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Lecture 1 Introduction 

 

 

 

 Background 

            Linear  y=mx+c 

 Quadratic ax2+bx+c=0 

 Cubic  ax3+bx2+cx+d=0 

Systems of Linear equations 

 

  ax+by+c=0 

  lx+my+n=0 

 

Solution ? 

Equation 

 

  Differential Operator 

 

 

 

 

 

   Taking anti derivative on both sides 

y=ln x 

 

   From the past 

 

 Algebra 

 Trigonometry 

 Calculus 

 Differentiation 

 Integration 

 

 Differentiation 

• Algebraic Functions 

• Trigonometric Functions 

• Logarithmic Functions 

• Exponential Functions 

• Inverse Trigonometric Functions   

 

 

 More Differentiation 

• Successive Differentiation 

• Higher Order 

• Leibnitz Theorem 

 Applications 

• Maxima and Minima 

• Tangent and Normal 

 Partial Derivatives 

1dy

dx x

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y=f(x) 

 

f(x,y)=0 

 

z=f(x,y) 

Integration 

 Reverse of Differentiation 

 By parts 

 By substitution 

 By Partial Fractions 

 Reduction Formula 

Frequently required 

 Standard Differentiation formulae 

 Standard Integration Formulae 

Differential Equations 

 Something New 

 Mostly old stuff 

• Presented differently 

• Analyzed differently 

• Applied Differently 
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Lecture 2 Fundamentals of Differential Equation 

 

 

 Fundamentals 

 Definition of a differential equation. 

 

 Classification of differential equations. 

 

 Solution of a differential equation. 

 

 Initial value problems associated to DE. 

 

 Existence and uniqueness of solutions  

Elements of the Theory 

 Applicable to: 

• Chemistry 

• Physics 

• Engineering 

• Medicine 

• Biology 

• Anthropology 

 Differential Equation – involves an unknown function with one or more of its 

derivatives 

 Ordinary D.E. – a function where the unknown is dependent upon only one 

independent variable 

Examples of DEs 

                                                                                                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specific Examples of ODE’s 
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 The order of an equation: 

• The order of the highest derivative appearing in the equation 

 

 

 

 

 

 

 

 

 

Ordinary Differential Equation 

 

 

 

If an equation contains only ordinary derivatives of one or more dependent variables, 

w.r.t a single variable, then it is said to be an Ordinary Differential Equation (ODE). For 

example the differential equation 

 

 

      

  

 is an ordinary differential equation. 

 

Partial Differential Equation 

 

32

2
5 4          xd y dy

y e
dx dx

 
   

 

4 2
2

4 2
                 0

y u
a

x x

 
 

 

32

2
5 4  xd y dy

y e
dx dx

 
   

 
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 Similarly an equation that involves partial derivatives of one or more dependent 

variables w.r.t two or more independent variables is called a Partial Differential Equation 

(PDE). For example the equation  

  

 

  

 is a partial differential equation. 

 

Results from ODE data 

 The solution of a general differential equation: 

• f(t, y, y’, . . . , y(n)) = 0 

• is defined over some interval I having the following properties: 

 y(t) and its first n derivatives exist for all t in I so that y(t) and its 

first n - 1 derivates must be continuous in I 

 y(t) satisfies the differential equation for all t in I 

 

 

 

 

 

 General Solution – all solutions to the differential equation can be represented in 

this form for all constants 

 Particular Solution – contains no arbitrary constants 

 Initial Condition 

 Boundary Condition 

 Initial Value Problem (IVP) 

 Boundary Value Problem (BVP) 

 

 

IVP Examples 

 

 The Logistic Equation 

• p’ = ap – bp2  

• with initial condition p(t0) = p0; for p0 = 10 the solution is: 

• p(t) = 10a / (10b + (a – 10b)e-a(t-t0)) 

 The mass-spring system equation 

• x’’ + (a / m) x’ + (k / m)x  = g + (F(t) / m) 

BVP Examples 

 

• Differential equations 

 y’’ + 9y = sin(t) 

• with initial conditions y(0) = 1, y’(2p) = -1 

• y(t) = (1/8) sin(t) + cos(3t) + sin (3t) 

 y’’ + p2y = 0 

• with initial conditions y(0) = 2, y(1) = -2 

• y(t) = 2cos(pt) + (c)sin(pt) 

Properties of ODE’s 

 Linear – if the nth-order differential equation can be written: 

4 2
2

4 2
                  0

u u
a

x x

 
 

 
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• an(t)y(n) + an-1(t)y(n-1) + . . . + a1y’ + a0(t)y = h(t) 

 

 Nonlinear – not linear 

  x3(y’’’)3-x2y(y’’)2+3xy’+5y=ex 

Superposition 

 Superposition – allows us to decompose a problem into smaller, simpler parts and 

then combine them to find a solution to the original problem. 

 

Explicit Solution 

A solution of a differential equation 

 

 

 

that can be written as y = f(x) is known as an explicit solution . 

Example: The solution y = xex is an explicit solution of the differential equation 

 

 

 

 

 

Implicit Solution 

A relation G(x,y) is known as an implicit solution of a differential equation, if it defines 

one or more explicit solution on I. 

  

Example: The solution x2 + y2 - 4=0 is an implicit solution of the equation  y’ = - x/y  

as it defines two explicit solutions y=+(4-x2)1/2 
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Lecture 3 Separable Equations 

 

The differential equation of the form 

                                               ),( yxf
dx

dy
  

is called separable if it can be written in the form 

 )()( ygxh
dx

dy
  

To solve a separable equation, we perform the following steps:  

 

1.  We solve the equation 0)( yg  to find the constant solutions of the equation.  

 

 2.  For non-constant solutions we write the equation in the form.  

 dxxh
yg

dy
)(

)(
  

      Then integrate 



  dxxhdy

yg
)(

)(

1
 

      to obtain a solution of the form 

  CxHyG  )()(   

3. We list the entire constant and the non-constant solutions to avoid repetition..  

 

4.  If you are given an IVP, use the initial condition to find the particular solution.  

  

 Note that: 

 (a) No need to use two constants of integration because CCC  21 .   

 (b) The constants of integration may be relabeled in a convenient way.  

 (c) Since a particular solution may coincide with a constant solution, step 3 is 

important.  

 

 

 

 

 

 

Example 1:  

Find the particular solution of  

                                 2)1(    ,
12




 y
x

y

dx

dy
 

Solution:    

1.  By solving the equation 

                                012 y                                    

     We obtain the constant solutions 
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                                        1y    

2.  Rewrite the equation as  

 
x

dx

y

dy


12  

     Resolving into partial fractions and integrating, we obtain  

                                   



















dx

x
dy

yy

1
 

1

1

1

1

2

1
   

     Integration of rational functions, we get   

 Cx
y

y





||ln

|1|

|1|
ln

2

1
    

3. The solutions to the given differential equation are  

                                               














1                     

||ln
|1|

|1|
ln

2

1

y

Cx
y

y

 

4.  Since the constant solutions do not satisfy the initial condition, we plug in the 

condition  

2y  When  1x  in the solution found in step 2 to find the value of C . 

 C








3

1
ln

2

1
 

      The above implicit solution can be rewritten in an explicit form as:    

  2

2

3

3

x

x
y




  

 

Example 2:   
Solve the differential equation 

 

                                2

1
1

ydt

dy
  

Solution:  
 

1. We find roots of the equation to find constant solutions  

 0
1

1
2


y
 

           No constant solutions exist because the equation has no real roots. 

2. For non-constant solutions, we separate the variables and integrate  

 





dt

y

dy
2/11

 

          Since 
1

1
1

1/11

1
22

2

2 





 yy

y

y
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          Thus 







 )(tan
/1

1

2
yy

y1

dy
 

           So that Ctyy   )(tan 1
 

      It is not easy to find the solution in an explicit form i.e. y as a function of t.   

3. Since   no constant solutions, all solutions are given by the implicit equation 

found   

      in step 2. 

 

Example 3:    
Solve the initial value problem  

 10   ,1 2222  )y(ytyt
dt

dy
 

Solution:   
 

1. Since  )1)(1(1 222222 ytytyt   

The equation is separable & has no constant solutions because   no real roots of  

                   01 2  y .                 

2. For non-constant solutions we separate the variables and integrate.  

    dtt
y

dy
)1(

1

2

2



 

   dtt
y

dy
)1(

1

2

2







 

    C
t

ty 

3
)(tan

3
1

 

           Which can be written as  

 







 C

t
ty

3
tan

3

 

3. Since  no constant solutions, all solutions are given by the implicit or explicit 

equation.  

 

      4. The initial condition 1)0( y  gives  

     
4

)1(tan 1 
 C  

           The particular solution to the initial value problem is  

  
43

)(tan
3

1 
 t

ty  

            or in the explicit form   









43
tan

3 t
ty  
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     Example 4: 

 

     Solve   

    01  ydxdyx  

 

     Solution:  

 

Dividing with  yx1 , we can write the given equation as 

    x

y

dx

dy




1
 

1. The only constant solution is 0y  

 

2. For non-constant solution we separate the variables 

                                              
x

dx

y

dy




1
 

      Integrating both sides, we have 

  











x

dx

y

dy

1
 

                            11lnln cxy   

                                 11 .
|1|ln|1|ln c
e

x
e

cx
ey





    

            or                   x
c

e
c

exy  1 |1|      11
  

                              11 ,     
c

y C x C e     

            If we use ||ln c  instead of 1c then the solution can be written as 

                       ||ln|1|ln||ln cxy   

            or   xcy  1ln||ln  

            So that       xcy  1 . 

        3. The solutions to the given equation are 

    

 

0           

1         





y

xcy
 

 

 

 

 

 

 

 

Example 5 
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Solve   

 

   02 324   dyeydxxy x
. 

 

Solution:  

 

 

The differential equation can be written as   

  
















2
 3

2

4

y

yxxe
dx

dy
  

1.  Since 0
22

4




y
y

y
. Therefore, the only constant solution is 0y . 

2. We separate the variables   

   02or      0
2 423

4

2
3 


  dyyydxxedy

y

y
dxxe xx

     

     Integrating, with use integration by parts by parts on the first term, yields 

  1

3133

3

2

9

1

3

1
cyyexe xx  

 

    cc
yy

xe x  13

3 9c      where
69

13  

3. All the solutions are 

 

                                                   
 

0             y         

 
69

13
3

3



 c
yy

xe x

                                

 

Example 6: 

Solve the initial value problems  

(a)   1)0(      ,1
2

 yy
dx

dy
 (b)    01.1)0(      ,1

2
 yy

dx

dy
 

and compare the solutions. 

 

Solutions:  

1. Since 10)1( 2  yy . Therefore, the only constant solution is 0y . 

2.  We separate the variables 

  
 

  dxdyy- dx
y

dy




2

2
1or    

1
 

      Integrating both sides we have 
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       1
2




dxdyy  

     
 

cx
y




 

12

1 12

 

    or         cx
y





1

1
 

3. All the solutions of the equation are 

   

1             

1

1








y

cx
y  

4. We plug in the conditions to find particular solutions of both the problems 

 

(a)   0 when 110  xyy . So we have 

                      


 ccc
0

1
0

11

1
 

    The particular solution is 

                   01
1

1



 y

y
 

     So that the solution is 1y , which is same as constant solution. 

(b)   0  when  01.101.10  xyy . So we have 

1000
101.1

1



 cc  

     So that solution of the problem is 

                        
x

yx
y 





100

1
1100

1

1
 

5. Comparison: A radical change in the solutions of the differential equation has    

    Occurred corresponding to a very small change in the condition!!   

Example 7: 

Solve the initial value problems 

(a)   1)0(      ,01.01
2

 yy
dx

dy
 (b)    .1)0(      ,01.01

2
 yy

dx

dy
 

Solution:  

(a) First consider the problem 

                  1)0(      ,01.01
2

 yy
dx

dy
 

     We separate the variables to find the non-constant solutions 
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   
dx

y

dy



22

101.0
 

      Integrate both sides   

    
 

   









 dx

y

yd

22

101.0

1
 

      So that   cx
y




01.0

1
tan

01.0

1 1
 

                                     cx
y








  01.0
01.0

1
tan 1  

                                        cx
y




01.0tan
01.0

1
 

     or      cxy  01.0tan01.01  

     Applying    0   when   110  xyy , we have 

                                        cc  0001.00tan 1
 

     Thus the solution of the problem is 

                                       xy  01.0tan01.01   

 

  (b) Now consider the problem  

  .1)0(      ,01.01
2

 yy
dx

dy
 

     We separate the variables to find the non-constant solutions 

    
   

22

 

1 0.01

d y
dx

y



 
 

                                              
 

   
22

1

1 0.01

d y
dx

y










 
  

                                                cx
y

y






01.01

01.01
ln

01.02

1
 

       Applying the condition   0  when 110  xyy    
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                                            0
01.0

01.0
ln

01.02

1



cc  

                                                  x
y

y
 01.02

01.01

01.01
ln 




 

                                                     
101.01

01.01  01.02 xe

y

y





 

 Simplification:  

 By using the property  
dc

dc

ba

ba

d

c

b

a









  

           
1

1

01.0101.01

01.0101.01

01.02

01.02










xe

xe

yy

yy
 

                          

2 0.01

2 0.01

2 2 1

2 0.01 1

y e

e

 


 
 

                                                   
1

1

01.0

1

01.02

01.02










e

ey
 

     



















1

1
01.01

01.02

01.02

e

e
y  

   



















1

1
01.01

01.02

01.02

e

e
y  

 

Comparison: 

 

The solutions of both the problems are 

 

              (a)  xy  01.0tan  01.01             

              (b)



















1

1
01.01

01.02

01.02

e

e
y  

Again a radical change has occurred corresponding to a very small in the differential 

equation! 
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Exercise: 

Solve the given differential equation by separation of variables. 

1. 

2

54

32














x

y

dx

dy
 

2. 0cscsec2  ydxxdy  

3.   0cos2sin 2  dyyexxdxe yy  

4. 
842

33






yxxy

yxxy

dx

dy
 

5. 
33

22






xyxy

xyxy

dx

dy
 

6.     dxydyxy 2

1
2

2

1
2 44   

7.   yy
dx

dy
xx   

Solve the given differential equation subject to the indicated initial condition. 

8.    dyxxdxe y cos1sin1 
,   00 y  

9.     0411 24  dxyxdyx ,   01 y  

10.   dxyxydy 2

1
2 14  ,     10 y  
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Lecture 4 Homogeneous Differential Equations 

 

A differential equation of the form 

 ),( yxf
dx

dy
   

Is said to be homogeneous if the function ),( yxf  is homogeneous, which means  

             ),(),( yxfttytxf n For some real number n, for any number t . 

 

Example 1    

Determine whether the following functions are homogeneous 

                                      

 












)4/(3ln),(

  ),(

232

22

xyxyxyxg

yx

xy
yxf

                  

Solution:   

The functions ),( yxf is homogeneous because 

                                   ),(
)(

),(
22222

2

yxf
yx

xy

yxt

xyt
tytxf 





  

Similarly, for the function ),( yxg we see that  

                   ),(
4

3
ln

)4(

3
ln),(

23

2

233

23

yxg
xyx

yx

xyxt

yxt
tytxg 

























       

  Therefore, the second function is also homogeneous.  

   Hence the differential equations  

                                       












),(

  ),(

yxg
dx

dy

yxf
dx

dy

 

    Are homogeneous differential equations 
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Method of Solution:  

 

To solve the homogeneous differential equation 

                                           ),( yxf
dx

dy
  

We use the substitution   

 
x

y
v   

If ),( yxf is homogeneous of degree zero, then we have  

                                     )(),1(),( vFvfyxf   

Since vvxy  , the differential equation becomes  

                                       ),1( vfv
dx

dv
x   

 This is a separable equation. We solve and go back to old variable y  through xvy  . 

 

 Summary:  

1. Identify the equation as homogeneous by checking ),(),( yxfttytxf n ; 

 2. Write out the substitution
x

y
v  ; 

 3. Through easy differentiation, find the new equation satisfied by the new function v ;  

                                            ),1( vfv
dx

dv
x   

 4. Solve the new equation (which is always separable) to find v ;  

 5. Go back to the old function y  through the substitution vxy  ;  

 6. If we have an IVP, we need to use the initial condition to find the constant of 

integration.  

 

Caution: 

 Since we have to solve a separable equation, we must be careful about the 

constant solutions. 

 If the substitution vxy   does not reduce the equation to separable form then the 

equation is not homogeneous or something is wrong along the way. 

Illustration:  

 

Example 2  Solve the differential equation  

                                
yx

yx

dx

dy






2

52
 

Solution:    

Step 1.  It is easy to check that the function 

                             
yx

yx
yxf






2

52
),(  

      is a homogeneous function.  
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Step 2.  To solve the differential equation we substitute 

                                         
x

y
v                                          

Step 3. Differentiating w.r.t x , we obtain 

                         
v

v

xvx

xvx
vvx











2

52

2

52
 

     which gives  

                              












 v

v

v

xdx

dv

2

521
       

       This is a separable.  At this stage please refer to the Caution! 

Step 4.   Solving by separation of variables all solutions are implicitly given by  

                             Cxvv  |)ln(||1|ln3|)2ln(|4  

Step 5.  Going back to the function y through the substitution vxy  , we get  

                              Cxyxy       ||ln3|2|ln4   

4 3

1 1

4 3

14 3

4 3

14 3

4 3

14 3

4 3

1

4 3

1

2
4ln 3ln ln

2
ln ln ln ln , ln

( 2 ) ( )
ln ln ln

( 2 ) ( )
ln . ln

( 2 ) ( )
.

( 2 ) ( )

( 2 ) ( )

y x y x
x c

x x

y x y x
x c c c

x x

y x y x
c x

x x

y x y x
c x

x x

y x y x
c x

x x

x y x y x c x

y x y x c



















 
   

 
   

 
 

 


 


  

  

 

       Note that the implicit equation can be rewritten as  

                                  
4

1

3 )2()( xyCxy   
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Equations reducible to homogenous form 

 

The differential equation 

       
222

111

cybxa

cybxa

dx

dy




  

is not homogenous.  However, it can be reduced to a homogenous form as detailed below 

 

Case 1: 

2

1

2

1

b

b

a

a
  

We use the substitution ybxaz
11

  which reduces the equation to a separable 

equation in the variables x  and z . Solving the resulting separable equation and 

replacing z  with ybxa
11

 , we obtain the solution of the given differential equation. 

 

Case 2: 

2

1

2

1

b

b

a

a
  

In this case we substitute 

 kYyhXx             ,    

Where h  and k  are constants to be determined. Then the equation becomes 

                                      
22222

11111

ckbhaYbXa

ckbhaYbXa

dX

dY




  

We choose h and k such that 

 









0

0

222

111

ckbha

ckbha
      

This reduces the equation to 

                                         
YbXa

YbXa

dX

dY

22

11




     

Which is homogenous differential equation in X  andY , and can be solved accordingly. 

After having solved the last equation we come back to the old variables x  and y . 

 

 

 

 

Example 3 
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Solve the differential equation 

 
232

132






yx

yx

dx

dy
      

Solution: 

Since

2

1

2

1 1
b

b

a

a
 , we substitute yxz 32  , so that  

 







 2

3

1

dx

dz

dx

dy
       

Thus the equation becomes 

 
2

1
2

3

1















z

z

dx

dz
      

i.e. 
2

7






z

z

dx

dz
   

This is a variable separable form, and can be written as 

 dxdz
z

z














7

2
       

Integrating both sides we get 

   Axzz  7ln9       

Simplifying and replacing z with yx 32  , we obtain 

   Ayxyx  33732ln
9

    

or     Ayx ecceyx  
       ,732 39

  

 

 

   

Example 4  

 

Solve the differential equation 
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 

52

42






yx

yx

dx

dy
      

Solution:  

 

By substitution 

 kYyhXx            ,      

The given differential equation reduces to 

 
   
   522

422






khYX

khYX

dX

dY
     

We choose h  and k  such that  

 ,042  kh     052  kh     

Solving these equations we have 2h , 1k . Therefore, we have 

 
YX

YX

dX

dY






2

2
       

This is a homogenous equation. We substitute VXY   to obtain  

 
V

V

dX

dV
X






2

1 2

    or     
X

dX
dV

V

V













21

2
   

Resolving into partial fractions and integrating both sides we obtain 

 
   



















 X

dX
dV

VV 12

1

12

3
    

or  

     AXVV lnln1ln
2

1
1ln

2

3
  

   

Simplifying and removing ( ln ) from both sides, we get 

 

     23
1/1  CXVV , 

2 AC   
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   

 

 

 

 

3 1
2 2

3 1
2 2

3 1
2 2

13 2 2

1

3 2 2

3 1

2 2

3

3 1
ln 1 ln 1 ln ln

2 2

ln(1 ) ln 1 ln

ln(1 ) 1 ln

(1 ) 1

" 2"

(1 ) 1

(1 ) 1

( )

V V X A

V V XA

V V XA

V V XA

taking power onboth sides

V V X A

Y
put V

X

Y Y
X A

X X

X Y X Y
X A

X X

X Y
X

X Y







  



 



 

     

   

  

  



  



 
   

 

    
   

   





3 1 2 2

2

3

3

,

( )

2, 1

( 1) / 3

X A

say c A

X Y
c

X Y

put X x Y y

x y x y c

   












   

    

 

Now substituting
X

Y
V  , 2 xX , 1 yY  and simplifying, we obtain 

    Cyxyx  3/1
3

  

   

This is solution of the given differential equation, an implicit one. 

 

 

Exercise 

 

Solve the following Differential Equations 

 

1. 02)( 344  ydyxdxyx  

2. 1
2

2


y

x

x

y

dx

dy
 

3. xydydxyex x

y



















22
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4. 0cos 







 dyx

y

x
yydx  

5.   0222223  dyyxxydxyxyx  

 

Solve the initial value problems 

 

6.     6)2(         ,046593 222  ydyxyxdxyxyx  

7.   1
2

1
            ,2 








 yy

dx

dy
xyyx  

8.   0)1(             ,0//  ydyxedxyex xyxy
 

9. 0)1(          ,cosh  y
x

y

x

y

dx

dy
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Lecture 5 Exact Differential Equations 

 
 

Let us first rewrite the given differential equation  

 ),( yxf
dx

dy
  

into the alternative form 

                            
),(

),(
),(      where0),(),( 

yxN

yxM
yxfdyyxNdxyxM   

This equation is an exact differential equation if the following condition is satisfied  

 
x

N

y

M









 

This condition of exactness insures the existence of a function ),( yxF  such that  

                                         ),( yxM
x

F





, ),( yxN

y

F





 

Method of Solution:  

If the given equation is exact then the solution procedure consists of the following steps: 

Step 1.  Check that the equation is exact by verifying the condition 
x

N

y

M









  

Step 2.  Write down the system ),( yxM
x

F





, ),( yxN

y

F





 

Step 3.  Integrate either the 1
st
 equation w. r. to x or 2

nd
 w. r. to y. If we choose the 1

st
 

equation then 

   )(),(),( ydxyxMyxF   

   The function )(y is an arbitrary function of y , integration w.r.to x ; y  being 

constant.  

Step 4.  Use second equation in step 2 and the equation in step 3 to find )(y  . 

   ),()(),( yxNydxyxM
yy

F










   

 


 dxyxM

y
yxNy ),(),()(  

Step 5. Integrate to find )(y  and write down the function F (x, y);   

Step 6.  All the solutions are given by the implicit equation  

         CyxF ),(  

Step 7.  If you are given an IVP, plug in the initial condition to find the constant C.  

Caution: x should disappear from )(y  . Otherwise something is wrong!          
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Example 1  

Solve      023 32  dyyxdxyx  

 

Solution: Here yxNyxM  32    and   23  

  22 3,3 x
x

N
x

y

M










 

i.e.  
x

N

y

M









 

Hence the equation is exact. The LHS of the equation must be an exact differential i.e.   

a function ),( yxf such that 

  Myx
x

f





23 2

 

  Nyx
y

f




 3
 

Integrating 1
st
 of these equations w. r. t. x, have 

   ),(2),( 3 yhxyxyxf   

where )(yh is the constant of integration. Differentiating the above equation w. r. t. y and 

using 2nd, we obtain 

  Nyxyhx
y

f




 33 )(  

Comparing yyh  )(  is independent of x. 

or. 

Integrating, we have 

  
2

)(
2y

yh   

Thus  
2

2),(
2

3 y
xyxyxf   

Hence the general solution of the given equation is given by 

  cyxf ),(  
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i.e.  c
y

xyx 
2

2
2

3
 

Note that we could start with the 2
nd

 equation  

  Nyx
y

f




 3  

to reach on the above solution of the given equation! 

 

Example 2  

Solve the initial value problem 

     .0cos2sinsincossin2 22  dyxyxdxxyxxy  

  .3)0( y  

Solution: Here 

  xyxxyM sincossin2 2  

and  xyxN cos2sin 2   

  ,sin2cossin2 xyxx
y

M





 

  ,sin2cossin2 xyxx
x

N





 

This implies 
x

N

y

M









 

Thus given equation is exact. 

Hence there exists a function ),( yxf such that 

  Mxyxxy
x

f





sincossin2 2

   

  

 Nxyx
y

f





cos2sin 2

 

Integrating 1
st
 of these w. r. t. x, we have 

 ),(cossin),( 22 yhxyxyyxf   

Differentiating this equation w. r. t. y substituting in N
y

f





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  xyxyhxyx cos2sin)(cos2sin 22   

  1)(or        0)( cyhyh   

Hence the general solution of the given equation is  

  2),( cyxf   

i.e.  ,cossin 22 Cxyxy   where  21 ccC   

Applying the initial condition that when ,3,0  yx we have  

  c9  

since  9sincos 22  xyxy  

is the required solution. 

 

Example 3: 

 

Solve the DE     2 2cos 2 cos 2 0y ye y xy dx xe x x y y dy       

 

Solution: 

  

The equation is neither separable nor homogenous.  

Since, 

 

  









yxyxxeyxN

xyyeyxM

y

y

2cos2,

cos,

2

2

 

and 

 
x

N
xyxyxye

y

M y









cossin2 2

 

Hence the given equation is exact and a function ),( yxf  exist for which 

  
x

f
yxM




,   and   

y

f
yxN




,  

which means that  

                                xyye
x

f y cos2 



   and   yxyxxe

y

f y 2cos2 2 



 

 Let us start with the second equation i.e.    

       yxyxxe
y

f y 2cos2 2 



 

Integrating both sides w.r.to y , we obtain 

    ydyxydyxdy
y

exyxf 2cos
2

2,   

Note that while integrating w.r.to y , x  is treated as constant.  Therefore  
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    xhyxyxeyxf y  22 sin,  

h  is an arbitrary function of x . From this equation we obtain 
x

f




 and equate it to M   

   xyyexhxyye
x

f yy coscos 22 



 

So that     Cxhxh  )(0       

Hence a one-parameter family of solution is given by  

   0sin 22  cyxyxe y
 

 

Example 4  

 

Solve   0 1 2 2  dyxdxxy  

 

Solution:  

 

Clearly       xyyxM 2,    and   yxN , 12 x  

 

Therefore 
x

N
x

y

M









2  

 

The equation is exact and   a function  yxf ,  such that  

 

 xy
x

f
2




  and  12 




x

y

f
 

 

We integrate first of these equations to obtain. 

 

    ygyxyxf  2,  

 

Here  yg  is an arbitrary function y . We find 
y

f




 and equate it to  yxN ,    

 

   122 



xygx

y

f
   

                                         yygyg  )(    1    

 

Constant of integration need not to be included as the solution is given by  

 

                                                 cyxf ,  
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Hence a one-parameter family of solutions is given by 

 

                                                cyyx 2
    

 

Example 5  

Solve the initial value problem  

     01sincos 22  dyxydxxyxx ,  0 2y   

Solution: 

Since 
 









2

2

1            ),(

  sin . cos),(

xyyxN

yxxxyxM
 

 

and        
x

N
xy

y

M









2  

Therefore the equation is exact and   a function  yxf ,  such that  

 

                              
2  s .  cos yxxinx

x

f





  and   )1( 2xy

y

f





 

Now integrating 2
nd

 of these equations w.r.t.  ‘ y ’ keeping ‘ x ’constant, we obtain   

        xhx
y

yxf  2
2

1
2

,  

Differentiate w.r.t. ‘ x ’ and equate the result to ),( yxM  

   22 sincos xyxxxhxy
x

f





 

The last equation implies that. 

 

    xxxh sincos  

Integrating w.r.to x , we obtain 

 

                                     xdxxxxh 2cos
2

1
sincos    

Thus a one parameter family solutions of the given differential equation is  

   1

22
2

cos
2

1
1

2
cxx

y
  

or 
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   cxxy  222 cos1  

where 12c  has been replaced by C . The initial condition 2y  when 0x  demand, that 

    c 0cos14 2
so that 3c .   Thus the solution of the initial value problem is  

   3cos1 222  xxy  
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Exercise 

Determine whether the given equations is exact. If so, please solve. 

1.     0coscossinsin  dyyxxdxxyy  

2.  dyxdx
x

y
x ln1ln1 








  

3.   0ln
1

ln 







  dyy

y
dxeyy xy  

4. 03sin343cos
1

2 3

2









 xyx

x

y

dx

dy
x

x
y  

5. 0
11

22222






















 dy

yx

x
yedx

yx

y

xx

y
 

Solve the given differential equations subject to indicated initial conditions. 

6.     1)0(       ,02  ydyyexdxye yx
 

7. 1)1(         ,0
2

3
45

22








 
y

y

x

dx

dy

y

xy
 

8. 1y(0)            ),sin(2cos
1

1
2












xyy

dx

dy
xyx

y
 

9. Find the value of k, so that the given differential equation is exact. 

   3 4 32 sin 20 sin 0x y xy ky dx x x xy dyy       

10.     0sincos6 223  dyyxykxdxyxy  
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Lecture 6 Integrating Factor Technique 

 

 

If the equation  

                                               0),(),(  dyyxNdxyxM  

is not exact, then we must have 

 
x

N

y

M









 

Therefore, we look for a function u (x, y) such that the equation  

                  0),(),(),(),(  dyyxNyxudxyxMyxu  

becomes exact. The function u (x, y) (if it exists) is called the integrating factor (IF) and 

it satisfies the equation due to the condition of exactness.    

                          N
x

u
u

x

N
M

y

u
u

y

M



















 

 

This is a partial differential equation and is very difficult to solve. Consequently, the 

determination of the integrating factor is extremely difficult except for some special 

cases: 

 

Example  

Show that )/(1 22 yx  is an integrating factor for the equation   ,022  ydydxxyx  

and then solve the equation. 

Solution: Since  yxyxM   N     ,22
 

Therefore  0   ,2 









x

N
y

y

M
 

So that        
x

N

y

M









 

and the equation is not exact. However, if the equation is multiplied by )/(1 22 yx   then 

the equation becomes 

  01
2222














 dy

yx

y
dx

yx

x
 

 

Now   
2222

    and    1
yx

y
N

yx

x
M





  
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Therefore  

  x

N

yx

xy

y

M












  

2
222

 

So that this new equation is exact. The equation can be solved.  However, it is simpler to 

observe that the given equation can also written 

    0)ln(
2

1
or              0 22

22





 yxddx

yx

ydyxdx
dx  

or   
 

0
2

ln 22












 


yx
xd  

Hence, by integration, we have 

  kyxx  22ln  

Case 1:  

Whenan integrating factor u (x), a function of x  only. This happens if the expression  

 
N

x

N

y

M










 

is a function of x only.  

Then the integrating factor ),( yxu  is given by                 

                           


































 dx
N

x

N

y

M

u exp
 

Case 2:  

When  an integrating factor )(yu , a function of y only. This happens if the expression  

 

 
M

y

M

x

N










 

 is a function of y  only. Then IF ),( yxu  is given by  

   

                                             


































 dy
M

y

M

x

N

u exp  

Case 3: 

If the given equation is homogeneous and 
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 0 yNxM  

Then  
yNxM

u



1

 

Case 4: 

If the given equation is of the form 

 0)()(  dyxyxgdxxyyf  

and 0 yNxM  

Then  
yNxM

u



1

 

 

Once the IF is found, we multiply the old equation by u to get a new one, which is exact. 

Solve the exact equation and write the solution.  

 

Advice: If possible, we should check whether or not the new equation is exact? 

 

Summary: 

Step 1. Write the given equation in the form 

                                        0),(),(  dyyxNdxyxM  

     provided the equation is not already in this form and determine M  and N .   

Step 2.  Check for exactness of the equation by finding whether or not  

                                                   
x

N

y

M









 

Step 3.  (a) If the equation is not exact, then evaluate  

  
N

x

N

y

M










 

    If this expression is a function of x  only, then  

 


































 dx
N

x

N

y

M

xu exp)(
 

    Otherwise, evaluate  

 
M

y

M

x

N










 

    If this expression is a function of y only, then  

 


































 dy
M

y

M

x

N

yu exp)(  
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    In the absence of these 2 possibilities, better use some other technique. However, we   

    could also try cases 3 and 4 in step 4 and 5 

Step 4.  Test whether the equation is homogeneous and   

 0 yNxM  

    If yes then  
yNxM

u



1

 

 

Step 5.  Test whether the equation is of the form 

 0)()(  dyxyxgdxxyyf   

       and whether 0 yNxM   

       If yes then  
yNxM

u



1

 

Step 6. Multiply old equation by u. if possible, check whether or not the new equation is 

exact?  

Step 7. Solve the new equation using steps described in the previous section.  

 

Illustration: 

 

Example 1 

Solve the differential equation 

 
xyx

yxy

dx

dy






2

23
 

Solution:   

1. The given differential equation can be written in form 

                                        0)()3( 22  dyxyxdxyxy  

     Therefore 

                                      
23),( yxyyxM   

 

                                       xyxyxN  2),(  

                            

2.  Now                            yx
y

M
23 




, yx

x

N





2 .  

                                      
x

N

y

M









           

3. To find an IF we evaluate 
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xN

x

N

y

M

1











 

   which is a function of x only.  

4.Therefore, an IF u (x) exists and is given by  

 xeexu x
dx

x 




)ln(

1

)(  

 

5. Multiplying the given equation with the IF, we obtain 

                                            0)()3( 2322  dyyxxdxxyyx    

    which is exact. (Please check!)  

 

6. This step consists of solving this last exact differential equation.   
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Solution of new exact equation: 

 

1.  Since
x

N
xyx

y

M









23 2 , the equation is exact. 

2. We find F (x, y) by solving the system  

 






















.

3

23

22

yxx
y

F

xyyx
x

F

 

3. We integrate the first equation to get  

 )(
2

),( 2
2

3 yy
x

yxyxF   

 

4. We differentiate F  w. r. t. ‘y’ and use the second equation of the system in step 2 to 

obtain 

 yxxyyxx
y

F 2323 )( 



  

                                                 0 ,   No dependence on x. 

5. Integrating the last equation to obtain C .  Therefore, the function ),( yxF  is  

 
2

2
3

2
),( y

x
yxyxF   

      We don't have to keep the constant C, see next step.  

6. All the solutions are given by the implicit equation CyxF ),(  i.e. 

 

2 2
3

2

x y
x y C   

 

Note that it can be verified that the function  

 
1

( , )
2 (2 )

u x y
xy x y




 

is another integrating factor for the same equation as the new equation  

                     
2 21 1

(3 ) ( ) 0
2 (2 ) 2 (2 )

xy y dx x xy dy
xy x y xy x y

   
 

 

is exact. This means that we may not have uniqueness of the integrating factor.  

 

 

 

 

Example 2. Solve 
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    0222 22  xydydxyxx  

Solution:  

             
xyN

yxxM

2

22 22




 

   y
x

N
y

y

M
2,4 









   

   
x

N

y

M









  

The equation is not exact. 

Here  
xxy

yy

N

NM xy 1

2

24






 

Therefore, I.F. is given by 

  







  dx

x
u

1
exp  

  xu   

  I.F is x. 

Multiplying the equation by x, we have 

    0222 2223  ydyxdxxyxx  

This equation is exact. The required Solution is  

  0

22
34

3

2

4
cyx

xx
  

  cyxxx  2234 1283  

 

 

 

 

 

 

 

Example 3  
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Solve  0sin 







 dyy

y

x
dx  

Solution: Here 

 

x

N

y

M

yx

N

y

M

y
y

x
NM























1
    ,0

sin      ,1

 

The equation is not exact. 

Now   

  
y

y

M

MN yx 1

1

0
1








 

Therefore, the IF is y
y

dy
yu  exp)(  

Multiplying the equation by y, we have 

  0)sin(  dyyyxydx  

or  0sin  ydyyxdyydx  

or  0sin)(  ydyyxyd  

Integrating, we have 

  cyyyxy  sincos  

Which is the required solution. 

 

 

 

 

 

 

 

 

 

Example 4  

Solve         032 2322  dyyxxdxxyyx  

 

Solution:  Comparing with 
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0 NdyMdx  

 

we see that 

2 2 3 22    and    N ( 3 )M x y xy x x y       

Since both M  and N  are homogeneous. Therefore, the given equation is homogeneous. 

Now  

  032 22223223  yxyxyxyxyxyNxM  

Hence, the factor u is given by 

   22

1

yx
u 

            
yNxM

u



1

  

Multiplying the given equation with the integrating factor u , we obtain. 

    0
321

2
























 dy

yy

x
dx

xy
 

 

Now 

    
yy

x

xy
M

3
N     and      

21
2



  

and therefore 

         
x

N

yy

M









2

1
 

Therefore, the new equation is exact and solution of this new equation is given by 

 Cyx
y

x
 ||ln3||ln2  

 

Example 5  

 

Solve       02 2222  dyyxxyxdxyxxyy  

Solution: 

The given equation is of the form 

      0)()(  dyxyxgdxxyyf  

Now comparing with 

 

      0 NdyMdx  

We see that   

   2222 N    and   2 yxxyxyxxyyM   

Further 
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0       3                      

2

33

33223322





yx

yxyxyxyxyNxM
 

Therefore, the integrating factor u is 

 

           
yNxM

u
yx

u



1

        ,
3

1
33

  

Now multiplying the given equation by the integrating factor, we obtain 

 

   0
11

3

121

3

1
22


















 dy

yxy
dx

xyx
 

Therefore, solutions of the given differential equation are given by 

 

   Cyx
xy

 ||ln||ln2
1

 

 

 where 3C0 =C 

 

 

Exercise 

Solve by finding an I.F 

1. dx y x ydx xdy2 2    

2. 0
sin




 dx
x

xy
dy  

3.     0422 434  dyxyxydxyy  

4.   0222  xydydxyx  

5.   0234 2  xydydxyx  

6.     0223 3342  dyyxdxxyyx  

7. 12  ye
dx

dy x
 

8.     03 22  dyxyxdxyxy  

9.   02 2   dyexyydx y
 

10.   0cossin2  ydyxydxx  
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Lecture 7 First Order Linear Equations 

   

The differential equation of the form:  

 )()()( xcyxb
dx

dy
xa   

is a linear differential equation of first order. The equation can be rewritten in the 

following famous form. 

    )()( xqyxp
dx

dy
  

where )(xp  and )(xq are continuous functions. 

 

Method of solution: 

The general solution of the first order linear differential equation is given by  

 


)(

)()(

xu

Cdxxqxu
y


  

 Where   dxxpxu )(exp)(   

The function )(xu is called the integrating factor.  If it is an IVP then use it to find the 

constant C. 

 Summary: 

1. Identify that the equation is 1
st
 order linear equation. Rewrite  it in the form  

 )()( xqyxp
dx

dy
  

      if the equation is not already in this form. 

2. Find the integrating factor  

   


dxxp

exu
)(

)(  

3. Write down the general solution  

 
)(

)()(

xu

Cdxxqxu
y
 

  

4. If you are given an IVP, use the initial condition to find the constant C.  

 

5. Plug in the calculated value to write the particular solution of the problem.  

 

 

Example 1:  

 

 Solve the initial value problem  
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 2)0(        ),(cos)tan( 2  yxyxy  

Solution:  
 

1.The equation is already in the standard form 

 )()( xqyxp
dx

dy
  

    with  

                                                 








xq(x)

xxp

2cos

 tan)(

     

2. Since                                    

                                     xxdxx  secln cosln  tan   

 

     Therefore, the integrating factor is given by 

                                              
 x

dxx
exu sec

 tan
)(    

 

3.  Further, because 

                                           xdxxdxxx sin cos cossec 2
  

    So that the general solution is given by  

                                               xCx
x

Cx
y  cos sin

sec

sin



  

 

4. We use the initial condition 2)0( y to find the value of the constant C  

 2)0( Cy  

 

5. Therefore the solution of the initial value problem is  

 

   xxy cos2sin   

 

 

  

 

 

Example 2: Solve the IVP              4.0)0(      ,
1

2

1

2
22







 y
t

y
t

t

dt

dy
 

Solution:  
1.The given equation is a 1

st
 order linear and is already in the requisite form  
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                                   )()( xqyxp
dx

dy
  

   with                                       














2

2

1

2
    )(

1

2
)(

t
tq

t

t
tp

                

2. Since                           |1|ln
1

2 2

2
tdt

t

t















  

    Therefore, the integrating factor is given by 

 
1221

2

)1()( 








 tetu
dt

t

t

         

3. Hence, the general solution is given by   

                         
)(

)()(

tu

Cdttqtu
y
 

 ,  





 dt

t
dttqtu

22 )1(

2
)()(  

    Now                 dt
t

t

t
dt

t

tt
dt

t
































 22

2

222

22

22 )1(1

1
2

)1(

1
2

)1(

2
 

     The first integral is clearly t1tan
. For the 2

nd
 we will use integration by parts   

      with t   as first function  and 22 )1(
2

t
t


 as 2

nd
 function. 

                  






 



















 )(tan
11

1

1

1

)1(

2 1

22222

2

t
t

t
dt

tt
tdt

t

t
  

                 2

11

2

1

22 1
)(tan)(tan

1
)(tan2

)1(

2

t

t
tt

t

t
tdt

t 












 

      The general solution is: 










 C

t

t
tty

2

1-2

1
)(tan )1(  

4. The condition 4.0)0( y  gives 4.0C  

      5. Therefore, solution to the initial value problem can be written as:   

 )1(4.0)(tan)1( 212 tttty  
 

Example 3:  

Find the solution to the problem 

 1 . cos . sincos 32  ytytt , 0
4









y  

Solution:  
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1.  The equation is 1
st
 order linear and is not in the standard form 

 )()( xqyxp
dx

dy
  

Therefore we rewrite the equation as         

                                          
tt

y
t

t
y

 sincos

1

 sin

  cos
2

  

2. Hence, the integrating factor is given by  

                               t
t

e

dt
t

t

etu  sin
| sin|lnsin

cos

)( 







   

 

3. Therefore, the general solution is given by 

 
t

Cdt
tt

t 

y
 sin

 sincos

1
sin

2


 

   

     Since    

                                       tdt
t

dt
tt

t  tan
cos

1

 sin  cos

1
sin

22








 

 

     Therefore  

 tCt
t

C

tt

Ct
y  csc sec

 sin cos

1

 sin

 tan



  

  

(1) The initial condition 0)4/( y  implies  

 022 C  

       which gives 1C .  

(2) Therefore, the particular solution to the initial value problem is  

 t t y cscsec   

 

 

 

 

 

 

Example 4  

Solve  32
dy

x y y
dx

   

Solution:  

We have 

 
32yx

y

dx

dy


  
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This equation is not linear in y .  Let us regard x  as dependent variable and y  as 

independent variable. The equation may be written as 

 
y

yx

dy

dx 32
  

or 
22

1
yx

ydy

dx
  

Which is linear in x 

      
yy

dy
y

IF
11

lnexp
1

exp 




























  

 Multiplying with the
y

IF
1

 , we get  

               2
11

2
yx

ydy

dx

y
  

          y
y

x

dy

d
2  








 

 Integrating, we have  

        2 cy
y

x
  

    2 cyyx   

 is the required solution.  
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Example 5 

 

Solve  

     121431  xyx
dx

dy
x  

 

Solution:   
 

The equation can be rewritten as 

 

 

 31

1

1

4









x

x
y

xdx

dy  

Here   .
1

4




x
xP  

 

Therefore, an integrating factor of the given equation is 

 

     44
11lnexp

1

4
exp 














 xx

x

dx
IF  

 

Multiplying the given equation by the IF, we get 

 

     1141 234
 xyx

dx

dy
x  

 

or    11 24
 xxy

dx

d
 

 

Integrating both sides, we obtain 

 

  

    cx
x

xy 
3

1
3

4
 

which is the required solution. 
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Exercise   

 

Solve the following differential equations 

 

1. xey
x

x

dx

dy 212 






 
  

 

2. xexy
dx

dy 3233   

 

3.   xyxx
dx

dy
x  cot1  

 

4.     1
11




nx xeny
dx

dy
x  

 

5.  
 22

2

1

1
41

x
xy

dx

dy
x


  

 

6. 


cossec  r
d

dr
 

 

7. 
xx

x

ee

e
y

dx

dy









21
 

 

8.  dyxedx y 23   

 

Solve the initial value problems 

 

9.     20      ,2 23  yeexy
dx

dy xx
 

 

10.       11       ,31122 2  yxyx
dx

dy
xx  
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Lecture 8 Bernoulli Equations 

 

 

A differential equation that can be written in the form  

 
nyxqyxp

dx

dy
)()(   

is called Bernoulli equation. 

Method of solution: 

For 1,0n the equation reduces to 1
st
 order linear DE and can be solved accordingly. 

For 1,0n  we divide the equation with 
ny to write it in the form 

                                   
)()( 1 xqyxp

dx

dy
y nn    

and then put  

                                                
nyv  1

 

                                 

Differentiating w.r.t. ‘x’, we obtain 

 yynv n  )1(  

 

Therefore the equation becomes 

 )()1()()1( xqnvxpn
dx

dv
  

               

 This is a linear equation satisfied by v . Once it is solved, you will obtain the function          

          
)1(

1

nvy   

If 1n , then we add the solution 0y  to the solutions found the above technique.    
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Summary:   

1.Identify the equation  

 
nyxqyxp

dx

dy
)()(   

as Bernoulli equation. 

Find  n. If 1,0n  divide by 
ny and substitute; 

 

 
nyv  1

  

 

2. Through easy differentiation, find the new equation    

 

 )()1()()1( xqnvxpn
dx

dv
  

  

3. This is a linear equation.  Solve the linear equation to find v. 

 

4. Go back to the old function y through the substitution 
)1(

1
nvy  . 

 

6. If 1n , then include y = 0 to in the solution. 

 

7. If you have an IVP, use the initial condition to find the particular solution.  

 

 

Example 1: Solve the equation 
3yy

dx

dy
  

 

Solution:    
1. The given differential can be written as 

                                             
3yy

dx

dy
  

      which is a Bernoulli equation with 

 1)(,1)(  xqxp , n=3.  

       Dividing with 
3y we get 

                                               123   y
dx

dy
y  

      Therefore we substitute 

 
231   yyv  

 

2. Differentiating w.r.t. ‘x’ we have  
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                                                    









dx

dv

dx

dy
y

2

13

 

    So that the equation reduces to 

 22  v
dx

dv
 

3. This is a linear equation. To solve this we find the integrating factor )(xu  

 
xdx

eexu 22

)(                                         

     The solution of the linear equation is given by 

                                        

 
x

x

e

cdxe

xu

cdxxqxu
v

2

2 2

)(

)()(  



  

     Since  
xx edxe 22 )2(                            

     Therefore, the solution for v  is given by  

 12

2

2




  x

x

x

Ce
e

Ce
v  

4. To go back to y  we substitute 2 yv . Therefore the general solution of the given 

DE is 

   2

1
2 1

  xCey  

5. Since 1n , we include the 0y  in the solutions. Hence, all solutions are                  

                                          0y ,      2
1

2 )1(


  xCey  

 

Example 2: 

Solve 
21

xyy
xdx

dy
  

Solution: In the given equation we identify     2  and    ,
1

 nxxq
x

xP .  

Thus the substitution 
1 yw gives 

 
.

1
xw

xdx

dw


 

The integrating factor for this linear equation is 

 
1lnln

1









xeee
xxx

dx

 

Hence   .11  wx
dx

d
 

Integrating this latter form, we get 
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 .or    21 cxxwcxwx 
 

Since 
1 yw , we obtain 

w
y

1
  or  

 
cxx

y



2

1
 

For 0n  the trivial solution 0y  is a solution of the given equation. In this example, 

0y  is a singular solution of the given equation. 

 

Example 3: 

Solve: 
2

1

21
xy

x

xy

dx

dy





 (1) 

Solution: Dividing (1) by 2

1

y , the given equation becomes 

 xy
x

x

dx

dy
y 






2

1

2
2

1

1
 (2) 

Put  vy 2

1

 or.  
dx

dv

dx

dy
y 


2

1

2

1
 

Then (2) reduces to 

 
  212 2

x
v

x

x

dx

dv



  (3) 

This is linear in v . 

 

 
    4

1
22

2
11ln

4

1
exp

12
expI.F




























 xxdx

x

x
 

Multiplying (3) by   ,1 4

1
2



 x  we get 

  
    4/124/52

4

1
2

1212

1

x

x
v

x

x

dx

dv
x











 

or    































4

1
24

1
2 12

4

1
1 xxvx

dx

d
 

Integrating, we have 
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    
c

x
xv 






4/3

1

4

1
1

4

3
2

4

1
2

 

or  
3

1
1

2
4/12 x

xcv


  

or  
3

1
1

2
4/122

1
x

xcy


  

is the required solution. 
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Exercise  

Solve the following differential equations 

1. xyy
dx

dy
x ln2  

2. 
3xyy

dx

dy
  

3. 
2yey

dx

dy x  

4.  13  xyy
dx

dy
 

5.   21 xyyx
dx

dy
x   

6. xyy
dx

dy
x  22

 

Solve the initial-value problems 

7.  
2

1
1      ,32 42  yyxy

dx

dy
x  

8.   40         ,12/32/1  yy
dx

dy
y  

9.     01          ,11 2  y
dx

dy
xyxy  

10.   11         ,2
2

 y
y

x

x

y

dx

dy
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SUBSTITUTIONS 

 

 

 Sometimes a differential equation can be transformed by means of a substitution 

into a form that could then be solved by one of the standard methods i.e. Methods 

used to solve separable, homogeneous, exact, linear,  and Bernoulli’s  differential 

equation.  

 

 

 An equation may look different from any of those that we have studied in the 

previous lectures, but through a sensible change of variables perhaps an 

apparently difficult problem may be readily solved.  

 

 

 Although no firm rules can be given on the basis of which these substitution could 

be selected, a working axiom might be: Try something! It sometimes pays to be 

clever. 

 

 

 

Example 1 

 

 

 

The differential equation 

 

     02121  dyxyxdxxyy  

 

is not separable, not homogeneous, not exact, not linear, and not Bernoulli.  

However, if we stare at the equation long enough, we might be prompted to try the 

substitution  

 
x

u
yxyu

2
or        2   

Since 22x

udxxdu
dy


  

 

The equation becomes, after we simplify 

 

   .012 2  xduudxu  

we obtain cuux   lnln2 1
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xy
c

y

x

2

1

2
ln 

 

 ,
2

2/1

1

xyec
y

x
  

 
xyyecx 2/1

12  

 

where 
ce was replaced by 1c . We can also replace 12c by 2c  if desired 

 

 

 

Note that  

 

The differential equation in the example possesses the trivial solution 0y , but then 

this function is not included in the one-parameter family of solution. 

 

 

Example 2 

 

Solve  

 

 .6322 2  xy
dx

dy
xy  

 

Solution:  

The presence of the term 
dx

dy
y2 prompts us to try 

2yu   

Since  

 
dx

dy
y

dx

du
2  

Therefore, the equation becomes 

Now 632  xu
dx

du
x  

 

or 
x

u
xdx

du 6
3

2
  

This equation has the form of 1
st
 order linear differential equation  

 )()( xQyxP
dx

dy
  

 with       
x

xP
2

)(   and 
x

xQ
6

3)(   
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Therefore, the integrating factor of the equation is given by 

             I.F = 
2ln

2
2

xee x
dx

x 





 

 

Multiplying with the IF gives 

 

                          xxux
dx

d
63 22   

 

Integrating both sides, we obtain 

                  3 232 cxxux   

or              .3 2322 cxxyx   

 

Example 3 

Solve   

 
xy

e
y

x
y

dx

dy
x

/
3

  

Solution: 

 

 If we let  

x

y
u 

 

Then the given differential equation can be simplified to 

 

  dxduuue 
 

Integrating both sides, we have 

    dxduuue  

 

Using the integration by parts on LHS, we have 

  cxueuue   

or 

                 uexcu  11  Where c1=-c 

 

We then re-substitute  

  
x

y
u   

and simplify to obtain 

    xy
excxxy

/
 1   

 Example 4 
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Solve  

  

2

2

2

2 









dx

dy
x

dx

yd
 

Solution:  
If we let     

  yu     

Then      

   ydxdu /  

Then, the equation reduces to  

       2 2xu
dx

du
  

Which is separable form. Separating the variables, we obtain 

  xdx
u

du
2

2
  

Integrating both sides yields 

    xdxduu 22
 

or  
2
1

21 cxu  
 

The constant is written as 
2

1c for convenience.  

Since   yu  /11
 

Therefore      
1

2
1

2 cxdx

dy


  

or  2
1

2 cx

dx
dy


  

  





 22

1cx

dx
dy  

  
1

1

1

2 tan
1

c

x

c
cy 

 

    

Exercise 

 

Solve the differential equations by using an appropriate substitution. 
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1.  0)1(  dyyeydx x
 

 

2.     0 /12 2 /   dyyxdxe yx
 

 

3. )(tan ln2 2 csc2 yx
dx

dy
yx   

 

4. 
)( sin1 yxex

dx

dy   

 

5. 
yxexx

dx

dy
y  ln2  

 

6. 12 242  yxxy
dx

dy
x  

 

7. 
22 xe

dx

dy
xe yy   
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Lecture 9 Practice Examples 

 

2 2

2 2

2 2 2 2

2

2

2

2 2

x +y
Example 1:   y'=

xy

dy x +y
Solution:  =

dx xy

dy dw
put y=wx then  =w+x

dx dx

dw x +w x 1+w
 w+x = = 

dx xxw w

dw 1
w+x = +w

dx w

dx
wdw=

x

Integrating

w
=lnx+lnc

2

y
=ln|xc|

2x

y =2x ln|xc|
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(2 xy-y)dy
Example 2:  =

dx x

(2 xy-y)dy
Solution:   =

dx x

put  y= wx

dw (2 xwx -xw)
w+x =

dx x

dw
w+x =2 w -w

dx

dw
x =2 w -2w

dx

dw dx
=

x2( w -w)

dw dx
=

x2( w -w)

dw dx
=

x2 w (1- w )

put     w =t

1 dx
We get dt=

1-t x

-ln|1-t|=ln|x|+ln|c|

-ln|1-t|=l

 

 

 

-1

-1

-1

n|xc|

(1-t) =xc

(1- w ) =xc

(1- y/x ) =xc
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2 2

2 2

2 2

2 2

2 2

Example 3: (2y x-3)dx+(2yx +4)dy=0

Solution:(2y x-3)dx+(2yx +4)dy=0

Here M=(2y x-3) and N=(2yx +4)

¶M ¶N
=4xy=

¶y ¶x

¶f ¶f
=(2y x-3) and =(2yx +4)

¶x ¶y

Integrate w.r.t. 'x'

f(x,y)=x y -3x+h(y)

Differentiate w.r.t. 'y'

¶f
=2x

¶y

2 2

2 2

1

y+h'(y)=2x y+4=N

h'(y)=4

Integrate w.r.t. 'y'

h(y)=4y+c

x y -3x+4y=C  

 
2

2 2

2 2

2

2

2

2

2

2

(x/y)

2 2 (x/y) 2 (x/y)

2 2 (x/y) 2 (x/y)

(x/y)

w

w

w

w

w

w

dy 2xye
Example 4:  =

dx y +y e +2x e

dx y +y e +2x e
Solution: =

dy 2xye

put x/y=w

Aftersubsitution

dw 1+e
y =

dy 2we

dy 2we
= dw

y 1+e

Integrating

ln|y|=ln|1+e |+lnc

ln|y|=ln|c(1+e
2

2(x/y)

)|

y=c(1+e )  
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2

2

2

2

2

2

3

dy y 3x
Example 5: + =

dx xlnx lnx

dy y 3x
Solution: + =

dx xlnx lnx

dy 1 3x
+ y=

dx xlnx lnx

1 3x
p(x)= and q(x)=

xlnx lnx

1
I.F=exp( dx)=lnx

xlnx

Multiply both side by lnx

dy 1
lnx + y=3x

dx x

d
(ylnx)=3x

dx

Integrate

3x
ylnx= +c

3


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2 x 2

2 x 2

x

2

x

Example 6:  (y e +2xy)dx-x dy=0

Solution:Here M=y e +2xy     N=-x

¶M ¶N
=2ye +2x,     =-2x

¶y ¶x

¶M ¶N
Clearly ¹  

¶y ¶x

The given equation is not exact     

divide the equation by y  to make it exact

2x
e + d

y

 
 
 

2

2

2

2
x

2

2
x

2
x

x
x+ - dy=0

y

¶M 2x ¶N
Now =- =

¶y ¶xy

Equation is exact 

 

¶f 2x ¶f x
= e +           = -

¶x y ¶y y

Integrate w.r.t. 'x'

x
f(x,y)=e +

y

x
e + =c

y

 
 
 

  
  

   
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 

 

Example 7:

dy
xcosx +y(xsinx+cosx)=1

dx

dy
Solution: xcosx +y(xsinx+cosx)=1   

dx

dy xsinx+cosx 1
+y =

dx xcosx xcosx

dy 1
+y tanx+1/x =

dx xcosx

I.F  = exp( (tanx+1/x)dx)=xsecx

dy xsecx
xsecx +yxsecx tanx+1/x =

dx xcosx

d
xsecx

 
 
 



 

 

2

2

y
+y xsecxtanx+secx =sec x

dx

d
xysecx =sec x

dx

xysecx=tanx+c  
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2y 2y

2y 2y

2y

2y

2

2

2

2

2

2

dy lnx
Example 8: xe +e =

dx x

dy lnx
Solution: xe +e =

dx x

put   e =u

dy du
2e =

dx dx

x du lnx
+u=

2 dx x

du 2 lnx
+ u=2

dx x x

lnx
Here   p(x)=2/x And Q(x)=

x

2
I.F=exp( dx)=x

x

du
x +2xu=2lnx

dx

d
(x u)=2lnx

dx

Integrate

x u=2[xlnx-x]



2 2y

+c

x e =2[xlnx-x]+c
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x

x

x

x

dx x

x 2x

2x
x

2x
x

dy
Example 9: +ylny=ye

dx

dy
Solution: +ylny=ye

dx

1 dy
+lny=e

y dx

put lny=u

du
+u=e

dx

I.F.=e =e

d
(e u)=e

dx

Integrate

e
e .u= +c

2

e
e lny= +c

2


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2

-1

dy
Example 10: 2xcsc2y =2x-lntany

dx

dy
Solution:2xcsc2y =2x-lntany

dx

put lntany=u

dy du
=sinycosy

dx dx

2xsinycosy du
=2x-u

2sinycosy dx

du
x =2x-u

dx

du 1
+ u=2

dx x

I.F =exp( 1/xdx)=x

du
x +u=2x

dx

d
(xu)=2x

dx

xu=x +c

u=x+cx

lntany=x+c



-1x
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2 3x

2 3x

2 3x

2 3x

3x

2

3x

3x

-x

-x -x 2x

-x 2x

dy
Example 11: +x+y+1=(x+y) e

dx

dy
Solution: +x+y+1=(x+y) e

dx

Put x+y=u

du
+u=u e

dx

du
+u=u e (Bernouli's)

dx

1 du 1
+ =e

dx uu

put1/u=w

dw
- +w=e

dx

dw
-w=-e

dx

I.F=exp( -dx)=e

dw
e -we =-e

dx

d
(e w)=-e

dx

Inte



2x
-x

3x
x

3x
x

grate

-e
e w= +c

2

1 -e
= +ce

u 2

1 -e
= +ce

x+y 2
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2

2

2

2

2

-1

-1

1

1

1

dy
Example 12: =(4x+y+1)

dx

dy
Solution: =(4x+y+1)

dx

put 4x+y+1=u

weget

du
-4=u

dx

du
=u +4

dx

1
du=dx

u +4

Integrate

1 u
tan =x+c

2 2

u
tan =2x+c

2

u=2tan(2x+c )

4x+y+1=2tan(2x+c )
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2 2

2 2

2 2

2 2 2

2

2 2

2 2 2

2 2

2

2 2

-1

-1

dy
Example 13:(x+y) =a

dx

dy
Solution:(x+y) =a

dx

put x+y =u

du
u ( -1)=a

dx

du
u -u =a

dx

u
du=dx

u +a

Integrate

u +a -a
du= dx

u +a

a
(1- )du= dx

u +a

u
u-atan =x+c

a

x+y
(x+y)-atan =x+c

a

 

 
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2 2

2 2

2 2

x

x x x

x x

x x x

dy
Example 14:  2y +x +y +x=0

dx

dy
Solution: 2y +x +y +x=0

dx

put x +y =u

du
-2x+u+x=0

dx

du
+u=x

dx

I.F= Exp( dx)=e

du
e +ue =xe

dx

d
(e u)=xe

dx

Integrating

e u=xe -e +c


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' -(x+y)

' -(x+y)

-u

-u

u

u

Example 15:y +1=e sinx

Solution: y +1=e sinx

put x+y=u

du
=e sinx

dx

1
du=sinxdx

e

e du=sinxdx

Integrate

e =-cosx+c

u=ln|-cosx+c|

x+y=ln|-cosx+c|
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4 2 3 3 3

4 2 3 3 3

3 3

2 3 3 2

3 2 2 3

4 2 3 3

3

2

3

3 3 3

Example 16: x y y'+x y =2x -3

Solution: x y y'+x y =2x -3

put x y =u

dy du
3x y +3x y =

dx dx

dy du
3x y = -3x y

dx dx

dy x du
x y = -x y

dx 3 dx

x du
=2x -3

3 dx

du
=6x -9/x

dx

Integrate

u=2x -9lnx+c

x y =2x -9lnx+c  
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2

Example 17:cos(x+y)dy=dx

Solution:cos(x+y)dy=dx

dy dv
put x+y=v or 1+ = , weget

dx dx

dv
cosv[ -1]=1

dx

cosv 1
dx= dv=[1- ]dv

1+cosv 1+cosv

1 v
dx=[1- sec ]dv

2 2

Integrate

v
x+c=v-tan

2

x+y
x+c=v-tan

2
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Lecture 10 Applications of First Order Differential Equations 

 

In order to translate a physical phenomenon in terms of mathematics, we strive for a set  

of equations that describe the system adequately. This set of equations is called a Model  

for the phenomenon. The basic steps in building such a model consist of the following 

steps:  

Step 1: We clearly state the assumptions on which the model will be based. These 

assumptions should describe the relationships among the quantities to be studied. 

 

  

Step 2: Completely describe the parameters and variables to be used in the model.  

 

 

Step 3:  Use the assumptions (from Step 1) to derive mathematical equations relating the  

parameters and variables (from Step 2).   

 

 

The mathematical models for physical phenomenon often lead to a differential equation 

or a set of differential equations. The applications of the differential equations we will 

discuss in next two lectures include: 

 

 Orthogonal Trajectories. 

 Population dynamics. 

 Radioactive decay. 

 Newton’s Law of cooling. 

 Carbon dating. 

 Chemical reactions. 

etc. 

 

Orthogonal Trajectories   

 We know that that the solutions of a 1
st
 order differential equation, e.g. separable 

equations, may be given by an implicit equation  

  

                                     0,, CyxF    

     with 1 parameter C , which represents a family of curves. Member curves   

     can be obtained by fixing the parameter C.  Similarly an n
th

 order DE will 

     yields an n-parameter family of curves/solutions.
 

 

  
                       0,,,,, 11 nCCCyxF    

 

 The question arises that whether or not we can turn the problem around: Starting 

with an n-parameter family of curves, can we find an associated n
th

 order 
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differential equation free of parameters and representing the family. The answer in 

most cases is yes. 

 Let us try to see, with reference to a 1-parameter family of curves, how to proceed 

if the answer to the question is yes. 

1. Differentiate with respect to x, and get an equation-involving x, y, 
dx

dy
and C.  

2. Using the original equation, we may be able to eliminate the parameter C from 

the new equation. 

3. The next step is doing some algebra to rewrite this equation in an explicit form  

                                  yxf
dx

dy
,  

 For illustration we consider an example: 

 

Illustration 

Example 

Find the differential equation satisfied by the family  

                                        xCyx  22   

Solution:  

1. We differentiate the equation with respect to x, to get  

                                        C
dx

dy
yx  22  

2. Since we have from the original equation that 

                                        
x

yx
C

22 
  

 then we get  

                                   
x

yx

dx

dy
yx

22

22


  

3. The explicit form of the above differential equation is 
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xy

xy

dx

dy

2

22 
  

This last equation is the desired DE free of parameters representing the given family.  

 

Example.   

Let us consider the example of the following two families of curves 

                                    







222

           

Cyx

mxy

 

The first family describes all the straight lines passing through the origin while the second 

family describes all the circles centered at the origin 

If we draw the two families together on the same graph we get 

 

Clearly whenever one line intersects one circle, the tangent line to the circle (at the point 

of intersection) and the line are perpendicular i.e. orthogonal to each other. We say that 

the two families of curves are orthogonal at the point of intersection. 
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Orthogonal curves:  

 Any two curves 1C  and 2C  are said to be orthogonal if their tangent lines 1T  and 2T  at 

their point of intersection are perpendicular. This means that slopes are negative 

reciprocals of each other, except when 1T  and 2T  are parallel to the coordinate axes. 

 

 

Orthogonal Trajectories (OT): 

When all curves of a family 0  : 11  )G(x, y, c  orthogonally intersect all curves of 

another family 0),,(  : 22  cyxH  then each curve of the families is said to be 

orthogonal trajectory of the other.  

 

 

 

Example:  

As we can see from the previous figure that the family of straight lines mxy     and the 

family of circles
222 Cyx   are orthogonal trajectories.   

Orthogonal trajectories occur naturally in many areas of physics, fluid dynamics, in the 

study of electricity and magnetism etc. For example the lines of force are perpendicular 

to the equipotential curves i.e. curves of constant potential. 

Method of finding Orthogonal Trajectory:  

Consider a family of curves  .  Assume that an associated DE may be found, which is 

given by: 

                                           ),( yxf
dx

dy
  

Since 
dx

dy
 gives slope of the tangent to a curve of the family   through ),( yx . 

Therefore, the slope of the line orthogonal to this tangent is 
),(

1

yxf
 . So that the 

slope of the line that is tangent to the orthogonal curve through ),( yx is given by 

),(

1

yxf
 . In other words, the family of orthogonal curves are solutions to the  

differential equation  

                                          
),(

1

yxfdx

dy
  

The steps can be summarized as follows: 

Summary: 
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In order to find Orthogonal Trajectories of a family of curves  we perform the 

following steps:  

Step 1. Consider a family of curves  and find the associated differential equation.  

Step 2.  Rewrite this differential equation in the explicit form  

                                 ),( yxf
dx

dy
  

Step 3.  Write down the differential equation associated to the orthogonal family  

                  
),(

1

yxfdx

dy
  

Step 4.  Solve the new equation. The solutions are exactly the family of orthogonal 

curves.  

Step 5.  A specific curve from the orthogonal family may be required, something like an 

IVP.  

 

Example 1  

Find the orthogonal Trajectory to the family of circles  

          
222 Cyx   

Solution: 

The given equation represents a family of concentric circles centered at the origin. 

Step 1. We differentiate w.r.t. ‘ x ’ to find the DE satisfied by the circles. 

                                         022  x
dx

dy
y  

Step 2. We rewrite this equation in the explicit form  

                                          y

x

dx

dy


 

Step 3. Next we write down the  DE for the orthogonal family  

         x

y

yxdx

dy





)/(

1
 

Step 4.This is a linear as well as a separable DE. Using the technique of linear  

    equation, we find the integrating factor  

   
x

exu
dx

x
1

)(
  

1







 

    which gives the solution 

   mxuy )( .   

   or  
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                                mx
xu

m
y 

)(
 

   Which represent a family of straight lines through origin.  Hence the family of  

  straight lines mxy   and the family of circles 
222 Cyx  are Orthogonal  

  Trajectories.  

 

 

 

 

 

 

 

 

Step 5. A geometrical view of these Orthogonal Trajectories is: 
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Example 2   

Find the Orthogonal Trajectory to the family of circles  

    xCyx   222   

Solution:  

1. We differentiate the given equation to find the DE satisfied by the circles. 

                           
x

yx
CCx

dx

dy
y

2
       ,

22 
  

2. The explicit differential equation associated to the family of circles is  

         
xy

xy

dx

dy

2

22 
  

3. Hence the differential equation for the orthogonal family is  

         22

2

yx

xy

dx

dy


  

4. This DE is a homogeneous, to solve this equation we substitute xyv /      

     or  equivalently   vxy  .        Then we have   

                          v
dx

dv
x

dx

dy
  and   222 1

22

v

v

yx

xy





 

   Therefore the homogeneous differential equation in step 3 becomes  

     21

2

v

v
v

dx

dv
x


  

   Algebraic manipulations reduce this equation to the separable form:  

              

















2

3

1

1

v

vv

xdx

dv
 

   The constant solutions are given by  

                      0)1( 0 23  vv  vv  

   The only constant solution is 0v .   

 

To find the non-constant solutions we separate the variables  

        
dx

x
dv

vv

v 11
3

2




  

 

 

 

 

Integrate  



10-Applications of First Order Differential Equations   VU                                                                                                           

 

 

 

85  
© Copyright Virtual University of Pakistan 

 

                           










xd

x
vd

vv

v
 

1
 

1
3

2

 

Resolving into partial fractions the integrand on LHS, we obtain 

       22

2

3

2

1

21

)1(

11

v

v

vvv

v

vv

v












 

 Hence we have  

                 ]1ln[||ln  
1

21
 

1 2

23

2
























vvvd

v

v

v
vd

vv

v
 

Hence the solution of the separable equation becomes 

         Cxvv ln||ln]1ln[||ln 2   

which is equivalent to  

                                          
x C

v

v


12   

where 0C .  Hence all the solutions are 

                       












Cx
v

v
         v

      
1

0     

2
  

We go back to y  to get 0y  and C
xy

y


 22  which is equivalent to  

                        








myyx

y

   

0               

22  

5. Which is x-axis and a family of circles centered on y -axis.  A geometrical   

     view of both the families is shown in the next slide.  

 

 

 

 

  



10-Applications of First Order Differential Equations   VU                                                                                                           

 

 

 

86  
© Copyright Virtual University of Pakistan 

 

 

 

 

 

Population Dynamics 

 

Some natural questions related to population problems are the following:  

 

 What will the population of a certain country after e.g. ten years?  

 How are we protecting the resources from extinction?  

 

The easiest population dynamics model is the exponential model.  This model is based 

on the assumption: 

 

The rate of change of the population is proportional to the existing population. 

  

If )(tP  measures the population of a species at any time t then because of the above 

mentioned assumption we can write 
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                                                         kP
dt

dP
  

 

where the rate k  is constant of proportionality.  Clearly the above equation is linear as 

well as separable. To solve this equation we multiply the equation with the integrating 

factor kte  to obtain 

 

                                                   0 




  kteP

dt

d
 

 

Integrating both sides we obtain 

 

                                       CkteP       or    
kteCP     

 

If P0 is the initial population then 0)0( PP  . So that 0PC   and obtain  

 

                                                  
ktePtP   )( 0  

 

Clearly, we must have 0k  for growth and 0k  for the decay.  

Illustration 

 

Example:  

The population of a certain community is known to increase at a rate proportional to the 

number of people present at any time. The population has doubled in 5 years, how long 

would it take to triple?. If it is known that the population of the community is 10,000  

after 3 years. What was the initial population? What will be the population in 30 years?  

 

Solution: 

  

Suppose that 0P  is initial population of the community and )(tP  the population at any 

time t then the population growth is governed by the differential equation 

                                             kP
dt

dP
  

As we know solution of the differential equation is given by 

    
ktePtP   )( 0  

Since 02)5( PP  . Therefore, from the last equation we have 

                              255  2 00  kekePP  
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This means that  

                    69315.02ln5 k    or      13863.0
5

69315.0
k  

Therefore, the solution of the equation becomes 

                            
tePtP  13863.0  )( 0  

If 1t is the time taken for the population to triple then  

                            3
1386.01386.0

  3 11
00 

t
e

t
ePP  

                years 89265.7
1386.0

3ln
1 t  

 

Now using the information 000,10)3( P , we obtain from the solution that 

                          41589.0

000,10)3)( 13863.0(
  000,10 00

e
PeP   

Therefore, the initial population of the community was 

                                     65980 P  

Hence solution of the model is 

             
tetP  13863.0 6598 )(   

So that the population in 30 years is given by 

                                
1589.46598

) 13863.0)(30(
6598 )30( eeP   

or       0011.64659830 P  

or     42227930 P  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11-Radioactive Decay  VU                                                                                                           

 

 

 

89  
© Copyright Virtual University of Pakistan 

 

Lecture 11 Radioactive Decay 

 

 

In physics a radioactive substance disintegrates or transmutes into the atoms of another 

element. Many radioactive materials disintegrate at a rate proportional to the amount 

present. Therefore, if )(tA  is the amount of a radioactive substance present at time t , 

then the rate of change of )(tA with respect to time t  is given by 

    kA
dt

dA
  

where k is a constant of proportionality. Let the initial amount of the material be 0A  then 

0)0( AA  . As discussed in the population growth model the solution of the differential 

equation is 

    
kteAtA 0)(   

The constant k can be determined using half-life of the radioactive material.  

 

The half-life of a radioactive substance is the time it takes for one-half of the atoms in an 

initial amount 0A  to disintegrate or transmute into atoms of another element. The half-

life measures stability of a radioactive substance. The longer the half-life of a substance, 

the more stable it is. If T  denotes the half-life then 

                                                  
2

)( 0A
TA   

Therefore, using this condition and the solution of the model we obtain 

        
kteA

A
0

0

2
  

So that       2 lnkT  

Therefore, if we know T , we can get k  and vice-versa. The half-life of some important 

radioactive materials is given in many textbooks of Physics and Chemistry. For example 

the half-life of 14C  is 5568  30 years.  

 

Example 1: 

 A radioactive isotope has a half-life of 16 days. We have 30 g at the end of 30 days. 

How much radioisotope was initially present?  

