of the form shown, where a, b and ¢
represent arbitrary real numbers. In each case, either find a set S of vectors that spans W
or give an example to show that W is not a vector space.

a-b
3a+b
b-c
21. 4 22.
c-a
a-5b
b

23. Show that w is in the subspace of R* spanned by vi, vy, v, where

9] 7] 4] 9]

W = ! V., = 4 VvV, = > V, = 4
A R R I B

8 | 9| -7 -7

(6] 5 5 9
y A 8 8 -6
’ 5 -9 3

-4 '3 2 7]
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Lecture 21

Null Spaces, Column Spaces, and Linear Transformations

Subspaces arise in as set of all solutions to a system of homogenous linear equations as
the set of all linear combinations of certain specified vectors. In this lecture, we compare
and contrast these two descriptions of subspaces, allowing us to practice using the
concept of a subspace. In applications of linear algebra, subspaces of R" usually arise in
one of two ways:

» as the set of all solutions to a system of homogeneous linear equations or

» as the set of all linear combinations of certain specified vectors.
Our work here will provide us with a deeper understanding of the relationships between
the solutions of a linear system of equations and properties of its coefficient matrix.

Null Space of a Matrix:

Consider the following system of homogeneous equations:
X, —3X,—2%; =0

(1)
—5% +9X, +%X, =0
In matrix form, this system is written as Ax = 0, where
A= { 1 -3 -2} )
5 9 1

Recall that the set of all x that satisfy (1) is called the solution set of the system (1). Often
it is convenient to relate this set directly to the matrix A and the equation Ax = 0. We call
the set of x that satisfy Ax = 0 the null space of the matrix A. The reason for this name is
that if matrix A is viewed as a linear operator that maps points of some vector space V
into itself, it can be viewed as mapping all the elements of this solution space of AX =0
into the null element "0". Thus the null space N of A is that subspace of all vectors in V
which are imaged into the null element “0" by the matrix A.

NULL SPACE

Definition  The null space of an mxn matrix A, written as Nul A, is the set of all
solutions to the homogeneous equation Ax = 0. In set notation,
Nul A = {x: xis in R" and Ax = 0}
OR
Nul(A) ={x/Vxe R, Ax=0}

A more dynamic description of Nul A is the set of all x in R" that are mapped into the
zero vector of R™ via the linear transformation x — Ax, Where A is a matrix of
transformation. See Figurel
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Figure 1

Example 1: Let A:[l :’ ﬂ and let u=| 3 |. Determine ifu e Nul A.
) -2
Solution: To test if u satisfies Au = 0, simply compute

5

1 -3 -2 5-9+4 0 L.

Au = 3= = . Thus uis in Nul A.
5 9 1 -25+27-2 0

Example: Determine the null space of the following matrix:

4 0
A=
[—8 20}

Solution: To find the null space of A we need to solve the following system of
equations:

4 0 \(x) (0
-8 20)\x,) (0
4
N ( X+ OXZJZ[OJ
—8x, +20x, 0
=4x,+0x,=0 =x =0

and = -8x+20x,=0 =x,=0

We can find Null space of a matrix with two ways i.e. with matrices or with system of
linear equations. We have given this in both matrix form and (here first we convert the
matrix into system of equations) equation form. In equation form it is easy to see that by
solving these equations together the only solution isx, = X, =0 . In terms of vectors from

R? the solution consists of the single vector {0} and hence the null space of A is{0} .

Activity: Determine the null space of the following matrices:
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000
1 0=(0 0 0
000
1 -5
2. M =
-5 25)

In earlier (previous) lectures, we developed the technique of elementary row operations
to solve a linear system. We know that performing elementary row operations on an
augmented matrix does not change the solution set of the corresponding linear system
Ax=0. Therefore, we can say that it does not change the null space of A. We state this
result as a theorem:

Theorem 1: Elementary row operations do not change the null space of a matrix.
Or
Null space N(A) of a matrix A can not be changed (always same) by changing the matrix
with elementary row operations.

Example: Determine the null space of the following matrix using the elementary row
operations: (Taking the matrix from the above Example)

4 0
A=
[—8 20}

Solution: First we transform the matrix to the reduced row echelon form:

4 0) (1 0 1 R
-8 20 -8 20) 4
1o R,+8
0 20  +8R
10
3 1
01 20
which corresponds to the system
X, =0
X, =0

Since every column in the coefficient part of the matrix has a leading entry that means
our system has the trivial solution only:

X =0
X, =0
This means the null space consists only of the zero vector.

We can observe and compare both the above examples which show the same result.
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Theorem 2: The null space of an mxn matrix A is a subspace of R". Equivalently, the
set of all solutions to a system Ax = 0 of m homogeneous linear equations in n unknowns
is a subspace of R".

Or simply, the null space is the space of all the vectors of a Matrix A of any order those
are mapped (assign) onto zero vector in the space R" (i.e. Ax = 0).
Proof: We know that the subspace of A consists of all the solution to the system

Ax =0. First, we should point out that the zero vector, 0, in R" will be a solution to this
system and so we know that the null space is not empty. This is a good thing since a
vector space (subspace or not) must contain at least one element.

Now we know that the null space is not empty. Consider u, v be two any vectors
(elements) (in) from the null space and let ¢ be any scalar. We just need to show that the
sum (u+v) and scalar multiple (c.u) of these are also in the null space.

Certainly Nul A is a subset of R" because A has n columns. To show that Nul(A) is the
subspace, we have to check three conditions whether they are satisfied or not. If Nul(A)
satisfies the all three condition, we say Nul(A) is a subspace otherwise not.

First, zero vector “0” must be in the space and subspace. If zero vector does not in the
space we can not say that is a vector space (generally, we use space for vector space).
And we know that zero vector maps on zero vector so 0 is in Nul(A). Now choose any
vectors u, v from Null space and using definition of Null space (i.e. Ax=0)

Au=0and Av=0

Now the other two conditions are vector addition and scalar multiplication. For this we
proceed as follow:

Let start with vector addition:

To show that u + v is in Nul A, we must show that A (u + v) = 0. Using the property of
matrix multiplication, we find that

AUu+v)=Au+Av=0+0=0

Thus u + visin Nul A, and Nul A is closed under vector addition.

For Matrix multiplication, consider any scalar , say c,

A(cuy=c(Au)=c(0)=0

which shows that cu is in Nul A. Thus Nul A is a subspace of R".

Example 2: The set H, of all vectors in R* whose coordinates a, b, ¢, d satisfy the

equations
a-2b+5c=d
c—-a=bhb

is a subspace of R*.

Solution: Since a-2b+5c=d
c-a=b

By rearranging the equations, we get

a-2b+5c-d=0
-a-b +c =0
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We see that H is the set of all solutions of the above system of homogeneous linear
equations.
Therefore from the Theorem 2, H is a subspace of R*.

It is important that the linear equations defining the set H are homogeneous. Otherwise,
the set of solutions will definitely not be a subspace (because the zero-vector (origin) is
not a solution of a non- homogeneous system), geometrically means that a line that not
passes through origin can not be a subspace, because subspace must hold the zero vector
(origin). Also, in some cases, the set of solutions could be empty. In this case, we can not
find any solution of a system of linear equations, geometrically says that lines are parallel
or not intersecting.

If the null space having more than one vector, geometrically means that the lines intersect
more than one point and must passes through origin (zero vector) .

An Explicit Description of Nul A:

There is no obvious relation between vectors in Nul A and the entries in A. We say that
Nul A is defined implicitly, because it is defined by a condition that must be checked. No
explicit list or description of the elements in Nul A is given. However, when we solve the
equation Ax = 0, we obtain an explicit description of Nul A.

Example 3: Find a spanning set for the null space of the matrix
-3 6 -1 1 -7
A=1 -2 2 3 -1
2 -4 5 8 -4

Solution:  The first step is to find the general solution of Ax = 0 in terms of free
variables.
After transforming the augmented matrix [A 0] to the reduced row echelon form and we
get;
1 -2 0-130
0 01 2 -20
0O 000 0O
which corresponds to the system
X, -2X, - X, +3%=0
X, +2X,-2X, =0
0=0
The general solution is
X, = 2X, + X, - 3X;
X, = free variable
Xy =-2X, +2X;
X, = free variable
X; = free variable
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Next, decompose the vector giving the general solution into a linear combination of

vectors where the weights are the free variables. That is,

=X,U +X,V +XW

X | 2% +x, -3 | 2 1
X, X, 1 0
X [=] 2%, 2% |=X, | 0]+X,|-2|+X,
X, X, 0 1
X | | X5 | 0] | 0| i
0 T
u v

Every linear combination of u, v and w is an element of Nul A. Thus {u, v, w} is a

spanning set for Nul A.

Two points should be made about the solution in Example 3 that apply to all problems of

this type. We will use these facts later.

1. The spanning set produced by the method in Example 3 is automatically linearly
independent because the free variables are the weights on the spanning vectors.
For instance, look at the 2", 4™ and 5™ entries in the solution vector in (3) and
note that x,u +Xx,v +x,w can be 0 only if the weights x,, x4 and Xs are all zero.

2. When Nul A contains nonzero vector, the number of vectors in the spanning set

for Nul A equals the number of free variables in the equation Ax = 0.

Example 4: Find a spanning set for the null space of A=

w N O -

2

9

SO b~ ODN

4

Solution: The null space of A is the solution space of the ﬁomogeneous system_

X =3X, +2%X; +2X,+ X, =0
0x, +3X, +6x; +0x, - 3X; =0
2X, - 3X, - 2%, +4X, +4x, =0
3X, -6X, +0x; +6x, +5%x, =0
-2X, +9X, + 2X; - 4%, - 5%, =0
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-3

0 |(1/3)R,

-2R,+R,
2R, +R,

-12
-12

0 |(-1/12)R,

-5/12

0

-12

0 |12R,+R,

-5/12

0

o O O O o o

0
11/6
-1/6
-5/12

0
2
0
0
0
0
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1 0 0 2 43 0
o 1 0o 0 -l 0
o o0 1 0 -512 0|3R,+R,
o o0 0 0 0 0

o o 0o 0 0 0]

The reduced row echelon form of the augmented matrix corresponds to the system

1x + 2%, +(4/3)x,=0

1x,+ (-1/6) x, =0
1x,+ (-5/12) x, =0 .

0=0

0=0

No equation of this system has a form zero = nonzero; Therefore, the system is
consistent. The system has infinitely many solutions:

X, =-2%+(-4/3)x;, X, =+(16) X, X;=+(5/12) X,
X, = arbitrary X; = arbitrary

The solution can be written in the vector form:
¢, =(-2,0,0,1,0) ¢, =(-4/3,1/6,5/12,0,1)

Therefore {(-2,0,0,1,0), (-4/3,1/6,5/12,0,1)} is a spanning set for Null space of A.

Activity:  Find an explicit description of Nul A where:

355 39
1. A=
51 10 3
4 1 -1 0 1
-1 -1 2 -3 1
2. A=
1 1 -2 0 -1
0 0 1 1 1

The Column Space of a Matrix: Another important subspace associated with a matrix
is its column space. Unlike the null space, the column space is defined explicitly via
linear combinations.

Definition: (Column Space): The column space of an mxn matrix A, written as Col A,
is the set of all linear combinations of the columns of A. IfA=1[a; ... a], then
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ColA=Span{a;,...,an}

Since Span {ay, ..., a, } is a subspace, by Theorem of lecture 20 i.e. if v,,...,v, are ina

vector space V , then Span {vl, ...,vp} is a subspace of V

The column space of a matrix is that subspace spanned by the columns of the matrix
(columns viewed as vectors). It is that space defined by all linear combinations of the
column of the matrix.

Example, in the given matrix,
11 3

2 1 4
315
4 1 6

The column space ColA is all the linear combination of the first (1, 2, 3, 4), the second (1,
1, 1, 1) and the third column ( 3, 4, 5, 6). That is, ColA={a:(1,2,3,4) +b-(1,1,1,1) +
c(3,4,5,6) }. Ingeneral, the column space ColA contains all the linear combinations
of columns of A.

The next theorem follows from the definition of Col A and the fact that the columns of A
are in R™.

Theorem 3: The column space of an mxn matrix A is a subspace of R".

Note that a typical vector in Col A can be written as Ax for some x because the notation
Ax stands for a linear combination of the columns of A. That is,

Col A = {b: b = Ax for some x in R"}
The notation Ax for vectors in Col A also shows that Col A is the range of the linear
transformation x — Ax.

6a-b
Example 6: Find a matrix A such that W= Col A. W =<| a+b |:a,binR
-7a
Solution: First, write W as a set of linear combinations.
6 -1 6||-1
W=<a|1l|+b|1|:abinR{=Spanq|1|,|1
-7 0 7110
6 -1
Second, use the vectors in the spanning set as the columns of A. Let A= 1 1 |.
-7 0

Then W = Col A, as desired.
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X3 X2

X1

We know that the columns of A span R™ if and only if the equation Ax =b has a
solution for each b. We can restate this fact as follows:

The column space of an m x n matrix A is all of R™ if and only if the equation Ax = b has
a solution for each b in R™.

Theorem 4: A system of linear equations Ax = b is consistent if and only if b in the
column space of A.

Example 6:_ A vector b in the column space of A. Let Ax = b is the linear system
-1 3 2]x 1
1 2 -3| X |=]-9]. Show that b is in the column space of A, and express b as a
2 1 2| x -3

linear combination of the column vectors of A.
Solution: Augmented Matrix is given by

-1 3 2 1]

1 2 -3 -9
2 1 -2 -3 |
1 -3 -2 -1 1R,

0 -1 -8 |-1R, +R,
0 7 2 -1 |-2R, +R,
1 -3 -2 -

0 1 -1/5 -8/5 1SR,

-7R, +R,

0 0 17/5 51/5
1 -3 0 5] (5/17)R,
0 1 0 -1|(1/5)R, +R,
0 0 1 3| 2R,+R,
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1 0 0 2
0 1 0 -1[3R, +R,
0 0o 1 3

=X, = 2,X, =-1,%, = 3. Since the system is consistent, b is in the column space of A.

-1 |3 2 1
Moreover, 211 1(-12|+3/-3|=|-9
2 1 -2 -3

Example:  Determine whether b is in the column space of A and if so, express b as a
linear combination of the column vectors of A:

11 2 -1
A=|1 0 1|: b=

2 1 3 2
Solution:

The coefficient matrix Ax="b is:
1 1 2)\(x -1

1 0 1|x|=|0

2 1 3)\x 2

The augmented matrix for the linear system that corresponds to the matrix
equation Ax=b is:

11 2|1
1 01| 0
21 3| 2

We reduce this matrix to the Reduced Row Echelon Form:
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11 2] 1 1 2|1
101[0|~[0 -1 -1|1| R+(-DR
2 13| 2 2 1 3
1 1 2|1
~ |0 1 1] 1| R+(-2)R
0 -1 -1
1 2|1
~10 1 1]-1| (-YR,
0 -1 -1|4
1 1 2|1
~ 10 1 1] -1| R+R,
0 0 of 3
1 1 2|1
~l0 1 1] %R3
0 0 o0 1
1 1 2|-1
~10 1 1] 0| R+R,
0 0 01
1 1 2|0
~|10 1 1/0| R+R,
0 0 01
1 0 10
~ 10 1 1{0]| R+(-1R,
0 0 0|1

The new system for the equation Ax=Db is
X, +X% =0
X, +X; =0
0=1

Equation 0=1 cannot be solved, therefore, the system has no solution (i.e. the system is

inconsistent).

Since the equation Ax = b has no solution, therefore b is not in the column space of A.
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Activity:  Determine whether b is in the column space of A and if so, express b as a
linear combination of the column vectors of A:

1.
1 -1 2 5
A=|9 3 1|; b=|1
1 1 1 0
1 -1 1 1
2. A= 1 1 -1{;b=
-1 -1 -1
1 1 -2 1 1
3 A 0 2 0 1 b 2
1 1 1 -3 3
0o 2 2 1 4

Theorem 5: If o denotes any single solution of a consistent linear system Ax=b and if
V,,V,,V,,...,V, form the solution space of the homogeneous system Ax=0, then every

solution of Ax=b can be expressed in the form X = X, +¢,v, +C,V, +...+C,V, and,
conversely, for all choices of scalarsc,,c,,C,,...,C, , the vector x is a solution of Ax=b.