Solution:   Let )(tA  be the amount present at time t  and 0A  the initial amount of the 

isotope.   Then we have to solve the initial value problem. 

    30)30(     ,  AkA
dt

dA
  

We know that the solution of the IVP is given by 

                                            
kteAtA 0)(   
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If T  the half-life then the constant is given k  by   

                       
16

2ln2ln
or         2 ln 

T
kkT   

Now using the condition 30)30( A , we have 

                  
keA 3030 0   

So that the initial amount is given by 

                       g 04.11016

2ln30

3030300  ekeA   

 

Example 2: 

 

A breeder reactor converts the relatively stable uranium 238 into the isotope plutonium 

239. After 15 years it is determined that 0.043% of the initial amount 0A  of the 

plutonium has disintegrated. Find the half-life of this isotope if the rate of disintegration 

is proportional to the amount remaining. 

Solution: 

Let )(tA  denotes the amount remaining at any time t , then we need to find solution to 

the initial value problem  

    0)0(      , AAkA
dt

dA
  

which we know is given by 

         
kteAtA 0)(   

If 0.043% disintegration of the atoms of A0 means that 99.957% of the substance  

remains. Further %957.99  of 0A  equals 0)99957.0( A . So that  

                     0 99957.0      )15( AA   

So that                        

                                             00  99957.0     15ke AA   

               )99957.0ln(15 k  

Or             00002867.0
15

)99957.0ln(
k  

Hence                          
teAtA   00002867.0)( 0

  

If T denotes the half-life then 
2

)( 0A
TA  . Thus     
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             TeTeA
A   00002867.0

2

1
or          00002867.0

2
0

0 
 

                                2ln
2

1
lnT  00002867.0 








  

years  180,24
  00002867.0

 2ln 
T    

  

Newton's Law of Cooling  

From experimental observations it is known that the temperature T (t) of an object  

changes at a rate proportional to the difference between the temperature in the body and 

the temperature Tm of the surrounding environment. This is what is known as Newton's 

law of cooling.  

If initial temperature of the cooling body is 0T  then we obtain the initial value problem    

                                           0)0(   , TTTTk
dt

dT
m   

 where k is constant of proportionality. The differential equation in the problem is linear  

as well as separable.  

Separating the variables and integrating we obtain 

                                          





dtk

TT

dT

m

  

This means that  

    CktTT m  ||ln  

    
CkteTT m

  

                
C

m eCeCTtT kt  11        where)(  

Now applying the initial condition 
0)0( TT  , we see that mTTC  01 . Thus the 

solution of the initial value problem is given by  

                 )()( 0

kteTTTtT mm   

Hence, If temperatures at times 1t  and 2t are known then we have                   

                   
2

02
1

01 )(  )(  ,  )(  )(
ktkt

eTTTtTeTTTtT mmmm   

So that we can write 

    

)
21

(

)(

)(

2

1
ttk

e
TtT

TtT

m

m






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This equation provides the value of k  if the interval of time ‘
21

tt  ’ is known and vice-

versa.  

Example 3:   

 

Suppose that a dead body was discovered at midnight in a room when its temperature 

was 80 F. The temperature of the room is kept constant at 60 F . Two hours later the  

temperature of the body dropped to 75 F  . Find the time of death.  

Solution:  
Assume that the dead person was not sick, then  

                FTFT o

m

o 60  and T 6.98)0( 0   

Therefore, we have to solve the initial value problem 

                                  6.98)0(   , 60  TTk
dt

dT
   

We know that the solution of the initial value problem is 

              )()( 0

kteTTTtT mm   

So that                         

)
21

(

)(

)(

2

1
ttk

e
TtT

TtT

m

m






 

The observed temperatures of the cooling object, i.e. the dead body, are  

                                 FtTFtT oo 75)(    and    80)( 21    

Substituting these values we obtain 

        hours   2
21

   as  2

6075

6080





ttke  

So        1438.0
3

4
ln

2

1
k  

Now suppose that 1t  and 2t denote the times of death and discovery of the dead body 

then 

      FtTFTtT oo 80)(    and    6.98)0()( 21   

For the time of death, we need to determine the interval dttt  21 . Now 

                
d

m

m kt
e

ttk
e

TtT

TtT














6080

606.98
     

)
21

(

)(

)(

2

1
 

or    573.4
20

6.38
ln

1


k
td  

Hence the time of death is 7:42 PM. 

 

Carbon Dating  
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 The isotope  C–14  is produced in the atmosphere by the action of cosmic 

radiation on nitrogen.  

 

 The ratio of C-14 to ordinary carbon in the atmosphere appears to be constant.  

 

 The proportionate amount of the isotope in all living organisms is same as that in 

the atmosphere.  

 

 When an organism dies, the absorption of 14C  by breathing or eating ceases. 

 

 Thus comparison of the proportionate amount of 14C  present, say, in a fossil 

with constant ratio found in the atmosphere provides a reasonable estimate of its 

age.  

 

 The method has been used to date wooden furniture in Egyptian tombs. 

 

 Since the method is based on the knowledge of half-life of the radio active 14C  

(5600 years approximately), the initial value problem discussed in the 

radioactivity model governs this analysis. 

 

Example: 

 

A fossilized bone is found to contain 1000/1 of the original amount of C–14. Determine 

the age of the fissile.  

Solution: 

 

Let A(t) be the amount present at any time t and A0 the original amount of C–14. 

Therefore, the process is governed by the initial value problem. 

      0)0(     , AAkA
dt

dA


         
  

We know that the solution of the problem is 

        

kteAtA 0)( 
 

Since the half life of the carbon isotope is 5600 years. Therefore, 

                              2
)5600( 0A

A 
 

 

So that              
 2ln5600or       5600

2
0

0  kkeA
A

 

        

   
00012378.0      k

 
Hence 
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t
eAtA

)00012378.0(
)( 0


  

 

 

 

 

If t denotes the time when fossilized bone was found then 
1000

)( 0A
tA     

  1000ln 00012378.0     
)00012378.0(

1000
0

0 


 t
t

eA
A

 

Therefore   

 
years 800,55

00012378.0

1000ln
t
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Lecture 12 Application of Non Linear Equations 

 
  
As we know that the solution of the exponential model for the population growth is 

      

ktePtP   )( 0  

0P  being the initial population. From this solution we conclude that                                         

(a) If  0k  the population grows and expand to infinity i.e. 



t

tP )(lim   

(b) If 0k  the population will shrink to approach 0, which means extinction.  

 

Note that: 

(1) The prediction in the first case ( 0k ) differs substantially from what is actually 

observed, population growth is eventually limited by some factor! 

(2) Detrimental effects on the environment such as pollution and excessive and 

competitive demands for food and fuel etc. can have inhibitive effects on the population 

growth. 

  

Logistic equation: 

 

Another model was proposed to remedy this flaw in the exponential model. This is called 

the logistic model (also called Verhulst-Pearl model).  

 

Suppose that 0a  is constant average rate of birth and that the death rate is proportional 

to the population )(tP  at any time t . Thus if 
dt

dP

P

1
 is the rate of growth per individual 

then   

            ) (or        
1

bPaP
dt

dP
bPa

dt

dP

P
  

where b  is constant of proportionality. The term 0  ,2  bbP  can be interpreted as 

inhibition term. When 0b , the equation reduces to the one in exponential model.  

Solution to the logistic equation is also very important in ecological, sociological and 

even in managerial sciences. 

 

Solution of the Logistic equation: 

 

The logistic equation     

) ( bPaP
dt

dP
  

can be easily identified as a nonlinear equation that is separable. The constant solutions 

of the equation are given by  

                                           0  ) ( bPaP  

   
b

a
P     and    0P      
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For non-constant solutions we separate the variables  

    
 

dt
bPaP

dP



  

Resolving into partial fractions we have 

            dtdP
bPa

ab

P

a













//1
 

Integrating   CtbPa
a

P
a

 ||ln
1

||ln
1

   

            aCat
bPa

P



ln  

or    
aCeCateC

bPa

P



11       where  

Easy algebraic manipulations give  

      atebC

aC

atebC

ateaC
tP







1

1

1

1

1
)(  

Here 1C is an arbitrary constant. If we are given the initial condition 0)0( PP  , 
b

a
P 0  

we obtain 
0

0

1
bPa

P
C


 . Substituting this value in the last equation and simplifying, we 

obtain   

                atebPabP

aP
tP




)(
)(

00

0
    

Clearly      
b

a

bP

aP
tP

t



0

0)(lim ,  limited growth  

 Note that 
b

a
P   is a singular solution of the logistic equation.  

 

Special Cases of Logistic Equation: 

 

1. Epidemic Spread 

 

Suppose that one person infected from a contagious disease is introduced in a fixed 

population of n people.  

The natural assumption is that the rate 
dt

dx
of spread of disease is proportional to the 

number )(tx  of the infected people and number )(ty of people not infected people.  

Then  
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    kxy
dt

dx
  

Since           1 nyx  

Therefore, we have the following initial value problem   

     

                             1)0(     ),1(  xxnkx
dt

dx
 

 

 The last equation is a special case of the logistic equation and has also been used for 

the spread of information and the impact of advertising in centers of population.  

 

2. A Modification of LE: 

 

A modification of the nonlinear logistic differential equation is the following 

 

    ) ln( PbaP
dt

dP
  

 

has been used in the studies of solid tumors, in actuarial predictions, and in the growth 

of revenue from the sale of a commercial product in addition to growth or decline of 

population.  

 

Example:  

 

Suppose a student carrying a flu virus returns to an isolated college campus of 1000  

students. If it is assumed that the rate at which the virus spreads is proportional not only 

to the number x of infected students but also to the number of students not infected,  

determine the number of infected students after 6 days if it is further observed that after 4  

days  x(4) =50.  

Solution 

Assume that no one leaves the campus throughout the duration of the disease. We must 

solve the initial-value problem 

 1)0(     ),1000(  xxkx
dt

dx
  . 

 

We identify 

                                       kb    and   1000  ka    

Since the solution of logistic equation is 

                                      atebPabP

aP
tP




)(
)(

00

0
 

Therefore we have 
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                     ktektkek

k
tx

10009991

1000

1000999

1000
)(





 .   

Now, using x(4)= 50, we determine k  

 ke 40009991

1000
50


  

We find .0009906.0
999

19
ln

4000

1



k  

Thus     

                                               
te

tx
 9906.09991

1000
)(


  

Finally                                   

                                         students  276
9436.59991

1000
)6( 




e
x   . 

 

 

Chemical reactions:  

 

In a first order chemical reaction, the molecules of a substance A decompose into smaller  

molecules.  This decomposition takes place at a rate proportional to the amount of the first 

substance that has not undergone conversion. The disintegration of a radioactive 

substance is an example of the first order reaction. If X  is the remaining amount of the 

substance A  at any time t then 

                                          Xk
dt

dX
    

0k  because X  is decreasing. 

 

In a 2
nd

 order reaction two chemicals A  and B  react to form another chemical C  at a 

rate proportional to the product of the remaining concentrations of the two chemicals.  

 

If X  denotes the amount of the chemical C  that has formed at time t . Then the 

instantaneous amounts of the first two chemicals A  and B  not converted to the 

chemical C  are X  and X , respectively.  Hence the rate of formation of 

chemical C  is given by 

 

                                     Xk
dt

dX
   X-   
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where k  is constant of proportionality.  

 

 

 

 

Example:  

 

A compound C is formed when two chemicals A and B are combined. The resulting 

reaction between the two chemicals is such that for each gram of A , 4 grams of B  are 

used. It is observed that 30 grams of the compound C  are formed in 10 minutes. 

Determine the amount of C  at any time if the rate of   reaction is proportional to the 

amounts of A  and B remaining and if initially there are 50 grams of A  and 32 grams 

of B . How much of the compound C  is present at 15 minutes? Interpret the solution as 

t  

 

Solution: 

 

If )(tX  denote the number of grams of chemical C present at any time t . Then  

                                    0)0( X  and 30)10( X  

Suppose that there are 2 grams of the compound C and we have used a  grams of A  

and b  grams of B  then 

                                2ba  and  ab 4  

 Solving the two equations we have   

                          )5/1( 2
5

2
a    and )5/4( 2

5

8
b   

 In general, if there were for X grams of C  then we must have 

                           
5

    
X

a       and        Xb
5

4
        

Therefore the amounts of A  and B  remaining at any time t are then 

                         X
X

5

4
    32   and  

5
    50      

respectively . 

 

Therefore,  the rate at which chemical C  is formed satisfies the differential equation 

 
















 X

X

dt

dX

5

4
32

5
50     

or 
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                                    25/4   ),40)(250(  kXXk
dt

dX
 

We now solve this differential equation. 

By separation of variables and partial fraction, we can write 

 
  

kdt
XX

dX


 40250
 

                    kdtdX
X

dX
X








40

210/1

250

210/1
 

      1210
40

250
ln ckt

X

X





 

        
1

22

210

40

250 c
ecWherektec

X

X





 

When 0t , 0X , so it follows at this point that 4/252 c . Using 30X  at 

10t , we find 

   1258.0
25

88
ln

10

1
210 k  

With this information we solve for X : 

                         


















te

te
tX

 1258.0425

 1258.01
 1000)(  

It is clear that as 
te  1258.0 0  as t . Therefore 40X  as t . This 

fact can also be verified from the following table that 40X  as t . 

t 10 15 20 25 30 35 

X 30 34.78 37.25 38.54 39.22 39.59 

 

This means that there are 40 grams of compound C  formed, leaving  

 

       A chemical of grams   42)40(
5

1
50   
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and        B  chemical of grams    0)40(
5

4
32   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Miscellaneous Applications 

 

 The velocity v  of a falling mass m , subjected to air resistance proportional to 

instantaneous velocity, is given by the differential equation 

kvmg
dx

dv
m   

Here 0k  is constant of proportionality.  

 

 The rate at which a drug disseminates into bloodstream is governed by the 

differential equation 

  

                                            BxA
dt

dx
  

Here BA   ,  are positive constants and )(tx  describes the concentration of drug in 

the bloodstream at any time .t   

 The rate of memorization of a subject is given by 

                    

                            

 

 

AkAMk
dt

dA
21 )(   
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Here 0  ,0 21  kk  and )(tA  is the amount of material memorized in time ,t  

M  is the total amount to be memorized and AM   is the amount remaining to 

be memorized. 
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Lecture 13 Higher Order Linear Differential Equations 

 

 

Preliminary theory 

 A differential equation of the form 

)()()()()( 011

1

1 xgyxa
dx

dy
xa

dx

yd
xa

dx

yd
xa

n

n

nn

n

n 




   

or )()()()()( 01
)1(

1
)( xgyxayxayxayxa n

n
n

n  
   

where )(),(,),(),( 10 xgxaxaxa n are functions of x  and 0)( xan , is 

called a linear differential equation with variable coefficients. 

 However, we shall first study the differential equations with constant coefficients 

i.e. equations of the type 

)(011

1

1 xgya
dx

dy
a

dx

yd
a

dx

yd
a

n

n

nn

n

n 




   

where naaa ,,, 10  are real constants. This equation is non-homogeneous 

differential equation and 

 If 0)( xg  then the differential equation becomes 

0011

1

1 




 ya
dx

dy
a

dx

yd
a

dx

yd
a

n

n

nn

n

n   

 which is known as the associated homogeneous differential equation. 

Initial -Value Problem 

For a linear nth-order differential equation, the problem: 

Solve: )()()()()( 011

1

1 xgyxa
dx

dy
xa

dx

yd
xa

dx

yd
xa

n

n

nn

n

n 




   

Subject to: ,)( 00 yxy   
/ / 1 1

0 0 0 0( ) ,... ( )n ny x y y x y      

1

0

/

00 ,,, nyyy   being arbitrary constants, is called an initial-value problem (IVP).  

The specified values ,)( 00 yxy 
1

00

1/

00

/ )(,,)(
 

nn yxyyxy  are called initial-

conditions. 

For 2n  the initial-value problem reduces to 

 Solve:  )()()()( 012

2

2 xgyxa
dx

dy
xa

dx

yd
xa    

Subject to: ,)( 00 yxy  …,  
/

00

/ )( yxy   

Solution of IVP 

A function satisfying the differential equation on I whose graph passes through ),( 00 yx  

such that the slope of the curve at the point is the number 
/

0y  is called solution of the 

initial value problem. 



13-Higher Order Linear Differential Equations    VU                                                                                                           

 

 

 

104  
© Copyright Virtual University of Pakistan 

 

Theorem: Existence and Uniqueness of Solutions 

 

Let )(),(),...,(),( 011 xaxaxaxa nn  and )(xg  be continuous on an interval I and let

Ixxan     ,0)( . If Ixx  0 ,  then a solution )(xy of the initial-value problem exist 

on I  and is unique. 

 

Example 1 

 

Consider the function   xeey xx 33 22  
 

 This is a solution to the following initial value problem 

 ,124// xyy     ,4)0( y 1)0(/ y  

Since 
xx ee

dx

yd 22

2

2

412   

and  xxeeeey
dx

yd xxxx 12124124124 2222

2

2

   

Further 4013)0( y  and 1326)0( y   

Hence xeey xx 33 22  
 

 is a solution of the initial value problem.  

 

We observe that  

 

 The equation is linear differential equation. 

 The coefficients being constant are continuous.  

 The function xxg 12)(  being polynomial is continuous. 

 The leading coefficient 01)(2 xa  for all values of .x  

Hence the function xeey xx 33 22    is the unique solution. 

 

Example 2 

Consider the initial-value problem  

 

,0753 //////  yyyy     

,0)1( y  ,0)1(/ y  0)1(// y  

Clearly the problem possesses the trivial solution 0y .  

Since 

 The equation is homogeneous linear differential equation.  

 The coefficients of the equation are constants.  

 Being constant the coefficient are continuous. 

 The leading coefficient 033 a . 

Hence 0y  is the only solution of the initial value problem. 
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Note: If 0na ? 

 

If 0)( xan  in the differential equation 

 

)()()()()( 011

1

1 xgyxa
dx

dy
xa

dx

yd
xa

dx

yd
xa

n

n

nn

n

n 




   

 

for some Ix  then  

 

 Solution of initial-value problem may not be unique. 

 Solution of initial-value problem may not even exist. 

 

Example 4 

Consider the function 

   32  xcxy  

and the initial-value problem 

622 ///2  yxyyx   

,3)0( y  1)0(/ y   

Then    12  cxy  and  cy 2  

Therefore )3(2)12(2)2(22 22///2  xcxcxxcxyxyyx  

        
.6

622242 222



 xcxxcxcx
 

Also  330)0(     3)0(  cy  

and  11)0(2      1)0(/  cy  

So that for any choice of c , the function '' y  satisfies the differential equation and the 

initial conditions. Hence the solution of the initial value problem is not unique. 

  

Note that 

 

 The equation is linear differential equation. 

 The coefficients being polynomials are continuous everywhere. 

 The function )(xg being constant is constant everywhere. 

 The leading coefficient 0)( 2
2  xxa  at ),(0 x . 

 

Hence 0)(2 xa  brought non-uniqueness in the solution 
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Boundary-value problem (BVP) 

 

For a 2
nd

 order linear differential equation, the problem    

 Solve:  )()()()( 012

2

2 xgyxa
dx

dy
xa

dx

yd
xa   

Subject to: ,)( 0yay   1)( yby    

is called a boundary-value problem. The specified values ,)( 0yay   and 1)( yby   are 

called boundary conditions.  

 

Solution of BVP 

 

A solution of the boundary value problem is a function satisfying the differential equation 

on some interval I , containing a  and b , whose graph passes through two points ),( 0ya  

and ),( 1yb .   

 

Example 5 

Consider the function 

363 2  xxy  

We can prove that this function is a solution of the boundary-value problem 

 ,622 ///2  yxyyx   

,0)1( y  3)2( y  

Since  6  ,66
2

2


dx

yd
x

dx

dy
 

Therefore 661261212622 222

2

2
2  xxxxxy

dx

dy
x

dx

yd
x  

Also  331212)2(    ,0363)1(  yy  

Therefore, the function '' y satisfies both the differential equation and the boundary 

conditions. Hence y is a solution of the boundary value problem. 

 . 

Possible Boundary Conditions 

For a 2
nd

 order linear non-homogeneous differential equation 

)()()()( 012

2

2 xgyxa
dx

dy
xa

dx

yd
xa   

all the possible pairs of boundary conditions are 

,)( 0yay    ,)( 1yby    

  ,)( /

0

/ yay    ,)( 1yby   

  ,)( 0yay    ,)( 1
// yby   

  ,)( /

0

/ yay    /
1

/ )( yby   

where 1

/

00 ,, yyy  and /

1y  denote the arbitrary constants.  

In General 
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All the four pairs of conditions mentioned above are just special cases of the general 

boundary conditions 

2
/

22

1
/

11

)()(

)()(









byby

ayay
 

where     1,0,,, 2121   

Note that 

A boundary value problem may have 

 

 Several solutions. 

 A unique solution, or 

 No solution at all. 

 

Example 1 

Consider the function  

xcxcy 4sin4cos 21   

and the boundary value problem 

   0)2/(    ,0)0(     ,016//  yyyy   

Then  

016

16

)4sin4cos(16

4cos44sin4

//

//

21

//

21

/









yy

yy

xcxcy

xcxcy

  

Therefore, the function  

xcxcy 4sin4cos 21   

satisfies the differential equation  

016//  yy . 

Now  apply the boundary conditions 

Applying  0)0( y    

We obtain 

  
0

0sin0cos0

1

21



c

cc
 

So that  

xcy 4sin2 .  

But when we apply the 2
nd

 condition 0)2/( y , we have 

   2sin0 2c  

Since 02sin  , the condition is satisfied for any choice of 2c , solution of the problem is 

the one-parameter family of functions 

xcy 4sin2  

 Hence, there are an infinite number of solutions of the boundary value problem. 

 

Example 2 
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Solve the boundary value problem 

 016//  yy  

,0)0( y  ,0
8









y  

Solution: 

 

As verified in the previous example that the function 

xcxcy 4sin4cos 21   

satisfies the differential equation 

016//  yy  

We now apply the boundary conditions 

  000)0( 1  cy  

and  2000)8/( cy   

So that  21 0 cc   

Hence 

0y    

is the only solution of the boundary-value problem.  

 

 

Example 3 

 

Solve the differential equation  

 016//  yy  

subject to the boundary conditions 

 1)2/(   ,0)0(  yy  

Solution: 

 

As verified in an earlier example that the function 

xcxcy 4sin4cos 21   

satisfies the differential equation 

016//  yy   

We now apply the boundary conditions 

 000)0( 1  cy  

Therefore 01 c  

So that xcy 4sin2  

However 1   2sin   1)2/( 2   cy  

or 010.1 2  c  

This is a clear contradiction. Therefore, the boundary value problem has no solution. 

 

Definition: Linear Dependence 
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A set of functions 

 

  )(,),(),( 21 xfxfxf n  

is said to be linearly dependent on an interval I if    constants nccc ,,, 21   not all zero, 

such that 

Ixxfcxfcxfc nn        ,0)(.)()( 2211   

Definition: Linear Independence 

 

A set of functions  

  )(,),(),( 21 xfxfxf n  

 is said to be linearly independent on an interval I if 

 Ixxfcxfcxfc nn         ,0)()()( 2211  , 

 only when  

 .021  nccc   

Case of two functions: 

 

If 2n  then the set of functions becomes 

  )(),( 21 xfxf  

If we suppose that 

 0)()( 2211  xfcxfc  

Also that the functions are linearly dependent on an interval I  then either 01 c  or 

02 c .  

Let us assume that 01 c , then 

 )()( 2

1

2
1 xf

c

c
xf  ; 

Hence  )(1 xf  is the constant multiple of  )(2 xf . 

Conversely, if we suppose 

       )( c )( 221 xfxf    

Then 0)()()1( 221  xfcxf , Ix  

So that the functions are linearly dependent because 11 c . 

 

Hence, we conclude that: 
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 Any two functions )( and )( 21 xfxf are linearly dependent on an interval I if and 

only if one is the constant multiple of the other. 

 Any two functions are linearly independent when neither is a constant multiple of 

the other on an interval I. 

 In general a set of n  functions  )(,),(),( 21 xfxfxf n  is linearly dependent if at 

least one of them can be expressed as a linear combination of the remaining. 

Example 1 

The functions  

     )  ,(          ,2sin)(1  xxxf   

 )  ,(    ,cossin)(2  xxxxf   

If we choose 
2

1
1 c  and 12 c  then 

   0 cos  sin     cos  sin2
2

1
cossin2sin 21  xxxxxxcxc  

 Hence, the two functions )(1 xf  and )(2 xf  are linearly dependent. 

Example 3 

Consider the functions  

xxf 2

1 cos)(  , )2/,2/(       ,sin)( 2
2  xxxf ,  

xxf 2

3 sec)(  , )2/,2/(       ,tan)( 2
4  xxxf   

If we choose 1c ,1c ,1 4321  cc , then 

 

0011

tantan1sincos

tansecsincos

)()()()(   

2222

2
4

2
3

2
2

2
1

44332211









xxxx

xcxcxcxc

xfcxfcxfcxfc

 

Therefore, the given functions are linearly dependent. 

Note that  

The function )(3 xf  can be written as a linear combination of other three functions 

 xfxf 21 ),(  and )(4 xf  because xxxx 2222 tansincossec  . 

 

Example 3 

Consider the functions 
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),(        ,)(

),(          ,)(

),(      ,1)(

2
3

2

1







xxxf

xxxf

xxxf

 

Then 

 0)()()( 332211  xfcxfcxfc  

means that 

 0            )1( 2
321  xcxcxc  

or 0            )( 2
3211  xcxccc  

Equating coefficients of x  and 
2x  constant terms we obtain 

31 0 cc   

021  cc   

Therefore 0321  ccc  

Hence, the three functions )(),( 21 xfxf  and )(3 xf  are linearly independent. 

 

Definition: Wronskian 

Suppose that the function )(,),( ),( 21 xfxfxf n  possesses at least 1n  derivatives then 

the determinant  

11
2

1
1

//
2

/
1

21

        

   

    

 n
n

nn

n

n

fff

fff

fff










 

is called Wronskian of the functions )(,),( ),( 21 xfxfxf n and is denoted by 

 )(,),(),( 111 xfxfxfW  . 

Theorem: Criterion for Linearly Independent Functions 

Suppose the functions )(,),( ),( 21 xfxfxf n  possess at least n-1 derivatives on an interval 

I . If  

 0))(,),( ),(( 21 xfxfxfW n   

for at least one point in I , then functions )(,),( ),( 21 xfxfxf n  are linearly independent 

on the interval I . 

Note that   

This is only a sufficient condition for linear independence of a set of functions. 

 

In other words 

If )(,),( ),( 21 xfxfxf n  possesses at least 1n  derivatives on an interval and are 

linearly dependent on I , then  
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 IxxfxfxfW n       ,0))(,),( ),(( 21   

However, the converse is not true. i.e. a Vanishing Wronskian does not guarantee linear 

dependence of functions. 

 

Example 1 

The functions 

 
 

  xxf

xxf

2cos1

 sin

2

2
1




  

are linearly dependent because 

 )2 cos1(
2

1
sin 2 xx   

We observe that for all ),( x  

     
xxx

xx
xfxfW

2sin2cossin2

2cos1sin
,

2

21


  

  
xxx

xxxx

2coscossin2   

cossin22sinsin2 2




 

  

       0

]1cos[sin 2sin

]sincos1sin2[ 2sin

]2cos1sin2[ 2sin

22

222

2









xxx

xxxx

xxx

 

Example 2 

 

Consider the functions 

      212
1

1      , , 2 mmexf
x

exf
xmm

  

The functions are linearly independent because 

 0)()( 2211  xfcxfc  

if and only if  21 0 cc   as  21 mm   

 

Now for all Rx  
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 

   

0                     

                      

,

21

21

21

21

12

21







 xmm

xmxm

xmxm
xmxm

emm

emem

ee
eeW

 

Thus 2 1  and ff are linearly independent of any interval on x-axis. 

 

 

Example 3 

If   and  are real numbers, 0 , then the functions 

 xeyxey xx   sin and cos 21    

are linearly independent on any interval of the x-axis because 

 

 

xexexexe

xexe

xexeW

xxxx

xx

xx













sincoscossin

sincos

sin,cos




 

   .0sincos 2222  xx exxe    

Example 4 

The functions  

       xxx exxfxexfexf 2

321  and  , ,    

are linearly independent on any interval of the x-axis because for all Rx , we have 

 

 

02                           

242

2,,

3

2

2

2

2







x

xxxxxx

xxxxx

xxx

xxx

e

exeexexee

xeexexee

exxee

exxeeW

 

  

 

 

 

 

 

   Exercise 

 

1. Given that    
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xx ececy  21  

is a two-parameter family of solutions of  the differential equation 

0 yy  

on   , , find a member of the family satisfying the boundary conditions  

    11   ,00  yy . 

2. Given that    

xcxccy sincos 321   

is a three-parameter family of solutions of the differential equation 

0 yy  

on the interval   , , find a member of the family satisfying the initial 

conditions       1,2  ,0   yyy . 

3. Given that    

xxcxcy ln21   

is a two-parameter family of solutions of the differential equation 

02  yyxyx on   , . Find a member of the family satisfying the initial 

conditions  

    .11  ,31  yy  

Determine whether the functions in problems 4-7 are linearly independent or 

dependent on   , . 

 

4.       2

3

2

21 34    ,    , xxxfxxfxxf   

5.       xexfxxfxf  321   ,   ,0  

6.       xxfxfxxf 2

321 cos    ,1    ,2cos   

7.       xxfexfexf xx sinh    ,    , 321     

Show by computing the Wronskian that the given functions are linearly independent 

on the indicated interval. 

8.  ,-       ;cot  ,tan xx  

9.   ,    ;4x-xx , e, ee  

10.  0,    ;ln,ln, 2 xxxxx  
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Lecture 14 Solutions of Higher Order Linear Equations 

 

 

Preliminary Theory 

 

 In order to solve an nth order non-homogeneous linear differential equation 

           xgyxa
dx

dy
xa

dx

yd
xa

dx

yd
xa

n

n

nn

n

n 




 011

1

1   

we first solve the associated homogeneous differential equation 

          0011

1

1 




 yxa
dx

dy
xa

dx

yd
xa

dx

yd
xa

n

n

nn

n

n   

 

 Therefore, we first concentrate upon the preliminary theory and the methods of 

solving the homogeneous linear differential equation. 

 

 We recall that a function )(xfy   that satisfies the associated homogeneous 

equation 

          0011

1

1 




 yxa
dx

dy
xa

dx

yd
xa

dx

yd
xa

n

n

nn

n

n   

 is called solution of the differential equation. 

       

Superposition Principle 

Suppose that nyyy ,,, 21   are solutions on an interval I  of the homogeneous linear 

differential equation 

          0011

1

1 




 yxa
dx

dy
xa

dx

yd
xa

dx

yd
xa

n

n

nn

n

n   

Then  

       ,2211 xycxycxycy nn   

nccc ,,, 21   being arbitrary constants is also a solution of the differential equation. 

Note that 

 A constant multiple  xycy 11  of a solution  xy1  of the homogeneous linear 

differential equation is also a solution of the equation. 

 The homogeneous linear differential equations always possess the trivial solution 

0y . 

 The superposition principle is a property of linear differential equations and it 

does not hold in case of non-linear differential equations. 
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Example 1 

 

The functions  

  xxx eycyey 3

3

2

21   and  ,,    

all satisfy the homogeneous differential equation 

  06116
2

2

3

3

 y
dx

dy

dx

yd

dx

yd
 

on   , . Thus 321  and , yyy  are all solutions of the differential equation 

 

Now suppose that    

  .3

3

2

21

xxx ecececy    

Then 

  .32 3
3

2
21

xxx ececec
dx

dy
  

  .94 3
3

2
212

2
xxx ececec

dx

yd
  

  .278 3
3

2
213

3
xxx ececec

dx

yd
  

Therefore 

 

   
 

     
0

606030301212

6335427 

6222486116

6116

3
3

2
21

3333
3

2222
21

2

2

3

3










xxx

xxxx

xxxxxxxx

ececec

eeeec

eeeeceeeec

y
dx

dy

dx

yd

dx

yd

 

Thus   .3

3

2

21

xxx ecececy   

is also a solution of the differential equation. 
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Example 2 

The function 

  2xy   

is a solution of the homogeneous linear equation 

  0432  yyxyx  

on  ,0 . 

Now consider 

 
2cxy   

Then  2cy    and    2  cxy  

So that  046243 2222  cxcxcxyyxyx  

Hence the function  

 2cxy   

is also a solution of the given differential equation.  

 

The Wronskian 

Suppose that 21, yy  are 2 solutions, on an interval I , of the second order homogeneous 

linear differential equation  

  0012

2

2  ya
dx

dy
a

dx

yd
a  

Then either    IxyyW          ,0, 21  

or    Ix yyW         ,0, 21    

To verify this we write the equation as  

  0
2

2

 Qy
dx

Pdy

dx

yd
 

Now   
21

21
21,

yy

yy
yyW


 2121 yyyy   

Differentiating w.r.to x , we have 

  2121 yyyy
dx

dW
  

Since 1y and 2y are solutions of the differential equation 

  0
2

2

 Qy
dx

Pdy

dx

yd
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Therefore 

  0111  QyyPy  

  0222  QyyPy  

Multiplying 1
st
 equation by 2y and 2

nd
 by 1y  the have 

  0212121  yQyyyPyy  

  0212121  yQyyPyyy  

Subtracting the two equations we have: 

      021211221  yyyyPyyyy  

or   0 PW
dx

dW
 

This is a linear 1
st
 order differential equation in W , whose solution is 

  
Pdx

ceW  

Therefore 

 If 0c  then    IxyyW       ,0, 21  

 If 0c  then    IxyyW       ,0, 21  

Hence Wronskian of 21   and  yy  is either identically zero or is never zero on I .  

In general 

If nyyy ,,, 21  are n  solutions, on an interval I , of the homogeneous nth order linear 

differential equation with constants coefficients 

 0011

1

1 




 ya
dx

dy
a

dx

yd
a

dx

yd
a

n

n

nn

n

n   

Then 

Either    IxyyyW n     ,0,,, 21   

or    IxyyyW n     ,0,,, 21    

 

 

 

 

 

Linear Independence of Solutions: 

Suppose that 
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  nyyy ,,, 21    

are n solutions, on an interval I , of the homogeneous linear nth-order differential 

equation  

         0011

1

1 




 yxa
dx

dy
xa

dx

yd
xa

dx

yd
xa

n

n

nn

n

n   

Then the set of solutions is linearly independent on I if and only if 

    0,,2,1 nyyyW   

In other words 

The solutions  

 nyyy ,,, 21   

are linearly dependent if and only if   

 

   IxyyyW n     ,0,,2,1    

Fundamental Set of Solutions 

A set 

  nyyy ,,, 21    

of n linearly independent solutions, on interval I , of the homogeneous linear nth-order 

differential equation 

         0011

1

1 




 yxa
dx

dy
xa

dx

yd
xa

dx

yd
xa

n

n

nn

n

n   

is said to be a fundamental set of  solutions on the interval I . 

Existence of a Fundamental Set 

There always exists a fundamental set of solutions for a linear nth-order homogeneous 

differential equation 

         0011

1

1 




 yxa
dx

dy
xa

dx

yd
xa

dx

yd
xa

n

n

nn

n

n   

on an interval I. 

 

 

 

 

General Solution-Homogeneous Equations 

Suppose that  

   nyyy ,,, 21   



14-Solutions of Higher Order Linear Equations     VU                                                                                                           

 

 

 

120  
© Copyright Virtual University of Pakistan 

 

is a fundamental set of solutions, on an interval I, of the homogeneous linear nth-order  

differential equation  

         0011

1

1 




 yxa
dx

dy
xa

dx

yd
xa

dx

yd
xa

n

n

nn

n

n   

Then the general solution of the equation on the interval I is defined to be 

       xycxycxycy nn 2211    

Here nccc ,,, 21   are arbitrary constants. 

Example 1 

The functions  

 xeyxey 3  and  3
21

  

are solutions of the differential equation 

   09  yy  

Since  Ix
xexe

xexexexeW 









     ,06

3333

33
3,3

 

Therefore 21  and yy  from a fundamental set of solutions on   , . Hence general 

solution of the differential equation on the   ,  is   

 
xx ececy 3

2
3

1
  

Example 2 

Consider the function xexy 353sinh4   

Then xexy 3153cosh12  ,  xexy 3453sinh36   

 yyxexy 9or              353sinh49 





  ,  

Therefore 09  yy  

Hence   xexy 353sinh4   

is a particular solution of differential equation. 

   09  yy  

 

 

The general solution of the differential equation is 

  xecxecy 33
21

  

Choosing  7,2 21  cc  
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We obtain    xexey 3732   

  xexexey 353232   

  xe
xexe

y 35
2

33
 4 













 
  

  xexy 353sinh4   

Hence, the particular solution has been obtained from the general solution.         

          

Example 3 

Consider the differential equation 

  06116
2

2

3

3

 y
dx

dy

dx

yd

dx

yd
 

and suppose that  xeyxeyxey 3  and 2  , 321   

Then  
3

1

3

2

1

2

1

dx

yd

dx

ydxe
dx

dy
  

Therefore xxxx eeeey
dx

dy

dx

yd

dx

yd
6116611

2
6

3

1
1

2

1

3

1   

or   01212611
2

2
6

3

3

1
111  xx eey

dx

dy

dx

yd

dx

yd
  

Thus the function 1y  is a solution of the differential equation. Similarly, we can verify 

that the other two functions i.e. 2y  and 3y  also satisfy the differential equation.  

Now for all Rx  

  Ixxe
xexexe

xexexe

xexexe
xexexeW 




     062

3924

3322

32

3,2,  

Therefore 3 ,21  and, yyy form a fundamental solution of the differential equation on

  , . We conclude that 

   
xecxecxecy 32

321   

is the general solution of the differential equation on the interval   , . 

 

 

Non-Homogeneous Equations 

A function py that satisfies the non-homogeneous differential equation 

           xgyxa
dx

dy
xa

ndx

ynd
x

n
a

ndx

ynd
x

n
a 






 011

1

1
  

and is free of parameters is called the particular solution of the differential equation 



14-Solutions of Higher Order Linear Equations     VU                                                                                                           

 

 

 

122  
© Copyright Virtual University of Pakistan 

 

 

 

Example 1 

 

Suppose that 

3py   

Then    0py  

 

So that 

   
 

27

3909



 pp yy
 

Therefore  

3py   

is a particular solution of the differential equation  

279  pp yy  

 

Example 2 

 

Suppose that 

xxy p  3
 

Then   xyxy pp 6   ,13 2   

Therefore    





 






  xxxxxxyyxyx ppp

38123262822  

     xx 634   

Therefore  

xx
p

y  3
  

is a particular solution of the differential equation 

 

   xxyyxyx 6482 32   

 

 

 

Complementary Function 

 

 

The general solution 

 

   
n

y
n

cycyc
c

y  
2211

 

 

of the homogeneous linear differential equation 
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          0011

1

1 




 yxa
dx

dy
xa

dx

yd
xa

dx

yd
xa

n

n

nn

n

n   

 

is known as the complementary function for the non-homogeneous linear differential 

equation. 

           xgyxa
dx

dy
xa

dx

yd
xa

dx

yd
xa

n

n

nn

n

n 




 011

1

1   

 

 

General Solution of Non-Homogeneous Equations 

 

Suppose that 

 The particular solution of the non-homogeneous equation 

          xgyxa
dx

dy
xa

dx

yd
xa

dx

yd
xa

n

n

nn

n

n 




 011

1

1   

is py . 

 

 The complementary function of the non-homogeneous differential equation 

         0011

1

1 




 yxa
dx

dy
xa

dx

yd
xa

dx

yd
xa

n

n

nn

n

n   

is  

nnc ycycycy  2211 . 

 

 Then general solution of the non-homogeneous equation on the interval I is  given 

by 

  pc yyy   

or  

           xyxyxyxycxycxycy pcpnn  2211  

 

Hence 

 

General Solution = Complementary solution + any particular solution. 

 

 

 

 

Example 

  

Suppose that 

   x
p

y
2

1

12

11
  

Then   pp yypy  0  ,
2

1
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   xxy
dx

dy

dx

yd

dx

yd
p

ppp
33

2

11

2

11
006116

2

2

3

3

  

Hence 

x
p

y
2

1

12

11
  

is a particular solution of the non-homogeneous equation 

  xy
dx

dy

dx

yd

dx

yd
36116

2

2

3

3

  

 

Now consider 

  
xecxecxeccy 32

321   

Then 

  

xxx

xxx

xxx

ececec
dx

cyd

ececec
dx

cyd

ececec
dx

cdy

3
3

2
213

3

3
3

2
212

2

3
3

2
21

278

94

32







 

Since, 

  cy
dx

cdy

dx

cyd

dx

cyd
6116

2

2

3

3

  

  

 
   

0

606030301212

63211

946278

3

3

3

3

2

2

2

211

3

3

2

21

3

3

2

21

3

3

2

21

3

3

2

21









xxxxxx

xxxxxx

xxxxxx

ecececececec

ecececececec

ecececececec

 

 

Thus cy is general solution of associated homogeneous differential equation 

   

06116
2

2

3

3

 y
dx

dy

dx

yd

dx

yd
 

 

Hence general solution of the non-homogeneous equation is 

   

p
y

c
yy  xxecxecxec

2

1

12

1132
321   

 

 

    

Superposition Principle for Non-homogeneous Equations 

 

Suppose that  
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kpypypy ,,
2

,
1

  

denote the particular solutions of the k differential equation 

               ,01

1

1 x
i

gyxayxayxayxa n

n

n

n  

   

ki ,2,1 , on an interval I . Then 

      )(
21

xpyxpyxpypy
k

   

is a particular solution of 

              x
k

gxgxgyxayxa
n

yx
n

a
n

yx
n

a 






















 2101

1

1
 

 

Example 

Consider the differential equation 

    xexxexexxyyy  2228241643 2  

Suppose that 

x
p

x
pp xeyeyxy 

321
           ,       ,4 22

 

 

Then   
21624843

111
xxyyy ppp   

 

Therefore  
24

1

x
p

y   

is a particular solution of the non-homogenous differential equation    

   8241643 2  xxyyy  

Similarly, it can be verified that  

 2

2

xe
p

y   and 
xxe

p
y 

3
 

are particular solutions of the equations:  
xeyyy 2243     

and   
xx exeyy-y  243        

respectively.  

Hence  
xxexex

p
y

p
y

p
y

p
y  224

321

 

is a particular solution of the differential equation 

  xexxexexxyyy  2228241643 2    

 

    

Exercise 

Verify that the given functions form a fundamental set of solutions of the differential 

equation on the indicated interval. Form the general solution. 

11.    ,   ,,   ;012 43 xx eeyyy  
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12.   ,   ,2sin,2cos   ;052 xexeyyy xx  

13.       ,0   ,lnin ,lncos   ;02 xsxyyxyx  

14.   ,   ,,   ;044 2/2/ xx xeeyyy  

15.   ,0     ,   ;0126 432 xxyyxyx  

16.   ,   ,2sinh  ,2cosh   ;04 xxyy  

Verify that the given two-parameter family of functions is the general solution of the non-

homogeneous differential equation on the indicated interval. 

17. ,secxyy      xxxxxcxcy coslncossinsincos 21  ,  2/2/  ,  . 

18. 124244 2  xeyyy x ,    2222
2

2
1  xexxececy xxx  

19.   ,,   eececyeyyy xxxx 6    ,24107 5
2

2
1  

20.    ,x,   xxcxcyxxyyxyx 0
6

1

15

1
    ,5 21

2
2/1

1
22
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Lecture 15 Construction of a Second Solution 

 

 

General Case 

Consider the differential equation 

  0)()()( 012

2

2  yxa
dx

dy
xa

dx

yd
xa  

We divide by )(2 xa  to put the above equation in the form 

  0)()( ///  yxQyxPy  

Where )(xP  and )(xQ  are continuous on some interval I . 

Suppose that I    ,0)(1  xxy  is a solution of the differential equation 

Then    0  1

/

1

//

1  yQyPy  

We define    1 y u x y x  then 

  
/

1

/

1 uyuyy  ,  uyuyyuy  1111 2  

 0)2(][ /

1

/

1

//

11

/

1

//

1

///  uPyyuyQyPyyuQyPyy

zero
    

This implies that we must have 

  0)2( /

1

/

1

//

1  uPyyuy   

If we suppose ,uw  then 

  0)2( 1

/

1

/

1  wPyywy  

The equation is separable. Separating variables we have from the last equation 

. 0)2(
1

/

1  dxP
y

y

w

dw
 

Integrating 

  
  cPdxyw 1ln2ln

 

  


 
Pdx

ecwy

cPdxwy

1
2

1

2
1ln

 

  
2

1

1

y

dx
Pdx

ec
w



   
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or  
2

1

1/

y

Pdx
ec

u


   

Integrating again, we obtain  

  22
1

1 cdx
y

Pdx
e

cu 





 
  

Hence ).()()()( 122
1

111 xycdx
y

Pdx
e

xycxyxuy 





 
  

Choosing 11 c and 02 c , we obtain a second solution of the differential equation 

  dx
y

Pdx
e

xyy





 


2
1

12 )(  

The Woolskin   

  

 
    






 










 



dx
y

Pdx
e

y
y

Pdx
e

y

dx
y

Pdx
e

yy

xyxyW

2
1

1
1

1

2
1

11

2
,

1

 

 

                x,
Pdx

e  0  

 

 

Therefore )(1 xy  and )(2 xy  are linear independent set of solutions. So that they form a 

fundamental set of solutions of the differential equation 

   0)()( ///  yxQyxPy  

Hence the general solution of the differential equation is 

        xycx  ycxy 2211   
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Example 1 

Given that 

 2

1 xy   

 is a solution of  

 043 ///2  yxyyx  

Find general solution of the differential equation on the interval  ,0 . 

 

Solution: 

The equation can be written as 

  ,0
43

2

///  y
x

y
x

y  

The 2
nd

 solution 2y is given by 

  dx
y

e
xyy

Pdx











2
1

12 )(  

or  dx
x

e
xdx

x

e
xy

xxdx
















4

ln
2

4

3

2
2

3

 

   

xxdx
x

xy ln
1 22

2 


  

 

 

 

Hence the general solution of the differential equation on  ,0  is given by 

   

2211 c y ycy   

or  xxcy lnc x 2

2

2

1   

 

Example 2 

Verify that 
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x

x
y

sin
1   

 is a solution of 

 0)41( 2///2  yxxyyx   

on  ,0 . Find a second solution of the equation. 

 

 

Solution: 

The differential equation can be written as  

  0)
4

1
1(

1
2

///  y
x

y
x

y  

The 2
nd

 solution is given by 

  dx
y

e
yy

Pdx











2
1

12  

Therefore  
2

2

sin

sin
( )

dx

xx e
y dx

xx

x











  

       
2

sin

sin

x x
dx

x xx







  

       
2sin

csc
x

xdx
x


   

      
sin cos

( cot )
x x

x
x x


    

 Thus the second solution is 

   
x

x
y

cos
2   

Hence, general solution of the differential equation is 

  


















x

x
c

x

x
cy

cossin
21

 

Order Reduction 

 

Example 3 

Given that 
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   3

1 xy   

is a solution of the differential equation 

    ,06//2  yyx  

Find second solution of the equation 

Solution 

We write the given equation as: 

   0
6

2

//  y
x

y   

So that   
2

6
)(

x
xP   

Therefore 

 

    dx
y

e
yy

Pdx











2
1

12  

    

2

6

3

2 6

xe
y x dx

x









  

    

6

3

2 6

xe
y x dx

x







  

Therefore, using the formula 

    dx
y

e
yy

Pdx











2
1

12  

We encounter an integral that is difficult or impossible to evaluate. 

 

Hence, we conclude sometimes use of the formula to find a second solution is not 

suitable. We need to try something else. 

Alternatively, we can try the reduction of order to find 2y . For this purpose, we again 

define 

       )(1 xyxuxy    or   
3).( xxuy    

then 

   
xuuxuxy

uxuxy

66

3
/23

32




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Substituting the values of yy , in the given differential equation 

   062  yyx  

we have 

    06)66( 3232  uxxuuxuxx  

or   06 45  uxux  

or   ,0
6

 u
x

u  

If we take uw  then 

   0
6/  w
x

w  

This is separable as well as linear first order differential equation in w . For using the 

latter, we find the integrating factor 

  6ln6
6

1

. xe

dx
xeFI x 






 

Multiplying with the
6xIF   , we obtain 

   06 56  wxwx  

or   0)( 6 wx
dx

d
 

Integrating w.r.t. ’ x ’, we have 

   1
6 cwx   

or   
6

1/

x

c
u   

Integrating once again, gives 

   25

1

5
c

x

c
u   

Therefore   
3

22

13

5
xc

x

c
uxy 


  

Choosing 02 c  and 51 c , we obtain 

   
22

1

x
y   

Thus the second solution is given by 

   
22

1

x
y   

Hence, general solution of the given differential equation is  
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   2211 ycycy   

i.e.     2
2

3
1 /1 xcxcy   

Where 21  and cc are constants. 

 

Exercise 

 

Find the 2
nd

 solution of each of Differential equations by reducing order or by 

using the formula. 

1. 1y        ;0 1

///  yy  

 

2. xxeyyy  1

/// y        ;02  

 

3. xyy siny        ;09 1

//   

 

4. xeyy 5

1

// y        ;025   

 

5. 2

1

/// y        ;06 xeyyy   

 

6. 2

1

///2 y        ;062 xyxyyx   

 

7. xxyyx lny        ;04 21

1

//2   

 

8. 1y        ;02)1( 1

///2  xyyx  

 

9. )cos(lny        ;053 2

1

///2 xxyxyyx   

 

10. xyxyyx  1

/// y        ;0)1(  

 

 

    

 



16-Homogeneous Linear Equations with Constant Coefficients    VU  VU                                                                                                           

 

 

 

© Copyright Virtual University of Pakistan 

 
141 

Lecture 16 Homogeneous Linear Equations with Constant 

Coefficients 

 

We know that the linear first order differential equation 

  0 my
dx

dy
 

m being a constant, has the exponential solution on   ,  

  mxecy  1   

The question? 

 The question is whether or not the exponential solutions of the higher-order 

differential equations 

  ,00
/

1
//

2
)1(

1
)(  

 yayayayaya n
n

n
n   

exist on   , . 

 In fact all the solutions of this equation are exponential functions or constructed 

out of exponential functions. 

Recall  

That the linear differential of order n  is an equation of the form 

 )()()()()( 011

1

1 xgyxa
dx

dy
xa

dx

yd
xa

dx

yd
xa

n

n

nn

n

n 




   

Method of Solution 

Taking 2n , the nth-order differential equation becomes 

  0012

2

2  ya
dx

dy
a

dx

yd
a  

This equation can be written as 

  0
2

2

 cy
dx

dy
b

dx

yd
a  

We now try a solution of the exponential form 

   mxey   

Then 

  mxmey  and mxemy 2  

Substituting in the differential equation, we have  

  0)( 2  cbmamemx
 

Since    ,    ,0 xemx
 

Therefore  02  cbmam   
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This algebraic equation is known as the Auxiliary equation (AE).The solution of the 

auxiliary equation determines the solutions of the differential equation. 

Case 1: Distinct Real Roots 

If the auxiliary equation has distinct real roots 1m  and 2m then we have the following two 

solutions of the differential equation. 

  
xm

ey
xm

ey 2 and 1
21   

These solutions are linearly independent because 

   xmm
emm

yy

yy
yyW

)(
12/

2
/

1

21
21

21),(


  

Since 21 mm  and 
 

021 
 xmm

e  

Therefore      ,  0, 21 xyyW  

Hence  

 1y and 2y form a fundamental set of solutions of the differential equation. 

  The general solution of the differential equation on   ,  is  

  xmxm
ececy 21

21   

Case 2. Repeated Roots 

 

If the auxiliary equation has real and equal roots i.e 

  2121       with  , mmmmm      

     

Then we obtain only one exponential solution  

    mxecy 1  

To construct a second solution we rewrite the equation in the form 

    0 y
a

c
y

a

b
y  

Comparing with   0 QyyPy  

We make the identification 

   
a

b
P   

Thus a second solution is given by  
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  dx
e

e
edx

y

e
yy

mx

x
a

b

mx
Pdx



















2

 

2
1

12  

Since the auxiliary equation is a quadratic algebraic equation and has equal roots 

Therefore,   04. 2  acbDisc  

We know from the quadratic formula  

    
2

42

a

acbb
m


  

we have   
a

b
m 2  

Therefore    

   mx

mx

mx
mx xedx

e

e
ey   2

2

2  

Hence the general solution is   

   mxmxmx exccxececy )( 2121   

Case 3: Complex Roots 

If the auxiliary equation has complex roots  i  then, with  

    im 1  and  im 2  

Where  >0 and  >0 are real, the general solution of the differential equation is 

   xixi ececy )(
2

)(
1

    

First we choose the following two pairs of values of 21  and cc  

    121  cc    

   11 21  ,cc  

Then we have 

xixi

xixi

eey

eey
)()(

2

)()(
1












 

We know by the Euler’s Formula that 

          ,sincos iei
R  

Using this formula, we can simplify the solutions 1y and 2y as 

   
xieeeey

xeeeey
xxixix

xxixix








sin2)(

cos2)(

2

1







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We can drop constant to write 

    xxey  cos1  ,  xxey  sin2   

The Wronskian   

     x   βeβxβx , eeW αxαxαx  0sincos 2  

Therefore,  ) sin(  ), cos( xexe xx    

form a fundamental set of solutions of the differential equation on   , . 

Hence general solution of the differential equation is  

  xecxecy xx   sincos 21   

or  )sincos( 21 xcxcey x    

Example: 

Solve          

 0352  yyy  

Solution: 

The given differential equation is  

  0352  yyy  

Put   mxey   

Then      mxmx emy,mey 2     

Substituting in the give differential equation, we have 

     0 352 2  mxemm  

Since xemx    0  , the auxiliary equation is 

   0   as      0352 2  mxemm  

      3  ,
2

1
03 12  mmm  

Therefore, the auxiliary equation has distinct real roots 

   3  and  
2

1
21  mm  

Hence the general solution of the differential equation is 

   xx ececy 3
2

)2/1(
1    

Example 2 

Solve  02510  yyy  

Solution:     

We put  
mxey   
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Then mxmx emyme 2,y   

Substituting in the given differential equation, we have 

  0)2510( 2  mxemm  

Since xemx   0 , the auxiliary equation is 

  025102  mm  

    05
2
m  5 ,5m  

Thus the auxiliary equation has repeated real roots i.e  

  21 5 mm    

Hence general solution of the differential equation is 

  xx xececy 5
2

5
1   

or  xexccy 5
21 )(   

Example 3 

Solve the initial value problem 

  
    2010

0134





y,  -y

yyy
 

Solution: 

Given that the differential equation 

  0134  yyy  

Put                 mxey   

Then  mxmx emy,  mey 2  

Substituting in the given differential equation, we have:   

  0)134( 2  mxemm    

Since xemx  0 , the auxiliary equation is 

   01342  mm  

 

By quadratic formula, the solution of the auxiliary equation is 

  im 32
2

52164



  

Thus the auxiliary equation has complex roots 

  imim 32       ,32 21   

Hence general solution of the differential equation is 
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   xcxcey x 3sin3cos 21
2   

Example 4  

Solve the differential equations 

(a)   02  yky  

(b)  02  yky  

Solution 

First consider the differential equation 

   02  yky , 

Put    mxey    

Then  mxmx emymey 2  and    

Substituting in the given differential equation, we have: 

     0  22  mxekm  

Since xemx  0 , the auxiliary equation is 

   022  km  

or   , kim    

Therefore, the auxiliary equation has complex roots 

  kimkim  0    ,0 21  

Hence general solution of the differential equation is  

  kxckxcy sincos 21   

Next consider the differential equation 

   02

2

2

 yk
dx

yd
 

Substituting values , and yy  we have. 

     022  mxekm  

 Since ,0mxe the auxiliary equation is 

   022  km  

            km   

Thus the auxiliary equation has distinct real roots  

   kmkm  21   ,  

Hence the general solution is 

   .21
kxkx ececy   

 

Higher Order Equations 

If we consider nthorder homogeneous linear differential equation 

 0011

1

1 




 ya
dx

dy
a

dx

yd
a

dx

yd
a

n

n

nn

n

n   

Then, the auxiliary equation is an nthdegree polynomial equation  

 001
1

1  
 amamama n

n
n

n   

Case 1: Real distinct roots 
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If the roots nmmm ,,, 21  of the auxiliary equation are all real and distinct, then the 

general solution of the equation is 

  xm
n

xmxm
necececy  21

21  

Case 2: Real & repeated roots 

We suppose that 1m  is a root of multiplicity n  of the auxiliary equation, then it can be 

shown that  

  xmnxmxm
exxee 111

1,,,   

are n  linearly independent solutions of the differential equation. Hence general solution of 

the differential equation is  

  xmn
n

xmxm
excxececy 111 1

21
   

Case 3: Complex roots 

Suppose that coefficients of the auxiliary equation are real. 

 We fix n at 6, all roots of the auxiliary are complex, namely  

 1 1 2 2 3 3,     ,i i i         

 Then the general solution of the differential equation  
1 2

3

1 1 2 1 3 2 4 2

5 3 6 3

( cos sin ) ( cos sin )

( cos sin )

x x

x

y e c x c x e c x c x

e c x c x

 



   

 

   

 
 

 If 6n , two roots of the auxiliary equation are real and equal and the remaining 4 

are complex, namely 2211     ,  ii   

Then the general solution is 
xmxmxx

xececxcxcexcxcey 1121
6524231211 )sincos()sincos(     

 If  im 1  is a complex root of multiplicity k of the auxiliary equation. Then 

its conjugate  im 2  is also a root of multiplicity k . Thus from Case 2 , the 

differential equation has k2 solutions 

        xikxixixi exexxee   12 ,,  ,  ,   

        xikxixixi exexxee   12 ,,  ,  ,   

 By using the Euler’s formula, we conclude that the general solution of the 

differential equation is a linear combination of the linearly independent solutions 

 xexxexxxexe xkxxx   cos,,cos  ,cos  ,cos 12   

 xexxexxxexe xkxxx   sin,,sin  ,sin  ,sin 12   

 Thus if 3k  then 

     ][ sincos 2
321

2
321 xxdxddxxcxccey x    

 

Solving the Auxiliary Equation 

Recall that the auxiliary equation of nthdegree differential equation is nthdegree 

polynomial equation  

 Solving the auxiliary equation could be difficult 

  2n   ,0)( mPn  
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 One way to solve this polynomial equation is to guess a root 1m . Then 1mm   is a 

factor of the polynomial )(mPn . 

 Dividing with 1mm   synthetically or otherwise, we find the factorization   

  )( )()( 1 mQmmmPn   

 We then try to find roots of the quotient i.e. roots of the polynomial equation  

  0)( mQ  

 Note that if 
q

p
m 1  is a rational real root of the equation 

  2n   ,0)( mPn  

then p  is a factor of 0a and q  of na .  

 By using this fact we can construct a list of all possible rational roots of the 

auxiliary equation and test each of them by synthetic division. 

Example 1 

Solve the differential equation 

  043  yyy  

Solution:  

Given the differential equation 

 043  yyy  

Put mxey   

Then mxmxmx emyemyme 3///2///    and  ,y   

Substituting this in the given differential equation, we have 

 0)43( 23  mxemm  

Since  0mxe  

Therefore     043 23  mm  

So that the auxiliary equation is 

     043 23  mm  

Solution of the AE 

 

If we take 1m  then we see that 

 043143 23  mm  

Therefore 1m  satisfies the auxiliary equations so that  m-1 is a factor of the polynomial 

 4
2

3
3  mm  

By synthetic division, we can write  

   44143 223  mmmmm  
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or 223 )2)(1(43  mmmm  

Therefore 043 23  mm  

 0)2)(1( 2  mm  

or  2,2,1 m  

Hence solution of the differential equation is  

 xxx xecececy 2
3

2
21

   

 

Example 2  

Solve 

 041053 //////  yyyy  

Solution: 

Given the differential equation 

 041053 //////  yyyy  

Put mxey   

Then mxmxmx emyemyme 3///2///    and  ,y   

 Therefore the auxiliary equation is 

    041053 23  mmm     

 

Solution of the auxiliary equation: 

 

a) 4a and all its factors are: 

 4 ,2 ,1                 : p  

b) 3na and all its factors are: 

 3  1,                 : q  

c) List of possible rational roots of the auxiliary equation is 

 
3

4
,

3

4
,

3

2
,

3

2
,

3

1
,

3

1
 4, 4,- 2, 2,- 1, 1,-              :



q

p
 

d) Testing each of these successively by synthetic division we find 

 

 0          12        6        3      

   
4   21
41053  

3

1 





  

Consequently a root of the auxiliary equation is 

  31m  

The coefficients of the quotient are 

 12      6     3  

Thus we can write the auxiliary equation as: 

    01263 31 2  mmm  

 0
3

1
m       or 01263 2  mm  
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Therefore 31or        31 imm   

Hence solution of the given differential equation is 

  xcxcxeecy x 3sin3cos 32
)3/1(

1   

Example 3  

Solve the differential equation 

 02
2

2

4

4

 y
dx

yd

dx

yd
 

Solution:  

Given the differential equation 

 02
2

2

4

4

 y
dx

yd

dx

yd
 

Put mxey   

Then mxmx emymey 2  ,   

Substituting in the differential equation, we obtain 

   0  12 24  mxemm  

Since 0mxe , the auxiliary equation is 

 012 24  mm  

 0)1( 22 m  

 iim    ,   

 imm  31    and  imm  42   

 

Thus i is a root of the auxiliary equation of multiplicity 2 and so is i .  

Now 0  and 1  

Hence the general solution of the differential equation is 

  xxddxxccey x sin)(cos)( 2121
0   

or xxdxxcxdxcy sincossincos 2211   
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Exercise 

 

Find the general solution of the given differential equations. 

1. 08//  yy  

2. 023 ///  yyy  

3. 04 ///  yyy  

4. 0432 ///  yyy  

5. 044 //////  yyy  

6. 05 /////  yy  

7. 01243 //////  yyyy  

Solve the given differential equations subject to the indicated initial conditions. 

8.       ,0652 //////  yyyy 1)0(,0)0()0( ///  yyy  

9. 0
4

4


dx

yd
, 5)0(,4)0(,3)0(,2)0( //////  yyyy  

10. 0
4

4

 y
dx

yd
, 1)0(,0)0()0()0( //////  yyyy  
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Lecture 17 Method of Undetermined Coefficients 

Superposition Approach 
 

 

 

Recall  
 

1.  That a non-homogeneous linear differential equation of order n  is an equation of the 

form 

 )(011

1

1 xgya
dx

dy
a

dx

yd
a

dx

yd
a

n

n

nn

n

n 




   

The coefficients naaa ,,, 10  can be functions of x . However, we will discuss 

equations with constant coefficients. 

 

2. That to obtain the general solution of a non-homogeneous linear differential equation 

we must find: 

 

 The complementary function
c

y , which is general solution of the associated 

homogeneous differential equation. 

 Any particular solution 
p

y of the non-homogeneous differential equation. 

 

3. That the general solution of the non-homogeneous linear differential equation is given 

by 

 

 General solution = Complementary function + Particular Integral 

 

Finding  
 

Complementary function has been discussed in the previous lecture. In the next three 

lectures we will discuss methods for finding a particular integral for the non-

homogeneous equation, namely 

 

 The method of undetermined coefficients-superposition approach 

 The method undetermined coefficients-annihilator operator approach. 

 The method of variation of parameters. 

  

The Method of Undetermined Coefficient 
 

The method of undetermined coefficients developed here is limited to non-homogeneous 

linear differential equations 

 

 That have constant coefficients, and  

 Where the function )(xg  has a specific form. 

 

The form of )(xg  
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The input function )(xg  can have one of the following forms: 

 A constant function k.  

 A polynomial function  

 An exponential function e
x
 

 The trigonometric functions ) cos(  ), sin( xx    

 Finite sums and products of these functions. 

Otherwise, we cannot apply the method of undetermined coefficients. 

 

The method 

Consist of performing the following steps. 

      Step 1 Determine the form of the input function )(xg . 

Step 2  Assume the general form of 
p

y according to the form of )(xg  

Step 3  Substitute in the given non-homogeneous differential equation. 

Step 4  Simplify and equate coefficients of like terms from both sides. 

Step 5  Solve the resulting equations to find the unknown coefficients. 

Step 6  Substitute the calculated values of coefficients in assumed 
p

y   

Restriction on g ? 

The input function g is restricted to have one of the above stated forms because of the 

reason:  

 

 The derivatives of sums and products of polynomials, exponentials etc are again 

sums and products of similar kind of functions. 

 The expression 
p

cy
p

by
p

ay 
///

 has to be identically equal to the input 

function )(xg .  

Therefore, to make an educated guess, py  is assured to have the same form as g . 

 

Caution! 
 

 In addition to the form of the input function )(xg , the educated guess for 
p

y must 

take into consideration the functions that make up the complementary function
c

y . 

 No function in the assumed 
p

y must be a solution of the associated homogeneous 

differential equation. This means that the assumed py  should not contain terms 

that duplicate terms in
c

y . 

Taking for granted that no function in the assumed py is duplicated by a function in
c

y , 

some forms of g  and the corresponding forms of py are given in the following table. 

 

Trial particular solutions 
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If  xg equals a sum? 

 

Suppose that  

 

 The input function  xg consists of a sum of m terms of the kind listed in the 

above table i.e. 

         .21 xgxgxgxg m   

 The trial forms corresponding to      xgxgxg m , , , 21   be
mppp yyy ,,,

21
 . 

 

Then the particular solution of the given non-homogeneous differential equation is 

   
mpppp yyyy  

21
  

In other words, the form of py is a linear combination of all the linearly independent 

functions generated by repeated differentiation of the input function )(xg . 

 

 

 

 

 

Number The input function )(xg  The assumed particular solution 
p

y  

1 Any constant e.g. 1 A  

2 75 x  BAx  

3 223 x  cBxAx 2  

4 13  xx  DCxBxAx  23  

5   4sin x  xBxA 4 sin 4 cos   

6 x4cos  xBxA 4 sin 4 cos   

7 xe5  xAe5  

8 xex 5)29(   xeBAx 5)(   

9 xex 52  
xeCBxAx 5)2(   

10 xxe 4sin3  xxeBxxeA 4sin3 4cos3   

11 xx 4sin25  1 1 1 2 2 2

2 2( )cos4 ( )sin 4A x B x C x A x B x C x      

12 xxxe 4cos3  xxeDCxxxeBAx 4sin3)(4cos3)(   
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Example 1  

Solve  63224 2///  xxyyy  

Solution:  

 

Complementary function 

To find
c

y , we first solve the associated homogeneous equation  

024 ///  yyy  

We put   mxey  ,   mxemymxmey 2  ,   

Then the associated homogeneous equation gives 

   0)24( 2  mxemm  

 Therefore, the auxiliary equation is 

xmxemm      ,0   as   0242   

Using the quadratic formula, roots of the auxiliary equation are 

    62 m  

Thus we have real and distinct roots of the auxiliary equation 

   62    and    62 21  mm   

Hence the complementary function is   

x
ec

x
ec

c
y

)62()62(
21





   

 

 

Next we find a particular solution of the non-homogeneous differential equation. 

 

Particular Integral 

 

Since the input function 

 632)( 2  xxxg   

 

is a quadratic polynomial. Therefore, we assume that 

CBxAxyp  2  

Then  AyBAxy pp 2   and   2
///
  

Therefore CBxAxBAxAyyy ppp 22248224 2///
  

 

Substituting in the given equation, we have 

 

632222482 22  xxCBxAxBAxA  

or 632)242()28(2 22  xxCBAxBAAx  

Equating the coefficients of the like powers of x , we have 
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 2 2A -  , 3-  2B-8A  , 6  2C-4B2A   

 

Solving this system of equations leads to the values  

 

.9    ,25    ,1  CBA  

 

Thus a particular solution of the given equation is 

  

9
2

52  xxy p . 

 

Hence, the general solution of the given non-homogeneous differential equation is given 

by 

 py
c

yy    

 

or  
x

ec
x

ecxxy
)62(

2
)62(

9
2

52
1





  

 

Example 2 

 

Solve the differential equation 

 

  xyyy 3sin2///   

Solution: 

 

Complementary function  

To find
c

y , we solve the associated homogeneous differential equation 

   0///  yyy  

Put   mxey  ,  mxemymxmey 2  ,   

Substitute in the given differential equation to obtain the auxiliary equation  

   012 mm  or 
2

 31 i
m


    

Hence, the auxiliary equation has complex roots. Hence the complementary function is 

   












 xcxc

x
e

c
y

2

3

2

3)2/1(
sincos 21  

Particular Integral 

Since successive differentiation of  

xxg 3sin)(   

produce   xx 3cos    and     3sin    

Therefore, we include both of these terms in the assumed particular solution, see table 
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.3sin3cos xBxA
p

y   

Then   .3cos33sin3 xBxA
p

y   

   .3sin93cos9 xBxA
p

y     

Therefore  .3sin)83(3cos)38(
///

xBAxBAyyy ppp   

Substituting in the given differential equation 

   .3sin23cos03sin)83(3cos)38( xxxBAxBA   

From the resulting equations 

283  ,038  BABA  

Solving these equations, we obtain 

   73/16,73/6  BA  

A particular solution of the equation is  

xx
p

y 3sin
73

16
3cos

73

6
  

 Hence the general solution of the given non-homogeneous differential equation is 

           xxxcxc
x

ey 3sin
73

16
3cos

73

6

2

3

2

3)2/1(
sincos 21 














  

Example 3 

Solve     
xxexyyy 2/// 65432   

Solution:   

Complementary function 

To find
c

y , we solve the associated homogeneous equation  

032 ///  yyy   

Put   mxey  ,  mxemymxmey 2  ,     

Substitute in the given differential equation to obtain the auxiliary equation 

   
0)3)(1(

0322





mm

mm
 

   3 ,1m  

Therefore, the auxiliary equation has real distinct root 

   3 
2

 ,11  mm  

Thus the complementary function is  

xecxec
c

y 3
21  . 

Particular integral 

Since    )()(26)54()( 21 xgxgxxexxg   

Corresponding to )(1 xg   BAxy
p



1

  

Corresponding to )(2 xg  
xeDCxy

p

2)(

2

  

The superposition principle suggests that we assume a particular solution 

    
21

ppp yyy        
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i.e.       xeDCxBAxy
p

2 )(   

Then    xCexeDCxAy
p

22 )(2   

   xCexeDCxy
p

242 )(4   

Substituting in the given  

 
xxxx

xxxx
ppp

DeCxeBAxCeDe

CxeACeDeCxeyyy

2222

2222///

333324                                   

42444    32




 

Simplifying and grouping like terms 

 

.654)32(332332 222/// xxx
ppp xexeDCCxeBAAxyyy   

Substituting in the non-homogeneous differential equation, we have 

  xxxx exexeDCCxeBAAx 2222 0654)32(3323   

Now equating constant terms and coefficients of x ,
xxe2

and 
xe2

, we obtain  

532  BA , 4          3  A  

6          3  C ,    032  DC  

Solving these algebraic equations, we find 

34         ,2

923     ,34

-DC

BA




 

Thus, a particular solution of the non-homogeneous equation is   

xx
p e xexy 22 )3(42)923()34(   

The general solution of the equation is  

  

 
xx

pc execxecyyy 22x3
21 )3(4-e x 2)923() 34(   

 

Duplication between py  and cy ? 

 If a function in the assumed py  is also present in cy  then this function is a 

solution of the associated homogeneous differential equation. In this case the 

obvious assumption for the form of py  is not correct. 

 In this case we suppose that the input function is made up of terms of n kinds i.e. 

  )()()()( 21 xgxgxgxg n   

and corresponding to this input function the assumed particular solution py is  

  
npppp yyyy  

21
 

 If a 
i

py contain terms that duplicate terms in cy , then that 
i

py must be multiplied 

with
nx , n  being the least positive integer that eliminates the duplication. 

 

Example 4  
Find a particular solution of the following non-homogeneous differential equation 

    xeyyy 845 ///   
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Solution:   

 

To find cy , we solve the associated homogeneous differential equation   

  045 ///  yyy  

 We put mxey   in the given equation, so that the auxiliary equation is  

4 ,1    0452  mmm  

Thus   xx
c ececy 4

21   

Since    xexg 8)(   

Therefore,     
x

p Aey    

Substituting in the given non-homogeneous differential equation, we obtain 

xexAexAexAe 845   

So    
xe80    

Clearly we have made a wrong assumption for py , as we did not remove the duplication.  

 

 

Since 
xAe  is present in cy . Therefore, it is a solution of the associated homogeneous 

differential equation 

    045 ///  yyy  

To avoid this we find a particular solution of the form  

x
p Axey    

We notice that there is no duplication between cy  and this new assumption for py  

Now   
xxxx

p AeAxeAeAxey 2y     ,
//

p
/

   

Substituting in the given differential equation, we obtain 

.84552 xxxxxx eAxeAeAxeAeAxe   

or    .3883  AeAe xx  

So that a particular solution of the given equation is given by  
x

p ey )38(   

Hence, the general solution of the given equation is  

 

   
4

21
(8/3)  x x xy c e c e x e    

 

 

 

Example 5  

 

Determine the form of the particular solution 

 

(a)     xexexyyy  73525/8//  

(b)   .cos4// xxyy   
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Solution:  

 

(a)  To find cy  we solve the associated homogeneous differential equation 

0258 ///  yyy  

Put   mxey    

Then the auxiliary equation is  

immm 3402582    

Roots of the auxiliary equation are complex 

)3sin23cos(4
1 xcxcxecy   

The input function is 

   xexxexexxg  )735(735)(  

Therefore, we assume a particular solution of the form  

xeDCxBxAxpy  )23(  

Notice that there is no duplication between the terms in py and the terms in cy . 

Therefore, while proceeding further we can easily calculate the value CBA  , ,  and D . 