General and Particular Solutions: The vector X is called a particular solution of Ax=b
.The expression Xo+ C1 V1 +CoVo+ . . . +Ck Vi IS called the general solution of Ax=b , and the
expression c; vy +CoVo+ . . . +Cy Vi is called the general solution of Ax=0.

Example 7: Find the vector form of the general solution of the given linear system
AXx = b; then use that result to find the vector form of the general solution of Ax=0.

X, +3X, - 2X; + 2Xs =0

2X, +6X, - 5X; - 2X, +4X; - 3%, =-1

5%, +10x,  +15%, =5

2%, +6X, +8X, +4x,+18x; =6
Solution: We solve the non-homogeneous linear system. The augmented matrix of this
system is given by
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1 3 -2 0 2 0 0
2 6 -5 -2 4 -3 -1
0 0 5 10 0 15 5
12 6 0 8 4 18 6
1 3 -2 0 2 0 0
0 0 -1 -2 0 -3 -1 |-2R, +R,
0 0 5 10 0 15 5 |-2R, +R,
0 0 4 8 0 18 6
1 3 -2 0 2 0 0]
0 0 1 2 0 3 1
-1R,
0 0 5 10 0 15 5
0 0 4 8 0 18 6
1 3 -2 0 2 0 0]
0 0 1 2 0 3 1 |-5R,+R,
0 0 0 0 0 0 0 |-4R,+R,
0 0 0 0 0 6 2 |
1 3 -2 0 2 0 0]
0 0 1 2 0 3 1
0 0 0 0 0 6 2 R
0 0 0 0 0 0 0 |
1 3 -2 0 2 0 0
0 0 1 2 0 3 1 (UB)R,
0 0 0 0 0 1 1/3
0 0 0 0 0 0 0 |
1 3 -2 0 2 0 0 |
0 0 1 2 0 0 0
-3R, +R,
0 0 0 0 0 1 1/3
0 0 0 0 0 0 0 |
1 3 0 4 2 0 0 |
0 0 1 2 0 0 0
2R, +R,
0 0 0 0 0 1 1/3
0 0 0 0 0 0 0 |
The reduced row echelon form of the augmented matrix corresponds to the system
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1x,+3x,+ 4x,+2x;, =0
1x,+2x, =0

1x, =(1/3)
0=0

No equation of this system has a form zero = nonzero; Therefore, the system is
consistent. The system has infinitely many solutions:

X, =-3X-4X,-2X X,=Tr X; =-2 X,
X, =S X; =t X; =1/3
X, =-3r-4s-2t X, =T X3 = -2S
1
X, =S X =1 =—
4 5 3
This result can be written in vector form as
%, -3r-4s- 2t 0 31 (4] D
X, r Ol 11] |o| |o
S N A I "
X, s 01 Mo 1™ 1™ o
X t Ol 10| Jo| |12
Xg 1 1 0 0 0
- — L 3 i _3_ — - — - — -
which is the general solution of the given system. The vector Xq in (A) is a particular
3] [-4] [-2]
1 0 0
: : . o 0 -2 0. :
solution of the given system; the linear combination r 0 +5S 1 +t 0 in (A) is the
0 0 1
0] [0] [0

general solution of the homogeneous system.

Activity:
1. Suppose that x, =-1, x, =2, x, =4, x, =—3 is a solution of a non-homogenous

linear system Ax =b and that the solution set of the homogenous system Ax=0
is given by this formula:
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X, =—3r+4s,
X,=r—s,

X; =T,

X, =S

(a) Find the vector form of the general solution of Ax=0.
(b) Find the vector form of the general solution of Ax=0.

Find the vector form of the general solution of the following linear system Ax = b; then
use that result to find the vector form of the general solution of Ax=0:

5 X, —2X%, =1
' 3%, —9x, =2
X +2X, =3%,+ X, = 3
3 =3X, = X +3%+ X, =-1

- X+ 3X— X +2X,= 2
4x, —5X, -3X,=-5

The Contrast between Nul A and Col A:

It is natural to wonder how the null space and column space of a matrix are related. In
fact, the two spaces are quite dissimilar. Nevertheless, a surprising connection between
the null space and column space will emerge later.

2 4 21
Example8: Let A=|-2 -5 7 3
3 7 -8 6

(a) If the column space of A is a subspace of R¥, what is k?
(b) If the null space of A is a subspace of R¥, what is k?

Solution:

(a) The columns of A each have three entries, so Col A is a subspace of R¥, where k = 3.
(b) A vector x such that Ax is defined must have four entries, so Nul A is a subspace of
R¥, where k = 4.

When a matrix is not square, as in Example 8, the vectors in Nul A and Col A live in
entirely different “universes”. For example, we have discussed no algebraic operations
that connect vectors in R® with vectors in R*. Thus we are not likely to find any relation
between individual vectors in Nul A and Col A.
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2 4 21
Example 9: IfA=|-2 -5 7 3], find a nonzero vector in Col A and a nonzero
3 7 86
vector in Nul A
2
Solution: It is easy to find a vector in Col A. Any column of A will do, say, |-2|. To
3
find a nonzero vector in Nul A, we have to do some work. We row reduce the augmented
10 9 0O
matrix [A 0] to obtain[A 0]~|0 1 -5 0 Of. Thus if x satisfies Ax = 0,
00 0 10

then x, =-9x,, X, =5x,,X, =0, and xs is free. Assigning a nonzero value to X3 (say), X3 =
1, we obtain a vector in Nul A, namely, x = (-9, 5, 1, 0).

3

2 4 -2 1 3
Example 10: WithA=|-2 -5 7 3|, letu= 1 and v=|-1]|.
3 7 86 0 3

(a) Determine if uisin Nul A. Could u be in Col A?

(b) Determine if visin Col A. Could v be in Nul A?

Solution: (a) An explicit description of Nul A is not needed here. Simply compute the
product

3
2 4 -2 1 0| |0

Au=|-2 -5 7 3 =1-3(#|0

3 7 -8 6 31 10
0

Obviously, u is not a solution of Ax =0, so u is not in Nul A.
Also, with four entries, u could not possibly be in Col A, since Col A is a subspace of R®.
(b) Reduce [A v] to an echelon form:

2 4 21 3] [24 2 1 3
[A v]=|2 5 7 3 -1|~|0 1 -5 -4 2
3 7 86 3|/]00 0 17 1

At this point, it is clear that the equation Ax = v is consistent, so v is in Col A. With only
three entries, v could not possibly be in Nul A, since Nul A is a subspace of R*.

The following table summarizes what we have learned about Nul A and Col A.

©Virtual University Of Pakistan 271



21-Null Spaces, Column Spaces and Linear Transformation VU

1. Nul Ais a subspace of R". 1. Col A is a subspace of R™.

2. Nul A is implicitly defined; i.e. we 2. Col Ais explicitly defined; that is,
are given only a condition (Ax = 0) we are told how to build vectors in
that vectors in Nul A must satisfy. Col A

3. It takes time to find vectors in Nul 3. ltiseasy to find vectors in Col A
A. Row operations on [A 0] are The columns of A are displayed;
required. others are formed from them.

4. There is no obvious relation 4. There is an obvious relation
between Nul A and the entries in A. between Col A and the entries in

A, since each column of Ais in Col
A.

5. A typical vector v in Nul A has the 5. A typical vector v in Col A has the

property that Av = 0. property that the equation Ax =v
IS consistent.

6. Given a specific vector v, it is easy 6. Given a specific vector v, it may
to tell if v is in Nul A. Just compute take time to tell if vis in Col A.
Av. Row operations on [A V] are

required.

7. Nul A ={0}if and only if the 7. Col A.=R"™if and only if the
equation Ax = 0 has only the trivial equation Ax = b has a solution for
solution. every bin R".

8. Nul A={0}if and only if the linear 8. Col A=R"™if and only if the linear
transformation x — AX is one-to- transformation x — Ax maps R"
one. onto R™,

Kernel and Range of A Linear Transformation:

Subspaces of vector spaces other than R" are often described in terms of a linear
transformation instead of a matrix. To make this precise, we generalize the definition
given earlier in Segment 1.

Definition: A linear transformation T from a vector space V into a vector space W is a
rule that assigns to each vector x in V a unique vector T (x) in W, such that

@) T+v)=T(u)+T() forall u,vinV,and

() T(cu)=cT(u) for all uin Vv and all scalars c.

The kernel (or null space) of such a T is the set of all u in V such that T (u) = 0 (the zero
vector in W). The range of T is the set of all vectors in W of the form T (x) for some x in
V. If T happens to arise as a matrix transformation, say, T (X) = Ax for some matrix A —
then the kernel and the range of T are just the null space and the column space of A, as
defined earlier. So if T(x) = Ax, col A =range of T.

Definition: If T:V —W is a linear transformation, then the set of vectors in V that T
maps into 0 is called the kernel of T; it is denoted by ker(T). The set of all vectors in W
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that are images under T of at least one vector in V is called the range of T; it is denoted
by R(T).

Example: If T,:R" - R" is multiplication by the mxn matrix A, then from the
above definition; the kernel of T, is the null space of A and the range of T, is the column
space of A.

Remarks: The kernel of T is a subspace of V and the range of T is a subspace of W.

Range

Domain TN

Kernel

Kernel is a Range is a
subspace of V subspace of W

Figure 2 Subspaces associated with a linear transformation.

In applications, a subspace usually arises as either the kernel or the range of an
appropriate linear transformation. For instance, the set of all solutions of a homogeneous
linear differential equation turns out to be the kernel of a linear transformation. Typically,
such a linear transformation is described in terms of one or more derivatives of a
function. To explain this in any detail would take us too far a field at this point. So we
present only two examples. The first explains why the operation of differentiation is a
linear transformation.

Example 11: Let V be the vector space of all real-valued functions f defined on an

interval [a, b] with the property that they are differentiable and their derivatives are
continuous functions on [a, b]. Let W be the vector space of all continuous functions on
[a, b] and let D:V ->W be the transformation that changes f in V into its

derivative f'. In calculus, two simple differentiation rules are
D(f +g)=D(f)+D(g)and D(cf)=cD(f)
That is, D is a linear transformation. It can be shown that the kernel of D is the set of

constant functions of [a, b] and the range of D is the set W of all continuous functions on
[a, b].

Example 12: The differential equation y” + wy = 0 4)

where w is a constant, is used to describe a variety of physical systems, such as the
vibration of a weighted spring, the movement of a pendulum and the voltage in an

©Virtual University Of Pakistan 273



21-Null Spaces, Column Spaces and Linear Transformation VU

inductance — capacitance electrical circuit. The set of solutions of (4) is precisely the
kernel of the linear transformation that maps a function y=f(t) into the

function f"(t) + wf (t) . Finding an explicit description of this vector space is a problem in
differential equations.

a
Example 13: Let W =4|b |:a-3b-c=0}. Show that W is a subspace of R% in
C

different ways.

Solution: First method: W is a subspace of R® by Theorem 2 because W is the set of all
solutions to a system of homogeneous linear equations (where the system has only one
equation). Equivalently, W is the null space of the 1x3 matrix A=[1 -3 -1].

Second method: Solve the equation a — 3b — ¢ = 0 for the leading variable a in terms of
the free variables b and c.

3b+c
Any solution has the form b , Where b and c are arbitrary, and
C
3b+c 3 1
b |=Db|1|+c|0
c 0 1
T
Vl V2

This calculation shows that W = Span{vi, Vv»}. Thus W is a subspace of R® by Theorem i.e.
if v,,...,v, are in a vector spaceV , then Span {vl, ...,vp} is a subspace ofV . We could

also solve the equation a — 3b — ¢ = 0 for b or ¢ and get alternative descriptions of W as a
set of linear combinations of two vectors.

7 3 5 2 7
Example 14: LetA=|-4 1 -5|, v=|1l|,and W=|6
5 2 -4 -1 -3

Suppose you know that the equations Ax = v and Ax = w are both consistent. What can
you say about the equation Ax =v + w?

Solution: Both v and w are in Col A. Since Col A is a vector space, v + w must be in Col
A. That is, the equation Ax = v + w is consistent.
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Activity:
1. LetV and W be any two vector spaces. The mapping T:V —W such that T (v) =
0 for every v in V is a linear transformation called the zero transformation. Find
the kernel and range of the zero transformation.

2. Let V be any vector space. The mapping |:V —V defined by I(v) = v is called
the identity operator on V. Find the kernel and range of the identity operator.
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Exercises:
5 5 21 19
1. Determine if w= | -3 | isin Nul A, where A={13 23 2
2 8 14 1

In exercises 2 and 3, find an explicit description of Nul A, by listing vectors that span the
null space.

1 -2 0 40
1 350
2. 330 01 9 0
01 4 -2
0 1

In exercises 4-7, either use an appropriate theorem to show that the given set, W is a
vector space, or find a specific example to the contrary.

a
4 b| a-2b=4
a-2b=4c
4.{|bl:a+b+c=2 5. :
C| 2a=c+3d
c
d
b-2d
-a+2b
5+d
6. 'b,d real 7.1 a-2b |:a,breal
b+3d
g 3a-6b

In exercises 8 and 9, find A such that the given set is Col A.

[ 25 +3t | b-c
r+s-2t 2b+c+d
8. :r,s,treal 0. ‘b, c,d real
4r +s 5c-4d
| 3r-s-t | i d |

For the matrices in exercises 10-13, (a) find k such that Nul A is a subspace of R¥, and
(b) find k such that Col A is a subspace of R¥.
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(2 -6 7 2 0
-1 3 2 0 5
10. A= 11. A=
-4 12 0O 5 7
'3 9] 5 7 2]
4 5 -2 6 0
12. A= 13.A=[1 -3 9 0 -5]
11 0 10
-6 12 2 . .
14. Let A= 6 and w = Ll Determine if wis in Col A. Isw in Nul A?
-8 -2 9 2|
15.Let A= 6 4 8 |andw=| 1 |. Determine if wisin Col A. Isw in Nul A?
4 0 4 -2

p(0) |

. For instance, if p (t) = 3 + 5t + 7t°, then
p(1) |

16. Define T: P,—>R?by T (p) = {

3
to-[?]

a. Show that T is a linear transformation.
b. Find a polynomial p in P, that spans the kernel of T, and describe the range of T.

p(0)

p(1)
and p; in P, that span the kernel of T, and describe the range of T.

17. Define a linear transformation T: P,—R? by T (p) { } Find polynomials p;

18. Let My, be the vector space of all 2x2 matrices, and define T: Max, — Moy, by

. a b
T(A)=A+A", where A= :
c d
(@) Show that T is a linear transformation.
(b) Let B be any element of M.y, such that B'=B. Find an A in May such that T (A) = B.
(c) Show that the range of T is the set of B in My, with the property that B'=B.
(d) Describe the kernel of T.

19. Determine whether w is in the column space of A, the null space of A, or both, where
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1 7 6 4 1] 1] -8 5 -2 0
1 S5 -1 0 -2 2 S5 02 1 -2
(@ w= A= (b) w= A=
-1 9 -11 7 -3 1 10 8 6 -3
| -3 19 9 7 1] 0] 3 -2 1 0
20. Let ay, ..., as denote the columns of the matrix A, where
51 2 2 0]
A_332-1 -12 B—[a a a]
|18 4 4 5 12|t 2
2110 -2
(a) Explain why a3 and as are in the column space of B
(b) Find a set of vectors that spans Nul A
(c) Let T: R>— R*be defined by T (x) = Ax. Explain why T is neither one-to-one nor
onto.
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Lecture 22
Linearly Independent Sets; Bases
First we revise some definitions and theorems from the Vector Space:

Definition: Let V be an arbitrary nonempty set of objects on which two operations are
defined, addition and multiplication by scalars.

If the following axioms are satisfied by all objects U, v, w in V and all scalars | and
m, then we call V a vector space.

Axioms of Vector Space:

For any set of vectors u, v, w in V and scalars I, m, n:
u+visinV

u+v=v+u

u+(v+w)=(Uu+v)+w

There exist a zero vector 0 such that
O+u=u+0=u

There exist a vector — U in V such that
-u+u=0=u+(-u)

(Tu)isinV

lu+v)=lu+lyv
mmu)=(mn)u=n(mu)
(I+m)u=lu+mu

0. 1u = u where 1 is the multiplicative identity

halb o

N

2o~

Definition: A subset W of a vector space V is called a subspace of V if W itself'is a
vector space under the addition and scalar multiplication defined on V.

Theorem: IfW is a set of one or more vectors from a vector space V, then W is subspace
of V if and only if the following conditions hold:

(a) If u and v are vectors in W, then U + v is in W
(b) If k is any scalar and U is any vector in W, then K u is in W.

Definition; The null space of an m x n matrix A (Nul A) is the set of all solutions of the
hom equation AXx =0
Nul A = {x: x is in R" and Ax = 0}

Definition: The column space of an m x n matrix A (Col A) is the set of all linear
combinations of the columns of A.

IfA=[a; ... a],

then

ColA=Span{ai,...,an}
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Since we know that a set of vectors S = {Vl,vz,vp...vp} spans a given vector space V if

every vector in V is expressible as a linear combination of the vectors in S. In general
there may be more than one way to express a vector in V as linear combination of vectors
in a spanning set. We shall study conditions under which each vector in V is expressible
as a linear combination of the spanning vectors in exactly one way. Spanning sets with
this property play a fundamental role in the study of vector spaces.

In this Lecture, we shall identify and study the subspace H as “efficiently” as possible.
The key idea is that of linear independence, defined as in R".

Definition: An indexed set of vectors {vi,..., Vp} in V is said to be linearly
independent if the vector equation

C,Vy +CV, +...+C v, =0 (1)
has only the trivial solution, i.e. c; =0, ..., ¢, = 0.

The set {v1,...,Vp} is said to be linearly dependent if (1) has a nontrivial solution, that is,
if there are some weights, Cy,...,Cp, not all zero, such that (1) holds. In such a case, (1) is
called a linear dependence relation among vy, ... , Vp. Alternatively, to say that the v’s
are linearly dependent is to say that the zero vector O can be expressed as a nontrivial
linear combination of the v’s.

If the trivial solution is the only solution to this equation then the vectors in the set are
called linearly independent and the set is called a linearly independent set. If there is
another solution then the vectors in the set are called linearly dependent and the set is
called a linearly dependent set.

Just as in R", a set containing a single vector V is linearly independent if and only ifv #0.
Also, a set of two vectors is linearly dependent if and only if one of the vectors is a
multiple of the other. And any set containing the zero-vector is linearly dependent.

Determining whether a set of vectors a,,a,,a,,...a, is linearly independent is easy when
one of the vectors is 0: if, say,a, =0, then we have a simple solution to
X,a, + X,a, + X; a, +...+ X,a, = 0 given by choosing X, to be any nonzero value and putting

all the other X’s equal to 0. Consequently, if a set of vectors contains the zero vector, it
must always be linearly dependent. Equivalently, any set of linearly independent vectors
cannot contain the zero vector.

Another situation in which it is easy to determine linear independence is when there are
more vectors in the set than entries in the vectors. If n > m, then the n vectors
a,,a,,d,,...2, in R™ are columns of an mxnmatrix A. The vector equation

X,a, +X,a, +X; a, +...+ X,a, = 0 is equivalent to the matrix equation AX = 0 whose

corresponding linear system has more variables than equations. Thus there must be at
least one free variable in the solution, meaning that there are nontrivial solutions
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to X8, + X,&, + X, &, +...+ X,8, = 0: If n > m, then the set {a,,a,,a,,..., } of vectors in R"
must be linearly dependent.

When n is small we have a clear geometric picture of the relation amongst linearly
independent vectors. For instance, the case n = 1 produces the equation X,a, = 0, and as
long asa, # 0, we only have the trivial solution X, = 0. A single nonzero vector always
forms a linearly independent set.

When n = 2, the equation takes the form X,a, + X,a, = 0. If this were a linear dependence
relation, then one of the X’s, say X, would have to be nonzero. Then we could solve the
equation for a, and obtain a relation indicating that @, is a scalar multiple ofa,.

Conversely, if one of the vectors is a scalar multiple of the other, we can express this in
the form x,;a, + X,a, =0. Thus, a set of two nonzero vectors is linearly dependent if and

only if they are scalar multiples of each other.

Example:  (linearly independent set)
Show that the following vectors are linearly independent:

-2 2 0
vi=| 1|, v,=| 1|, vy=|0
1 -2 1

Solution: Let there exist scalars C,C,,C, in R such that
C\V, +CV, +Cv, =0

Therefore,
-2
= ¢ | I |+c,| 1 |+c,
1
-2¢, | | 2c, 0
= C |+ 02 +/0
¢ | |2 c,
[—2c, +2c, 0
= C, +C, =0
—-2¢, +C, 0

The above can be written as:
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-2¢,+2¢,=0 ... 1)=-c +c,=0........ (4)(dividing by 2 onboth sides of (1))
c,+¢c,=0 ... (2)

C,—2C,+¢C, =0 ... 3)

Solving (2) and (4) implies:

c,+¢C,=0 ) L
. . Solving (3)implies :
—C, +¢, =0 Solving (2)implies:
0+0+c,=0
c,+0=0
=¢c, =0
0+2c,=0 =c =0
=¢,=0

=, =¢C,=¢, =0 ;scalarsc,,c,,c, R are all zero
. The system has trivial solution.
Hence the given vectors v, v,, v, are linearly independent.

Example:  (linearly dependent set)
Ifv, ={2,-1,0,3},v, ={1,2,5,—1} and v, ={7,—-1,5,8} , then the set of vectors

S ={V,,V,,V, }is linearly dependent, since 3V, +V, —V, =0

Example;  (linearly dependent set)
The polynomials p, =-x+1, p, =-2x>+3x+5, and p, =-x"+3x+1 form a linearly

dependent set in p, since3p,—p,+2p,; =0.

Note: The linearly independent or linearly dependent sets can also be determined using
the Echelon Form or the Reduced Row Echelon Form methods.

Theorem 1: An indexed set { vi, ... , Vp } of two or more vectors, with v, #0, is
linearly dependent if and only if some Vvj (with j>1) is a linear combination of the
preceding vectors, Vi, ..., Vj1.

The main difference between linear dependence in R" and in a general vector space is that
when the vectors are not n — tuples, the homogeneous equation (1) usually cannot be
written as a system of n linear equations. That is, the vectors cannot be made into the
columns of a matrix A in order to study the equation AX = 0. We must rely instead on the
definition of linear dependence and on Theorem 1.

Example 1: Letp; (t) =1, po(t)y=tand p3 () =4 —t. Then { p1, P2, P 3} is linearly
dependent in P because  p3 = 4p; — pa.

Example 2: The set {Sin t, Cos t} is linearly independent in C [0, 1] because Sin t and
Cos t are not multiples of one another as vectors in C [0, 1]. That is, there is no scalar C
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such that Cos t = c. Sin t for all t in [0, 1]. (Look at the graphs of Sin t and Cos t.)
However, {Sint Cos t, Sin 2t} is linearly dependent because of he identity:
Sin 2t =2 Sint Cos t, for all t.

Useful results:
e A set containing the zero vector is linearly dependent.
e A set of two vectors is linearly dependent if and only if one is a multiple of the
other.

e A set containing one nonzeoro vector is linearly independent. i.e. consider the set
containing one nonzeoro vector {V,} so {v,} is linearly independent when v, # 0.

e A set of two vectors is linearly independent if and only if neither of the vectors is
a multiple of the other.

Activity:  Determine whether the following sets of vectors are linearly independent or
linearly dependent:

1. i=(1,0,0,0), j=(0,1,0,0),k=(0,0,0,1) inR".
v, =(2,0,-1), v, =(-3,-2,-5), v, =(-6,1,-1), v, =(-7,0,2) inR’.
i=(1,0,0,...,0), j=(0,1,0,...,0),k =(0,0,0,...,1) in R".

4. 3X*+3X+1, 4% +X, 3% +6X+5, = x> +2X+7 in p,

Definition: Let H be a subspace of a vector space V. An indexed set of vectors B =
{by,..., bp} in V is a basis for H if

(1) B is a linearly independent set, and
(i1))  the subspace spanned by B coincides with H; that is,
H = Span {by,....by }
The definition of a basis applies to the case when H =V, because any vector space is a
subspace of itself. Thus a basis of V is a linearly independent set that spans V. Observe
that when H #V , condition (ii) includes the requirement that each of the vectors by,...,bp
must belong to H, because Span { bs,...,bp } contains bg,...,bp, as we saw in lecture 21.

Example 3: Let A be an invertible nxNn matrix — say, A = [a; ... a,]. Then the columns
of A form a basis for R" because they are linearly independent and they span R", by the

Invertible Matrix Theorem.

Example 4: Letey,..., &, be the columns of the Nxn identity matrix, I,. That is,

1 0 0

0 1 0
e, = , e, = e e, =

0 0 1
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The set {e, ..., en} is called the standard basis for R " (Fig. 1).

X3

€3

\ 4

€2
X2
€1
X1
Figure 1 - The standard basis for R®
3 -4 -2
Example5: Letv,=|0 [,v,=|1 |,and v,=| 1 |. Determine if {vi, Vo, V3} is a basis
-6 7 5

for R.

Solution:  Since there are exactly three vectors here in R®, we can use one of any
methods to determine whether they are basis for R*or not. For this, let solve with help of
matrices. First form a matrix of vectors i.e. matrix A = [vy Vv,  vs]. If this matrix is
invertible (i.e. |A| # 0 determinant should be non zero).

For instance, a simple computation shows that det A = 6 0. Thus A is invertible. As in
example 3, the columns of A form a basis for R,

Example 6: Let S ={1,t, 2, .. t"}. Verify that S is a basis for P,,. This basis is called
the standard basis for Py.

Solution: Certainly S spans Pp. To show that S is linearly independent, suppose that
Co, ..., Cp satisfy

Col+ct+ct’+ ... +ct"=0(t) (2)
This equality means that the polynomial on the left has the same values as the zero
polynomial on the right. A fundamental theorem in algebra says that the only polynomial
in P,, with more than n zeros is the zero polynomial. That is, (2) holds for all t only if
Co = ...= Cy = 0. This proves that S is linearly independent and hence is a basis for P,. See
Figure 2.
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y=t

N

Figure 2 — The standard basis for P,

Problems involving linear independence and spanning in P, are handled best by a
technique to be discussed later.

Egamgle 7: Check whether the set of vectors {(2, -3, 1), (4, 1, 1), (0, -7, 1)} is basis for
R>?
Solution: The set S = {v1, Vo, va} of vectors in R® spans V = R® if
C1V1 + CaVa + CaV3 = diwy + dawa + daws (*)
with w; = (1,0,0), w, = (0,1,0) , w3 = (0,0,1) has at least one solution for every set of
values of the coefficients dy, dy, d3. Otherwise (i.e., if no solution exists for at least some
values of dj, dz, d3), S does not span V. With our vectors Vi, Vz, V3, (¥) becomes
c1(2,-3,1) + c»(4,1,1) + ¢3(0,-7,1) = dy(1,0,0) + d»(0,1,0) + d3(0,0,1)
Rearranging the left hand side yields
2c,+4c,+0c,=1d,+0d,+0d,
-3¢, +1c¢,-7¢,=0d,+1d,+0d, (A)
lc,+1c,+1c,=0d,+0d, +1d,
2 4 0]fc,] [d,
=3 1 -7|¢c,|=|d,
11 1| |d,

2 4 0
We now find the determinant of coefficient matrix | -3 1 -7 | to determine whether the
1 1 1

system is consistent (so that S spans V), or inconsistent (S does not span V).
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2 4 0
Now det|-3 1 -7|=2(8)-4(4)+0=0
1 1 1

Therefore, the system (A) is inconsistent, and, consequently, the set S does not span the
space V.

Example 8: Check whether the set of vectors
{-4 +1t+3t%, 6 +5t+2t*, 8 +4t+ 1t} is a basis for P,?
Solution The set S = {p; (t), p2 (t), ps (t)} of vectors in P, spans V = P, if

C1p1(t) + CaP2(t) + Caps(t) = diqu(t) + d202(t) + ds g (1) (*)
withqi() =1 +0t +0t% ,go()=0 +1t +0t? ,qgs(t)=0 + 0t + 1t?has at least
one solution for every set of values of the coefficients dj, dy, d3. Otherwise (i.e., if no
solution exists for at least some values of dy, dz, d3), S does not span V. With our vectors
pl(t)! pz(t)! p3(t): (*) becomes:

CL(-4+1t+3t)+c, (6+5t+2t)+c3(8+4t+1t9)=

d(1 +0t +0t?) + d, (0 +1t +0t?) + dg (0 +0t +1t?)
Rearranging the left hand side yields

(-dcy +6Co+8¢c3)l + (Ley+5c, +4cs)t+ (3¢ +2¢c, +1cg) 2 =

(1 d; +0d, +0 d3)1 + (0 d;+1d,+0 d3) t+ (0 d;+0d, +1 d3) t2
In order for the equality above to hold for all values of t, the coefficients corresponding to
the same power of t on both sides of the equation must be equal. This yields the
following system of equations:

-4c,+6¢,+8c,=1d,+0d,+0d,

lc,+5c,+4c,=0d,+1d,+0d, (A)
3c,+2¢c,+1c,=0d,+0d,+1d,
-4 6 8¢ d,
=|1 5 4jc,|=|d,
3 2 1]|c, d,
-4 6 8
We now find the determinant of coefficient matrix | 1 5 4| to determine whether the
3 21
system is consistent (so that S spans V), or inconsistent (S does not span V).
-4 6 8
Now det| I 5 4|=-26#0. Therefore, the system (A) is consistent, and,
3 21

consequently, the set S spans the space V.

The set S = {p1 (1), p2 (t), p3 (1)} of vectors in P, is linearly independent if the only
solution of

C1p1(t) + C2ap2(t) + Caps(t) =0 (**)
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is C1, C2, €3 = 0. In this case, the set S forms a basis for span S. Otherwise (i.e., if a
solution with at least some nonzero values exists), S is linearly dependent. With our
vectors pi (t), 2 (t), ps (t), (2) becomes: ¢1 (-4 + 1t+3t) +c, (6+5t+2t%) +c3 (8 +
41+1 tz) = 0 Rearranging the left hand side yields

(-dcy+6Co+8¢c3)l + (Lcy+5c, +4cs)t+ (3c+2c, +1cy)t2=0
This yields the following homogeneous system of equations:

-4c,+6¢c,+8¢c,=0 -4 6 8||¢c 0
lc,+5¢c,+4¢,=0 =|1 5 4|/c,|=|0
3c,+2¢c,+1c, =0 3 2 1]|c, 0
-4 6 8
As det| 1 5 4| =-26%0. Therefore the set S = {p; (t), p2 (t), p3 (1)} is linearly
3 21

independent. Consequently, the set S forms a basis for span S.