 

(b) Consider the associated homogeneous differential equation  

04//  yy  

Since             xxxg cos)(    

Therefore, we assume a particular solution of the form 

xDCxxBAxy p sin)(cos)(   

Again observe that there is no duplication of terms between cy  and py   

 

 

 

 

 

 

Example 6  

Determine the form of a particular solution of       

    
// / 2 63 5sin 2 7 xy y y x x xe      

 

Solution:  

To find cy , we solve the associated homogeneous differential equation 

   0///  yyy  

Put   mxey   

Then the auxiliary equation is 

   
2

31
012 i

mmm


  
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Therefore   













 xcxcxecy

2

3
sin2

2

3
cos1

)2/1(  

Since   
1

2 6

2 3( ) 3 5sin 2 7 ( ) ( ) ( )xg x x x xe g x g x g x       

 

Corresponding to 2
1 3)( xxg  :  CBxAxy p  2

1
 

Corresponding to 2 ( ) 5sin 2g x x  :  xExDyp 2sin2cos
2

  

Corresponding to 6

3 ( ) 7 xg x xe   :  )(
3

GFxyp  e
6x 

 

Hence, the assumption for the particular solution is   

321 pppp yyyy    

or  
6x2 )(2sin2cos eGFxxExDCBxAxyp   

No term in this assumption duplicate any term in the complementary function 

xx
c ececy 7

2
2

1   

Example 7 
Find a particular solution of   

xeyyy  /// 2  

Solution: 

Consider the associated homogeneous equation 

  02 ///  yyy  

Put    
mxey   

Then the auxiliary equation is  

1  ,1            

0)1(12 22





m

mmm
 

Roots of the auxiliary equation are real and equal. Therefore, 

xx
c xececy 21   

 

Since    xexg )(  

Therefore, we assume that  
x

p Aey   

This assumption fails because of duplication between cy  and py . We multiply with x  

Therefore, we now assume    
x

p Axey   

However, the duplication is still there. Therefore, we again multiply with x  and assume 
x

p eAxy 2  

Since there is no duplication, this is acceptable form of the trial py   

x
p exy 2

2

1
  

Example 8 
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Solve the initial value problem 

2)(y0,)y(

             ,sin104

/

//







xxyy
 

Solution  
Consider the associated homogeneous differential equation 

0//  yy  

Put    mxey    

Then the auxiliary equation is  

imm  012   

The roots of the auxiliary equation are complex. Therefore, the complementary function 

is 

xcxcyc sincos 21   

Since   )()(sin104)( 21 xgxgxxxg   

Therefore, we assume that 

  sincos C     , 
21

xDxyBAxy pp   

So that  xDxBAx sincos Cyp   

Clearly, there is duplication of the functions xcos and xsin . To remove this duplication 

we multiply 
2py with x . Therefore, we assume that 

  .sincos xC xDxxBAxyp   

  2 sin cos 2 cos sinpy C x Cx x D x Dx x       

So that  xDxBAx cosx2sin C2yy p
//

p   

Substituting into the given non-homogeneous differential equation, we have  

xxxDxBAx sin104cosx2sin C2   

Equating constant terms and coefficients of x , xsin , xxcos , we obtain 

  02  ,102  ,4  ,0  DCAB  

So that  0  ,5 ,0 ,4  DCBA  

Thus    xxxy p cos54   

Hence the general solution of the differential equation is  

xxxcxcyyy pc cos5- x4sincos 21   

We now apply the initial conditions to find 1c  and 2c . 

0cos54sincos0)( 21   ccy  

Since   1cos,0sin    

Therefore    91 c  

 Now   xxxxcxy cos5sin54cossin9 2
/     

Therefore 2cos5sin54cossin92)( 2
/   cy  

 7.c2                            

Hence the solution of the initial value problem is  

.cos54sin7cos9 xxxxxy    

Example 9  

Solve the differential equation 
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         122696 32/// xexyyy   

Solution:  

The associated homogeneous differential equation is 

   096 ///  yyy  

Put mxey   

Then the auxiliary equation is  

  3 ,30962  mmm  

Thus the complementary function is 
xx

c xececy 3

2

3

1    

Since   )()(12)2()( 21
32 xgxgexxg x   

We assume that 

Corresponding to 2)( 2
1  xxg :   CBxAxy p  2

1
 

Corresponding to xexg 3
2 12)(  :   

x
p Dey 3

2
  

Thus the assumed form of the particular solution is  

x
p DeCBxAxy 32   

The function 
xe3

in 
2py is duplicated between cy  and py . Multiplication with x  does not 

remove this duplication. However, if we multiply 
2py with

2x , this duplication is 

removed. 

Thus the operative from of a particular solution is 

x
p eDxCBxAxy 322   

Then   
xx

p eDxDxeBAxy 323 322   

and   
xxx

p eDxDxeDeAy 3233 9622    

Substituting into the given differential equation and collecting like term, we obtain 
xx

ppp exDeBAxBAAxy 3232///
12262C962)912(9y6y 

Equating constant terms and coefficients of 2, xx  and 
xe3

yields 

 0912     2,C962  BABA  

 122                        ,6  9  DA  

Solving these equations, we have the values of the unknown coefficients 

 -6D  and   32,98,32  CBA  

Thus   
x

p exxxy 322 6
3

2

9

8

3

2
   

Hence the general solution  

.6
3

2

9

8

3

2
yy 3223

2
3

1pc
xxx exxxxececy   

Higher –Order Equation 

The method of undetermined coefficients can also be used for higher order equations of 

the form 
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)(... 011

1

1 xgya
dx

dy
a

dx

yd
a

dx

yd
a

n

n

nn

n

n 





 

with constant coefficients. The only requirement is that )(xg consists of the proper kinds 

of functions as discussed earlier. 

 

Example 10 

Solve    xeyy x cos/////   

Solution: 

To find the complementary function we solve the associated homogeneous differential 

equation  

0/////  yy  

Put     mxmxmx emymeyey 2,,   

Then the auxiliary equation is  

0   23  mm  

or   1,0,00)1(2  mmm  

The auxiliary equation has equal and distinct real roots. Therefore, the complementary 

function is 

x
c ecxccy  321  

Since     xexg x cos)(   

Therefore, we assume that 

xBexAey xx

p sincos    

Clearly, there is no duplication of terms between cy  and py .  

Substituting the derivatives of py  in the given differential equation and grouping the like 

terms, we have 

.cossin)24(cos)42(
/////

xexeBAxeBAyy xxx

pp   

Equating the coefficients, of xe x cos  and xe x sin , yields 

024,142  BABA  

Solving these equations, we obtain 

   5/1,10/1  BA  

So that a particular solution is 

xexeecxccy xxx
p sin)5/1(cos)10/1(321  

 

Hence the general solution of the given differential equation is 

   xexeecxccy xxx
p sin)5/1(cos)10/1(321  

 

Example 12 

Determine the form of a particular solution of the equation 

   xeyy  1  

Solution: 

Consider the associated homogeneous differential equation 

   0 yy  

The auxiliary equation is  
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  1 ,0 ,0 ,0034  mmm  

Therefore, the complementary function is 

  x
c ecxcxccy  4

2
321  

 

Since  )()(1)( 21 xgxgexg x    

 

Corresponding to 1)(1 xg :   Apy 1
 

Corresponding to xexg )(2 :  
x

p Bey 
2

   

Therefore, the normal assumption for the particular solution is 

   
x

p BeAy    

Clearly there is duplication of  

(i) The constant function between cy  and
1py . 

(ii) The exponential function 
xe between cy  and

2py . 

To remove this duplication, we multiply 
1py with 

3x  and 
2py with x . This duplication 

can’t be removed by multiplying with x and
2x .  Hence, the correct assumption for the 

particular solution py is 

x
p BxeAxy  3

 

Exercise 

 

Solve the following differential equations using the undetermined coefficients. 

 

1.            2
4

1 2/// xxyyy   

 

2.            26100208 2/// xxexyyy   

 

3.          483 32// xexyy   

 

4.          2cos344 /// xyyy   

 

5.            2sin)3(4 2// xxyy   

 

6.            6425 23///  xxxyy  

 

7.            )sin3(cos22 2/// xxeyyy x   

 

Solve the following initial value problems. 

 

8.           5020    ,)3(44 2///  )(,y) y(exyyy /x  
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9. 0)0(,0)0(        ,cos /

0

2

2

2

 xxtFx
dt

xd
  

 

10.           4)0(,30   50    ,8528 //2///  y)(y,) y(exyy /x    
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Lecture 18 Undetermined Coefficient: Annihilator 

Operator Approach 

 

 

Recall  

 

1.  That a non-homogeneous linear differential equation of order n  is an equation of the 

form 

 )(011

1

1 xgya
dx

dy
a

dx

yd
a

dx

yd
a

n

n

nn

n

n 




   

       The following differential equation is called the associated homogeneous equation 

  0011

1

1 




 ya
dx

dy
a

dx

yd
a

dx

yd
a

n

n

nn

n

n   

The coefficients naaa ,,, 10  can be functions of x . However, we will discuss 

equations with constant coefficients. 

 

2. That to obtain the general solution of a non-homogeneous linear differential equation 

we must find: 

 

 The complementary function
c

y , which is general solution of the associated 

homogeneous differential equation. 

 Any particular solution 
p

y of the non-homogeneous differential equation. 

 

3. That the general solution of the non-homogeneous linear differential equation is given 

by 

 

  General Solution = Complementary Function + Particular Integral 

 

 Finding the complementary function has been completely discussed in an earlier 

lecture 

 

 In the previous lecture, we studied a method for finding particular integral of the 

non-homogeneous equations. This was the method of undetermined coefficients 

developed from the viewpoint of superposition principle.   

 

 In the present lecture, we will learn to find particular integral of the non-

homogeneous equations by the same method utilizing the concept of differential 

annihilator operators. 

 

 

Differential Operators 
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 In calculus, the differential coefficient dxd /  is often denoted by the capital letter

D . So that 

    Dy
dx

dy
  

The symbol D  is known as differential operator. 

 

 This operator transforms a differentiable function into another function, e.g. 

  xxDxxxxDeeD xx 2sin2)2(cos  ,1215)65(  ,4)( 22344    

 

 The differential operator D  possesses the property of linearity. This means that if 

gf  , are two differentiable functions, then    

   )()()}()({ xbDgxaDfxbgxafD          

Where a  and b  are constants. Because of this property, we say that D  is a linear 

differential operator. 

 

 Higher order derivatives can be expressed in terms of the operator D  in a natural 

manner: 

yDDyD
dx

dy

dx

d

xd

yd 2

2

2

)( 







  

 Similarly  

   yD
xd

yd
yD

dx

yd n

n

n

  ,,3

3

3

  

 

 The following polynomial expression of degree n  involving the operator D   

  01
1

1 aDaDaDa n
n

n
n  

   

is also a linear differential operator.   

For example, the following expressions are all linear differential operators   

       3D , 432  DD , DDD 465 23    

 

Differential Equation in Terms of D 
 

Any linear differential equation can be expressed in terms of the notation D . Consider a    

2
nd

 order equation with constant coefficients 

   )(/// xgcybyay     

Since   yD
dx

yd
Dy

dx

dy 2

2

2

,   

Therefore the equation can be written as   

)(2 xgcybDyyaD     

or   )()( 2 xgycbDaD   

 

Now, we define another differential operator L as 

   cbDaDL  2
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Then the equation can be compactly written as  

   )()( xgyL   

The operator L  is a second-order linear differential operator with constant coefficients.   

 

Example 1 

Consider the differential equation  

352///  xyyy   

Since    yD
dx

yd
Dy

dx

dy 2

2

2

,   

Therefore, the equation can be written as 

  35)2( 2  xyDD  

Now, we define the operator L as 

22  DDL  
Then the given differential can be compactly written as  

  35)(  xyL  

 

Factorization of a differential operator   

 

 An nth-order linear differential operator  

  01
1

1 aDaDaDaL n
n

n
n  

     

with constant coefficients can be factorized, whenever the characteristics 

polynomial equation 

 01
1

1 amamamaL n
n

n
n  

   

can be factorized.  

 

 The factors of a linear differential operator with constant coefficients commute. 

 

Example 2 

  

(a) Consider the following 2
nd

 order linear differential operator 

  652  DD  

If we treat D  as an algebraic quantity, then the operator can be factorized as 

)3)(2(652  DDDD   

(b)  To illustrate the commutative property of the factors, we consider a twice-

differentiable function )(xfy  . Then we can write  

   yDDyDDyDD )2)(3()3)(2()65( 2   

 

To verify this we let  

yyyDw 3)3(   

Then  

wDwwD 2   )2(   

or  )62()3(   )2( //// yyyywD   

or  yyywD 65)2( ///   
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or  yyyyDD 65)3)(2( ///   

 

Similarly if we let  

  )2()2( / yyyDw    

Then   )63()2(3)3( //// yyyywDwwD   

or  yyywD 65)3( ///   

or  yyyyDD 65)2)(3( ///   

 

Therefore, we can write from the two expressions that 

  yDDyDD )3)(2()2)(3(     

 

Hence  yDDyDD )3)(2()2)(3(   

 

Example 3 

(a) The operator 12 D  can be factorized as  

                                             .  1 1        12  DDD  

 or     1 1-D        12  DD  

(b) The operator 22  DD  does not factor with real numbers. 

 

Example 4 
The differential equation  

044  yyy  

 can be written as  

               0442  yDD    

or     0)2(2  yDD    

or     .02
2

 yD   
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Annihilator Operator 

 

Suppose that  

 L is a linear differential operator with constant coefficients.  

 y = f(x) defines a sufficiently differentiable function. 

 The function f is such that  L(y)=0 

Then the differential operator L is said to be an annihilator operator of the function f.  

  

Example 5 

Since  

 0,Dx   ,02 xD  ,023 xD    ,034 xD  

Therefore, the differential operators 

       D ,  2D , 3D ,    ,4D  

are annihilator operators of the following functions 

       ,   ,   ,   ),constant a( 32 xxxk  

 

In general, the differential operator nD  annihilates each of the functions  

                                
12 ,,,,1 nxxx   

Hence, we conclude that the polynomial function  

   1
110


 n

n xcxcc   

can be annihilated by finding an operator that annihilates the highest power of .x  

 

Example 6 
Find a differential operator that annihilates the polynomial function 

32 851 xxy  . 

Solution     
 

Since   ,034 xD   

Therefore    .0851 3244  xxDyD  

Hence, 
4D  is the differential operator that annihilates the function .y  

 

Note that the functions that are annihilated by an nth-order linear differential operator L  

are simply those functions that can be obtained from the general solution of the 

homogeneous differential equation  

.0)( yL  

 

Example 7 

Consider the homogeneous linear differential equation of order n  

        0)(  yD n  

The auxiliary equation of the differential equation is 

         0)(  nm   
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        )  times(  ,,, nm     

 

Therefore, the auxiliary equation has a real root  of multiplicity n . So that the 

differential equation has the following linearly independent solutions: 

                                              .,,,,  1 2  xnxxx exexxee      

Therefore, the general solution of the differential equation is 

          xn
n

xxx excexcxececy  12
321

   

So that the differential operator 

    nD )(   

annihilates each of the functions 

      
xnxxx exexxee  1 2   ,  , , ,    

 

Hence, as a consequence of the fact that the differentiation can be performed term by 

term, the differential operator 

 nD )(    

annihilates the function 

    xn
n

xxx excexcxececy  12
321

   

 

Example 8 
Find an annihilator operator for the functions 

(a)    xexf 5)(    

(b)    xx xeexg 22 64)(   

 

Solution      

(a)  Since  

  .0555 555  xxx eeeD  

Therefore, the annihilator operator of function f  is given by 

     5 DL  

We notice that in this case 1  ,5  n . 

      

(b) Similarly        

       )6)(44( )4)(44(642 2222222 xxxx xeDDeDDxeeD   

or     xxxxxxxx eexexeeexeeD 222222222
242448483232 642   

or     0642 222
 xx xeeD  

Therefore, the annihilator operator of the function g is given by 

   2)2(  DL  

We notice that in this case n 2 . 

Example 9 

Consider the differential equation 
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     02 222  yDD
n

  

 

The auxiliary equation is 

     02 222 
n

mm   

    02 222  mm  

 

Therefore, when    ,  are real numbers, we have from the quadratic formula 

 

  
 




im 



2

442 222

 

 

Therefore, the auxiliary equation has the following two complex roots of multiplicity .n  

   imim  21    ,  

 

Thus, the general solution of the differential equation is a linear combination of the 

following linearly independent solutions 

  2 1cos ,  cos ,  cos ,  ,  cosx x x n xe x xe x x e x x e x        

  2 1sin ,  sin ,  sin ,  ,  sinx x x n xe x xe x x e x x e x        

Hence, the differential operator 

    nDD  2 222    

is the annihilator operator of the functions 

  2 1cos ,  cos ,  cos ,  ,  cosx x x n xe x xe x x e x x e x        

  2 1sin ,  sin ,  sin ,  ,  sinx x x n xe x xe x x e x x e x         

  

Example 10 

If we take  

  1  ,2  ,1  n   

Then the differential operator 

    nDD  2 222    

becomes 522  DD .   

 

Also, it can be verified that 

    02cos 522   xeDD x   

    02sin 522   xeDD x  

 

 

Therefore, the linear differential operator 

  522  DD   

annihilates the functions 
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 

  xexy

xexy

x

x

2sin 

 2cos

2

1








 

 

Now, consider the differential equation 

    0 522  yDD   

 

The auxiliary equation is 

   
im

mm

 21

0522



  

 

Therefore, the functions  

  
 

  xexy

xexy

x

x

2sin 

 2cos

2

1








 

are the two linearly independent  solutions of the differential equation 

    2 2 5 0D D y   , 

 

Therefore, the operator also annihilates a linear combination of 1y  and 2y ,  e.g.   

   1 25 9 5 cos2 9 sin 2x xy y e x e x    . 

 

Example 11 

If we take  

  2  ,1  ,0  n   

 

Then the differential operator 

    nDD  2 222    

becomes  

  12)1( 2422  DDD  

  

Also, it can be verified that 

    0cos 12 24  xDD   

    0  sin 12 24  xDD  

and  

    0cos 12 24  xxDD  

    0sin 12 24  xxDD  

 

Therefore, the linear differential operator 

  12 24  DD   
annihilates the functions 
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xxxx

xx

sin   ,cos

sin        ,cos
 

 

Example 12 

Taking 1n  ,0  , the operator  

    nDD  2 222    

becomes 

   22 βD   

 

Since    0 cos coscos 2222  xxβxβD   

   0 sin sin sin 2222  xxxββD   

 

Therefore, the differential operator annihilates the functions 

  xxgxxf  sin)(    , cos)(    

 

Note that  

 If a linear differential operator with constant coefficients is such that 

      01 yL ,   02 yL  

i.e. the operator L annihilates the functions 1y and 2y . Then the operator L  

annihilates their linear combination. 

     02211  xycxycL .  

This result follows from the linearity property of the differential operator L . 

 

 Suppose that 1L and 2L  are linear operators with constant coefficients such that 

        0     ,0 2211  yLyL  

and        0     ,0 1221  yLyL  

then the product of these differential operators 21LL  annihilates the linear sum 

    xyxy 21   

So that         02121  xyxyLL  

  

To demonstrate this fact we use the linearity property for writing 

         2211212121 yLLyLLyyLL   

  

Since   1221 LLLL   

 therefore       2211122121 yLLyLLyyLL   

 or     )]([)]([ 2211122121 yLLyLLyyLL   

 But we know that     0     ,0 2211  yLyL  

 Therefore    0]0[]0[ 122121  LLyyLL  

 

Example 13 

Find a differential operator that annihilates the function 

xxxf 3sin67)(   
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Solution 

 Suppose that 

   xxxxy 3sin6)(y   ,7)( 21   

  Then 

   
 

  03sin9)()9(

      0         7          )(

2
2

2

2
1

2





xDxyD

xDxyD
 

Therefore,   )9( 22 DD  annihilates the function ).(xf  

 

Example 14 

Find a differential operator that annihilates the function 

3( ) x xf x e xe   

Solution 

Suppose that 

   3
1 2( ) ,    y ( )x xy x e x xe   

  Then 

   
   

    .01    1

  ,0    3      3

2
2

2

3
1



 

x

x

xeDyD

eDyD
 

Therefore, the product of two operators 

     213  DD  

annihilates the given function   xx xeexf  3)(  

 

Note that  

 The differential operator that annihilates a function is not unique. For example,    

  0 )5( 5  xeD ,  

   ,0 1 5 5  xeDD  

  0 5 52  xeDD  

Therefore, there are 3 annihilator operators of the functions, namely   

   5D ,   1 5  DD ,   25 DD    

 

 When we seek a differential annihilator for a function, we want the operator of 

lowest possible order that does the job. 

 

Exercises 

 

Write the given differential equation in the form    ,xgyL  where L is a differential 

operator with constant coefficients. 

 

1. xy
dx

dy
sin95   

2. 384  xy
dx

dy
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3. x
dx

dy

dx

yd

dx

yd
454

2

2

3

3

  

4. xy
dx

dy

dx

yd

dx

yd
sin1672

2

2

3

3

  

 

Factor the given differentiable operator, if possible. 

5. 49 2 D  

6. 52 D  

7. 10132 23  DDD  

8. 168 24  DD  

 

Verify that the given differential operator annihilates the indicated functions 

9. 2412 x/e;   yD   

10. x x-;    yD 8sin58cos264  4   

 

Find a differential operator that annihilates the given function. 

11. 
xxex 63  

12. xsin1  
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Lecture 19 Undetermined Coefficients: Annihilator 

Operator Approach 
 

 

The method of undetermined coefficients that utilizes the concept of annihilator operator 

approach is also limited to non-homogeneous linear differential equations 

 That have constant coefficients, and  

 Where the function )(xg  has a specific form. 

 

The form of )(xg :The input function )(xg  has to have one of the following forms: 

 A constant function k .  

 A polynomial function  

 An exponential function xe  

 The trigonometric functions ) cos(  ), sin( xx    

 Finite sums and products of these functions. 

Otherwise, we cannot apply the method of undetermined coefficients. 

 

The Method 

 

Consider the following non-homogeneous linear differential equation with constant 

coefficients of order n  

  )(011

1

1 xgya
dx

dy
a

dx

yd
a

dx

yd
a

n

n

nn

n

n 




   

If L  denotes the following differential operator  

   01
1

1 aDaDaDaL n
n

n
n  

   

Then the non-homogeneous linear differential equation of order n  can be written as  

                                     )()( xgyL    

The function )(xg should consist of finite sums and products of the proper kind of 

functions as already explained.   

 

The method of undetermined coefficients, annihilator operator approach, for finding a 

particular integral of the non-homogeneous equation consists of the following steps: 

 

Step 1 Write the given non-homogeneous linear differential equation in the form 

   )()( xgyL    

Step 2 Find the complementary solution cy  by finding the general solution of the 

 associated homogeneous differential  equation:       

0)( yL  

Step 3 Operate on both sides of the non-homogeneous equation with a differential 

 operator 1L  that annihilates the function g(x). 

Step 4 Find the general solution of the higher-order homogeneous differential equation 

0)(1 yLL  

Step 5 Delete all those terms from the solution in step 4 that are duplicated in the 

 complementary solution cy , found in step 2.  
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Step 6 Form a linear combination py  of the terms that remain. This is the form of a 

 particular solution of the non-homogeneous differential equation 

   )((y) xgL     

Step 7 Substitute py  found in step 6 into the given non-homogeneous linear differential  

 equation  

   )()( xgyL    

 Match coefficients of various functions on each side of the equality and solve the 

 resulting system of equations for the unknown coefficients in py . 

Step 8 With the particular integral found in step 7, form the general solution of the given 

 differential equation as: 

      pc yyy     

   

 

Example 1 

Solve        
2

2

2

423 xy
dx

dy

dx

yd
 .                                              

Solution:    

Step 1 Since   yD
dx

yd
Dy

dx

dy 2

2

2

  ,   

Therefore, the given differential equation can be written as 

      22 4  23 xyDD   

Step 2 To find the complementary function cy , we consider the associated homogeneous 

differential equation 

      0  23 2  yDD  

The auxiliary equation is 
2 3 2 ( 1)( 2) 0

              1, 2

m m m m

m

     

   
 

Therefore, the auxiliary equation has two distinct real roots.  

    11 m , 22 m , 

 Thus, the complementary function is given by  

xecxeccy 2
21
  

Step 3 In this case the input function is 

    24)( xxg   

Further    04)( 233  xDxgD  

Therefore, the differential operator 
3D annihilates the function g . Operating on both sides 

of the equation in step 1, we have 

 

    
0 )23(

4)23(

23

2323





yDDD

xDyDDD
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This is the homogeneous equation of order 5.  Next we solve this higher order equation.  

 

Step 4 The auxiliary equation of the differential equation in step 3 is 

0)23( 23  mmm    

   0)2)(1(3  mmm  

  2 ,1 ,0 ,0 ,0 m  

Thus its general solution of the differential equation must be 

xx ececxcxccy 2
54

2
321

                                      

 

Step 5 The following terms constitute cy   

   xx ecec 2
54

    

Therefore, we remove these terms and the remaining terms are  

    2
321 xcxcc   

Step 6 This means that the basic structure of the particular solution py  is 

2CxBxAy p  ,                                                   

Where the constants 1c , 2c  and 3c  have been replaced, with A, B, and C, respectively.  

Step 7 Since    
2CxBxAy p   

,2CxBy p        

Cy p 2  

 Therefore  
222263223 CxBxACxBCyyy ppp   

or   )232()62()2(23 2 CBAxCBxCyyy ppp   

Substituting into the given differential equation, we have  

   004)232()62()2( 22  xxCBAxCBxC  

Equating the coefficients of xx ,2  and the constant terms, we have  

0232

062

42

 C  BA

  C         B 

            C         







 

Solving these equations, we obtain  

    2C   ,6   ,7  BA   

 Hence    
2267 xxy p   

Step 8 The general solution of the given non-homogeneous differential equation is  

    pc yyy   

    22
21 267 xxececy xx   . 

 

Example 2 
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Solve     xe
dx

dy

dx

yd x  sin483 3

2

2

                                                            

Solution:      

Step 1   Since   yD
dx

yd
Dy

dx

dy 2

2

2

  ,   

Therefore, the given differential equation can be written as 

      xeyDD x sin48 3 32   

 

Step 2 We first consider the associated homogeneous differential equation to find cy    

The auxiliary equation is 

    3 ,00)3(  mmm  

Thus the auxiliary equation has real and distinct roots. So that we have 

x
c eccy 3

21   

 

Step 3 In this case the input function is given by  

    xexg x sin48)( 3   

Since    0) sin4)(1(  ,0)8)(3( 23  xDeD x  

Therefore, the operators 3D  and 12 D  annihilate 
xe38  and x sin4 , respectively. So 

the operator )1)(3( 2  DD annihilates the input function ).(xg  This means that 

   0)sin8)(1)(3()()1)(3( 322  xeDDxgDD x  

 We apply )1)(3( 2  DD  to both sides of the differential equation in step 1 to obtain  

0)3)(1)(3( 22  yDDDD .                                  

This is homogeneous differential equation of order 5. 

 

Step 4 The auxiliary equation of the higher order equation found in step 3 is 

0)3)(1)(3( 22  mmmm  

     0)1()3( 22  mmm  

   im    ,3  ,3  ,0   

Thus, the general solution of the differential equation  

            xcxcxececcy xx  sin cos 54
3

3
3

21                   

 

Step 5 First two terms in this solution are already present in cy   

xecc 3
21    

 Therefore, we eliminate these terms. The remaining terms are 

   xcxcxec x  sin cos 54
3

3   

 

Step 6 Therefore, the basic structure of the particular solution py must be 

   xCxBAxey x
p sincos3   



19-Undetermined Coefficients: Annihilator Operator Approach VU                                                                                                           

 

 

 

© Copyright Virtual University of Pakistan 

 
174 

The constants 4,3  cc and 5c have been replaced with the constants BA  , and C , 

respectively. 

 

Step 7 Since  xCxBAxey x
p sincos3   

Therefore  
33 3 ( 3 )cos (3 )sinx

p py y Ae B C x B C x         

Substituting into the given differential equation, we have 

 3 33 ( 3 )cos (3 )sin 8 4sinx xAe B C x B C x e x       . 

Equating coefficients of xe x cos ,3  and xsin , we obtain 

   43  ,03  ,83  CBCBA  

Solving these equations we obtain 

   8/3,   6 / 5,   2 / 5A B C     

xxxey x
p sin

5

2
cos

5

6

3

8 3  . 

 

Step 8 The general solution of the differential equation is then 

3 3
1 2

8 6 2
cos sin

3 5 5
x xy c c e xe x x     . 

 

Example 3  

Solve    
2

2
8 5 2 xd y

y x e
dx

     .           

Solution:   
Step 1 The given differential equation can be written as 

   xexyD  25)8( 2  

 

Step 2 The associated homogeneous differential equation is 

   0)8( 2  yD  

Roots of the auxiliary equation are complex 

   im  22  

Therefore, the complementary function is  

   xcxcyc  22sin 22cos 21   

 

Step 3 Since   0)1(   ,02  xeDxD   

Therefore the operators 
2D  and 1D annihilate the functions x5  and

xe2 .  We apply 

)1(2 DD  to the non-homogeneous differential equation 

0)8)(1( 22  yDDD .  

This is a homogeneous differential equation of order 5.  

 

Step 4 The auxiliary equation of this differential equation is  
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im

mmm

 22 ,1 ,0 ,0

0)8)(1( 22




 

Therefore, the general solution of this equation must be 

51 2 3 4cos2 2 sin2 2 xy c x c x c c x c e      

 

Step 5 Since the following terms are already present in cy  

   xcxc 22sin22cos 21   

Thus we remove these terms. The remaining ones are 

   xecxcc  543  

 

Step 6 The basic form of the particular solution of the equation is  

   
x

p CeBxAy   

The constants 43 ,cc and 5c have been replaced with BA  , and C . 

 

Step 7 Since   
x

p CeBxAy   

Therefore  
x

pp CeBxAyy  9888  

Substituting in the given differential equation, we have 

   8 8 9 5 2x xA Bx Ce x e      

Equating coefficients of xex   , and the constant terms, we have 

   9/2  ,85 ,0  C/BA  

Thus    
x

p exy 
9

2

8

5
 

 

Step 8 Hence, the general solution of the given differential equation is 

   pc yyy   

or   1 2
5 2

cos2 2 sin 2 2
8 9

xy c x c x x e    . 

 

Example 4 

Solve    xxxy
dx

yd
coscos

2

2

      

Solution:    
 

Step 1 The given differential equation can be written as 

    xxxyD coscos)1( 2   

 

Step 2 Consider the associated differential equation 

   0)1( 2  yD  

The auxiliary equation is  
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012 m  im    

Therefore  xcxcyc sincos 21   

 

Step 3 Since   0)cos()1( 22  xxD   
2 2( 1) cos 0  ;     0D x x     

Therefore, the operator 22 )1( D annihilates the input function  

   xxx coscos   

Thus operating on both sides of the non-homogeneous equation with 22 )1( D , we have  

0)1()1( 222  yDD    

or   0)1( 32  yD  

This is a homogeneous equation of order 6. 

 

Step 4 The auxiliary equation of this higher order differential equation is 

   iiiiiimm   , , , , ,0)1( 32   

Therefore, the auxiliary equation has complex roots i , and i both of multiplicity 3. We 

conclude that 

xxcxxcxxcxxcxcxcy sincossincossincos 2

6

2

54321   

 

Step 5 Since first two terms in the above solution are already present in cy    

xcxc sincos 21    

Therefore, we remove these terms. 

 

Step 6 The basic form of the particular solution is 

xExxCxxBxxAxy p sincossincos 22   

 

Step 7 Since    xExxCxxBxxAxy p sincossincos 22     

Therefore 

xEAxCBxCxxExyy pp sin)22(cos)22(sin4cos4   

Substituting in the given differential equation, we obtain 

  xxxxEAxCBxCxxEx coscossin)22(cos)22(sin4cos4                 

Equating coefficients of xxxxx cos,sin,cos  and xsin , we obtain  

              
022    ,122

0         4    ,1             4





EACB

CE
 

Solving these equations we obtain 

   4/1  ,0  ,2/1  ,4/1  ECBA  

Thus   xxxxxxy p sin
4

1
sin

2

1
cos

4

1 2  

 

Step 8 Hence the general solution of the differential equation is 

xxxxxxxcxcy sin
4

1
sin

2

1
cos

4

1
sincos 2

21  . 
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Example 5 
Determine the form of a particular solution for  

xey
dx

dy

dx

yd x cos102 2

2

2
           

Solution 
 

Step 1 The given differential equation can be written as 

  xeyDD x cos10)12( 22    

 

Step 2 To find the complementary function, we consider  

02  yyy   

The auxiliary equation is  

0122  mm  1 ,10)1( 2  mm  

The complementary function for the given equation is 

xx
c xececy 21   

 

Step 3 Since 0cos)54( 22   xeDD x  

Applying the operator )54( 2  DD  to both sides of the equation, we have 

0)12)(54( 22  yDDDD            

This is homogeneous differential equation of order 4. 

                           

Step 4 The auxiliary equation is 

    
1 ,1 ,2  

0)12)(54( 22

im

mmmm




 

Therefore, general solution of the 4
th

 order homogeneous equation is   

2 2
1 2 3 4cos sinx x x xy c e c xe c e x c e x      

Step 5 Since the terms 
xx xecec 21   are already present in cy , therefore, we remove these 

and the remaining terms are xecxec xx sincos 2
4

2
3

   

 

Step 6 Therefore, the form of the particular solution of the non-homogeneous equation is  

               xBexAey xx
p sincos 22    

Note that the steps 7 and 8 are not needed, as we don’t have to solve the given 

differential equation. 

 

Example 6 
Determine the form of a particular solution for  

xx eexxx
dx

dy

dx

yd

dx

yd 5222

2

2

3

3

346544  .                 

Solution: 

 
Step 1 The given differential can be rewritten as 
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     xx eexxxyDDD 522223 3465 44   

 

Step 2 To find the complementary function, we consider the equation 

  0 44 23  yDDD   

 The auxiliary equation is  

044 23  mmm  

0)44( 2  mmm  

2 ,2 ,00)2( 2  mmm  

 

Thus the complementary function is 

    xx
c xececcy 2

3
2

21   

 

Step 3 Since   xx eexxxxg 5222 3465)(   

 

Further   0)65( 23  xxD  

0)2( 223  xexD  

0)5( 5  xeD  

Therefore the following operator must annihilate the input function )(xg . Therefore, 

applying the operator )5()2( 33  DDD  to both sides of the non-homogeneous equation, 

we have 

0)4)(5()2( 2333  yDDDDDD  

or         0)5()2( 54  yDDD  

This is homogeneous differential equation of order 10. 

 

Step 4 The auxiliary equation for the 10
th

 order differential equation is 

   
5 ,2 ,2 ,2 ,2 ,2 ,0 ,0 ,0 ,0

0)5()2( 54





m

mmm
 

 Hence the general solution of the 10
th

 order equation is  

  xxxxxx ecexcexcexcxececxcxcxccy 5
10

24
9

23
8

22
7

2
6

2
5

3
4

2
321     

 

Step 5 Since the following terms constitute the complementary function cy , we remove 

these    xx xececc 2
6

2
51   

 

Thus the remaining terms are 

  xxxx ecexcexcexcxcxcxc 5
10

24
9

23
8

22
7

3
4

2
32   

 

Hence, the form of the particular solution of the given equation is  
2 3 2 2 3 2 4 2 5x x x x

py Ax Bx Cx Ex e Fx e Gx e He        
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Exercise 

 

Solve the given differential equation by the undetermined coefficients. 

 

1. 29572  yyy  

2. 543  xyy  

3. xeyyy 6522   

4. 8sin3cos44  xxyy  

5. xexyyy  22  

6. xxyy sincos4   

7. 7 xx exeyyyy  

8. xxyy sin42cos8  , 1)2/( y , 0)2/(  y  

9. 52  xxeyyy , y(0)=2,  2)0( y , 1)0( y  

10. xexyy )4(
, y(0)=0, 0)0( y , 0)0( y , 0)0( y  
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Lecture 20 Variation of Parameters 

 

 
 

Recall  
 

 That a non-homogeneous linear differential equation with constant coefficients is 

an equation of the form 

 )(011

1

1 xgya
dx

dy
a

dx

yd
a

dx

yd
a

n

n

nn

n

n 




   

 The general solution of such an equation is given by 

 

  General Solution = Complementary Function + Particular Integral 

 

 Finding the complementary function has already been completely discussed. 

 

 In the last two lectures, we learnt how to find the particular integral of the non-

homogeneous equations by using the undetermined coefficients.  

 

 That the general solution of a linear first order differential equation of the form 

     xfyxP
dx

dy
  

 is given by    1.  
Pdx Pdx Pdx

y e e f x dx c e
      

 

Note that 

 

 In this last equation, the 2
nd 

term  

    
Pdx

ecyc 1  

 is solution of the associated homogeneous equation: 

    0 yxP
dx

dy
 

 Similarly, the 1
st
  term 

   dxxfe
Pdx

ey
Pdx

p ..



 

 is a particular solution of the first order non-homogeneous linear  differential 

 equation.  

 Therefore, the solution of the first order linear differential equation can be written 

in the form 

   pc yyy   
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In this lecture, we will use the variation of parameters to find the particular integral of the 

non-homogeneous equation. 

 

The Variation of Parameters 

 

First order equation 

The particular solution py  of the first order linear differential equation is given by 

    dxxfe
Pdx

ey
Pdx

p ..



 

This formula can also be derived by another method, known as the variation of 

parameters. The basic procedure is same as discussed in the lecture on construction of a 

second solution 

Since     
Pdx

ey1  

is the solution of the homogeneous differential equation 

     ,0 yxP
dx

dy
 

and the equation is linear. Therefore, the general solution of the equation is 

   xycy 11  

The variation of parameters consists of finding a function  xu1  such that  

     1 1 py u x y x  

is a particular solution of the non-homogeneous differential equation  

       
dy

P x y f x
dx

   

Notice that the parameter 1c  has been replaced by the variable 1 u . We substitute py in 

the given equation to obtain  

     xf
dx

du
yyxP

dx

dy
u 








 1

11
1

1  

Since 1y  is a solution of the non-homogeneous differential equation. Therefore we must 

have  

   1
1 0

dy
P x y

dx
   

So that we obtain 

   1
1

du
y f x

dx
  

This is a variable separable equation. By separating the variables, we have 

  
 
 1

1

f x
du dx

y x
  

 

Integrating the last expression w.r.to x , we obtain 
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 

 1

1

( )
Pdxf x

u x dx e f x dx
y






    

Therefore, the particular solution py  of the given first-order differential equation is .  

                    1 1( )y u x y  

or   
 dxxf
Pdx

e
Pdx

ey p  ..  

  
 
 1

1

f x
u dx

y x





 

 

Second Order Equation 

Consider the 2
nd

 order linear non-homogeneous differential equation 

          xgyxayxayxa  012   

By dividing with )(2 xa , we can write this equation in the standard form 

       xfyxQyxPy   

The functions      ,    P x Q x f xand  are continuous on some interval I . For the 

complementary function we consider the associated homogeneous differential equation 

      0 yxQyxPy  

Complementary function 

Suppose that 21  and yy  are two linearly independent solutions of the homogeneous 

equation. Then 1 2and  y y  form a fundamental set of solutions of the homogeneous 

equation on the interval I . Thus the complementary function is  

     xycxycyc 2211   

Since 21  and yy  are solutions of the homogeneous equation. Therefore, we have 

      0  111  yxQyxPy  

      0  222  yxQyxPy  

 Particular Integral 

For finding a particular solution y
p

, we replace the parameters 1c and 2c in the 

complementary function with the unknown variables )(1 xu  and )(2 xu . So that the 

assumed particular integral is 

         1 1 2 2py u x y x u x y x   

Since we seek to determine two unknown functions 1u and 2u , we need two equations 

involving these unknowns. One of these two equations results from substituting the 

assumed py in the given differential equation. We impose the other equation to simplify 

the first derivative and thereby the 2
nd

 derivative of py .   
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 2211221122221111 yuyuyuyuyuyuuyyuy p   

To avoid 2
nd

 derivatives of 1u  and 2u , we impose the condition 

  02211  yuyu  

Then  2211 yuyuy p   

So that   

 22221111 yuyuyuyuy p   

Therefore 

 
2211̀2211

22221111

                                             

                              

yQuyQuyPuyPu

yuyuyuyuyQyPy ppp




 

Substituting in the given non-homogeneous differential equation yields    

 

              )(            2211̀221122221111 xfyQuyQuyPuyPuyuyuyuyu   

 

or            )(][]  [ 221122221111 xfyuyuQyyPyuyQyPyu     

 

Now making use of the relations 

      0  111  yxQyxPy  

      0  222  yxQyxPy  

we obtain 

   xfyuyu  2211  

Hence 1u and 2u must be functions that satisfy the equations 

  02211  yuyu  

   xfyuyu 
2211          

By using the Cramer’s rule, the solution of this set of equations is given by     

  
W

W
u 1

1  ,  
W

W
u 2

2   

WhereW , 1W  and 2W  denote the following determinants  

 
   

2 11 2
1 2

2 11 2

0 0
,       ,     

y yy y
W W W

f x y y f xy y
  

  
 

The determinant W  can be identified as the Wronskian of the solutions 1y  and 2y . Since 

the solutions 21  and yy  are linearly independent on I . Therefore  

      .    ,0, 21 IxxyxyW   
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Now integrating the expressions for 1u   and 2u  , we obtain the values of 1u and 2u , hence 

the particular solution of the non-homogeneous linear differential equation.  

Summary of the Method 

To solve the 2
nd

 order non-homogeneous linear differential equation 

  ,012 xgyayaya   

using the variation of parameters, we need to perform the following steps: 

 

Step 1 We find the complementary function by solving the associated homogeneous 

differential equation  

 0012  yayaya  

Step 2 If the complementary function of the equation is given by  

 2211 ycyccy    

then 1y  and 2y  are two linearly independent solutions of the homogeneous differential 

equation. Then compute the Wronskian of these solutions. 

 
21

21

yy

yy
W


  

Step 3 By dividing with 2a , we transform the given non-homogeneous equation into the 

standard form 

      xfyxQyxPy    

and we identify the function  xf .  

Step 4 We now construct the determinants 21  and WW  given by 

 
2

2
1

)(

0

yxf

y
W


 ,  

)(

0

1

1
2

xfy

y
W


  

 Step 5 Next we determine the derivatives of the unknown variables 1u  and 2u  through 

the relations  

 
W

W
u

W

W
u 2

2
1

1     ,   

 Step 6 Integrate the derivatives 21   and  uu   to find the unknown variables 1u  and 2u . So 

that 

 1 2
1 2  ,     

W W
u d x u d x 

W W

 
 
 
 

   

Step 7 Write a particular solution of the given non-homogeneous equation as 

 2211 yuyupy   

Step 8 The general solution of the differential equation is then given by 

 22112211   yuyuycycpycyy  . 
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Constants of Integration 

We don’t need to introduce the constants of integration, when computing the indefinite 

integrals in step 6 to find the unknown functions of 1 2  and u u . For, if we do introduce 

these constants, then   

 
1 1 1 2 1 2( )   ( )py u a y u b y     

So that the general solution of the given non-homogeneous differential equation is   

     2121112211 ybuyauycycyyy pc   

or    1 1 1 2 1 2 1 1 2 2y c a y c b y u y u y       

If we replace 11 ac  with 1C and 2 1c b with 2C , we obtain 

 22112211 yuyuyCyCy   

This does not provide anything new and is similar to the general solution found in step 8, 

namely 

  1 1 2 2 1 1 2 2y c y c y u y u y     

Example 1 

Solve    24 4 1 .xy y y x e      

Solution:  

 

Step 1 To find the complementary function 

  044  yyy  

Put   mxemymxmeymxey 2,,    

Then the auxiliary equation is 

  0442  mm  

    02
2
m 2 ,2 m  

Repeated real roots of the auxiliary equation 

  
2 2

1 2    x x

cy c e c xe   

Step 2 By the inspection of the complementary function cy , we make the identification   

   xx xeyey 2
2

2
1  and   

 Therefore     xe
exee

xee
xeeWyyW x

xxx

xx

xx 


  ,0
22

, , 4

222

22

22

21  

 

Step 3 The given differential equation is  
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    xexyyy 2144   

Since this equation is already in the standard form 

       xfyxQyxPy   

Therefore, we identify the function )(xf as 

      xexxf 2 1  

Step 4 We now construct the determinants  

  
 

 
2

4

1 2 2 2

0
1

1 2

x

x

x x x

xe
W x xe

x e xe e
   

 
 

  
 

 
2

4

2 2 2

0
1

2 1

x

x

x x

e
W x e

e x e
  


 

Step 5 We determine the derivatives of the functions 1u  and 2u  in this step  

  

 

 
1

 1

1

4

4

2
2

2

4

4

1
1











x
e

ex

W

W
u

xx
e

xex

W

W
u

x

x

x

x

 

Step 6 Integrating the last two expressions, we obtain  

  

.
2

      )1(

   
23

)(

2

2

23
2

1

x
x

dxxu

xx
dxxxu








 

Remember! We don’t have to add the constants of integration. 

Step 7 Therefore, a particular solution of then given differential equation is 

  xxex
xxe

xx
p

y 2

2

2
2 

2

2

3

3





























  

or  xe
xx

py 2

2

2

6

3














  

Step 8 Hence, the general solution of the given differential equation is  

  

3 2
2

1 2

2 2

6 2

x x xx xy y y c e c xe e
c p

 
      

 
 

 

Example 2 

Solve  .3csc364 xyy   
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Solution:  

Step 1 To find the complementary function we solve the associated homogeneous 

differential equation 

   090364  yyyy  

The auxiliary equation is  

  imm  3092   

Roots of the auxiliary equation are complex. Therefore, the complementary function is 

  xcxccy 3sin3cos 21   

Step 2 From the complementary function, we identify  

   3sin  ,3cos 21 xyxy   

as two linearly independent solutions of the associated homogeneous equation. Therefore 

         3
3cos33sin3

3sin3cos
3sin,3cos 




xx

xx
xxW  

Step 3 By dividing with 4 , we put the given equation in the following standard form   

  .3csc
4

1
9 xyy   

So that we identify the function )(xf as 

    xxf 3csc
4

1
  

 

 

Step 4 We now construct the determinants 1W  and 2W  

 

 1

0 sin 3
1 1

csc3 sin 31
4 4csc3 3cos3

4

x

W x x
x x

       

 2

cos3 0
1 cos3

1
4 sin33sin3 csc3

4

x
x

W
xx x

 


  

Step 5 Therefore, the derivatives 1u  and 2u   are given by 

 
x

x

W

W
u

W

W
u

3sin

3cos

12

1
    , 

12

1 2
2

1
1   

Step 6 Integrating the last two equations w.r.to x , we obtain 



20-Variation of Parameters    VU                                                                                                           

 

 

 

© Copyright Virtual University of Pakistan 

 
188 

 xuxu 3sinln
36

1
    and    

12

1
21   

Note that no constants of integration have been added. 

Step 7 The particular solution of the non-homogeneous equation is 

  
1 1

cos3 sin3 ln sin3
12 36

y x x x xp     

Step 8 Hence, the general solution of the given differential equation is 

                  xxxxxcxcpycyy 3sinln3sin
36

1
3cos

12

1
3sin3cos 21   

Example 3 

Solve  .
1

x
yy   

Solution:  

Step 1 For the complementary function consider the associated homogeneous equation  

  0 yy  

To solve this equation we put 

   mxmxmx emyemyey 2,  ,   

Then the auxiliary equation is:  

  1012  mm  

The roots of the auxiliary equation are real and distinct. Therefore, the complementary 

function is 

  xecxeccy  21  

 

Step 2 From the complementary function we find 

  xeyxey  21    ,  

The functions 1y  and 2y  are two linearly independent solutions of the homogeneous 

equation. The Wronskian of these solutions is  

    2
  

 
     , 









xx

xx
xx

ee

ee
eeW  

 

Step 3 The given equation is already in the standard form 

       y p x y Q x y f x     

Here   
x

xf
1

)(   
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Step 4 We now form the determinants 

  

)/1( 
 /1 

0 
   W

)/1(
 /1

0
 W

2

1

xe
xe

e

xe
ex

e

x
x

x

x
x

x






 




 

Step 5 Therefore, the derivatives of the unknown functions 1u and 2u are given by 

  
 

x

exe

W

W
u

xx

22

/11
1






  

  
 

x

exe

W

W
u

xx

22

/12
2 


  

Step 6 We integrate these two equations to find the unknown functions 1u  and 2u . 

  
1

1

2

xe
u dx

x






 ,   
2

1

2

xe
u dx

x






   

 

 

The integrals defining 21  and uu  cannot be expressed in terms of the elementary functions 

and it is customary to write such integral as: 

  1 2

1 1
,     -

2 2

x xt t

xx

e e
u dt u dt

t t

 
 
  

   

Step 7 A particular solution of the non-homogeneous equations is 

  











 


x

x

x

x

t
x

t
x

p dt
t

e
edt

t

e
ey

 
2

1

2

1
 

Step 8 Hence, the general solution of the given differential equation is 

 








 




x

x

t
x

x

x

t
xxx dt

t

e
edt

t

e
eececpycyy


2

1

2

1
21  
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Exercise 

Solve the differential equations by variations of parameters. 

1. xyy tan  

2. xxyy tansec  

3. xyy 2sec  

4. xexyy 3/9  

5.  21/2 xeyyy x   

6. 22/ 144 xeyyy x   

7. xyy 2sec4   

8. 262 xyy   

Solve the initial value problems. 

9. 12  xyyy  

10.   xexxyyy 22 61244   
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1-Introduction and Overview  VU 

Lecture 1 
 

Introduction and Overview 
 
What is Algebra? 
 

History: 

Algebra is named in honor of Mohammed Ibn-e- Musa al-Khowârizmî. Around 825, he 

wrote a book entitled Hisb al-jabr u'l muqubalah, ("the science of reduction and 

cancellation"). His book, Al-jabr, presented rules for solving equations. 

Algebra is a branch of Mathematics that uses mathematical statements to describe 

relationships between things that vary over time. These variables include things like the 

relationship between supply of an object and its price. When we use a mathematical 

statement to describe a relationship, we often use letters to represent the quantity that 

varies, since it is not a fixed amount. These letters and symbols are referred to as 

variables.  

Algebra is a part of mathematics in which unknown quantities are found with the help of 

relations between the unknown and known. 

In algebra, letters are sometimes used in place of numbers. 

The mathematical statements that describe relationships are expressed using algebraic 

terms, expressions, or equations (mathematical statements containing letters or symbols 

to represent numbers). Before we use algebra to find information about these kinds of 

relationships, it is important to first cover some basic terminology.  

Algebraic Term: 

The basic unit of an algebraic expression is a term. In general, a term is either a product 
of a number and with one or more variables.  

For example   4x is an algebraic term in which 4 is coefficient and x is said to be variable. 

Study of Algebra: 

Today, algebra is the study of the properties of operations on numbers. Algebra 

generalizes arithmetic by using symbols, usually letters, to represent numbers or 
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unknown quantities. Algebra is a problem-solving tool. It is like a tractor, which is a 

farmer's tool. Algebra is the mathematician's tool for solving problems. Algebra has 

applications to every human endeavor. From art to medicine to zoology, algebra can be a 

tool. People who say that they will never use algebra are people who do not know about 

algebra. Learning algebra is a bit like learning to read and write. If you truly learn 

algebra, you will use it. Knowledge of algebra can give you more power to solve 

problems and accomplish what you want in life. Algebra is a mathematicians’ shorthand! 

Algebraic Expressions: 

An expression is a collection of numbers, variables, and +ve sign or –ve sign, of 
operations that must make mathematical and logical behaviour.  

For example    28 9 1x x+ −  is an algebraic expression.  

What is Linear Algebra? 
 
 One of the most important problems in mathematics is that of solving systems of linear 

equations. It turns out that such problems arise frequently in applications of mathematics 

in the physical sciences, social sciences, and engineering. Stated in its simplest terms, the 

world is not linear, but the only problems that we know how to solve are the linear ones. 

What this often means is that only recasting them as linear systems can solve non-linear 

problems. A comprehensive study of linear systems leads to a rich, formal structure to 

analytic geometry and solutions to 2x2 and 3x3 systems of linear equations learned in 

previous classes. 

It is exactly what the name suggests. Simply put, it is the algebra of systems of linear 

equations. While you could solve a system of, say, five linear equations involving five 

unknowns, it might not take a finite amount of time. With linear algebra we develop 

techniques to solve m linear equations and n unknowns, or show when no solution exists. 

We can even describe situations where an infinite number of solutions exist, and describe 

them geometrically. 

Linear algebra is the study of linear sets of equations and their transformation properties. 
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Linear algebra, sometimes disguised as matrix theory, considers sets and functions, which 

preserve linear structure. In practice this includes a very wide portion of mathematics! 

Thus linear algebra includes axiomatic treatments, computational matters, algebraic 

structures, and even parts of geometry; moreover, it provides tools used for analyzing 

differential equations, statistical processes, and even physical phenomena. 

Linear Algebra consists of studying matrix calculus. It formalizes and gives geometrical 

interpretation of the resolution of equation systems. It creates a formal link between 

matrix calculus and the use of linear and quadratic transformations. It develops the idea 

of trying to solve and analyze systems of linear equations.  

Applications of Linear algebra: 

Linear algebra makes it possible to work with large arrays of data. It has many 

applications in many diverse fields, such as 

• Computer Graphics,  

• Electronics,  

• Chemistry,  

• Biology,  

• Differential Equations,  

• Economics,  

• Business,  

• Psychology,  

• Engineering,  

• Analytic Geometry,  

• Chaos Theory,  

• Cryptography,  

• Fractal Geometry,  

• Game Theory,  

• Graph Theory,  

• Linear Programming,  

• Operations Research 

 

 
   ______________________________________________________________________  
                                                ©Virtual University Of Pakistan                                                          6 
 
 

                                            



1-Introduction and Overview  VU 

It is very important that the theory of linear algebra is first understood, the concepts are 

cleared and then computation work is started. Some of you might want to just use the 

computer, and skip the theory and proofs, but if you don’t understand the theory, then it 

can be very hard to appreciate and interpret computer results. 

Why using Linear Algebra? 

Linear Algebra allows for formalizing and solving many typical problems in different 

engineering topics. It is generally the case that (input or output) data from an experiment 

is given in a discrete form (discrete measurements). Linear Algebra is then useful for 

solving problems in such applications in topics such as Physics, Fluid Dynamics, Signal 

Processing and, more generally Numerical Analysis. 

Linear algebra is not like algebra. It is mathematics of linear spaces and linear functions. 

So we have to know the term "linear" a lot. Since the concept of linearity is fundamental 

to any type of mathematical analysis, this subject lays the foundation for many branches 

of mathematics.  

Objects of study in linear algebra: 

Linear algebra merits study at least because of its ubiquity in mathematics and its 

applications. The broadest range of applications is through the concept of vector spaces 

and their transformations. These are the central objects of study in linear algebra  

 

1. The solutions of homogeneous systems of linear equations form paradigm 

examples of vector spaces. Of course they do not provide the only examples.  

2. The vectors of physics, such as force, as the language suggests, also provide 

paradigmatic examples.  

3. Binary code is another example of a vector space, a point of view that finds 

application in computer sciences.  

4. Solutions to specific systems of differential equations also form vector spaces.  

5. Statistics makes extensive use of linear algebra.  

6. Signal processing makes use of linear algebra.  

7. Vector spaces also appear in number theory in several places, including the 

study of field extensions.  
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8. Linear algebra is part of and motivates much abstract algebra. Vector spaces 

form the basis from which the important algebraic notion of module has been 

abstracted.  

9. Vector spaces appear in the study of differential geometry through the tangent 

bundle of a manifold.  

10. Many mathematical models, especially discrete ones, use matrices to represent 

critical relationships and processes. This is especially true in engineering as 

well as in economics and other social sciences.  

 

There are two principal aspects of linear algebra: theoretical and computational. A major 

part of mastering the subject consists in learning how these two aspects are related and 

how to move from one to the other.  

  

Many computations are similar to each other and therefore can be confusing without 

reasonable level of grasp of their theoretical context and significance. It will be very 

tempting to draw false conclusions.  

 

On the other hand, while many statements are easier to express elegantly and to 

understand from a purely theoretical point of view, to apply them to concrete problems 

you will need to “get your hands dirty”. Once you have understood the theory sufficiently 

and appreciate the methods of computation, you will be well placed to use software 

effectively, where possible, to handle large or complex calculations.  
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Course Segments: 

 

The course is covered in 45 Lectures spanning over six major segments, which are given 

below; 

 

1. Linear Equations 

2. Matrix Algebra  

3. Determinants  

4. Vector spaces  

5. Eigen values and Eigenvectors, and 

6. Orthogonal sets  

 

Course Objectives: 

The main purpose of the course is to introduce the concept of linear algebra, explain the 

underline theory, explain the computational techniques and then try to apply them on real 

life problems. Broad course objectives are as under; 

 

• To master techniques for solving systems of linear equations  

• To introduce matrix algebra as a generalization of the single-variable algebra of 

high school.  

• To build on the background in Euclidean space and formalize it with vector space 

theory.  

• To develop an appreciation for how linear methods are used in a variety of 

applications.  

• To relate linear methods to other areas of mathematics such as calculus and, 

differential equations.  
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Recommended Books and Supported Material: 
 
I am indebted to several authors whose books I have freely used to prepare the lectures 

that follow. The lectures are based on the material taken from the books mentioned 

below. 

 

1. Linear Algebra and its Applications (3rd Edition) by David C. Lay.  

2. Contemporary Linear Algebra by Howard Anton and Robert C. Busby. 

3. Introductory Linear Algebra (8th Edition) by Howard Anton and Chris Rorres. 

4. Introduction to Linear Algebra (3rd Edition) by L. W. Johnson, R.D. Riess and 

J.T. Arnold. 

5. Linear Algebra (3rd Edition) by S. H. Friedberg, A.J. Insel and L.E. Spence. 

6. Introductory Linear Algebra with Applications (6th Edition) by B. Kolman. 

 

I have taken the structure of the course as proposed in the book of David C. Lay. I would 

be following this book. I suggest that the students purchase this book, which is easily 

available in the market and also does not cost much. For further study and supplement, 

students can consult any of the above mentioned books.  

I strongly suggest that the students also browse on the Internet; there is plenty of support 

material available. In particular, I would suggest the website of David C. Lay; 

www.laylinalgebra.com, where the entire material, study guide, transparencies are readily 

available. Another very useful website is www.wiley.com/college/anton, which contains a 

variety of useful material including the data sets. A number of other books are also 

available in the market and on the internet with free access. 

I will try to keep the treatment simple and straight. The lectures will be presented in 

simple Urdu and easy English. These lectures are supported by the handouts in the form 

of lecture notes. The theory will be explained with the help of examples. There will be 

enough exercises to practice with. Students are advised to follow the course on daily 

basis and do the exercises regularly.  
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Schedule and Assessment: 
 

The course will be spread over 45 lectures. Lectures one and two will be introductory and 

the Lecture 45 will be the summary. The first two lectures will lay the foundations and 

would provide the overview of the course. These will be important from the concept 

point of view. I suggest that these two lectures should be viewed again and again.   

 

The course will be interesting and enjoyable, if the student follow it regularly and 

complete the exercises as they come along. To follow the tradition of a semester system 

or of a term system, there will be a series of assignments (Max eight assignments) and a 

mid term exam. Finally there will be terminal examination.  

 

The assignments have weights and therefore they have to be taken seriously.  
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Lecture 2 
Background 

     
                                             Introduction to Matrices 
 
Matrix: A matrix is a collection of numbers or functions arranged into rows and columns. 
 
Matrices are denoted by capital letters . The numbers or functions are called 
elements of the matrix. The elements of a matrix are denoted by small letters .  

ZYBA ,,,, …
zyba ,,,, …

 
Rows and Columns: The horizontal and vertical lines in a matrix are, respectively, called 
the rows and columns of the matrix. 
 
Order of a Matrix: The size (or dimension) of matrix is called as order of matrix. Order of 
matrix is based on the number of rows and number of columns. It can be written as r c× ; r 
means no. of  row and c means no. of columns. 
 
If a matrix has m  rows and n  columns then we say that the size or order of the matrix 
is . If nm× A  is a matrix having  rows and columns then the matrix can be written as   m n

                                       

11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a a

A

a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

…
…

… … … …
… … … …

…
The element, or entry, in the ith  row and  column of a jth nm×  matrix A is written as  ija
 

For example: The matrix  has two rows and three columns. So order of A 

will be 2 3  

2 1 3
0 4 6

A
−⎛

= ⎜
⎝ ⎠

⎞
⎟

×
          
Square Matrix: A matrix with equal number of rows and columns is called square matrix.  

For Example   The matrix 
4 7 8
9 3 5
1 1 2

A
−⎛ ⎞

⎜= ⎜
⎜ ⎟−⎝ ⎠

⎟
⎟  has three rows and three columns. So it is a 

square matrix of order 3. 
 
 

Equality of matrices: The two matrices will be equal if they must have  

a)  The same dimensions (i.e. same number of rows and columns) 
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b) Corresponding elements must be equal.  

 Example:   The matrices 
4 7 8
9 3 5
1 1 2

A
−⎛ ⎞

⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

  and 
4 7 8
9 3 5
1 1 2

B
−⎛ ⎞

⎜= ⎜
⎜ ⎟−⎝ ⎠

⎟
⎟  equal matrices  

(i.e A = B) because they both have same orders and same corresponding elements.  
 
Column Matrix: A column matrix X  is any matrix having  rows and only one column. 
Thus the column matrix 

n
X can be written as 

     11

1

31

21

11

][   ×=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

= ni

n

b

b

b

b

b

X

#

A column matrix is also called a column vector or simply a vector. 
 
Multiple of matrix: A multiple of a matrix A  by a nonzero constant k is defined to be  
 

             nmij

mnmm

n

n

ka

kakaka

kakaka

kakaka

kA ×=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= ][

21

22221

11211

"

#"##

"

"

           
 Notice that the product  is same as the product . Therefore, we can write  kA Ak AkkA = .  
 
It implies that if we multiply a matrix by a constant k, then each element of the matrix is to 
be multiplied by k. 
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Example 1: 

(a)              

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

⋅

301

520

1510

65/1

14

32

5

(b)              

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−⋅

t

t

t

t

e

e

e

e

4

2

4

2

1

 
Since we know that . Therefore, we can write      AkkA =
             

t
t

t
t e

e

e
e 3

3

3
3  

5

2
 

5

2

5

2
−

−

−
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅    

 
 
Addition of Matrices: Only matrices of the same order may be added by adding 
corresponding elements. 
 If  and  are two ][ ijaA = ][ ijbB = nm×  matrices then ][ ijij baBA +=+  
Obviously order of the matrix A + B is nm×  
 
 
Example 2: Consider the following two matrices of order 33×    

                               ,     
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−−

−

=

5106

640

312

A
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−

=

211

539

874

B

Since the given matrices have same orders, therefore, these matrices can be added and their 
sum is given by  
 

                  
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−−

−

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+−−++−

+++

−++−+

=+

395

1179

566

25)1(1016

563490

)8(37142

BA

 
Example 3: Write the following single column matrix as the sum of three column vectors  

                                         
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+
−

t
tt
et t

5
7
23

2

2
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Solution: 

                  

2 2

2 2 2

3 2 3 0 2 3 0 2
7 7 0 1 7

5 0 5 0 0 5 0

t t

t

t e t e
t t t t t t

t t

⎛ ⎞ ⎛ ⎞− ⎛ ⎞− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ = + + = + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

0 e

 
Difference of Matrices: The difference of two matrices A  and B  of same order nm×  is 
defined to be the matrix )( BABA −+=−  
 The matrix  is obtained by multiplying the matrix B− B  with 1− .  So that   BB  ) 1 ( −=−
 
Multiplication of Matrices: We can multiply two matrices if and only if, the number of 
columns in the first matrix equals the number of rows in the second matrix.  
Otherwise, the product of two matrices is not possible. 
OR 
If the order of the matrix A  is nm×  then to make the product AB  possible order of the 
matrix B  must be pn× .  Then the order of the product matrix AB  is pm× . Thus  
    pmpnnm CBA ××× =⋅  
 
If the matrices A  and B  are given by 

  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

npnn

p

p

mnmm

n

n

bbb

bbb

bbb

B

aaa

aaa

aaa

A

"

#"##

"

"

"

#"##

"

"

21

22221

11211

21

22221

11211

  ,

Then 

          

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

npnn

p

p

mnmm

n

n

bbb

bbb

bbb

aaa

aaa

aaa

AB

"

#"##

"

"

"

#"##

"

"

21

22221

11211

21

22221

11211

 

           

        =  

11 11 12 21 1 1 11 1 12 2 1

21 11 22 21 2 1 21 1 22 2 2

1 11 2 21 1 1 1 2 2

n n p p n np

n n p p n np

m m mn n m p m p mn n

a b a b a b a b a b a b
a b a b a b a b a b a b

a b a b a b a b a b a b

+ + + + + +⎡ ⎤
⎢ ⎥+ + + + + +⎢ ⎥
⎢ ⎥
⎢ ⎥+ + + + + +⎢ ⎥⎣ ⎦

" " "
" " "

# # #
" " " p

        
 

http://www.mathwarehouse.com/algebra/matrix/index.php#column
http://www.mathwarehouse.com/algebra/matrix/index.php#row
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pn

n

k
kjikba

×=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

1

Example 4: If possible, find the products AB and , when BA

(a)     ,  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

53

74
A ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

86

29
B

 

(b)   ,   
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

7

0

8

2

1

5

A
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
=

02

34
B

 
Solution: (a) The matrices A  and B are square matrices of order 2. Therefore, both of the 
products AB and  are possible.  BA
 

                     
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅+−⋅⋅+⋅

⋅+−⋅⋅+⋅
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

3457

4878

85)2(36593

87)2(46794

86

29

53

74
AB

 
 

Similarly   ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅+⋅⋅+⋅

⋅−+⋅⋅−+⋅
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

8248

5330

58763846

5)2(793)2(49

53

74

86

29
BA

Note:  From above example it is clear that generally a matrix multiplication is not 
commutative i.e. BAAB ≠  . 
 
(b) The product AB is possible as the number of columns in the matrix A  and the number of 
rows in B is 2. However, the product is not possible because the number of column in the 
matrix 

BA
B and the number of rows in A  is not same. 

 
5 8

4 3
1 0

2 0
2 7

5 ( 4) 8 2 5 ( 3) 8 0 4 15
1 ( 4) 0 2 1 ( 3) 0 0 4 3
2 ( 4) 7 2 2 ( 3) 7 0 6 6

AB
⎛ ⎞

− −⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟
⎝ ⎠

⋅ − + ⋅ ⋅ − + ⋅ − −⎛ ⎞
⎜ ⎟= ⋅ − + ⋅ ⋅ − + ⋅ = − −⎜ ⎟
⎜ ⎟⋅ − + ⋅ ⋅ − + ⋅ −⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

                                           ,   ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

3457

4878
AB ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

8248

5330
BA

 
Clearly .  BAAB ≠
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⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−

−

−

−

=

6

3

15

6

4

4

AB  

 
However, the product  is not possible.  BA
 
Example 5: 

(a)      
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⋅+⋅−+−⋅

⋅+⋅+−⋅

⋅+⋅−+−⋅

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−

9

44

0

496)7()3(1

6564)3(0

436)1()3(2

4

6

3

971

540

312

 

(b)      ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+−
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛−

yx

yx

y

x

83

24

83

24

 
Multiplicative Identity: For a given any integern , the nn ×  matrix  
                                          

                                                       

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

1000

0100

0010

0001

"

#"###

"

"

"

I

 
is called the multiplicative identity matrix. If A  is a matrix of order n , then it can be 
verified that 

n×
AIAAI =⋅=⋅  

 Example: ,  are identity matrices of orders 2 x 2 and 3 x 3 

respectively and If  then we can easily prove that BI = IB = B 

1 0
0 1

I ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

1 0 0
0 1 0
0 0 1

I
⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

⎟
⎟

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

86

29
B
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Zero Matrix or Null matrix: A matrix whose all entries are zero is called zero matrix or 
null matrix and it is denoted by .  O

For example   ;     ;        ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

0

0
O ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

00

00
O

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

0

0

0

0

0

0

O

and so on. If A and O  are the matrices of same orders, then AAOOA =+=+  
 
Associative Law: The matrix multiplication is associative. This means that if  and 

are
BA   ,

C pm× , rp × and nr ×  matrices, then CABBCA )()( =  
The result is a   matrix. This result can be verified by taking any three matrices which 
are confirmable for multiplication.  

nm×

 
Distributive Law: If B  and are matrices of order C nr ×  and A  is a matrix of order rm× ,  
then the distributive law states that 
                                       ACABCBA +=+ )(  
Furthermore, if the product  is defined, then CBA )( +
    BCACCBA +=+ )(  
  
Determinant of a Matrix: Associated with every square matrix A of constants, there is a 
number called the determinant of the matrix, which is denoted by or  )det( A A  
 

Example 6: Find the determinant of the following matrix  
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

=

421

152

263

A

Solution: The determinant of the matrix A  is given by 

   

421

152

263

)det(

−

=A  

We expand the   by first row, we obtain )det( A

                     

421

152

263

)det(

−

=A =3
42
15

-6
41
12

−
+2

21
52

−
 

or                        185)2(41)6(8-2)-3(20)det( =+++=A  
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Transpose of a Matrix: The transpose of  nm×  matrix A  is denoted by and it is 
obtained by interchanging rows of A into its columns. In other words, rows of A become the 
columns of  Clearly is 

trA

.trA trA n m×  matrix. 
 

If   , then  

11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a a

A

a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

"
"

# # # #
"

11 21 1

12 22 2

1 2

m

mtr

n n mn

a a a
a a a

A

a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

"
"

# # " #
"

Since order of the matrix A  is nm× , the order of the transpose matrix  is .  trA mn×

Properties of the Transpose:  

The following properties are valid for the transpose; 

• The transpose of the transpose of a matrix is the matrix itself:    
• The transpose of a matrix times a scalar (k) is equal to the constant times the 

transpose of the matrix:  
• The transpose of the sum of two matrices is equivalent to the sum of their 

transposes:    
• The transpose of the product of two matrices is equivalent to the product of their 

transposes in reversed order:     

• The same is true for the product of multiple matrices:    

 
 

Example 7: (a) The transpose of matrix   is  
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

=

421

152

263

A
3 2 1

 6 5 2
2 1 4

TA
−⎛ ⎞

⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

(b) If , then 
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

3

0

5

X [ ]5 0 3TX =  

 
Multiplicative Inverse: Suppose that A  is a square matrix of order . If there exists an 

 matrix B such that
nn×

nn× IBAAB == , then B is said to be the multiplicative inverse of the 
matrix A  and is denoted by 1−= AB . 
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For example: If  then the matrix B
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

102

41
A

5 2
1 1/ 2

−⎛
= ⎜−⎝ ⎠

⎞
⎟  is multiplicative inverse of A 

because AB =  =  =I 
1 4
2 10
⎛ ⎞
⎜ ⎟
⎝ ⎠

5 2
1 1/ 2

−⎛ ⎞
⎜ ⎟−⎝ ⎠

1 0
0 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

Similarly we can check that BA = I 
 
 
Singular and Non-Singular Matrices: A square matrix A  is said to be a non-singular 
matrix ifdet , otherwise the square matrix ( ) 0A ≠ A  is said to be singular. Thus for a 
singular matrix A  we must have  det( ) 0A =  
 

Example:    
2 3 1
1 1 0
2 3 5

A
−⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

                       
2(5 0) 3(5 0) 1( 3 2)

10 15 5 0
A = − − − − − −

= − + =
 

 
which means that A is singular. 
 
Minor of an element of a matrix: 
 
Let A be a square matrix of order n x n. Then minor ijM  of the element  is the 
determinant of  matrix obtained by deleting the  row and  column 
from

ija A∈

)1()1( −×− nn ith jth
A .   

 Example: If 
2 3 1
1 1 0
2 3 5

A
−⎡ ⎤

⎢= ⎢
⎢ ⎥−⎣ ⎦

⎥
⎥  is a square matrix. The Minor of 3 A∈  is denoted by 

12M and is defined to be  12M  = 
1 0
2 5

= 5-0 = 5 

Cofactor of an element of a matrix: 
 
Let A  be a non singular matrix of order nn×  and let C ij denote the cofactor (signed minor) 

of the corresponding entry  ija A∈  , then it is defined to be     ij
ji

ij MC +−= )1(  
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Example:    If 
2 3 1
1 1 0
2 3 5

A
−⎡ ⎤

⎢= ⎢
⎢ ⎥−⎣ ⎦

⎥
⎥  is a square matrix. The cofactor of 3 A∈  is denoted by 

and is defined to be = 12C 12C 1 2 1 0
( 1)

2 5
+= − =  - (5 - 0) = -5 

 
 
Theorem:   If A  is a square matrix of order nn×  then the matrix has a multiplicative 
inverse  if and only if the matrix 1−A A  is non-singular. 
 

Theorem:   Then inverse of the matrix A  is given by  tr
ijC

A
A )(

)det(
11 =−                

 
1. For further reference we take 2=n so that A  is a 22×  non-singular matrix given by 
 

                                       
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

2221

1211

aa

aa
A

  Therefore 122121122211   ,  , aCaCaC −=−==  and 1122 aC = . So that  
 

                                     
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
=−

1121

1222

1112

21221
)det(

1
)det(

1
aa

aa

Aaa

aa

A
A

tr

 

 

 2. For a 3×3 non-singular matrix A=  
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

3332

2322
11

aa

aa
C = ,

3331

2321
12

aa

aa
C −= ,   C13 =

3231

2221

aa
aa

and so on.  