Example 9: The set S b0 10 o000 basis for th t
p : € se = s . . 1s a basis for the vector
0 Ool]o o||1 O]]0 1

space V of all 2 x 2 matrices.
Solution: To verify that S is linearly independent, we form a linear combination of the
vectors in S and set it equal to zero:

1 0 0 1 0 0 0 0 0 0
C1 + Co + C3 + Cy =
0 0 00 1 0 0 1 0 0
. ¢ ¢] [oo] . .
This gives = , which implies that ¢; = ¢, = ¢c3 = ¢4 = 0. Hence S is
c, C 0 O

linearly independent.
a b
To verify that S spans V we take any vector { d} in V and we must find scalars ¢y, Co,
C
C3, and C4 such that
1 0 0 1 0 0 0 0 a b c, G a b
Cq1 + Co + C3 +Cy = = =
0 0 0 0 1 0 0 1 c d c; C, c d
We find that ¢; = @, ¢; = b, ¢3 = ¢, and ¢4 = d so that S spans V.
The basis S in this example is called the standard basis for My,. More generally, the
standard basis for My, consists of mn different matrices with a single 1 and zeros for the
remaining entries
Example 10: Show that the set of vectors

(ER P (PR

is a basis for the vector space V of all 2 x 2 matrices (i.e. My).
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Solution: The set S = {vy, Vo, V3, V4} of vectors in My, spans V = My, if
CiVi+CoVo+C3Va+ CaVa=diwy +dowy + dzws + dawy (*)

i 1 0 0 1 0 0 0 0
with Wy = , Wr = , Wy = , Wg =
0 0 0 0 1 0 0 1

has at least one solution for every set of values of the coefficients d1, dy, d3, ds. Otherwise
(i.e., if no solution exists for at least some values of dj, dz, ds, ds), S does not span V.
With our vectors Vi, Va, V3, V4, (*) becomes:

3 6 0 -1 0 -8 1 0
C]_ +C2 +C3 +C4
{3 -6} {-1 0 } [-12 -4} {-1 2}
:dll 0+d20 1+d30 0+d40 0
0 0 0 0 1 0 0 1

Rearranging the left hand side yields

3¢ +0c,+H0c,+1c,  6¢ -1c,-8¢,+0c,

[3c1-1g -12¢,-1c, -6¢,+0c,-4c, +20j
1d,+0d,+0d,+0d, 0d,+1d,+0d,+0d,
[0d1+0d2+1d3+0d4 0d1+0d2+0d3+1dj

The matrix equation above is equivalent to the following system of equations

3c,+ 0c,+0c,+1¢c,=1d,+0d,+0d,+0d,
6c,- 1c,- 8c,+0c,=0d,+1d,+0d,+0d,
3c,- 1c,-12¢,- 1c,=0d,+0d,+1d,+0d,
-6¢,+0c,- 4¢c,+2c,=0d,+0d,+0d,+1d,

30 0 1]c d,
6 -1 -8 0]|c, d,
- =

3 -1 -12 -1§|¢ d,

-6 0 -4 2]|c, d,
3 0 O

) } . -1 - 0 )
We now find the determinant of coefficient matrix A= { 12 -1 to determine

6 0 -4 2

whether the system is consistent (so that S spans V), or inconsistent (S does not span V).
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Now det (A) = 48 0. Therefore, the system (A) is consistent, and, consequently, the set
S spans the space V.

Now, the set S = {v1, Vo, V3, Va} of vectors in My, is linearly independent if the only
solution of CqVq + CoVo + C3Vv3 + C4Va4 = 0 is Cq, Cy, C3, C4 = 0. In this case the set S forms
a basis for span S. Otherwise (i.e., if a solution with at least some nonzero values exists),
S is linearly dependent. With our vectors Vi, Va, V3, V4, we have

- - 0 0
Cl3 6+C20 1+c30 8+c41 0]_
3 -6 -1 0 -2 4 -1 21 10 0
Rearranging the left hand side yields

3¢, +0c,+0c, +1c, 6¢c-1c,-8¢c,+0c, | |0 0
3¢,-1¢c,-12¢,-1c, -6¢,+0c,-4c,+2¢, 0 0

The matrix equation above is equivalent to the following homogeneous equation.

3.0 0 17]c] [o
6 -1 -8 0fc,| |0
3 -1 -12 -1f|¢c, | |0
6 0 -4 2|c| |0
As det (A) =48%0

Therefore the set S = {vi, V2, V3, V4} is linearly independent. Consequently, the set S
forms a basis for span S.

1 -3 -4
Example 11: Letv,=|-21|, v,=| 5|, v;=| 5 |, and H =Span{v,,v,,Vv,}.
-3 7 6

Note that v3 = 5v; + 3v; and show that Span {vy, v, v3} = Span {v1, V,}. Then find a basis
for the subspace H.
Solution: Every vector in Span {vi, V2} belongs to H because

C1Vi+ CaVo=C1Vi +CoVo + 0 V3
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X3
X2

\1

Vo

X1

Now let X be any vector in H — say, X = C1V1 + CaV2 + C3Vvs. Since V3 = 5v; + 3V, we may
substitute
X = C1V1 + CpV2 + C3 (5v1 + 3vy)
= (C1 + 5C3) VvV, + (C2 + 3C3) Vo
Thus X is in Span {vi, V2}, so every vector in H already belongs to Span {vi, vo}. We
conclude that H and Span {vi, v,} are actually the same set of vectors. It follows that
{v1, v2} is a basis of H since {vi, V2} is obviously linearly independent.

Activity:  Show that the following set of vectors is basis forR* :

v, =(1,0,0),v,=(0,2,1),v,=(3,0,1)

v, =(1,2,3),v,=(0,1,1),v,=(0,1, 3)

The Spanning Set Theorem:
As we will see, a basis is an “efficient” spanning set that contains no unnecessary vectors.
In fact, a basis can be constructed from a spanning set by discarding unneeded vectors.

Theorem 2: (The Spanning Set Theorem) Let S = {vy, ..., Vp} be a setin V and let
H = Span {vy, ..., Vp}.
a. If one of the vectors in S — say, Vk — is a linear combination of the
remaining vectors in S, then the set formed from S by removing vy still
spans H.
b. If H # {0}, some subset of S is a basis for H.
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Since we know that span is the set of all linear combinations of some set of vectors and
basis is a set of linearly independent vectors whose span is the entire vector space. The

spanning set is a set of vectors whose span is the entire vector space. "The Spanning set
theorem" is that a spanning set of vectors always contains a subset that is a basis.

Remark: LetV =RMandletS ={vy, Va,..., Vo} be a set of nonzero vectors in V.

Procedure:
The procedure for finding a subset of S that is a basis for W = span S is as follows:
Step1 Write the Equation,
CiV1+ CoVo+ ...+ Ch v =0 3)
Step 2 Construct the augmented matrix associated with the homogeneous system of
Equation (1) and transforms it to reduced row echelon form.
Step 3 The vectors corresponding to the columns containing the leading 1°s form a basis
for W = span S.
Thus if S = {v1, Va,..., Vg} and the leading 1’s occur in columns 1, 3, and 4, then { vi , V3, V4} is a
basis for span S.

Note In step 2 of the procedure above, it is sufficient to transform the augmented matrix to row
echelon form.

Example 12: Let S = {vy, Vo, V3, V4, Vs5} be a set of vectors in R4, where
vi =(1,2,-2,1), v, = (-3,0,-4,3), vs = (2,1,1,-1), v4 = (-3,3,-9,6), and vs = (9,3,7,-6).
Find a subset of S that is a basis for W = span S.
Solution: Step 1 Form Equation (3),
c1(1,2,-2,1) + ¢2(-3,0,-4,3) + c3(2,1,1,-1)+ c4(-3,3,-9,6) + ¢5(9,3.7,-6) = (0,0,0,0).
Step 2 Equating corresponding components, we obtain the homogeneous system
c,- 3c,+2¢c,- 3c,+9¢c.=0
2¢, + c,+ 3c,+3c. =0
-2¢c,-4c,+ ¢,- 9c,+7¢,=0
c,+3c, - c,+6¢c,-6c, =0
The reduced row echelon form of the associated augmented matrix is
1 0 Y 32 32 :0
0 1 -2 32 572 :0
0 0 0 0 0 :0
0 0 0 0 0 :0
Step 3 The leading 1’s appear in columns 1 and 2, so {vi, V,} is a basis for W = span S.
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Two Views of a Basis When the Spanning Set Theorem is used, the deletion of
vectors from a spanning set must stop when the set becomes linearly independent. If
an additional vector is deleted, it will not be a linear combination of the remaining
vectors and hence the smaller set will no longer span V. Thus a basis is a spanning set
that is as small as possible.

A basis is also a linearly independent set that is as large as possible. If S is a basis for V,
and if S is enlarged by one vector — say, W — from V, then the new set cannot be linearly

independent, because S spans V, and w is therefore a linear combination of the elements
in S.

Example 13: The following three sets in R® show how a linearly independent set can be
enlarged to a basis and how further enlargement destroys the linear independence of the
set. Also, a spanning set can be shrunk to a basis, but further shrinking destroys the
spanning property.

01,3 0l,/31,]5 0,131,]5],
0 0 0
Linearly independent A basis Spans R® but is
but does not span R® for R® linearly dependent
1 0 S
Example 14: Let v,=|0|,v,=|1|, and H =4| s |:sinR}. then every vector in H is a
0 0 0
S 1 0
linear combination of v; and v, because| S |=S| 0 [+S| 1 |. Is {vi1, V»} a basis for H?
0 0 0

Solution: Neither vy nor v, is in H, so {vi, Vo} cannot a basis for H. In fact, {vi, vo} is a
basis for the plane of all vectors of the form (Cy, Cp, 0), but H is only a line.

Activity:  Find a Basis for the subspace W in R® spanned by the following sets of
vectors:

1. v, =(1,0,2),v,=(3,2,1), v, =(1,0,6), v, =(3,2,1)

2. v,=(1,2,2),v,=(3,2,1), v, =(1,1,7), v, =(7,6,4)
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Exercises:

Determine which set in exercises 1-4 are bases for R? or R®. Of the sets that are not bases,
determine which one are linearly independent and which ones span R? or R, Justify your
answers.

L{[3]]-3 111-21(0]]0
1.1 0|, NES) 2.0-3{,/91,]01,-3
2] 4] 1 0[O0 ]0]|5
1] [-4] C1][o][3]]0
3.121,-5 4.1-41, | =5,
=316 ] 3L 42

5. Find a basis for the set of vectors in R® in the plane x + 2y + z=0.

6. Find a basis for the set of vectors in R? on the line y = 5X.

7. Suppose R* = Span {v1, Va, Vs, V4}. Explain why {v1, Va, V3, V4} is a basis for R,

8. Explain why the following sets of vectors are not bases for the indicated vector spaces.
(Solve this problem by inspection).

(a) u=(1,2), uz = (0, 3), us = (2, 7) for R®

d)ur=(-1,3,2),u,=(6, 1, 1) for R®
() p1=1+x+x%po=x—1forP,

I 1 6 0 30 5 1 7 1
(d) A= ,B= ,C= ,D= ,E= fOI‘Mzz
2 3 -1 4 I 7 4 2 29
9. Which of the following sets of vectors are bases for R??
(a) (29 1): (37 0) (b) (43 1)5 ('75 _8) (C) (O’ 0)> (17 3) (d) (39 9)’ (-45 -12)

10. Let V be the space spanned by v; = Cos? X, Vo = Sinzx, V3 = COS 2X.
(a) Show that S = {vi, v, V3} is not a basis for V. (b) Find a basis for V

In exercises 11-13, determine a basis for the solution space of the system.

X, +X%- X=0 2%, + X, +3%,=0
11. -2X, - X, +2X, =0 12. X+ 9%, =0
- X+ X, =0 X, + X =0
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X+ y+z=0
3x+2y-22=0
“4x+3y- z=0
6x+5y+ z=0
14. Determine bases for the following subspace of R®
(a) the plane 3x — 2y + 5z=0 (b) the plane x —y =0
(c) the line x =2t, y =-t, z= 4t (d) all vectors of the form (a, b, ¢), where b=a + ¢

|1:353 . Find a standard basis vector that can be added to the set {vi, v} to produce a basis for
(a).vl =(-1,2,3),v2=(1,-2,-2) (b)yvi=(1,-1,0),v.=(3, 1,-2)

lg. Find a standard basis vector that can be added to the set {vi, V»} to produce a basis for
" vi=(1,4,2, 3), V2= (-3, 8, -4, 6)

©Virtual University Of Pakistan 294



23- Coordinate System VU

Lecture No.23
Coordinate System
OBJECTIVES:

The objectives of the lecture are to learn about:

Unique representation theorem.

e Coordinate of the element of a vector space relative to the basis B.

e Some examples in which B- coordinate vector is uniquely determined using basis
of a vector space.

e Graphical interpretation of coordinates.

e Coordinate Mapping

Theorem:
Let Bz{bl,bz,...,b

n

} be a basis for a vector space V. Then for each x inV,
there exist a unique set of scalars c,,c,,...,c, such that

X=cb,cb,,...,ch .coceiiiiiil. (1)
Proof:

Since B is a basis for a vector space V, then by definition of basis every element
of V can be written as a linear combination of basis vectors. That is if x eV , then
X=c¢b,c,b,,....c.b, . Now, we show that this representation for x is unique.

For this, suppose that we have two representations for X .
ie.

X=cb,cb,,...,ch .coceiiiinil. (2)
and

x=db,d,b,,...d b .............. 3)

We will show that the coefficients are actually equal. To do this, subtracting (3) from (2),
we have
0= (Cl _dl)bl + (Cz _dz)bz ot (Cn - dn)bn :
Since B is a basis, it is linearly independent set. Thus the coefficients in the last linear
combination must all be zero. That is
¢, =d,..c,=d,.
Thus the representation for X is unique.

Definition (B-Coordinate of X):

Suppose that the set B={b;,b,,...,b, } is a basis for Vand x is in V. The coordinates of x
relative to basis B (or the B-coordinate of x) are the weights c,,c,,...,c, such that
x=ch,cb,,....ch, .

Note:
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If ¢,,C,,....C, are the B- coordinates of x, then the vector inR", [x], =| | isthe

coordinate vector of x (relative to B) or B- coordinates of X .

Example 1:
_ . ) 1 1
Consider a basis B={h,,b,} for R* , where b, = 0 andb, = 5 |

-2
Suppose an x in R has the coordinate vector [x], =[ 3} .Find x

Solution:
Using above definition xis uniquely determined using coordinate vector and
the basis. That is
X =C1b1'c2b2

= (_Z)bl + (3)b2

2o+

Example 2:
Let S = {v1, Vo, Va} be the basis for R®, where vy = (1, 2, 1) v, = (2, 9, 0),
andvz= (3, 3, 4).
(@) Find the coordinates vector of v = (5, -1, 9) with respect to S.

(b) Find the vector v in R® whose coordinate vector with respect to the basis S is

[V]S: ('11 3! 2)
Solution:
Since S is a basis for R®, Thus
X =CV, +C,V, +C,V;.
Further
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(5,-1,9)=c(12,1)+¢c,(2,9,0)+¢,(3,3,4) ...cevnvvnnn (A)
To find the coordinate vector of v, we have to find scalarsc,,c,,c,.
For this equating corresponding components in (A) gives

c,+2c,+3¢,=5 (1)
2c,+9c,+3c,=-1 (2)
c, + 4¢,=9 3)

Now find values of c;, c, and c, from these equations.
From equation (3)

c, =9-4c,

Put this value of c, in equations (1) and (2)
9-4c,+2c,+3¢c,=5

2c,—C,=—4 4)

and

2(9—-4c,)+9c,+3c,=-1

18-8¢c, +9c¢, +3c, =-1

9¢, —5¢c, =-19 (5)
Multiply equation (4) by 5

10c, —5¢, =-20

Subtract equation (5) from above equation
10c, —5¢, =-20

+9¢, ¥5¢, =F19

c,=-1

Put value of c, in equation (4) to get c,
2(-1)-c,=-4

-2-C,=-4

C,=4-2=2

Put value of c, in equation (3) to get c,
c,+4(2)=9

c,=9-8=1

Thus, we obtainc;=1,¢c,=-1,¢c3=2
Therefore, Vls=(1,-1,2)

Figure 2  Using the definition of coordinate vector, we have
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V =CV, +C,V, +C,V,
=(-1)v, +3v, +2v,
=(-1(@,2,1)+3(2,9,0)+2(3,3,4)
=(-1+6+6,—2+27+6,-1+0+8)
=(11,31,7)

Therefore
v=(11,317)

Example 3:
Find the coordinates vector of the polynomial p = ap + aix + a,x relative to

the basis S = {1, x, x*} for p.
Solution:

To find the coordinator vector of the polynomial p , we write it as a linear combination of
the basis setS . That is
a, +a,x+a,x* = ¢ (1) +¢,(x) +¢,(x%)
=C, =2,,C,=4a,C,=4a,
Therefore
[p]s = (aO’a'l’ az)

Example 4:

Find the coordinates vector of the polynomial p = 5— 4x + 3x? relative to the
basis S = {1, x, x?} for p..
Solution:

To find the coordinator vector of the polynomial p , we write it as a linear combination of
the basis setS . That is
5—4x+3x* =¢, (1) + ¢, (X) + ¢, (X°)
=C, =5C,=-4,¢c,=3
Therefore
[Pl =(5-4,3)

Example 5:
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Find the coordinate vector of A relative to the basis S = {Al, A2, A3, A4}
A_2 o |11 (11, |0 O-A—O 0
=11 3™ o o™ |o o ™71 oMo 1
Solution:
To find the coordinator vector of A, we write it as a linear combination of the

basis setS . That is

A= C1 A1+ Cy Ayt C3 Azt Cy Ay
2 0 11 11 0 O 00
=c, +¢, +C, +C,
-1 3 0 0 0 0 10 01
|G G |C c2+0 0+OO
0 o/ |0 0] |c, 0| |0 ¢
[-c,+¢,+0+0 ¢, +c,+0+0
| 0+0+c;+0 0+0+0+c,

2 0] _[-c,+¢c, ¢ +c,
-1 3 __ C, C,

€, *C, = 2 1)
c,+¢,=0 )
C3 = -1 3)
c,=3 (4)

Adding (1) and (2), gives
200=2 = =1
Putting the value of c; in (2) to get ¢y, c1=-1

So ci=-1,¢c=1,¢c3=-1,¢c4=3
Therefore, [Vs=(-1,1,-1,3)
Graphical Interpretation of Coordinates

A coordinate system on a set consists of a one-to-one mapping of the points in the
set into R". For example, ordinary graph paper provides a coordinate system for the plane
when one selects perpendicular axes and a unit of measurement on each axis. Figure 1
shows the standard basis {es, e,}, the vectors
b; (= e1) and b, from Example 1, that is,

SHeE

©Virtual University Of Pakistan 299



23- Coordinate System VU

1
Vector x = [6} , the coordinates 1 and 6 give the location of x relative to the standard

basis: 1 unit in the e; direction and 6 units in the e, direction.

L]

5o 0] b=e
Figure 1
Figure 2 shows the vectors by, by, and x from Figure 1. (Geometrically, the three

vectors lie on a vertical line in both figures.) However, the standard coordinate grid was
erased and replaced by a grid especially adapted to the basis B in Example 1. The

. 2 . : : .
coordinate vector [x]B = { 3} gives the location of x on this new coordinate system: — 2

units in the by direction and 3 units in the b, direction.
X
b2

o/ b

Figure 2

Example 6:
In crystallography, the description of a crystal lattice is aided by choosing a basis

{u, v, w} for R® that corresponds to three adjacent edges of one “unit cell” of the crystal.
An entire lattice is constructed by stacking together many copies of one cell. There are
fourteen basic types of unit cells; three are displayed in Figure 3.
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(a) Body centered (b) Face centered (c) Simple
cubic orthorhombic monoclinic

Figure 3 — Examples of unit cells

The coordinates of atoms within the crystal are given relative to the basis for the lattice.
1/2
For instance, | 1/2 | identifies the top face-centered atom in the cell in Figure 3(b).
1

Coordinates in R" When a basis B for R" is fixed, the B-coordinate vector of a
specified x is easily found, as in the next example.

11} X= m and B = {b: , by}.

Find the coordinate vector [X]g of X relative to B.

2
Example 7: Let b, = L} b, :{

Solution The B — coordinates c; , ¢, of x satisfy
SH NN
1 1 5
bl bz X
2 -1[c, 4
1 1]]c, 5
b1 b X
1 1
(2 -1 1 1 2 2
Now, inverse of matrix =1 _| 3 3
11 1] 3|-1 2 -1 2
3 3

From equation (3) we get
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1
C, — 3
C2 -1

3

w||\> oo||—\

1 1
5(4)+§(5) :{3}
-1 2 2
T("r) + ?(5)

ThUS, c1=3,C=2.
(Equation (3) can also be solved by row operations on an augmented matrix. Try it
yourself )

c, 3
Thusx =3b; +2b,and [ X ]; = ) =

b2

Figure 4 — The B-coordinate vector of x is (3,2)

The matrix in (3) changes the B-coordinates of a vector x into the standard coordinates
for x. An analogous change of coordinates can be carried out in R" for a basis
B = {b1 s b2, . bn}

Let Ps=[b, b, .. b,]
Then the vector equation x=c,b, +c,b, +...+Cb,
is equivalentto x = P;[x]; 4)

We call Pg the change-of-coordinates matrix from B to the standard basis in R".
Left-multiplication by Pg transforms the coordinate vector [x], into x. The change-of-

coordinates equation (4) is important and will be needed at several points in next lectures.
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Since the columns of Pg form a basis for R", Pg is invertible (by the Invertible Matrix
Theorem). Left-multiplication by P;* converts x into its B-coordinate vector:

PB_lX = [X]B
The correspondence x —[x], produced here by P, is the coordinate mapping

mentioned earlier. Since Pg* is an invertible matrix, the coordinate mapping is a one-to-

one linear transformation from R" onto R", by the Invertible Matrix Theorem. (See also
Theorem 3 in lecture 10) This property of the coordinate mapping is also true in a general
vector space that has a basis, as we shall see.

The Coordinate Mapping Choosing a basis B = {b1, b,, ..., by} for a vector space V
introduces a coordinate system in V. The coordinate mapping X —[X]; connects the

possibly unfamiliar space V to the familiar space R". See Figure 5. Points in V can now
be identified by their new “names”.

Figure 5 — The coordinate mapping from V onto R"

Theorem 2: Let B = {by, b,, ... , by} be a basis for a vector space V. Then the
coordinate mapping x —[x], is a one-to-one linear transformation from V onto R".

Proof Take two typical vectors in V, say
u=c,b, +c,b,+...+cb,
w=d,b, +d,b,+...+d b,
Then, using vector operations, u+w = (c, +d,)b, +(c,+d,)b, +...+(c, +d )b,
c,+d, C, d,
It follows that [u+w]; = : = |+| ¢ [=[ulg +[Wls
c,+d, C, d
Thus the coordinate mapping preserves addition. If r is any scalar, then
ru=r(chb, +c,b, +---+c.b,)=(rc)b, +(rc,)b, +---+(rc,)b,

n
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rc, o
So [rulg=| : |=r|: |=r[uls
rc, C

Thus the coordinate mapping also preserves scalar multiplication and hence is a linear
transformation. It can be verified that the coordinate mapping is one-to-one and maps V
onto R".

n

The linearity of the coordinate mapping extends to linear combinations, just as in lecture
9.1fuy,uz,...,upareinVandifcy, cy, ..., Cp are scalars, then
[Clul + C2u2 +..+ Cpup]B = Cl[ul]B + CZ[UZ]B +..t Cp[up]B (5)

In words, (5) says that the B-coordinate vector of a linear combination of us, uz, ..., Uy is
the same linear combination of their coordinate vectors.

The coordinate mapping in Theorem 2 is an important example of an isomorphism from
V onto R". In general, a one-to-one linear transformation from a vector space V onto a
vector space W is called an isomorphism from V onto W (iso from the Greek for “the
same”, and morph from the Greek for “form” or “structure”). The notation and
terminology for V and W may differ, but the two spaces are indistinguishable as vector
spaces. Every vector space calculation in V is accurately reproduced in W, and vice versa.

Example 8: Let B be the standard basis of the space P3 of polynomials; that is, let B =
{1, t, t*, t'}. A typical element p of Ps has the formp (t) =ag + a;t + a, t* + ast®
Since p is already displayed as a linear combination of the standard basis vectors, we

8

&

conclude that [p]; = It Thus the coordinate mapping p —[p]g is an isomorphism

2

8
from P; onto R*. All vector space operations in P5 correspond to operations in R*.

If we think of P; and R* as displays on two computer screens that are connected via the
coordinate mapping, then every vector space operation in Pz on one screen is exactly
duplicated by a corresponding vector operation in R* on the other screen. The vectors on
the P5 screen look different from those on the R* screen, but they “act” as vectors in
exactly the same way. See Figure 6.
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ag+ast+ati+azt

2 gy

Figure 6 — The space Ps is isomorphic to R*

Example 9: Use coordinate vector to verify that the polynomials 1 + 2t%, 4 + t + 5t
and 3 + 2t are linearly dependent in Pa.

Solution: The coordinate mapping from Example 8 produces the coordinate vectors (1,
0,2), (4,1,5 and (3, 2, 0), respectively. Writing these vectors as the columns of a
matrix A, we can determine their independence by row reducing the augmented matrix

1 4 30 1 4 30
forAx=0:/0 1 2 0|~-|0 1 2 O
2500 0 00O

The columns of A are linearly dependent, so the corresponding polynomials are linearly
dependent. In fact, it is easy to check that column 3 of A is 2 times column 2 minus 5
times column 1. The corresponding relation for the polynomials is

342t =2(4 +t+ 5t%) - 5(1 + 2t)

3 -1 3
Example 10: Let v,=|6|, v,=/0|, x=|12|, and B = {vi, vo}. Then B is a
2 1 7

basis for H = Span {vi, v»}. Determine if x is in H and if it is, find the coordinate vector
of x relative to B.

Solution: If x is in H, then the following vector equation is consistent.

3 -1 3
c|6|+c,|0(=]12
2 1 7

The scalars, c¢; and c,, if they exist, are the B — coordinates of x.
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3 -1 3 1 0 2
Using row operations, we obtain |6 0 12 |~{0 1 3.
2 1 7 0 0O

2
Thus ¢c; = 2, ¢, = 3 and [Xx]; ={3}. The coordinate system on H determined by B is

shown in Figure 7.

3V2

| = =+,
2, X=2V;1+8V,

<
N

Figure 7 — A coordinate system on a plane H in R®

If a different basis for H were chosen, would the associated coordinate system also make
H isomorphic to R?? Surely, this must be true. We shall prove it in the next lecture.

1 -3 3 -8
Example 11: Letb, =|0|,b,=| 4 |, b,=|-6], and x=| 2 |.
0 0 3 3

a. Show that the set B = {by, b, b} is a basis of R°.
b. Find the change-of-coordinates matrix from B to the standard basis.
c. Write the equation that relates x in R® to [X]s.
d. Find [X]s, for the x given above.
Solution:
a. It is evident that the matrix Pg = [b; b, bs] is row equivalent to the

identity matrix. By the Invertible Matrix Theorem, Pg is invertible and its
columns form a basis for R®,
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1 -3 3
b. From part (a), the change-of-coordinates matrixis P, ={0 4 -6]|.
0 0 3
C. X =Pg[X];.
d. To solve part (c), it is probably easier to row reduce an augmented matrix

instead of computing P,*. We have

1 -3 3 -8 100 -5
0 4 6 2|~|01 0 2
0 0 3 3 0 011
P X I [X]g
-5
Hence [x]; =] 2
1

Example 12: ThesetB={1+1t, 1+ t’ t + t’} is a basis for P,. Find the coordinate
vector of p(t) = 6 + 3t —t? relative to B.

Solution: The coordinates of p (t) = 6 + 3t — t* with respect to B satisfy
c,(1+t)+c,(1+t*)+c (t+t*)=6+3t-t°

C,+Ct+c, +CtP+ct+ct? =6+3t—t°
C,+C,+Ct+Ct+ct? +ct? =6+3t—t°

C,+Cy+(C,+C)t+(c, +Cc )P =6+3t—t°
Equating coefficients of like powers of t, we have

c,+ ¢, = B-----meeeee--- (1)

C, +C,= 3-----ee-ie--- (2)
C,+C= -1l----cemmennn-- (3)

Subtract equation (2) from (1) we get

C,-C,=6-3=3

Add this equation with equation (3)

2c,=-1+3=2

=c,=1

Put value of c, in equation (3)

1+c,= -1
=C;=—2
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From equation (1) we have
c,+C,=6
c,=6-1=5

Solving, we find thatc; =5,¢c, =1,cz3=-2,and [pl;=| 1 |.
-2

Exercises:

In exercises 1 and 2, find the vector x determined by the given coordinate vector [X]s and
the given basis B.

1(/5]|4 3

3||-4 5
SO ) P PPN 1| | o P
31|-2||0 -1

In exercises 3-6, find the coordinate vector [x]g of X relative to the given basis B = {bs,
b2, sy bn}

17 2] [-=2 1 5 4
3.b=| _|b=|"|x= a.b = b, =] " | x=

-3]"2 | 5] 1 2 6 0

(17 [-3] 2 8
5.b,=|-1|b,=|4|b,=|-2|,x=|-9

3] |9 4 6

1 2 1 3
6.b,=[0|,b,=[1|b,=|-1|,x=|5

3 8 2 4

In exercises 7 and 8, find the change of coordinates matrix from B to standard basis in
R".

©Virtual University Of Pakistan 308



23- Coordinate System VU

In exercises 9 and 10, use an inverse matrix to find [x]g for the given x and B.

R HIH SIS PN

11. Theset B = {1 + t%, t + t%, 1 + 2t + t*} is & basis for P,. Find the coordinate vector of
p (t) = 1 + 4t + 7t° relative to B.

1 2 -3
12. The vectors v, = { 3},v2 = { 8}’\/3 = { 7} span R? but do not form a basis. Find

1
two different ways to express {J as a linear combination of vy, v, vs.

11/(-2
13. Let B = {{ 4},{9 }} . Since the coordinate mapping determined by B is a linear

transformation from R? into R?, this mapping must be implemented by some 2 x 2 matrix
A. Find it.

In exercises 14-16, use coordinate vectors to test the linear independence of the sets of
polynomials.

14.1+6,3+t-2t% -t+3t*-¢ 15. (t-1)%, -2, (t-2)°
16.3+ 7t 5+t—2t5 t—2t%, 1 + 16t — 6> + 2t°

17. Let H = Span {vy, v»} and B = {v1, v,}. Show that x is in H and find the B-coordinate

[11] (14 ] 19
-5 -8 -13
vector of x, for v, = WV, = X = .
10 13 18
| 7 110 | | 15 |

18. Let H = Span {vy, v,, v3} and B = {v, V,, v3}. Show that B is a basis for H and x is in

-6 8 -9 4
: : 4 -3 5 7
H, and find the B-coordinate vector of x, forv, = WV, = Vg = X =
-9 7 -8 -8
| 4 | -3] | 3] | 3]

©Virtual University Of Pakistan 309



24-Dimension of a Vector Space VU

Lecture 24

Dimension of a Vector Space

In this lecture, we will focus over the dimension of the vector spaces. The
dimension of a vector space V is the cardinality or the number of vectors in the basis B of
the given vector space. If the basis B has n (say) elements then this number n (called the
dimension) is an intrinsic property of the space V. That is it does not depend on the
particular choice of basis rather, all the bases of V will have the same cardinality. Thus,
we can say that the dimension of a vector space is always unique. The discussion of
dimension will give additional insight into properties of bases.

The first theorem generalizes a well-known result about the vector space R".

Note:

A vector space V with a basis B containing n vectors is isomorphic to R" i.e., there exist
a one-to-one linear transformation from V to R".

Theorem 1: If a vector space V has a basis B = {by, ..., bn}, then any set in V containing
more than n vectors must be linearly dependent.

Theorem 2: If a vector space V has a basis of n vectors, then every basis of V must
consist of exactly n vectors.

Finite and infinite dimensional vector spaces:

If the vector space V is spanned or generated by a finite set, then V is said to be
finite-dimensional, and the dimension of V, written as dim V, is the number of vectors
in a basis for V.. If V is not spanned by a finite set, then V is said to be infinite-
dimensional. That is, if we are unable to find a finite set that is able to generate the
whole vector space, then such a vector space is called infinite dimensional.

Note:
(1) The dimension of the zero vector space {0} is defined to be zero.
(2) Every finite dimensional vector space contains a basis.

Example 1: The set of real numbers of n dimension R", set of polynomials of order n
Pn, and set of matrices of order mxn Mp, are all finite- dimensional vector spaces..
However, the vector spaces

F(-0,0),C (-0,%),and C" (-, ) are infinite- dimensional.