Therefore, inverse of the matrix A  is given by 
11 21 31

1
12 22 32

13 23 33

1
det

C C C
A C C C

A
C C C

−

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

. 
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Example 8:  Find, if possible, the multiplicative inverse for the matrix . 
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

102

41
A

Solution: The matrix A  is non-singular because     2=8-10=
102

41
)det( =A  

 Therefore, exists and is given by A =1−A 1−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−

2/11

25

12

410

2
1  

Check:    IAA =
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−−

+−−
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=−

10

01

541010

2245

2/11

25

102

411

 

                    IAA =
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−+−

−−
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
=−

10

01

5411

202045

102

41

2/11

251

 

Example 9: Find, if possible, the multiplicative inverse of the following matrix 

                        
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

33

22
A

Solution: The matrix is singular because  

03232
33

22
)det( =⋅−⋅==A  

Therefore, the multiplicative inverse of the matrix does not exist.  1−A

Example 10: Find the multiplicative inverse for the following matrix 

                                                      A= . 
2 2 0
2 1 1

3 0 1
−
⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Solution: Since  012)30(0)32(2)01(2

103

112

022

)det( ≠=−+−−−−=−=A  

 Therefore, the given matrix is non singular. So, the multiplicative inverse of the matrix 1−A
A  exists. The cofactors corresponding to the entries in each row are 
 

             3
03

12
      ,5

13

12
           ,1

10

11
131211 −=

−
==

−
−=== CCC         
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              6
03

22
          ,2

13

02
     ,2

10

02
232221 =−===−=−= CCC      

               6
12

22
     ,2

12

02
          ,2

11

02
333231 =

−
=−=

−
−=== CCC  

Hence   A =1−

12
1

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−

663
225

221
=  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−

2/12/14/1
6/16/112/5

6/16/112/1

We can also verify that IAAAA =⋅=⋅ −− 11  
 
Derivative of a Matrix of functions: 
Suppose that  

( ) ( )ij m n
A t a t

×
⎡ ⎤= ⎣ ⎦   

is a matrix whose entries are functions those are differentiable on a common interval, then 
derivative of the matrix  is a matrix whose entries are derivatives of the corresponding 
entries of the matrix . Thus                              

)(tA
)(tA

   
nm

ij

dt
da

dt
dA

×
⎥
⎦

⎤
⎢
⎣

⎡
=  

The derivative of a matrix is also denoted by ).(tA′  
 
Integral of a Matrix of Functions: 
 
Suppose that  ( ) nmij tatA

×
= )()(  is a matrix whose entries are functions those are continuous 

on a common interval containing t , then integral of the matrix  is a matrix whose entries 
are integrals of the corresponding entries of the matrix . Thus 

)(tA
)(tA

                                
0

0

( ) ( )ij
m n

t tA s ds a s dst
t ×

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ ∫  

 

Example 11:   Find the derivative and the integral of the following matrix 

sin 2
3( )

8 1

t
tX t e

t
=

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠
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Solution: The derivative and integral of the given matrix are, respectively, given by  

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

=′

8

3

2cos2

)18(

)(

)2(sin

)( 33 tt e

t

t
dt
d

e
dt
d

t
dt
d

tX     and  

0

3 3

20

0

sin 2

1/ 2cos 2 1/ 2
( ) 1/ 3 1/ 3

0 4

8 1

t

t
s t

t

sds

tt
X s ds e ds e

t t

s ds

⎛ ⎞
⎜ ⎟
⎜ ⎟ − +⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟= = −⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

∫

∫ ∫

∫
  
Exercise: 
Write the given sum as a single column matrix 

1.  ( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−
−

−+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

− t

t
tttt

5
4
3

2
3

1
1

1

2
3

2. ⎜ ⎟− ⎜ ⎟  
1 3 4 2
2 5 1 2 1 1 8
0 4 2 4 6

t t
t

t

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎛ ⎞
− − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
Determine whether the given matrix is singular or non-singular. If singular, find 1A− . 

3.  
3 2 1
4 1 0
2 5 1

A
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟− −⎝ ⎠

4.  
4 1 1
6 2 3
2 1 2

A
−⎛ ⎞

⎜ ⎟= −⎜ ⎟
⎜ ⎟− −⎝ ⎠

Find dX
dt

 

5. 
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+−

−
=

tt

tt
X

2cos52sin3

2cos42sin
2
1

 

6. If 
t

( )
4

2

cos

2 3 1

te
A t

t t

π⎛ ⎞
= ⎜
⎜ −⎝ ⎠

⎟
⎟

 then find (a) ∫ , (b)  ∫  
2

0

)( dttA
t

dssA
0

.)(

7. Find  the integral ∫   if   
2

1

)( dttB ( )
6 2

1/ 4
t

B t
t t

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
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Lecture 3 
 

Systems of Linear Equations 
. 
In this lecture we will discuss some ways in which systems of linear equations arise, how 
to solve them, and how their solutions can be interpreted geometrically.  
 
Linear equations: 
 
A line in R2 (2-dimensions) can be represented by an equation of the form    
(where a1, a2 not both zero). Similarly a plane in R3 (3-dimensional space) can be 
represented by an equation of the form 

1 2a x a y b+ =

1 2 3a x a y a z b+ + =   (where a1, a2, a3 not all zero).  
 
A linear equation in n variables 1 2, , , nx x " x   can be expressed in the form 

1 1 2 2 n na x a x a x b+ + + ="              (1) 
 

where and b are constants and the “a’s” are not all zero.  1 2, , , na a a"
 
Homogeneous linear equation: 
 
In the special case if b = 0, Equation (1) has the form  1 1 2 2 0n na x a x a x+ + + ="    (2) 
This equation is called homogeneous linear equation. 
 
Note: A linear equation does not involve any products or square roots of variables. All 
variables occur only to the first power and do not appear, as arguments of trigonometric, 
logarithmic, or exponential functions.  
 
Examples of Linear Equations: 
 
(1) The equations  

( )1 2 3 2 12 3 2 2 5 2 3x x x and x x+ + = = + + x  are both linear 

(2) The following equations are also linear 
1 2 3 4

1
1 22

3 7 2 3

3 1 n

x y x x x x

x y z x x x

+ = − − + =

− + = − + + + ="

0

1
 

 
(3) The equations 1 2 1 2 2 13 2 4x x x x and x x− = = − 6  

are not linear because of the presence of 1 2x x  in the first equation and 1x  in the second. 
 
 
 
 
System of linear equations: 
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A finite set of linear equations is called a system of linear equations or linear system. The 
variables in a linear system are called the unknowns.  
 
For example, 

1 2 3

1 2 3

4 3
3 9

x x x
x x x
− + = −
+ + = −

1
4

             

is a linear system of two equations in three unknowns x1, x2, and x3.  
 
General system of linear equations: 
A general linear system of m equations in n-unknowns 1 2, , , nx x " x

m

 can be written as 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

m m mn n

a x a x a x b
a x a x a x b

a x a x a x b

+ + + =
+ + + =

+ + + =

"
"

# # # #
"

        (3) 

          
Solution of a system of linear equations: 
A solution of a linear system in the unknowns 1 2, , , nx x " x is a sequence of n numbers 
that when substituted for 1 2, , , nx x " x  respectively, makes every equation in the system 
a true statement. The set of all solutions of a linear system is called its solution set. 
 
Linear System with Two Unknowns: 
 
When two lines intersect in R2, we get system of linear equations with two unknowns 
 

For example, consider the linear system 1 1

2 2

a x b y c
a x b y c

1

2

+ =
+ =

 

 
The graphs of these equations are straight lines in the xy-plane, so a solution (x, y) of this 
system is infect a point of intersection of these lines.  
 
Thus, there are three possibilities: 

 
1. The lines may be parallel and distinct, in which case there is no intersection and 

consequently no solution. 
2. The lines may intersect at only one point, in which case the system has exactly 

one solution. 
3. The lines may coincide, in which case there are infinitely many points of 

intersection (the points on the common line) and consequently infinitely many 
solutions. 

 
 
Consistent and inconsistent system: 
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A linear system is said to be consistent if it has at least one solution and it is called 
inconsistent if it has no solutions.  
 
Thus, a consistent linear system of two equations in two unknowns has either one 
solution or infinitely many solutions – there is no other possibility.  
 
Example: consider the system of linear equations in two variables 

 1 2 1 22 1, 3x x x x− = − − + = 3
Solve the equation simultaneously: 
Adding both equations we get 2x  = 2, Put 2x  = 2 in any one of the above equation we 
get . So the solution is the single point (3, 2). See the graph of this linear system 1 3x =
 
 
   x2             
        
        
              
             2     
        
      x1   
         l2             3        
      
 l1  (a)                 
 
This system has exactly one solution 
 
See the graphs to the following linear systems: 
 

1 2

1 2

( ) 2 1
2 3

a x x
x x
− = −

− + =
  1 2

1 2

( ) 2 1
2 1

b x x
x x
− = −

− + =
 

 
    x2           x2   
        
        
            2  
             2     
        
      x1   
         l2             3       3 
           l1  
 l1  (a)             (b)    
 

    (a) No solution.                        (b) Infinitely many solutions. 
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Linear System with Three Unknowns: 
 
Consider r a linear system of three equations in three unknowns: 

1 1 1 1

2 2 1

3 3 3

a x b y c z d
a x b y c z d
a x b y c z d

+ + =
+ + =
+ + =

2

3

 

 
In this case, the graph of each equation is a plane, so the solutions of the system, If any 
correspond to points where all three planes intersect; and again we see that there are only 
three possibilities – no solutions, one solution, or infinitely many solutions as shown in  
figure. 

 
 
Theorem 1: Every system of linear equations has zero, one or infinitely many solutions; 
there are no other possibilities. 
 

Example 1: Solve the linear system 
1

2 6
x y
x y
− =
+ =

 

 
Solution: 

Adding both equations, we get 7
3

x = . Putting this value of x in 1st equation, we 

get 4
3

y = . Thus, the system has the unique solution 7 4, .
3 3

x y= =   

 
Geometrically, this means that the lines represented by the equations in the system 

intersect at a single point 7 4,
3 3

⎛
⎜
⎝ ⎠

⎞
⎟  and thus has a unique solution. 

 

Example 2: Solve the linear system 
4

3 3 6
x y
x y
+ =
+ =

 

Solution: 
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Multiply first equation by 3 and then subtract the second equation from this. We obtain
  0 6=
This equation is contradictory.  
 
Geometrically, this means that the lines corresponding to the equations in the original 
system are parallel and distinct. So the given system has no solution. 
 

Example 3: Solve the linear system 
4 2

16 8 4
1x y

x y
− =
− =

 

 
Solution:  
 
Multiply the first equation by -4 and then add in second equation. 
 

                 
16 8 4
16 8 4

0 0

x y
x y

− + = −
− =

=
 

Thus, the solutions of the system are those values of x and y that satisfy the single 
equation 4 2 1x y− =                                                       
 
Geometrically, this means the lines corresponding to the two equations in the original 
system coincide and thus the system has infinitely many solutions.   
 
Parametric Representation: 
 
 It is very convenient to describe the solution set in this case is to express it 
parametrically. We can do this by letting y = t and solving for x in terms of t, or by 
letting x = t and solving for y in terms of t.  
 
The first approach yields the following parametric equations (by taking y=t in the 
equation 4 2 1x y− = ) 
                        

4 2 1,
1 1 ,
4 2

x t y t

x t y t

− = =

= + =
 

 
We can now obtain some solutions of the above system by substituting some numerical 
values for the parameter.  

Example:   For t = 0 the solution is 1( ,0).
4

 For t = 1, the solution is 3( ,1)
4

 and for 1t = −  

the solution is 1( , 1)
4

etc− − .   

 
. 
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Example 4: Solve the linear system 
2 5

2 2 4 1
3 3 6 15

x y z
x y z
x y z

0
− + =
− + =
− + =

 

 
Solution: 
Since the second and third equations are multiples of the first.  
 
Geometrically, this means that the three planes coincide and those values of x, y and z 
that satisfy the equation  automatically satisfy all three equations. 2x y z− + = 5

2

 
We can express the solution set parametrically as  
 
                   1 2 15 2 , ,x t t y t z t= + − = =  
Some solutions can be obtained by choosing some numerical values for the parameters. 
 
For example   if we take  and 1 2y t= = 2 3z t= =  then  

1 25 2
5 2 2(3)
1

x t t= + −
= + −
=

  

Put these values of x, y, and z in any equation of linear system to verify  
 

2 5
1 2 2(3) 5
1 2 6 5
5 5

x y z− + =
− + =
− + =
=

 

 
Hence x = 1, y = 2,  z = 3  is the solution of the system. Verified.  
 
Matrix Notation: 
 
The essential information of a linear system can be recorded compactly in a rectangular 
array called a matrix.  
 

Given the system 
1 2 3

2 3

1 2 3

2 0
2 8

4 5 9

x x x
x x

x x x

− + =
8
9

− =
− + + = −

      

With the coefficients of each variable aligned in columns, the matrix 
1 2 1
0 2 8
4 5 9

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

is called the coefficient matrix (or matrix of coefficients) of the system. 
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An augmented matrix of a system consists of the coefficient matrix with an added column 
containing the constants from the right sides of the equations. It is always denoted by Ab 
 

                                 Ab =  
1 2 1 0
0 2 8 8
4 5 9 9

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

 
 
Solving a Linear System: 
 
In order to solve a linear system, we use a number of methods. 1st of them is given 
below.  
 
Successive elimination method:  In this method the 1x  term in the first equation of a 
system is used to eliminate the 1x  terms in the other equations. Then we use the 2x  term 
in the second equation to eliminate the 2x  terms in the other equations, and so on, until 
we finally obtain a very simple equivalent system of equations. 
 
 

Example 5: Solve  
1 2 3

2 3

1 2 3

2 0
2 8

4 5 9

x x x
x x

x x x

− + =
8
9

− =
− + + = −

  

 
Solution: We perform the elimination procedure with and without matrix notation, 
and place the results side by side for comparison: 

1 2 3

2 3

1 2 3

2 0
2 8

4 5 9

x x x
x x

x x x

− + =
− =

− + + = −
8
9

           
1 2 1 0
0 2 8 8
4 5 9 9

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 
To eliminate the 1x  term from third equation add 4 times equation 1 to equation 3,  

1 2 34 8 4x x x− + = 0  

1 2 34 5 9x x x− + + = −9

9

9

  

        2 33 13x x− + = −
 
The result of the calculation is written in place of the original third equation: 

1 2 3

2 3

2 3

2 0

2 8 8

3 1 3

x x x

x x

x x

− + =

− =

− + = −

  
1 2 1 0
0 2 8 8
0 3 13 9

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 



3-System of Linear Equations  VU 

                                                                                                                                                                                                                 
                                                      ©Virtual University Of Pakistan                                                             32 

Next, multiply equation 2 by ½ in order to obtain 1 as the coefficient for 2x  

1 2 3

2 3

2 3

2 0

4 4

3 1 3

x x x

x x

x x

− + =

− =

− + = −9

  
1 2 1 0
0 1 4 4
0 3 13 9

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 
To eliminate the 2x  term from third equation add 3 times equation 2 to equation 3, 

 
The new system has a triangular form 

1 2 3

2 3

3

2 0
4 4
3

x x x
x x
x

− + =
− =
=

   
1 2 1 0
0 1 4 4
0 0 1 3

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Now using 3rd equation eliminate the x3 term from first and second equation i.e. multiply 
3rd equation with 4 and add in second equation. Then subtract the third equation from first 
equation we get 
 

1 2

2

3

2 3
1 6
3

x x
x
x

− = −
=
=

  
1 2 0 3
0 1 0 16
0 0 1 3

− −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Adding 2 times equation 2 to equation 1, we obtain the result 
 
   

        
1

2

3

29 1 0 0 29
16 0 1 0 16

0 0 1 33

x
x
x

=⎧ ⎡ ⎤
⎪ ⎢ ⎥=⎨ ⎢ ⎥
⎪ ⎢ ⎥= ⎣ ⎦⎩

          
 
This completes the solution.  
Our work indicates that the only solution of the original system is (29, 16, 3).  
 
To verify that (29, 16, 3) is a solution, substitute these values into the left side of the 
original system for x1, x2 and x3 and after computing, we get 
 
      (29) – 2(16) +  (3) = 29 – 32 + 3 = 0 
                2(16) – 8(3) = 32 – 24 = 8 
   –4(29) + 5(16) +  9(3)  = –116 + 80 + 27 = –9 
 
The results agree with the right side of the original system, so (29, 16, 3) is a solution of 
the system. 
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This example illustrates how operations on equations in a linear system correspond to 
operations on the appropriate rows of the augmented matrix. The three basic operations 
listed earlier correspond to the following operations on the augmented matrix. 
 
 
Elementary Row Operations: 
  
1. (Replacement) Replace one row by the sum of itself and a nonzero multiple of 

another row.  
2. (Interchange) Interchange two rows. 
3. (Scaling) Multiply all entries in a row by a nonzero constant. 
 
Row equivalent matrices: 
 
A matrix B is said to be row equivalent to a matrix A of the same order if B can be 
obtained from A by performing a finite sequence of elementary row operations of A. 
If A and B are row equivalent matrices, then we write this expression mathematically as 
A B.  ∼

For example  
1 2 1 0
0 2 8 8
4 5 9 9

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

∼
1 2 1 0
0 2 8 8
0 3 13 9

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

 are row equivalent matrices 

because we add 4 times of 1st row in 3rd row in 1st matrix.  
 
Note: If the augmented matrices of two linear systems are row equivalent, then the two 
systems have the same solution set. 
 
Row operations are extremely easy to perform, but they have to be learnt and practice. 
 
 
Two Fundamental Questions: 
 

1. Is the system consistent; that is, does at least one solution exist? 
2. If a solution exists is it the only one; that is, is the solution unique? 

 
We try to answer these questions via row operations on the augmented matrix. 
 
Example 6: Determine if the following system of linear equations is consistent 

        
1 2 3

2 3

1 2 3

2 0
2 8

4 5 9

x x x
x x

x x x

− + =
− =

− + + = −
8
9

 
Solution: 
 
First obtain the triangular matrix by removing x1 and x2 term from third equation and 
removing x2 from second equation.  
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First divide the second equation by 2 we get 
 

1 2 3

2 3

1 2 3

2 0
4

4 5 9

x x x
x x

x x x

− + =
− =

− + + = −
4
9

             

1 2 1 0
0 1 4 4
4 5 9 9

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 
 
Now multiply equation 1 with 4 and add in equation 3 to eliminate x1 from 

third equation. 
 
 

1 2 3

2 3

2 3

2 0
4

3 13

x x x
x x
x x

− + =
− =

− + = −
4
9

               

1 2 1 0
0 1 4 4
0 3 13 9

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 
Now multiply equation 2 with 3 and add in equation 3 to eliminate x2 from 

third equation. 
 

1 2 3

2 3

3

2 0
4 4
3

x x x
x x
x

− + =
− =
=

               
1 2 1 0
0 1 4 4
0 0 1 3

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Put value of x3 in second equation we get  

2 4(3) 4x − =  

2 16x =  

 
Now put these values of x2 and x3 in first equation we get  
 

1 2(16) 3 0x − + =  
 

1 29x =  
 
So a solution exists and the system is consistent and has a unique solution. 
 
 
Example 7: Solve if the following system of linear equations is consistent. 

2 3

1 2 3

1 2 3

4 8
2 3 2 1
5 8 7 1

x x
x x x
x x x

− =

− + =

− + =
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Solution: The augmented matrix is 
0 1 4 8
2 3 2 1
5 8 7 1

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
To obtain x1 in the first equation, interchange rows 1 and 2:  

2 3 2 1
0 1 4 8
5 8 7 1

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
To eliminate the 5x1 term in the third equation, add –5/2 times row 1 to row 3: 

2 3 2 1
0 1 4 8
0 1/ 2 2 3/ 2

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

  

 
Next, use the x2 term in the second equation to eliminate the –(1/2) x2 term from the third 
equation. Add ½ times row 2 to row 3: 

2 3 2 1
0 1 4 8
0 0 0 5 / 2

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

  

 
The augmented matrix is in triangular form.  
To interpret it correctly, go back to equation notation: 
 

1 2 3

2 3

2 3 2 1

4 8

0 2.5

x x x

x x

− + =

− =

=

 

There are no values of x1, x2, x3 that will satisfy because the equation 0 = 2.5 is never 
true. 
Hence original system is inconsistent (i.e., has no solution).  
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Exercises: 
 
1. State in words the next elementary “row” operation that should be performed on the 

system in order to solve it. (More than one answer is possible in (a).) 
 

1 2 3 4

2 3 4

3 4

3 4

. 4 2 8 1
7 2
5 7

3 5

a x x x x
x x x

x x
x x

+ − + =
− + = −

− =
+ = −

2
4

0

  

1 2 3 4

2 3

3

4

. 3 5 2
8 4
2 7

1

b x x x x
x x

x
x

− + − =
+ = −

=
=

 

 
2. The augmented matrix of a linear system has been transformed by row operations into 

the form below. Determine if the system is consistent. 
 

1 5 2 6
0 4 7 2
0 0 5 0

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
3. Is (3, 4, –2) a solution of the following system? 
 

1 2 3

1 2 3

1 2 3

5 2
2 6 9
7 5 3

x x x
x x x
x x x

7
0
7

− + =
− + + =
− + − = −

 

 
4. For what values of h and k is the following system consistent? 
 

1 2

1 2

2
6 3

x x h
x x k
− =

− + =
 

 
Solve the systems in the exercises given below; 
 

5.    6.  
2 3

1 2 3

1 2 3

5 4

4 3

2 7

x x

x x x

x x x

+ = −

+ + = −

+ + = −

2

1

3
2

1

1 2 3

1 2 3

1 2 3

5 4
2 7 3

2 7

x x x
x x x

x x x

− + = −

− + = −

− − =

 

 
 
 

7.    8.  
1 2

1 2 3

2 3

2 4

3 3 2

0

x x

x x x

x x

+ =

− − =

+ =

1 3

2 3

1 2 3

2 4
3 2

3 5 8 6

x x
x x

x x x

10− = −
+ =

+ + = −
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Determine the value(s) of h such that the matrix is augmented matrix of a consistent 
linear system. 
 

9.     10. 
1 3
2 6 5

h−⎡ ⎤
⎢−⎣ ⎦

⎥−
1 2
4 2 10

h −⎡ ⎤
⎢ ⎥−⎣ ⎦

 

 
Find an equation involving g, h, and that makes the augmented matrix correspond to a 
consistent system. 
 

11.    12. 
1 4 7
0 3 5
2 5 9

g
h
k

−⎡ ⎤
⎢ −⎢
⎢ ⎥− −⎣ ⎦

⎥
⎥

2 5 3
4 7 4
6 3 1

g
h
k

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 
Find the elementary row operations that transform the first matrix into the second, and 
then find the reverse row operation that transforms the second matrix into first. 
 

13.   14. 
1 3 1 1 3 1
0 2 4 , 0 1 2
0 3 4 0 3 4

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

−
0 5 3 1 5 2
1 5 2 , 0 5 3
2 1 8 2 1 8

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 

15.  
1 3 1 5 1 3 1 5
0 1 4 2 , 0 1 4 2
0 2 5 1 0 0 3 5

− −⎡ ⎤ ⎡
⎢ ⎥ ⎢− −⎢ ⎥ ⎢
⎢ ⎥ ⎢− − −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦
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Lecture 4 
 

Row Reduction and Echelon Forms 
 
 To analyze system of linear equations we shall discuss how to refine the row reduction 
algorithm.  The algorithm applies to any matrix, we begin by introducing a non zero row 
or column (i.e. contains at least one nonzero entry) in a matrix,  
 
Echelon form of a matrix: 
 
A rectangular matrix is in echelon form (or row echelon form) if it has the following three 
properties: 
 

1. All nonzero rows are above any rows of all zeros 
2. Each leading entry of a row is in a column to the right of the leading entry of the 

row above it. 
3. All entries in a column below a leading entry are zero. 

 
 
Reduced Echelon Form of a matrix: 
 
If a matrix in echelon form satisfies the following additional conditions, then it is in 
reduced echelon form (or reduced row echelon form): 
 

4. The leading entry in each nonzero row is 1. 
5. Each leading 1 is the only nonzero entry in its column. 

 
Examples of Echelon Matrix form: 
 
The following matrices are in echelon form. The leading entries ( ) may have any 
nonzero value; the started entries (*) may have any values (including zero). 

D

 

                         
2 3 2 1

1. 0 1 4 8
0 0 0 5 / 2

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦
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0 * * * * * * * *
* * *

0 0 0 * * * * * *
0 * *

2. 3. 0 0 0 0 * * * * *
0 0 0 0

0 0 0 0 0 * * * *
0 0 0 0

0 0 0 0 0 0 0 0 *

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

D
D

D
D

D
D

D

             

1 4 3 7 1 1 0
4. 0 1 6 2 5. 0 1 0

0 0 1 5 0 0 0

0 1 2 6 0
6. 0 0 1 1 0

0 0 0 0 1

−⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

⎤
⎥
⎥
⎥⎦

 
Examples of Reduced Echelon Form: 
 
The following matrices are in reduced echelon form because the leading entries are 1’s, 
and there are 0’s below and above each leading 1. 

                               
1 0 0 29

1. 0 1 0 16
0 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 1 * 0 0 0 * * 0 *
1 0 * *

0 0 0 1 0 0 * * 0 *
0 1 * *

2. 3. 0 0 0 0 1 0 * * 0 *
0 0 0 0

0 0 0 0 0 1 * * 0 *
0 0 0 0

0 0 0 0 0 0 0 0 1 *

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

 

0 1 2 0 1
1 0 0 4 1 0 0

0 0 0 1 3
4. 0 1 0 7 5. 0 1 0 6.

0 0 0 0 0
0 0 1 1 0 0 1

0 0 0 0 0

−⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎣ ⎦

 

Note: A matrix may be row reduced into more than one matrix in echelon form, using 
different sequences of row operations. However, the reduced echelon form one obtains 
from a matrix is unique.  
 
Theorem 1 (Uniqueness of the Reduced Echelon Form): Each matrix is row equivalent 
to one and only one reduced echelon matrix. 
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Pivot Positions: 
A pivot position in a matrix A is a location in A that corresponds to a leading entry in an 
echelon form of A.  
 
Note: When row operations on a matrix produce an echelon form, further row operations 
to obtain the reduced echelon form do not change the positions of the leading entries.  
 
Pivot column: 
 
A pivot column is a column of A that contains a pivot position. 
 
Example 2: Reduce the matrix A below to echelon form, and locate the pivot columns 

0 3 6 4 9
1 2 1 3 1
2 3 0 3 1

1 4 5 9 7

A

− −⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥− −⎣ ⎦

 

 
Solution: Leading entry in first column of above matrix is zero which is the pivot 
position. A nonzero entry, or pivot, must be placed in this position. So interchange first 
and last row. 
 

     

1 4 5 9
1 2 1 3 1
2 3 0 3 1

0 3 6 4 9

Pivot⎡ ⎤↵ −
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥

− −⎣ ⎦

7−

     
     Pivot Column 
 
Since all entries in a column below a leading entry should be zero. For this add row 1 in 
row 2, and multiply row 1 by 2 and add in row 3. 
      Pivot 

                          

1 4 5 9 7
0 2 4 6 6
0 5 10 15 15
0 3 6 4 9

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

           

      Next pivot column 
 
Add –5/2 times row 2 to row 3, and add 3/2 times row 2 to row 4. 
   
 
 

1 2

1 32
R R

R R
+
+
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1 4 5 9 7
0 2 4 6 6
0 0 0 0 0
0 0 0 5 0

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 
2 3

2 4

5
2

3
2

R R

R R

− +

+
        

 
Interchange rows 3 and 4, we can produce a leading entry in column 4. 
 
       Pivot 

  

1 4 5 9 7 * * * *
0 2 4 6 6 0 * * *
0 0 0 5 0 0 0 0 *
0 0 0 0 0 0 0 0 0 0

General form

− −⎡ ⎤ ⎡
⎢ ⎥ ⎢− −⎢ ⎥ ⎢
⎢ ⎥ ⎢−
⎢ ⎥ ⎢
⎣ ⎦ ⎣

D
D

D

⎤
⎥
⎥
⎥
⎥
⎦

⎥
⎥

    Pivot column 
 
 
This is in echelon form and thus columns 1, 2, and 4 of A are pivot columns. 
 
      Pivot positions 

0 3 6 4 9
1 2 1 3 1
2 3 0 3 1

1 4 5 9 7

− −⎡ ⎤
⎢ ⎥− − −⎢
⎢− − −
⎢ ⎥− −⎣ ⎦

         

      Pivot columns 
 
Pivot element: 
 
A pivot is a nonzero number in a pivot position that is used as needed to create zeros via 
row operations 
 
The Row Reduction Algorithm consists of four steps, and it produces a matrix in 
echelon form. A fifth step produces a matrix in reduced echelon form.  
 
The algorithm is explained by an example. 
 
Example 3: Apply elementary row operations to transform the following matrix first 
into echelon form and then into reduced echelon form. 
 

   
0 3 6 6 4 5
3 7 8 5 8 9
3 9 12 9 6 15

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦
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Solution: 
 
STEP 1: Begin with the leftmost nonzero column. This is a pivot column. The pivot 
position is at the top. 
 

   
0 3 6 6 4 5
3 7 8 5 8 9
3 9 12 9 6 15

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

    Pivot column 
 
 
STEP 2: Select a nonzero entry in the pivot column as a pivot. If necessary, interchange 
rows to move this entry into the pivot position 
 
Interchange rows 1 and 3. (We could have interchanged rows 1 and 2 instead.) 
 
       Pivot 

3 9 12 9 6 15
3 7 8 5 8 9
0 3 6 6 4 5

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 
STEP 3: Use row replacement operations to create zeros in all positions below the pivot 
 
Subtract Row 1 from Row 2. i.e. 2 1R R−  
    Pivot 

3 9 12 9 6 15
0 2 4 4 2 6
0 3 6 6 4 5

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 
STEP 4: Cover (or ignore) the row containing the pivot position and cover all rows, if 
any, above it. Apply steps 1 –3 to the sub-matrix, which remains. Repeat the process until 
there are no more nonzero rows to modify. 
 
 
With row 1 covered, step 1 shows that column 2 is the next pivot column; for step 2, 
we’ll select as a pivot the “top” entry in that column. 
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          Pivot 
3 9 12 9 6 15
0 2 4 4 2 6
0 3 6 6 4 5

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

     Next pivot column 
 
According to step 3 “All entries in a column below a leading entry are zero”. For this 
subtract 3/2 time R2 from R3 
 

3 9 12 9 6 15
0 2 4 4 2 6
0 0 0 0 1 4

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

 3 2
3
2

R R−  

 
When we cover the row containing the second pivot position for step 4, we are left with a 
new sub matrix having only one row: 
 
 

3 9 12 9 6 15
0 2 4 4 2 6
0 0 0 0 1 4

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

 

    Pivot 
This is the Echelon form of the matrix.  
To make it in reduced echelon form we need to do one more step: 
 
STEP 5:  Make the leading entry in each nonzero row 1. Make all other entries of that 
column to 0. 
 
Divide first Row by 3 and 2nd Row by 2 
 

                     
1 3 4 3 2 5
0 1 2 2 1 3
0 0 0 0 1 4

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

2
1
2

R ,    1
1
3

R  

 
Multiply second row by 3 and then add in first row. 
 

                       
1 0 2 3 5 4
0 1 2 2 1 3
0 0 0 0 1 4

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

2 13R R+  

 
Subtract row 3 from row 2, and multiply row 3 by 5 and then subtract it from first row 
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1 0 2 3 0 24
0 1 2 2 0 7
0 0 0 0 1 4

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

2 3

1 35
R R
R R

−

−
 

This is the matrix is in reduced echelon form. 
 
Solutions of Linear Systems: 
 
When this algorithm applied to the augmented matrix of the system it gives solution set 
of linear system. 
Suppose, for example, that the augmented matrix of a linear system has been changed 
into the equivalent reduced echelon form 

1 0 5 1
0 1 1 4
0 0 0 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
There are three variables because the augmented matrix has four columns. The associated 
system of equations is 

1 3

2 3

3

5 1
4

0 0 w h ic h m e a n s x i s f r e e

x x
x x

− =
+ =

=
      (1)  

               
The variables x1 and x2 corresponding to pivot columns in the above matrix are called 
basic variables. The other variable, x3 is called a free variable. 
 
Whenever a system is consistent, the solution set can be described explicitly by solving 
the reduced system of equations for the basic variables in terms of the free variables. This 
operation is possible because the reduced echelon form places each basic variable in one 
and only one equation.  
 
In (4), we can solve the first equation for x1 and the second for x2. (The third equation is 
ignored; it offers no restriction on the variables.) 

1 3

2

3

1 5
4 3

x x
x x
x is free

= +
= −        (2) 

 
By saying that x3 is “free”, we mean that we are free to choose any value for x3. When   
x3 = 0, the solution is (1, 4, 0); when x3 = 1, the solution is (6, 3, 1 etc).  
 
Note: The solution in (2) is called a general solution of the system because it gives an 
explicit description of all solutions. 
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Example 4: Find the general solution of the linear system whose augmented matrix has 

been reduced to 
1 6 2 5 2 4
0 0 2 8 1 3
0 0 0 0 1 7

− − −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Solution: The matrix is in echelon form, but we want the reduced echelon form 
before solving for the basic variables. The symbol “~” before a matrix indicates that the 
matrix is row equivalent to the preceding matrix. 
 

   1 3 2 3

1 6 2 5 2 4
0 0 2 8 1 3
0 0 0 0 1 7

By 2 and Weget

1 6 2 5 0 10
0 0 2 8 0 10
0 0 0 0 1 7

R R R R

− − −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

+ +

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

∼

   2
1 we get
2

By R  

 
1 6 2 5 0 10
0 0 1 4 0 5
0 0 0 0 1 7

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

∼  

 
1 2By 2 we getR R−  

 
1 6 0 3 0 0
0 0 1 4 0 5
0 0 0 0 1 7

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

∼  

 
The matrix is now in reduced echelon form. 
The associated system of linear equations now is 

1 2 4

3 4

5

6 3

4

7

x x x

x x

x

+ + =

− =

0

5

=

           (6) 

 
The pivot columns of the matrix are 1, 3 and 5, so the basic variables are x1, x3, and x5. 
The remaining variables, x2 and x4, must be free.  
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Solving for the basic variables, we obtain the general solution: 
 
    x1 = -6x2 –3x4 

x2 is free 
x3 = 5 + 4x4             (7) 
x4 is free 
x5 = 7 

 
Note that the value of x5 is already fixed by the third equation in system (6).  
 
Exercise: 
 
1. Find the general solution of the linear system whose augmented matrix is  
 

1 3 5 0
0 1 1 3

− −⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
2. Find the general solution of the system 
 

1 2 3 4

1 2 3 4

1 2 3 4

2 3
2 4 5 5

3 6 6 8

x x x x
x x x x

x x x x

− − + =

− + + − =

− − + =

0
3

2

⎤
⎥

 

   
 
Find the general solutions of the systems whose augmented matrices are given in 
Exercises 3-12 
 

3.       4.   
1 0 2 5
2 0 3 6
⎡
⎢
⎣ ⎦

1 3 0 5
3 7 0 9

− −⎡ ⎤
⎢ ⎥−⎣ ⎦

⎤
⎥

 

 

5.     6.  
0 3 6 9
1 1 2 1

⎡
⎢− − −⎣ ⎦

1 3 3 7
3 9 4 1

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 

 

7.     8.  
1 2 7
1 1 1

2 1 5

−⎛ ⎞
⎜− −⎜
⎜ ⎟
⎝ ⎠

⎟
⎟

1 2 4
2 3 5

2 1 1

⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟−⎝ ⎠
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9.     10.  
2 4 3
6 12 9

4 8 6

−⎛ ⎞
⎜−⎜
⎜ ⎟−⎝ ⎠

⎟− ⎟

1 0 9 0 4
0 1 3 0 1
0 0 0 1 7
0 0 0 0 1

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎝ ⎠

 

 

11.  

1 2 0 0 7 3
0 1 0 0 3 1
0 0 0 1 5 4
0 0 0 0 0 0

− −⎛ ⎞
⎜ ⎟−⎜
⎜

⎟
⎟−

⎜ ⎟
⎝ ⎠

  12.              

1 0 5 0 8 3
0 1 4 1 0 6
0 0 0 0 1 0
0 0 0 0 0 0

− −⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
 
 
Determine the value(s) of h such that the matrix is the augmented matrix of a consistent 
linear system. 
 

13.      14. 
1 4 2
3 1h

⎡
⎢− −⎣ ⎦

⎤
⎥

1 3
2 8 1

h⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
Choose h and k such that the system has (a) no solution, (b) a unique solution, and (c) 
many solutions. Give separate answer for each part. 
 
15. x1 + hx2 = 1     16. x1 - 3x2 = 1 
      2x1 + 3x2 = k           2x1 + hx2 = k 
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Lecture 5 

Vector Equations 
This lecture is devoted to connect equations involving vectors to ordinary systems of 

equations. The term vector appears in a variety of mathematical and physical contexts, 

which we will study later, while studying “Vector Spaces”. Until then, we will use vector 

to mean a list of numbers. This simple idea enables us to get to interesting and important 

applications as quickly as possible. 

Column Vector:  

“A matrix with only one column is called column vector or simply a vector”. 

e.g. [ ] [ ] 1 2 3 4

2
3

3 1 , 2 3 5 ,3
1

5

TT T w w w wu v w
⎡ ⎤

⎡ ⎤ ⎢ ⎥ ⎡ ⎤= − = = = =⎢ ⎥ ⎣ ⎦⎢ ⎥−⎣ ⎦ ⎢ ⎥⎣ ⎦

 are all 

column vectors or simply vectors.  

Vectors in R2: 

If is the set of all real numbers then the set of all vectors with two entries is denoted    

by . 

R
2 = ×R R R

For example:  the vector [ ] 3
3 1

1
Tu ⎡ ⎤

= − = ⎢ ⎥−⎣ ⎦
 2∈R  

Here real numbers are appeared as entries in the vectors, and the exponent 2 indicates that 

the vectors contain only two entries. 

Similarly R3 & R4 contains all vectors with three and four entries respectively. The 
entries of the vectors are always taken from the set of real numbers R. The entries in 
vectors are assumed to be the elements of a set, called as Field. It is denoted by F .     
Algebra of Vectors: 

Equality of vectors in 2R : 

  Two vectors in R2 are equal if and only if their corresponding entries are equal. 

  1 1 2
1 1 2 2

2 2

If ,
u v

u then u v iff u v
u v

v⎡ ⎤ ⎡ ⎤
= = ∈ = = ∧ =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

R u v  

   So    as  but 
4 4
6 3
⎡ ⎤ ⎡ ⎤

≠⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

4 4= 6 3≠  
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Note: In fact, vectors 
x
y
⎡ ⎤
⎢ ⎥
⎣ ⎦

 in R2 are nothing but ordered pairs ( ),x y of real numbers 

both representing the position of a point with respect to origin. 

Addition of Vectors: 

Given two vectors u and v in R2, their sum is the vector u + v obtained by adding 

corresponding entries of the vectors u and v.  

 

For   Then  1 1 2

2 2

,
u v

u v
u v
⎡ ⎤ ⎡ ⎤

= = ∈⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

R 1 1 1 1 2

2 2 2 2

u v u v
u v

u v u v
+⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+ + = ∈⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= R

 

For example,  
1 2 1 2 3
2 5 2 5 3

+
+ = =

− − +
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Scalar Multiplication of a vector: 

 

Given a vector u and a real number c, the scalar multiple of u by c is the vector cu 

obtained by multiplying each entry in u by c.  

For example, if  
3 3

5, 5
1 1

u and c then cu⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

15
5

=
−

Notations: The number c in cu is a scalar; it is written in lightface type to distinguish it 

from the boldface vector u. 

Example 1: Given find 4u,   (-3) v, and 4u + (-3) v 
1 2

,
2 5

u and v⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

Solution: 
1 4 1 4 2

4 4 , ( 3) ( 3)
2 4 ( 2) 8 5 15

u v
6× −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

== = = − = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− × − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 

And  
4 6

4 ( 3)
8 15 7

u v
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+ − = + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2



5-Vector Equations                                                                                                                                       VU 

Note: Sometimes for our convenience, we write a column vector 
3
1

⎡ ⎤
⎢ ⎥−⎣ ⎦

 in the form  

(3, –1). In this case, we use parentheses and a comma to distinguish the vector (3, –1) 

from the 1  row matrix [3   –1], written with brackets and no comma.  2×

Thus     but   
3

[3 1]
1

⎡ ⎤
≠ −⎢ ⎥−⎣ ⎦

3
1

⎡ ⎤
⎢ ⎥−⎣ ⎦

= (3, –1) 

Geometric Descriptions of R2: 

Consider a rectangular coordinate system in the plane. Because each point in the plane is 

determined by an ordered pair of numbers, we can identify a geometric point (a, b) with 

the column vector . So we may regard R2 as the set of all points in the plane.  
a
b
⎡ ⎤
⎢ ⎥
⎣ ⎦

See Figure 1.         x2  

      

       .(2, 2) 

        x1 

      (-2, -1).  .(3, –1) 

     

    Figure 1 Vectors as points. 

 

Vectors in R3: 

       Vectors in R3 are  column matrices with three entries. They are represented 

geometrically by points in a three-dimensional coordinate space, with arrows from the 

origin sometimes included for visual clarity.  

3 1×

Vectors in Rn: 

     If n is a positive integer, Rn (read “r-n”) denotes the collection of all lists (or ordered 

n- tuples) of n real numbers, usually written as 1n×  column matrices, such as 

     [ ]1 2
T

nu u u u=

     The vector whose entries are all zero is called the zero vector and is denoted by O. 

(The number of entries in O will be clear from the context.) 
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Algebraic Properties of Rn: 

For all u, v, w in Rn and all scalars c and d: 

 

 (i)  u + v = v + u    (Commutative)      

 (ii)  (u + v) + w = u + (v + w)    (Associative)   

(iii) u + 0 = 0 + u = u     (Additive Identity)   

(iv)  u + (–u) =( –u) + u = 0    (Additive Inverse)      

  where –u denotes (–1)u 

(v)  c(u + v) = cu + cv         (Scalar Distribution over Vector Addition) 

(vi)  (c + d)u = cu + du        (Vector Distribution over Scalar Addition) 

(vii)  c(du) = (cd)u      

(viii) 1u=u 

Linear Combinations: Given vectors v1, v2, …, vp in Rn and given scalars c1, c2, …, cp 

the vector defined by  

1 1 2 2 p py c v c v c v= + + +   

is called a linear combination of v1, … , vp using weights c1, ... , cp.  

          Property (ii) above permits us to omit parentheses when forming such a linear 

combination. The weights in a linear combination can be any real numbers, including 

zero. 

Example: 

 For  , if 1 2

1 2
,

1 1
v v

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

1
5 1
2 2

w v v= − 2  the we say that w is a linear combination of 

v1 and v2. 

Example:  As (3, 5 , 2) = 3(1, 0 , 0) + 5(0, 1 , 0) + 2(0, 0 , 1) 

 (3, 5 , 2) =  3  + 5 + 2   where = (1, 0 , 0) , = (0, 1 , 0)  = (0, 0 , 1) 1v 2v 3v 1v 2v 3v

So  (3, 5 , 2) is a vector which is linear combination of  , ,  1v 2v 3v

Example 5: Let  1 2

1 2
2 , 5 , 4 .
5 6

a a and b
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

7

3



5-Vector Equations                                                                                                                                       VU 

                                                                                                                                                                                                  
                                                       © Virtual University Of Pakistan                                                            52 

 

Determine whether b can be generated (or written) as a linear combination of a1 and a2. 

That is, determine whether weights x1 and x2 exist such that 

                                  x1 a1 + x2 a2 = b     (1) 

If the vector equation (1) has a solution, find it. 

Solution: Use the definitions of scalar multiplication and vector addition to rewrite the 

vector equation 

1 2

1 2
2 5
5 6

x x
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

7
4
3

3

⎤
⎥
⎥
⎥⎦

⎤
⎥
⎥
⎥⎦

3

1

 

 

      a1  a2 b 

  ⇒   
1 2

1 2

1 2

2 7
2 5 4
5 6

x x
x x
x x

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢− + =⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢− −⎣ ⎦ ⎣ ⎦ ⎣

  ⇒        (2) 
1 2

1 2

1 2

2 7
2 5 4
5 6 3

x x
x x
x x

+⎡ ⎤ ⎡
⎢ ⎥ ⎢− + =⎢ ⎥ ⎢
⎢ ⎥ ⎢− + −⎣ ⎦ ⎣

⇒                (3)  
1 2

1 2

1 2

2 7
2 5 4

5 6

x x
x x

x x

+ =
− + =
− + = −

We solve this system by row reducing the augmented matrix of the system as follows: 

2 1 3

1 2 7
2 5 4
5 6 3

2 ; 5By R R R R

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

+ +

 

                  

/
2 3

1 2 7
0 9 18
0 16 32

1 1;
9 16

By R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

R
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1 2 7
0 1 2
0 1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

                         3 2 1; 2 2By R R R R− −  

                         

1 0 3
0 1 2
0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                           

The solution of (3) is x1 = 3 and x2 = 2. Hence b is a linear combination of a1 and a2, with 

weights x1 = 3 and x2 = 2. 

Spanning Set: 

       If v1, . . .  , vp are in Rn, then the set of all linear combinations of v1, . . .  , vp is 

denoted by Span { v1, . . .  , vp } and is called the subset of Rn spanned (or generated) by 

v1, . . .  , vp . That is, Span { v1,  . . .  , vp} is the collection of all vectors that can be written 

in the form c1v1 + c2v2 + … + cpvp, with c1, . . . , cp scalars. 

If we want to check whether a vector b is in Span {v1,  . . .  , vp } then we will see whether 

the vector equation 

             x1v1 +x2v2 + ... + xpvp = b has a solution, or  

 Equivalently, whether the linear system with augmented matrix [ v1, …  , vp     b] has a 

solution. 

Note:  

(1) The set Span { v1, . . .  , vp} contains every scalar multiple of v1  

         because   cv1 = cv1 + 0v2 + …. + 0vp i.e every cvi can be written as a linear 

combination of v1, . . .  , vp 

(2) Zero vector  as 0  can be written as the linear combination of  

 that is 0 0  here for the convenience it is mentioned 

that 0   is the vector(zero vector) while  is zero scalar (weight of all ) and in 

particular not to make confusion that 0  and 0  are same! 

0 { , ,1 2Span v v vn= ∈ }

vn1 2, , nv v v 0 01 2F F Fv vv = + + +

v 0F 1 2, , nv v v

v F

A Geometric Description of Span {v} and Span {u, v}: 
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     Let v be a nonzero vector in R3. Then Span {v} is the set of all linear combinations of v 

or in particular set of scalar multiples of v, and we visualize it as the set of points on the 

line in R3 through v and 0.  

     If u and v are nonzero vectors in R3, with v not a multiple of u, then Span {u, v} is the 

plane in R3 that contains u, v and 0. In particular, Span {u, v} contains the line in R3 

through u and 0 and the line through v and 0. 

Example 6: Let 1 2

1 5
2 , 13 , 8 .

3 3
a a and b

3

1

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  

Then Span {a1, a2} is a plane through the origin in R3. Is b in that plane? 

 

Solution:   First we see the equation x1a1 + x2a2 = b has a solution?  

         To answer this, row-reduce the augmented matrix [a1   a2    b]: 

          

2 1

1 5 3
2 13 8

3 3 1
2By R R

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

+

       
1 5 3
0 3 2
0 18 10

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

         3 26By R R+  

 
1 5 3
0 3 2
0 0 2

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Last row  which can not be true for any value of 20x⇒ = −2 2x ∈R  

⇒Given system has no solution 

1 2,{b Span a a }∴ ∉         and  

in geometrical meaning, vector b  does not lie in the plane spanned by vectors 

 1 2anda a
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Linear Combinations in Applications: 

The final example shows how scalar multiples and linear combinations can arise when a 

quantity such as “cost” is broken down into several categories. The basic principle for the 

example concerns the cost of producing several units of an item when the cost per unit is 

known: 

 

number cos total
of units per unit cos

t
t

⎧ ⎫ ⎧ ⎫ ⎧
⋅ =⎨ ⎬ ⎨ ⎬ ⎨

⎩ ⎭ ⎩ ⎭ ⎩

⎫
⎬
⎭

  

Example 7: A Company manufactures two products. For one dollar’s worth of product 

B, the company spends $0.45 on materials, $0.25 on labor, and $0.15 on overhead. For 

one dollar’s worth of product C, the company spends $0.40 on materials, $0.30 on labor 

and $0.15 on overhead.  

Let , then b and c represent the “costs per dollar of income” 

for the two products. 

.45 .40

.25 .30

.15 .15
b and c

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=

 

a) What economic interpretation can be given to the vector 100b? 

b) Suppose the company wishes to manufacture x1 dollars worth of product B and x2 

dollars worth of product C. Give a vector that describes the various costs the 

company will have (for materials, labor and overhead). 

Solution: 

(a) We have  
.45 45

100 100 .25 25
.15 15

b
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

The vector 100b represents a list of the various costs for producing $100 worth of product 

B, namely, $45 for materials, $25 for labor, and $15 for overhead. 

 

(b) The costs of manufacturing x1 dollars worth of B are given by the vector x1b and the 

costs of manufacturing x2 dollars worth of C are given by x2c. Hence the total costs 

for both products are given by the vector x1b + x2c. 
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Vector Equation of a Line: 

Let x0 be a fixed point on the line and v be a nonzero vector that is parallel to the required 

line. Thus, if x is a variable  point on the line through x0 that is parallel to v, then the 

vector x – x0 is a vector  parallel to v as shown in fig below, 

 
So by definition of parallel vectors   x– x0 = tv   for some scalar t.  

   t is also called a parameter which varies from − ∞  to +∞ . The variable point x traces 

out the line, so the line can be represented by the equation 

 x– x0 = tv --------------(1)        ( )t−∞ < < +∞                      

   This is a vector equation of the line through x0 and parallel to v.  

In the special case where x0 = 0, the line passes through the origin, it simplifies to  

                                        x = tv         ( )t−∞ < < +∞   

 Parametric Equations of a Line in R2: 

 Let x = (x, y) 2R∈  be a general point of the line through  x0 = (x0, y0) 2R∈  which is 

parallel to  
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  v = (a, b) 2R∈ , then eq. 1 takes the form 

(x, y) - (x0, y0) = t(a, b)      ( )t−∞ < < +∞             

                  ⇒  (x - x0  , y - y0) = (ta , tb)      ( )t−∞ < < +∞                 

                  ⇒  x = x0 + at,   y = y0 + bt   ( t )−∞ < < +∞                                     

These are called parametric equations of the line  . 2in R

Parametric Equations of a Line in R3: 

Similarly, if we let x = (x, y, z) 3R∈  be a general point on the line through   

x0 = (x0, y0 , z0) 3R∈  that is parallel to v = (a, b, c) 3R∈ , then again eq. 1 takes the form 

(x, y, z) = (x0, y0, z0) + t(a, b, c) ( )t−∞ < < +∞  

               ⇒     x= x0 + at,   y = y0 + bt,   z = z0 + ct   ( )t−∞ < < +∞                

These are the parametric equations of the line  3in R

 
Example 8: 
 

(a) Find a vector equation and parametric equations of the line in R2 that passes 

through the origin and is parallel to the vector v = (–2, 3). 

 

(b) Find a vector equation and parametric equations of the line in R3 that passes 

through the point P0(1, 2, –3) and is parallel to the vector v = (4, –5, 1). 

 

(c) Use the vector equation obtained in part (b) to find two points on the line that are 

different from P0. 

Solution: 

 

(a) We know that a vector equation of the line passing through origin is x = tv.  

Let x = (x, y) then this equation can be expressed in component form as 

(x, y) = t (–2, 3)  

            This is the vector equation of the line.  

Equating corresponding components on the two sides of this equation yields the 

parametric equations  x = – 2t,    y = 3t  
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(b) The vector equation of the line is   x = x0 + tv.  

 Let x = (x, y, z), Here x0 = (1, 2, –3) and v = (4, –5, 1), then above equation can 

be expressed in component form as 

 (x, y, z) = (1, 2, –3) + t (4, –5, 1)  

 

Equating corresponding components on the two sides of this equation yields the 

parametric equations 

 

   x = 1 + 4t,   y = 2 – 5t,   z = –3 + t   

 

(d) Specific points on a line can be found by substituting numerical values for the 

parameter t.  

 

For example, if we take t = 0 in part (b), we obtain the point (x, y, z) = (1, 2, –3), 

which is the given point P0.  

 t = 1 yields the point (5, –3, –2) and   

            t = –1 yields the point (–3, 7, – 4). 

Vector Equation of a Plane: 

Let x0 be a fixed point on the required plane W and v1 and v2 be two nonzero vectors that 

are parallel to W and are not scalar multiples of one another. If x is any variable point in 

the plane W. Suppose v1 and v2 have their initial points at x0, we can create a 

parallelogram with adjacent side’s t1v1 and t2v2 in which x – x0 is the diagonal given by 

the sum 

x – x0 = t1v1 + t2v2 

 

or, equivalently, x = x0 + t1v1 + t2v2     ---------------------(1) 

 

where t1 and t2 are parameters vary independently from −∞  to +∞ ,  

This is a vector equation of the plane through x0 and parallel to the vectors v1 and v2. In 

the special case where x0 = 0, then vector equation of the plane passes through the origin 

takes the form 
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   x = t1v1 + t2v2   1 2( ,t t )−∞ < < +∞ −∞ < < +∞  

 

Parametric Equations of a Plane: 

 

 Let x = (x, y, z) be a general or variable point in the plane passes through a fixed point   

x0 = (x0, y0, z0) and parallel to the vectors v1 = (a1, b1, c1) and v2 = (a2, b2, c2), then the 

component form of eq. 1 will be 

(x, y, z) = (x0, y0, z0) + t1(a1, b1, c1) +t2(a2, b2, c2) 

Equating corresponding components, we get  

   x = x0 +a1t1 + a2t2 

   y = y0 + b1t1 + b2t2          1 2( ,t t )−∞ < < +∞ −∞ < < +∞             

   z = z0 + c1t1 + c2t2 

These are called the parametric equations for this plane. 

 

Example 9: (Vector and Parametric Equations of Planes) 

 

(a) Find vector and parametric equations of the plane that passes through the origin of 

R3 and is parallel to the vectors    v1 = (1, –2, 3) and v2 = (4, 0, 5). 

 

(b) Find three points in the plane obtained in part (a). 

 

Solution: 

 

(a) As vector equation of the plane passing through origin  is x = t1v1 + t2v2.  

Let x = (x, y, z) then this equation can be expressed in component form as 

  (x, y, z) = t1(1, –2, 3) + t2 (4, 0, 5)  

            This is the vector equation of the plane.        

Equating corresponding components, we get 

 x = t1 + 4t2,     y = –2t1,     z = 3t1 + 5t2            

These are the parametric equations of the plane.  
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(b) Points in the plane can be obtained by assigning some real values to the          

            parameters t1 and t2:  

 

  t1 = 0 and t2 = 0      produces the point (0, 0, 0) 

 

  t1 = –2 and t2 = 1    produces the point (2, 4, –1)  

 

  t1 = ½ and t2 = ½     produces the point (5/2, –1, 4) 

Vector equation of Plane through Three Points: 

If x0, x1 and x2 are three non collinear points in the required plane. Then obviously the 

vectors v1 = x1 – x0 and v2 = x2 – x0 are parallel to the plane. So a vector equation of the 

plane is 

x = x0 + t1(x1 – x0) + t2(x2 – x0)                                                

Example: Find vector and parametric equations of the plane that passes through the 

points. P(2, – 4, 5), Q (–1, 4, –3) and R(1, 10, –7). 

Solution: 

Let x = (x, y, z), and if we take x0, x1 and x2 to be the points P, Q and R respectively, then

    and   1 0 ( 3,8, 8)x x PQ− = = − − 2 0 ( 1,14, 12)x x PR− = = − −      

So the component form will be 

  1 2( , , ) (2, 4,5) ( 3,8, 8) ( 1,14, 12)x y z t t= − + − − + − −

This is the required vector equation of the plane. 

Equating corresponding components, we get 

 1 2 1 2 12 3 , 4 8 14 , 5 8 12 2x t t y t t z t t= − − = − + + = − −  

These are the parametric equations of the required plane.  

 

Question:    How can you tell from here that the points P, Q and R are not collinear? 

Finding a Vector Equation from Parametric Equations 

Example 11: Find a vector equation of the plane whose parametric equations are 

 



5-Vector Equations                                                                                                                                       VU 

                                                                                                                                                                                                  
                                                       © Virtual University Of Pakistan                                                            61 

 

   1 2 1 2 14 5 , 2 8 , 2x t t y t t z t t= + − = − + = +  

 

Solution:   First we rewrite the three equations as the single vector equation 

 

     1 2 1 2 1 2( , , ) (4 5 ,2 8 , )x y z t t t t t t= + − − + +                              

          ⇒  1 1 1 2 2 2( , , ) (4,2,0) (5 , , ) ( ,8 , )x y z t t t t t t= + − + −  

                                ⇒   1 2( , , ) (4,2,0) (5, 1,1) ( 1,8,1)x y z t t= + − + −

This is a vector equation of the plane that passes through the point (4, 2, 0) and is parallel 

to the vectors v1 = (5, –1, 1) and v2 = (–1, 8, 1). 

 

Finding Parametric Equations from a General Equation 

 

Example 12: Find parametric equations of the plane x – y + 2z = 5. 

 

Solution: First we solve the given equation for x in terms of y and z 

  x = 5 + y – 2z  

Now make y and z into parameters, and then express x in terms of these parameters.  

Let y = t1 and z = t2  

Then the parametric equations of the given plane are  

 x = 5 + t1 – 2t2,   y = t1,   z = t2 

 

Exercises: 

1. Prove that u + v = v + u for any u and v in Rn. 

 

2. For what value(s) of h will y be in Span {v1, v2, v3} if 

 

1 2 3

1 5 3
1 , 4 1 , 3
2 7 0

v v v and y
h

4− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = − = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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Determine if b is a linear combination of a1, a2, and a3. 

 

3.  1 2 3

1 2 6
0 , 3 , 7 , 5
1 2 5

a a a b
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

11

9

3

3
−
−

⎤
⎥
⎥
⎥⎦

 

4.  1 2 3

1 4 2
0 , 3 , 5 , 7

2 8 4
a a a b

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Determine if b is a linear combination of the vectors formed from the columns of the 

matrix A.  

 

5.    6. 
1 0 2 5
2 5 0 , 11

2 5 8 7
A b

−⎡ ⎤ ⎡
⎢ ⎥ ⎢= − =⎢ ⎥ ⎢
⎢ ⎥ ⎢−⎣ ⎦ ⎣

1 0 5 2
2 1 6 , 1

0 2 8 6
A b

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎞
⎟
⎟
⎟
⎠

⎟− ⎟

⎞
⎟
⎟
⎟
⎠

 

 

 

In exercises 3-6, list seven vectors in Span {v1, v2}. For each vector, show the weights on 

v1 and v2 used to generate the vector and list the three entries of the vector. Give also 

geometric description of the Span {v1, v2}. 

 

 

7.   8.   1 2

5 1
1 , 1

3 5
v v

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= − =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

1 2

2 1
0 , 0
1 2

v v
−⎛ ⎞ ⎛
⎜ ⎟ ⎜= =⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎝ ⎠ ⎝

 

 

9.   10.  1 2

2 3
6 , 9
4 6

v v
−⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜= =⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

1 2

3.7 5.8
0.4 , 2.1

11.2 5.3
v v

−⎛ ⎞ ⎛
⎜ ⎟ ⎜= − =⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎝ ⎠ ⎝
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11. Let  . For what value(s) of h is b in the plane spanned 

by a1 and a2? 

1 2

1 5
3 , 8 , 5

1 2
a a b

h

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

3
−

.
5

 

12. Let  For what value(s) of h is y in the plane 

generated by v1 and v2? 

1 2

1 2
0 , 1 , 3

2 7

h
v v and y

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

13. Let Show that 
2 2

.
1 1

u and⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

h
k
⎡ ⎤
⎢ ⎥
⎣ ⎦

 is in Span{u, v} for all h and k. 
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Lecture 6 
 

Matrix Equations 
 
A fundamental idea in linear algebra is to view a linear combination of vectors as the 

product of a matrix and a vector. The following definition will permit us to rephrase some 

of the earlier concepts in new ways. 

Definition:  If A is an  matrix, with columns a1, a2, … , an and if x is in Rn, then the 

product of A and x denoted by Ax, is the linear combination of the columns of A using 

the corresponding entries in x as weights, that is, 

m n×

 

[ ]
1

1 2 1 1 2 2... ...n n

n

x

nAx a a a x a x a x a
x

⎡ ⎤
⎢ ⎥= = +⎢ ⎥
⎢ ⎥⎣ ⎦

# + +

⎢ ⎥ = + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

3
6

 

Note that Ax is defined only if the number of columns of A equals the number of entries 

in x. 

 
Example 1  
 

a) 
4

1 2 1 1 2 1
3 4 3 7

0 5 3 0 5 3
7

⎡ ⎤
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥
⎣ ⎦

4 6 7
0 15 21

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

b) 
2 3 2 3

4
8 0 4 8 7 0

7
5 2 5 2

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎥
⎥
⎥⎦

8 21 1
32 0 32
20 14 6

− −
⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢= +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢− −⎣ ⎦ ⎣ ⎦ ⎣

3⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
 
Example 2:   For v1, v2, v3 in Rm, write the linear combination 3v1 – 5v2 + 7v3 as a 

matrix times a vector. 

Solution: Place v1, v2, v3 into the columns of a matrix A and place the weights 3, -5, 

and 7 into a vector x.  

That is,  1 2 3 1 2 3

3
3 5 7 [ ] 5

7
v v v v v v A

⎡ ⎤
⎢ ⎥− + = − =⎢ ⎥
⎢ ⎥⎣ ⎦

x
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We know how to write a system of linear equations as a vector equation involving a 

linear combination of vectors. For example, we know that the system 

 

1 2 3

2 3

2 4
5 3

x x x
x x

+ − =
− + =1

4
1

 is equivalent to  1 2 3

1 2 1
0 5 3

x x x
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡

+ + =
⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢− ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

   

Writing the linear combination on the left side as a matrix times a vector, we get 

1

2

3

1 2 1 4
0 5 3 1

x
x
x

⎡ ⎤
−⎡ ⎤ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥⎣ ⎦

  

Which has the form Ax = b, and we shall call such an equation a matrix equation, to 

distinguish it from a vector equation. 

  
Theorem: 1 If A is an m  matrix, with columns a1, a2 ,... , an and if b is in Rm, the 

matrix equation   Ax = b has the same solution set as the vector equation   

n×

x1a1 + x2a2 + … + xnan = b 

which, in turn, has the same solution set as the system of linear equations whose 

augmented matrix is [ ]1 2 ... na a a b  

Existence of Solutions:  The equation Ax = b has a solution if and only if b is a linear 

combination of the columns of A. 

 

Example 3: Let  and 
1 3 4
4 2 6
3 2 7

A
⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

1

2

3

b
b b

b

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

.  

Is the equation Ax = b consistent for all possible b1, b2, b3? 
 
 
Solution Row reduce the augmented matrix for Ax = b: 
       

 
1 2 14 ,3R R R R3+ +  

1 1

2 2

3 3

1 3 4 1 3 4
4 2 6 0 14 10 4
3 2 7 0 7 5 3

b b
b b
b b

⎡ ⎤ ⎡
⎢ ⎥ ⎢− − +⎢ ⎥ ⎢
⎢ ⎥ ⎢− − − +⎣ ⎦ ⎣

∼ 1

1

b
b

⎤
⎥
⎥
⎥⎦
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3 2
1
2

R R−  

1

2 1

3 1 2 1

1 2 1

0 14 10 4

10 0 0 3 (
2

b

b b

b b b b

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥
⎢ ⎥+ − +
⎢ ⎥⎣ ⎦

∼

4 )

 

 

The third entry in the augmented column is 1 2
1 .
2

b b b3− +   

The equation Ax = b is not consistent for every b because some choices of b can make 

1 2
1
2

b b− + 3b  nonzero. 

The entries in b must satisfy 1
1 2 32 0b b b− + =  

 

This is the equation of a plane through the origin in R3. The plane is the set of all linear 

combinations of the three columns of A. See figure below. 

 
 

 
 
                                                             
 
 
The equation Ax = b fails to be consistent for all b because the echelon form of A has a 

row of zeros. If A had a pivot in all three rows, we would not care about the calculations 

in the augmented column because in this case an echelon form of the augmented matrix 

could not have a row such as [0  0  0  1]. 



6-Matrix Equations  VU 

 
©Virtual University Of Pakistan 67

Example 4:  Which of the following are linear combinations of 
4 0 1 1 0 2

A , B , C
2 2 2 3 1 4

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎥

 

(a)   
6 8
1 8

−⎡ ⎤
⎢− −⎣ ⎦

(b)  (c)  
0 0
0 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

6 0
3 8
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Solution: 
 

(a)    = a A + b B + c C 
6 8
1 8

−⎡ ⎤
⎢− −⎣ ⎦

⎥

   = a  + b
4 0
2 2

⎡ ⎤
⎢ ⎥− −⎣ ⎦

1 1
2 3

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 + c
0 2
1 4
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

   =  
4 2

2 2 2 3 4
a b b c

a b c a b c
+ − +⎡ ⎤

⎢ ⎥− + + − + +⎣ ⎦

 

⇒   4a + b = 6   (1) 

  -b + 2c = -8  (2) 

  -2a + 2b + c = -1  (3) 

  -2a + 3b + 4c = -8  (4) 

 

Subtracting (4) from (3), we obtain 

  -b – 3c = 7      (5) 

Subtracting (5) from (2): 

  5c = -15 ⇒  c = -3 

 

From (2), -b + 2(-3) = -8 ⇒  b = 2 

From (3), -2a + 2(2) – 3 = -1  a = 1 ⇒

Now we check whether these values satisfy (1). 

  4(1) + 2 = 6 
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It means that is the linear combination of A, B and C. 
6 8
1 8

−⎡ ⎤
⎢− −⎣ ⎦

⎥

⎥

⎥

Thus 

              = 1A + 2B – 3C 
6 8
1 8

−⎡ ⎤
⎢− −⎣ ⎦

(b)   = a A + b B + c C 
0 0
0 0
⎡ ⎤
⎢
⎣ ⎦

  = a  + b
4 0
2 2

⎡ ⎤
⎢ ⎥− −⎣ ⎦

1 1
2 3

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 + c
0 2
1 4
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

   =  
4 2

2 2 2 3 4
a b b c

a b c a b c
+ − +⎡ ⎤

⎢ ⎥− + + − + +⎣ ⎦

 

⇒   4a + b = 0   (1) 

  -b + 2c = 0   (2) 

  -2a + 2b + c = 0  (3) 

  -2a + 3b + 4c = 0  (4) 

Subtracting eq. 3 from eq. 4 we get 

                                b + 3c = 0                        (5) 

Adding eq. 2 and eq. 5, we get 

                                5c = 0   ⇒     c = 0  

Put c = 0 in eq. 5, we get  b = 0 

Put b = c = 0 in eq. 3, we get a = 0 

⇒     a = b = c =0 

 

It means that is the linear combination of A, B and C. 
0 0
0 0
⎡ ⎤
⎢
⎣ ⎦

⎥

⎥

⎥

Thus = 0A + 0B + 0C 
0 0
0 0
⎡ ⎤
⎢
⎣ ⎦

 

(c)  = a A + b B + c C 
6 0
3 8
⎡ ⎤
⎢
⎣ ⎦
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  = a  + b
4 0
2 2

⎡ ⎤
⎢ ⎥− −⎣ ⎦

1 1
2 3

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 + c
0 2
1 4
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

  =  
4 2

2 2 2 3 4
a b b c

a b c a b c
+ − +⎡ ⎤

⎢ ⎥− + + − + +⎣ ⎦
 

⇒   4a + b = 6   (1) 

  -b + 2c = 0   (2) 

  -2a + 2b + c = 3  (3) 

  -2a + 3b + 4c = 8  (4) 

Subtracting (4) from (3), we obtain 

  -b – 3c = -5  (5) 

Subtracting (5) from (2): 

  5c = 5 ⇒  c = 1 

 

From (2), -b + 2(1) = 0 ⇒  b = 2 

 

From (3), -2a + 2(2) + 1 = 3  a = 1 ⇒

Now we check whether these values satisfy (1). 

  4(1) + 2 = 6 

   

It means that is the linear combination of A, B and C. 
6 0
3 8
⎡ ⎤
⎢
⎣ ⎦

⎥

⎥Thus = 1A + 2B +1C 
6 0
3 8
⎡ ⎤
⎢
⎣ ⎦

Theorem 2: Let A be an m  matrix. Then the following statements are logically 

equivalent. That is, for a particular A, either they are all true statements or they are all 

false. 

n×

 

(a) For each b in Rm, the equation Ax = b has a solution. 

(b) The columns of A Span Rm. 

(c) A has a pivot position in every row. 
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This theorem is one of the most useful theorems. It is about a coefficient matrix, not an 

augmented matrix. If an augmented matrix [A   b] has a pivot position in every row, then 

the equation Ax = b may or may not be consistent. 

Example 4: Compute Ax, where 
1

2

3

2 3 4
1 5 3

6 2 8

x
A and x x

x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢= − − = ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢− ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

3

3

3

 

Solution From the definition, 

1

2 1 2 3

3

2 3 4 2 3 4
1 5 3 1 5 3

6 2 8 6 2 8

x
x x x x
x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − = − + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

   

1 2

1 2

1 2

2 3 4
5 3

6 2 8

x x x
x x x
x x x

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢= − + + −⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢−⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

   

1 2 3

1 2 3

1 2 3

2 3 4
5 3

6 2 8

x x x
x x x
x x x

+ +⎡ ⎤
⎢ ⎥= − + −⎢ ⎥
⎢ ⎥− +⎣ ⎦

 

Note: 

In above example the first entry in the product Ax is a sum of products (sometimes called 

a dot product), using the first row of A and the entries in x.  

That is  [ ] [
1

2 1 2

3

2 3 4 2 3 4
x

]3x x x x
x

⎡ ⎤
⎢ ⎥ = + +⎢ ⎥
⎢ ⎥⎣ ⎦

 

Examples: 

In each part determine whether the given vector span 3R  

 

 

 

 

Solutions: 

1 2

3

1 2

3 4

1 2

3 4

( ) (2, 2, 2), (0, 0, 3),
(0, 1, 1)

( ) (3, 1, 4), (2, 3, 5),
(5, 2, 9) , (1, 4, 1)

( ) (1, 2,6), (3, 4, 1),
(4,3,1), (3, 3, 1)

a v v
v

b v v
v v

c v v
v v

= =
=
= = −
= − = −
= =
= =
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(a) We have to determine whether arbitrary vectors 1 2 3( , , )b b b b=   in 3R   can be 

expressed as a linear combination                                   of the vectors   

Expressing this in terms of components given by  

1 2 3, ,v v v

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1

1 2 3 2

1 2 3 3

( , , ) (2,2,2) (0,0,3) (0,1,1)
( , , ) (2 0 0 ,2 0 ,2 3 )
2 0 0
2 0
2 3

b b b k k k
b b b k k k k k k k k k
k k k b
k k k b
k k k b

= + +
= + + + + + +

+ + =
+ + =
+ + =

 

2 0 0
2 0 1
2 3 1

A
⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

⎥
⎥            has a non zero determinant  

Now 

det( ) 6 0A = − ≠  

Therefore    span 1 2 3, ,v v v 3R   

(b) The set S{ }of vectors in  3
1 2 3 4, , ,v v v v R  spans V= 3R  if  

 

1 1 2 2 3 3 4 4 1 1 2 2 3 3

1

2

3

.......(1)

(1,0,0)
(0,1,0)
(0,0,1)

c v c v c v c v d w d w d w
with

w
w
w

+ + + = + +

=
=
=

With our vectors     equation (1) becomes 1 2 3 4, , ,v v v v

1 2 3 4 1 2 3(3,1,4) (2, 3,5) (5, 2,9) (1,4, 1) (1, ,0,0) (0,1,0) (0,0,1)c c c c d d d+ − + − + − = + +  

Rearranging the left hand side yields  

1 2 3 4 1 23 2 5 1 1 0 0c c c c d d d+ + + = + + 3

3

3

 

1 2 3 4 1 21 3 2 4 0 1 0c c c c d d d− − + = + +  

1 2 3 4 1 24 5 9 1 0 0 1c c c c d d d+ + − = + +  

3 2 5 1 1 0 0
1 3 2 4 0 1 0
4 5 9 1 0 0 1

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

1 1 2 2 3 3b k v k v k v= + +
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The reduce row echelon form  

 

 

 

 

Corresponds to the system of equations  

 

1 3 4 2 3

2 3 4 2

1 2 3

5 31 1 1 ( ) ( )
17 17

4 11 1 1 ( ) ( )
17 17

7 110 1 ( ) ( )
17 17

c c c d d

c c c d d

d d d

+ + = +

−
+ + − = +

−
= + + −

3          ……………(2) 

So this system is inconsistent. The set S does not spans the space V.  

Similarly Part C can be solved by the same way as above.  

Exercise: 

1. Let  A

3
1 5 2 0 7

2
3 1 9 5 , , 9

0
4 8 1 7 0

4

x and b

⎡ ⎤
− −⎡ ⎤ ⎡ ⎤⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥= − − = =⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥− − ⎢ ⎥⎣ ⎦ ⎣ ⎦−⎣ ⎦

u and v

.  

It can be shown that Ax = b. Use this fact to exhibit b as a specific linear 

combination of the columns of A. 

 

2. Let  A
2 5 4 3

, ,
3 1 1 5

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. Verify A(u + v) =  Au +Av. 

 

11 0 2 1 0 0
2
10 1 1 1 0 1
2

0 0 0 0 1 3 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

5 31 0 1 1 0
17 17

4 10 1 1 1 0
17 17

7 110 0 0 0 1
17 17

⎡ ⎤
⎢ ⎥
⎢ ⎥

−⎢ ⎥−⎢ ⎥
⎢ ⎥−⎢ ⎥−
⎢ ⎥⎣ ⎦
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3. Solve the equation Ax = b, with 
2 4 6 2
0 1 3 , 5
3 5 7 3

A b
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢= = ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

5
1
8−

5
1 .

0
−

=

. 

 

4. Let . Is u in the plane in R3 spanned by the columns of A? 

Why or why not? 

5 3
3 1
6 2

u and A
−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

5. Let  Is u in the subset of R3 spanned by the columns of 

A? Why or why not? 

8 4 3
2 0 1
3 1 2

u and A
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

6. Let  Show that the equation Ax = b is not consistent for all 

possible b, and describe the set of all b for which Ax = b is consistent. 

1

2

3 1
.

6 2
b

A and b
b

− ⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

7. How many rows of 

1 3 2 2
0 1 1 5
1 2 1 7

1 1 0 6

A

− −⎡ ⎤
⎢ ⎥−⎢=
⎢− −
⎢ ⎥

⎥
⎥

−⎣ ⎦

 contain pivot positions? 

 

In exercises 8 to 13 , explain how your calculations justify your answer, and mention an 

appropriate theorem.  

8. Do the columns of the matrix 
1 3 4
3 2 6
5 1 8

A
−⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 span R3? 

9. Do the columns of the matrix 

1 3 2 2
0 1 1 5
1 2 1 7

1 1 0 6

A

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− −
⎢ ⎥−⎣ ⎦

 span R4? 
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10. Do the columns of the matrix 
0 0 2
0 5 1
4 6 3

A
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 span R3? 

 

11. Do the columns of the matrix 
3 5
1 1
2 8

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

span R3? 

 

12. Let  Does {v1, v2, v3}span R4? 1 2 3

1 0
0 1

, ,
1 0

0 1

v v v

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1
0

.
0
1

3
.