Example 2:
(@) Any pair of non-parallel vectors a, b in the xy-plane, which are necessarily linearly

independent, can be regarded as a basis of the subspace R?. In particular the set of unit
vectors {i, j} forms a basis for R?. Therefore, dim (R?) = 2.
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Any set of three non coplanar vectors {a, b, c} in ordinary (physical) space, which will be
necessarily linearly independent, spans the space R®. Therefore any set of such vectors forms a
basis for R®. In particular the set of unit vectors {i, j, k} forms a basis of R®. This basis is called
standard basis for R®. Therefore dim (R®) = 3.

The set of vectors {e, e, ..., en} where

e1=(1,0,0,0, ..., 0),
e2 = (Oa 15 O; O| ey 0)1
e3=(0,0,1,0, ..., 0),

en=(0,0,0,0,...,1)

is linearly independent.
Moreover, any vector X = (Xg, X2, ..., X) in R" can be expressed as a linear combination of these
vectors as

X = X181 + Xo€ + X363 +...+ X, Ep.
Hence, the set {ey, €, ..., e,} forms a basis for R". It is called the standard basis of R", therefore
dim (R") = n. Any other set of n linearly independent vectors in R" will form a non-standard
basis.

(b) ThesetB ={1, x, x% ... x"} forms a basis for the vector space P, of polynomials of degree
<n. Itis called the standard basis with dim (P,) =n + 1.

(c) The set of 2 x 2 matrices with real entries (elements) {us, u,, us, us} where

1 0] [o1] _[0o0] _[00
“Tlo o™ T o o™ T 1 o™ |0 1

is a linearly independent and every 2 x 2 matrix with real entries can be expressed as their linear
combination. Therefore, they form a basis for the vector space Max,. This basis is called the
standard basis for Max, with dim (Mazxz) = 4.

Note:

(1) dim (R") = n { The standard basis has n vectors}.

(2) dim (P,) =n + 1 { The standard basis has n+1 vectors}.

(3) dim (Mmxn) = mn { The standard basis has mn vectors.}

Example 3: Let W be the subspace of the set of all (2 x 2) matrices defined by
W={A=E ﬂ:za-b+3c+d=0}.

Determine the dimension of W.
Solution: The algebraic specification for W can be rewritten as d = -2a + b — 3c.
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[a b}
Now A=
c d

Substituting the value of d, it becomes

E! b
A=
|C -2a+b -3c}

This can be written as

fa 0 0O b |0 O
A= + +
10 -2a | |0 b c -3¢

SO MR

=aA; + bA, + cA;

1 0 01 0 0
where A= Ay = , and Az =
0 -2 01 1 -3

The matrix A'is in W if and only if A = aA; + bA, + cAs, so {A1, Az, Az} is a spanning set for W.
Now, check whether if this set is a basis for W or not, we will see whether {A1, Az, Az} is linearly
independent or not. For this purpose, we will see that {A1, Az, As} is linearly independent if

aA, +bA, + cA,=0 =a=b=c=0i.e.,

o oo 1 Sl of
ol ol wl oo
E —za+bb—3c}=[8 8}

Equating the elements, we get

a=0,b=0,c=0

This implies {A1, Az, As} is a linearly independent set that spans W. Hence, it’s the basis of W
with dim( W)= 3.

3 -1
Example 4: Let H = Span {vi, v2}, where v, =|{ 6 | and v, =| 0 |. Then H is the plane
2 1

studied in Example 10 of lecture 23. A basis for H is {vi, v}, since v; and v, are not
multiples and hence are linearly independent. Thus, dim H = 2.
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3V2

I X=2V1+3V,

2Vo

A coordinate system on a plane H in R®

Example 5:  Find the dimension of the subspace

a-3b+6¢
H= 5a + 4d ‘a,b,c,de R
b-2c-d
5d
Solution: The representative vector of H can be written as
a—3b+6¢ 1 -3 6 0
5a+4d 5 0 0 4
=al _|+b +C +d
b—-2c-d 0 1 -2 -1
5d 0 0 0 5

Now, it is easy to see that H is the set of all linear combinations of the vectors

1 -3 6 0

5 0 0 4
v, = , v, = , v, = , v, =

0 1 -2 -1

0 0 0 5

Clearly, v, #0,v, is not a multiple of v, but vz is a multiple of v,. By the Spanning Set

Theorem, we may discard vs and still have a set that spans H. Finally; v, is not a linear
combination of vy and v,. So {vy, Vo, v4} is linearly independent and hence is a basis for H.
Thus dimH = 3.
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Example 6: The subspaces of R® can be classified by its/various dimensions as shown
in Fig. 1.
0-dimensional subspaces:

The only 0-dimensional subspace of R? is zero subspace.

1-dimensional subspaces:
1-dimensional subspaces include any subspace spanned by a single non-zero
vector. Such subspaces are lines through the origin.

2-dimensional subspaces:
Any subspace spanned by two linearly independent vectors. Such subspaces are
planes through the origin.

3-dimensional subspaces:
The only 3-dimensional subspace is R® itself. Any three linearly independent
vectors in R® span all of R®, by the Invertible Matrix Theorem.

X3
X3

3dim —\

0dim

X X2 X 2 di
Im
! 1 dim

Figure 1 — Sample subspaces of R®

Bases for Nul A and Col A: We already know how to find vectors that span the null
space of a matrix A. The discussion in Lecture 21 pointed out that our method always
produces a linearly independent set. Thus the method produces a basis for Nul A.

2 2 -1 0 1]
. . -1 -1 2 31
Example 7: Find a basis for the null space of A= .
1 1 -2 0 -1
i 0 1 1 1
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Solution: The null space of A is the solution space of homogeneous system
2% + 2%, - X +x,=0

=X - X+ 2% -3%,+ X% =0
X+ X, -2X, -X. =0
X, + X, +X =0

The most appropriate way to solve this system is to reduce its augmented matrix into
reduced echelon form.
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1 1 0 2 1 0
~ 0 0 1 1 1 0 R —R. R —2R
0 0 0 1 0 I ’
0 0 0 0 0 0 |
1 1 0 0 1 0]
0 0 1 0 1 0
"o o o0 1 0 0
0 0 0 0 0 0 |
Thus, the reduced row echelon form of the augmented matrix is
1 1 0 0 1 0
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0
which corresponds to the system
Ix, +1x,+ 1x.=0
1x,+ 1x.=0
1x, =0
0=0

No equation of this system has a form zero = nonzero. Therefore, the system is
consistent. Since the number of unknowns is more than the number of equations, we will
assign some arbitrary value to some variables. This will lead to infinite many solutions of
the system.

X, =-1X, -1X,
X, =S

X, =-1X,

X, =0

Xs =t

The general solution of the given system is
X1=-5-1t , Xo=8, X3=-t, x4=0 , Xs=t
Therefore, the solution vector can be written as

x | [-s-t] [-s] [-t -1 -1
X, S S 0 1 0
X = -t [=]0|+|-t|=s|0|+t]|-1
X, 0 0 0 0

X | [t | 0] [t] 0] [1]
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-1 -1
1 0
which shows that the vectors v, =| 0 |andv, =| -1| span the solution space .Since they
0 0
0 1

are also linearly independent,{v,v-} is a basis for Nul A.

The next two examples describe a simple algorithm for finding a basis for the column
space.

1 4 0 2 0

_ _ 001 -10

Example 8: Find a basis for Col B, where B=[b, b,, .., b,]= 000 0 1
0 OO OO0

Solution:  Each non-pivot column of B is a linear combination of the pivot columns.
Infact, b, = 4b; and b, = 2b; — bs. By the Spanning Set Theorem, we may discard b, and
bs and {b1, b3, bs} will still span Col B. Let

1{10]]0

0[|1]]0

S:b,b;b: ’ 1
{1 3 5} 0 O 1
0/(0(1|0

Since by 0 and no vector in S is a linear combination of the vectors that precede it, S is
linearly independent. Thus S is a basis for Col B.

What about a matrix A that is not in reduced echelon form? Recall that any
linear dependence relationship among the columns of A can be expressed in the form Ax
= 0, where x is a column of weights. (If some columns are not involved in a particular
dependence relation, then their weights are zero.) When A is row reduced to a matrix B,
the columns of B are often totally different from the columns of A. However, the
equations Ax = 0 and Bx = 0 have exactly the same set of solutions. That is, the columns
of A have exactly the same linear dependence relationships as the columns of B.

Elementary row operations on a matrix do not affect the linear dependence relations
among the columns of the matrix.

Example 9: It can be shown that the matrix

1 4 0 2 -1
A<, a .. as]:312155
2 8 1 3 2
520 2 8 8

is row equivalent to the matrix B in Example 8. Find a basis for Col A.
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Solution: In Example 8, we saw that b, = 4b, and b, =2b, -b,
so we can expect that a, =4a, and a,= 2a,-a,. This is indeed the case.

Thus, we may discard a; and a4 while selecting a minimal spanning set for Col A. Infact,
{ai1, as, as} must be linearly independent because any linear dependence relationship
among az, as, as would imply a linear dependence relationship among bs, bs, bs. But we
know that {b1, b3, bs} is a linearly independent set. Thus {a, a3, as} is a basis for Col A.
The columns we have used for this basis are the pivot columns of A.

Examples 8 and 9 illustrate the following useful fact.
Theorem 3: The pivot columns of a matrix A form a basis for Col A.

Proof: The general proof uses the arguments discussed above. Let B be the reduced
echelon form of A. The set of pivot columns of B is linearly independent, for no vector in
the set is a linear combination of the vectors that precede it. Since A is row equivalent to
B, the pivot columns of A are linearly independent too, because any linear dependence
relation among the columns of A corresponds to a linear dependence relation among the
columns of B. For this same reason, every non-pivot column of A is a linear combination
of the pivot columns of A. Thus the non-pivot columns of A may be discarded from the
spanning set for Col A, by the Spanning Set Theorem. This leaves the pivot columns of A
as a basis for Col A.

Note: Be careful to use pivot columns of A itself for the basis of Col A. The columns of
an echelon form B are often not in the column space of A. For instance, the columns of
the B in Example 8 all have zeros in their last entries, so they cannot span the column
space of the A in Example 9.

1 -2
Example 10: Let v,=|-2|and v, =| 7 |. Determine if {vi, vo} is a basis for R3. Is {vs,
3 -9
v} a basis for R??
1 -2 1 -2
Solution: Let A =[vi V;]. Row operations show that A=|-2 7 |~|0 3 |. Notevery
3 9 0 0

row of A contains a pivot position. So the columns of A do not span R®, by Theorem 4 in
Lecture 6. Hence {v1, v-} is not a basis for R®. Since v, and v, are not in R?, they cannot
possibly be a basis for R%. However, since v; and v are obviously linearly independent,
they are a basis for a subspace of R®, namely, Span {vi, v2}.

1 6 2 -4
Example 11: Let v,=|-3|,v,=| 2 |,v;=|-2|,v,=|-8|. Find a basis for the subspace
4 -1 3 9

W spanned by {vi, vz, V3, Va}.
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Solution: Let A be the matrix whose column space is the space spanned by {vi, v, Vs, V4},

(1 6 2 -4]
A=|-3 2 -2 -8
4 -1 3 9]
Reduce the matrix A into its echelon form in order to find its pivot columns.
1 6 2 4
A=|-3 2 -2 -8
4 -1 3 9
1 6 2 -4
~/0 20 4 -20|byR,+3R, R,—-4R,
10 -25 -5 25
(1 6 2 -4
~/0 5 1 -5]|by 1RZ, —ERS, R,-R,
000 0 4 >

The first two columns of A are the pivot columns and hence form a basis of Col A = W.
Hence {vy, v2} is a basis for W.

Note that the reduced echelon form of A is not needed in order to locate the pivot
columns.

Procedure:
Basis and Linear Combinations

Given a set of vectors S = {vi, vy, ...,vk} in R", the following procedure produces a subset

of these vectors that form a basis for span (S) and expresses those vectors of S that are

not in the basis as linear combinations of the basis vector.

Stepl: Form the matrix A having va, Vz,..., Vi as its column vectors.

Step2: Reduce the matrix A to its reduced row echelon form R, and let
W1, Wy,..., Wi be the column vectors of R.

Step3: ldentify the columns that contain the leading entries i.e., 1’s in R. The
corresponding column vectors of A are the basis vectors for span (S).

Step4: Express each column vector of R that does not contain a leading entry as
a linear combination of preceding column vector that do contain leading entries
(we will be able to do this by inspection). This yields a set of dependency
equations involving the column vectors of R. The corresponding equations for the
column vectors of A express the vectors which are not in the basis as linear
combinations of basis vectors.

Example 12: Basis and Linear Combinations

(a) Find a subset of the vectors v; = (1, -2, 0, 3), v.= (2, -4, 0, 6), v3= (-1, 1, 2, 0) and
v4= (0, -1, 2, 3) that form a basis for the space spanned by these vectors.

(b) Express each vector not in the basis as a linear combination of the basis vectors.

Solution:

(a) We begin by constructing a matrix that has v, Vs, Vs, V4 as its column vectors
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w
(o))

-S> o N K
w

T (A)
vV, V, V, v,

Finding a basis for column space of this matrix can solve the first part of our problem.

Transforming Matrix to Reduced Row Echelon Form:

1 2 -1 0
-2 -4 -1
0 0 2
| 3 6 0 3
1 2 -1 0
0 0 -1 -1 |2R,*+R,
o 0 2 2 |3R+R,
0 0 3 3
1 2 -1 0
0 0 1 1
~ -1R,
0 0 2 2
0 0 3 3
1 2 -1 0
0 0 1 1 |-2R,+R,
o 0 0  0|3R+R,
0 0 0 0
1 2 0 1
0 0 1 1
~ R,+R,
0 0 0 0
0 0 0 0
Labeling the column vectors of the resulting matrix as wi, Wy, ws and wy yields
1 2 0 1
0 0 1 1
0 0 0 0
0 0 0 0 ®
T t T 1
w w w w

N
w
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The leading entries occur in column 1 and 3 so {wy, w3} is a basis for the column space of
(B) and consequently {vi, vs} is the basis for column space of (A).

(b) We shall start by expressing w, and wy as linear combinations of the basis vector w;
and ws. The simplest way of doing this is to express w, and w, in term of basis vectors
with smaller subscripts. Thus we shall express w, as a linear combination of wy, and we
shall express w, as a linear combination of wy and w3 By inspection of (B), these linear
combinations are w, = 2w; and w, = w; + ws. We call them the dependency equations.
The corresponding relationship of (A) are v3 = 2v; and vs = v; + vs.

Example 13: Basis and Linear Combinations

(a) Find a subset of the vectorsv; = (1, -1, 5, 2),v.=(-2, 3,1, 0),vs= (4, -5, 9, 4),
v4=(0, 4, 2,-3) and vs = (-7, 18, 2, -8) that form a basis for the space spanned by these
vectors.

(b) Express each vector not in the basis as a linear combination of the basis vectors
Solution:

(@) We begin by constructing a matrix that has vi, vo, ..., Vs as its column vectors

1 -2 4 0 -7
-1 3 -5 4 18

5 1 9 2 2

2 0 4 -3 -8 )
0 T T 0 T

v, v, Vs v, Vg

Finding a basis for column space of this matrix can solve the first part of our problem.
Transforming Matrix to Reduced Row Echelon Form:

1 2 4 0 -7
1 3 5 4 18
5 1 9 2 2
2 3 -8
1 -2 4 0 -7

R, +R,
o 1 -1 4 1

-5R, +R,
0 11 11 2

-2R, +R,
0o 4 -4 -3
1 -2 4 0 -7 ]
0 1 -1 4 11 [-1IR,+R,
0 0 0  -42 -84 |-4R,+R,
o0 0 0 -19 -38]
1 -2 4 0 -7
o 1 -1 4 1

(-1/42)R,
o o o 1 2
o0 0 0 -19 -38]

©Virtual University Of Pakistan 322



24-Dimension of a Vector Space VU

1 -2 4 0 -7
0 1 -1 4 11
19R, +R,
0 0 0 1 2
0 0 0 0 0 |
1 -2 4 0 -7
0 1 -1 0 3 (4R, +R
0 0 0 1 2 o
0 0 0 0 0 |
1 0 2 0 -1 ]
0 1 -1 0 3
2R, +R,
0 0 0 1 2
0 0 0 0 0
Denoting the co_lumn vectors of the resulting matr}x by wi, W, , ws, Wy, and ws yields
1 0 2 0 -1
0 1 -1 0 3
0 0 0 1 2
0 0 0 0 0 | ®)
T T T T
A W, W, w, W,

The leading entries occur in columns 1,2 and 4 so that {w, w,, wy} is a basis for the
column space of (B) and consequently {vi, Vo, v4} is the basis for column space of (A).
(b) We shall start by expressing ws and ws as linear combinations of the basis vector wy,
W2, Wa. The simplest way of doing this is to express ws and ws in term of basis vectors
with smaller subscripts. Thus we shall express ws as a linear combination of wy and wy,
and we shall express ws as a linear combination of wy, w,, and w4 By inspection of (B),
these linear combination are wz = 2w; — W, and Ws = -w; + 3w, + 2w.

The corresponding relationship of (A) are v3 = 2v; — v, and vs = -v; + 3v, + 2v,.

Example 14: Basis and Linear Combinations

(a) Find a subset of the vectors vi = (1, -2, 0, 3), v.= (2, -5, -3, 6), v3= (0, 1, 3, 0),
va=(2,-1,4,-7)and vs = (5, -8, 1, 2) that form a basis for the space spanned by these
vectors.

(b) Express each vector not in the basis as a linear combination of the basis vectors.
Solution:

(a) We begin by constructing a matrix that has vi, v», ..., Vs as its column vectors
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1 2 0 2 5

2 51 -1 -8

0 33 4 1

3 6 0 -7 2

T T 7 (A)
vV, OV, Vpo Vv, Vg

Finding a basis for column space of this matrix can solve the first part of our problem.
Reducing the matrix to reduced-row echelon form and denoting the column vectors of
the resulting matrix by wy, W, ws, wg, and ws yields

1 0 2 0 1

0 1 -1 0 1
0 0 0 1 1
0 0 0 0 0 ®
0 T 1 T
w,oow, W W, W,

The leading entries occur in columns 1, 2 and 4 so {w1, Wy, Wa} is a basis for the column
space of (B) and consequently {vy, v,, v4} is the basis for column space of (A).

(b) Dependency equations are wz = 2w; — W, and Ws = Wy + W, + Wy

The corresponding relationship of (A) are v3 =2v; — v, and vs = vy + Vo + Vg

Subspaces of a Finite-Dimensional Space: The next theorem is a natural counterpart to
the Spanning Set Theorem.

Theorem 5: Let H be a subspace of a finite-dimensional vector space V. Any linearly
independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-
dimensional anddimH <dimV .

When the dimension of a vector space or subspace is known, the search for a basis is
simplified by the next theorem. It says that if a set has the right number of elements, then
one has only to show either that the set is linearly independent or that it spans the space.
The theorem is of critical importance in numerous applied problems (involving
differential equations or difference equations, for example) where linear independence is
much easier to verify than spanning.

Theorem 5: (The Basis Theorem) Let V be a p-dimensional vector space, p> 1. Any
linearly independent set of exactly p elements in V is automatically a basis for V. Any set
of exactly p elements that spans V is automatically a basis for V.

The Dimensions of Nul A and Col A: Since the pivot columns of a matrix A form a
basis for Col A, we know the dimension of Col A as soon as we know the pivot columns.
The dimension of Nul A might seem to require more work, since finding a basis for Nul
A usually takes more time than a basis for Col A. Yet, there is a shortcut.
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Let A be an mxn matrix, and suppose that the equation Ax = 0 has k free variables.
From lecture 21, we know that the standard method of finding a spanning set for Nul A
will produce exactly k linearly independent vectors say, ui, ... , Uk, one for each free
variable. So {uy, ..., ux} is a basis for Nul A, and the number of free variables determines
the size of the basis. Let us summarize these facts for future reference.

The dimension of Nul A is the number of free variables in the equation Ax = 0, and the
dimension of Col A is the number of pivot columns in A.

Example 15: Find the dimensions of the null space and column space of
3 6 11 -7
A=|1 -2 2 3 -1
2 -4 5 8 4
Solution: Row reduce the augmented matrix [A 0] to echelon form and obtain
1 22 3 -10
0 012 -20
0 000 0O

Writing it in equations form, we get
X, —2X, +2X; +3%X, — X, =0
Xy +2X, —2%; =0
Since the number of unknowns is more than the number of equations, we will introduce

free variables here (say) x2, x4 and xs. Hence the dimension of Nul A is 3. Also dim Col A
is 2 because A has two pivot columns.

Example 16: Decide whether each statement is true or false, and give a reason for each
answer. Here V is a non-zero finite-dimensional vector space.
1. 1fdimV =pand if S is a linearly dependent subset of V, then S contains more than
p vectors.
2. If S spans V and if T is a subset of V that contains more vectors than S, then T is
linearly dependent.
Solution:
1. False. Consider the set {0}.
2. True. By the Spanning Set Theorem, S contains a basis for V; call that basisS’.
Then T will contain more vectors than S’ . By Theorem 1, T is linearly dependent.
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Exercises:

For each subspace in exercises 1-6, (a) find a basis and (b) state the dimension.

2¢
s—2t
) a-b )
1./ s+t |:s,tinR 2. :a,b,cinR
b-3c
3t
la+2b
a—4b-2c [3a+6b—c
2a+5b—4c . 6a—2b-2c .
3. :a,b,cinR 4, a,b,cinR
—-a+2c -9a+5b+3c
—-3a+7b+6c | —3a+b+c

5.{(a,b,c):a-3b+c=0,b-2c=0,2b-c=0}
6{(a,b,c,d):a-3b+c=0}
7. Find the dimension of the subspace H of R? spanned by

ol

8. Find the dimension of the subspace spanned by the given vectors.

1113]19 7
0,|1,|4 []|-3
2111 |-2|]|1

Determine the dimensions of Nul A and Col A for the matrices shown in exercises 9 to
12.

1 6 9 0 -2 1 3 4 2 -1 6
0 1 2 -4 5 00 1 -3 7 0
9. A= 10. A=
0 0 0 5 1 00 0 1 4 -3
0 0 0 0 O 00 0 0 0 O
1 -1 0
{1095}
11. A= 12. A=|0 4 7
0 01 -4
0 0 5
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13. The first four Hermite polynomials are 1, 2t, -2 + 4t%, and -12t + 8t°. These
polynomials arise naturally in the study of certain important differential equations in
mathematical physics. Show that the first four Hermite polynomials form a basis of Ps.

14. Let B be the basis of P5 consisting of the Hermite polynomials in exercise 13, and let
p(t)=7-12t-81t*+ 12 t*. Find the coordinate vector of p relative to B.

15. Extend the following vectors to a basis for R:

-9 9 6
—7 4 7
v,=|8 |,v,=|1 |,v;=-8
-5 6 5
7] 7] 7]
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Lecture 25
Rank

With the help of vector space concepts, for a matrix several interesting and useful
relationships in matrix rows and columns have been discussed.
For instance, imagine placing 2000 random numbers into a 40 x 50 matrix A and then
determining both the maximum number of linearly independent columns in A and the
maximum number of linearly independent columns in A" (rows in A). Remarkably, the
two numbers are the same. Their common value is called the rank of the matrix. To
explain why, we need to examine the subspace spanned by the subspace spanned by the
rows of A.

The Row Space: If Aisan mxn matrix, each row of A has n entries and thus can be
identified with a vector in R". The set of all linear combinations of the row vectors is
called the row space of A and is denoted by Row A. Each row has n entries, so Row A is
a subspace of R". Since the rows of A are identified with the columns of AT, we could
also write Col A" in place of Row A.

2 -5 8 0 -17 r,=(-2,-5,8,0,-17)
Example 1: Let A= 3 5 15 and =(1,3,-5,1,5)

3 11 -19 7 1 r,=(3,11,-19,7,1)

1 7 -13 5 -3 r,=(1,7,-13,5,-3)

The row space of A is the subspace of R spanned by {ry, ra, rs, rs}. That is, Row A =
Span {ry, ry, rs, rs}. Naturally, we write row vectors horizontally; however, they could
also be written as column vectors

Example: Let
r,=(2,1,0)
210 r,=(3,-1,4
A= and ( )
3-14

That is Row A=Span {ry, r»}.

We could use the Spanning Set Theorem to shrink the spanning set to a
basis.
Some times row operation on a matrix will not give us the required information but row
reducing certainly worthwhile, as the next theorem shows

Theorem 1: If two matrices A and B are row equivalent, then their row spaces are the
same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A
as well as B.

Theorem 2: If A and B are row equivalent matrices, then
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(a) A given set of column vectors of A is linearly independent if and only if the
corresponding column vectors of B are linearly independent.

(b) A given set of column vector of A forms a basis for the column space of A if and only
if the corresponding column vector of B forms a basis for the column space of B.

Example 2:  (Bases for Row and Column Spaces) .
-3 4 -2 5 4
. 6 9 -1 8 2
Find the bases for the row and column spaces of A=
2 6 9 -1 9 7
-1 3 4 2 5 4

Solution: We can find a basis for the row space of A by finding a basis for the row

space of any row-echelon form of A.

1 -3 4 -2 5 4
2 -6 9 -1 8 2
Now
2 -6 9 -1 9 7
-1 3 4 2 5 -4
1 -3 4 -2 5 4 ]
2R +R,
0 0 1 3 -2 -6
2R +R,
0 0 1 3 -1 -1
R1+R4
0 0 0 0 0 0 |
1 -3 4 -2 5 4 ]
0 0 1 3 -2 -6
-1R, +R,
0 0 0 0 1 5
0 0 0 0 0 |
1 3 4 2 5 4]
O 01 3 -2 -6
Row-echelon form of A: R=
O 0 OO0 1 5
O 0 0 0 O O_

Here Theorem 1 implies that that the non zero rows are the basis vectors of the matrix.
So these bases vectors are

n=[ 3 4 -2 5 4]
n=[0 0 13 -2 -6
n=[0 0 0 0 1 5]

A and R may have different column spaces, we cannot find a basis for the column space
of A directly from the column vectors of R. however, it follows from the theorem (2b) if
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we can find a set of column vectors of R that forms a basis for the column space of R,
then the corresponding column vectors of A will form a basis for the column space of A.

The first, third, and f_ift[] columns of_R_contains the_lea_ding 1’s of the row vectors, so

4 5
, |0 , |1 . |2
“Tlol  %Tlo| %71
0 0 0
form a basis for the c;ol_u_mn space 01E R_,_thus the coEres:ponding column vectors of A
1 4 5
namely, C, = 2 Cy = ) Cy = S
2 9 9
-1 -4 -5
formabasisforthe(;olu_mnspaceofA._ o
Example:
The matrix
1 2 5 0 3 ]
R= 0 1 300
0 0 010
0 0 00 0 |

is in row-echelon form.
The vectors

n=[1 -25 03 ]
n=[01300 ]
=[0 0 01 0 ]

form a basis for the row space of R, and the vectors

-2 0
ol 1] _Jo
Cl_ O ’CZ_ 0 ’C3_ 1
0 0 0

form_a E)asis for_thé column space of R.

©Virtual University Of Pakistan 330



25- Rank VU
Example 3: (Basis for a Vector Space using Row Operation)
Find bases for the space spanned by the vectors
v; =(1,-2,0,0,3) v, =(2,-5,-3,-2,6)
v,=(0,5,15,10,0) v,=(2,6,18,8,6)
Solution: The space spanned by these vectors is the row space of the matrix
1 -2 0 0 3]
2 5 -3 -2 6
0 5 15 10 O
2 6 18 8 6]
Transforming Matrix to Row Echelon Form:
1 -2 0 0 3
2 -5 -3 -2 6
0 5 15 10 0
2 6 18 8 6
1 -2 0 3]
(-2R, *+R,
0 3 2 0
(-2R,+R,
0 15 10 0
(‘1)R2
0 10 18 8 0 |
1 -2 0 3]
0 1 3 2 0 | (-5)R,+R,
0 0 0 0 |(-10)R,+R,
0 0 -12 -12 0|
1 -2 0 0 3
0 1 3 2 0
R34
0 0 -12 -12 0
0 0 0 0 0 |
1 -2 0 0 3]
0 1 3 2 0
(-1/12)R,
0 0 1 1 0
0 0 0 0 0 |
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1 -2 0 0 3]
01 3 20
Therefore, R=
0 1 10
O 0 00O

The non-zero row ve_ctors in this matri>z are
w, =(1,-2,0,0,3),w, =(0,1,3,2,0),w, =(0,0,1,1,0)

These vectors form a basis for the row space and consequently form a basis for the
subspace of R® spanned by vy, vy, V.

Example 4:  (Basis for the Row Space of a Matrix)

1 2 0 0 3]
. : 2 -5 -3 -2 6 - :
Find a basis for the row space of A= consisting entirely of row
0 5 15 10 O
2 6 18 8 6]

vectors from A.

Solution: We find A™; then we will use the method of example (2) to find a basis for the
column space of A™; and then we will transpose again to convert column vectors back to
row vectors. Transposing A yields

1 2 0 2]
2 5 5 6
AT=l0 -3 15 18
0 -2 10 8
13 6 0 6
Transforming Matrix to Row Echelon Form:
1 2 0 2
-2 -5 5 6
0 -3 15 18
0 -2 10 8
3 6 0 6|
1 2 0 2 |
0 -1 5 10
2R +R,
0 -3 15 18 (3R, +R
0 -2 10 8 e
0 0 0 0 |
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1 0 2
0 -5 -10
0 -3 15 18 |(-1)R,
0 -2 10 8
0 0 0 0 |
1 2 0 2
0 1 -5 -10 (3R, +R
0 0 0 -12 (2)R2 N R3
0 0 0 -12 2
0 0 0 0 |
1 2 0 2 ]
0 1 -5 -10
0 0 0 1 |(-1/12)R,
0 0 0 -12
0 0 0 0 |
1 2 0 2
0 1 -5 -10
0 0 0 1 |12R,+R,
0 0 0
0 0 0 |
12 0 2
0 1 -5 -10
Now R=|0 0 0 1
0 0 0 O
00 0 0
The first, second and fourth columns contain the leading 1’s, so the corresponding
column vectors in AT form a basis for the column space of AT; these are
1 2 2
-2 -5 6
c, =|0], c,=|-3]andc, =|18
0 -2 8
| 3] 16 | | 6 |
Transposing again and adjusting the notation appropriately yields the basis vectors
r1=[1 2 00 3],r2=[2 5 -3 -2 6]andr4=[2 6 18 8 6]
for the row space of A.
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The following example shows how one sequence of row operations on A leads to bases
for the three spaces: Row A, Col A, and Nul A.

Example 5: Find bases for the row space, the column space and the null space of the
matrix

2 5 8 0 -17

1 3 5 1 5
A=

3 11 -19 7 1

1 7 -13 5 -3

Solution: To find bases for the row space and the column space, row reduce A to an

1 3 5 1 5

01 -2 2 -7
echelon form: A~B=

0 00 -4 20

000 0 O

By Theorem (1), the first three rows of B form a basis for the row space of A (as well as
the row space of B). Thus Basis for Row A:

{(1,3,-5,1,5),(0,1,-2,2,-7),(0,0,0, -4, 20)}
For the column space, observe from B that the pivots are in columns 1, 2 and 4. Hence
columns 1, 2 and 4 of A (not B) form a basis for Col A:

-2 -5 0

) 1 3 1
BasisforCol A: , ,

3 11 7

1 7 5

Any echelon form of A provides (in its nonzero rows) a basis for Row A and also
identifies the pivot columns of A for Col A. However, for Nul A, we need the reduced
echelon form. Further row operations on B yield

10 1 0 1

101 -2 0 3
oo 0 15
00 0 0O
The equation Ax = 0 is equivalent to Cx = 0, that is,
X, + X, + %, =0
X, - 2X, +3x,=0
X, -5%=0

A~B~C
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SO X1 = -X3 — X5, X2 = 2X3 — 3X5, X4 = 5Xs5, With X3 and xs free variables. The usual
calculations (discussed in lecture 21) show that

111
2|1-3
Basisfor Nul A:<| 1 |,
0
_O_ _1_

Observe that, unlike the bases for Col A, the bases for Row A and Nul A have no simple
connection with the entries in A itself.