2

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

2

6

 

13. Let  Does { v1, v2, v3} span R3? 1 2 3

1 1
0 , 3 , 2

1 7
v v v

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

14. It can be shown that . Use this fact(and no row operations) 

to find scalars c1, c2, c3 such that 

4 1 2 1 4
2 0 8 4 18

3 5 6 2 5

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

1 2 3

4 4 1
18 2 0 8
5 3 5

c c c
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢= − + + ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

15. Let  It can be show that 2u – 5v – w = 0. Use this 

fact(and no row operations) to solve the equation 

3 1 1
8 , 3 , 1 .
4 1 3

u v and w
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1

2

3 1 1
8 3 1 .
4 1 3

x
x

⎡ ⎤ ⎡
⎡ ⎤

⎤
⎢ ⎥ ⎢=⎢ ⎥

⎥
⎢ ⎥ ⎢⎣ ⎦ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  

 

Determine if the columns of the matrix span R4. 
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16.     17. 

7 2 5 8
5 3 4 9

6 10 2 7
7 9 2 15

−⎡ ⎤
⎢ ⎥− − −⎢
⎢ −
⎢ ⎥−⎣ ⎦

⎥
⎥

12 7 11 9 5
9 4 8 7 3
6 11 7 3 9

4 6 10 5 12

− −⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥− −⎣ ⎦
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Lecture 7 
                                                                                       

Solution Sets of Linear Systems 

Solution Set: 

A solution of a linear system is an assignment of values to the variables x1, x2,... , xn such 
that each of the equations in the linear system is satisfied. The set of all possible solutions 
is called the Solution Set 

Homogeneous Linear Systems 

A system of linear equations is said to be homogeneous if it can be written in the form 
Ax = 0, where A is an  matrix and 0 is the zero vector in Rm.  m n×
 
Trivial solution:  
A homogeneous system Ax = 0 always has at least one solution, namely, x = 0 (the zero 
vector in Rn). This zero solution is usually called the trivial solution of the homogeneous 
system.  
 
Nontrivial solution:  
A solution of a linear system other than trivial is called its nontrivial solution.  
i.e the solution of a homogenous equation Ax = 0 such that x ≠  0 is called nontrivial 
solution, that is, a nonzero vector x that satisfies Ax = 0.  
 

Existence and Uniqueness Theorem: 
 
The homogeneous equation Ax = 0 has a nontrivial solution if and only if the equation 
has at least one free variable. 
Example 1 Find the solution set of the following system 
 
    1 2 33 5 4x x x+ − = 0

0
0

1 2 33 2 4x x x+ − =  

1 2 36 8x x x+ − =  
 
Solution. 
 

Let ,     
3 5 4
3 2 4
6 1 8

A
−⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

1

2

3

x
X x

x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

   ,  
0
0
0

b
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

The augmented matrix is 
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3 5 4 0
3 2 4 0
6 1 8 0

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
 For solution set, row reduce to reduced echelon form 

 

1 2 1

2 3

3 5 4 0
0 3 0 0 1 , 2
0 9 0 0

3 5 4 0
0 3 0 0 3
0 0 0 0

3R R R R

R R

−⎡ ⎤
⎢ ⎥− − + − +⎢ ⎥
⎢ ⎥−⎣ ⎦

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

∼

∼ +

 

1 2 2

2

1 3

2

41 0 0
3

0 1 0 0 1/ 3 , 1/ 3 ,5 / 3

0 0 0 0

41 0 0
3

0 1 0 0 ( 1)

0 0 0 0

4 0
3

0
0 0

1R R R R

R

x x

x

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥− +⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥ −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

− =

=
=

∼

∼

 
 
It is clear that  x3 is a free variable, so Ax = 0 has nontrivial solutions (one for each 
choice of x3). From above equations we have, 

                                1 3 2
4 ,
3

x x x= 0,=  with x3 free.  

As a vector, the general solution of Ax = 0 is given by 
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3
1

2 3 3

3 3

4 4
3 3
0 0 ,

1 1

xx
x x x x v where v

x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

4
3
0   

  
This shows that every solution of Ax = 0 in this case is a scalar multiple of v (it means 
that v generate or spans the whole general solution).The trivial solution is obtained by 
choosing x3 = 0. 

This shows that every solution of Ax = 0 in this case is a scalar multiple of v (it means 
that v generate or spans the whole general solution).The trivial solution is obtained by 
choosing x3 = 0. 
Geometric Interpretation:Geometric Interpretation: 
 
 Geometrically, the solution set is a line through 0 in R3, as given in the Figure below 
 
 

           x3 
              v 

 
 
 

                                           x2 
 
 
                                x3 
    
 
Note: A nontrivial solution x can have some zero entries so long as not all of its entries 
are zero. 
 
Example 2: 
         Solve the following system 
 

1 2 310 3 2 0x x x− − =        (1) 
 
Solution:   We solve for the basic variable x1 in terms of the free variables. 
Dividing eq. 1 by 10 and solve for x 
               
   x1 = 0.3x2 + 0.2x3  where  x2 and x3 free variables. 
 
As a vector, the general solution is 

1 2 3 2

2 2 2

3 3

0.3 0.2 0.3 0.2
0

0

3

3

x x x x x
x x x x

x x

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦x
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2 3

0.3 0.2
1
0 1

x x
⎡ ⎤ ⎡
⎢ ⎥ ⎢= +⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

0
⎤
⎥
⎥
⎥⎦⎣ ⎦ ⎣ ⎦

      (2)       (2) 

  
        

          u v           u v 
  
This calculation shows that every solution of (1) is a linear combination of the vector u, v 
shown in (2). That is, the solution set is Span {u, v} 
This calculation shows that every solution of (1) is a linear combination of the vector u, v 
shown in (2). That is, the solution set is Span {u, v} 
.  .  
Geometric InterpretationGeometric Interpretation: 
 
Since neither u nor v is a scalar multiple of the other so these are not parallel, the solution 
set is a plane through the origin, see Figure below 
 
                                                      x3 

     x3 
      

 
                                                      

   
 

        x2 
                                            
                                                x1            
    
Note: 
         Above examples illustrate the fact that the solution set of a homogeneous equation 

can be expressed explicitly as Span {v1, v2,  … , vp} for suitable vectors  0Ax =
v1, v2,   ... , vp(because solution sets can be written in the form of linear combination of 
these vectors). If the only solution is the zero-vector then the solution set is Span {0}.  
 
Example 3 (For Practice) Find the solution set of the following homogenous system 

                                                
1 2 3

1 2 3

2 3

3 0
4 9 2

3 6

x x x
x x x

x x
0
0

+ + =
− − + =

− − =
 

Solution: 
 

Let    ,    
1 3 1
4 9 2
0 3

A
⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦6

1

2

3

x
X x

x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,       
0
0
0

b
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
The augmented matrix is  
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1 2

2 3

2 2

1 3

2 3

1 3 1 0
4 9 2 0
0 3 6 0

1 3 1 0
 ~ 0 3 6 0 4 ,

0 3 6 0

1 3 1 0
0 3 6 0
0 0 0 0

1 0 5 0
10 1 2 0 , ( 3)
2

0 0 0 0

5 0
2 0

0 0

R R

R R

1R R R

SO
x x

x x

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦
⎡ ⎤
⎢ ⎥ +⎢ ⎥
⎢ ⎥− −⎣ ⎦

⎡ ⎤
⎢ ⎥ +⎢ ⎥
⎢ ⎥⎣ ⎦

−⎡ ⎤
⎢ ⎥ − +⎢ ⎥
⎢ ⎥⎣ ⎦

− =
+ =

=

∼

∼

~ 

From above results, it is clear that  x3 is a free variable, so Ax = 0 has nontrivial solutions 
(one for each choice of x3).  
From above equations we have, 
                            1 3 25 , 2 ,3x x x x= = −  with  x3 a free variable.  
As a vector, the general solution of Ax = 0 is given by 
                 

                 
1 3

2 3 3 3

3 3

5 5
2 2 ,

1 1

x x
x x x x x v where v

x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − = − = = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

5
2

 
Parametric Vector Form of the solution: 
 
Whenever a solution set is described explicitly with vectors, we say that the solution is in 
parametric vector form: 
 
The equation  

x = su + tv (s, t in R) 
is called a parametric vector equation of the plane. It is written in this form to 
emphasize that the parameters vary over all real numbers.  
 
Similarly, the equation   x = x3v (with x3 free), or x = tv (with t in R), is a parametric 
vector equation of a line. 
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Solutions of Non-homogeneous Systems: 
 
When a non-homogeneous linear system has many solutions, the general solution can be 
written in parametric vector form as one vector plus an arbitrary linear combination of 
vectors that satisfy the corresponding homogeneous system. 
To clear this concept consider the following examples, 
 
 
Example: 5. Describe all solutions of Ax = b, where 
 

3 5 4 7
3 2 4 1

6 1 8 4
A and b

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢= − − = − ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢− − ⎥⎣ ⎦ ⎣ ⎦

 

 
Solution    
Row operations on [A  b] produce 

1 2 1

2 3 2

2 1 1

1 3

2

3 5 4 7
3 2 4 1

6 1 8 4

3 5 4 7
0 3 0 6 , 2
0 9 0 18

3 5 4 7
10 1 0 2 3 ,
3

0 0 0 0

41 0 1
3

10 1 0 2 5 ,
3

0 0 0 0

4 1
3

2
0 0

3R R R R

R R R

R R R

x x

OR x

−⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

−⎡ ⎤
⎢ ⎥ + − +⎢ ⎥
⎢ ⎥− −⎣ ⎦

−⎡ ⎤
⎢ ⎥ +⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥ − +⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

− = −

=
=

∼

∼

∼

 

Thus 1 3 2
41 ,
3

x x x= − + = 2,  and x3 is free.  
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As a vector, the general solution of Ax = b has the form 

3 3
1

2 3

3 3 3

4 41 1 13 3
2 2 0 2

0 0

x xx
x x x

x x x

⎡ ⎤ ⎡ ⎤− +⎢ ⎥ ⎢ ⎥− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = + = +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

4
3
0
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

  
               p           v  
 
The equation x = p + x3v, or, writing t as a general parameter, 
 

x = p + tv  (t in R)       (3) 
 
Note: 
We know that the solution set of this question when Ax = 0 (example 1) has the 
parametric vector equation 
 
    x = tv (t in R)      (4) 
 
With the same v that appears in equation (3) in above example. 
Thus the solutions of Ax = b are obtained by adding the vector p to the solutions of  
Ax = 0. The vector p itself is just one particular solution of Ax = b (corresponding to t = 0 
in (3)). 
 
The following theorem gives the precise statement. 
 
Theorem:  
 
Suppose the equation Ax = b is consistent for some given b, and let p be a solution. 
Then the solution set of Ax = b is the set of all vectors of the form  
w = p + vh, where vh is any solution of the homogeneous equation Ax = 0. 
 
Example 6: (For pratice) 
 

                                                
1 2 3

1 2 3

2 3

3 1
4 9 2

3 6

x x x
x x x

x x
1
3

+ + =
− − + = −

− − = −
 

Solution: 
 

Let    ,    
1 3 1
4 9 2
0 3

A
⎡ ⎤
⎢

6
= − −⎢
⎢ ⎥− −⎣ ⎦

1

2

3

⎥
⎥

x
X x

x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,       b
1
1
3

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦
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The augmented matrix is  
 

1 2

2 3

2

2 1

1 3

2 3

1 3 1 1
4 9 2 1
0 3 6 3

1 3 1 1
0 3 6 3 4 ,
0 3 6 3

1 3 1 1
0 3 6 3
0 0 0 0

1 3 1 1
10 1 2 1
3

0 0 0 0

1 0 5 2
0 1 2 1 ( 3)
0 0 0 0

5 2
2 1

0 0

R R

R R

R

R R

SO
x x

x x

⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− − −⎣ ⎦
⎡ ⎤
⎢ ⎥ +⎢ ⎥
⎢ ⎥− − −⎣ ⎦
⎡ ⎤
⎢ ⎥ +⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

− −⎡ ⎤
⎢ ⎥ − +⎢ ⎥
⎢ ⎥⎣ ⎦

− = −
+ =

=

∼

∼

∼

∼  

Thus 1 3 22 5 , 1 2 ,3x x x x= − + = −  and x3 is free.  
As a vector, the general solution of Ax = b has the form 

  
1 3 3

2 3 3

3 3 3

2 5 2 5 2 5
1 2 1 2 1 2

0 0

x x x
x x x x

x x x

− + − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − = + − = + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦1

  
                 

        p             v  
 
So we can write solution set in parametric vector form as 
                   3x p x v= +  
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Exercise: 
 
Determine if the system has a nontrivial solution. Try to use as few row operations as 
possible. 
 
1. x1 – 5x2 + 9x3 = 0     2.  3x1 + 6x2 – 4x3 – x4 = 0      
   -x1 + 4x2 – 3x3 = 0        -5x1          + 8x3 + 3x4 = 0      
   2x1 – 8x2 + 9x3 = 0            8x1 – x2            + 7x4 = 0  
 
3. 5x1 – x2 + 3x3 = 0 
    4x1 – 3x2 + 7x3 = 0 
 
Write the solution set of the given homogeneous system in parametric vector form. 
 
4. x1 – 3x2 – 2x3 = 0     5. x1 + 2x2 – 7x3 = 0      
                x2 – x3 = 0      -2x1 – 3x2 + 9x3 = 0      
  -2x1 + 3x2 + 7x3 = 0               –2x2 + 10x3 = 0 
 
In exercises 6-8, describe all solutions of Ax = 0  in parametric vector form where A is 
row equivalent to the matrix shown. 
 

6.     7. 

1 5 0 2 0 4
0 0 0 1 0 3
0 0 0 0 1 5
0 0 0 0 0 0

− −⎡ ⎤
⎢ ⎥−⎢
⎢
⎢ ⎥
⎣ ⎦

⎥
⎥

1 6 0 8 1 2
0 0 1 3 4 6
0 0 0 0 0 1
0 0 0 0 0 0

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
8. [ ]1 5 0 4−  

Steps of Writing a Solution Set (of a Consistent System) 
in a Parametric Vector Form 

 
Step 1:  
           Row reduces the augmented matrix to reduced echelon form. 
Step 2:  
           Express each basic variable in terms of any free variables appearing in an 
           equation. 
Step 3: 
           Write a typical solution x as a vector whose entries depend on the free variables 
            if any. 
Step 4:  
           Decompose x into a linear combination of vectors (with numeric entries) using 
           the free variables as parameters. 
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9. Describe the solution set in R3 of x1 – 4x2 + 3x3 = 0, compare it with the solution set of 
x1 – 4x2 + 3x3 = 7. 
 
10. Find the parametric equation of the line through a parallel to b.                 

3 1
,

8 5
a b

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

 
11. Find a parametric equation of the line M through p and q. 

1 0
,

4 7
p q

−⎡ ⎤ ⎡
= =

⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎥
⎥

⎥
⎥

 

 

12. Given , find one nontrivial solution of Ax = 0 by inspection. 
5 10
8 16

7 14
A

⎡ ⎤
⎢= − −⎢
⎢ ⎥⎣ ⎦

 

13. Given , find one nontrivial solution of Ax = 0 by inspection. 
1 3
2 6
3 9

A
⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦
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Lecture 8 

 
Linear Independence 

 
Definition:  
                  An indexed set of vectors {v1, v2, ... , vp} in Rn is said to be linearly 
independent if the vector equation 1 1 2 2 0p px v x v x v+ + + ="  has only the trivial solution. 
The set {v1, v2, ... , vp} is said to be linearly dependent if there exist weights c1, …. , cp, 
not all zero, such that      (1) 1 1 2 2 0p pc v c v c v+ + + ="
Equation (1) is called a linear dependence relation among v1 ,…, vp when the weights 
are not all zero.  
 
Example 1: 
  

Let  1 2 3

1 4
2 , 5 , 1
3 6

v v v
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2

0
(a) Determine whether the set of vectors {v1, v2, v3} is linearly independent or not. 
(b) If possible, find a linear dependence relation among v1, v2, v3. 
 
Solution: 
 
(a) Row operations on the associated augmented matrix show that 
 

1 2 1

2 3

1 4 2 0
2 5 1 0
3 6 0 0

1 4 2 0
0 3 3 0 ( 2) , ( 3)
0 6 6 0

1 4 2 0
0 3 3 0 (2)
0 0 0 0

3R R R

R R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥− − − + − +⎢ ⎥
⎢ ⎥− −⎣ ⎦
⎡ ⎤
⎢ ⎥− − +⎢ ⎥
⎢ ⎥⎣ ⎦

∼

∼

R  

 
Clearly, x1 and x2 are basic variables and x3 is free. Each nonzero value of x3 determines 
a nontrivial solution.  
Hence v1, v2, v3 are linearly dependent (and not linearly independent). 
 
(b) To find a linear dependence relation among v1, v2, v3, completely row reduce the 
augmented matrix and write the new system: 
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2

1 2

1 4 2 0
10 1 1 0

3
0 0 0 0

1 0 2 0
0 1 1 0 4
0 0 0 0

R

R R

⎡ ⎤
−⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

−⎡ ⎤
⎢ ⎥ −⎢ ⎥
⎢ ⎥⎣ ⎦

∼

 

 

⇒   
1 3

2 3

2 0
0

0 0

x x
x x

− =
+ =

=
 

 
Thus  x1 = 2x3,  x2 = -x3,  and  x3 is free.  
 
Choose any nonzero value for x3, say, x3 = 5, then  x1 = 10, and x2 = -5.  
Substitute these values into   1 1 2 2 3 3 0x v x v x v+ + =
 
   ⇒   10v1 – 5v2 + 5v3 = 0 
 
This is one (out of infinitely many) possible linear dependence relation among v1, v2, v3. 
 
Example (for practice): 
 
Check whether the vectors are linearly dependent or linearly independent 
 

          
 
Solution: 
 
Consider two constants  and . Suppose  1C 2C

     
Now, set each of the components equal to zero to arrive at the following system of 
equations. 

                                         
  
Solving this system gives to following solution, 
 

                                 
  
The trivial solution is the only solution and so these two vectors are linearly independent. 
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Linear Independence of Matrix Columns: 
Suppose that we begin with a matrix [ ]1 ... nA a a=  instead of a set of vectors. The 
matrix equation Ax = 0 can be written as 1 1 2 2 0n nx a x a x a+ + + ="  
 
Each linear dependence relation among the columns of A corresponds to a nontrivial 
solution of Ax = 0.  
 
Thus we have the following important fact. 
 
The columns of a matrix A are linearly independent if and only if the equation  

 has only the trivial solution. 0Ax =
 

Example 2: Determine whether the columns of 
0 1 4
1 2 1
5 8 0

A
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 are linearly 

independent. 
 
Solution. To study Ax = 0 row reduce the augmented matrix: 
 

12

1 3

0 1 4 0
1 2 1 0
5 8 0 0

1 2 1 0
0 1 4 0
5 8 0 0

1 2 1 0
0 1 4 0 ( 5)
0 2 5 0

R

R R

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−⎡ ⎤
⎢ ⎥ − +⎢ ⎥
⎢ ⎥−⎣ ⎦

∼

∼

 

            2 3

1 2 1 0
0 1 4 0 (2)
0 0 13 0

R R
−⎡ ⎤

⎢ ⎥ +⎢ ⎥
⎢ ⎥⎣ ⎦

∼  

 
At this point, it is clear that there are three basic variables and no free variables. So the 
equation Ax = 0 has only the trivial solution, and the columns of A are linearly 
independent. 
 
Sets of One or Two Vectors: 
 
                                              A set containing only one vector (say, v) is linearly 
independent if and only if v is not the zero vector. This is because the vector equation 
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 x1v = 0 has only the trivial solution when 0v ≠ . The zero vector is linearly dependent 
because x10 = 0 has many nontrivial solutions.  
  
Example 3: Determine if the following sets of vectors are linearly independent. 
 

a.   1 2

3 6
,

1 2
v v⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

b.  1 2

3 6
,

2 2
v v⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 
Solution: 
 
a) Notice that v2 is a multiple of v1, namely, v2 = 2v1.  

Hence –2v1 + v2 = 0, which shows that {v1, v2} is linearly dependent. 
 

b) v1 and v2 are certainly not multiples of one another. Could they be linearly dependent? 
 
Suppose c and d satisfy cv1 + dv2 = 0 
 
If  then we can solve for v1 in terms of v2, namely, v1 = (-d/c) v2. This result is 
impossible because v1 is not a multiple of v2. So c must be zero. Similarly, d must also 
be zero.  

0,c ≠

Thus {v1, v2} is a linearly independent set. 
 

Note: A set of two vectors {v1, v2} is linearly dependent if and only if one of the vectors 
is a multiple of the other. 
In geometric terms, two vectors are linearly dependent if and only if they lie on the same 
line through the origin. Figure 1 shows the vectors from Example 3. 
    x2 
  
 
       (6, 2) 
      (3, 1) 
     
 
             x1  
 
    Linearly dependent 
     x2 
    
 
 
           (3, 2)  (6, 2) 
 
 
       x1 
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   Figure 1 Linearly independent 
 
 
Sets of Two or More Vectors; 
     
Theorem (Characterization of Linearly dependent Sets):  
An indexed set  of two or more vectors is linearly dependent if and only 
if at least one of the vectors in S is a linear combination of the others. In fact, if S is 
linearly dependent, and , then some 

1 2{ , , , }ps v v v= "

0v ≠ jv  (with ) is a linear combination of the 
preceding vectors,

1j >

1 1, , jv v −" . 
 
Proof:  
                                If some jv  in S equals a linear combination of the other vectors, then 

jv  can be subtracted from both sides of the equation, producing a linear dependence 
relation with a nonzero weight (–1) on jv .  
 
For instance, if v1 = c2v2 + c3v3, then 0 = (–1)v1 + c2v2 +c3v3 + 0v4 + ... + 0vp.  
Thus S is linearly dependent. 

 
Conversely, suppose S is linearly dependent. If v1 is zero, then it is a (trivial) linear 
combination of the other vectors in S.  
 
If  and there exist weights c1, ... , cp, not all zero(because vectors are linearly 
dependent), such that 

0v ≠

 
c1v1 + c2v2 +…+ cpvp = 0 

 
Let j  be the largest subscript for which 0jc ≠ . If 1j = , then c1v1 = 0, which is 
impossible because .  0jv ≠
 
So , and 1j > 1 1 10 0j j j pc v c v v v+ 0+ + + + + =" "  
 

1 1 2 2 1 1j j jc v c v c v c v j− −= − − − −"  
 

11 2
1 2

j
j j

j j j

cc cv v v
c c c

−
1v −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

"  

 
 
Note: This theorem does not say that every vector in a linearly dependent set is a linear 
combination of the preceding vectors. A vector in a linearly dependent set may fail to be 
a linear combination of the other vectors. 
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Example 4: Let  and 
3
1
0

u
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1
6
0

v
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. Describe the set spanned by u and v, and explain 

why a vector w is in Span {u, v} if and only if {u, v, w} is linearly dependent. 
 

Solution: 
 The vectors u and v are linearly independent because neither vector is a multiple 
of the other, nor so they span a plane in R3. In fact, Span {u, v} is the x1x2-plane  
(with x3 = 0). If w is a linear combination of u and v, then {u, v, w} is linearly dependent.  
 
Conversely, suppose that {u, v, w} is linearly dependent.  
 
Some vector in {u, v, w} is a linear combination of the preceding vectors (since 0u ≠ ). 
That vector must be w, since v is not a multiple of u. So w is in Span {u, v} 
 
      x3 
 
 
         x2 
    v 
  u 
   x1   w 
 
 Linearly dependent w in Span {u, v}. 
 
 
         x3 
       w 
 
         v  x2  
 
       x1       u 
 
    Linearly independent w not in Span {u, v} 
 

Figure 2: Linear dependence in R3. 
 
 
This example generalizes to any set {u, v, w} in R3 with u and v linearly independent. The 
set {u, v, w} will be linearly dependent if and only if w is in the plane spanned by u and v. 
 
Theorem:  
     If a set contains more vectors than there are entries in each vector, then the set 
is linearly dependent. That is, any set {v1, v2, ... , vp} in Rn is linearly dependent if p > n. 
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 Example 5: The vectors 
2 4 2

, ,
1 1 2

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 are linearly dependent, because there are 

three vectors in the set and there are only two entries in each vector.  
 
Notice, however, that none of the vectors is a multiple of one of the other vectors. See 
Figure 4. 
 
             x2  
     
 
 
   (–2, 2)   
 
       (2, 1) 
                x1  
 
           (4, –1)  
    

Figure 4 A linearly dependent set in R2
. 

 
   
Theorem:  
 
If a set S = {v1, v2,  … , vp} in Rn contains the zero vector, then the set is linearly 
dependent. 
 
Proof: 
           By renumbering the vectors, we may suppose that v1 = 0.  
Then    (1)v1 + 0v2 + … + 0vp = 0 shows that S is linearly dependent( because in this 
relation coefficient of v1 is  non zero). 
 
Example 6. Determine by inspection if the given set is linearly dependent. 

 

a.  b. 
1 2 3 4
7 , 0 , 1 , 1
6 9 5 8

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2 0 1
3 , 0 , 1
5 0 8

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  c.  

2 3
4 6

,
6 9

10 15

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

Solution: 
 

a) The set contains four vectors that each has only three entries. So the set is linearly 
dependent by the Theorem above. 

b) The same theorem does not apply here because the number of vectors does not exceed 
the number of entries in each vector. Since the zero vector is in the set, the set is 
linearly dependent by the next theorem. 
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c) As we compare corresponding entries of the two vectors, the second vector seems to 
be –3/2 times the first vector. This relation holds for the first three pairs of entries, but 
fails for the fourth pair. Thus neither of the vectors is a multiple of the other, and 
hence they are linearly independent. 

 
 
Exercise: 

1. Let . 
3 6 0
2 , 1 , 5 , 7
4 7 2

u v w and z
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

3

5
 

(i) Are the sets {u, v}, {u, w}, {u, z}, {v, w}, {v, z}, and {w, z} each linearly 
independent? Why or why not? 

(ii) Does the answer to Problem (i) imply that {u, v, w, z} is linearly independent? 
(iii) To determine if {u, v, w, z} is linearly dependent, is it wise to check if, say, w is a 

linear combination of u, v and z? 
(iv) Is {u, v, w, z} linear dependent? 
 
Decide if the vectors are linearly independent. Give a reason for each answer. 
 

2.     3. 
3 3 6
0 , 2 , 4
0 3 0

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 3 0
3 , 5 , 5

2 6 6

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
Determine if the columns of the given matrix form a linearly dependent set. 
 

4.     5. 
1 3 2 0
3 10 7 1
5 5 3 7

−⎡ ⎤
⎢ −⎢
⎢ ⎥− −⎣ ⎦

⎥
⎥

3 4 3
1 7 7

1 3 2
0 2 6

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 

 

6.    7. 

1 1 0 4
1 0 3 1

0 2 1 1
1 0 1 3

⎡ ⎤
⎢ ⎥− −⎢
⎢ ⎥−
⎢ ⎥−⎣ ⎦

⎥

1 1 3 0
0 1 5 4
1 2 8 5

3 1 1 3

− −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 

 
For what values of h is v3 in span {v1, v2} and for what values of h is {v1, v2, v3} linearly 
dependent? 
 

8.   9. 1 2 3

1 2
3 , 6 , 2

2 4
v v v

h

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 2

1 2 3

1 3
3 , 9 , 6
3 1

v v v
h

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢− ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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Find the value(s) of h for which the vectors are linearly dependent. 
 

10.     11. 
1 2
3 , 4 , 1

3 1 h

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1 3 4
5 , 8 ,
2 6 8

h
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
Determine by inspection whether the vectors are linearly independent. Give reasons for 
your answers. 
 

12.    13. 
5 6 2 3

, , ,
5 1 4 6
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2 6
5 , 5 , 0

1 3 0

− 0⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

14.  
6 3
2 , 1

8 2

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

15. Given , observe that the third column is the sum of the first two 

columns. Find a nontrivial solution of Ax = 0 without performing row operations. 

2 3 5
5 1 4
3 1 4

1 0 1

A

⎡ ⎤
⎢ ⎥− −⎢=
⎢− − −
⎢ ⎥
⎣ ⎦

⎥
⎥

 
Each statement in exercises 16-18 is either true(in all cases) or false(for at least one 
example). If false, construct a specific example to show that the statement is not always 
true. If true, give a justification. 
 
16. If v1, …, v4 are in R4 and v3 = 2v1 + v2, then {v1, v2, v3, v4} is linearly dependent. 
 
17. If v1 and v2 are in R4 and v1 is not a scalar multiple of v2, then {v1, v2} is linearly 
independent. 
 
18. . If v1, …, v4 are in R4 and{v1, v2, v3} is linearly dependent, then {v1, v2, v3, v4} is 
also linearly dependent. 
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19. Use as many columns of 

8 3 0 7 2
9 4 5 11 7

6 2 2 4 4
5 1 7 0 10

A

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥−⎣ ⎦

 as possible to construct a 

matrix B with the property that equation Bx = 0 has only the trivial solution. Solve Bx = 
0 to verify your work.     
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Lecture 9 

 
Linear Transformations 

 
Outlines of the Lecture: 
            

•  Matrix Equation 
• Transformation, Examples, Matrix as Transformations  
• Linear Transformation, Examples, Some Properties  

 
Matrix Equation: 
 
An equation Ax = b is called a matrix equation in which a matrix A acts on a vector x by 
multiplication to produce a new vector called b. 
 
For instance, the equations 
 

1
4 3 1 3 1 5
2 0 5 1 1 8

1

1
4 3 1 3 4 0
2 0 5 1 1 0

3

A x b
and

A u

⎡ ⎤
⎢ ⎥−⎡ ⎤ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥−⎡ ⎤ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥−⎣ ⎦
⎢ ⎥
⎣ ⎦

o

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
                                            
 
Solution of Matrix equation: 
 
Solution of the Ax = b consists of those vectors x in the domain that are transformed into 
the vector b in range. 
 
Matrix equation Ax = b is an important example of transformation we would see later in 
the lecture. 
 
Transformation or Function or Mapping: 
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A transformation (or function or mapping) T from R n to R m is a rule that assigns to 
each vector x in Rn an image vector T(x) in Rm.  
 
                                                           : n mT R R→
 
The set R n is called the domain of T, and R m is called the co-domain of T. For x in Rn 
the set of all images T(x) is called the range of T. 
 
Example 1: Consider a mapping   defined by . This 
transformation is a reflection about y-axis in 

2:T R R→ 2 ( , ) ( , )T x y x y= −
xy plane. 

 Here . T  has transformed  vector (1,2) into another vector (-1,2) (1, 2) ( 1, 2)T = −
 
 
                                                        y 
 
 
 
 
                         (-x, y) <------------------------------------------ (x, y) 
 
 
 
                                            
                                                                                                                     x 
 
  

Example 2: Let ,  
1 3 3 3

2
3 5 , , 2 , 2

1
1 7 5 5

A u b c
−⎡ ⎤ ⎡ ⎤ ⎡

⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢= = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢−⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢− −⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥= ⎥
⎥⎦

3
 
and define a transformation  by T(x) = Ax, so that 2:T R R→
 

1 2
1

1 2
2

1 2

1 3 3
( ) 3 5 3 5

1 7 7

x x
x

T x Ax x x
x

x x

− −⎡ ⎤ ⎡
⎡ ⎤⎢ ⎥ ⎢= = = +⎢ ⎥⎢ ⎥ ⎢⎣ ⎦⎢ ⎥ ⎢− −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥+ ⎦

 

 
a) Find T (u), the image of u under the transformation T. 
b) Find an x in R2 whose image under T is b. 
c) Is there more than one x whose image under T is b? 
d) Determine if c is in the range of the transformation T. 
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Solution: (a) 

                         
1 3 5

2
( ) 3 5 1

1
1 7 9

T u Au
−⎡ ⎤ ⎡

⎡ ⎤⎢ ⎥ ⎢= = =⎢ ⎥⎢ ⎥ ⎢−⎣ ⎦⎢ ⎥ ⎢− −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

               Here           
5

( ) 1
9

T u
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

Here the matrix transformation has transformed  
2
1

u ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

  into another vector  
5
1
9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 
(b) We have to find an x such that T (x) = b  or Ax = b 
 

i. e    (1) 1

2

1 3 3
3 5 2
1 7 5

x
x

−⎡ ⎤ ⎡
⎡ ⎤⎢ ⎥ ⎢=⎢ ⎥⎢ ⎥ ⎢⎣ ⎦⎢ ⎥ ⎢− −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

 
Now row reduced augmented matrix will be: 
 

                                                            

1 2 1

2 2

2 1

1 3 3
3 5 2 3 ,
1 7 5

1 3 3
10 14 7 , 4 ,

14
0 4 2

1 3 3
0 1 .5 3
0 0 0

1 0 1.5
0 1 .5
0 0 0

3

3

R R R R

R R R

R R

−⎡ ⎤
⎢ ⎥ − + +⎢ ⎥
⎢ ⎥− −⎣ ⎦

−⎡ ⎤
⎢ ⎥− − +⎢ ⎥
⎢ ⎥−⎣ ⎦

−⎡ ⎤
⎢ ⎥− +⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

∼

∼

∼

  

 
 

Hence x1 = 1.5,   x2 = - 0.5, and 
1.5

.
.5

x ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

  

The image of this x under T is the given vector b. 
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(c)      From (2) it is clear that equation  
          (1) has a unique solution. So there is exactly one x whose image is b. 
 
(d)      The vector c is in the range of T if c is the image of some x in R2, that is, if  

      for some x. This is just another way of asking if the system Ax = c is  ( )c T x=
     consistent. To find the answer, we will row reduce the augmented matrix: 

 

1 2 1

3 23

2 3

1 3 3
3 5 2 3 ,
1 7 5

1 3 3
10 14 7 ,
4

0 4 8

1 3 3
0 1 2 14
0 14 7

1 3 3
0 1 2
0 0 35

3R R R R

R R

R R

−⎡ ⎤
⎢ ⎥ − + +⎢ ⎥
⎢ ⎥−⎣ ⎦

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

−⎡ ⎤
⎢ ⎥ − +⎢ ⎥
⎢ ⎥−⎣ ⎦

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

∼

∼

∼

 

1 2

1 2

1 2

3 3
0 2
0 0 35 0 35 0 35

x x
x x
x x but

− =
+ =
+ =− ⇒ = ≠

 

Hence the system is inconsistent. So c is not in the range of T. 
 
 
 
So from above example we can view a transformation in the form of a matrix. We’ll 
see that a transformation  can be transformed into a matrix of order : nT R R→ m

m n×  and every matrix of order m n×  can be viewed as a linear transformation. 
 
 
 
 
The next two matrix transformations can be viewed geometrically. They reinforce the 
dynamic view of a matrix as something that transforms vectors into other vectors.  

Example 3: If   then the transformation
1 0 0
0 1 0 ,
0 0 0

A
⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

⎥
⎥ x Ax→ projects points in R3  
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onto the 1 2x x coordinate plane− because   
1 1

2 2

3 3

1 0 0
0 1 0
0 0 0 0

1

2

x x x
x x x
x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢→ = ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

         x3 
 
 

 
 

     •  
           •  
 
              •       •     x2 
     •    
           •  
                   x1   
              •       •  
   A projection transformation 
 

Example 4: Let A , the transformation T R  defined by T (x) = Ax is  
1 3

.
0 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

2R→

6
2

s T u
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

8
2

2:

called a shear transformation.  
 

The image of the point u i   
0 1 3 0

( ) ,
2 0 1 2

and the image of   
2 1 3 2

.
2 0 1 2

is⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 
Here T deforms the square as if the top of the square were pushed to the right while the 
base is held fixed. Shear transformations appear in physics, geology and crystallography. 
                   x2                                                                                                 x2 
         
 
         T 
 
 
 
 
                                                         x1                                                                      x1 
 

A shear transformation 
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Linear Transformations: 
 
We know that if A is m  matrix, then the transformation n× x Ax→  has the properties 

( ) ( )A u v Au Av and A cu cAu+ = + =  for all u, v in Rn and all scalars c.  
These properties for a transformation identify the most important class of transformations 
in linear algebra. 
 
Definition:   A transformation (or mapping) T is linear if: 
 

1. T(u + v) = T(u) + T(v)  for all u, v in the domain of T; 
2. T(cu) = cT(u)   for all u and all scalars c. 

 
Example 5: Every matrix transformation is a linear transformation. 
 
Example 6: Let  be defined by 3:L R R→ 2 ( , , ) ( , )L x y z x y= . 
 
                         we let 1 1 1( , , )x y z=u  and 2 2 2( , , )x y z=v . 
 

1 1 1 2 2 2

1 2 1 2 1 2

( ) (( , , ) ( , , ))
( , , )

L L x y z x y z
L x x y y z z

+ = +
= + + +

u v
 

 

  1 2 1 2

1 1 2 2

( , )
( , ) ( , ) ( ) ( )
x x y y
x y x y L L

= + +
= + = +u v

 

 
Also, if k is a real number, then 
 
                         1 1 1 1 1( ) ( , , ) ( , ) ( )L k L kx ky kz kx ky kL= = =u u
 
Hence L is a linear transformation, which is called a projection. The image of the vector 
(or point) (3, 5, 7) is the vector (or point) (3, 5). See figure below. 
                                              z 
 
                                                    (3, 5, 7) 
 
 
 
 
 
                                                                                          y 
 
                                                                  (3, 5) 
                           x 
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Geometrically the image under L of a vector  (a, b, c) in R3 is (a, b) in R2 can be found by 
drawing a line through the end point P(a, b, c) of u and perpendicular to R2, the xy-plane. 
The intersection Q(a, b)of this line with the xy-plane will give the image under L. See 
figure below 
. 
                              
 
                                              
 
                                                                               Q(a, b)  
                                                   v = L(u)                                
 
                                                                   
 
 
 
 
 
 
                                                                               P(a, b) 
 
Example 7: Let  be defined by  :L R R→ 2( )L x x=  
  
 Let x and y in R  and  
 

   
2 2 2 2 2( ) ( ) 2 ( ) (

( ) ( ) ( )
L x y x y x y xy x y L x L y

L x y L x L y
+ = + = + + ≠ + = +

⇒ + ≠ +
)

 
So we conclude that the function L is not a linear transformation. 
 
 
Linear transformations preserve the operations of vector addition and scalar 
multiplication 
 
 
Properties: 
 
If T is a linear transformation, then 

1. T(0) = 0               
2. T(cu +dv) = cT(u) + dT(v)  
3. T(c1v1 + …+ cpvp) = c1T(v1) + … + cpT(vp)  
           

for all vectors u, v in the domain of T and all scalars c, d. 
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Proof: 
 
 1. By the definition of Linear Transformation we have T(cu) = cT(u)   for all u and all    
      scalars c. Put 0c =  we’ll get T(0u)= 0T(u)  This implies T(0) = 0 
 
2. Just apply the definition of linear transformation. i. e 

T(cu + dv) = T(cu) + T(dv) = cT(u) + dT(v) 
  

 
 
Property (3) follows from (ii), because T(0) = T (0u) =0T(u) = 0.  
Property (4) requires both (i) and (ii): 
 
 
 
OBSERVATION: Observe that if a transformation satisfies property 2 for all u, v and c, 
d, it must be linear      (Take c = d = 1 for preservation of addition, and take d = 0) 
 
 
3. Generalizing Property 2 we’ll get 3 
 

T(c1v1 + …+ cpvp) = c1T(v1) + … + cpT(vp)          
 
 
 
Applications in Engineering:  
 
In engineering and physics, property 3 is referred to as a superposition principle. 
Think of v1, … , vp as signals that go into a system or process and T(v1), … , T(vp) as the 
responses of that system to the signals. The system satisfies the superposition principle if 
whenever an input is expressed as a linear combination of such signals, the system’s 
response is the same linear combination of the responses to the individual signals 
 
 
 
Example 8: Given a scalar r, define  by :T R R→
                                                
                                                         T (x) = x+1.  
 
T is not a linear transformation (why!) because (0) 0T ≠  (by property 3) 
 
Example 9:   Given a scalar r, define  by  T (x) = rx.  2:T R R→ 2

T is called a contraction when 0 1r≤ <   
and a dilation when   1.r ≥
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Let r = 3 and show that T is a linear transformation. 
 
Solution:  Let u, v be in R2 and let c, d be scalars, then 
 
   T (cu + dv) = 3 (cu + dv)  Definition of T 
            = 3cu + 3dv 
            = c (3u) + d(3v)  Vector arithmetic 
            = cT (u) + dT (v) 
 
Thus T is a linear transformation because it satisfies (4). 
 
Example 10: Define a linear transformation  by  2 2:T R R→
 

1 2

2 1

0 1
( )

1 0
x x

T x
x x

−− ⎡ ⎤ ⎡ ⎤⎡ ⎤
= =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Find the images under T of  
4 2

, ,
1 3

u v and u v⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

6
.

4
 
 

Solution:  
0 1 4 1 0 1 2 3

( ) , ( )
1 0 1 4 1 0 3 2

T u T v
− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎦

⎤
⎥
⎦

 
0 1 6 4

( )
1 0 4 6

T u v
− −⎡ ⎤ ⎡ ⎤ ⎡

+ = =⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣

 

 
In above example T rotates u, v and u + v counterclockwise through 900.  
In fact, T transforms the entire parallelogram determined by u and v into the one 
determined by T (u) and T (v) 
 
Example 11: Let L: R3→R2 be a linear transformation for which we know that 

L (1, 0, 0) = (2, -1),  
L (0, 1, 0) = (3, 1), and  
L (0, 0, 1) = (-1, 2).  

              Then find L (-3, 4, 2). 
 
Solution:   Since (-3, 4, 2) = -3i + 4j + 2k, 
 

               
( 3, 4, 2) ( 3 4 2 ) 3 ( ) 4 ( ) 2 ( )

3(2, 1) 4(3,1) 2( 1, 2) (4,11)
L L L L− = − + + = − + +

=− − + + − =
i j k i j kL
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Exercise 
 
1. Suppose that 5 2  and T(x) = Ax for some matrix A and each x in R5. How 

many rows and columns does A have? 
:T R R→

 

2. Let 
1 0
0 1

⎤
⎢ ⎥−

. Give a geometric description of the transformationA ⎡
=
⎣ ⎦

x Ax→ . 

 
3. The line segment from 0 to a vector u is the set of points of the form tu, where 

0 1t≤ ≤ . Show that a linear transformation T maps this segment into the segment 
between 0 and T(u). 

 

4. Let ⎥−⎢ ⎥ . Define T:R3→R3 by T (x) = Ax. Find T (u) 

and T (v). 

2 0 0 1 5
0 2 0 , 0 , 1
0 0 2 3 4

A u and
⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢

⎤
= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 
In exercises 5 and 6, with T defined by T (x) = Ax, find an x whose image under T is b, 
and determine if x is unique. 
 

5.    6. 
1 0 1 0
3 1 5 , 5
4 2 1 6

A b
−⎡ ⎤

⎢ ⎥= − =⎢ ⎥
⎢ ⎥− −⎣ ⎦

1 0 3 1
0 1 4 5

,
3 2 1 7
2 1 2 3

b

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢= ⎥
⎢ ⎥ ⎢− ⎥
⎢ ⎥ ⎢− − − ⎥
⎣ ⎦ ⎣ ⎦

⎥
⎥

 

 
Find all x in R4 that are mapped into the zero vector by the transformation x→Ax. 
 

7.     8. 

1 2 7 5
0 1 4 0
1 0 1 6
2 1 6 8

A

−⎡ ⎤
⎢ ⎥−⎢=
⎢
⎢ ⎥−⎣ ⎦

1 3 4 3
0 1 3 2
3 7 6 5

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

9. Let  and let A be the matrix in exercise 8. Is b in the range of the linear 

transformation x Ax? 

1
1

7
b

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

→
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10. Let  and let A be the matrix in exercise 7. Is b in the range of the linear 

transformation x Ax? 

9
5
0

9

b

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

→
 
 Let T (x) = Ax for x in R2. 

(a) On a rectangular coordinate system, plot the vectors u, v, T (u) and T (v). 
(b) Give a geometric description of what T does to a vector x in R2. 

 

11.  12. 
1 0 5 3

, ,
0 1 2 1

A u and v
−⎡ ⎤ ⎡ ⎤ ⎡

= = =⎢ ⎥ ⎢ ⎥ ⎢− −⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎦

.5 0 4 5
, ,

0 .5 2 2
A u and v

−⎡ ⎤ ⎡ ⎤ ⎡
= = =

⎤
⎢ ⎥ ⎢ ⎥ ⎢− ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1
4

  

 
13. Let T: R2 R2 be a linear transformation that maps →

1 3
.

5 1
2

u into and maps v into 
0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 Use the fact that T is linear find the images 

under T of 2u, 3v, and 2u + 3v. 
 

14. Let 1 2 1 2

1 0 3
, , ,

0 1 5 7
e e y and y

2
.

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 Let T: R2 R2 be a linear 

transformation that maps e1 into y1 and maps e2 into y2. Find the images of 

→

1

2

7
.

6
x

and
x
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
 

 

15. Let 1
1 2

2

7 3
, .

4 8
x

x v and v
x

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

→ Let T: R2 R2 be a linear transformation that 

maps x into 1 1 2 2x v x v+ . Find a matrix A such that T (x) is Ax for each x. 
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Lecture 10 
 

The Matrix of a Linear Transformation 
 
Outlines of the Lecture: 
            

• Matrix of a Linear Transformation.  
• Examples, Geometry of Transformation, Reflection and Rotation  
• Existence and Uniqueness of solution of T(x)=0  

 
 
In the last lecture we discussed that every linear transformation from Rn to Rm is actually 
a matrix transformation x Ax→ , where A is a matrix of order m n× . First see an example  
 

Example 1: The columns of 2

1 0
0 1

I ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 are 1

1
0

e ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 and 2

0
1

e ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

.  

 
Suppose T is a linear transformation from R2 into R3 such that 
 

1 2

5 3
( ) 7 ( ) 8

2 0
T e and T e

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
with no additional information, find a formula for the image of an arbitrary x in R2. 
 

Solution:  Let 1
1 2 1 1

2

1 0
0 1

x
2 2x x x x e x

x
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

e    

 
Since T is a linear transformation, 1 1 2 2( ) ( ) ( )T x x T e x T e= +  

 
1 2

1 2 1

1

1 2

1 2

1

5 3 5 3
( ) 7 8 7 8

2 0 2 0

5 3
( ) 7 8

2 0

2

x x
T x x x x x

x

x x
Hence T x x x

x

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢= − + = − + ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ + ⎥⎣ ⎦ ⎣ ⎦ ⎣

−⎡ ⎤
⎢ ⎥= − +⎢ ⎥
⎢ ⎥+⎣ ⎦

⎦   

 
Theorem: Let  be a linear transformation. Then there exists a unique matrix 
A such that  for all x in Rn 

: nT R R→ m

( )T x Ax=
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In fact, A is the  matrix whose  column is the vector T (ej), where m n× jth je  is the  
column of the identity matrix in Rn. 

jth

[ ]1( ) ... ( )nA T e T e=   
 
 

Proof: Write 
            

[ ] [ ]

1 1

2 2
1 2

1

2
1 1 1 1

0 0 1 0
0 0 0 1

... ...

0 0 00

... ... ...

n

nn

n n n n

n

x x
x x

x x x

xx

x
x

x e x e e e e e x

x

⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = + + + = + + +
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥= + + = =
⎢ ⎥
⎢ ⎥
⎣ ⎦

0
0

1

x

=

 

Since T is Linear, So 
 

1 1 1 1( ) ( ... ) ( ) ... ( )n n n nT x T x e x e x T e x T e= + + = + +  
 

                                                                 (1) [ ]
1

1( ) ... ( )n

n

x
T e T e Ax

x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 
The matrix A in (1) is called the standard matrix for the linear transformation T. We 
know that every linear transformation from Rn to Rm is a matrix transformation and vice 
versa.  
The term linear transformation focuses on a property of a mapping, while matrix 
transformation describes how such a mapping is implemented, as the next three examples 
illustrate.  
Example 2: Find the standard matrix A for the dilation transformation T (x) = 3x, 

2x R∈ . 
 
Solution: Write 

1 1 2 2

3 0
( ) 3 ( ) 3

0 3
T e e and T e e⎡ ⎤ ⎡

= = = =
⎤

⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 
 

           
3 0
0 3

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦
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Example 3: Let 3: 3L R R→ is the linear operator defined by
x x y

L y y
z x

⎛ ⎞ +
z
z

⎡ ⎤ ⎡
⎜ ⎟

⎤
⎢ ⎥ ⎢ ⎥= −⎜ ⎟⎢ ⎥ ⎢
⎜ ⎟

⎥
⎢ ⎥ ⎢ + ⎥⎣ ⎦ ⎣⎝ ⎠ ⎦

.  

Find the standard matrix representing L and verify L (x) = Ax. 
 
Solution:  
The standard matrix A representing L is the 3 x 3 matrix whose columns are      L (e1), L 
(e2), and L (e3) respectively. Thus 
 
 

1 1

1 1 0 1
( ) 0 0 0 0 ( )

0 1 0 1
L e L col A

⎛ ⎞ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − = =⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

 

 

2 2

0 0 1 1
( ) 1 1 0 1 ( )

0 0 0 0
L e L col A

⎛ ⎞ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − = =⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

 

 

3 3

0 0 0 0
( ) 0 0 1 1 ( )

1 0 1 1
L e L col A

⎛ ⎞ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − = − =⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

 

 

Hence           
1 1 0
0 1 1
1 0 1

A
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

Now        Ax =   
1 1 0
0 1 1 ( )
1 0 1

x x y
y y z L
z x z

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x

 
Hence verified. 
 
Example 4: Let  be the transformation that rotates each point in R2 
through an angle

2:T R R→ 2

ϕ , with counterclockwise rotation for a positive angle. We could show 
geometrically that such a transformation is linear. Find the standard matrix A of this 
transformation. 
 

Solution  rotates into 
1
0
⎡ ⎤
⎢ ⎥
⎣ ⎦

cos
,

sin
ϕ
ϕ

⎡
⎢
⎣ ⎦

⎤
⎥  and 

0
1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 rotates into 
sin

.
cos

ϕ
ϕ

−⎡ ⎤
⎢ ⎥
⎣ ⎦
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See figure below.  

By above theorem 
cos sin
sin cos

A
ϕ ϕ
ϕ ϕ

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

A rotation transformation 
 
 
Example 5: A reflection with respect to the x-axis of a vector u in R2 is defined by the  
 

linear operator .  1 1

2 2

( )
a a

L u L
a a

⎛ ⎞⎡ ⎤ ⎡ ⎤
= =⎜ ⎟⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎝ ⎠

 

Then   and 1

1 1
( )

0 0
L e L

⎛ ⎞⎡ ⎤ ⎡ ⎤
= =⎜ ⎟⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎝ ⎠
2

0 0
( )

1 1
L e L

⎛ ⎞⎡ ⎤ ⎡
= =⎜ ⎟

⎤
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣⎝ ⎠ ⎦

 

 

Hence the standard matrix representing L is 
1 0
0 1

A ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

 

Thus we have 1 1

2 2

1 0
( )

0 1
a a

L u Au
a a
⎡ ⎤ ⎡ ⎤⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
  

 
To illustrate a reflection with respect to the x-axis in computer graphics, let the triangle T 
have vertices (-1, 4), (3, 1), and (2, 6). 

To reflect T with respect to x-axis, we let 1 2 3

1 3
, ,

4 1
u u u

− 2
6

⎡ ⎤ ⎡ ⎤ ⎡
= = =

⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 and compute the 

images L (u1), L (u2), and L (u3) by forming the products 
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1

2

3

1 0 1 1
,

0 1 4 4

1 0 3 3
,

0 1 1 1

1 0 2 2
.

0 1 6 6

Au

Au

Au

− −⎡ ⎤ ⎡ ⎤ ⎡
= =⎢ ⎥ ⎢ ⎥ ⎢− −⎣ ⎦ ⎣ ⎦ ⎣

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎤
⎥
⎦

  

 
Thus the image of T has vertices (-1, -4), (3, -1), and (2, -6). 
 
Geometric Linear Transformations of R2: 
 
Examples 3-5 illustrate linear transformations that are described geometrically. In 
example 4 transformations is a rotation in the plane. It rotates each point in the plane 
through an angleϕ . Example 5 is reflection in the plane. 
 
 
Existence and Uniqueness of the solution of   T(x)=b: 
 
The concept of a linear transformation provides a new way to understand existence and 
uniqueness questions asked earlier. The following two definitions give the appropriate 
terminology for transformations. 
  
 
Definition: A mapping  is said to be onto Rm if each b in Rm is the image of 
at least one x in Rn. 

: nT R R→ m

 
OR 
 
Equivalently, T is onto Rm if for each b in Rm there exists at least one solution of             
T (x) = b. “Does T map Rn onto Rm?” is an existence question.  
 
The mapping T is not onto when there is some b in Rm such that the equation T (x) = b 
has no solution.  
 
Definition: A mapping  is said to be one-to-one (or 1:1) if each b in Rm is 
the image of at most one x in Rn. 

: nT R R→ m
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OR   
 
Equivalently, T is one-to-one if for each b in Rm the equation T (x) = b has either a 
unique solution or none at all, “Is T one-to-one?” is a uniqueness question.  
 
The mapping T is not one-to-one when some b in Rm is the image of more than one 
vector in Rn. If there is no such b, then T is one-to-one. 
 
Example 6: Let T be the linear transformation whose standard matrix is 
 

1 4 8 1
0 2 1 3
0 0 0 5

A
−⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Does T map R4 onto R3? Is T a one-to-one mapping? 

 
Solution:   Since A happens to be in echelon form, we can see at once that A has a pivot 
position in each row. 
 
We know that for each b in R3, the equation Ax = b is consistent. In other words, the 
linear transformation T maps R4 (its domain) onto R3.  
 
However, since the equation Ax = b has a free variable (because there are four variables 
and only three basic variables), each b is the image of more than one x. That is, T is not 
one-to-one. 
 
Theorem: Let  be a linear transformation. Then T is one-to-one if and only 
if the equation T (x) = 0 has only the trivial solution. 

: nT R R→ m

 
Proof: Since T is linear, T (0) = 0 if T is one-to-one, then the equation T (x) = 0 has at 
most one solution and hence only the trivial solution. If T is not one-to-one, then there is 
a b that is the image of at least two different vectors in Rn (say, u and v).  
That is, T (u) = b and T (v) = b.  
 
But then, since T is linear  ( ) ( )T u v T u b b− = = − = 0
 
The vector u – v is not zero, since u v≠ . Hence the equation T (x) = 0 has more than one 
solution. So either the two conditions in the theorem are both true or they are both false. 
 
Theorem: Let  be a linear transformation and let A be the standard matrix 
for T. Then 

: nT R R→ m

 
(a) T maps Rn onto Rm if and only if the columns of A span Rm; 
(b) T is one-to-one if and only if the columns of A are linearly independent. 
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Proof: 
 
(a) The columns of A span Rm if and only if for each b the equation Ax = b is consistent – 

in other words, if and only if for every b, the equation T(x) = b has at least one 
solution. This is true if and only if T maps Rn onto Rm. 

 
(b) The equations T (x) = 0 and Ax = 0 are the same except for notation. So T is one-to-

one if and only if Ax = 0 has only the trivial solution. This happens if and only if the 
columns of A are linearly independent. 

  
We can also write column vectors in rows, using parentheses and commas. Also, when 

we apply a linear transformation T to a vector – say, 1
1 2

2

( , )
x

x x x
x
⎡ ⎤

= =⎢ ⎥
⎣ ⎦

 we write 

 instead of the more formal 1 2( , )T x x ( )1 2( , )T x x . 
 
Example 7: Let T (x1, x2) = (3x1 + x2, 5x1 + 7x2, x1 + 3x2).  
 
Show that T is a one-to-one linear transformation.  
Does T map R2 onto R3? 
 
Solution: When x and T (x) are written as column vectors, it is easy to see that T is 
described by the equation 
 

1 2
1

1 2
2

1 2

3 1 3
5 7 5 7
1 3 3

x x
x

x x
x

x x

+⎡ ⎤ ⎡
⎡ ⎤⎢ ⎥ ⎢= +⎢ ⎥⎢ ⎥ ⎢⎣ ⎦⎢ ⎥ ⎢ +⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

     (4) 

 
so T is indeed a linear transformation, with its standard matrix A shown in (4). The 
columns of A are linearly independent because they are not multiples. Hence T is one-to-
one. To decide if T is onto R3, we examine the span of the columns of A. Since A is 3 2× , 
the columns of A span R3 if and only if A has 3 pivot positions. This is impossible, since 
A has only 2 columns. So the columns of A do not span R3 and the associated linear 
transformation is not onto R3. 
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Exercises: 
 
1. Let 2 2  be transformation that first performs a horizontal shear that maps 

2e  into 2 1.5e e−  (but leaves 1e  unchanged) and then reflects the result in the x2 – axis. 
Assuming that T is linear, find its standard matrix. 

:T R R→

 
Assume that T is a linear transformation. Find the standard matrix of T. 
 
2.  2 3: , (1,0) (4, 1,2) (0,1) ( 5,3, 6)T R R T and T→ = − = − −

−

2

 
3.  where e1, e2, and e3 are 
the columns of the identity matrix. 

3 2
1 2 3: , ( ) (1, 4), ( ) ( 2,9), ( ) (3, 8),T R R T e T e and T e→ = = − =

 
4.  rotates points clockwise through 2:T R R→ π  radians. 
 
5.  is a “vertical shear” transformation that maps e1 into e1 + 2e2 but leaves 
the vector e2 unchanged. 

2:T R R→ 2

2

3

2

2

 
6.  is a “horizontal shear” transformation that maps e2 into e2 – 3e1 but leaves 
the vector e1 unchanged. 

2:T R R→

 
7.  projects each point (x1, x2, x3) vertically onto the x1x2-plane (where x3=0). 3:T R R→
 
8.  first performs a vertical shear mapping e1 into e1 – 3e2(leaving e2 
unchanged) and then reflects the result in the x2-axis. 

2:T R R→

 
9.  first rotates points counterclockwise through 2:T R R→ π /4 radians and then 
reflects the result in the x2-axis. 
 
Show that T is a linear transformation by finding a matrix that implements the mapping. 
Note that x1, x2, … are not vectors but are entries in vectors. 
 
10.  1 2 3 4 1 2 2 3 3 4( , , , ) ( , , ,0)T x x x x x x x x x x= + + +
 
11.  1 2 3 2 3 1 2 3( , , ) (3 , 4 )T x x x x x x x x= − + +
 
12.  1 2 3 4 1 2 4( , , , ) 3 4 8T x x x x x x x= − +
 
13. Let  be a linear transformation such that 2:T R R→ 2

1 2 1 2 1 2( , ) ( , 4 7 )T x x x x x x= + + . 
Find x such that T (x) =(-2, -5). 
 
13. Let  be a linear transformation such that 

. Find x such that T (x) =(-4, 7, 0). 

2:T R R→ 3

1 2 1 2 1 2 1 2( , ) ( 2 , 3 , 3 2 )T x x x x x x x x= + − − − −
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In exercises 14 and 15, let T be the linear transformation whose standard matrix is given. 
 
14. Decide if T is one-to-one mapping. Justify your answer. 
 

5 10 5 4
8 3 4 7
4 9 5 3
3 2 5 4

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

  

 
15. Decide if T maps R5 onto R5. Justify your answer. 
 

     

4 7 3 7 5
6 8 5 12 8
7 10 8 9 14

3 5 4 2 6
5 6 6 7 3

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − −⎣ ⎦
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Lecture 11 
 

Matrix Operations 
(i-j)th Element of a matrix 
Let A be an m  matrix, where m and n are number of rows and number of columns 
respectively, then  represents the i-th row and j-th column entry of the matrix. For 
example  represents 1st row and 2nd column entry. 

n×
ija

12a
Similarly  represents 3rd row and 2nd column entry. The columns of A are vectors in 
Rm and are denoted by (boldface) 

32a
.1 2 n, , ,a a a   

 
These columns are [ ]...A = 1 2 na a a  
The number  is the i-th entry (from the top) of j-th column vectorija ja . 

11 1 1

1

1

... ...

... ...

... ...

j n

i ij in

m mj mn

Column
j

a a a

a a aRow i A

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
↑ ↑ ↑

1 j na       a       a
  

   
    Figure 1    Matrix notation. 
 
Definitions 
A diagonal matrix is a square matrix whose non-diagonal entries are zero.  

11

22

0 0
0 0

0 0 nn

d
d

D

d

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

The diagonal entries in  are  and they form the main diagonal 
of A. 

ijA a⎡ ⎤= ⎣ ⎦ 11 22 33, , ,a a a
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For example   

1 0 0 0
2 0 0

5 0 0 0 0 0
0 3 0

0 7 0 0 16 0
0 0 11

0 0 0 0

⎡ ⎤
⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

 are all diagonal 

matrices.  
Null Matrix or Zero Matrix 
An  matrix whose entries are all zero is a Null or zero matrix and is always written 
as O. A null matrix may be of any order.  

m n×

 

For example    

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎣ ⎦

 

                             3 x 3      3 x 2                     4 x 5 
are all Zero Matrices 
  
Equal Matrices 
 
Two matrices are said to be equal if they have the same size (i.e., the same number of 
rows and columns) and same corresponding entries.  
 
Example 1 Consider the matrices 

  
2 1 2 1 2 1 0

, ,
3 1 3 5 3 4 0

A B C
x

⎡ ⎤ ⎡ ⎤ ⎡
= = =

⎤
⎢ ⎥ ⎢ ⎥ ⎢+ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

The matrices A and B are equal if and only if x+1 = 5 or x = 4. There is no value of x for 
which A = C, since A and C have different sizes. 
 
If A and B are  matrices, then the sum, A + B, is the m n× m n×  matrix whose columns 
are the sums of the corresponding columns in A and B. Each entry in A + B is the sum of 
the corresponding entries in A and B. The sum A + B is defined only when A and B are of 
the same size. 
  
If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose columns 
are r times the corresponding columns in A.  
 
 Note: Negative of a matrix A is defined as – A to mean (–1)A and the difference of A and 
B is written as A–B, which means A + (–1) B. 
 

Example 2 Let 
4 0 5 1 1 1 2 3

, ,
1 3 2 3 5 7 0 1

A B C
−⎡ ⎤ ⎡ ⎤ ⎡

= = =⎢ ⎥ ⎢ ⎥ ⎢−⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎦

 

Then   
5 1 6
2 8 9

A B ⎡ ⎤
+ = ⎢ ⎥

⎣ ⎦



11- Matrix Operations  VU  
 

                                                  
                                                   ©Virtual University Of Pakistan                                                            118 

But A + C is not defined because A and C have different sizes. 
1 1 1 2 2 2

2 2
3 5 7 6 10 14

B ⎡ ⎤ ⎡
= =⎢ ⎥ ⎢

⎣ ⎦ ⎣

⎤
⎥
⎦

⎤
⎥
⎦

 

4 0 5 2 2 2 2 2 3
2

1 3 2 6 10 14 7 7 12
A B

−⎡ ⎤ ⎡ ⎤ ⎡
− = − =⎢ ⎥ ⎢ ⎥ ⎢− − − −⎣ ⎦ ⎣ ⎦ ⎣

 

 
 

Theorem 1: Let A, B, and C are matrices of the same size, and let r and s are scalars. 
 

a. A + B = B + A   d. r (A + B)= r A + r B 
 b. (A + B) + C = A + (B + C) e. (r + s) A = r A + s A 
 c. A + 0 = A    f. r (sA) = (rs) A 
 
Each equality in Theorem 1 can be verified by showing that the matrix on the left side 
has the same size as the matrix on the right and that corresponding columns are equal. 
Size is no problem because A, B, and C are equal in size. The equality of columns 
follows immediately from analogous properties of vectors.  
 
For instance, if the jth columns of A, B, and C are ,j ja b  and jc , respectively, then the 
jth columns of (A + B) + C and A + (B + C) are 

( ) (j j j j j ja b c and a b c+ + + + )  
respectively. Since these two vector sums are equal for each j, property (b) is verified. 
 
Because of the associative property of addition, we can simply write A + B + C for the 
sum, which can be computed either as (A + B) + C or A + (B + C). The same applies to 
sums of four or more matrices. 
 
Matrix Multiplication: 
Multiplying an m×n matrix with an n×p matrix results in an m×p matrix. If many 
matrices are multiplied together, and their dimensions are written in a list in order, e.g. 
m×n, n×p, p×q, q×r, the size of the result is given by the first and the last numbers (m×r). 
 
Matrix Multiplication It is important to keep in mind that this definition requires the 
number of columns of the first factor A to be the same as the number of rows of the 
second factor B. When this condition is satisfied, the sizes of A and B are said to conform 
for the product AB. If the sizes of A and B do not conform for the product AB, then this 
product is undefined.  
 
Definition: If A is an  matrix, and if B is an m n× n p×  matrix with columns , 
then the product AB is the  matrix whose columns are

1, , pb b

m p× 1, , pAb Ab .  

That is  1 2 1 2... ...p pAB A b b b Ab Ab Ab⎡ ⎤ ⎡= =⎣ ⎦ ⎣ ⎤⎦  
 



11- Matrix Operations  VU  
 

                                                  
                                                   ©Virtual University Of Pakistan                                                            119 

This definition makes equation (1) true for all x in Rp. Equation (1) proves that the 
composite mapping (AB) is a linear transformation and that its standard matrix is AB.  
Multiplication of matrices corresponds to composition of linear transformations. 
 
A convenient way to determine whether A and B conform for the product AB and, if so, 
to find the size of the product is to write the sizes of the factors side by side as in Figure 
below  (the size of the first factor on the left and the size of the second factor on the 
right). 

            A                          B         =        AB 
        m  x  s                        s  x  n              m x n      
   Inside 
                    Outside 

 
 
 If the inside numbers are the same, then the product AB is defined and the outside 
numbers then give the size of the product. 
 

Example 3: Compute AB, where
2 3 4 3 6
1 5 1 2 3

A and B⎡ ⎤ ⎡
= =

⎤
⎢ ⎥ ⎢− − ⎥
⎣ ⎦ ⎣ ⎦

⎤
⎥− ⎦

 

 
Solution: Here B = [b1   b2   b3], therefore 
 

1 2 3

2 3 4 2 3 3 2 3 6
, ,

1 5 1 1 5 2 1 5 3
Ab Ab Ab⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣
 

 

                
11

1
⎡ ⎤

= ⎢ ⎥−⎣ ⎦

0
13
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

           
21
9

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

 
Then 
 

    1 2 3

11 0 21
[ ]

1 13 9
AB A b b b ⎡ ⎤

= = ⎢ ⎥− −⎣ ⎦
 

 
        Ab1  Ab2  Ab3 

 
Note from the definition of AB that its first column, Ab1, is a linear combination of the 
columns of A, using the entries in b1 as weights. The same holds true for each column of 
AB. Each column of AB is a linear combination of the columns of A using weights from 
the corresponding column of B. 
 
Example 4: Find the product AB for 
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4 1 4 3
1 2 4

A = and B = 0 -1 3 1
2 6 0

2 7 5 2

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

Solution It follows from definition that the product AB is formed in a column-by-column 
manner by multiplying the successive columns of B by A. The computations are 

   

1 2 3

1 2 3

c c c
4

1 2 4 1 2 4 12
0 = 4c + 0c + 2c = (4) + (0) + (2) =

2 6 0 2 6 0
2

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

8

⎤
⎥
⎦

Similarly,    

   

1
1 2 4 1 2 4 27

= -1 = (1) + (-1) + (7) =
2 6 0 2 6 0 -4

7

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

4
1 2 4 1 2 4 30

= 3 = (4) + (3) + (5) =
2 6 0 2 6 0 26

5

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 

   
3

1 2 4 1 2 4 13
= 1 = (3) + (1) + (2) =

2 6 0 2 6 0 12
2

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

Thus,   
4 1 4 3

1 2 4 12 27 30 13
= 0 -1 3 1 =

2 6 0 8 -4 26 12
2 7 5 2

AB
⎡ ⎤

⎡ ⎤ ⎡⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥⎣ ⎦ ⎣⎢ ⎥⎣ ⎦

 
Example 5: (An Undefined Product) Find the product BA for the matrices 

4 1 4 3
1 2 4

0 1 3 1
2 6 0

2 7 5 2
A and B

⎡ ⎤
⎡ ⎤ ⎢ ⎥= =⎢ ⎥ −⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

Solution The number of columns of B is not equal to number of rows of A so BA 
multiplication is not possible. 
 
 The matrix B has size 3  and the matrix A has size 4× 2 3× . The “inside” numbers are 
not the same, so the product BA is undefined. 
 
Obviously, the number of columns of A must match the number of row in B in order for a 
linear combination such as Ab1 to be defined. Also, the definition of AB shows that AB 
has the same number of rows as A and the same number of columns as B. 
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Example 6: If A is a 3  matrix and B is a 5× 5 2×  matrix, what are the sizes of AB and 
BA, if they are defined? 
 
Solution:              The product of matrices A and B of orders 3 5× and  will result in 

 matrix AB.  

5 2×
3 2×
But for BA we have  and 35 2× 5× , here number of columns in1st matrix are 2 which is 
not equal to number of rows in 2nd matrix. So BA is not possible.    
 Since A has 5 columns and B has 5 rows, the product AB is defined and is a 3 2×  
matrix: 

* *
* * * * * * ** *
* * * * * * ** *
* * * * * * ** *

* *

A B A

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
      3 5×       5 2×  3 2×  
     Match  
  
 Size of AB 
 

 
The product BA is not defined because the 2 columns of B do not match the 3 rows of A. 
  
The definition of AB is important for theoretical work and applications, but the following 
rule provides a more efficient method for calculating the individual entries in AB when 
working small problems by hand. 
 
Row-Column Rule for Computing AB 
 
Explanation 
If a matrix B is multiplied with a vector x, it transforms x into a vector Bx. If this vector 
is then multiplied in turn by a matrix A, the resulting vector is A (Bx). 
 
   

Multiplication       Multiplication 
                                 by B                                  by A 
           x•          •               •  
                                                      Bx           A(Bx) 
           Multiplication by B and then A 
 
Thus A(Bx) is produced from x by a composition of mappings. Our goal is to represent 
this composite mapping as multiplication by a single matrix, denoted by AB, so that  
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A (Bx) = (AB) x------------------------------------------------------- (1) 
 
 

Multiplication      Multiplication 
                                 by B                                  by A 
           x•          •               •  
                      Bx           A(Bx) 
                            Multiplication 
 
                                              by AB 

Multiplication by AB 
 
If A is , B is , and x is in Rp, denote the columns of B by and the 

entries in x by 

m n× n p× , ,1b pb

1, , px x , then 1 21 2 p pBx x b x b x b= + + +  
 
By the linearity of multiplication by A, 
 

1 1 2 2

1 1 2 2

( ) ( ) ( ) ( p p

p p

)A B x A x b A x b A x b

x A b x A b x A b

= + + +

= + + +
 

 
The vector A (Bx) is a linear combination of the vectors 1, , pAb Ab , using the entries in 
x as weights. If we rewrite these vectors as the columns of a matrix, we have 
 

1 2( ) ... pA Bx Ab Ab Ab x⎡ ⎤= ⎣ ⎦  
 
Thus multiplication by 1 2 ... pAb Ab Ab⎡⎣ ⎤⎦  transforms x into A(Bx).  
We have found the matrix we sought! 
 
Row-Column Rule for Computing AB 
 
If the product AB is defined, then the entry in row i and column j of AB is the sum of the 
products of corresponding entries from row i of A and column j of B. If (AB)ij denotes the 
(i, j) – entry in AB, and if A is an m n×  matrix, then 

1 1 2 2( ) . . .i j i j i j i n n jA B a b a b a= + + + b  
 

To verify this rule, let 1 ... pB b b⎡= ⎣ ⎤⎦ . Column j of AB is Abj, and we can compute 
Abj. The ith entry in Abj is the sum of the products of corresponding entries from row i of 
A and the vector bj, which is precisely the computation described in the rule for 
computing the (i, j) – entry of AB. 
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Finding Specific Entries in a Matrix Product Sometimes we will be interested in 
finding a specific entry in a matrix product without going through the work of computing 
the entire column that contains the entry.  
  
Example 7: Use the row-column rule to compute two of the entries in AB for the 
matrices in Example 3.  
 
Solution: To find the entry in row 1 and column 3 of AB, consider row 1 of A and 
column 3 of B. Multiply corresponding entries and add the results, as shown below: 
 

2 3 4 3 6 2(6) 3(3) 21
1 5 1 2 3

AB

↓

⎡ ⎤ ⎡ ⎤→ +⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
For the entry in row 2 and column 2 of AB, use row 2 of A and column 2 of B: 
 

 

 
 
Example 8 Use the dot product rule to compute the individual entries in the product of 

AB where  
4 1 4 3

1 2 4
0 1 3 1

2 6 0
2 7 5 2

A and B
⎡ ⎤

⎡ ⎤ ⎢ ⎥= =⎢ ⎥ −⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

. 

Solution Since A has size  and B has size 2 3× 3 4,×  the product AB is a 2  matrix of 
the form 

4×

  =
1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4

r (A)× c (B) r (A)× c (B) r (A)× c (B) r (A)× c (B)
AB

r (A)× c (B) r (A)× c (B) r (A)× c (B) r (A)× c (B)
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

where  and  are the row vectors of A and  are 
the column vectors of B. For example, the entry in row 2 and column 3 of AB can be 
computed as 

1( )r A 2 ( )r A 1 2 3 4( ), ( ), ( ) ( )c B c B c B and c B

  
4 1 4 3

1 2 4
0 -1 3 1 =

2 6 0 262 7 5 2

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 

   (2× 4) + (6×3) + (0×5) = 26
and the entry in row 1 and column 4 of AB can be computed as 

2 3 4 3 6 21 21
1 5 1 2 3 1(3) 5( 2) 13

↓

⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥→ − − + − −⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎢⎣ ⎦ ⎣

⎤
⎥
⎥⎦
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4 1 4 3

1 2 4 13
0 -1 3 1 =

2 6 0
2 7 5 2

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 

   (1×3) + (2×1) + (4× 2) = 13
Here is the complete set of computations: 

   

11

12

13

14

21

22

23

24

( ) = (1×4) + (2×0) + (4×2) = 12
( ) = (1×1) + (2×-1) + (4×7) = 27
( ) = (1×4) + (2×3) + (4×5) = 30
( ) = (1×3) + (2×1) + (4×2) = 13
( ) = (2×4) + (6×0) + (0×2) = 8
( ) = (2×1) + (6×-1) + (0×7) = -4
( ) = (2×4) + (6×3) + (0×5) = 26
( ) = (2×

AB
AB
AB
AB
AB
AB
AB
AB 3) + (6×1) + (0×2) = 12

 
 
Finding Specific Rows and Columns of a Matrix Product 
The specific column of AB is given by the formula 
  [ ] [ ]1 2 1 2n nAB A A A A= =b b b b b b  

Similarly, the specific row of AB is given by the formula  =

11

2 2

m m

a Ba
a a B

AB B =

a a B

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 
 
 
 
 
 
Example 9 Find the entries in the second row of AB, where 

2 5 0
4 6

1 3 4
, 7

6 8 7
3 2

3 0 9

A B

−⎡ ⎤

1
−⎡ ⎤⎢ ⎥− − ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥− −

⎢ ⎥⎢ ⎥ ⎣ ⎦−⎣ ⎦

 

 
Solution: By the row-column rule, the entries of the second row of AB come from row 2 
of A (and the columns of B): 
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2 5 0
4 6

1 3 4
7 1

6 8 7
3 2

3 0 9

↓ ↓

−⎡ ⎤
−⎡ ⎤⎢ ⎥→ − − ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥− −
⎢ ⎥⎢ ⎥ ⎣ ⎦−⎣ ⎦

  
4 21 12 6 3 8 5 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
− + − + −⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
Example 10 (Finding a Specific Row and Column of AB) 

Let   
4 1 4 3

1 2 4
A = and B = 0 -1 3 1

2 6 0
2 7 5 2

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

  

 Find the second column and the first row of AB. 

Solution 
1

1 2 4 27
= -1 =

2 6 0 -4
7

2 2c (AB)= Ac (B)
⎡ ⎤

⎡ ⎤ ⎡⎢ ⎥ ⎤
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎣ ⎦ ⎣⎢ ⎥⎣ ⎦

⎦

]

 

   [ ] [
4 1 4 3

= 1 2 4 0 -1 3 1 = 12 27 30 13
2 7 5 2

1 1r (AB)= r (A)B
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
Properties of Matrix Multiplication 
These are standard properties of matrix multiplication. Remember that mI  represents the 

 identity matrix and m m× mI x x=  for all x belong to Rm. 
 
Theorem 2   Let A be , and let B and C have sizes for which the indicated sums and 
products are defined. 

m n×

 a. A (BC) = (AB) C  (associative law of multiplication) 
 b. A (B + C) = AB + AC  (left distributive law) 
 c. (B + C)A = BA + CA  (right distributive law) 

d. r (AB) = (r A)B = A(r B) (for any scalar r) 
 e. m I mI A A A= =   (identity for matrix multiplication) 
Proof. Properties (b) to (e) are considered exercises for you. We start property (a) 
follows from the fact that matrix multiplication corresponds to composition of linear 
transformations (which are functions), and it is known (or easy to check) that the 
composition of functions is associative.  
 
Here is another proof of (a) that rests on the “column definition” of the product of two 

matrices.  Let 1 ... pC c c⎡ ⎤= ⎣ ⎦  

By definition of matrix multiplication 1 ... pBC Bc Bc⎡ ⎤= ⎣ ⎦  

1( ) ( ) ... ( )pA BC A Bc A Bc⎡ ⎤= ⎣ ⎦  
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From above, we know that A(Bx) = (AB)x for all x, so 

1( ) ( ) ... ( ) ( )pA BC AB c AB c AB C⎡ ⎤= =⎣ ⎦  
 
The associative and distributive laws say essentially that pairs of parentheses in matrix 
expressions can be inserted and deleted in the same way as in the algebra of real 
numbers. In particular, we can write ABC for the product, which can be computed as 
A(BC) or as (AB)C. Similarly, a product ABCD of four matrices can be computed as 
A(BCD) or (ABC)D or A(BC)D, and so on. It does not matter how we group the matrices 
when computing the product, so long as the left-to-right order of the matrices is 
preserved. 
  
The left-to-right order in products is critical because, in general, AB and BA are not the 
same. This is not surprising, because the columns of AB are linear combinations of the 
columns of A, whereas the columns of BA are constructed from the columns of B.  
 
If AB = BA, we say that A and B commute with one another. 

Example 11 Let   
5 1 2 0
3 2 4 3

A and B⎡ ⎤ ⎡
= =⎢ ⎥ ⎢−⎣ ⎦ ⎣

⎤
⎥
⎦

Show that these matrices don not commute, i.e. .AB BA≠  
Solution:  

5 1 2 0 10 4 0 3 14 3
3 2 4 3 6 8 0 6 2 6

AB
+ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥− ⎦
⎤
⎥

 

2 0 5 1 10 0 2 0 10 2
4 3 3 2 20 9 4 6 29 2

BA
+ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢− + − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

For emphasis, we include the remark about commutativity with the following list of 
important differences between matrix algebra and ordinary algebra of real numbers.  
 
WARNINGS 

1. In general, AB BA≠ . 
2. The cancellation laws do not hold for matrix multiplication. That is, if 

AB AC= , then it is not true in general that B C= . 
3. If a product AB is the zero matrix, you cannot conclude in general that 

either A = 0 or B = 0. 
 
Powers of a Matrix:  If A is an n n×  matrix and if k is a positive integer, Ak denotes the 
product of k copies of A,  Also, we interpret A0 as I.  ...k

k

A A= A

Transpose of a Matrix: Given an m n×  matrix A, the transpose of A is the n m×  
matrix, denoted by At, whose columns are formed from the corresponding rows of A. 
OR, if A is an m x n matrix, then transpose of A is denoted by At, is defined to be the nxm 
matrix that is obtained by making the rows of A into columns; that is, the first column of 
At is the first row of A, the second column of At is the second row of A, and so forth. 
 

Example 12 (Transpose of a Matrix) 
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The following is an example of a matrix and its transpose. 
2 3

A= 1 4
5 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

t 2 1 5
A =

3 4 6
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 

Example 13 Let   
5 2

1 1 1 1
, 1 3 ,

3 5 2 7
0 4

a b
A B C

c d

−⎡ ⎤
⎡ ⎤ ⎡⎢ ⎥= = − =⎢ ⎥ ⎢⎢ ⎥ − −⎣ ⎦ ⎣⎢ ⎥⎣ ⎦

⎤
⎥
⎦

Then  

1 3
5 1 0 1 5

, ,
2 3 4 1 2

1 7

t t ta c
A B C

b d

−⎡ ⎤
⎢ ⎥−⎡ ⎤ ⎡ ⎤ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎣ ⎦

 

Theorem 3: Let A and B denote matrices whose sizes are appropriate for the following 
sums and products. 

. ( )

. ( )

. , (
. ( )

t t

t t t

t t

t t t

a A A

b A B A B

c For any scalar r rA rA

d AB B A

=

+ = +

=

=

)
 

 
The generalization of (d) to products of more than two factors can be stated in words as 
follows. 

“The transpose of a product of matrices equals the product of their transposes in 
the reverse order.” 
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Lecture 12 
 

The Inverse of a Matrix 
 

In this lecture and the coming next, we consider only square matrices and we investigate 
the matrix analogue of the reciprocal or multiplicative inverse of a nonzero real number.  
 
Inverse of a square Matrix 
 
If A is an  matrix, A matrix C of order n n× n n×  is called multiplicative inverse of A if  

 
AC CA I= =  where I  is the n  identity matrix.  n×
 
Invertible Matrix 
 
If the inverse of a square matrix exist. It is called an invertible matrix.  
 
In this case, we say that A is invertible and we call C an inverse of A.  
 
Note: If B is another inverse of A, then we would have  
 

( ) ( ) .B BI B AC BA C IC C= = = = =   
 
Thus when A is invertible, its inverse is unique.  
 
The inverse of A is denoted by A-1, so that 
 

1 1AA I and A A I− −= =  
Note: A matrix that is not invertible is sometime called a singular matrix, and an 
invertible matrix is called a non-singular matrix. 
 
 

Example 1: If 
2 5 7 5
3 7 3 2

A and C
− −⎡ ⎤ ⎡

= =⎢ ⎥ ⎢− −⎣ ⎦ ⎣

⎤
⎥
⎦

⎤
= ⎥

⎦

, then 

 

  
2 5 7 5 14 15 10 10 1 0
3 7 3 2 21 21 15 14 0 1

AC and
− − − + − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

   
7 5 2 5 14 15 35 35 1 0

3 2 3 7 6 6 15 14 0 1
CA

− − − + − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

Thus C = A-1. 
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Theorem Let   .
a b

A
c d
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

If , then A is invertible or non singular and0ad bc− ≠ 1 1 d b
A

c aad bc
− −⎡ ⎤
= ⎢ ⎥−− ⎣ ⎦

 

If , then A is not invertible or singular. 0ad bc− =
 
The quantity is called the determinant of A, and we write ad bc−

det A ad bc= −  
 
This implies that a 2  matrix A is invertible if and only if 2× det 0.A ≠  
 

Example 2 Find the inverse of 
3 4
5 6

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. 

 
Solution We have det A = 3(6) – 4(5) = 2 0.− ≠   
 

Hence A is invertible 1 6 4 6 /( 2) 4 /( 2) 3 21
5 3 5 /( 2) 3 /( 2) 5 / 2 3/ 22

A− − − − − −⎡ ⎤ ⎡ ⎤ ⎡
= = =⎢ ⎥ ⎢ ⎥ ⎢− − − − −− ⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎦

 

 
 
The next theorem provides three useful facts about invertible matrices. 
 
Theorem 

a. If A is an invertible matrix, then A-1 is invertible and 1 1( )A A− − =  
 

b. If A and B are n n×  invertible matrices, then so is AB, and the inverse of AB is 
the product of the inverses of A and B in the reverse order. That is 

B A−=  1 1 1( )AB − −

 
c. If A is an invertible matrix, then so is AT, and the inverse of AT is the transpose of 

A-1. That is  1 1( ) ( )T TA A− −=
 
Proof:  
(a) We must find a matrix C such that 1 1A C I and CA I− −= =  

 
However, we already know that these equations are satisfied with A in place of C. Hence 
A-1 is invertible and A is its inverse.  
 
(b) We use the associative law for multiplication: 
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1 1 1

1

1

( )( ) ( ) 1AB B A A BB A
AIA
AA
I

− − − −

−

−

=

=

=
=

 

 
A similar calculation shows that 1 1( )( )B A AB− − I= .  
Hence AB is invertible, and its inverse is 1 1B A− −  i.e 1 1( )AB B A 1− − −=  
Generalization 
Similarly we can prove the same results for more than two matrices i.e 

( ) 1 1 1 1 1
1 2 3 1 3 2 1( )( )( )...( ) ...n n n

1A A A A A A A A A− − − − −
−= −                                                    

 
The product of  invertible matrices is invertible, and the inverse is the product of 
their inverses in the reverse order. 

n n×

 
Example 3: (Inverse of a Transpose). Consider a general 2×2 invertible matrix and its 
transpose: 

ta b a c
A and A

c d b d
⎡ ⎤ ⎡

= =
⎤

⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

Since A is invertible, its determinant (ad – bc) is nonzero. But the determinant of At is 
also (ad – bc ), so At is also invertible. It follows that 

1( )t

d c
ad bc ad bcA

b a
ad bc ad bc

−

⎡ ⎤−⎢ ⎥− −= ⎢ ⎥
⎢ ⎥−⎢ ⎥− −⎣ ⎦

---------------(1) 

Now   1

d b
ad bc ad bcA

c a
ad bc ad bc

−

⎡ ⎤−⎢ ⎥− −= ⎢ ⎥
⎢ ⎥−⎢ ⎥− −⎣ ⎦

 

Therefore, 1( )t

d c
ad bc ad bcA

b a
ad bc ad bc

−

⎡ ⎤−⎢ ⎥− −= ⎢ ⎥
⎢ ⎥−⎢ ⎥− −⎣ ⎦

-----------------(2) 

From (1) and (2), we have 
   (At)–1 = (A–1)t . 
 
Example 4: (The Inverse of a Product). Consider the matrices  

1 2 3 2
,

1 3 2 2
A B⎡ ⎤ ⎡
= =

⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
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Here  
1

9 7
2 2

7 6
,

9 8

4 38 61 1( ) ( )
9 7| | 2

AB

AB Adj AB
AB

−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

−− ⎡ ⎤⎡ ⎤
= = = ⎢ ⎥⎢ ⎥ −−− ⎣ ⎦ ⎣ ⎦

 

1

1
3
2

1 1
3 9
2 2

3 2 3 21 1( ) ,
1 1 1 1| | 1

1 12 21 1( ) ,
12 3| | 2

1 1 4 33 2
1 1 1

A Adj A
A

B Adj B
B

B A

−

−

− −

− −⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

7
2

−− ⎡ ⎤⎡ ⎤
= = = ⎢ ⎥⎢ ⎥ −−⎣ ⎦ ⎣ ⎦

− −−⎡ ⎤ ⎡ ⎤⎡ ⎤
= =⎢ ⎥ ⎢ ⎥⎢ ⎥− −−⎣ ⎦⎣ ⎦ ⎣ ⎦

 

Thus,  1 1( )AB B A− −= 1−

 
Theorem: If A is invertible and n is a nonnegative integer, then: 
(a) An is invertible and (An)–1 = A-n = (A–1)n 
(b) kA is invertible for any nonzero scalar k, and (kA)-1 = k-1A-1. 
 
Example 5 (Related to above theorem) 

(a) Let   

 11 2 3 2 3 21 1 ( )
1 3 1 1 1 1| | 1

A then A Adj A
A

− − −⎡ ⎤ ⎡
= = = =

⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢− − ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
 

Now   ( )33 1 3 2 3 2 3 2 41 30
1 1 1 1 1 1 15 11

A A− − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Also,    3 1 2 1 2 1 2 11 30
1 3 1 3 1 3 15 41

A ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎦

3 1 1 341 30 41 301( ) ( )
15 11 15 11(11)(41) (30)(15)

A A− −− −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− −− ⎣ ⎦ ⎣ ⎦

=

⎥

⎥

 

(b)  

Take  A=  and k=3 
1 2
3 1
⎡ ⎤
⎢
⎣ ⎦

kA=3A= ,                      
3 6
9 3
⎡ ⎤
⎢
⎣ ⎦

1 1 3 6 1/15 2 /151( ) (3 )
9 3 1/ 5 1/159 54

kA A− − − −⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥− −− ⎣ ⎦ ⎣ ⎦

------(1) 

1 1 21
3 15

A− −⎡ ⎤
= − ⎢ ⎥−⎣ ⎦

 

A= -1 -1 -1 -1 1 2 1/15 2 /151 1 k A =3 A = .
3 1 1/ 5 1/153 5

So
− −⎡ ⎤ ⎡−

=⎢ ⎥ ⎢− −⎣ ⎦ ⎣

⎤
⎥
⎦

-----------------------(2) 
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From (1) and (2), we have  

1 1(3 ) 3A A− −= 1−  
 
There is an important connection between invertible matrices and row operations that 
leads to a method for computing inverses. As we shall see, an invertible matrix A is row 
equivalent to an identity matrix, and we can find A-1 by watching the row reduction of A 
to I. 
 
Elementary Matrices 
As we have studied that there are three types of elementary row operations that can be 
performed on a matrix: 
There are three types of elementary operations  

• Interchanging of any two rows 
• Multiplication to a row by a nonzero constant 
• Adding a multiple of one row to another 

 
Elementary matrix 
 
An elementary matrix is a matrix that results from applying a single elementary row 
operation to an identity matrix.  
 
Some examples are given below: 

1 0 0 0
1 0 3 1 0 0

1 0 0 0 0 1
0 1 0 0 1 0

0 3 0 0 1 0
0 0 1 0 0 1

0 1 0 0

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦

⎣ ⎦

 

 
 
 
 
From Def it is clear that elementary matrices are always square. 
 
Elementary matrices are important because they can be used to execute elementary row 
operations by matrix multiplication.  
 
Theorem: If A is an  identity matrix, and if the elementary matrix E results by 
performing a certain row operation on the identity matrix,  then the product EA is the 
matrix that results when the same row operation is performed on A. 

n n×

 
In short, this theorem states that an elementary row operation can be performed on a 
matrix A using a left multiplication by and appropriate elementary matrix. 
 

Multiply the 
second row 
of I2 by -3.  

Interchange the 
second and 
fourth rows of I4. 

Add 3 times the 
third row of I3 to 
the first row.  

Multiply the 
first row of 
I3 by 1. 
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Example 6: (Performing Row Operations by Matrix Multiplication). Consider the 

matrix   
1 0 2 3
2 1 3 6
1 4 4 0

A
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 

Find an elementary matrix E such that EA is the matrix that results by adding 4 times the 
first row of A to the third row. 
 
Solution: The matrix E must be 3 3×  to conform for the product EA. Thus, we obtain E 

by adding 4 times the first row of 3I  to the third row. This gives us  
1 0 0
0 1 0
4 0 1

E
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

As a check, the product EA is 
1 0 0 1 0 2 3
0 1 0 2 1 3 6
4 0 1 1 4 4 0

EA
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1 0 2 3
2 1 3 6
5 4 12 12

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 

So left multiplication by E does, in fact, add 4 times the first row of A to the third row. 
 
If an elementary row operation is applied to an identity matrix I to produce an elementary 
matrix E, then there is a second row operation that, when applied to E, produces I back 
again.  
 
For example, if E is obtained by multiplying the i-th row of I by a nonzero scalar c, then 
I can be recovered by multiplying the i-th row of E by 1/c. The following table explains 
how to recover the identity matrix from an elementary matrix for each of the three 
elementary row operations. The operations on the right side of this table are called the 
inverse operations of the corresponding operations on the left side. 
 
Row operation on I that produces E
   

Row operation on E that reproduces I 

Multiply row i by  0c ≠ Multiply row i by 1/c 
Interchange rows i and j   Interchange rows i and  j 
Add c times row i to row j   Add –c times row i to row j 

 
 
Example 7: (Recovering Identity Matrices from Elementary Matrices). Here are 
three examples that use inverses of row operations to recover the identity matrix from 
 

   
1 0 1 0 1 0
0 1 0 7 0 1
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

→ →⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Multiply 
the second 
row by 1/7. 

 
 

Multiply 
the second 
row b   y 7. 
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1 0 0 1 1 0

                      
0 1 1 0 0 1
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

→ →⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 
 
     

 
1 0 1 5 1 0

   
0 1 0 1 0 1
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

→ →⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
 
 
 
The next theorem is the basic result on the invertibility of elementary matrices. 
 
Theorem: An elementary matrix is invertible and the inverse is also an elementary 
matrix. 
 

Example 8: Let   1 2 3

1 0 0 0 1 0 1 0 0
0 1 0 , 1 0 0 , 0 1 0
4 0 1 0 0 1 0 0 5

E E E
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

a b c
A d e f

g h i

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Compute E1A, E2A, E3A and describe how these products can be obtained by elementary 
row operations on A. 
 
Solution   We have  

1 2, ,
4 4 4

a b c d e f
E A d e f E A a b c

g a h b i c g h i

⎡ ⎤ ⎡ ⎤
⎥
⎥
⎥⎦

3

5 5 5

a b c
⎢ ⎥ ⎢= =⎢ ⎥ ⎢
⎢ ⎥ ⎢− − −⎣ ⎦ ⎣

E A d e f
g h i

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Addition of (–4) times row 1 of A to row 3 produces E1A. (This is a row replacement 
operation.) An interchange of rows 1 and 2 of A produces E2A and multiplication of row 
3 of A by 5 produces E3A. 
 
Left-multiplication (that is, multiplication on the left) by E1 in Example 8 has the same 
effect on any  matrix. It adds – 4 times row 1 to row 3. In particular, since E1 I = E1, 
we see that E1 itself is produced by the same row operation on the identity. Thus 
Example 8 illustrates the following general fact about elementary matrices. 

3 n×

 

Interc Interchange 
the first and 
second rows.

hange 
the first and 
second rows.

Add 5 times 
the second row 

to the first.

Add -5 times 
the second row 

to the first. 
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Note: Since row operations are reversible, elementary matrices are invertible, for if E is 
produced by a row operation on I, then there is another row operation of the same type 
that changes E back into I. Hence there is an elementary matrix F such that FE = I. Since 
E and F correspond to reverse operations, EF = I. 
 
Each elementary matrix E is invertible. The inverse of E is the elementary matrix of the 
same type that transforms E back into I. 
 

Example Find the inverse of 1

1 0 0
0 1 0
4 0 1

E
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

 
Solution: To transform E1 into I, add + 4 times row 1 to row 3.  

The elementary matrix that does that is 1
1

1 0 0
0 1 0
4 0 1

E−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥+⎣ ⎦

 

 
Theorem An  matrix A is invertible if and only if A is row equivalent to In, and in 
this case, any sequence of elementary row operations that reduces A to In also transforms 
In into A-1. 

n n×

 
 
An Algorithm for Finding A-1: If we place A and I side-by-side to form an augmented 
matrix [A   I], then row operations on this matrix produce identical operations on A and I. 
Then either there are row operations that transform A to In, and In to A-1, or else A is not 
invertible. 
 

Algorithm for Finding A-1 
 
Row reduce the augmented matrix [A   I]. If A is row equivalent to I, then [A  I] is 
row equivalent to [I   A-1]. Otherwise, A does not have an inverse.  

 
 

Example 9 Find the inverse of the matrix 
0 1 2
1 0 3
4 3 8

A ,
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 if it exists. 

Solution 12

0 1 2 1 0 0 1 0 3 0 1 0
[ ] 1 0 3 0 1 0 0 1 2 1 0 0

4 3 8 0 0 1 4 3 8 0 0 1
A I R

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

∼  
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1 3 2 34 3
1 0 3 0 1 0 1 0 3 0 1 0
0 1 2 1 0 0 0 1 2 1 0 0
0 3 4 0 4 1 0 0 2 3 4 1

R R R R− + +

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢− − − −⎣ ⎦ ⎣

∼ ∼
⎤
⎥
⎥
⎥⎦

⎤
⎥
⎥
⎥⎦

 

 
 

3 2 3 12 3
1 0 3 0 1 0 1 0 0 9 / 2 7 3/ 2
0 1 2 1 0 0 0 1 0 2 4 1
0 0 1 3/ 2 2 1/ 2 0 0 1 3/ 2 2 1/ 2

R R R R− + − +

− −⎡ ⎤ ⎡
⎢ ⎥ ⎢ − −⎢ ⎥ ⎢
⎢ ⎥ ⎢− −⎣ ⎦ ⎣

∼ ∼
 

 

Since A I, we conclude that A is invertible, and∼ 1

9 / 2 7 3/ 2
2 4 1

3/ 2 2 1/ 2
A−

− −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
It is a good idea to check the final answer: 

1

0 1 2 9 / 2 7 3/ 2 1 0 0
1 0 3 2 4 1 0 1 0
4 3 8 3/ 2 2 1/ 2 0 0 1

AA−

− −⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢= − − =⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢− −⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

 

 
It is not necessary to check that A-1A = I since A is invertible. 
 

Example 10   Find the inverse of the matrix 

1 2 -3 1
-1 3 -3 -2

A=
2 0 1 5
3 1 -2 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, if it exists. 

Consider 

1 2 -3 1
-1 3 -3 -2

detA=
2 0 1 5
3 1 -2 5

1 2 -3 1
0 5 -6 -1

=
0 -4 7 3
0 -5 7 2

 

    operating R + R ,R -2R ,R -3R2 1 3 1 4 1

Expand from first column
5 -6 -1

= -4 7 3
-5 7 2

5 -6 -1
= 1 1 2 = 5(1-2) +6(1-0) -1(1-0) = 0

0 1 1
 

As the given matrix is singular, so it is not invertible. 
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Example 11 Find the inverse of the given matrix if possible  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

113
112
101

A

Solution:  1
113
112
101

det −==A  

 
As the given matrix is non singular therefore, inverse is possible. 

1 0 1 1 0 0
2 1 1 0 1 0
3 1 1 0 0 1

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

⎤
⎥
⎥
⎥− ⎦

⎤
⎥
⎥
⎥

 

 
 

2 1 3 1

1 0 1 1 0 0
0 1 1 2 1 0
0 1 2 3 0 1

2 , 3R R R R

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

− −

 

 
 

3 2

3

1 0 1 1 0 0
0 1 1 2 1 0
0 0 1 1 1 1

1 0 1 1 0 0
0 1 1 2 1 0
0 0 1 1 1 1

1

R R

MultiplyR by

⎡ ⎤ ⎡
⎢ ⎥ ⎢− −⎢ ⎥ ⎢
⎢ ⎥ ⎢− −⎣ ⎦ ⎣

−

⎡ ⎤ ⎡
⎢ ⎥ ⎢− −⎢ ⎥ ⎢
⎢ ⎥ ⎢ −⎣ ⎦ ⎣

−
⎦

⎤
⎥

 

 
 

1 3 2 3

1 0 0 0 1 1
0 1 0 1 2 1
0 0 1 1 1 1

,R R R R

−⎡ ⎤ ⎡
⎢ ⎥ ⎢− −⎢ ⎥ ⎢
⎢ ⎥ ⎢

⎥
⎥−⎣ ⎦ ⎣

− +
⎦
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Hence the inverse of matrix A is  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−
=−

111
121

110
1A

 

Example 12 Find the inverse of the matrix  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

325
322
221

A

Solution  6
325
322
221

det ==A  

As the given matrix is non singular, therefore, inverse of the matrix is possible. 
We reduce it to reduce echelon form. 
 

1 2 2 1 0 0
2 2 3 0 1 0
5 2 3 0 0 1

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

⎤
⎥
⎥
⎥⎦

⎤
⎥
⎥
⎥⎦

⎤
⎥
⎥
⎥⎦

⎤
⎥
⎥
⎥⎦

 

 

2 1 3 1

1 2 2 1 0 0
0 2 1 2 1 0
0 8 7 5 0 1

2 , 5R R R R

⎡ ⎤ ⎡
⎢ ⎥ ⎢− − −⎢ ⎥ ⎢
⎢ ⎥ ⎢− − −⎣ ⎦ ⎣

− −

 

 

3 2

1 2 2 1 0 0
0 1 1/ 2 1 1/ 2 0
0 8 7 5 0 1

multiply 2nd row by -1/2
1 2 2 1 0 0
0 1 1/ 2 1 1/ 2 0
0 0 3 3 4 1

8R R

⎡ ⎤ ⎡
⎢ ⎥ ⎢ −⎢ ⎥ ⎢
⎢ ⎥ ⎢− − −⎣ ⎦ ⎣

⎡ ⎤ ⎡
⎢ ⎥ ⎢ −⎢ ⎥ ⎢
⎢ ⎥ ⎢− −⎣ ⎦ ⎣

+

 

 
1 2 2 1 0 0
0 1 1/ 2 1 1/ 2 0
0 0 1 1 4 / 3 1/ 3

Multiply 3rd row by -1/3

⎡ ⎤ ⎡
⎢ ⎥ ⎢ −⎢ ⎥ ⎢
⎢ ⎥ ⎢− −⎣ ⎦ ⎣
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8 231 2 0 3 3
0 1 0 3/ 2 7 / 6 1/ 6
0 0 1 1 4 / 3 1/ 3

⎡ ⎤−⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ − −⎣ ⎦ ⎢ ⎥
⎣ ⎦

 

 

2 3 1 3

1 0 0 0 1/ 3 1/ 3
0 1 0 3/ 2 7 / 6 1/ 6
0 0 1 1 4 / 3 1/ 3

(1/ 2) , 2R R R R

−⎡ ⎤ ⎡
⎢ ⎥ ⎢ −⎢ ⎥ ⎢
⎢ ⎥ ⎢ − −⎣ ⎦ ⎣

− −

⎤
⎥
⎥
⎥⎦

 

 

Hence the inverse of the original matrix  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−
−

=−

3/13/41
6/16/72/3
3/13/10

1A
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Exercises 
 
In exercises 1 to 4, find the inverses of the matrices, if they exist. Use elementary row 
operations. 
 

1.      2. 
1 2
5 9
⎡ ⎤
⎢
⎣ ⎦

⎥

1 0 5
1 1 0
3 2 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

3.     4. 
1 4 3
2 7 6

1 7 2

−⎡ ⎤
⎢− −⎢
⎢ ⎥−⎣ ⎦

⎥
⎥

1 3 1
0 1 2
1 0 8

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

5.     6. 
3 4 1
1 0 3
2 5 4

−⎡ ⎤
⎢
⎢
⎢ ⎥−⎣ ⎦

⎥
⎥

1 3 4
2 4 1
4 2 9

− −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 

7. Let . Find the third column of A-1 without computing the other 

columns. 

1 5 7
2 5 6
1 3 4

A
− − −⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

⎥
⎥

⎥
⎥

 

8. Let . Find the second and third columns of A-1 without 

computing the first column. 

25 9 27
546 180 537
154 50 149

A
− − −⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

 
9. Find an elementary matrix E that satisfies the equation. 
(a) EA = B  (b) EB = A  (c) EA = C  (d) EC = A 

where . 
3 4 1 8 1 5 3 4 1
2 7 1 , 2 7 1 , 2 7 1
8 1 5 3 4 1 2 7 3

A B C
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − = − − = − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

10. Consider the matrix 
1 0 2
0 1 0
0 0 2

A
−⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

(a) Find elementary matrices E1 and E2 such that E2E1A=I. 
(b) Write A-1 as a product of two elementary matrices. 
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(c) Write A as a product of two elementary matrices. 
In exercises 11 and 12, express A and A-1 as products of elementary matrices. 
 

11.     12. 
2 1 1
1 2 1
1 1 2

A
⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

⎥
⎥

1 1 0
1 1 1
0 1 1

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

13. Factor the matrix  as A = EFGR, where E, F, and G are 

elementary matrices and R is in row echelon form. 

0 1 7 8
1 3 3 8
2 5 1 8

A
⎡ ⎤
⎢= ⎢
⎢ ⎥− − −⎣ ⎦

⎥
⎥
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Lecture 13 

 

Characterizations of Invertible Matrices 
 

This chapter involves a few techniques of solving the system of n linear equations in n 

unknowns. 

Solving Linear Systems by Matrix Inversion  

Theorem:- 

 If A is an invertible  matrix, then for each b in Rn, the equation Ax = b has the 

unique solution x = A-1b. 

n n×

Proof:- 

Let b be any vector in Rn. A solution must exists because when A-1b is substituted for x 

we have Ax = A (A –1b) = Ib = b. So A-1b is solution. 

To prove that the solution is unique, we show that if u is any other solution, then u must 

be A-1b .i.e. u = A-1b. Indeed, if Au = b, we can multiply both sides by   A-1 and obtain 
1 1 1, ,A Au A b Iu A b and u A b− − −= = 1−=  

Example 1:-    

Solve the system of linear equations  

1 2 3

1 2 3

1 3

2 3 5
2 5 3 3

8 1

x x x
x x x

x x

+ + =
+ + =

+ = 7

7

 

by inverse matrix method.. 

Solution:- 

Consider the linear system 

1 2 3

1 2 3

1 3

2 3 5
2 5 3 3

8 1

x x x
x x x

x x

+ + =

+ + =

+ =

   

This system can be written in matrix form as Ax = b, where 
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1

2

3

1 2 3 5
2 5 3 , , 3
1 0 8 17

x
A x x

x
b

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢= = ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Here, det (A) = 40 – 2 (16 – 3) + 3(0 – 5) = 40 – 26 – 15 = -1≠ 0      

Therefore, A is invertible. Now we apply the inversion algorithm: 

 

   
1 2 3 1 0 0
2 5 3 0 1 0
1 0 8 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

       

  
1 2 3 1 0 0
0 1 3 2 1 0
0 2 5 1 0 1

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

1 2 12 , 1 3R R R R− + − +  

               
1 2 3 1 0 0
0 1 3 2 1 0
0 0 1 5 2 1

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

2 32R R+  

                        
1 2 3 1 0 0
0 1 3 2 1 0
0 0 1 5 2 1

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

31R−  

  
1 2 0 14 6 3
0 1 0 13 5 3
0 0 1 5 2 1

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

3 2 33 , 3 1R R R R+ − +  

   
1 0 0 40 16 9
0 1 0 13 5 3
0 0 1 5 2 1

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

2 12R R− +  

Hence,   1

40 16 9
13 5 3
5 2 1

A−

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

Thus, the solution of the linear system is 1

40 16 9 5 1
13 5 3 3 1
5 2 1 17 2

x A b−

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Or, equivalently . 1 2 31, 1, 2x x x= = − =
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Note: This method applies only when the number of equations = number of unknown 

and fails if given matrix is not invertible.   

Example 2:- 

Solve the system of linear equation  

1 2 3

1 2 3

1 2 3

6 4 2
2 4 3

2 5

x x x
x x x
x x x

+ + =
+ − =

− + + = 3
 

by inversion method. 

Solution:- 

This system can be written in matrix form Ax = b, where 

1 6 4
2 4 1
1 2 5

A
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Here det (A) = 1(20 + 2) – 6(10 – 1) + 4 (4+4) = 22 – 54 + 32 = 0    

Therefore, A is not invertible. Hence, the inversion method can not be used.  

Theorem:- 

If Ax = 0 is a homogeneous linear system of n equations in n unknowns, then the system 

has only the trivial solution if and only if the coefficient matrix A is invertible. 

Example 3:- 

State whether the following system of linear equation has a solution or not?  

  

 

 

⎥
⎥

0

 

Solution:- 

By Example 1, we get 

1 2 3
2 5 3
1 0 8

A
⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

 is an invertible matrix.  

Then, by Theorem (above) says that the homogeneous linear system 

1 2 3

1 2 3

1 3

2 3 0
2 5 3

8 0

x x x
x x x

x x

+ + =
+ + =

+ =
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1 2 3

1 2 3

1 3

2 3 0
2 5 3

8 0

x x x
x x x

x x

+ + =
+ + =

+ =

0   

has only the trivial solution. 

Solving Multiple Linear Systems with a Common Coefficient Matrix 

In many applications one is concerned with solving a sequence of linear systems 

1 1 2 2, , , k kAx b Ax b Ax b= = " =

1
k

    (1) 

each of which has the same coefficient matrix A. If the coefficient matrix A in (1) is 

invertible, 1 1
1 1 2 2, , , kx A b x A b x A b− −= = =" − . However, this procedure cannot be 

used unless A is invertible. 

Theorem (Invertible Matrix Theorem): Let A be a square n n×  matrix. Then the 

following statements are equivalent. (Means if any one holds then all are true). 

(a) A is an invertible matrix. 

(b) A is row equivalent to the n n×  identity matrix. 

(c) A has n pivot positions. 

(d) The equation Ax = 0 has only the trivial solution. 

(e) The columns of A form a linearly independent set. 

(f) The linear transformation x Ax→ is one-to-one. 

(g) The equation Ax = b has at least one solution for each b in Rn. 

(h) The columns of A span Rn. 

(i) The linear transformation x Ax→ maps Rn onto Rn. 

(j) There is a n n×  matrix C such that CA = I. 

(k) There is a n n×  matrix D such that AD = I. 

(l) AT is an invertible matrix. 

Example 4:- 

 Show that the matrix  

1 0 2
3 1 2
5 1 9

A
−⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 is invertible.  

Solution:-  
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By row equivalent, 

1 0 2 1 0 2
0 1 4 0 1 4
0 1 1 0 0 3

A
− −⎡ ⎤ ⎡

⎢ ⎥ ⎢= ⎢ ⎥ ⎢
⎢ ⎥ ⎢− −⎣ ⎦ ⎣

∼
⎤
⎥
⎥
⎥⎦

  

It shows that A has three pivot positions and hence is invertible, by the Invertible Matrix 

Theorem (c). 

Example 7 Find At and show that At is invertible matrix. 

 

 

 

 

 

 

 

Solution:- 

 

 

Now by row equivalent of A, 

2 1 3 1 232 ,
1 2 1 0 1 2 1 0 1 2 1 0
2 4 1 2 0 0 1 2 0 2 0 2
1 0 1 2 0 2 0 2 0 0 1 2
0 1 1 2 0 1 1 2 0 1 1 2

R R R R R

A

− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∼ ∼
 

2 4 2
1 ( 1) 3 3 42

1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2
0 1 1 2 0 0 1 3 0 0 1 3 0 0 0 5

R R R R R R− − − − +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢− − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

∼ ∼ ∼ ∼

⎤
⎥− ⎥
⎥−
⎥
⎦

 

   

Here A has 4 pivot positions so by Invertible Matrix Theorem (c) A is invertible. Thus by 

(l) At is invertible. 

1 2 1 0
2 4 1 2
1 0 1 2
0 1 1 2

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 2 1 0
2 4 0 1
1 1 1 1
0 2 2 2

tA

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
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Find a Matrix from Linear Transformation:-  

We can find a matrix corresponding to every transformation. In this section we will learn 

how to find a matrix attached with a linear transformation.  

Example:- 

Let L be the linear transformation from R2 to P2 (Polynomials of order 2) defined by 

T(x, y) = x y t + (x + y)t2  

Find the matrix representing T with respect to the standard bases.   

Solution:- 

Let A = {(1,0),(0,1)} be the basis of R2, then   

T(1,0)  = t2  =  (0,0,1) (This triple represents the coefficients of polynomial t2)  

Similarly, T (0, 1) =  t2  =  (0,0,1).Hence the matrix is given by 

A=  
0
0 0

1

0

1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Now we will proceed with a more complicated example. 

Example:- 

Let T be the linear transformation from R2 to R2 such that T(x, y) = (x , y + 2x).  Find a 

matrix A for T. 

Solution:-  

This matrix is found by finding T (1, 0) = (1, 2)        and        T (0, 1) = (0, 1) the matrix 

is . 
1 0
2 1

A ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

Important Note:- 

It should be clear that the Invertible Matrix Theorem applies only to square matrices. For 

example, if the columns of a  matrix are linearly independent, we cannot use the 

Invertible Matrix Theorem to conclude any thing about the existence or nonexistence of 

solutions to equations of the form Ax = b. 

4 3×

Definition (Inverse of a Linear Transformation) A linear transformation 

 is said to be invertible (left as well as right) if there exists a function 

 such that  

: nT R R→ n

n: nT R R′ →
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( ( ))
( ( ))

n

n

T T x x x R
T T x x x R

′ = ∀ ∈

′ = ∀ ∈
 

Here S is called inverse of linear transformation T. 

Important Note:- 

If the inverse of a linear transformation exits then it is unique. 

Proposition:- 

Let be linear transformation, given as , where A is 

a  matrix. The mapping T is invertible if the system 

: nT R R→ m ∈( ) , nT x Ax x R= ∀

m n× y Ax=  has a unique solution.  

Case 1: 

 If , then the system m n< Ax y=  has either no solution or infinitely many solution, for 

any y in Rm. Therefore   is non-invertible. y Ax=

Case 2: 

 If , then the system m n= Ax y=  has a unique solution if and only if Rank (A) = n. 

Case 3: 

 If , then the transformation m n> y Ax=  is non-invertible because we can find a vector 

y in Rm such that Ax y=  is inconsistent. 

Exercises 
 
1. Solve the system of linear equations        

 

 

 

⎤
⎥
⎦

by inverse matrix method. 

2. Let . 1 2 3 4

1 2 5 2 3 1
, , , ,

3 8 7 2 5 7
A b b b and b

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
= = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

(a) Find A-1 and use it to solve the equations Ax = b1, Ax = b2, Ax = b3, Ax = b4. 

(b) Solve the four equations in part (a) by row reducing the augmented matrix 

[ ]1 2 3 4A b b b b . 

3. (a) Solve the two systems of linear equations 

1 2 3

2 3

1 2 3

8
2 3 24
5 5

x x x
x x
x x x

+ + =
+ =
+ + = 8
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1 2 3

1 2 3

2 3

2 1
3 2

2 4

x x x
x x x

x x

+ + = −
+ + =

+ =
3 0        and              

1 2 3

1 2 3

2 3

2 0
3 2

2 4

x x x
x x x

x x

+ + =
+ + =

+ =
 

by row reduction. 

(b) Write the systems in (a) as Ax = b1 and Ax = b2, and then solve each of them by the 

method of inversion. 

Determine which of the matrices in exercises 4 to 10 are invertible. 

  

4.   5.               6. 
4 16

3 9
−⎡ ⎤
⎢ ⎥−⎣ ⎦

5 0 3
7 0 2
9 0 1

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

⎥
⎥

2 3 4
2 3 4
2 3 4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

       7. 
5 9 3
0 3 4
1 0 3

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

8.        9.          10. 

1 3 0 1
0 1 2 1
2 6 3 2

3 5 8 3

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥−⎣ ⎦

1 0 0 0
2 5 0 0
3 6 8 0
4 7 9 10

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

7 6 4 1
5 1 0 2

10 11 7 3
19 9 7 1

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

  

11.  

5 4 3 6 3
7 6 5 9 5
8 6 4 10 4
9 8 9 5 8

10 8 7 9 7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

12. Suppose that A and B are  matrices and the equation ABx = 0 has a nontrivial 

solution. What can you say about the matrix AB? 

n n×

13. What can we say about a one-to-one linear transformation T from Rn into Rn? 

14. Let be a linear transformation given as2:T R R→ 2 ( ) 5T x x= , then find a matrix A 

of linear transformation T. 

In exercises 15 and 16, T is a linear transformation from R2 into R2. Show that T is 

invertible. 

 15.   1 2 1 2 1 2( , ) ( 5 9 ,4 7 )T x x x x x x= − + −

16.  1 2 1 2 1 2( , ) (6 8 , 5 7 )T x x x x x x= − − +
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Lecture 14 

 
Partitioned Matrices 

 
A block matrix or a partitioned matrix is a partition of a matrix into rectangular 

smaller matrices called blocks.Partitioned matrices appear often in modern applications 

of linear algebra because the notation simplifies many discussions and highlights 

essential structure in matrix calculations. This section provides an opportunity to review 

matrix algebra and use of the Invertible Matrix Theorem. 

General Partitioning  
 
A matrix can be partitioned (subdivided) into sub matrices (also called blocks) in 

various ways by inserting lines between selected rows and columns.  

Example 1:- 

The matrix 

   

1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

P

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

can be partitioned into four 2×2 blocks  

11 12 21 22

1 1 2 2 3 3 4 4
, , ,

1 1 2 2 3 3 4 4
P P P P⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

,  

The partitioned matrix can then be written as 

11 12

21 22

P P
P

P P
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

Note:- 
 
It is important to know that in how many ways to block up a ordinary matrix A? See the 

following example in which a matrix A is block up into three different ways. 

Example 3:- 

Let A be a general matrix of order, we have  5 3×
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Partition (a) 

 
 

In this case we partitioned the matrix into four sub matrices.  Also notice that we 

simplified the matrix into a more compact form and in this compact form we’ve mixed 

and matched some of our notation.  The partitioned matrix can be thought of as a smaller 

matrix with four entries, except this time each of the entries are matrices instead of 

numbers and so we used capital letters to represent the entries and subscripted each on 

with the location in the partitioned matrix.    

Be careful not to confuse the location subscripts on each of the sub matrices with the size 

of each sub matrix.  In this case A11  is a  sub matrix of A,  A12 is a  sub matrix of 

A, A21 is a 3 sub matrix of A and A22 is a 

2 2×

1× 3 3× sub matrix of A. 

Partition (b) 

    

 
In this case we partitioned A into three column matrices each representing one column in 

the original matrix.  Again, note that we used the standard column matrix notation (the 

bold face letters) and subscripted each one with the location in the partitioned matrix.  

The ci in the partitioned matrix are sometimes called the column matrices of A. 

Partition (c)  
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Just as we can partition a matrix into each of its columns as we did in the previous part 

we can also partition a matrix into each of its rows. The ri      in the partitioned matrix are 

sometimes called the row matrices of A. 

Addition of Blocked Matrices:- 

If matrices A and B are the same size and are partitioned in exactly the same way, then it 

is natural to make the same partition of the ordinary matrix sum A + B. In this case, each 

block of A + B is the (matrix) sum of the corresponding blocks of A and B. 

Multiplication of a partitioned matrix by a scalar is also computed block by block. 

Multiplication of Partitioned Matrices:- 

 

If  
11 12

11 12
21 22

21 22
31 32

A A
B B

A A A and B
B B

A A

⎡ ⎤
⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

 

and if the sizes of the blocks confirm for the required operations, then  

  
11 12 11 11 12 21 11 12 12 22

11 12
21 22 21 11 22 21 21 12 22 22

21 22
31 32 31 11 32 21 31 12 32 22

A A A B A B A B
B B

A B
AB A A A B A B A B A B

B B
A A A B A B A B

+ +⎡ ⎤ ⎡
⎡ ⎤⎢ ⎥ ⎢= = +⎢ ⎥⎢ ⎥ ⎢⎣ ⎦⎢ ⎥ ⎢ + +⎣ ⎦ ⎣ A B

⎤
⎥+ ⎥
⎥⎦

    

It is known as block multiplication.  

Example 3:- 

Find the block multiplication of the following partitioned matrices: 

  11 12 11

21 22 21

2 1
3 4 1 0 2 3 0
1 5 3 1 4 , 5 1

2 0 2 1 6 4 3
0 2

A A B
A B

A A B

−⎡ ⎤
⎢ ⎥−⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎡⎢ ⎥ ⎢ ⎥= − − = = =−

⎤
⎢ ⎥ ⎢⎢ ⎥ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥− −⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Solution:- 

  
11 12 13

11 12 11 11 11 12 21
21 22 23

21 22 21 21 11 22 21
31 32 33

a a a
A A B A B A B

AB a
A A B A B A B

a a a

⎛ ⎞
+⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎜ ⎟= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎜ ⎟+⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎜ ⎟

⎝ ⎠

a a  

This is a valid formula because the sizes of the blocks are such that all of the operations 
can be performed: 



14- Partitioned Matrices  VU 

                                                  
                                                   ©Virtual University Of Pakistan                                                            153 

   11 11 12 21

2 1
3 4 1 0 2 4 3 11 2

3 0
1 5 3 1 4 0 2 32 3

5 1
A B A B

−⎡ ⎤
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡⎢ ⎥+ = + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣⎢ ⎥−⎣ ⎦

− ⎤
⎥
⎦

]   [ ] [ ] [21 11 22 21

2 1
4 3

2 0 2 3 0 1 6 18 5
0 2

5 1
A B A B

−⎡ ⎤
−⎡ ⎤⎢ ⎥+ = − + =⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥−⎣ ⎦

Thus, 
 

 11 11 12 21

21 11 22 21

11 2
32 3
18 5

A B A B
AB

A B A B

−⎡ ⎤
+⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎢ ⎥⎣ ⎦

11 12 11 11 11 12 21

21 22 21 21 11 22 21

A A B A B A B
AB

A A B A B A B
+⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 
Note:-  We see result is same when we multiply A and B without partitions 

   

2 1
3 4 1 0 2 11 23 0
1 5 3 1 4 32 35 1

2 0 2 1 6 18 54 3
0 2

AB

−⎡ ⎤
⎢ ⎥− −⎡ ⎤ ⎡⎢ ⎥⎢ ⎥ ⎢⎢ ⎥= − − =−⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎢− −⎣ ⎦ ⎣⎢ ⎥
⎢ ⎥⎣ ⎦

⎤
⎥
⎥
⎥⎦

Note:- Some time it more useful to find the square and cube powers of a matrix. 

Example 4:-  

Making block up of matrix  

  , evaluate ? 

1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
1 1 1 0 0 1

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

2A

Solution:- 
 
We partition A as shown below  
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3 32 1

23 2 21

1 12

1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 0

1
0 0 0 0 1 0
1 1 1 0 0 1

t

I O A
A O I

A O

⎡ ⎤
⎢ ⎥
⎢ ⎥

O
⎡ ⎤

⎢ ⎥ ⎢ ⎥== ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥

⎣ ⎦

1

1
1
1

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1t

⎢ ⎥

     where  

Now   
3 32 1 3 32 1 3 1 1 32 1 1

2
23 2 21 23 2 21 23 2 21

1 12 1 12 1 1 12 1 11 1

t

t t t t

I O A I O A I A A O A A
A O I O O I O O I O

A O A O A A O A A

⎡ ⎤+ +⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

   
[ ]

[ ]

3 1 1 1 1 1 1

1 1

2 1 1 2
1 2 1 , 2 , 2 2 2
1 1 2 2

1 4

t t

t

I A A A A A A

A A

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ = + = + =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+ =

t

Hence   2

2 1 1 0 0 2
1 2 1 0 0 2
1 1 2 0 0 2
0 0 0 1 0 0
0 0 0 0 1 0
2 2 2 0 0 4

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Example 6: Let 
3 1 2

.
1 4 5

a b
A and B c d

e f

⎡ ⎤
−⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥⎣ ⎦

  

Verify that  1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( )AB col A row B col A row B col A row B= + +
 
Solution Each term above is an outer product. 
 
By the ordinary row – column rule, 

11 12
1 1

21 22

3 3 3
( ) ( ) [ ]

1
a aa b

col A row B a b
a aa b

− − − ⎛ ⎞⎡ ⎤ ⎡ ⎤
= = ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎝ ⎠

 

2 2

1
( ) ( ) [ ]

4 4
c d

col A row B c d
c d4

⎡ ⎤ ⎡
= =

⎤
⎢ ⎥ ⎢− − ⎥−⎣ ⎦ ⎣ ⎦

2
5

 

3 3

2 2
( ) ( ) [ ]

5 5
e f

col A row B e f
e f

⎡ ⎤ ⎡
= =

⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
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Thus  
3

1

3 2 3 2
( ) ( )

4 5 4 5k k
k

a c e b d f
col A row B

a c e b d f=

− + + − + +⎡ ⎤
= ⎢ ⎥− + − +⎣ ⎦

∑  

 
This matrix is obviously AB.  

Toeplitz matrix:- 

A matrix in which each descending diagonal from left to right is constant is called a 
Toeplitz matrix or diagonal-constant matrix 

Example:- 

The matrix  

1 2 3
4 1
5 4 1
6 5 4

a
a

A
a

a

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎣ ⎦

2⎥
⎥

 is a Toeplitz matrix. 

Block Toeplitz matrix:- 

A blocked matrix in which blocks (blocked matrices) are repeated down the diagonals of 
the matrix is called a blocked Toeplitz matrix. 

A block Toeplitz matrix B has the form 

B =  

(1,1) (1,2) (1,3) (1,4) (1,5)
(2,1) (1,1) (1, 2) (1,3) (1,4)
(3,1) (2,1) (1,1) (1,2) (1,3)
(4,1) (3,1) (2,1) (1,1) (1,2)
(5,1) (4,1) (3,1) (2,1) (1,1)

B B B B B
B B B B B
B B B B B
B B B B B
B B B B B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Inverses of Partitioned Matrices:- 

In this section we will study about the techniques of inverse of blocked matrices. 
 
Block Diagonal Matrices: 

A partitioned matrix A is said to be block diagonal if the matrices on the main diagonal 

are square and all other position matrices are zero, i.e.                               
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1

2

0 ... 0
0 ...

0 0 ... k

D
D

A

D

0
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (1)    

where the matrices D1, D2, …, Dk are square. It can be shown that the matrix A in (1) is 

invertible if and only if each matrix on the diagonal is invertible. i.e. 

   

1
1

1
1 2

1

0 ... 0
0 ... 0

0 0 ... k

D
D

A

D

−

−
−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Example 7: Let A be a block diagonal matrix 

  

8 7 0 0 0
1 1 0 0 0
0 0 3 1 0
0 0 5 2 0
0 0 0 0 4

A

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Find . −1A

Solution:- 

There are three matrices on the main diagonal; two are 2x2 matrices and one 

is1 matrix. 1×

In order to find , we evaluate the inverses of three matrices lie in main diagonal of A. −1A

Let  are matrices of main diagonal of A. Then   ( )11 22 33

8 7 3 1
,

1 1 5 2
A A and A

−⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

4=

1 11
11

11

1 7
1 71 8
1 81

AdjA
A

A
−

−⎛ ⎞
⎜ ⎟ −− ⎛⎝ ⎠= = = ⎜

⎞
⎟−− ⎝ ⎠

. Similarly we can find inverses A22 and A33.  Thus  
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   −

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⇒ = ⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

A 1

1 7 0 0 0
1 8 0 0 0
0 0 2 1 0
0 0 5 3 0

10 0 0 0
4

 

 

 

Block Upper Triangular Matrices:  

A partitioned square matrix A is said to be block upper triangular if the matrices on the 

main diagonal are square and all matrices below the main diagonal are zero; that is, the 

matrix is partitioned as 

  where the matrices A11, A22,…, Akk are square.  

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎣ ⎦

k

k

kk

A A A
O A A

A

O O A

11 12 1

22 2

...

...

...

⎥
⎥

 

Note: The definition of block lower triangular matrix is similar. 

Here we are going to introduce a formula for finding inverse of a block upper triangular 

matrix in the following example. 

Example 8:- 

Let A be a block upper triangular matrix of the form  

11 12

220
A A

A
A

⎡ ⎤
= ⎢
⎣ ⎦

⎥ where the orders of A11 and A22 are p p× and q q× respectively. Find A-1. 

  
Solution:- 

 

Let B = 11 12

21 22

B B
B B
⎡ ⎤
⎢
⎣ ⎦

⎥  be inverse of A .i.e. A-1 = B, then 
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11 12 11 12

22 21 22

11 11 12 21 11 12 12 22

22 21 22 22

p

q

p

q

I OA A B B
AB

O IO A B B

I OA B A B A B A B
O IA B A B

⎡ ⎤⎡ ⎤ ⎡ ⎤
= = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+ + ⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

    

By comparing corresponding entries, we have  

  = 11 11 12 21A B A B+ pI             (1)         

   =     (2)    11 12 12 22A B A B+ O

  = O      (3)  

 = 

22 21A B

22 22A B qI       (4) 

Since A22 is a square matrix, so by Invertible Matrix Theorem, we have A22 is invertible. 

Thus by eq.(4), B22 = A22
-1.  Now by eq. (3), we have 1

2 1 2 2B A O O−= = . From eq.(1)  

1 1 1 1

1 1 1 1

1
1 1 1 1

p

p

A B O I

A B I

B A −

+ =

⇒ =

⇒ =

 

Finally, form (2), 
  1 1

11 12 12 22 12 22 12 11 12 22
1A B A B A A and B A A A− − −= − = − = −  

Thus 

   
1 1 1

1 1 1 21 1 1 11 1 2 2 2
1

2 2 22

A A 1A A A A
A

O A O A

− − − −
−

−

⎡ ⎤−⎡ ⎤
= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

  (5) 

 
Example 9:- 
 
Find A-1 of  
 
 

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

4 7 5 3
3 5 3 2
0 0 7 2
0 0 3 1

A  

 
Solution:- 

Let partition given matrix A in form    
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−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

4 7 5 3
3 5 3 2
0 0 7 2
0 0 3 1

A  

Put  
−⎡ ⎤ ⎡ ⎤ ⎡

= = =⎢ ⎥ ⎢ ⎥ ⎢−⎣ ⎦ ⎣ ⎦ ⎣
11 12 22

4 7 5 3 7 2
,

3 5 3 2 3 1
A A and A ⎤

⎥
⎦

⎤
⎥
⎦

⎤
⎥
⎦

 
 

 
 
 

Thus  − −− −⎡ ⎤ ⎡
= =⎢ ⎥ ⎢− −⎣ ⎦ ⎣

A and A1 1
11 22

5 7 1 2
3 4 3 7

Moreover, 

-  − − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

1 1
11 12 22

5 7 5 3 1 2 133 295
3 4 3 2 3 7 78 173

A A A

So by (5), we have 

 
Exercises 

 
In exercises 1 to 3, the matrices A, B, C, X, Y, Z, and I are all n x n and satisfy the 
indicated equation 

1.    2. 
0 0

0
A B I I
C X Y Z
⎡ ⎤ ⎡ ⎤ ⎡

=⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣ 0

⎤
⎥
⎦

00 0
0

X A I
Y Z B C I
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

3.  
0 0 0

0 0
0 0

A Z
X I
Y I

B I

⎡ ⎤
⎡ ⎤ ⎡⎢ ⎥ =⎢ ⎥ ⎢⎢ ⎥⎣ ⎦ ⎣⎢ ⎥⎣ ⎦

I
⎤
⎥
⎦

  
4. Suppose that A11 is an invertible matrix. Find matrices X and Y such that the product 
below has the form indicated. Also compute B22. 

11 12 11 12

21 22 22

31 32 32

0 0
0 0

0 0

I A A B B
X I A A B
Y I A A B

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢=⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

 

 

−

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

1

5 7 133 295
3 4 78 173
0 0 1 2
0 0 3 7

A
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5. The inverse of 
0 0 0 0

0
I I
C I is Z I 0
A B I X Y I

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

⎤
⎥

. Find X, Y and Z. 

  

6. Show that  is invertible and find its inverse. 
0I

A I
⎡
⎢
⎣ ⎦

 
7. Compute XTX, when X is partitioned as [X1   X2]. 
 
In exercises 8 and 9, determine whether block multiplication  can be used to compute the 
product using the partitions shown. If so, compute the product by block multiplication. 
 

8. (a) 

2 1 4
1 2 1 5

3 5 2
0 3 4 2

7 1 5
1 5 6 1

0 3 3

−⎡ ⎤
−⎡ ⎤ ⎢ ⎥−⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎣ ⎦

  (b) 

2 1 4
1 2 1 5

3 5 2
0 3 4 2

7 1 5
1 5 6 1

0 3 3

−⎡ ⎤
−⎡ ⎤ ⎢ ⎥−⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎣ ⎦

 

 

9 (a)   (b) 

2 4 1
3 1 0 3 3 0 2
2 1 4 5 1 3 5

2 1 4

−⎡ ⎤
⎢ ⎥− −⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦
⎢ ⎥
⎣ ⎦

2 5
1 3 2 1 3 4
0 5 0 1 5 7
1 4

−⎡ ⎤
⎢ ⎥ − −⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

 

 

10. Compute the product  using the column row-rule, and check  
3 1 1 2 0
2 4 1 6 2
⎡ ⎤ ⎡
⎢ ⎥ ⎢− −⎣ ⎦ ⎣

⎤
⎥
⎦

⎥
⎥

 
your answer by calculating the product directly. 

In exercises 11 and 12, find the inverse of the block diagonal matrix A. 

 

11. (a)    (b) 

2 1 0 0
3 2 0 0
0 0 3 4
0 0 1 1

A

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥−⎣ ⎦

5 2 0 0 0
3 1 0 0 0
0 0 5 0 0
0 0 0 2 7
0 0 0 1 4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

⎥
⎥

12. (a)    (b) 

5 1 0 0
4 1 0 0
0 0 2 3
0 0 3 5

A

⎡ ⎤
⎢ ⎥
⎢=
⎢ −
⎢ ⎥−⎣ ⎦

2 0 0 0 0
0 1 2 0 0
0 3 7 0 0
0 0 0 4 9
0 0 0 1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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In exercises 13 and 14, find the inverse of the block upper triangular matrix A. 
 

13.    14. 

2 1 3 6
1 1 7 4
0 0 3 5
0 0 2 3

A

−⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎣ ⎦

⎥
⎥

1 1 2 5
2 1 3 8
0 0 4 1
0 0 7 2

A

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

15. Find B1, given that 3 31 1 2 2

31 2 00 0
A BA B A B

CC C
⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 and 

1 2 1

2 2 3

2 0 1 1 1 1
, ,

0 1 1 2 1 1

2 0 1 0 2 1
, ,

0 2 0 2 1 3

A B C

A C B

⎡ ⎤ ⎡ ⎤ ⎡
= = =⎢ ⎥ ⎢ ⎥ ⎢

⎤
⎥−⎣ ⎦ ⎣ ⎦ ⎣

⎡ ⎤ ⎡ ⎤ ⎡
= = =⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣

⎦
⎤
⎥
⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎤
⎥
⎦

  

 
16. Consider the partitioned linear system 
 

  l 

1

2

3

4

5 2 2 3 2
2 1 3 1 6
1 0 4 1 0
0 1 0 2 0

x
x
x
x

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
 
Solve this system by first expressing it as 
 

0
A B u b
I D v

⎡ ⎤ ⎡ ⎤ ⎡
=⎢ ⎥ ⎢ ⎥ ⎢

⎣ ⎦ ⎣ ⎦ ⎣
 or equivalently, 

0
Au Bv b
u Dv

+ =
+ =

 

 
 next solving the second equation for u in terms of v, and then substituting in the first 
equation. Check your answer by solving the system directly.   
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Lecture 15 

 
Matrix Factorizations 

 
Matrix Factorization 
          A factorization of a matrix as a product of two or more matrices is called Matrix  
factorization. 
Uses of Matrix Factorization 
Matrix factorizations will appear at a number of key points throughout the course. This 
lecture focuses on a factorization that lies at the heart of several important computer 
programs widely used in applications.  
 
 LU Factorization or LU-decomposition 
LU factorization is a matrix decomposition which writes a matrix as the product of a 
lower triangular matrix and an upper triangular matrix. This decomposition is used to 
solve systems of linear equations or calculate the determinant. 

m n×Assume A is an  matrix that can be row reduced to echelon form, without row 
interchanges. Then A can be written in the form A = LU, where L is an  lower 
triangular matrix with 1’s on the diagonal and U is an 

m m×
m n×  echelon form of A. For 

instance, such a factorization is called LU factorization of A. The matrix L is invertible 
and is called a unit lower triangular matrix. 

 
 
 
 

 
 

⎤
⎥
⎥
⎥
⎥
⎦

  
 

LU factorization. 
 
Remarks:  
1)  If A is the square matrix of order m, then the order of both L and U will also be m.  
2) In general, not every square matrix A has an LU-decomposition, nor is an LU-
decomposition unique if it exists. 
Theorem: If a square matrix A can be reduced to row echelon form with no row 
interchanges, then A has an LU-decomposition. 
Note:  
The computational efficiency of the LU factorization depends on knowing L and U. The 
next algorithm shows that the row reduction of A to an echelon form U amounts to an LU 
factorization because it produces L with essentially no extra work.  
 
An LU Factorization Algorithm 
Suppose A can be reduced to an echelon form U without row interchanges. Then, since 
row scaling is not essential, A can be reduced to U with only row replacements, adding a 

1 0 0 0 * * * *
* 1 0 0 0 * * *
* * 1 0 0 0 0 *
* * * 1 0 0 0 0 0

A

L U

•⎡ ⎤ ⎡
⎢ ⎥ ⎢ •⎢ ⎥ ⎢=
⎢ ⎥ ⎢ •
⎢ ⎥ ⎢
⎣ ⎦ ⎣

http://en.wikipedia.org/wiki/Linear_equations
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multiple of one row to another row below it. In this case, there exist lower triangular 
elementary matrices E1, …, Ep such that 

Ep … E1A = U       (1) 
So   A = (Ep …E1)-1U = LU 
Where    L = (Ep … E1)-1       (2) 
It can be shown that products and inverses of unit lower triangular matrices are also unit-
lower triangular. Thus L is unit-lower triangular. 
 
Note that the row operations in (1), which reduce A to U, also reduce the L in (2) to I, 
because Ep … E1L = (Ep…E1)(Ep … E1)-1 = I. This observation is the key to 
constructing L. 
 
Procedure for finding an LU-decomposition 
 
Step 1 Reduce matrix A to row echelon form U without using row interchanges, keeping 
track of the multipliers used to introduce the leading 1’s and the multipliers used to 
introduce zeros below the leading 1’s. 
 
Step 2 In each position along the main diagonal of L, place the reciprocal of the 
multiplier that introduced the leading 1 in that position in U. 
 
Step 3 In each position below the main diagonal of L, place the negative of the multiplier 
used to introduce the zero in that position in U. 
 
Step 4 Form the decomposition A = LU. 
 
Example 1: Find an LU-decomposition of  

6 -2 0
A= 9 -1 1

3 7 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Solution: We will reduce A to a row echelon form U and at each step we will fill in an 
entry of L in accordance with the four-step procedure above. 

  
6 -2 0

A= 9 -1 1
3 7 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

          
* 0 0
* * 0
* * *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

                                                                                         * denotes an unknown entry of L. 

         

1
3

1
6

1 - 0
9 -1 1 multiplier =
3 7 5

⎡ ⎤
⎢ ⎥

←⎢ ⎥
⎢ ⎥
⎣ ⎦

        
6 0 0
* * 0
* * *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

         

1
31 0

9
0 2 1

3
0 8 5

multiplier
multiplier

−⎡ ⎤
← = −⎢ ⎥

⎢ ⎥← = −⎢ ⎥
⎣ ⎦

                   
6 0 0
9 * 0
3 * *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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1
3

1
2

1 0
10 1
2

0 8 5

multiplier

−⎡ ⎤
⎢ ⎥
⎢ ⎥ ← =
⎢ ⎥
⎢ ⎥
⎣ ⎦

                       
6 0 0
9 2 0
3 * *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

         

1
3

1
2

1 0
0 1

0 0 1

multiplier
⎡ ⎤−
⎢ ⎥

←⎢ ⎥
⎢ ⎥
⎣ ⎦

8= −                      
6 0 0
9 2 0
3 8 *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

1
3

1
2

1 0
0 1

0 0 1

⎡ ⎤−
⎢ ⎥

= ←⎢ ⎥
⎢ ⎥
⎣ ⎦

U multi 1=plier                
6 0 0
9 2 0
3 8 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

L  

(No actual operation is performed here since there is already a leading 1 in the third row.) 
So    

1
3

1
2

6 0 0 1 0
9 2 0 0 1
3 8 1 0 0 1

A LU
−⎡ ⎤⎡ ⎤

⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
                                            OR 
Solution: We will reduce A to a row echelon form U and at each step we will fill in an 
entry of L in accordance with the four-step procedure above. 

  
6 -2 0

A= 9 -1 1
3 7 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

          
* 0 0
* * 0
* * *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

                                                                                         * denotes an unknown entry of L. 

         1
1
6

6 -2 0
6 6 6
9 -1 1 R
3 7 5

⎡ ⎤
⎢ ⎥
⎢ ⎥

≈ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                    
6 0 0
* * 0
* * *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

                                

-11 0
3

9 -1 1
3 7 5

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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         )

)

-11 0
3

-19 - 9(1) -1- 9( 1- 9(0)
3

-13 - 3(1) 7 - 3( 5 - 3(0)
3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥≈ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   2

3 1

9
3

1R R
R R

−
−

                    
6 0 0
9 * 0
3 * *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                               

-11 0
3

0 2 1
0 8 5

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
                                 

         2
1
2

-11 0
3

0 2 1 R
2 2 2
0 8 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥≈ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                     
6 0 0
9 2 0
3 * *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

                               

-11 0
3

10 1
2

0 8 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

         3 8

)

-11 0
3

10 1 R
2

10 - 8(0) 8 - 8(1) 5 - 8(
2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥≈ −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2R                       
6 0 0
9 2 0
3 8 *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                               

-11 0
3

10 1
2

0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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1
3

1
2

1 0
0 1

0 0 1

⎡ ⎤−
⎢ ⎥

= ←⎢ ⎥
⎢ ⎥
⎣ ⎦

U multi 1=plier                
6 0 0
9 2 0
3 8 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

L  

So 

   

1
3

1
2

6 0 0 1 0
9 2 0 0 1
3 8 1 0 0 1

A LU
−⎡ ⎤⎡ ⎤

⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
 

Example 2 Find an LU factorization of  

2 4 2 3
6 9 5 8
2 7 3 9
4 2 2 1
6 3 3 4

A

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥= − −
⎢ ⎥− − −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Solution 

     

2 4 2 3
6 9 5 8
2 7 3 9
4 2 2 1
6 3 3 4

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢= − −
⎢ ⎥− − −⎢ ⎥
⎢ ⎥−⎣ ⎦

A ⎥

1 0 0 0 0
* 1 0 0 0
* * 1 0 0
* * * 1 0
* * * * 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

                                                               * denotes an unknown entry of L. 

                

3 11 2 1
2 2

6 9 5 8
2 7 3 9
4 2 2 1
6 3 3 4

⎡ ⎤− − ←⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥−⎣ ⎦

multiplier

  

2 0 0 0 0
* 1 0 0 0
* * 1 0 0
* * * 1 0
* * * * 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

        

       

31 2 1
2

60 3 1 1
20 3 1 6
40 6 2 7

60 9 3 13

⎡ ⎤− −⎢ ⎥
⎢ ⎥← −−⎢ ⎥

←⎢ ⎥− −
⎢ ⎥← −−⎢ ⎥

←⎢ ⎥− −⎣ ⎦

multiplier
multiplier
multiplier
multiplier

−   

2 0 0 0 0
6 1 0 0 0
2 * 1 0 0
4 * * 1 0
-6 * * * 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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31 2 1
2

11 10 1 33 3
0 3 1 6
0 6 2 7
0 9 3 13

⎡ ⎤− −⎢ ⎥
⎢ ⎥

←⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥−
⎢ ⎥

− −⎣ ⎦

multiplier
  

2 0 0 0 0
6 3 0 0 0
2 * 1 0 0
4 * * 1 0
-6 * * * 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

         

31 2 1
2

1 10 1
3 3 3

0 0 0 5 6
0 0 0 5 9
0 0 0 10

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥ ←
⎢ ⎥

← −⎢ ⎥
⎢ ⎥− ←⎢ ⎥
⎣ ⎦

multiplier
multiplier
multiplier

  

2 0 0 0 0
6 3 0 0 0
2 -3 1 0 0
4 6 * 1 0
-6 -9 * * 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

         

31 2 1
2

1 10 1 13 3
50 0 0 5

0 0 0 1
0 0 0 10

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥← −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

multiplier   

2 0 0 0 0
6 3 0 0 0
2 -3 1 0 0
4 6 0 -5 0
-6 -9 0 * 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

  

31 2 1
2

1 10 1
3 3 10

0 0 0 5
0 0 0 1
0 0 0 0

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥= ← −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

U multiplier       

2 0 0 0 0
6 3 0 0 0
2 -3 1 0 0
4 6 0 -5 0
-6 -9 0 10 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L  

Thus, we have constructed the LU-decomposition 
31 -2 -12 0 0 0 0 2

1 16 3 0 0 0 0 1 -
3 32 -3 1 0 0

0 0 0 54 6 0 -5 0
0 0 0 1-6 -9 0 10 1
0 0 0 0

⎡ ⎤
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎣ ⎦

A LU  
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Example 3 Find LU–decomposition of 

6 -2 -4 4
3 -3 -6 1

A =
-12 8 21 -8
-6 0 -10 7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
 
 
 
 
Solution 

6 2 4 4
3 3 6 1
12 8 21 8
6 0 10 7

A

− −⎡ ⎤
⎢ ⎥− −⎢=
⎢− −
⎢ ⎥− −⎣ ⎦

⎥
⎥

    

1 0 0 0
* 1 0 0
* * 1 0
* * * 1

L

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

             * denotes an unknown entry of L.         

              

1 2 21
3 3 3

3 3 6 1
12 8 21 8
6 0 10 7

multiplier⎡ ⎤− − ←⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥
− −⎢ ⎥⎣ ⎦

1
6

        

6 0 0 0
* 1 0 0
* * 1 0
* * * 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

                 

1 2 21
3 3 3

30 2 4 1
120 4 13 0
60 2 14 11

multiplier
multiplier
multiplier

⎡ ⎤− −⎢ ⎥
⎢ ⎥← −− − −⎢ ⎥

←⎢ ⎥
⎢ ⎥ ←− −⎢ ⎥⎣ ⎦

        

6 0 0 0
3 1 0 0
12 * 1 0
6 * * 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 

 

                 

1 2 21
3 3 3

110 1 2 22
0 4 13 0
0 2 14 11

multiplier

⎡ ⎤− −⎢ ⎥
⎢ ⎥

← −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

        

6 0 0 0
3 2 0 0
12 * 1 0
6 * * 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎣ ⎦
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1 2 21
3 3 3

10 1 2
2 4

0 0 5 2 2
0 0 10 12

multiplier
multiplier

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥← −
⎢ ⎥− ←⎢ ⎥
⎢ ⎥−⎣ ⎦

        

6 0 0 0
3 2 0 0
12 4 1 0
6 2 * 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥− −⎣ ⎦

 

           

1 2 21
3 3 3

10 1 2
2
2 10 0 1
5 5

0 0 10 12

multiplier

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− ←⎢ ⎥
⎢ ⎥−⎣ ⎦

         

6 0 0 0
3 2 0 0
12 4 5 0
6 2 * 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥− −⎣ ⎦

 

 

       

1 2 21 - -
3 3 3

10 1 2
2
20 0 1 - multiplier105

0 0 0 8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥←⎢ ⎥
⎢ ⎥⎣ ⎦

         

6 0 0 0
3 2 0 0
12 4 5 0
6 2 10 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥− − −⎣ ⎦

 

 
1 2 21
3 3 3

10 1 2
2
2 10 0 1
5 8

0 0 0 1

U

multiplier

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥− ←⎢ ⎥
⎢ ⎥⎣ ⎦

  

6 0 0 0
3 2 0 0
12 4 5 0
6 2 10 8

L

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥− − −⎣ ⎦

 

 
1 2 21
3 3 36 0 0 0

13 2 0 0 0 1 2
2

12 4 5 0 20 0 16 2 10 8 5
0 0 0 1

Thus A LU

⎡ ⎤− −⎢ ⎥
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= =
⎢ ⎥− ⎢ ⎥
⎢ ⎥ ⎢ ⎥−− − −⎣ ⎦ ⎢ ⎥

⎢ ⎥⎣ ⎦
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Example 4 Find an LU factorization of

2 4 1 5 2
4 5 3 8 1
2 5 4 1 8
6 0 7 3 1

A

− −⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

 

 
 
 
Solution 

2 4 1 5 2
4 5 3 8 1
2 5 4 1 8
6 0 7 3 1

A

− −⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

   

1 0 0 0
* 1 0 0
* * 1 0
* * * 1

L

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

             * denotes an unknown entry of L. 