Note:

1. Although the first three rows of B in Example (5) are linearly independent, it is wrong
to conclude that the first three rows of A are linearly independent. (In fact, the third
row of A is 2 times the first row plus 7 times the second row).

2. Row operations do not preserve the linear dependence relations among the rows of a
matrix.

Definition: The rank of A is the dimension of the column space of A,
Since Row A is the same as Col A", the dimension of the row space of A is the rank of
A". The dimension of the null space is sometimes called the nullity of A.

Theorem 3: (The Rank Theorem) The dimensions of the column space and the row
space of an mxn matrix A are equal. This common dimension, the rank of A, also equals
the number of pivot positions in A and satisfies the equation

rank A +dim Nul A =n

Example 6:
(@) If Aisa 7x9 matrix with a two — dimensional null space, what is the rank of A?

(b). Could a 6x9 matrix have a two — dimensional null space?

Solution:

(@) Since A has 9 columns, (rank A) + 2 =9 and hence rank A = 7.

(b) No, If a 6x9 matrix, call it B, had a two — dimensional null space, it would have to
have rank 7, by the Rank Theorem. But the columns of B are vectors in R® and so the
dimension of Col B cannot exceed 6; that is, rank B cannot exceed 6.

The next example provides a nice way to visualize the subspaces we have been studying.
Later on, we will learn that Row A and Nul A have only the zero vector in common and
are actually “perpendicular” to each other. The same fact will apply to Row A" (= Col A)
and Nul AT. So the figure in Example (7) creates a good mental image for the general
case.
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30 1
Example 7: Let A={3 0 -1]|. Itisreadily checked that Nul A is the x, — axis, Row A
4 0 5

is the x;x3 — plane, Col A is the plane whose equation is x; — x, = 0 and Nul A" is the set
of all multiples of (1, -1, 0). Figure 1 shows Nul A and Row A in the domain of the linear
transformation x — Ax; the range of this mapping, Col A, is shown in a separate copy of

R®, along with Nul A”.
X3 X3

/
~— — ¢

\Nul A le X2
X | A
Row{ A 2 / co
X1

X1

RS

Figure 1 — Subspaces associated with a matrix A

Applications to Systems of Equations:

The Rank Theorem is a powerful tool for processing information about systems of
linear equations. The next example simulates the way a real-life problem using linear
equations might be stated, without explicit mention of linear algebra terms such as
matrix, subspace and dimension.

Example 8: A scientist has found two solutions to a homogeneous system of 40
equations in 42 variables. The two solutions are not multiples and all other solutions can
be constructed by adding together appropriate multiples of these two solutions. Can the
scientist be certain that an associated non-homogeneous system (with the same
coefficients) has a solution?

Solution:  Yes. Let A be the 40x42 coefficient matrix of the system. The given
information implies that the two solutions are linearly independent and span Nul A. So
dim Nul A = 2. By the Rank Theorem, dim Col A = 42 — 2 = 40. Since R* is the only
subspace of R* whose dimension is 40, Col A must be all of R*. This means that every
non-homogeneous equation Ax = b has a solution.
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-1 2 0 4 5 -3
3 -7 2 0 1 4
Example 9: Find the rank and nullity of the matrix A= S 9 4 6 1
9 2 -4 4
Verify that values obtained verify the dimension theorem.
-1 2 0 4 5 -3
. 3 -7 2 0 1 4
Solution
2 -5 2 4 6 1
4 -9 2 -4 -4 7
1 -2 0 -4 -5 3
3 -7 2 0 1 4
('1)R1
2 -5 2 4 6 1
4 -9 2 -4 -4 7
1 -2 0 -4 -5 3 ]
(-3)R,*+R,
0 -1 2 12 16 -5
('2)R1 + Rs
0 -1 2 12 16 -5
(4R, +R,
0 -1 2 12 16 -5 |
1 -2 0 -4 -5 3 ]
0 1 -2 -12 -16 5
('1)R2
0 -1 2 12 16 -5
0 -1 2 12 16 -5 |
1 -2 0 -4 -5 3
0 1 -2 -12 -16 5 |R,+R;
0 0 0 0 0 0 |R,+R,
0 0 0 0 0 0
1 0 -4 -28  -37 13
0 1 -2 -12 -16 5
2R, +R,
0 0 0 0 0 0
0 0 0 0 0 0
The reduced row-echelon form of A is
1 0 -4 -28 -37 13
o 1 -2 -12 -16 5 M
o 0 O o0 o0 o
0 0 0 0 0 O
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The corresponding system of equations will be
X, - 4%, - 28X, - 37X, +13%, =0
X, - 2%, -12X, - 16X, + 5%, =0

or, on solving for the leading variables,
X, = 4X, - 28X, +37X; - 13X,
X, = 2X; + 12X, + 16X, - 5X;

it follows that the general solution of the system is
X, =4r+28s+37t-13u
X, =2r+12s+16t - 5u

X, =T
X, =S
X, =t
X, =U

X

N

w

or equivalently,

i

X
X
X
X5

Xs

The four vectors on Ehe right sid

nullity (A) = 4. The matrix A=

)
4] [28] [37 -13]
2 12 16 -5
1 0 0 0
+s +t +u 3)
0 1 0 0
0 0 1 0
0 0] [0] [ 1]
e of (3) form a basis for the solution space, so
-1 2 0 4 5 -3
3 7 2 0 1
has 6 columns,
2 5 2 4 6
4 9 2 -4 -4 7

so rank(A) + nullity(A) =2 + 4 = 6=n
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Example 10: Find the rank and nullity of the matrix; then verify that the values obtained
(1 -3 2 2 1]

0 3 6 0 -3
satisfy the dimension theorem A=| 2 -3 -2 4 4
3 6 0 6 5
2 9 2 4 5
Solution: Transforming Matrix to the Reduced Row Echelon Form:

1 -3 2 2 1

0 3 6 0 -3

2 -3 -2 4 4

3 -6 0 6 5

-2 9 2 -4 -5

1 -3 2 2 1 ]

0 3 6 0 -3 |(-2)R, +R,
0 3 -6 0 2 |(-3)R,+R,
0 3 -6 0 2 | 2R +R,
0 3 6 0 -3 |

1 -3 2 2 1 ]

0 1 2 0 -1

0 -6 0 2 |(1/3)R,
0 3 -6 0

0 6 0 -3 |

1 -3 2 2 1

0 1 2 0 -1 |(-3)R, +R,
0 120 5 |(-3)R,+R,
0 0 120 5 |(-3)R,+R,
0 0 0 0 0 |

1 -3 2 2 1 |

0 1 2 0 -1

0 0 1 0 -5/12 |(-1/12)R,
0 0 120 5

0 0 0 0 (N

©Virtual University Of Pakistan 339



25- Rank VU

1 -3 2 2 1
0 1 2 0 -1
0 0 1 0 -5/12 |12R, +R,
0 0 0 0 0
0 0 0 0 0 |
1 -3 0 2 11/6
0 1 0 0 -1/6
('2 ) Ra + Rz
0 0 1 0 -5/12 (2)R+R
0 0 0 0 0 Pt
0 0 0 0 0 |
1 0 0 2 4/3 ]
0 1 0 0 -1/6
0 0 1 0 -5/12 |(3)R, +R, (1)
0 0 0 0 0
0 0 0 0 0

Since there are three nonzero rows (or equivalently, three leading 1°s) the row space and
column space are both three dimensional so rank (A) = 3.

To find the nullity of A, we find the dimension of the solution space of the linear system
Ax = 0. The system can be solved by reducing the augmented matrix to reduced row
echelon form. The resulting matrix will be identical to (1), except with an additional last
column of zeros, and the corresponding system of equations will be

X, +0X, +Ox3+2x4+%x5 =0
1

0x, + X, +0x; +0x, —gxs =0
5

0x, +0x, + x; +0x, -Exs =0

The system has infinitely many solutions:

X1 = -2 X4+(-4/3) X5 X2 = (1/6) X5
X3 = (5/12) xs X4 =S
Xs=1

The solution can be written in the vector form:

ca=(-2,0,0,1,0) cs = (-4/3, 1/6, 5/12,0,1)
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Therefore the null space has a basis formed by the set
{(-2,0,0, 1, 0), (-4/3, 1/6, 5/12,0,1)}
The nullity of the matrix is 2. Now Rank (A) + nullity (A) =3+ 2=5=n

Theorem 4: If Aisan m x n, matrix, then
(a) rank (A) = the number of leading variables in the solution of Ax =0
(b) nullity (A) = the number of parameters in the general solution of Ax =0

Example 11: Find the number of parameters in the solution set of Ax =0 if Aisa 5x7
matrix of rank 3.

Solution: nullity (A) =n-rank (A) =7-3=4

Thus, there are four parameters.

Example (not in handouts) Find the number of parameters in the solution set of Ax = 0 if
Ais a 4x4 matrix of rank 0.

Solution nullity (A) =n—-rank (A) =4-0 =4

Thus, there are four parameters.

Theorem 5: If A is any matrix, then rank (A) = rank (AT)
Four fundamental matrix spaces:

If we consider a matrix A and its transpose A" together, then there are six
vectors spaces of interest:

Row space of A row space of A"
Column space of A column space of A
Null space of A null space of AT

However, transposing a matrix converts row vectors into column vectors and column
vectors into row vectors, so that, except for a difference in notation, the row space of AT
is the same as the column space of A and the column space of A" is the same as row
space of of A.

This leaves four vector spaces of interest:

Row space of A column space of A

Null space of A null space of AT

These are known as the fundamental matrix spaces associated with A, if Aisanm x n
matrix, then the row space of A and null space of A are subspaces of R" and the column
space of A and the null space of A" are subspaces of R™.

Suppose now that A is an m x n matrix of rank r, it follows from theorem (5) that A" is an
n x m matrix of rank r . Applying theorem (3) on A and A" yields

Nullity (A)=n-r, nullity (AT)=m-r
From which we deduce the following table relating the dimensions of the four
fundamental spaces of an m x n matrix A of rank r.
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Fundamental space Dimension
Row space of A r

Column space of A r

Null space of A n-r

Null space of A" m-r

Example 12: If Ais a 7 X 4 matrix, then the rank of A is at most 4 and, consequently,
the seven row vectors must be linearly dependent. If A is a 4 x 7 matrix, then again the
rank of A is at most 4 and, consequently, the seven column vectors must be linearly
dependent.

Rank and the Invertible Matrix_Theorem: The various vector space concepts
associated with a matrix provide several more statements for the Invertible Matrix
Theorem. We list only the new statements here, but we reference them so they follow the
statements in the original Invertible Matrix Theorem in lecture 13.

Theorem 6: The Invertible Matrix Theorem (Continued)
Let A be an n x n matrix. Then the following statements are each equivalent to the
statement that A is an invertible matrix.
m. The columns of A form a basis of R".
ColA=R".
dimColA=n
rank A=n
Nul A = {0}
dimNulA=0

~ooT o>

Proof: Statement (m) is logically equivalent to statements (e) and (h) regarding linear
independence and spanning. The other statements above are linked into the theorem by
the following chain of almost trivial implications:

(9)= ()= (0)= (p)= (r)=(q) = (d)
Only the implication (p) = (r) bears comment. It follows from the Rank Theorem
because A is nxn. Statements (d) and (g) are already known to be equivalent, so the
chain is a circle of implications.

We have refrained from adding to the Invertible Matrix Theorem obvious statements
about the row space of A, because the row space is the column space of A". Recall from
(1) of the Invertible Matrix Theorem that A is invertible if and only if AT is invertible.
Hence every statement in the Invertible Matrix Theorem can also be stated for A",

Numerical Note:

Many algorithms discussed in these lectures are useful for understanding
concepts and making simple computations by hand. However, the algorithms are often
unsuitable for large-scale problems in real life.

Rank determination is a good example. It would seem easy to reduce a matrix to echelon
form and count the pivots. But unless exact arithmetic is performed on a matrix whose
entries are specified exactly, row operations can change the apparent rank of a matrix.
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For ins

comput
zero.

5 7
tance, if the value of x in the matrix L x} is not stored exactly as 7 in a

er, then the rank may be 1 or 2, depending on whether the computer treats x — 7 as

In practical applications, the effective rank of a matrix A is often determined from the
singular value decomposition of A.

Example 13: The matrices below are row equivalent

LN e

4

Solutio

1.

2.

2 1 1 -6 8 1 2 4 3 2
|1 2 43 2 0 3 9 -12 12
|7 8 10 3 -10| 1o 0 0 0 O

4 5 -7 0 4 0 0 0O 0 O

Find rank A and dim Nul A.

Find bases for Col A and Row A.

What is the next step to perform if one wants to find a basis for Nul A?

How many pivot columns are in a row echelon form of A™

n:

A has two pivot columns, so rank A = 2. Since A has 5 columns altogether, dim
NulA=5-2=3.

The pivot columns of A are the first two columns. So a basis for Col A is

-1

-2

a,,a, y=— )
{aa)=1| ||
4|5

The nonzero rows of B form a basis for Row A, namely {(1, -2, -4, 3, -2), (0, 3,
9, =12, 12)}. In this particular example, it happens that any two rows of A form a
basis for the row space, because the row space is two-dimensional and none of the
rows of A is a multiple of another row. In general, the nonzero rows of an echelon
form of A should be used as a basis for Row A, not the rows of A itself.

3. For Nul A, the next step is to perform row operations on B to obtain the reduced
echelon form of A.
4. Rank AT = rank A, by the Rank Theorem, because Col A" = Row A. So A" has
two pivot positions.
Exercises:

In exercises 1 to 4, assume that the matrix A is row equivalent to B. Without calculations,
list rank A and dim Nul A. Then find bases for Col A, Row A, and Nul A.

1 4 9 7 1 0 -1 5
-1 2 4 1|,B={0 -2 5 -6
5 -6 10 7 0 0 0 O
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1 -3 4 -1 9 1 -3 0 5 -7
-2 6 -6 -1 -10 0 0 2 -3 8
2. A= B=
-3 9 -6 -6 -3 0 00 0 5
13 -9 4 9 0 0 000 O
(2 -3 6 2 5 2 36 2 5
-2 3 -3 -3 -4 0 0 3 -1 1
3. A: ’B:
4 -6 9 5 9 0 0 01 3
-2 3 3 -4 0 000 O
1 1 -3 7 9 -9 (1 1 -3 7 9 -9]
1 2 -4 10 13 -12 01 -1 3 4 -3
4. A=1 -1 -1 1 1 -3|B=/00 0 1 -1 -2
1 -3 1 -5 -7 3 00 0 0 O O
1 -2 0 0 -5 4] 00 0 0 0 0

5. If a 3 x 8 matrix A has rank 3, find dim Nul A, dim Row A, and rank A.
6. If a 6 x 3 matrix A has rank 3, find dim Nul A, dim Row A, and rank A.

7. Suppose that a 4 x 7 matrix A has four pivot columns. Is Col A = R*? Is Nul A = R*?
Explain your answers.

8. Suppose that a 5 x 6 matrix A has four pivot columns. What is dim Nul A? Is Col A =
R*? Why or why not?

9. If the null space of a 5 x 6 matrix A is 4-dimensional, what is the dimension of the
column space of A?

10. If the null space of a 7 x 6 matrix A is 5-dimensional, what is the dimension of the
column space of A?

11. If the null space of an 8 x 5 matrix A is 2-dimensional, what is the dimension of the
row space of A?

12. If the null space of a 5 x 6 matrix A is 4-dimensional, what is the dimension of the
row space of A?

13. If Alisa 7 x 5 matrix, what is the largest possible rank of A? If Ais a5 x 7 matrix,
what is the largest possible rank of A? Explain your answers.
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14. If A'is a 4 x 3 matrix, what is the largest possible dimension of the row space of A? If
A'is a 3 x 4 matrix, what is the largest possible dimension of the row space of A? Explain.

15. If A'is a 6 x 8 matrix, what is the smallest possible dimension of Nul A?

16. If A'is a 6 x 4 matrix, what is the smallest possible dimension of Nul A?
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