       

⎡ ⎤− − ←⎢ ⎥
⎢ ⎥
− − −⎢ ⎥
⎢ ⎥− −
⎢ ⎥
− −⎢ ⎥⎣ ⎦

1 5 11 2 1
2 2 2

4 5 3 8 1
2 5 4 1 8
6 0 7 3 1

multiplier

        

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

2 0 0 0
* 1 0 0
* * 1 0
* * * 1

 

 

       

⎡ ⎤− −⎢ ⎥
⎢ ⎥ ←−⎢ ⎥

← −⎢ ⎥− − −
⎢ ⎥ ←−⎢ ⎥⎣ ⎦

1 51 2 1
2 2

40 3 1 2 3
20 9 3 4 10

60 12 4 12 5

multiplier
multiplier
multiplier

        

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

2 0 0 0
4 1 0 0
2 * 1 0
6 * * 1

 

 

             

⎡ ⎤− −⎢ ⎥
⎢ ⎥

←⎢ ⎥−⎢ ⎥
⎢ ⎥− − −⎢ ⎥
⎢ ⎥−⎣ ⎦

1 51 2 1
2 2

11 20 1 1 33 3
0 9 3 4 10
0 12 4 12 5

multiplier
        

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

2 0 0 0
4 3 0 0
2 * 1 0
6 * * 1

 

 

       

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥

←⎢ ⎥
⎢ ⎥⎣ ⎦← −

1 51 2 1
2 2

1 20 1 1
3 3

0 0 0 2 1 9
0 0 0 4 7 12

multiplier
multiplier

         

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎣ ⎦

2 0 0 0
4 3 0 0
2 9 1 0
6 12 * 1
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⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥←⎣ ⎦

1 51 2 1
2 2

1 20 1 1
3 3

0 0 0 2 1
7 10 0 0 1
4 4

U

multiplier

 

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

2 0 0 0
4 3 0 0
2 9 1 0
6 12 0 4

L  

 

Thus 

1 51 2 1
2 22 0 0 0

1 24 3 0 0 0 1 1
3 3

2 9 1 0 0 0 0 2 1
6 12 0 4 70 0 0 1

4

A LU

⎡ ⎤− −⎢ ⎥
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥− ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥

⎢ ⎥⎣ ⎦

 

Matrix Inversion by LU-Decomposition 
Many of the best algorithms for inverting matrices use LU-decomposition. To understand 
how this can be done, let A be an invertible n n×  matrix, let [ ]1

1 2 nA x x x− = "  be 

its unknown inverse partitioned into column vectors, and let [ ]1 2 nI e e e= "  be then 

 identity matrix partitioned into column vectors. The matrix equation  can 
be expressed as 
n n× 1AA I− =

   [ ] [ ]1 2 1 2n nA x x x e e e=" "  

   [ ] [ ]1 2 1 2n nAx Ax Ax e e e=" "  

which tells us that the unknown column vectors of 1A−  can be obtained by solving the n- 
linear systems 
    1 1 2 2, , , nAx e Ax e Ax en= = " =    (1*) 
As discussed above, this can be done by finding an LU-decomposition of A, and then 
using that decomposition to solve each of the n systems in (1*).   
 
 
 
 
Solving Linear System by LU-Factorization 
 
When A =LU, the equation Ax = b can be written as L (Ux) = b. Writing y for Ux, we can 
find x by solving the pair of equations;  Ly = b and Ux = y         (2*) 
 
First solve Ly = b for y and then solve Ux = y for x. Each equation is easy to solve 
because L and U are triangular.  
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Procedure 
Step 1 Rewrite the system A x = b as LU x = b                                        (3*)  
                       
Step 2 Define a new unknown y by letting U x = y      (4*) 

And rewrite (3*) as L y = b 
 
Step 3 Solve the system L y = b for the unknown y. 
Step 4 Substitute the known vector y into (4*) and solve for x. 
 
This procedure is called the method of LU-Decomposition.  
 
Although LU-Decomposition converts the problem of solving the single system A x = b 
into the problem of solving the two systems, L y = b and U x = y, these systems are easy 
to solve because their co-efficient matrices are triangular.   
 
Example 5 Solve the given system (Ax =b) by LU-Decomposition 

1 2 3

1 2

1 2 3

2 6 2

3 8
4 9 2

x x x

x x
x x x

+ + =

− − =
+ + =

2

2
3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

      (1) 

 
Solution We express the system (1) in matrix form:  

1

2

3

2 6 2 2
3 8 0 2

4 9 2 3

x
x
x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

                                               A            x   =   b 
We derive an LU-decomposition of A. 

2 6 2 1 0 0
3 8 0 * 1 0

4 9 2 * * 1
A L

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢= − − = ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

1 3 1 2 0 0
13 8 0 * 1 0
2

4 9 2 * * 1
multiplier

⎡ ⎤ ⎡
⎢ ⎥ ⎢− − ←⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

⎤
⎥
⎥
⎥⎦
⎤
⎥
⎥
⎥⎦

 

1 3 1 2 0 0
0 1 3 3 3 1 0
0 3 2 4 4 * 1

multiplier
multiplier

⎡ ⎤ ⎡
⎢ ⎥ ⎢← −⎢ ⎥ ⎢
⎢ ⎥ ⎢− − ← −⎣ ⎦ ⎣

 

                    
1 3 1 2 0 0
0 1 3 3 3 1 0
0 0 1 4 3 1

multiplier
⎡ ⎤ ⎡
⎢ ⎥ ⎢← −⎢ ⎥ ⎢
⎢ ⎥ ⎢ −⎣ ⎦ ⎣
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1 3 1 2 0 0

10 1 3 3 1 0
7

0 0 1 4 3 7
U multiplier L

⎡ ⎤ ⎡
⎢ ⎥ ⎢= ← = −⎢ ⎥ ⎢
⎢ ⎥ ⎢ −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

⎤
⎥
⎥
⎥⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2

   

Thus          (2) 
2 6 2 2 0 0 1 3 1
3 8 0 3 1 0 0 1 3

4 9 2 4 3 7 0 0 1

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢− − = −⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢−⎣ ⎦ ⎣ ⎦ ⎣

                                             A         =           L               U 
From (2) we can rewrite this system as 

1

2

3

2 0 0 1 3 1 2
3 1 0 0 1 3 2

4 3 7 0 0 1 3

x
x
x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

        (3) 

                                  L                U          x   =   b 
As specified in Step 2 above, let us define y1, y2 and y3 by the equation 

    
1 1

2

3 3

1 3 1
0 1 3
0 0 1

x y
x y
x y

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢=⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

3

       (4) 

       U            x     =   y 
which allows us to rewrite (3) as 

       (5) 
1

2

3

2 0 0 2
3 1 0 2

4 3 7 3

y
y
y

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

  L           y    =   b 

or equivalently, as 
1

1 2

1 2 3

2 2

3 2
4 3 7

y

y y
y y y

=

− + =
− + =

 

  
This system can be solved by a procedure that is similar to back substitution, except that 
we solve the equations from the top down instead of from the bottom up. This procedure, 
called forward substitution, yields 

y1 = 1,      y2 = 5,     y3 = 2. 
 As indicated in Step 4 above, we substitute these values into (4), which yields the linear 
system 

1

2

3

1 3 1 1
0 1 3 5
0 0 1 2

x
x
x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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or equivalently,  
1 2 3

2 3

3

3 1

3 5

2

x x x

x x

x

+ + =

+ =

=
  

Solving this system by back substitution yields  x1 = 2,     x2 = –1,   x3 = 2 
 
Example 6 It can be verified that 

3 7 2 2 1 0 0 0 3 7 2 2
3 5 1 0 1 1 0 0 0 2 1 2

6 4 0 5 2 5 1 0 0 0 1 1
9 5 5 12 3 8 3 1 0 0 0 1

− − − −⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢− − − −⎢ ⎥ ⎢ ⎥ ⎢= =
⎢ ⎥ ⎢ ⎥ ⎢− − − −
⎢ ⎥ ⎢ ⎥ ⎢− − − −⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥ =
⎥
⎥
⎦

A LU  

Use this LU factorization of A to solve Ax = b, where 

9
5
7
11

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

b  

Solution The solution of Ly = b needs only 6 multiplications and 6 additions, because the 
arithmetic takes place only in column 5. (The zeros below each pivot in L are created 
automatically by our choice of row operations.) 
 

1 0 0 0 9 1 0 0 0 9
1 1 0 0 5 0 1 0 0 4

[ ] [
2 5 1 0 7 0 0 1 0 5
3 8 3 1 11 0 0 0 1 1

L b I y

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

∼ ]

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

 

 
Then, for Ux = y, the “backwards” phase of row reduction requires 4 divisions, 6 
multiplications, and 6 additions. (For instance, creating the zeros in column 4 of [U    y] 
requires 1 division in row 4 and 3 multiplication – addition pairs to add multiples of row 
4 to the rows above.) 

3 7 2 2 9 1 0 0 0 3 3
0 2 1 2 4 0 1 0 0 4 4

[ ] ,
0 0 1 1 5 0 0 1 0 6 6
0 0 0 1 1 0 0 0 1 1 1

U y x

− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

∼

⎣ ⎦

 

 
To find x requires 28 arithmetic operations, or “flops” (floating point operations), 
excluding the cost of finding L and U. In contrast, row reduction of [A   b] to [I   x] takes 
62 operations. 
 
Numerical Notes 
The following operation counts apply to an n n×  dense matrix A (with most entries 
nonzero) for n moderately large, say,  30.n ≥
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1. Computing an LU factorization of A takes about 2n3/3 flops (about the same as 
row reducing [A   b]), whereas finding A-1 requires about 2n3 flops. 

2. Solving Ly = b and Ux = y requires about 2n2 flops, because n n×  triangular 
system can be solved in about n2 flops. 

3. Multiplication of b by A-1 also requires about 2n2 flops, but the result may not be 
as accurate as that obtained from L and U (because of round off error when 
computing both A-1 and A-1b). 

4. If A is sparse (with mostly zero entries), then L and U may be sparse, too, 
whereas A-1 is likely to be dense. In this case, a solution of Ax = b with an LU 
factorization is much faster than using A-1.  

 
Example 7(Gaussian Elimination Performed as an LU-Decomposition) 
In Example 5 we showed how to solve the linear system 

       (6) 
1

2

3

2 6 2 2
3 8 0 2

4 9 2 3

x
x
x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

using an LU-decomposition of the coefficient matrix, but we did not discuss how the 
factorization was derived. In the course of solving the system we obtained the 

intermediate vector by using forward substitution to solve system (5).  
1
5
2

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

y

We will now use the procedure discussed above to find both the LU-decomposition and 
the vector y by row operations on the augmented matrix for (6). 

2 6 2 2 * 0 0
3 8 0 2 * * 0 (*

4 9 2 3 * * *
)A b L unknown entries

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ = − − = =⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

    
1 3 1 1 2 0 0
3 8 0 2 * * 0

4 9 2 3 * * *

⎡ ⎤ ⎡
⎢ ⎥ ⎢− −⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

⎤
⎥
⎥
⎥⎦

⎤
⎥
⎥
⎥⎦

 

             
1 3 1 1 2 0 0
0 1 3 5 3 * 0
0 3 2 1 4 * *

⎡ ⎤ ⎡
⎢ ⎥ ⎢−⎢ ⎥ ⎢
⎢ ⎥ ⎢− − −⎣ ⎦ ⎣

 

                                 
1 3 1 1 2 0 0
0 1 3 5 3 1 0
0 0 7 14 4 3 *

⎡ ⎤ ⎡
⎢ ⎥ ⎢−⎢ ⎥ ⎢
⎢ ⎥ ⎢ −⎣ ⎦ ⎣
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1 3 1 1 2 0 0
0 1 3 5 3 1 0
0 0 1 2 4 3 7

U y L
⎡ ⎤ ⎡
⎢ ⎥ ⎢⎡ ⎤ = − =⎣ ⎦ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

 

 
These results agree with those in Example 5, so we have found an LU-decomposition of 
the coefficient matrix and simultaneously have completed the forward substitution 
required to find y.  
 
All that remains to solve the given system is to solve the system Ux = y by back 
substitution. The computations were performed in Example5. 

A Matrix Factorization in Electrical Engineering 
Matrix factorization is intimately related to the problem of constructing an electrical 
network with specified properties. The following discussion gives just a glimpse of the 
connection between factorization and circuit design. 
  
Suppose the box in below Figure represents some sort of electric circuit, with an input 

and output. Record the input voltage and current by 1

1

v
i
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (with voltage v in volts and 

current i in amps), and record the output voltage and current by 2

2

v
i
⎡ ⎤
⎢ ⎥
⎣ ⎦

. Frequently, the 

transformation  is linear. That is, there is a matrix A, called the transfer 

matrix, such that  

1

1 2

v v
i i
⎡ ⎤ ⎡ ⎤

→⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

2

2 1

2 1

v v
A

i i
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

            
       i          
            
           input    electric     output     
       terminals     circuit        terminals     
            
            
  Figure  A circuit with input and output terminals. 

1 2i

1v 2v

 
Above Figure shows a ladder network, where two circuits (there could be more) are 
connected in series, so that the output of one circuit becomes the input of the next circuit. 
The left circuit in Figure  is called a series circuit, with resistance R1 (in ohms);  
 
The right circuit is a shunt circuit, with resistance R2. Using Ohm’s law and Kirchhoff’s 
laws, one can show that the transfer matrices of the series and shunt circuits, respectively, 
are 
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1

2

1 01
1/ 10 1

R
and

R
− ⎡ ⎤⎡ ⎤

⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦
 

Transfer matrix  Transfer matrix 
of series circuit of shunt circuit   

 
Example 8  
a) Compute the transfer matrix of the ladder network in above Figure . 

b) Design a ladder network whose transfer matrix is 
1 8

.
0 5 5

−⎡ ⎤
⎢ ⎥− ⋅⎣ ⎦

 

Solution 
a) Let A1 and A2 be the transfer matrices of the series of the series and shunt circuits, 

respectively. Then an input vector x is transformed first into A1x and then into         
A2 (A1x). The series connection of the circuits corresponds to composition of linear 
transformations; and the transfer matrix of the ladder network in (note the order) 

11
2 1

2 2

1 0 11
1/ 1 1/ 1 /0 1

RR
A A

1 2R R R R
−−⎡ ⎤ ⎡⎡ ⎤

= =⎢ ⎥ ⎢⎢ ⎥− −⎣ ⎦⎣ ⎦ ⎣

⎤
⎥+ ⎦

(6) 

b) We seek to factor the matrix 
1 8
0 5 5

−⎡ ⎤
⎢ ⎥− ⋅⎣ ⎦

 into the product of transfer matrices, such 

as in (6). So we look for R1 and R2 to satisfy 
1

2 1 2

1 1 8
1/ 1 / 0 5 5

R
R R R

− −⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥− + − ⋅⎣ ⎦⎣ ⎦

 

From the (1, 2) – entries, R1 = 8 ohms, and from the (2, 1) – entries, 1/R2 = 0.5 ohm and 
R2 = 1/0.5 = 2 ohms. With these values, the network has the desired transfer matrix. 
Note: 
A network transfer matrix summarizes the input-output behavior (“Design 
specifications”) of the network without reference to the interior circuits. To physically 
build a network with specified properties, an engineer first determines if such a network 
can be constructed (or realized). Then the engineer tries to factor the transfer matrix into 
matrices corresponding to smaller circuits that perhaps are already manufactured and 
ready for assembly. In the common case of alternating current, the entries in the transfer 
matrix are usually rational complex-valued functions. A standard problem is to find a 
minimal realization that uses the smallest number of electrical components. 
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Exercises 
Find an LU factorization of the matrices in exercises 1 to 8. 
 

1.       2.  
2 5
3 4

⎡ ⎤
⎢− −⎣ ⎦

⎥

3 1 2
3 2 10

9 5 6

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

3.       4.  

3 6 3
6 7 2
1 7 0

−⎡ ⎤
⎢ ⎥−⎢
⎢ ⎥−⎣ ⎦

⎥

1 3 5 3
1 5 8 4

4 2 5 7
2 4 7 5

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

 

 

5.      6.  

2 4 4 2
6 9 7 3
1 4 8 0

− −⎡ ⎤
⎢ − −⎢
⎢ ⎥− −⎣ ⎦

⎥
⎥

2 6 6
4 5 7

3 5 1
6 4 8

8 3 9

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

7.      8.  

1 4 1 5
3 7 2 9
2 3 1 4
1 6 1 7

−⎡ ⎤
⎢ ⎥−⎢
⎢ ⎥− − −
⎢ ⎥− −⎣ ⎦

⎥

2 4 2 3
6 9 5 8
2 7 3 9
4 2 2 1
6 3 3 4

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥− − −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
Solve the equation Ax = b by using LU-factorization. 
 

9.     10.  

3 7 2 7
3 5 1 , 5

6 4 0 2
A b

− − −⎡ ⎤
⎢ ⎥= − =⎢ ⎥
⎢ ⎥−⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

4 3 5 2
4 5 7 , 4

8 6 8 6
A b

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢− ⎥⎣ ⎦ ⎣ ⎦

b
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

11.     12.  

2 1 2 1
6 0 2 , 0

8 1 5 4
A

−⎡ ⎤
⎢ ⎥= − − =⎢ ⎥
⎢ ⎥−⎣ ⎦

2 2 4 0
1 3 1 , 5
3 7 5 7

A b
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= − = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

13.    14. 

1 2 4 3 1
2 7 7 6 7

,
1 2 6 4 0
4 1 9 8 3

A b

− − −⎡ ⎤
⎢ ⎥− − −⎢ ⎥= =
⎢ ⎥−
⎢ ⎥− −⎣ ⎦

1 3 4 0 1
3 6 7 2 2

,
3 3 0 4 1
5 3 2 9 2

A b

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢= = ⎥
⎢ ⎥ ⎢− − ⎥
⎢ ⎥ ⎢− − ⎥
⎣ ⎦ ⎣ ⎦
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Lecture 16 
 

                                    Iterative Solutions of Linear Systems 
 
    Consistent linear systems are solved in one of two ways by direct calculation (matrix 
factorization) or by an iterative procedure that generates a sequence of vectors that 
approach the exact solution. When the coefficient matrix is large and sparse (with a high 
proportion of zero entries), iterative algorithms can be more rapid than direct methods 
and can require less computer memory. Also, an iterative process may be stopped as soon 
as an approximate solution is sufficiently accurate for practical work.  
 
General Framework for an Iterative Solution of Ax = b: 
    Throughout the section, A is an invertible matrix. The goal of an iterative algorithm is 
to produce a sequence of vectors, 

(0) (1) ( ), ,..., ,...kx x x  

that converges to the unique solution say *x  of Ax = b, in the sense that the entries 
in ( )kx  are as close as desired to the corresponding entries in *x  for all k sufficiently 
large. 

  
   To describe a recursion algorithm that produces ( 1)kx +  from ( )kx , we write A = M – N 
for suitable matrices M and N, and then we rewrite the equation Ax = b as Mx – Nx = b 
and 

M x N x b= +  
 
   If a sequence { ( )kx } satisfies 

( 1) ( ) ( 0,1,...)k kMx Nx b k+ = + =        (1) 

and if the sequence converges to some vector *x , then it can be shown that * .Ax b= [The 
vector on the left in (1) approaches *Mx , while the vector on the right in (1) approaches 

 This implies that *Nx +b. * *Mx Nx= + b  and * .Ax b=  
 
    For ( 1)kx +  to be uniquely specified in (1), M must be invertible. Also, M should be 
chosen so that ( 1)kx +  is easy to calculate. There are two iterative methods below to 
illustrate two simple choices for M. 
 
1) Jacobi’s Method: 
This method assumes that the diagonal entries of A are all nonzero.  
Choosing M as the diagonal matrix formed from the diagonal entries of A. So next 
N = M – A,  

⇒∴ )1( ( 1) ( )( ) ( 0,1, .k kMx M A x b k+ = − + = ..)  
 
For simplicity, we take the zero vector as (0)x  as the initial approximation. 
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Example 1: 
 Apply Jacobi’s method to the system 

 
  10x1 +   x2 -       x3   =  18 
   x1 + 15x2 +      x3   = -12 
   -x1 +     x2 + 20x3  =   17     (2) 
Take x(0) = (0, 0, 0) as an initial approximation to the solution, and use six iterations (that 
is, compute x(1), … , x(6)). 
 
Solution: 

For some k, let  x(k) = 
1

2

3

x
x
x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=(x1, x2, x3)  and  x(k + 1) =
1

2

3

y
y
y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=(y1, y2, y3) 

  Firstly we construct M and N from A. 
Here  

    
10 1 1
1 15 1
1 1 20

A
−⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

Its diagonal entries will give  
10 0 0
0 15 0
0 0 20

M
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  and 

  
10 0 0 10 1 1 0 1 1
0 15 0 1 15 1 1 0 1
0 0 20 1 1 20 1 1 0

N M A
− −⎡ ⎤ ⎡ ⎤ ⎡

⎢ ⎥ ⎢ ⎥ ⎢= − = − = − −⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢− −⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

⎤
⎥
⎥
⎥⎦

⎤
⎥
⎥
⎥⎦

⎤
⎥
⎥
⎥⎦

Now the recursion:  ( 1) ( )( ) ( 0,1,...6)k kMx M A x b here k+ = − + =
    implies 

                 
1 1

2 2

3 3

10 0 0 0 1 1 18
0 15 0 1 0 1 12
0 0 20 1 1 0 17

y x
y x
y x

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢= − − + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

          
1 1 2 3

2 1 2 3

3 1 2 3

10 0 1 1 18
15 1 0 12
20 1 1 0 17

y x x x
y x x x
y x x x

− +⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢⇒ = − + − + −⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢− +⎣ ⎦ ⎣ ⎦ ⎣

          
1 1 2 3

2 1 2 3

3 1 2 3

10 0 1 1 18
15 1 0 12
20 1 1 0 17

y x x x
y x x x
y x x x

− + +⎡ ⎤ ⎡
⎢ ⎥ ⎢⇒ = − + − −⎢ ⎥ ⎢
⎢ ⎥ ⎢ − + +⎣ ⎦ ⎣

           
Comparing the corresponding entries on both sides, we have  

10y1 =     -x2 + x3 + 18 
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15y2 = -x1      - x3 – 12 
20y3 = x1 – x2       + 17 

And 
 

y1 = (- x2 + x3 + 18)/10  
y2 = ( - x1 – x3 – 12)/15     (3) 
y3 = (x1 – x2 + 17)/20 

 
1st Iteration: 
 
 For k = 0, put  x (0) = (x1, x2, x3) = (0, 0, 0) in (3) and compute 
  x (1) = (y1, y2, y3) = (18/10, – 12/15, 17/20) = (1.8, -0.8, 0.85) 
 
2nd Iteration: 
 
For k = 1, put x (1) =(1.8, -.8, .85) 
 
  y1 = [ - ( -0.8) + (0.85) + 18]/10 = 1.965 
  y2 = [ - (1.8) – (0.85) – 12]/15 = -0.9767 
  y3 = [(1.8) – (-0.8) + 17]/20 = 0.98 
 
Thus x (2) = (1.965, -.9767, .98). 
 
 The entries in x (2) are used on the right in (3) to compute the entries in x (3), and so on. 
Here are the results, with calculations using MATLAB and results reported to four 
decimal places: 

(0) (1) (2) (3) (4) (5) (6)

0 1.8 1.965 1.9957 1.9993 1.9999 2.0000
0 .8 .9767 .9963 .9995 .9999 1.0000
0 .85 .98 .9971 .9996 .9999 1.0000

x x x x x x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
If we decide to stop when the entries in x (k) and x (k – 1) differ by less than .001, then we 
need five iterations (k = 5). 
 
Alternative Approach: 
 
If we express the above system as  

 10x1 +   x2 -       x3   =  18 2 3
1

18
10
x xx − +

⇒ =  

 x1 + 15x2 +      x3   = -12 1 3
2

12
15

x xx − − −
⇒ =  

 -x1 +     x2 + 20x3  =   17 1 2
3

17
20
x xx + −

⇒ =  

∴the equivalent system is  
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Now put (x1,x2,x3)=(0,0,0)= x(0) in the RHS to have 
            x1=(18-0+0)/10 = 1.80 
            x2= (-12-0-0)/15 = -0.80 
            x3 = (17+0-0)/20 = 0.85 
    Which gives x(1) = (1.80,-0.80,0.85) ----put this again on RHS of the equivalent system 
to get  
              x1=(18+0.80+0.85)/10 =1.965 
              x2= (-12-1.80-0.85)/15 = -0.9767 
              x3= (17+1.80+0.80)/20 = 0.98 
So in the similar fashion, we can get the next approximate solutions: x(3),x(4) ,x(5) and x(6)  

Next example will be solved by following this approach. 
Example 2: 
 Use Jacobi iteration to approximate the solution of the system 

1 2 3

1 2 3

1 2 3

20 x  + x x  =17
x 10x  + x  =13

x  + x  + 10x  =18

−
−

−
 

Stop the process when the entries in two successive iterations are the same when rounded 
to four decimal places. 
 
Solution: 
 As required for Jacobi iteration, we begin by solving the first equation for x1, the second 
for x2, and the third for x3. This yields 

1 2 3 2

2 1 3 1

3 1 2 1 2

17 1 1 0.85 0.05 0.05
20 20 20

13 1 1 1.3 0.1 0.1
10 10 10

18 1 1 1.8 0.1 0.1
10 10 10

3

3

x x x x x

x x x x x

x x x x x

= − + = − +

= − + + = − + +

= + − = + −

  (4) 

which we can write in matrix form as 
1 1

2

3 3

0 0.05 0.05 0.85
0.1 0 0.1 1.3
0.1 0.1 0 1.8

x x
x
x x

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2x + −    (5) 

 

2 3
1

1 3
2

1 2
3

18
10

12
15

17
20

x xx

x xx

x xx

− +
=

− − −
=

+ −
=
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Since we have no special information about the solution, we will take the initial 
approximation to be . To obtain the first iterate, we substitute these values 
into the right side of  (5). This yields 

1 2 3 0x x x= = =

 
 
  

0.85
1.3

1.8
y

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

1  

To obtain the second iterate, we substitute the entries of y1 into the right side of (5). This 
yields 

1

2

3

0 0.05 0.05 0.85 0.85 1.005
0.1 0 0.1 1.3 1.3 1.035
0.1 0.1 0 1.8 1.8 2.015

x
y x

x

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − + − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2  

 
Repeating this process until two successive iterations match to four decimal places yields 
the results in the following table. 
 y0 y1 y2 y3 y4  y5 y6 y7 
x1 0 0.8500 1.0050 1.0025 1.0001 1.0000 1.0000 1.0000 
x2 0 -1.3000 -1.0350 -0.9980 -0.9994 -1.0000 -1.0000 -1.0000 
x3 0 1.8000 2.0150 2.0040 2.0000 1.9999 2.0000 2.0000 
   
The Gauss-Seidel Method: 
This method uses the recursion (1) with M the lower triangular part of A. That is, M has 
the same entries as A on the diagonal and below, and M has zeros above the diagonal. See 
Fig. 1. As in Jacobi’s method, the diagonal entries of A must be nonzero in order for M to 
be invertible. 
 

* * * * * * 0 0 0 0
* * * * * * * 0 0 0
* * * * * * * * 0 0
* * * * * * * * * 0
* * * * * * * * * *

A M

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢= =
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

 

                     Figure 01:The Lower Triangular Part of A 
 
Example 3: 
 Apply the Gauss – Seidel method to the system in Example 1 with  
x (0) =(0,0,0) and six iterations. 

10x1 +    x2 -       x3 =  18 
 x1 + 15x2 +     x3 = -12 
 -x1 +     x2 + 20x3 =   17     (6) 

 
Solution: 
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For some k, let  x(k) = 
1

2

3

x
x
x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=(x1, x2, x3)  and  x(k + 1) =
1

2

3

y
y
y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=(y1, y2, y3) 

Again, firstly we construct matrices M and N from the coefficient matrix A. 

Here   
10 1 1
1 15 1
1 1 20

A
−⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

Since matrix M is constructed by  
1) taking the values along the diagonal and below the diagonal of coefficient  
      matrix A. 
2) putting the zeros above the diagonal at upper trianular position. 

So  
10 0 0
1 15 0
1 1 20

M
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Now, 
10 0 0 10 1 1 0 1 1
1 15 0 1 15 1 0 0 1
1 1 20 1 1 20 0 0 0

N M A
− −⎡ ⎤ ⎡ ⎤ ⎡

⎢ ⎥ ⎢ ⎥ ⎢= − = − = −⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢− −⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

⎤
⎥
⎥
⎥⎦

⎡ ⎤
⎢ ⎥+ −⎢ ⎥
⎢ ⎥⎣ ⎦

3x ⎤
⎥− ⎥
⎥⎦

 

Now the recursion:  ( 1) ( )( ) ( 0,1,...6)k kMx M A x b here k+ = − + =
   implies 

              
1 1

2 2

3 3

10 0 0 0 1 1 18
1 15 0 0 0 1 12
1 1 20 0 0 0 17

y x
y x
y x

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢= − + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

           
1 2 3

1 2 3

1 2 3

10 0 0 18
15 0 12

20 0 17

y x x
y y x
y y y

− +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⇒ = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

          
1 2

1 2 3

1 2 3

10 0 0 18
15 0 12

20 0 17

y x
y y x
y y y

− + +⎡ ⎤ ⎡
⎢ ⎥ ⎢⇒ = −⎢ ⎥ ⎢
⎢ ⎥ ⎢− +⎣ ⎦ ⎣

Comparing the corresponding entries on both sides, we have  
 

10y1 =  -x2 + x3 + 18 
y1+15y2 = - x3 – 12 
 -y1 + y2 + 20y3 =17 

This further implies as 
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1 1 3 1 2 3

1 2 3 2 1 3

1 2 3 3 1 2

10 18 ( 18) /10
15 12 ( 12) /15

20 17 ( 17) / 20

y x x y x x
y y x y y x

y y y y y y

= − − + ⇒ = − + + ⎫
⎪+ = − − ⇒ = − − − ⎬
⎪− + + = ⇒ = − + ⎭

-----------(7) 

 
Another way to view (7) is to solve each equation in (6) for x1, x2, x3, respectively and 
regard the highlighted x’s as the values: 

x1 = (- x2 + x3 + 18)/10 
x2 = ( - x1 – x3 – 12)/15 
x3 = (x1 – x2 + 17)/20     (8) 

 
Use the first equation to calculate the new x1 [called y1 in (7)] from x2 and x3. Then use 
this new x1 along with x3 in the second equation to compute the new x2. Finally, in the 
third equation, use the new values for x1 and x2 to compute x3. In this way, the latest 
information about the variables is used to compute new values. [A computer program 
would use statements corresponding to the equations in (8).] 
  
From x (0) = (0, 0, 0), we obtain 
  x1 = [ - (0) + (0) + 18]/10 = 1.8 
   

x2 = [ - (1.8)    – (0) – 12]/15 = -.92 
   

x3 = [+(1.8) – (-.92) + 17]/20 = .986 
 
Thus x (1) = (1.8, -.92, .986). The entries in x (1) are used in (8) to produce x (2) and so on. 
Here are the MATLAB calculations reported to four decimal places: 

(0) (1) (2) (3) (4) (5) (6)

0 1.8 1.9906 1.9998 2.0000 2.0000 2.0000
0 .92 .9984 .9999 1.0000 1.0000 1.0000
0 .986 .9995 1.0000 1.0000 1.0000 1.0000

x x x x x x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢− − − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

 

 
 
Observe that when k is 4, the entries in x (4) and x (k – 1) differ by less than .001. The values 
in x (6) in this case happen to be accurate to eight decimal places. 
 
Alternative Approach: 
 
If we express the above system as  
10x1 +    x2 -   x3 =  18 ⇒  x1 = (- x2 + x3 + 18)/10 ------(a) 
x1 + 15x2 +   x3 = -12  ⇒  x2 = ( - x1 – x3 – 12)/15------(b) 
 -x1 +  x2 + 20x3 =   17⇒  x3 = (x1 – x2 + 17)/20 ------(c) 
 
Ist Iteration: 
Put x2=x3 =0 in (a) 
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   x1= 18/10 =1.80 
Put x1=1.80 and x3=0 in (b) 
   x2 = (-1.80-0-12)/15= -0.92 
Put x1=1.80, x2 = -0.92 in (c) 
 x3=(1.80+0.92+17)/20 = 0.9863 

So, (1)

1 1.8
2 .92
3 .986

x
x x
x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

2nd iteration: 
Put x2 = -0.92, x3=0.9863 in (a) 
      x1=(0.92+0.9863+18)/10 = 1.9906 
Put x1=1.9906(from 2nd iteration)  and x3=0.9863(from 1st iteration) in (b) 
      x2=(-1.9906-0.9863-12)/15 = -0.9984 
Put x1=1.9906, x2=-0.9984(both from 2nd iteration) in (c) 
      x3=(1.9906+0.9984+17)/20 = 0.9995 

So, (2)

1 1.9906
2 .9984
3 .9995

x
x x
x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

So in the similar fashion, we can get the next approximate solutions: x(3),x(4) ,x(5) and x(6)  

Next example will be solved by following this approach. 
 
Example 4:  
    Use Gauss-Seidel to approximate the solution of the linear system in example 2 to four 
decimal places. 
Solution:  
    As before, we will take as the initial approximation. First we will 
substitute x2 = 0 and x3 = 0 into the right side of the first equation of (4) to obtain the new 
x1, then we will substitute x3 = 0 and the new x1 into the right side of the second equation 
to obtain the new x2, and finally we will substitute the new x1 and new x2 into the right 
side of the third equation to obtain the new x3. The computations are as follows: 

1 2 3 0x x x= = =

1

2

3

0.85 (0.05)(0) (0.05)(0) 0.85
1.3 (0.1)(0.85) (0.1)(0) 1.215

1.8 (0.1)(0.85) (0.1)( 1.215) 2.0065

x
x
x

= − + =
= − + + = −
= + − − =

 

Thus, the first Gauss-Seidel iterate is 

1

0.8500
1.2150

2.0065
y

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

   

Similarly, the computations for second iterate are 
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1

2

3

0.85 (0.05)( 1.215) (0.05)(2.0065) 1.011075
1.3 (0.1)(1.011075) (0.1)(2.0065) 0.9982425

1.8 (0.1)(1.011075) (0.1)( 0.9982425) 2.00093175

x
x
x

= − − + =
= − + + = −
= + − − =

 

Thus, the second Gauss-Seidel iterate to four decimal places is 

2

1.0111
0.9982

2.0009
y

⎡ ⎤
⎢ ⎥≈ −⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
The following table shows the first four Gauss-Seidel iterates to four decimal places. 
Comparing both tables, we see that the Gauss-Seidel method produced the solution to 
four decimal places in four iterations, whereas the Jacobi method required six. 
 
 y0 y1 y2 y3 y4 
x1 0 0.8500 1.0111 1.0000 1.0000 
x2 0 -1.2150 -0.9982 -0.9999 -1.0000 
x3 0 2.0065 2.0009 2.0000 2.0000 
 
Comparison of Jacobi’s and Gauss-Seidel method: 
                  There exist examples where Jacobi’s method is faster than the Gauss-Seidel 
method, but usually a Gauss-Seidel sequence converges faster (means to say iterative 
solution approaches to the unique solution), as in Example 2. (If parallel processing is 
available, Jacobi might be faster because the entries in x(k) can be computed 
simultaneously.) There are also examples where one or both methods fail to produce a 
convergent sequence, and other examples where a sequence is convergent, but converges 
too slowly for practical use. 
 
Condtion for the Convergence of both Iterative Mthods:  
              Fortunately, there is a simple condition that guarantees (but is not essential for) 
the convergence of both Jacobi and Gauss-Seidel sequences. This condition is often 
satisfied, for instance, in large-scale systems that can occur during numerical solutions of 
partial differential equations (such as Laplace’s equation for steady-state heat flow). 
 
    An  matrix A is said to be strictly diagonally dominant if the absolute value of 
each diagonal entry exceeds the sum of the absolute values of the other entries in the 
same row. 

n n×

 
 In this case it can be shown that A is invertible and that both the Jacobi and Gauss-Seidel 
sequences converge to the unique solution of Ax = b, for any initial (0)x . (The speed of 
the convergence depends on how much the diagonal entries dominate the corresponding 
row sums.) 
 
The coefficient matrices in Examples 1 and 2 are strictly diagonally dominant, but the 
following matrix is not. Examine each row: 
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6 2 3
1 4 2
3 5 8

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

  

6 2 3

4 1 2

8 3 5

− > + −

> + −

= + −

 

 
The problem lies in the third row, because 8  is not larger than the sum of the 
magnitudes of the other entries.  
 
Note: 
       The practice problem below suggests a TRICK(rearrangement of the system of 
equations) that sometimes works when a system is not strictly diagonally dominant. 
 
Example 5:  
       Show that the Gauss-Seidel method will produce a sequence converging to the 
solution of the following systems, provided the equations are arranged properly: 

   x1 – 3x2 +     x3 = –2 
–6x1 + 4x2 + 11x3 = 1 

    5x1 – 2x2 –    2x3 = 9 
Solution:  
         The system is not strictly diagonally dominant, as for the 1st row 

 1 2

1 3 1

coefficient of x coefficient of x coefficient o 3f x

or

< +

< − +
 

so neither Jacobi nor Gauss- Seidel is guaranteed to work. In fact, both iterative methods 
produce sequences that fail to converge, even though the system has the unique solution 
x1 = 3, x2 = 2, x3 = 1. However, the equations can be rearranged as 

 5x1 – 2x2 –    2x3 = 9 
 x1 – 3x2 +      x3= –2 
–6x1 + 4x2 + 11x3 = 1 

So,  
for 1st equation (row); 

1 2

5 2 2

coefficient of x coefficient of x coefficient o 3f x

or

> +

> − + −
 

For 2nd equation(row); 
2 1

3 1 1

coefficient of x coefficient of x coefficient o 3f x

or

> +

− > +
 

For 3rd equation(row); 
3 1

11 6 4

coefficient of x coefficient of x coefficient o 2f x

or

> +

> − +
 

 
      Now the coefficient matrix is strictly diagonally dominant, so we know Gauss-Seidel 
works with any initial vector. In fact, if x(0) = 0, then x(8) = (2.9987, 1.9992, .9996). 
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Exercises: 
 
Solve the system in exercise 1 to 3 using Jacobi’s method, with x(0) = 0 and three 
iterations. Repeat the iterations until two successive approximations agree within a 
tolerance of .001 in each entry. 
 

1.     2. 1 2

1 2

4 7
5 7

x x
x x
+ =

− + = −
1 2

1 2

10 25
8 43

x x
x x

− =
+ =

 

 

3.    4. 
1 2

1 2 3

2 3

3 1
5 2 1
3 7 1

x x
x x x

x x

+ =
− − + =

+ =

1
5
7

1 2

1 2 3

2 3

50 149
100 2 101

2 50 98

x x
x x x

x x

− =
− + = −

+ = −
 

 
In exercises 5 to 8, use the Gauss Seidel method, with x(0) = 0 and two iterations. 
Compare the number of iterations needed by Gauss Seidel and Jacobi to make two 
successive approximations agree within a tolerance of .001. 
 
5. The system in exercise 1   6. The system in exercise 2 
 
7. The system in exercise 3   8. The system in exercise 4 
 
Determine which of the matrices in exercises 9 and 10 are strictly diagonally dominant. 
 

9. (a)      (b) 
5 4
4 3
⎡
⎢
⎣ ⎦

⎤
⎥

9 5 2
5 8 1
2 1 4

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

10. (a)     (b) 
3 2
2 3

−⎡
⎢
⎣ ⎦

⎤
⎥

5 3 1
3 6 4
1 4 7

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
Show that the Gauss Seidel method will produce a sequence converging to the solution of 
the following system, provided the equations are arranged properly: 
 

11.    12. 
1 2 3

1 2 3

1 2 3

3 2
6 4 11 1

5 2 2 9

x x x
x x x
x x x

− + = −
− + + =

− − =

1 2 3

1 2

2 3

4 3
4 1

4 6

x x x
x x

x x
0

− + − =
− =
− + =
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Lecture 17 
                                 
                                   Introduction to Determinant 
 
       In algebra, the determinant is a special number associated with any square matrix. 
As we have studied in earlier classes, that the determinant of 2 x 2 matrix is defined as 
the product of the entries on the main diagonal minus the product of the entries off the 
main diagonal.. The determinant of a matrix A is denoted by det (A) or |A| 

For example:   
a b

A
c d
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Then    det (A) = ad-bc. 
or                                   |A| = ad – bc 

Example: Find the determinant of the matrix 
1 2
3 4

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

   

 
1 2

| | 1 4 2 3 4 6 2
3 4

A = = × − × = − =−  

 
To extend the definition of the det(A) to matrices of higher order, we will use subscripted 
entries for A. 

                                           11 12

21 22

a a
A

b b
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

det (A) = 11 12
11 22 12 21

21 22

a a
a b a b

b b
= −  

 
This is called a 2x2 determinant. 
 
The determinant of a 3x3 matrix is also called a 3x3 determinant is defined by the 
following formula. 

              

11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

    (1) 

For finding the determinant of the 3x3 matrix, we look at the following diagram.  
 

                                       
11 12 13 11 12

21 22 23 21 22

31 32 33 31 32

a a a a a
a a a a a
a a a a a
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   We write 1st and 2nd columns again beside the determinant. The first arrow goes from 
a11 to a33, which gives us product: . The second arrow goes from a12 to a31, 

which gives us product: . The third arrow goes from a13 to a32, which gives us 
the product: . These values are taken with positive signs. 

11 22 33 a a a

12 23 31a a a

13 21 32a a a
 
  The same method is used for the next three arrows that go from right to left downwards, 
but these product are taken as negative signs. 

 
    11 22 33+ 12 23 31+ 13 21 32 13 22 31 11 23 32 12 21 33= a a a a a a a a a - a a a - a a a - a a a

Example 2: Find the determinant of the matrix
1 2 3
4 5 6

7 8 9
A

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

       

1 2 3
detA= -4 5 6

7 -8 9

1 2 3 1 2
         = -4 5 6 -4 5

7 -8 9 7 -8

  

            =              1 5 9  +  2 6 7  +  3 (-4) (-8) - 3 5 7 - 1 6 (-8) - 2 (-4) 9× × × × × × × × × × × ×

           
=

 
45+84+96 -105+48+72

= 240
   We saw earlier that a 2 2x  matrix is invertible if and only if its determinant is nonzero. 
In simple words, a matrix has its inverse if its determinant is nonzero. To extend this 
useful fact to larger matrices, we need a definition for the determinant of the  matrix. 
We can discover the definition for the 

n n×
3 3×  case by watching what happens when an 

invertible matrix A is row reduced.  3 3×
 
Gauss’ algorithm for evaluation of determinants: 
 
  1)  Firstly we apply it for  matrix say  2 2×

2 3
4 3

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

2 2 2 1R R′ → − R
3 ⎤
⎥− ⎦

(Multiplying 1st row by 2 and then subtracting from 2nd row) 
2 3 2

4 2(2) 3 2(3) 0 3
⎡ ⎤ ⎡

=⎢ ⎥ ⎢− −⎣ ⎦ ⎣
∼  

Now the determinant of this upper triangular matrix is the product of its entries on main 
diagonal that is  
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( ) 2( 3) 0 3 6 0 6Det A = − − × = − − =−   
2)  For  matrix say  2)  For  matrix say  3 3×

2 2 3
1 1 3

2 0 1
B

− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

  

12 21

3 3×
2 2 3
1 1 3

2 0 1
B

− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

12 21By R R′ →
 

1

(Interchanging of 1st and 2nd rows) 

 
2 2 2R R′ → − R

1

(Multiplying 1st row by ‘-2’ and then adding in the 2nd row) 

3 3 2R R R′ → + (Multiplying 1st row by ‘2’ and then adding in the 3rd row) 
1 1 3

0 0 9
0 2 5

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

∼  

23 32By R R′ → (Interchanging of 2nd and 3rd rows) 
1 1 3

0 2 5
0 0 9

−⎡ ⎤
⎢
⎢
⎢ ⎥−⎣ ⎦

∼ ⎥
⎥   

Now the determinant of this upper triangular matrix is the product of its entries on main 
diagonal that is  

( ) ( 1) 2 ( 9) 18Det B = − ⋅ ⋅ − =  
  So in general, 
 
For a 1 1× matrix: 
  say, [ ]ijA a=  - we define 11det A a= . 
 
For 2 2× matrix: 
 

 ⎢ ⎥  11 12

21 22

a a
a a
⎡ ⎤

⎣ ⎦

By 21
2 2

11

a
1R R

a
⎛ ⎞

′ → −⎜ ⎟
⎝ ⎠

R   provided that 11 0a ≠  

11 12

21
22 12

11

0

a a
aa a
a

⎡ ⎤
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

∼  

∴ det AΔ = = product of the diagonal entries 

1 1 3
2 2 3

2 0 1

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

∼
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       21
11 22 12 11 22 12 21

11

aa a a a a a a
a

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
 

 
For 3 3× matrix say: 
 

11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

By 3121
2 2 1 3 3

11 11

, aa
1R R R R R

a a
⎛ ⎞ ⎛ ⎞′ ′→ − → −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

R    provided that 11 0a ≠  

11 12 13

23 11 13 2122 11 12 21

11 11

32 11 12 31 11 33 13 31

11 11

0

0

a a a
a a a aa a a a

a a
a a a a a a a a

a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−−
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎣ ⎦

∼  

By 

32 11 12 31

11
3 3

22 11 12 21

11

a a a a
a

2R R Ra a a a
a

−⎛ ⎞
⎜ ⎟

′ ⎜→ −
−⎜ ⎟

⎜ ⎟
⎝ ⎠

⎟     provided that 22 11 12 21

11

0a a a a
a
−

≠  

11 12
13

23 11 13 2122 11 12 21
11

11 11

32 11 12 31

11 33 13 31 23 11 13 21 11

22 11 12 2111 11

11

0 0

0 0

a a a

a a a aa a a a a
a a

a a a a
a a a a a a a a a

a a a aa a
a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−−⎢ ⎥ ≠⎢ ⎥
⎢ ⎥

−⎢ ⎥⎛ ⎞
⎜ ⎟⎢ ⎥⎛ ⎞− − /⎜ ⎟⎢ ⎥− ⎜ ⎟ −⎜ ⎟⎢ ⎥⎝ ⎠
⎜ ⎟⎢ ⎥/⎝ ⎠⎢ ⎥

⎢ ⎥⎣ ⎦

∼ ∵      

 
Which is in echelon form.Now, 

det AΔ = = product of the diagonal entries 
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( ) ( )

11 33 13 31 23 11 13 21 32 11 12 3122 11 12 21
11

11 11 11 22 11 12 21

11 33 13 31 23 11 13 21 32 11 12 31
22 11 12 21 22 11 12 21

11 11 22 11

a a a a a a a a a a a aa a a aa
a a a a a a a

a a a a a a a a a a a aa a a a a a a a
a a a a a

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞− − −−
= −/ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟−/⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞− − −
= − − −⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠

( )( ) ( )( ){ }

{ }

12 21

22 11 12 21 11 33 13 31 23 11 13 21 32 11 12 31
11

2 2
11 22 33 11 22 13 31 12 21 11 33 12 21 13 31 23 11 32 23 11 12 31 13 21 32 11 12 21 13 31

11

2
11 22 33 11 22 13 3

11

1

1

1

a

a a a a a a a a a a a a a a a a
a

a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a
a

a a a a a a a
a

⎛ ⎞
⎜ ⎟
⎝ ⎠

= − − − − −

= − − + − + + −

= −{ }

{ }

2
1 12 21 11 33 23 11 32 23 11 12 31 13 21 32 11

11
11 22 33 22 13 31 12 21 33 23 11 32 23 12 31 13 21 32

11

11 22 33 12 23 31 13 21 32 12 21 33 11 23 32 13 22 31

a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a a a a
a
a a a a a a a a a a a a a a a a a a

− − + +

= − − − + +

= + + − − −
                                                                                                                   ,
 
Since A is invertible,  must be nonzero. The converse is true as well. Δ
 
To generalize the definition of the determinant to larger matrices, we will use 

determinants to rewrite the 2 2× 3 3×  determinant Δ  described above. Since the 
 terms in  can be grouped as: 

, 

Δ
11 22 33 11 23 32 12 23 31 12 21 33 13 21 32 13 22 31

11 22 33 23 32 12 21 33 23 31 13 21 32 22 31

( ) ( ) (
( ) ( ) ( )

a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a

Δ = − − − + −
= − − − + −

)

⎤
⎥
⎦

22 23 21 23 21 22
11 12 13

32 33 31 33 31 32

det det det
a a a a a a

a a a
a a a a a a
⎡ ⎤ ⎡ ⎤ ⎡

Δ = ⋅ − ⋅ + ⋅⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣

 

22 23 21 23 21 22
11 12 13

32 33 31 33 31 32

a a a a a a
a a a

a a a a a a
Δ = ⋅ − + ⋅  

For brevity, we write          (3) 11 11 12 12 13 13det det deta A a A aΔ = ⋅ − ⋅ + ⋅ A
                    

22 23
11

32 33

det( )
a a

A
a a

=   ,   21 23
12

31 33

det( )
a a

A
a a

=     and  21 22
13

31 32

det( )
a a

A
a a

=  

where  
A11 is obtained from A by deleting the first row and first column.  
A12 is obtained from A by deleting the first row and second column. 
A13 is obtained from A by deleting the first row and third column. 
So in general, for any square matrix A, let Aij denote the sub-matrix formed by deleting 
the ith row and jth column of A.  
 
Let’s understand it with the help of an example. 
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Example3: 

 Find the determinant of the matrix
1 4 3
5 2 4
3 6 3

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Solution: Given      
1 4 3
5 2 4
3 6 3

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

                              

1 4 3
| | 5 2 4

3 6 3

2 4 5 4 5 2
1 4 3

6 3 3 3 3 6
1(2 3 4 6) 4(5 3 4 3) 3(5 6 2 3)
1(6 24) 4(15 12) 3(30 6)
1( 18) 4(3) 3(24)

18 12 72
42

A =

= − +

= × − × − × − × + × − ×
= − − − + −
= − − +
= − − +
=

 

 
 

For instance, if   
1 -2 5 0
2 0 4 -1=
3 1 0 7
0 4 -2 0

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

then A32 is obtained by crossing out row 3 and column 2, 
 

1 2 5 0
2 0 4 1
3 1 0 7
0 4 2 0

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 so that  
32

1 5 0
2 4 1
0 2 0

A
⎡ ⎤
⎢ ⎥= −⎢ ⎥

−⎢ ⎥⎣ ⎦

 

 
We can now give a recursive definition of a determinant.  
 
When n = 3, det A is defined using determinants of the 2 2× submatrices 1 jA . 
When n = 4, det A uses determinants of the3 3× submatrices 1 jA  
In general, an determinant is defined by determinants of ( 1nxn ) ( 1n n )− × −  sub matrices. 
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Definition:  
      For the determinant of n2,n ≥ n×  matrix [ ]ijA a= is the sum of n terms of the form 

1 (det )1j ja± × A

n

, with plus and minus signs alternating, where the entries  
are from the first row of A.  

11 12 1, , , na a a"

  Here for ,  ija
1,2,3, , (1 )
1,2,3, , (1 )

i n i
j n j
= ≤
= ≤

…
… n

≤
≤

 

In symbols, 1
11 11 12 12 1 1det det det .... ( 1) detn

n nA a A a A a A+= − + + − 1
1 1

1

( 1) det
n

j
j j

j

a A+

=

= −∑  

 
Example 4:   

Compute the determinant of 
1 5 0
2 4 1
0 2 0

A
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
Solution:  
     Here A is matrix such that  3 3n n× = ×
  1, 2,3i =

1, 2,3j =  
1

1
1

det( ) ( 1) det
n

j
1j j

j
A a A+

=
= −∑∵ and here 1, 2,3j =  

3
1 1 1 1 2 1 3

1 1 11 11 12 12 13 13
1

det( ) ( 1) det ( 1) det ( 1) det ( 1) detj
j j

j

A a A a A a A a A+ + + +

=

∴ = − = − + − + −∑  

              =  11 11 12 12 13 13det det deta A a A a A− +
 

4 1 2 1 2 4
det 1.det 5.det 0.det

2 0 0 0 0 2
A

− −⎡ ⎤ ⎡ ⎤ ⎡
= − +⎢ ⎥ ⎢ ⎥ ⎢− −⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎦

 

 

         
4 1 2 1 2 4

det 1 . 5 . 0 .
2 0 0 0 0 2

A
− −

= − +
− −

 

 
        = 1 [4(0) – (-1)(-2)] -5 [ 2(0) – 0(-1)] +0[2(-2) – 4(0)] 

  
                    1(0 2) 5(0 0) 0( 4 0) 2= − − − + − − = −
 
 
Minor of an element: 
     If A is a square matrix, then the Minor of entry aij (called the ijth minor of A) is 
denoted by Mij and is defined to be the determinant of the sub matrix that remains when 
the ith row and jth column of A are deleted.  
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In the above example, Minors are the followings:  
 

                    11 12 13, ,
4 1 2 1 2
2 0 0 0 0 2M MM = = =

− −
− −

4
 

 
Cofactor of an element: 
 The number Cij=(-1)i+jMij is called the cofactor of entry aij(or the ijth cofactor of A). 
When the + or – sign is attached to the Minor, then Minor becomes a cofactor. 
 
In the above example, Cofactors are the followings: 
 
                    

11
1 1 1 2 1 3

11 12 12 13 13

1 1 1 2 1 3
11 12 13

( 1) , ( 1) , ( 1)

( 1) , ( 1) , ( 1)4 1 2 1 2
2 0 0 0 0 2

M C M C M

C C

C

C

+ + +

+ +

= − = − = −

= − = − = −
− −

− −
4+

 
 

Example 5: Find the minor and cofactor of the matrix
3 1 4
2 5 6
1 4 8

A
−⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Solution: Here 
3 1 4
2 5 6
1 4 8

A
−⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

The minor of entry a11 is 

11

3 1 4
5 6

2 5 6 5 8 6 4 40 24 16
4 8

1 4 8
M

−
= = = × − × = − =  

and the corresponding cofactor is 
1 1

11 11 11( 1) 16C M M+= − = =  
The minor of entry a32 is 

32

3 1 4
3 4

M 2 5 6 2
2 6

6
−

−
= = =

1 4 8
 

and the corresponding cofactor is 
3 2

32 32 32

3 4
( 1) 26

2 6
C M M+ −

= − = − = − = −      
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Alternate Definition:  
          Given [ i j ]A a= , the (i, j)-cofactor of A is the number given by  i jC

( 1) deti j
i j ijC A+= −               (4) 

Then   11 11 12 12 1 1det .... n nA a C a C a C= + + +
 
This formula is called the cofactor expansion across the first row of A. 
  

Example 6: Expand a 3x3 determinant using cofactor concept
1 2 3
4 5 6

7 8
A = −

− 9
 

Solution: Using cofactor expansion along the first column; 
 

1 1 2 1 3 1

11 2 1 31

2 3 4

1 2 3
5 6 2 3 2 3

4 5 6 (1)( 1) ( 4 )( 1) (7 )( 1)
8 9 8 9 5 6

7 8 9

(4 ),

1 ( 4 ) 7

5 6 2 3 2 3
(1)( 1) ( 4 )( 1) (7 )( 1)

8 9 8 9 5 6

5 6 2 3 2 3
(1)(1) ( 4 )( 1) (7 )(1)

8 9 8 9 5 6

5 6 2
1 4

8 9

N o w if w e co m p a re it w ith th e fo rm u la

C C C

+ +− = − + − − + −
− −

−

= + − +

= − + − − + −
− −

= + − − +
− −

= +
−

+

3 2 3
7

8 9 5 6

1(4 5 ( 4 8)) 4 (1 8 ( 2 4 )) 7 (1 2 1 5 )

1( 4 5 4 8 ) 4 (1 8 2 4) 7 (1 2 1 5 )

(1)(9 3) (4 )(4 2 ) (7 )( 3) 2 4 0

+
−

= − − + − − + −

= + + + + −

= + + − =
 

Using cofactor expansion along the second column, 
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1 2 2 2 3 2

3 4 5

1 2 3
4 6 1 3 1 3

4 5 6 (2)( 1) (5)( 1) ( 8)( 1)
7 9 7 9 4 6

7 8 9

4 6 1 3 1 3
(2)( 1) (5)( 1) ( 8)( 1)

7 9 7 9 4 6

4 6 1 3 1 3
(2)( 1) (5)(1) ( 8)( 1)

7 9 7 9 4 6

4 6 1 3 1 3
2 5 8

7 9 7 9 4 6

2( 36 42) 5(9 21) 8(6 ( 12))

( 2)( 78)

+ + +−
− = − + − + − −

−
−

−
= − + − + − −

−

−
= − + + − −

−

−
= − + +

−

=− − − + − + − −

= − − (5)( 12) (8)(18) 240+ − + =

 

 
Theorem 1: The determinant of an n n×  matrix A can be computed by a cofactor 
expansion across any row or down any column. The expansion across the ith row using 
the cofactors in (4) is  

1 1 2 2det i i i i in inA a C a C a C= + + +"  
 

The cofactor expansion down the jth column is  
 

1 1 2 2det j j j j nj njA a C a C a C= + + +"   
 
The plus or minus sign in the (i, j)-cofactor depends on the position of in the matrix, 

regardless of the sign of itself. The factor 
ija

ija ( 1)i j+− determines the following 
checkerboard pattern of signs: 
 

....+ − +⎡ ⎤
⎢ ⎥− + −⎢ ⎥
⎢ ⎥+ − +
⎢ ⎥
⎣ ⎦# %

  

 
Example 7: Use a cofactor expansion across the third row to compute det A, where 
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1 5 0
2 4 1
0 2 0

A
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Solution: Compute  31 31 32 32 33 33det A a C a C a C= + +
 

           3 1 3 2 3 3
31 31 32 32 33 33( 1) det ( 1) det ( 1) deta A a A a A+ + += − + − + −

 

          
5 0 1 0 1 5

0 ( 2) 0
4 1 2 1 2 4

= − − +
− −

 

 
           0 2( 1) 0 2= + − + = −

 
    Theorem 1 is helpful for computing the determinant of a matrix that contains many 
zeros. For example, if a row is mostly zeros, then the cofactor expansion across that row 
has many terms that are zero, and the cofactors in those terms need not be calculated.  
The same approach works with a column that contains many zeros. 
 
 

Example 8:  Evaluate the determinant of 

2 0 0 5
1 2 4 1

3 0 0 3
8 6 0 0

A

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

Solution: 

2 0 0 5
1 2 4 1

det( )
3 0 0 3
8 6 0 0

A
−

=  

 
Expand from third column 
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13 23 33 43

23

23

2 3

det( ) 0 4 0 0

0 4 0 0

4

2 0 5
4 ( 1) 3 0 3

8 6 0

A C C C C

C

C

+

= × + × + × + ×

= + × + +

= ×

= × −

 

 
Expand from second column 
 

2 5
4 0 0 ( 6)

3 3

2 5
( 4) ( 6)

3 3

216

⎛ ⎞
= − + + −⎜ ⎟

⎝ ⎠

= − −

= −

 

 
 
 
Example 9:  Show that the value of the determinant is independent of θ  
 

sin cos 0
cos sin 0

cos sin sin cos 1
A

θ θ
θ θ

θ θ θ θ
= −

− +
 

 

Solution: Consider 
sin cos 0
cos sin 0

cos sin sin cos 1
A

θ θ
θ θ

θ θ θ θ
= −

− +
 

 
Expand the given determinant from 3rd column we have 
 

3 3 2 20 0 ( 1) [sin cos ] 1θ θ+= − + − + =  
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Example 10:  Compute det A, where 

3 7 8 9 6
0 2 5 7 3
0 0 1 5 0
0 0 2 4 1
0 0 0 2 0

A

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Solution: The cofactor expansion down the first column of A has all terms equal to zero 
except the first.  

Thus     21 31 41 51

2 5 7 3
0 1 5 0

det 3 0. 0. 0. 0.
0 2 4 1
0 0 2 0

A C C

−

= − + −
−

−

C C+  

Henceforth we will omit the zero terms in the cofactor expansion.  
 
Next, expand this  determinant down the first column, in order to take advantage of 
the zeros there.  

4 4×

We have   
1 5 0

det 3 2 2 4 1
0 2 0

A = × −
−

 

This 3  determinant was computed above and found to equal –2. 3×
 
Hence det A = 3x2x(-2) = - 12. 
 
The matrix in this example was nearly triangular. The method in that example is easily 
adapted to prove the following theorem. 
 
Triangular Matrix: 
 
A triangular matrix is a special kind of m x n matrix where the entries either below or 
above the main diagonal are zero. 

 is upper triangular and  is lower triangular matrices. 
 

 
Determinants of Triangular Matrices: 
 
  Determinants of the triangular matrices are also easy to evaluate regardless of size. 
 
Theorem: If A is triangular matrix, then det (A) is the product of the entries on the main 
diagonal. 
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Consider a 4x4 lower triangular matrix. 

11

21 22

31 32 33

41 42 43 44

0 0 0
0 0

0

a
a a

A
a a a
a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
Keeping in mind that an elementary product must have exactly one factor from each row 
and one factor from each column, the only elementary product that does not have one of 
the six zeros as a factor is . The column indices of this elementary product 
are in natural order, so the associated signed elementary product takes a +. 

11 22 33 44(a a a a )

 
 Thus,    det (A)= 11 22 33 44a a a a× × ×  
 

Example 11:    
2 5 7

0 3 8 ( 2)(3)(5) 30
0 0 5

−
= − = −  

 
1 0 0 0
4 9 0 0

(1)(9)( 1)( 2) 18
7 6 1 0

3 8 5 2

= − − =
− −

− −

 

 
1 2 7 3
0 1 4 1

(1)(1)(2)(3) 6
0 0 2 7
0 0 0 3

−
−

= =  

 
The strategy in the above Example of looking for zeros works extremely well when an 
entire row or column consists of zeros. In such a case, the cofactor expansion along such 
a row or column is a sum of zeros! So the determinant is zero. Unfortunately, most 
cofactor expansions are not so quickly evaluated. 
 
Numerical Note: By today’s standards, a 25 25x matrix is small. Yet it would be 
impossible to calculate a 25 determinant by cofactor expansion. In general, a cofactor 
expansion requires over n! multiplications, and  .  

25×
2525! 1.5 10x∼

 
If a supercomputer could make one trillion multiplications per second, it would have to 
run for over 500,000 years to compute a 25 25×   determinant by this method. 
Fortunately, there are faster methods, as we’ll soon discover. 
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Example 12:  Compute 

5 7 2 2
0 3 0 4
5 8 0 3

0 5 0 6

−
−

− −
−

 

Solution: Take advantage of the zeros. Begin with a cofactor expansion down the third 
column to obtain a  matrix, which may be evaluated by an expansion down its first 
column, 

3 3×

1 3

5 7 2 2
0 3 4

0 3 0 4
( 1) 2 5 8 3

5 8 0 3
0 5 6

0 5 0 6

+

−
−

−
= − − −

− −
−

−

 

 
   2 1 3 4

2 ( 1) ( 5) 20
5 6

+ −
= ⋅ − − =

−
 

 
The –1 in the next-to-last calculation came from the position of the –5 in the3 3×  
determinant. 
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Exercises: 
Compute the determinants in exercises 1 to 6 by cofactor expansions. At each step, 
choose a row or column that involves the least amount of computation. 
 

1.  

6 0 0 5
1 7 2 5
2 0 0 0
8 3 1 8

−
    2.  

1 2 5 2
0 0 3 0
2 6 7 5
5 0 4 4

−

− −
 

 

3.  

3 5 8 4
0 2 3 7
0 0 1 5
0 0 0 2

−
− −

    4.  

4 0 0 0
7 1 0 0
2 6 3 0
5 8 4 3

−

− −

 

 

5.  

4 0 7 3 5
0 0 2 0 0
7 3 6 4 8
5 0 5 2 3
0 0 9 1 2

− −

−
−

−

−     6.  

6 3 2 4 0
9 0 4 1 0
8 5 6 7 1
3 0 0 0 0
4 2 3 2 0

−
−  

 
Use the method of Example 2 to compute the determinants in exercises 7 and 8. In 
exercises 9 to 11, compute the determinant of elementary matrix. In exercises 12 and 13, 

verify that det EA = (det E) . (det A), where E is the elementary matrix and . 
a b

A
c d
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

7.  
3 0 4
2 3 2
0 5 1−

   8.  
2 4 3
3 1 2
1 4 1

−

−
   9.  

1 0 0
0 1 0
0 1k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   10.     

11.   12.   13.  

0 0
0 1 0
0 0 1

k⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 1 0
1 0 0
0 0 1

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

⎥
⎥ ⎥

1
0 1

k⎡ ⎤
⎢
⎣ ⎦

0 1
1 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 

14. Let  Write 5A. Is det 5A = 5 det A? 
3 1

.
4 2

A ⎡ ⎤
= ⎢
⎣ ⎦

⎥

⎥

 

15. Let  and k be a scalar. Find a formula that relates det (kA)to k and det A. 
a b

A
c d
⎡ ⎤

= ⎢
⎣ ⎦
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                                                Lecture 18 
 

                                   Properties of Determinants 
 
In this lecture, we will study the properties of the determinants. Some of them have 
already been discussed and you will be familiar with these. These properties become 
helpful, while computing the values of the determinants. The secret of determinants lies 
in how they change when row or column operations are performed.  
 
Theorem 3:(Row Operations): Let A be a square matrix. 

a. If a multiple of one row of A is added to another row, the resulting 
determinant will remain same.  

b. If two rows of A are interchanged to produce B, then det B = –det A. 
c. If one row of A is multiplied by k to produce B, then det B = k .  det A.   

 
The following examples show how to use Theorem 3 to find determinants efficiently. 

a. If a multiple of one row of A is added to another row, the resulting determinant 
will remain same.  

Example:       

 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

Δ=

21 22 23

2 ' '
1 ' '

Multiplying nd row by non zero scalar say k as
ka ka ka adding this in st row then A becomes

−
− − − −

 

 

11 21 12 22 13 23

21 22 23 1 1 2

31 32 33

a ka a ka a ka
a a a R R
a a a

+ + +
′= → kR+  

If each element of any row(column) can be expressed as sum of two elements then the 
resulting determinant can be expressed as sum of two determinants, so in this case 

11 12 13 21 22 23

21 22 23 21 22 23

31 32 33 31 32 33

a a a ka ka ka
a a a a a a
a a a a a a

Δ = +  

Δ
11 12 13 21 22 23

21 22 23 21 22 23

31 32 33 31 32 33

a a a a a a
a a a k a a a
a a a a a a

= +       By using property (c) of above theorem 3. 

If any two rows or columns in a determinant are identical then value of this determinant 
is zero. So in this case 1 2R R≡  
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11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

(0)
a a a
a a a k
a a a

a a a
a a a A
a a a

∴ Δ = +

= =

 

 
b. If two rows of A are interchanged to produce B, then det B = –det A. 

Example 1: 
  

1 2 3
5 1 1
0 8 9

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Now,
1 2 3

det 5 1 1 1(9 8) 2(45 0) 3(40 0) 1 90 120 31
0 8 9

A = = − − − + − = − + =  

Now interchange column 1st with 2nd we get a new matrix,
2 1 3
1 5 1
8 0 9

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

2 1 3
det 1 5 1 2(45 0) 1(9 8) 3(0 40) 90 1 120 31

8 0 9
B = = − − − + − = − − = −  

 
c. If one row of A is multiplied by k to produce B, then det B = k .  det A.   

 
1 2 3
5 0 1
0 8 9

1(0 8) 2(45 0) 3(40 0)
8 90 120 22

A

A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

= − − − + −

=− − + =

 

1 ,
1 2 3
5 0 1
0 8 9

MultiplingR by k we get say
k k k

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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(40 0) 2 (45 0) 3 (40 0)B k k k= − − − + −  
40 90 120 22k k k
k A

= − + =

=

k
 

Example 2: 

 Evaluate  

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Solution: 
1 2 3 4
2 3 4 1

det
3 4 1 2
4 1 2 3

A =  

 2 2 1 3 3 1 4 4 1

1 2 3 4
0 1 2 7

( 2) , ( 3) , ( 4)
0 2 8 10
0 7 10 13

by R R R R R R R R R
− − − ′ ′ ′→ + − → + − → + −
− − −
− − −

=  

          

( )

2 2 1 3 3 1

1 2 7
2 8 10 expanding from Ist column
7 10 13

1 2 7
( 1)( 2)( 1) 1 4 5 ( 1), ( 2) 1 1 , 2 ,3

7 10 13

1 2 7
( 2) 0 2 2 ( 1) , ( 7)

0 4 36

2 2
( 2) expanding by1st column

4 36

( 2)(2

taking and common from st nd rd rows

by R R R R R R

− − −
= − − −

− − −

= − − − − − −

′ ′= − − → + − → + −
− −

−
= −

− −

= −

2 1

1 1
)( 4) taking 2 and (-4) common from1st and 2nd rows respectively.

1 9

1 1
16 ( 1)

0 10
160

by R R

−
−

−
= + −

=
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Example 3: Evaluate the determinant of the matrix

4 2 5 10
1 1 6 3
7 3 0 5
0 2 5 8

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Solution: 
4 2 5 10
1 1 6 3

det
7 3 0 5
0 2 5 8

A =  

1 2 12

1 1 6 3
4 2 5 10

 interchanging ( )
7 3 0 5
0 2 5 8

R and R R′= −  

 

  2 2 1 3 3

1 1 6 3
0 2 19 2

( 4) , ( 7)
0 4 42 16
0 2 5 8

1By R R R R R R
− − − ′ ′= − → + − → + −
− − −

 

2 19 2
4 42 16 expanding from 1st column

2 5 8

− − −
= − − − −  

3
1 2

2 19 2
=(-1) 4 42 16 taking (-1)as a common factor from R and R

2 5 8
 

2 19 2
4 42 16
2 5 8

= −  

1 19 2
2 2 42 16

1 5 8
= −  

2 2 1 3 3

1 19 2
( 2) 0 4 12 ( 2) , ( 1)

0 14 6
1By R R R R R R′ ′= − → + − → + −

−
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2 1 3

1 19 2
( 2) 0 4 12 ( 2) , ( 1)

0 14 6
1R R R R= − + − + −

−
 

4 12
2 expand from Ist column

14 6
= 2(24+168)= 384

= −
−

− −

 

 

Example 4: Without expansion, show that 0
x a x b c
x b x c a
x c x a b

+ +
+ + =
+ +

 

Solution:  

2 2 1

1' '
1
1
1

x a x b c
x b x c a
x c x a b

x a x x b c
x b x x c a By C C C
x c x x a b

x a b c
x b c a
x c a b

Taking x common fromC
a b c

x b c a
c a b

+ +
+ +
+ +

+ − +
′= + − + → −

+ − +

+
= +

+

+
= +

+

 

    2 2 3

1
1
1

a b c b c
x b c a c a By C C C

c a b a b

+ + +
′= + + + → +

+ + +
 

Now taking (a+b+c) common form C2 

1 2

1 1
( ) 1 1

1 1
0 as column Ist and 2nd are identical (C C ). So its value will be zero.

b c
x a b c c a

a b

+
= + + +

+

= ≡
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Example 5: Evaluate 

2 3 1 0 1
1 1 3 1 2
2 1 2 3 4
3 2 1 1 2
4 1 1 0 0

A =   

Solution: Interchanging R1 and R2, we get 
1 1 3 1 2
2 3 1 0 1

A=- 2 1 2 3 4
3 2 1 1 2
4 1 1 0 0

 

 

2 2 1 3 3 1 4 4 1 5 52 , 2 , 3 , 4
1 1 3 1 2
0 1 5 2 3
0 1 4 1 0
0 1 8 2 4
0 3 11 4 8

1R R R R R R R R R R R R′ ′ ′ ′→ → → →− − −

− − −
= − − −

− − − −
− − − −

−

 

 

expand from C1
1 5 2
1 4 1 0
1 8 2
3 11 4 8

− − −
− −

= −
− − − −
− − − −

3

4
 

 

2 2 1 3 3 1 4 4, ,
1 5 2 3
0 9 1 3
0 13 4 7
0 26 10 17

13R R R R R R R R R′ ′ ′→ → →+ +
− − −
− − −

= −
− − −
− − −

+

 

 

expand from C1
9 1 3
13 4 7
26 10 17

− − −
= − − − −

− − −
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taking (-1) common from Ist,2nd and 3rd row
9 1 3

= 13 4 7
26 10 17

 

 

12interchange Ist and 2nd Column(C )
1 9 3

= 4 13 7
10 26 17

−

′

 

            

2 2 1 3 3 19 , 3
1 0 0
4 23 5

10 64 13
expand from Ist row

-23 -5
=- (299 320) 21

-64 -13

C C C C C C′ ′→ − → −

= − − −
− −

= − − =

 

 
An Algorithm to evaluate the determinant: 
 
Algorithm means a sequence of a finite number of steps to get a desired result. The word 
Algorithm comes form the famous Muslim mathematician AL-Khwarizmi who invented 
the word algebra. 
 
The step-by-step evaluation of det(A) of order n is obtained as follows: 
 
Step 1: By an interchange of rows of A (and taking the resulting sign into account) bring 
a non zero entry to (1,1) the position (unless all the entries in the first column are zero in 
which case det A=0). 
 
Step 2: By adding suitable multiples of the first row to all the other rows, reduce the  
(n-1) entries, except (1,1) in the first column, to 0. Expand det(A) by its first column. 
Repeat this process. 
Or continue the following steps. 
 
Step 3: Repeat step 1 and step 2 with the last remaining rows concentrating on the second 
column. 
 
Step 4: Repeat step 1,step2 and step 3 with the remaining (n-2) rows, (n-3) rows and so 
on, until a triangular matrix is obtained. 
 
Step5: Multiply all the diagonal entries of the resulting triangular matrix and then 
multiply it by its sign to get det(A) 
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Example 6: Compute det A, where
1 4 2
2 8 9
1 7 0

A
−⎡ ⎤

⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

Solution: The strategy is to reduce A to echelon form and then to use the fact that the 
determinant of a triangular matrix is the product of the diagonal entries. The first two 
row replacements in column 1 do not change the determinant: 

2 2 1 3 1

1 4 2
det 2 8 9

1 7 0

1 4 2
0 0 5 2 ,
0 3 2

A

3By R R R R R R

−
= − −
−

−
′ ′= − → + → +

 

An interchange of rows 2 and 3 ( 23R′ ), it reverses the sign of the determinant, so 
1 4 2

det 0 3 2 (1)(3)( 5) 15
0 0 5

A
−

= − = − − =
−

 

 
Example 7: Compute det A, where  

   . 

2 8 6 8
3 9 5 10
3 0 1 2

1 4 0 6

A

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− −
⎢ ⎥−⎣ ⎦

Solution: Taking’2’ common from 1st row 
 

  

2 2 1 3 3 1 4 4

1 4 3 4
0 3 4 2

det 2 3 , 3 ,
0 0 6 2
0 0 3 2

A By R R R R R R R

−
− −

′ ′ ′= → − → +
−
−

1R R→ −  

1 4 3 4
3 9 5 10

det 2
3 0 1 2

1 4 0 6

A

−
−

=
− −

−
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1
4 4 2

1 4 3 4
0 3 4 2

det 2 ( )
0 0 6 2
0 0 0 1

2.{(1)(3)( 6)(1)} 36

A By R

−
− −

′= →
−

= − = −

3R R−
 

 

Example 8: Show that 3

2 2 2
2 2 2

( 6)( 2)
2 2 2
2 2 2

x
x

x x
x

x

= + −  

Solution: 

1 1 2 3 4

2 2 2
2 2 2
2 2 2
2 2 2

6 2 2 2
6 2 2

( )
6 2 2
6 2 2

x
x

x
x

x
x x

By C C C C C
x x
x x

+
+

′= → + + +
+
+

     

 Taking (x+6) common from 1st column 
1 2 2 2
1 2

( 6)
1 2 2
1 2 2

x
x

x
2

x

= +  

 

2 2 1 3 3 1 4 4

1 2 2 2
0 2 0 0

( 6) , ,
0 0 2 0
0 0 0 2

x
1x By R R R R R R R R R

x
x

−
′ ′ ′= + → − → − → −

−
−

 

which is the triangular matrix and its determinant is the prodcut of main diagonal’s entries. 
3( 6)( 2)x x= + −  
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Example 9: Compute det A, where 

3 1 2 5
0 5 3 6
6 7 7 4
5 8 0 9

A

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

. 

Solution:   

3 1 2 5
0 5 3 6
6 7 7 4
5 8 0 9

A

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

3 3

3 1 2 5
0 5 3 6

det 2
0 5 3 6
5 8 0 9

A R

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥ ′= →
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

1R R+  

         = 0                        as 2 3R R≡  

Example10:  Compute det A, where 

       

0 1 2 1
2 5 7 3
0 3 6 2
2 5 4 2

A

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

Solution:   

4 4 2

12

0 1 2 1
2 5 7 3
0 3 6 2
2 5 4 2

0 1 2 1
2 5 7 3
0 3 6 2
0 0 3 1

2 1 2 1
0 5 7 3

( 1)
0 3 6 2
0 0 3 1

A

R R R

By R

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

−⎡ ⎤
⎢ ⎥−⎢ ⎥ ′= → +
⎢ ⎥
⎢ ⎥−⎣ ⎦

−⎡ ⎤
⎢ ⎥−⎢ ⎥ ′= −
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Expanding from 1st row and 1st column 
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( )

5 7 3
2 3 6 2

0 3 1

2 {5(6 6) ( 7)(3 0) 3( 9 0)}
54

−
=−

−

= − + − − − + − −

=

 

 
Remarks: 
Suppose that a square matrix A has been reduced to an echelon form U by row 
replacements and row interchanges.  
 
If there are r interchanges, thendet  ( ) ( 1) det( )rA U= −
 
Furthermore, all of the pivots are still visible in U (because they have not been scaled to 
ones). If A is invertible, then the pivots in U are on the diagonal (since A is row 
equivalent to the identity matrix). In this case, det U is the product of the pivots. If A is 
not invertible, then U has a row of zero and det U = 0.  

0 0
0 0 0 0
0 0 0 0 0 0 0

det 0 det 0

U U

U U

• •⎡ ⎤ ⎡
⎢ ⎥ ⎢• •⎢ ⎥ ⎢= =
⎢ ⎥ ⎢• •
⎢ ⎥ ⎢•⎣ ⎦ ⎣

≠ =

D D D D D D
D D D D
D D

⎤
⎥
⎥
⎥
⎥
⎦

 

            
 

Thus we have the following formula: 
( 1) .( )

det
0

r Product of pivots inU When Ais invertible
A

When Ais not invertible
⎧ −

= ⎨
⎩

 (1) 

Example: 
Case-01:   For 2×2 invertible matrix 
Reducing given 2×2 invertible matrix into Echelon form as follows; 

4 5
3 2

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

By interchanging 1st and 2nd rows( 12R′ ) 
3 2
4 5
⎡ ⎤
⎢ ⎥∵
⎣ ⎦

∼  one replacement of rows has occurred, 1r∴ =  

3 2
70
3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

∼  By 2 2
4
3 1R R′ → − R , we have desired row-echelon form:

3 2
70
3

U
⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

. 

Thus using the above formula as follows; 
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1 7det ( 1) .( ) ( 1) (3 ) 7
3

rA Product of pivots inU= − = − ⋅ = −  

Case-02:    For 2×2 non-invertible matrix: 
In this case say; 

4 5
8 10

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

4 5
0 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

∼  2 2 2 1By R R R′ → − ,desired row-echelon form is 
4 5
0 0

U ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

  

 
Here no interchange of rows has occurred. So, 0r =  and 

0det ( 1) .( ) ( 1) (4 0) 0rA Product of pivots inU∴ = − = − ⋅ =  
  
Theorem 5: If A is an  matrix, then det AT = det A. n n×

Example 11:   If , find det(A) and det (AT ) 
1 4 1
2 1 2
3 1 3

A
⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

⎥
⎥

1 4 1
det 2 1 2 1(3 2) 4(6 6) 1(2 3) 1 0 1 0

3 1 3
A = = − − − + − = − − =  

Now 
1 2 3
4 1 1
1 2 3

tA
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

1 2 3
det 4 1 1 1(3 2) 2(12 1) 3(8 1) 1 22 21 0

1 2 3

tA = = − − − + − = − + =  

 
Remark: 
Column operations are useful for both theoretical purposes and hand computations. 
However, for simplicity we’ll perform only row operations in numerical calculations. 

 
Theorem 6 (Multiplicative Property):  
 
If A and B are n  matrices, thendet(n× ) (det )(det )AB A B= . 
 

Example 12: Verify Theorem 6 for 
6 1 4 3
3 2 1 2

A and B⎡ ⎤ ⎡
= =

⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
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Solution:  
6 1 4 3 25 20
3 2 1 2 14 13

AB ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

and  det 25.13 20.14 325 280 45AB = − = − =
 
Since det A = 9 and det B = 5, (det )(det ) 9.5 45 detA B AB= = =  
 
Remark:   
det (A + B)  det A + det B, in general. ≠
For example, 

If  and . Then 
2 3
1 5

A ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

2 3
1 5

B
− −⎡

= ⎢−⎣ ⎦

⎤
⎥

0 0
det( ) 0

0 0

2 3 2 3
det det ( 10 3) ( 10 3) 26 det( )

1 5 1 5

A B A B

A B A

⎡ ⎤
+ = ⇒ + =⎢ ⎥

⎣ ⎦
− −

+ = + = − − + − − = − ≠ +
− −

B
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Exercise: 
 
Find the determinants in exercises 1 to 6 by row reduction to echelon form. 
 

1.  

1 3 0 2
2 5 7 4

3 5 2 1
1 1 2

− −

− −3

   2.  

1 3 3 4
0 1 2 5
2 5 4 3
3 7 5 2

−
−
−

− − −

 

 

3.  

1 1 3
0 1 5 4
1 2 8 5

3 1 2

− −

−
− −

0

3

   4.  

1 3 1 0 2
0 2 4 1 6
2 6 2 3 9

3 7 3 8 7
3 5 5 2 7

− −
− − −

− −
− −

 

 

5.  

1 2 3 1
5 9 6 3
1 2 6 2

2 8 6 1

−
−

− − −
   6.  

1 3 1 5 3
2 7 0 4 2

0 0 1 0 1
0 0 2 1 1
0 0 0 1 1

− − −
 

 
Combine the methods of row reduction and cofactor expansion to compute the 
determinants in exercises 7 and 8. 
 

7.  

2 5 3 1
3 0 1 3
6 0 4 9

4 10 4 1

− −
−

− −
− −

   8.  

2 5 4 1
4 7 6 2
6 2 4
6 7 7 0

− −
−

0
 

 

9. Use determinant to find out whether the matrix is invertible 

2 0 0 8
1 7 5 0
3 8 6 0
0 7 5 4

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
 
10. Let A and B be 3 x 3 matrices, with det A = 4 and det B = -3. Use properties of 
determinants to compute: 
 
(a) det AB  (b) det 7A  (c) det BT  (d) det AT 
(e) det ATA   
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11 Show that 

(a) 
1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

a b a b c a b c
a b a b c a b c
a b a b c a b c

+ +
+ + =
+ +

  

(b) 
1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

2
a b a b c a b c
a b a b c a b c
a b a b c a b c

+ −
+ − = −
+ −

 

 
12 Show that 

(a) 
1 1 2 2 3 3 1 2 3

2
1 1 2 2 3 3 1 2 3

1 2 3 1 2

(1 )
a b t a b t a b t a a a
a t b a t b a t b t b b b

c c c c c

+ + +
+ + + = −

3c
 

 

 (b) 
1 1 1 1 1 1 1 2 3

2 2 2 2 2 2 1 2 3

3 3 3 3 3 3 1 2 3

a b ta c rb sa a a a
a b ta c rb sa b b b
a b ta c rb sa c c c

+ + +
+ + + =
+ + +

 

 

13. Show that 

2

2

2

1
1 ( )( )( )
1

x x
y y y x z x z y
z z

= − − −  
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Lecture 19 
 

Cramer’s Rule, Volume, and Linear Transformations 
 
 
In this lecture, we shall apply the theory discussed in the last two lectures to obtain 
important theoretical formulas and a geometric interpretation of the determinant. 
  
Cramer’s Rule: Cramer’s rule is needed in a variety of theoretical calculations. For 
instance, it can be used to study how the solution of Ax = b is affected by changes in the 
entries of b. However, the formula is inefficient for hand calculations, except for 2 2×  or 
perhaps 3  matrices. 3×
 
 
Theorem 1 (Crammer’s Rule):  Let A be an invertible n n×  matrix. For any b in Rn, the 
unique solution x of Ax = b has entries given by 

det ( ) , 1, 2,...,
det

i
i

A bx i n
A

= =                 (1)  

    
 
Example 1: Use Cramer’s rule to solve the system 

                1 2

1 2

3 2 6
5 4 8

x x
x x
− =

− + =
Solution: Write the system in matrix form, Ax = b 

1

2

1

2

3 2 6
5 4 8

3 2 6
, &

5 4 8

x
x

where
x

A x b
x

− ⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

− ⎡ ⎤⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

⎤
⎥
⎦

 

1 2

3 2
det 12 10 2

5 4

6 2 3 6
( ) , ( )

8 4 5 8

A

A b A b

−⎡ ⎤
= = − =⎢ ⎥−⎣ ⎦

−⎡ ⎤ ⎡
= =⎢ ⎥ ⎢−⎣ ⎦ ⎣

 

Since det A = 2, the system has a unique solution. By Cramer’s rule, 
1

1
det ( ) 24 16 20

det 2
A bx

A
+

= = =  

2
2

det ( ) 24 30 27
det 2

A bx
A

+
= = =  



19-Cramer’s Rule, Volume, and Linear Transformations                                                                            VU 
 
 
 
 

                                                  
                                                   ©Virtual University Of Pakistan                                                            222 

Example 2: Consider the following system in which s is an unspecified parameter. 
Determine the values of s for which the system has a unique solution and use Cramer’s 

rule to describe the solution. 1 2

1 2

3 2
6 1
sx x

x sx
4− =

− + =
 

 
Solution: Here 

1 2

3 2 4 4 2 3 4
, , ( ) , ( )

6 1 1
s s

A b A b A b
s s
− −

6 1
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡

= = = =
⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢− − ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Since   2det 3 12 3( 2)( 2)A s s s= − = + −
the system has a unique solution when  

2

det 0
3( 2)( 2) 0

4 0
2

A
s s

s
s

≠
⇒ + − ≠

⇒ − ≠
⇒ ≠ ±

  

 
For such an s, the solution is   (x1, x2), where 

1
1

det ( ) 4 2 , 2
det 3( 2)( 2)

A b sx s
A s s

+
= =

+ −
≠ ±  

2
2

det ( ) 3 24 8 , 2
det 3( 2)( 2) ( 2)( 2)

A b s sx s
A s s s s

+ +
= = =

+ − + −
≠ ±  

 
Example 3: Solve, by Cramer’s Rule, the system of equations: 

   

1 2 3

1 2 3

1 2 3

2 3
2 2

3 2 2

x x x
x x x
x x x

− + =
+ − =
+ + =

1

3
 

Solution: Here  1

2 1 3 1 1 1 3
1 2 1 , 2 , 2 2 1
3 2 2 3 3 2 2

A b A
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−

2 3

2 1 3 2 1 1
1 2 1 , 1 2 2
3 3 2 3 2 3

A A
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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1 1

2 2

3 3

31 2
1 2 3

det 2 6 1 ( 5) 3( 4) 5
det 1 6 2 8 3( 5) 7
det 2 (7) 1 (5) 3( 3) 0
det 2 (2) 1 ( 3) 1( 4) 3

7 3, 0,
5 5

D A
D Ab
D A b
D A b

DD DSo x x x
D D D

= = ⋅ − ⋅ − + − =
= = ⋅ + ⋅ + − =
= = ⋅ − ⋅ + − =
= = ⋅ + ⋅ − + − = −

= = = = = = −

 

 
Example 4: Use Cramer’s Rule to solve. 

1 3

1 2 3

1 2 3

2 6
3 4 6 30

2 3 8

x x
x x x

x x x

+ =
− + + =

− − + =

 

Solution: 
1 0 2 6
3 4 6 , 30
1 2 3 8

A b
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

1 2 3

6 0 2 1 6 2 1 0 6
30 4 6 , 3 30 6 3 4 30
8 2 3 1 8 3 1 2 8

A A A
⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢

⎤
⎥∴ = = − = −⎢ ⎥ ⎢ ⎥ ⎢

⎢ ⎥ ⎢ ⎥ ⎢− − − − −⎣ ⎦ ⎣ ⎦ ⎣
⎥
⎥⎦

 

Therefore, 
1 2

1 2
det( ) det( )40 10 72 18,
det( ) 44 11 det( ) 44 11

Ab A bx x
A A

− −
= = = = = =  

3
3

det( ) 152 38
det( ) 44 11

A bx
A

= = =  

 
Note: For any  matrix A and any b in Rn, let Ai(b) be the matrix obtained from A by 
replacing ith column by the vector b.   

n n×

  
[ ]1( ) ... ...i nA b a b a

th columni

=

↑  

 
Formula for A–1 : 
       Cramer’s rule leads easily to a general formula for the inverse of  matrix A. The 
jth column of A-1 is a vector x that satisfies Ax = ej 

n n×

where ej is the jth column of the identity matrix, and the ith entry of x is the (i, j)-entry of 
A-1. By Cramer’s rule, 

{ }1 det ( )
( , )

det
i j

ij

A e
i j entry of A x

A
−− = =     (2) 
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Recall that Aji denotes the submatrix of A formed by deleting row j and column i. A 
cofactor expansion down column i of Ai(ej) shows that 

det ( ) ( 1) deti j
i j ji jiA e A+= − = C      (3) 

where Cji is a cofactor of A.  
By (2), the (i, j)-entry of A-1 is the cofactor Cji divided by det A.  
[Note that the subscripts on Cji are the reverse of (i, j).] Thus 

11 21 1

12 22 21

1 2

...

...1
det

...

n

n

n n nn

C C C
C C C

A
A

C C C

−

⎡ ⎤
⎢ ⎥
⎢=
⎢ ⎥
⎢ ⎥
⎣ ⎦

# # #
⎥      (4) 

The matrix of cofactors on the right side of (4) is called the adjugate (or classical 
adjoint) of A, denoted by adj A. (The term adjoint also has another meaning in advance 
texts on linear transformations.) The next theorem simply restates (4). 
 
Theorem 2 (An Inverse Formula):   

Let A be an invertible  matrix, thenn n× 1 1
det

A adj A
A

− =  

Example: 
 
For the matrrix say  

2 3
det 10 ( 3) 13

1 5
A A⎡ ⎤
= ⇒ = − −⎢ ⎥−⎣ ⎦

=  

⇒ 1A− will also be a matrix 2 2×
As  
Aji = submatrix of A  formed by deleting row j and column i       
So in this case  

11A =  submatrix of A  formed by deleting row 1 and column 1 =[ ]5  

12A =  submatrix of A  formed by deleting row 1 and column 2 =[ ]1−  

21A =  submatrix of A  formed by deleting row 2 and column 1 =[ ]3  

22A =  submatrix of A  formed by deleting row 2 and column 2 =[ ]2    
   and     
det ( ) ( 1) det( )i j

i j ji jiA e A+= − =C  
  where je  is the jth column of identity matrix n nI ×  
So in this case  
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1 1
11 1 1 11

1 2
12 2 1 12

2 1
21 1 2 21

2 2
22 2 2 22

det ( ) ( 1) det ( 1)det[5] 5
det ( ) ( 1) det ( 1)det[ 1] ( 1)( 1) 1

det ( ) ( 1) det ( 1)det[3] 3
det ( ) ( 1) det ( 1)det[2] 2

C A e A
C A e A

C A e A
C A e A

+

+

+

+

= = − = + =

= = − = − − = − −

= = − = − = −

= = − = + =

=
 

By Cramer’s rule, 

{ }1 det ( )
( , )

det det
i j ji

ij
CA e

i j entry of A x
A A

−− = = =  

So for the current matrix; 

{ }

{ }

{ }

{ }

1 1 1 11
11

1 1 2 21
12

1 2 1 12
21

1 2 2 22
22

det ( ) 5(1,1)
det det 13

det ( ) 3(1,2)
det det 13

det ( ) 1(2,1)
det det 13

det ( ) 2(2,2)
det det 13

A e Centry of A x
A A

A e Centry of A x
A A

A e Centry of A x
A A

A e Centry of A x
A A

−

−

−

−

− = = = =

−
− = = =

− = = =

− = = =

=

=

=

 

Hence by using equation # 4, we get  
11 21

11 12 11 211

21 22 12 2212 22

5 3
1det det 13 13

1 2det
13 13det det

C C
x x C CA AA
x x C CC C A

A A

−

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

Example 5: Find the inverse of the matrix 
2 1 3
1 1 1
1 4 2

A .
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Solution: The nine cofactors are 

11 12 13

1 1 1 1 1 1
2, 3, 5

4 2 1 2 1 4
C C C

− −
= + = − = − = = + =

− −
 

 

21 22 23

1 3 2 3 2 1
14, 7, 7

4 2 1 2 1 4
C C C= − = = + = − = − = −

− −
 

 

31 32 33

1 3 2 3 2 1
4, 1, 3

1 1 1 1 1 1
C C C= + = = − = = + = −

− −
 

The adjoint matrix is the transpose of the matrix of cofactors. [For instance, C12 goes in 
the (2, 1) position.] Thus 
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11 21 31

12 22 32

13 23 33

2 14 4
3 7 1
5 7 3

C C C
adjA C C C

C C C

−⎡ ⎤ ⎡
⎢ ⎥ ⎢= = −⎢ ⎥ ⎢
⎢ ⎥ ⎢

⎤
⎥
⎥
⎥− −⎣ ⎦ ⎣ ⎦

 

We could compute det A directly, but the following computation provides a check on the 
calculations above and produces det A: 

2 14 4 2 1 3 14 0 0
( ). 3 7 1 1 1 1 0 14 0 14

5 7 3 1 4 2 0 0 14
adjA A I

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Since (adj A) A = 14 I, Theorem 2 shows that det A = 14 and 

1

2 14 4 2 /14 14 /14 4 /14
1 3 7 1 3/14 7 /14 1/14

14
5 7 3 5 /14 7 /14 3/14

A−

− −⎡ ⎤ ⎡
⎢ ⎥ ⎢= − = −⎢ ⎥ ⎢
⎢ ⎥ ⎢− − − −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

 

 
Determinants as Area or Volume: 
 In the next application, we verify the geometric interpretation of determinants and we 
assume here that the usual Euclidean concepts of length, area, and volume are already 
understood for R2 and R3. 
 
Theorem 3: If A is a 2  matrix, the area of the parallelogram determined by the 
columns of A is

2×
det A . If A is a 3 3×  matrix, the volume of the parallelepiped determined 

by the columns of A is det A . 
 
Example 6: Calculate the area of the parallelogram determined by the points (-2, -2),     
(0, 3), (4, -1) and (6, 4).  
 
Solution:  
Let A(-2,-2), B(0,3), C(4,-1) and D(6,4). Fixing one point say A(-2,-2) and find the 
adjacent lengths of parallelogram which are given by the column vectors as follows; 

 

 
So the area of parallelogram ABCD determined by above column vectors  

= 
2 6

det 2 30 28 28
5 1
⎡ ⎤

= − = − =⎢ ⎥
⎣ ⎦

  

  Now we translate the parallelogram ABCD to one having the origin as a vertex. For 
which we subtract the vertex (-2, -2) from each of the four vertices. The new 
parallelogram has the  vertices say 

0 ( 2) 2
3 ( 2) 5

4 ( 2) 6
1 ( 2) 1

AB

AC

− −⎡ ⎤ ⎡
= =⎢ ⎥ ⎢− −⎣ ⎦ ⎣

− −⎡ ⎤
= =⎢ ⎥− − −⎣ ⎦

⎤
⎥
⎦
⎡ ⎤
⎢ ⎥
⎣ ⎦
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A =(-2-(-2),-2-(-2))=(0, 0)
B =(0-(-2),3-(-2))=(2, 5)
C =(4-(-2),-1-(-2))=(6,1)
D =(6-(-2),4-(-2))=(8, 6) 

′
′
′
′

And fixing  in this case, so  (0,0)A′
2 0 2
5 0 5

6 0 6
5 0 5

A B

A C

−⎡ ⎤ ⎡′ ′ = =⎢ ⎥ ⎢−⎣ ⎦ ⎣
−⎡ ⎤ ⎡′ ′ = =⎢ ⎥ ⎢−⎣ ⎦ ⎣

⎤
⎥
⎦
⎤
⎥
⎦

 

See Fig below. The area of this parallelogram is also determined by the above columns 

vectors = 
2 6

det 2 30 28 28
5 1
⎡ ⎤

= − = − =⎢ ⎥
⎣ ⎦

 

 
 
 
 
 
 
 
 
 
 

Translating a parallelogram does not change its area 
 
Linear Transformations: 
Determinants can be used to describe an important geometric property of linear 
transformations in the plane and in R3. If T is a linear transformation and S is a set in the 
domain of T, let T (S) denote the set of images of points in S. We are interested in how 
the area (or volume) of T (S) compares with the area (or volume) of the original set S. 
For convenience, when S is a region bounded by a parallelogram, we also refer to S as a 
parallelogram. 
 
Theorem 4: Let  be the linear transformation determined by a  matrix 
A. If S is a parallelogram in R2, then 

2:T R R→ 2 2 2×

  {area of T (S)} = |detA|. {area of S} 
If T is determined by a 3 x 3 matrix A, and if S is a parallelepiped in R3, then 
  {volume of T (S)} = |detA|. {volume of S} 
 
Example 7: Let a and b be positive numbers. Find the area of the region E bounded by 

the ellipse whose equation is 
2 2

1 2
2 2 1x x

a b
+ = . 
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Solution: We claim that E is the image of the unit disk D under the linear transformation 

A:D→E determined by the matrix
0

0
a

A
b

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, given as 

 Au = x  where u = 1

2

u
D

u
⎡ ⎤

∈⎢ ⎥
⎣ ⎦

, x = 1

2

x
E

x
⎡ ⎤

∈⎢ ⎥
⎣ ⎦

. 

Now  Au = x then 

1 1

2 2

1 1

22

1 1 2

0
0

u xa
u xb

au x
xbu

au x and bu x

⎡ ⎤ ⎡ ⎤⎡ ⎤
⇒ =⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

⇒ =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

⇒ = = 2

           ⇒ 1
1

xu
a

=  and 2
2

xu
b

=  

Since (in the circular disk),it follows that the distance of u from origin will be less 
than unity i-e 

u D∈

( ) ( )2 2
1 2

2 2
1 2 1

1 2

0 0 1

1 ,

u u

2x x xu u
a b a

− + − ≤

⎛ ⎞ ⎛ ⎞⇒ + ≤ = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∵ x
b

 

Hence by the generalization of theorem 4, 
{area of ellipse} = {area of A(D)}       ( )here T A≡  
     = |det A|. {area of D} 
     = ab.π (1)2 = π ab 

 
 
             u2 
               x2 
 

         b  
                   
                      D        E   
                                   1         u1          a       x1 
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Example 8: Let S be the parallelogram determined by the vectors  and 1

1
3

b ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

2

5
1

b ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

and let . Compute the area of image of S under the mapping
1 1
0 2

A
−⎡ ⎤

= ⎢
⎣ ⎦

⎥ x Ax→ . 

Solution: The area of S is 
1 5

det 14
3 1
⎡ ⎤

=⎢ ⎥
⎣ ⎦

, and det A = 2. By theorem 4, the area of 

image of S under the mapping x Ax→  is |det A|. {area of S} = 2.14 = 28  
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Exercises: 
 
Use Cramer’s Rule to compute the solutions of the systems in exercises 1 and 2. 
 

1. 
1 2

1 3

2 3

2x + x =7
-3x + x = -8

x + 2x = -3
    2.  

1 2 3

1 3

1 2 3

2x + x + x = 4
-x + 2x = 2
3x + x +3x = -2

 
In exercises 3-6, determine the values of the parameter s for which the system has a 
unique solution, and describe the solution. 
 

3.     4.  1 2

1 2

6sx +4x = 5
9x +2sx = -2

1 2

1 2

3sx - 5x = 3
9x +5sx = 2

 

5.     6.  1 2

1 2

sx - 2sx = -1
3x +6sx = 4

1 2

1 2

2sx + x = 1
3sx +6sx = 2

 
In exercises 7 and 8, compute the adjoint of the given matrix, and then find the inverse of 
the matrix. 
 

7.      8. 
3 5 4
1 0 1
2 1 1

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

⎥
⎥

3 0 0
-1 1 0
-2 3 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
In exercises 9 and 10, find the area of the parallelogram whose vertices are listed. 
 
9. (0, 0), (5, 2), (6, 4), (11, 6)   10. (-1, 0), (0, 5), (1, -4), (2, 1) 
 
11. Find the volume of the parallelepiped with one vertex at the origin and adjacent 
vertices at (1, 0, -2), (1, 2, 4), (7, 1, 0). 
 
12. Find the volume of the parallelepiped with one vertex at the origin and adjacent 
vertices at (1, 4, 0), (-2, -5, 2), (-1, 2, -1). 
 

13. Let S be the parallelogram determined by the vectors b1 = 
-2
3

⎡ ⎤
⎢ ⎥
⎣ ⎦

 and b2 = , and 

let A = . Compute the area of the image of S under the mapping 

-2
5
⎡ ⎤
⎢ ⎥
⎣ ⎦

6 -2
-3 2
⎡ ⎤
⎢
⎣ ⎦

⎥ →x Ax . 
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14.  Let S be the parallelogram determined by the vectors b1 = 
4
-7
⎡ ⎤
⎢ ⎥
⎣ ⎦

 and b2 = , and 

let A = . Compute the area of the image of S under the mapping . 

0
1
⎡ ⎤
⎢ ⎥
⎣ ⎦

7 2
1 1
⎡ ⎤
⎢
⎣ ⎦

⎥ x

0⎥⎥

→x A

 
15. Let T: R3→  R3 be the linear transformation determined by the matrix 

, where a, b, c are positive numbers. Let S be the unit ball, whose 

bounding surface has the                                                  equation

0 0
0
0 0

a
b

c

⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

A

2 2 2
1 2 3x x x 1+ + = . 

a. Show that T (S) is bounded by the ellipsoid with the equation 
22 2

31 2
2 2 2

xx x 1
a b c

+ + = . 

 
b. Use the fact that the volume of the unit ball is 4  to determine the volume of the 
region bounded by the ellipsoid in part (a). 

π / 3
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Lecture 20 

 
Vector Spaces and Subspaces 

 
Case Example:  
       The space shuttle's control systems are absolutely critical for flight. Because the 
shuttle is an unstable airframe, it requires constant computer monitoring during 
atmospheric flight. The flight control system sends a stream of commands to 
aerodynamic control surfaces. 
 Mathematically, the input and output signals to an engineering system are functions. It 
is important in applications that these functions can be added, and multiplied by 
scalars. These two operations on functions have algebraic properties that are completely 
analogous to the operation of adding vectors in Rn and multiplying a vector by a scalar, 
as we shall see in the lectures 20 and 27. For this reason, the set of all possible inputs 
(functions) is called a vector space. The mathematical foundation for systems 
engineering rests on vector spaces of functions, and we need to extend the theory of 
vectors in Rn to include such functions. Later on, we will see how other vector spaces 
arise in engineering, physics, and statistics. 
 
Definition:Let V is an arbitrary nonempty set of objects on which two operations are 
defined, addition and multiplication by scalars (numbers). If the following axioms are 
satisfied by all objects u, v, w in V and all scalars k and l, then we call V a vector space. 
 
Axioms of Vector Space: 
 
1. Closure Property For any two vectors u & v ∈V, implies u + v ∈V 
 
2. Commutative Property For any two vectors u & v ∈V, implies u + v = v + u 
 
3. Associative Property For any three vectors u, v, w ∈V, u + (v + w) = (u + v) + w 
 
4. Additive Identity For any vector u ∈V, there exist a zero vector 0 such that  

0 + u = u + 0 = u 
 

5. Additive Inverse For each vector u ∈V, there exist a vector –u in V such that  
-u + u = 0 = u + (-u) 
 

6. Scalar Multiplication For any scalar k and a vector u ∈V implies k u ∈V 
 
7. Distributive Law For any scalar k if u & v ∈V, then k (u + v) = k u + k v 
 
8. For scalars m, n and for any vector u ∈V, (m + n) u = m u + n u  
 
9. For scalars m, n and for any vector u ∈V, m (n u) = (m n) u = n (m u) 
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10. For any vector u ∈V, 1u = u where 1 is the multiplicative identity of real numbers. 
 
Examples of vector spaces: The following examples will specify a non empty set V and 
two operations: addition and scalar multiplication; then we shall verify that the ten vector 
space axioms are satisfied. 
  
Example 1: Show that the set of all ordered n-tuple Rn is a vector space under the 
standard operations of addition and scalar multiplication. 
 
Solution  
(i) Closure Property: 
Suppose that u = (u1, u2, …, un) and v = (v1, v2, …, vn) ∈ Rn 

 
Then by definition, u + v = (u1, u2, …, un) + (v1, v2, …, vn)  
 
= (u1 + v1, u2 + v2, …, un + vn)∈ Rn    (By closure property) 
 
Therefore, Rn

 is closed under addition. 
 
(ii) Commutative Property 
 
Suppose that u = (u1, u2, …, un) and v = (v1, v2, …, vn) ∈ Rn 

 
Now u + v = (u1, u2, …, un) + (v1, v2, …, vn) 
 
= (u1 + v1, u2 + v2, …, un + vn)     (By closure property) 
 
= (v1 + u1, v2 + u2, …, vn + un)                                (By commutative law of real numbers) 
 
= (v1, v2, …, vn) + (u1, u2, …, un)      (By closure property) 
 
= v + u 
Therefore, Rn is commutative under addition. 
 
(iii) Associative Property 
Suppose that u = (u1, u2, …, un), v = (v1, v2, …, vn) and w = (w1, w2, …, wn)∈Rn  
 
Now (u + v) + w = [(u1, u2, …, un) + (v1, v2, …, vn)] + (w1, w2, …, wn) 
 
= (u1 + v1, u2 + v2, …, un + vn) + (w1, w2, …, wn)   (By closure property) 
 
= ((u1 + v1) + w1, (u2 + v2) + w2, …, (un + vn) + wn))  (By closure property) 
 
= (u1 + (v1 + w1), u2 + (v2 + w2), …, un + (vn + wn))    (By associative law of real numbers) 
 
= (u1, u2, …, un) + (v1 + w1, v2 + w2, …, vn + wn)  (By closure property) 
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= (u1, u2, …, un) + [(v1, v2, …, vn) + (w1, w2, …, wn)] (By closure property) 
 
= u + (v + w) 
 
Hence Rn is associative under addition. 
 
(iv) Additive Identity 
 
Suppose u = (u1, u2, …, un) ∈ Rn. There exists 0 = (0, 0, …, 0) ∈ Rn such that 
0 + u = (0, 0, …, 0) + (u1, u2, …, un)  
 
= (0 + u1, 0 + u2, …, 0 + un)      (By closure property) 
 
= (u1, u2, …, un) = u       (Existence of identity of real numbers) 
 
Similarly, u + 0 = u 
 
Hence 0 = (0, 0, …, 0) is the additive identity for Rn. 
 
(v) Additive Inverse 
 
Suppose u = (u1, u2, …, un) ∈ Rn. There exists -u = (-u1, -u2, …, -un)∈Rn 

 
Such that u + (-u) = (u1, u2, …, un) + (-u1, -u2, …, -un) 
 
= (u1 + (-u1), u2  + (-u2), …, un + (-un))    (By closure property) 
 
= (0, 0, …, 0) = 0 
 
Similarly, (-u) + u = 0 
 
Hence the inverse of each element of Rn exists in Rn. 
 
(vi) Scalar Multiplication 
 
If k is any scalar and u = (u1, u2, …, un) ∈ Rn. 
 
Then by definition, k u = k (u1, u2, …, un) = (k u1, k u2, …, k un) ∈ Rn 

          (By closure property) 
(vii) Distributive Law 
 
Suppose k is any scalar and u = (u1, u2, …, un), v = (v1, v2, …, vn) ∈ Rn 

 
Now k (u + v) = k [(u1, u2, …, un) + (v1, v2, …, vn)] 
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= k (u1 + v1, u2 + v2, …, un + vn)    (By closure property) 
 
= (k (u1 + v1), k (u2 + v2), …, k (un + vn))   (By scalar multiplication) 
 
= (k u1 + k v1, k u2 + k v2, …, k un + k vn)   (By Distributive Law) 
 
 = (k u1, k u2, …, k un) + (k v1, k v2, …, k vn)   (By closure property) 
 
= k (u1, u2, …, un) + k (v1, v2, …, vn)       (By scalar multiplication) 
 
= k u + k v 
 
(viii) Suppose k and l be any scalars and u = (u1, u2, …, un) ∈ Rn 

 
Then (k + l) u = (k + l) (u1, u2, …, un) 
 
= ((k + l)u1, (k + l)u2, …, (k + l)un)    (By scalar multiplication) 
 
= (k u1 + l u1, k u2 + l u2, …, k un + l un)   (By Distributive Law) 
 
= (k u1, k u2, …, k un) + (l u1, l u2, …, l un)   (By closure property) 
 
= k (u1, u2, …, un) + l (u1, u2, …, un)    (By scalar multiplication) 
 
= k u + l u 
 
(ix) Suppose k and l be any scalars and u = (u1, u2, …, un) ∈ Rn 

 
Then k (l u) = k [l (u1, u2, …, un)] 
 
= k (l u1, l u2, …, l un)      (By scalar multiplication) 
 
= (k (l u1), k (l u2), …, k (l un))    (By scalar multiplication) 
 
= ((k l)u1, (k l)u2, …, (k l)un)              (By associative law) 
 
= (k l) (u1, u2, …, un)      (By scalar multiplication) 
 
= (k l) u 
 
(x) Suppose u = (u1, u2, …, un) ∈ Rn  
 
Then 1 u = 1 (u1, u2, …, un)  
 
= (1u1, 1u2, …, 1un)      (By scalar multiplication) 
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= (u1, u2, …, un) = u           (Existence of identity in scalrs) 
 
Hence, Rn is the real vector space with the standard operations of addition and scalar 
multiplication. 
 
Note:The three most important special cases of Rn are R (the real numbers), R2 (the vectors 
in the plane), and R3 (the vectors in 3-space).    
 
Example 2:Show that the set V of all 2x2 matrices with real entries is a vector space if vector 
addition is defined to be matrix addition and vector scalar multiplication is defined to be 
matrix scalar multiplication. 

Solution: Suppose that  and11 12 11 12 11 12

21 22 21 22 21 22

u u v v w w
= , = =

u u v v w w
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

∈⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u v w V

⎤
⎥
⎦

⎤
⎥
⎦

+

and k and l be two any scalars. 
 
(i) Closure property To prove axiom (i), we must show that u + v is an object in V: that is , 
we must show that u + v is a 2x2 matrix. But this follows from the definition of matrix 

addition, since  11 12 11 12 11 11 12 12

21 22 21 22 21 21 22 22

u u v v u +v u +v
+ = + =

u u v v u +v u +v
⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣

u v

     (By closure property) 
 

(ii) Commutative property Now it is very easy to verify the Axiom (ii)  
 

11 12 11 12 11 11 12 12

21 22 21 22 21 21 22 22

u u v v u +v u +v
+ = + =

u u v v u +v u +v
⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣

u v  (By closure property) 

11 11 12 12

21 21 22 22

v +u v +u
=

v +u v +u
⎡ ⎤
⎢ ⎥
⎣ ⎦

   (Commutative property of real numbers) 

11 12 11 12

21 22 21 22

v v u u
= + =

v v u u
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

v u  

(iii) Associative property 11 12 11 12 11 12

21 22 21 22 21 22

u u v v w w
(  + ) + = + +

u u v v w w
⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

u v w  

11 11 12 12 11 12

21 21 22 22 21 22

u +v u +v w w
= +

u +v u +v w w
⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎣ ⎦ ⎣

⎤
⎥
⎦

⎥

   (By closure property) 

11 11 11 12 12 12

21 21 21 22 22 22

(u +v )+ w (u +v )+ w
=

(u +v )+ w (u +v )+ w
⎡ ⎤
⎢ ⎥
⎣ ⎦

  

11 11 11 12 12 12

21 21 21 22 22 22

u +(v + w ) u +(v + w )
=

u +(v + w ) u +(v + w )
⎡ ⎤
⎢
⎣ ⎦

  (By associative property of real numbers) 
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11 12 11 11 12 12

21 22 21 21 22 22

u u v + w v + w
= +

u u v + w v + w
⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎣ ⎦ ⎣

⎤
⎥
⎦

 

11 12 11 12 11 12

21 22 21 22 21 22

u u v v w w
= + + =  + (  + )

u u v v w w
⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠
u v w  

Therefore, V is associative under ‘+’. 
(iv) Additive Identity Now to prove the axiom (iv), we must find an object 0 in V such 

that 0 + v = v + 0 = v for all u in V. This can be done by defining 0
0 0

=
0 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

.  

 
11 12

21 22

u u0 0
+ = +

u u0 0
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
u0 11 12 11 12

21 22 21 22

0+u 0+u u u
= =

0+u 0+u u u
⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎣ ⎦ ⎣

u=
⎤
⎥
⎦  

 
and similarly u + 0 = u. 
 
(v) Additive Inverse Now to prove the axiom (v) we must show that each object u in V 
has a negative –u such that u + (-u) = 0 = (-u) + 0. Defining the negative of u to be 
 

11 12

21 22

-u -u
- =

-u -u
⎡ ⎤
⎢ ⎥
⎣ ⎦

u . 

 
( ) ( )
( ) ( )

11 11 12 1211 12 11 12

21 21 22 2221 22 21 22

u + -u u + -uu u -u -u 0 0
+(- )= + = = =

u + -u u + -uu u -u -u 0 0
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
u u 0

⎤
⎥
⎦

⎤
⎥
⎦

 
 
Similarly, (-u) + u = 0 
 
(vi) Scalar Multiplication 
 
Axiom (vi) also holds because for any real number k we have 
 

11 12 11 12

21 22 21 22

u u ku ku
k = k =

u u ku ku
⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎣ ⎦ ⎣

u    (By closure property) 

 
so that k u is a 2x2 matrix and consequently is an object in V. 
 
(vii) Distributive Law: 
 

11 12 11 12

21 22 21 22

u u v v
k ( + )= k +

u u v v
⎛ ⎞⎡ ⎤ ⎡
⎜ ⎟⎢ ⎥ ⎢
⎣ ⎦ ⎣⎝ ⎠

u v
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11 11 12 12 11 11 12 12

21 21 22 22 21 21 22 22

u +v u +v k(u +v ) k(u +v )
= k =

u +v u +v k(u +v ) k(u +v )
⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎣ ⎦ ⎣

⎤
⎥
⎦

⎤
⎥
⎦

⎤
⎥
⎦

 

    

11 11 12 12 11 12 11 12

21 21 22 22 21 22 21 22

11 12 11 12

21 22 21 22

ku + kv ku + kv ku ku kv kv
= = +

ku + kv ku + kv ku ku kv kv

u u v v
= k + k = k + k

u u v v

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

u v
 

 

(viii)  11 12 11 12

21 22 21 22

u u (k + l)u (k + l)u
(k + l) = (k + l) =

u u (k + l)u (k + l)u
⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎣ ⎦ ⎣

u

 
11 11 12 12

21 21 22 22

ku + lu ku + lu
=

ku + lu ku + lu
⎡ ⎤
⎢ ⎥
⎣ ⎦

11 12 11 12

21 22 21 22

ku ku lu lu
= +

ku ku lu lu
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦  

 
11 12 11 12

21 22 21 22

u u u u
= k + l = k + l

u u u u
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

u u
 

 

(ix)  11 12 11 12

21 22 21 22

u u lu lu
k(l ) = k l = k

u u lu lu
⎛ ⎞⎡ ⎤ ⎡
⎜ ⎟⎢ ⎥ ⎢
⎣ ⎦ ⎣⎝ ⎠

u
⎤
⎥
⎦

⎢ ⎥ ⎢
⎣ ⎦ ⎣

 
11 12 11 12

21 22 21 22

k(lu ) k(lu ) (kl)u (kl)u
= =

k(lu ) k(lu ) (kl)u (kl)u
⎡ ⎤ ⎡ ⎤

⎥
⎦

11 12

21 22

u u
= (kl)

u u
⎡ ⎤
⎢ ⎥
⎣ ⎦

= (kl)u
 

 
(x) Finally axiom (x) is a simple computation  
 

11 12 11 12 11 12

21 22 21 22 21 22

u u 1u 1u u u
1 = 1 = = =

u u 1u 1u u u
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u u
 

 
Hence the set of all 2x2 matrices with real entries is vector space under matrix addition 
and matrix scalar multiplication.  
 
Note: Example 2 is a special case of a more general class of vector spaces. The arguments in 
that example can be adapted to show that a set V of all m×n matrices with real entries, 
together with the operations of matrix addition and scalar multiplication, is a vector space.  
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Example 3:  Let V be the set of all real-valued functions defined on the entire real 
line( , )−∞ ∞ . If f, g∈V, then f + g is a function defined by  
  (f +g) (x) = f (x) + g (x), for all x∈R. 
The product of a scalar a∈R and a function f in V is defined by 
  (a f) (x) = a f (x), for all x∈R.    
Solution: 
(i) Closure Property If f, g∈V, then by definition  
(f +g) (x) = f (x) + g (x) ∈V. Therefore, V is closed under addition. 
(ii) Commutative Property If f and g are in V, then for all x∈R 
 
(f + g) (x) = f (x) + g (x)     (By definition) 
 
= g (x) + f (x)        (By commutative property) 
 
= (g + f) (x)       (By definition) 
 
So that  f + g = g + f 
 
(iii) Associative Property If f, g and h are in V, then for all x∈R 
 
((f + g) + h) (x) = (f + g) (x) + h (x)    (By definition) 
 
= (f (x) + g (x)) + h (x)     (By definition) 
 
= f (x) + (g (x) + h (x))             (By associative property) 
 
= f (x) + (g + h) (x)      (By definition) 
 
= (f + (g + h)) (x) 
 
And so  (f + g) + h = f + (g + h) 
 
(iv) Additive Identity The additive identity of V is the zero function defined by  
0 (x) = 0, for all x∈R because (0 + f) (x) = 0 (x) + f (x)  (By definition) 
 
= 0 + f (x) = f (x)        (Existence of identity) 
 
i.e. 0 + f = f. Similarly, f + 0 = f. 
 
(v) Additive Inverse The additive inverse of a function f in V is (-1) f = -f∈V because 
 
(f + (-f)) (x) = f (x) + (-f) (x)     (By definition) 
 
= f (x) – f (x)        (By definition) 
 
= 0          (Existence of inverse) 
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i.e. f + (-f) = 0. Similarly, (-f) + f = 0. 
 
(vi) Scalar Multiplication If f is in V and a is in R, then by definition (a f) (x) = a f (x) 

V. ∈
 
(vii) Distributive Law If f, g are in V and a∈R, then 
(a (f + g)) (x) = a (f + g) (x) = a (f (x) + g (x)) = a f (x) + a g (x) 
 
= (a f) (x) + (a g) (x) = (a f + a g) (x) and, therefore, a (f + g) = a f + a g 
 
(viii) Let a, b in R and f∈V, then 
 
((a + b) f) (x) = (a + b) f (x) = a f (x) + b f (x) = (a f) (x) + (b f) (x) = (a f + b f) (x) 
 
Thus (a + b) f = a f + b f 
 
(ix) a (b f) (x) = a (b f (x)) = (a b) f (x) showing that a (b f) = (a b) f 
 
(x) (1.f) (x) = 1 f (x) = f (x)      (Existence of identity) 
 
And so  1.f = f 
 
Hence V is a real vector space. 
 
Example 4: If  

and  
0 1 2 n( ) = a  + a  + a  + . . . + a2 np x x x x

0 1 2 n ( ) = b  + b  + b  + . . . + b2 nq x x x x

n

nx

x

We define 

0 1 2 n 0 1 2 n( )+ ( ) = (a  + a  + a  + . . . + a )+(b  + b  + b  + . . . + b )2 n 2p x q x x x x x x x  
 

0 0 1 1 2 2 n n= (a +b )+(a +b ) +(a +b ) +...+(a +b )2x x  and for any scalar k, 
 

0 1 2 nk ( ) = k(a  + a  + a  + . . . + a )2 np x x x x 0 1 2 n= ka  + ka  + ka  + . . . + k a2 nx x   
 
Clearly the given polynomial is a vector space under the addition and scalar 
multiplication. 
 
Example 5: (The Zero Vector Space) Let V consists of a single object, which we define 
by 0 and 0 + 0 = 0 and k 0 = 0 for all scalars k. It is easy to check that all the vector space 
axioms are satisfied. We call V={0} as the zero vector space. 
 
Example 6: (Every plane through the origin is a vector space) 
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Let V be any plane through the origin in R3
.  We shall show that the points in V form a 

vector space under a standard addition and scalar multiplication operations for vectors in 
R3.  
 
From example1, we know that R3 itself is a vector space under these operations.  Thus, 
Axioms 2, 3, 7, 8, 9 and 10 hold for all points in R3 and consequently for all points in the 
plane V. We therefore need only show that Axioms 1, 4, 5 and 6 are satisfied. 
 
Since the plane is passing through the origin, it has an equation of the form   

a x + b y + c z = 0       (1) 
 

Thus, if u = (u1, u2, u3) and v = (v1, v2, v3) are points in V, then  
 

a u1 + b u2 + c u3 = 0 and a v1 + b v2 + c v3 = 0.  
 

Adding these equations gives a (u1 + v1) + b (u2 + v2) + c (u3 + v3) = 0 
 
This equality tell us that the coordinates of the point 
 
  u + v = (u1 + v1, u2 + v2, u3 + v3)   
 
satisfies (1); thus, u + v lies in plane V. This proves that the Axiom 1 is satisfied. 
 
There exists 0 = (0, 0, 0) such that a (0) +b (0) + c (0) = 0. Therefore, Axiom 4 is 
satisfied.  
 
Multiplying a u1 + b u2 + c u3 = 0 through by k gives 
  a (ku1) + b (ku2) + c (ku3) = 0 
 
Thus, (ku1, k u2, k u3) = k (u1, u2, u3) = k u∈V. Hence, Axiom 6 is satisfied. 
 
We shall prove the axiom 5 is satisfied. Multiplying a u1 + b u2 + c u3 = 0 through by -1 
gives a (-1u1) + b (-1u2) + c (-1u3) = 0 
 
Thus, (-u1, - u2, - u3) = - (u1, u2, u3) = -u∈V. This establishes Axiom 5. 
 
Example 7:  (A set that is not a vector space)  
       Let V=R2 and define addition and scalar multiplication operation as follows. If 

 then define  1 2 1 2= (u ,u )and = (v ,v )u v

1 1 2 2+ = (u +v ,u +v )u v  and if k is any real number then define . 1k = (ku ,0)u
For any vector u ∈V, 1u =1(u1, u2) = (1 u1, 0) = (u1, 0) ≠  u where 1 is the multiplicative 
identity of real numbers. Therefore, the axiom 10 is not satisfied. 
Hence, V=R2 is not a vector space. 
 
Theorem 1: Let V be a vector space, u a vector in V, and k is a scalar, then 
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(i) 0u = 0    (ii) k0 = 0 
 
(iii) (-1) u = -u   (iv) If k u = 0 then k = 0 or u = 0 
 
Definition: A subset W of a vector space V is called a subspace of V if W itself a vector 
space under the addition and scalar multiplication defined on V. 
 
Note: If W is a part of a larger set V that is already known to be a vector space, then 
certain axioms need not be verified for W because they are “inherited” from V. For 
example, there is no need to check that u + v = v + u (Axiom 2) for W because this holds 
for all vectors in V and consequently for all vectors in W. Other Axioms are inherited by 
W from V are 3, 7, 8, 9, and 10. Thus, to show that a set W is a subspace of a vector space 
V, we need only verify Axioms 1, 4, 5 and 6. The following theorem shows that even 
Axioms 4 and 5 can be omitted. 
 
Theorem 2: If W is a set of one or more vectors from a vector space V, then W is 
subspace of V if and only if the following conditions hold. 

(a) If u and v are vectors in W, then u + v is in W 
(b) If k is any scalar and u is any vector in W, then k u is in W. 

 
Proof: If W is a subspace of V, then all the vector space axioms are satisfied; in 
particular, Axioms 1 and 6 hold. But these are precisely conditions (a) and (b). 
 
Conversely, assume conditions (a) and (b) hold.  Since these conditions are vector space 
Axioms 1 and 6, we need only show that W satisfies the remaining 8 axioms. The vectors 
in W automatically satisfy axioms 2, 3, 7, 8, 9, and 10 since they are satisfied by all 
vectors in V. Therefore, to complete the proof, we need only verify that vectors in W 
satisfy axioms 4 and 5.                                                                                       
 
    Let u be any vector in W. By condition (b), k u is in W for every scalar k. Setting  
k = 0, it follows from theorem 1 that 0 u = 0 is in W, and setting k = - 1, it follows that  
(-1) u = -u is in W.                                                                                          
 
Remark:  
(1) The theorem states that W is a subspace of V if and only if W is closed under addition 
and closed under scalar multiplication. 
(2) Every vector space has at least two subspaces, itself and the subspace {0} consisting 
only of the zero vector. Thus the subspace {0} is called the zero subspace. 
 
Example 8:  Let W be the subset of R3 consisting of the all the vectors of the form  
(a, b, 0), where a and b are real numbers. To check if W is subspace of R3, we first see 
that axiom 1 and 6 of a vector space holds. 
 
 Let  be vectors in W  then 

 is in W. Since the third component is 
zero. Also c is scalar, and then  is in W. Therefore the Ist and 

1 1 2 2= (a ,b ,0) and = (a ,b ,0)u v

1 1 2 2 1 2 1 2+ = (a ,b ,0) +(a ,b ,0)= (a + a ,b + b ,0)u v

1 1 1 1c = c(a ,b ,0)= (ca ,cb ,0)u
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6th axioms of the vector space holds. We can also verify the other axioms of vector space. 
Hence W is a subspace. 
 
Example 9: Consider the set W consisting of all 2x3 matrices of the form 

0
0
a b

c d
⎡ ⎤
⎢ ⎥
⎣ ⎦

, Where a, b, c and d are arbitrary real numbers. Show that the W is a 

subspace M2x3. 

Solution: Consider  in W 
0 0

0 0
1 1 2 2

1 1 2 2

a b a b
= , =

c d c d
⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎣ ⎦ ⎣

u v
⎤
⎥
⎦

0 ⎤
⎥
⎦

⎥

Then  is in W. 
0 0

0 0 0
1 1 2 2 1 2 1 2

1 1 2 2 1 2 1 2

a b a b a + a b +b
+ = + =

c d c d c +c d + d
⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣

u v

So that the (a) part of the theorem is satisfied. Also k is a scalar, and then 

 is in W. So the (b) part of the above theorem is also satisfied. 

Hence W is a subspace of M2x3. 

0
0

1 1

1 1

ka kb
k =

kc kd
⎡ ⎤
⎢
⎣ ⎦

u

 
Note:  Let V is a vector space then every subset of V is not necessary a subspace of V. 
For example, let V =R2 then any line in R2 not passing through origin is not a subspace of 
R2. Similarly, a plane in R3 not passing through the origin is not a subspace of R3. 
 
Example 10: Let W be the subset of R3 consisting of all vectors of the form  (a, b, 1), 
where a, b are any real numbers. To check whether property (a) and (b) of the above 
theorem holds. Let be vectors in W.  1 1 2 2= (a ,b ,1)and = (a ,b ,1)u v
Then  which is not in W because 
the third component 2 is not 1. As the Ist property does not hold therefore, the given set 
of vectors is not a vector space. 

1 1 2 2 1 2 1 2+ = (a ,b ,1)+(a ,b ,1)= (a + a ,b +b ,1+1)u v

 
Example 11: Which of the following are subspaces of R3 
(i) All vectors of the form (a, 0, 0) 
(ii) All vectors of the form (a, 1, 1)  
(iii) All vectors of the form (a, b, c), where b = a + c 
(iv) All vectors of the form (a, b, c), where b = a + c +1 
 
Solution: Let W is the set of all vectors of the form (a, 0, 0). 
 
(i) Suppose u = (u1, 0, 0) and v = (v1, 0, 0) are in W. 
 
Then u + v = (u1, 0, 0) + (v1, 0, 0) = (u1 + v1, 0, 0) which is of the form (a, 0, 0).  
 
Therefore, u + v∈W 
 
If k is any scalar and u = (u1, 0, 0) is any vector in W, then k u = k (u1, 0, 0) =  (k u1, 0, 0) 
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which is of the form (a, 0, 0). Therefore, k u∈W. Hence W is the subspace of R3.  
 
 
(ii) Let W is the set of all vectors of the form (a, 1, 1).  
 
Suppose u = (u1, 1, 1) and             v = (v1, 1, 1) are in W. Then u + v = (u1, 1, 1) + (v1, 1, 
1) = (u1 + v1, 2, 2) which is not of the form (a, 1, 1). Therefore, u + v∉W. Hence W is 
not the subspace of R3.  
 
(iii) Suppose W is the set of all vectors of the form (a, b, c), where b = a + c  
 
Suppose u = (u1, u1 + u3, u3) and v = (v1, v1 + v3, v3) are in W. 
 
Then u + v = (u1, u1 + u3, u3) + (v1, v1 + v3, v3)  
= (u1 + v1, u1 + u3 + v1 + v3, u3 + v3)  
= (u1 + v1, (u1 + v1) + (u3 + v3), u3 + v3), which is of the form (a, a + c, c).  
 
Therefore, u + v∈W 
 
If k is any scalar and u = (u1, u1 + u3, u3) is any vector in W, then 
k u = k (u1, u1 + u3, u3) = (k u1, k (u1 + u3), k u3)  (By definition) 
= (k u1, k u1 + k u3, k u3)      (By Distributive Law) 
Which is of the form (a, a + c, c). Therefore, k u∈W.  Hence W is the subspace of R3.  
 
(iv) Let W is the set of all vectors of the form (a, b, c), where b = a + c +1 
 Suppose u = (u1, u1 + u3 + 1, u3) and v = (v1, v1 + v3 + 1, v3) are in W. 
Then u + v = (u1, u1 + u3 + 1, u3) + (v1, v1 + v3 + 1, v3)  
= (u1 + v1, u1 + u3 + 1 + v1 + v3 + 1, u3 + v3)  
= (u1 + v1, (u1 + v1) + (u3 + v3) + 2, u3 + v3) 
Which is not of the form (a, a + c + 1, c). Therefore, u + v∉W. Hence W is not the 
subspace of R3.  
 
Example 12: Determine which of the following are subspaces of P3. 
(i) All polynomials a0 + a1 x + a2 x2 + a3 x3 for which a0 = 0 
(ii) All polynomials a0 + a1 x + a2 x2 + a3 x3 for which a0 + a1 + a2 + a3 = 0 
(iii) All polynomials a0 + a1 x + a2 x2 + a3 x3 for which a0, a1, a2, and a3 are integers 
(iv) All polynomials of the form a0 + a1 x, where a0 and a1 are real numbers. 
 
Solution: (i) Let W is the set of all polynomials a0 + a1 x + a2 x2 + a3 x3 for which a0 = 
0. 
Suppose that u = c0 + c1 x + c2 x2 + c3 x3 (where c0 = 0) and v = b0 + b1 x + b2 x2 + b3 
x3 (where b0 = 0) are in W. Then u + v = (c0 + c1x + c2x2 + c3x3) + (b0 + b1x + b2x2 + 
b3x3)  = (c0 + b0) + (c1 + b1)x + (c2 + b2)x2 + (c3 + b3) x3, where c0 + b0 = 0.  
Therefore, u + v ∈W  
 
If k is any scalar and u = c0 + c1 x + c2 x2 + c3 x3 (where c0 = 0) is any vector in W.  
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Then k u = k (c0 + c1x + c2x2 + c3x3) = (kc0) + (kc1) x + (kc2) x2 + (kc3) x3 where  
k c0 = 0. Therefore, k u∈W. Hence W is the subspace of P3. 
 
(ii) Let W is the set of all polynomials a0 + a1x + a2x2 + a3x3 for which  
a0+a1+a2+a3 = 0. 
Suppose that u = c0 + c1 x + c2 x2 + c3 x3 (where c0 + c1 + c2 + c3 = 0) and  
v = b0 + b1 x + b2 x2 + b3 x3 (where b0 + b1 + b2 + b3 = 0) are in W. 
 
Now 
 u + v = (c0 + c1 x + c2 x2 + c3 x3) + (b0 + b1 x + b2 x2 + b3 x3)  
 
= (c0 + b0) + (c1 + b1) x + (c2 + b2) x2 + (c3 + b3) x3  
 
Where (c0+b0) + (c1+b1) + (c2+b2) + (c3+b3) = (c0+c1+c2+c3) + (b0+b1+b2+b3) = 0 + 0 
= 0. Therefore, u + v ∈W 
 
If k is any scalar and u = c0 + c1 x + c2 x2 + c3 x3 (where c0 + c1 + c2 + c3 = 0) is any 
vector in W. Then k u = k (c0 + c1x + c2x2 + c3x3) = (kc0) + (kc1) x + (kc2) x2 + (kc3) x3  
Where (k c0) + (k c1) + (k c2) + (k c3) = k(c0 + c1 + c2 + c3) = k.0 = 0 
 
Therefore, k u∈W. Hence W is the subspace of P3. 
 
(iii) Let W is the set of  all polynomials a0 + a1 x + a2 x2 + a3 x3 for which a0, a1, a2, and 
a3 are integers. 
Suppose that the vectors u = c0 + c1 x + c2 x2 + c3 x3 (where c0, c1, c2, and c3 are 
integers) and v = b0 + b1 x + b2 x2 + b3 x3 (where b0, b1, b2, and b3 are integers) are in W. 
Now  
u + v = (c0 + c1 x + c2 x2 + c3 x3) + (b0 + b1 x + b2 x2 + b3 x3)  
= (c0 + b0) + (c1 + b1) x + (c2 + b2) x2 + (c3 + b3) x3, where    
(c0 + b0), (c1 + b1), (c2 + b2), and (c3 + b3) are integers (integers are closed under 
addition). Therefore, u + v ∈W 
 
If k is any scalar and u = c0 + c1 x + c2 x2 + c3 x3 (where c0, c1, c2, and c3 are integers) is 
any vector in W. Then k u = k (c0 + c1x + c2x2 + c3x3 = (kc0) + (kc1) x + (kc2) x2 +  
(kc3) x3, where (k c0), (k c1), (k c2), and (k c3) are not integers (product of real number and 
integer). Therefore, k u∉W. Hence, W is not the subspace of P3. 
 
(iv) Let W is the set of all polynomials of the form a0 + a1 x, where a0 and a1 are real 
numbers. Suppose that u = c0 + c1 x (where c0 and c1 are real numbers) and  
v = b0 + b1 x (where b0 and b1 are real numbers) are in W. 
 
Then u + v = (c0 + c1 x) + (b0 + b1 x) = (c0 + b0) + (c1 + b1) x  
Where   (c0 + b0) and (c1 + b1) are real numbers. 
Therefore, u + v ∈W  
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If k is any scalar and u = c0 + c1 x (where c0 and c1 are real numbers) is any vector in W. 
Then k u = k (c0 + c1 x)   = (k c0) + (k c1) x   
Where (k c0) and (k c1) are real numbers.  
Therefore, k u∈W. Hence W is the subspace of P3. 
 
Example 13: Determine which of the following are subspaces of M22. 

(i) All matrices  where a + b +c + d = 0 
a b
c d
⎡ ⎤
⎢
⎣ ⎦

⎥

(ii) All 2 x 2 matrices A such that det (A) = 0 

(iii) All the matrices of the form 
0
a b

c
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Solution: Let W is the set of all matrices 
a b
c d
⎡ ⎤
⎢ ⎥
⎣ ⎦

 where a + b +c + d = 0. 

(i) Suppose u =  (where e + f + g + h = 0) and v = 
e f
g h
⎡ ⎤
⎢
⎣ ⎦

⎥
l m
n p
⎡ ⎤
⎢ ⎥
⎣ ⎦

  

(Where l + m + n + p = 0) are in W. 

Then u + v =  + = 
e f
g h
⎡ ⎤
⎢ ⎥
⎣ ⎦

l m
n p
⎡ ⎤
⎢ ⎥
⎣ ⎦

e + l f + m
g + n h + p
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (By definition) 

Where (e + l) + (f + m) + (g + n) + ( h + p) 
 = (e + f + g + h) + (l + m + n + p) = 0 + 0 = 0 
Therefore, u + v∈W 

If k is any scalar and u =  (where e + f + g + h = 0) is any vector in W. 
e f
g h
⎡ ⎤
⎢
⎣ ⎦

⎥

⎥

⎥

Then k u = k =      (by definition) 
e f
g h
⎡ ⎤
⎢ ⎥
⎣ ⎦

ke kf
kg kh
⎡ ⎤
⎢
⎣ ⎦

Where k e + k f + k g + k h = k (e + f + g + h) = k 0 = 0 
Hence, k u∈W. Therefore, W is subspace of M22. 
 
(ii) Let W is the set of all 2 x 2 matrices A such that det (A) = 0 

Suppose u =  (Where det (u) = e h – f g = 0) and v = 
e f
g h
⎡ ⎤
⎢
⎣ ⎦

l m
n p
⎡ ⎤
⎢ ⎥
⎣ ⎦

  

(Where det (v) = l p – m n = 0) are in W. 

Then u + v =  + = 
e f
g h
⎡ ⎤
⎢ ⎥
⎣ ⎦

l m
n p
⎡ ⎤
⎢ ⎥
⎣ ⎦

e + l f + m
g + n h + p
⎡ ⎤
⎢ ⎥
⎣ ⎦

  (By definition) 

Where det (u + v) = (e + l) (h + p) - (f + m) (g + n)  
= e h + e p + l h + l p – f g – f n – m g – m n 
= (e h – f g) + (l p – m n) + e p + l h – f n – m g = e p + l h – f n – m g  0 ≠
Therefore, u + v∉W. Therefore, W is not subspace of M22. 
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(iii) Let W is the set of all matrices of the form 
0
a b

c
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Suppose u =  and v =  are in W. 
0
e f

g
⎡ ⎤
⎢
⎣ ⎦

⎥ ⎥0
l m

n
⎡ ⎤
⎢
⎣ ⎦

Then u + v =  + = 
0
e f

g
⎡ ⎤
⎢ ⎥
⎣ ⎦ 0

l m
n

⎡ ⎤
⎢ ⎥
⎣ ⎦ 0

e + l f + m
g + n

⎡ ⎤
⎢ ⎥
⎣ ⎦

  (By definition) 

Which is of the form . Therefore, u + v
0
a b

c
⎡ ⎤
⎢
⎣ ⎦

⎥ ∈W 

If k is any scalar and u =  is any vector in W. 
0
e f

g
⎡ ⎤
⎢
⎣ ⎦

⎥

⎥

⎥

Then k u = k =      (By definition) 
0
e f

g
⎡ ⎤
⎢ ⎥
⎣ ⎦ 0

ke kf
kg

⎡ ⎤
⎢
⎣ ⎦

Which is of the form . Hence, k u
0
a b

c
⎡ ⎤
⎢
⎣ ⎦

∈W 

Therefore, W is subspace of M22. 
 
Example 14: Determine which of the following are subspaces of the space . (- , )∞ ∞F
(i) All f such that f (x) 0 for all x  (ii) all f such that f (0) = 0 ≤
(iii) All f such that f (0) = 2   (iv) all constant functions 
(v) All f of the form k1 + k2 sin x, where k1 and k2 are real numbers 
(vi) All everywhere differentiable functions that satisfy + 2 = 0′f f . 
 
Solution: (i) Let W is the set of all f such that f (x) ≤ 0 for all x. 
Suppose g and h are the vectors in W. Then g (x) ≤ 0 for all x and h (x) 0 for all x. ≤
Now (g + h) (x) = g (x) + h (x) ≤ 0. Therefore, + ∈g h W  
If k is any scalar and g is any vector in W. Then g (x) ≤ 0 for all x 
Now (k g) (x) = k g (x), which is greater than 0 for negative real values of k.  

k k < 0∴ ∉ ∀g W . 
Hence W is not the subspace of (- ),∞ ∞F . 
 
(ii) Let W is the set of all f such that f (0) = 0. 
Suppose g and h are the vectors in W. Then g (0) = 0 and h (0) = 0  
Now (g + h) (0) = g (0) + h (0) = 0 + 0 = 0. Therefore, + ∈g h W  
If k is any scalar and g is any vector in W. Then g (0) = 0  
Now (k g) (0) = k g (0) = k 0 = 0. k∴ ∈g W . Hence W is the subspace of . (- , )∞ ∞F
 
(iii) Let W is the set of all f such that f (0) = 2 
Suppose g and h are the vectors in W. Then g (0) = 2 and h (0) = 2  
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Now (g + h) (0) = g (0) + h (0) = 2 + 2 ≠  2 k∴ ∉g W . Hence W is not the subspace of 
. (- , )∞ ∞F

 
(iv) Let W is the set of all constant functions. Suppose g and h are the vectors in W. 
Then g (x) = a and h (x) = b, where a and b are constants.  
Now (g + h) (x) = g (x) + h (x) = a + b, which is constant. Therefore, + ∈g h W  
If k is any scalar and g is any vector in W. Then g (x) = a, where a is any constant.  
Now (k g) (x) = k g (x) = k a, which is a constant. k∴ ∈g W . Hence W is the subspace 
of . (- , )∞ ∞F
 
(v) Let W is the set of all f of the form k1 + k2 sin x, where k1 and k2 are real numbers 
Suppose g and h are the vectors in W. Then g (x) = m1+m2sin x and h (x) = n1+n2 sin x, 
where m1, m2, n1and n2 are real numbers. 
 
Now (g + h) (x) = g (x) + h (x) = [m1+m2sin x]+[n1+n2sin x] = (m1+n1)+(m2+n2) sin x  
Which is of the form k1 + k2 sin x. Therefore, + ∈g h W  
 
If k is any scalar and g is any vector in W. Then g (x) = m1 + m2 sin x, where m1 and m2 
are any real numbers. 
 
Now (k g) (x) = k g (x) = k [m1 + m2 sin x] = (k m1) + (k m2) sin x 
Which is of the form k1 + k2 sin x. k∴ ∈g W . Hence W is the subspace of . (- , )∞ ∞F
 
(vi) Let W is the set of all everywhere differentiable functions that satisfy + 2 =′f f 0 . 
Suppose g and h are the vectors in W. Then + 2 =′g g 0  and + 2 =′h h 0   
Now ( +  = () + 2( + ) = + + 2( + )′ ′ ′g h g h g h g h + 2 )+( + 2 )′ ′g g h h  = 0 + 0 = 0 
Therefore, + ∈g h W  
If k is any scalar and g is any vector in W. Then + 2 =′g g 0

( + 2 ) = k. =
 

Now (k  = k) + 2(k ) = k + 2k′ ′g g g g ′g g 0 0  
k∴ ∈g W . Hence W is the subspace of (- , )∞ ∞F . 

 
Remark: Let n be a nonnegative integer, and let  be the set of real valued function of 

the form  where real numbers, 
then is a subspace . 

nP

0 1 2 n( )= a +a +a +...+a2 np x x x x 0 1 2, , ,..., na a a a are

nP (- , )∞ ∞F
 
Example 15:  Show that the invertible n x n matrices do not form a subspace of M n x n. 
 
Solution: Let W is the set of invertible matrices in M n x n. This set fails to be a subspace 
on both counts- it is closed under neither scalar multiplication nor addition. 

For example consider invertible matrices .  
1 2 -1 2

in
2 5 -2 5

= , =⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

n x nW V M
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The matrix 0.U is a 2x2 zero matrix, hence is not invertible; and the matrix U + V has a 
column of zeros, hence is not invertible. 
  
Theorem: If Ax = 0 is a homogeneous linear system of m equations in n unknowns, then 
the set of solution vectors is a subspace of Rn. 
 
Example 16:  Consider the linear systems 

 

1 -2 3 0 1 -2 3 0
2 -4 6 = 0 -3 7 -8 = 0
3 -6 9 0 -2 4 -6 0

1 -2 3 0 0 0 0 0
-3 7 -8 = 0 0 0 0 = 0
4 1 2 0 0 0 0 0

x x
(a) y (b) y

z z

x x
(c) y (d) y

z z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥

⎢ ⎥
⎢ ⎥⎦

 

 
Each of the systems has three unknowns, so the solutions form subspaces of R3. 
Geometrically, this means that each solution space must be a line through origin, a plane 
through origin, the origin only, or all of R3. 
 
Solution :(a) The solutions are x = 2s - 3t, y = s, z = t. From which it follows that  
x = 2y - 3z or x - 2y + 3z = 0.  
This is the equation of the plane through the origin with n =(1, -2,3) as a normal vector. 
 
(b) The solutions are x = -5t, y = - t, z = t, which are parametric equations for the line 
through the origin parallel to the vector v =(-5, -1,1). 
 
(c) The solution is x = 0, y = 0, z = 0 so the solution space is the origin only, that is {0}. 
 
(d)The solutions are x = r, y = s, z = t. where r, s and t have arbitrary values, so the 
solution space is all R3. 
 
A Subspace Spanned by a Set: The next example illustrates one of the most common 
ways of describing a subspace. We know that the term linear combination refers to any 
sum of scalar multiples of vectors, and Span {v1, … , vp} denotes the set of all vectors that 
can be written as linear combinations of v1, … , vp. 
 
Example 17: Given v1 and v2 in a vector space V, let H = Span {v1, v2}. Show that H is a 
subspace of V. 
 
Solution:  The zero vector is in H, since 0 = 0v1 + 0v2. To show that H is closed under 
vector addition, take two arbitrary vectors in H, say, 
  u = s1v1 +s2v2    and     w = t1v1 + t2v2 
 
By Axioms 2, 3 and 8 for the vector space V. 
  u + w = (s1v1 +s2v2) + (t1v1 + t2v2) 
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            = (s1 + t1) v1 + (s2 + t2) v2 
 
So u + w is in H. Furthermore, if c is any scalar, then by Axioms 7 and 9, 
 

cu = c (s1v1 + s2v2) = (cs1) v1 + (cs2)v2 
 

Which shows that cu is in H and H is closed under scalar multiplication.  
 
Thus H is a subspace of V.                                                             
 
Later on we will prove that every nonzero subspace of R3, other than R3 itself, is either 
Span {v1, v2} for some linearly independent v1 and v2 or Span {v} for  In the first 
case the subspace is a plane through the origin and in the second case a line through the 
origin. (See Figure below) It is helpful to keep these geometric pictures in mind, even for 
an abstract vector space.  

.≠v 0

   

0 

x2 
x1 

x3 

v2 

v1 

Figure 9 – An example of a subspace 
 
The argument in Example 17 can easily be generalized to prove the following theorem. 
 
Theorem 3: If v1, … , vp are in a vector space V, then Span {v1, …, vp} is a subspace of 
V. 
        We call Span {v1, … , vp} the subspace spanned (or generated) by {v1,… , vp}. Given 
any subspace H of V, a spanning (or generating) set for H is a set {v1, …, vp} in H such 
that H = Span {v1, …, vp}. 
Proof: 

The zero vector is in H, since 0 = 0v1 + 0v2+ …+0vn=
0
0

j n

j
j

v
=

=
∑ =0

0

j n

j
j

v
=

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ =0 

To show that H is closed under vector addition, take two arbitrary vectors in H, say, 

u = s1v1 +s2v2+…+tnvn=    
0

i n

i i
i

s v
=

=
∑
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 and     

 w = t1v1 + t2v2 …+tnvn=  
0

k n

k k
k

t v
=

=
∑

By Axioms 2, 3 and 8 for the vector space V. 

u + w = + = (s1v1 +s2v2+…+snvn )+( t1v1 + t2v2 …+tnvn)  
0

i n

i i
i

s v
=

=
∑

0

k n

k k
k

t v
=

=
∑

          = (s1 + t1) v1 + (s2 + t2) v2+…+(sn + tn) vn=  
0

( )
p n

p p
p

s t v
=

=

+∑ p

 So u + w is in H. Furthermore, if c is any scalar, then by Axioms 7 and 9, 
 

cu = c(s1v1 +s2v2+…+snvn )= (cs1) v1 + (cs2)v2+…+(csn )vn= . 
0

r n

r r
r

cs v
=

=
∑

Which shows that cu is in H and H is closed under scalar multiplication.  
 
Thus H is a subspace of V.                                                             
 
Example 18: Let H be the set of all vectors of the form (a – 3b, b – a, a, b), where a and 
b are arbitrary scalars. That is, let H = {(a – 3b, b – a, a, b): a and b in R}. Show that H 
is a subspace of R4. 
 
Solution: Write the vectors in H as column vectors. Then an arbitrary vector in H has the 
form 

3 1
1 1

1 0
0 1

a b
b a

a b
a
b

3− −⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢− −⎢ ⎥ ⎢ ⎥ ⎢= +
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

↑ ↑

1 2v v
 

 
This calculation shows that H = Span {v1, v2}, where v1 and v2 are the vectors indicated 
above. Thus H is a subspace of R4 by Theorem 3.                                                    
 
Example18 illustrates a useful technique of expressing a subspace H as the set of linear 
combinations of some small collection of vectors. If H = Span {v1, …, vp}, we can think 
of the vectors v1, … , vp in the spanning set as “handles” that allow us to hold on to the 
subspace H. Calculations with the infinitely many vectors in H are often reduced to 
operations with the finite number of vectors in the spanning set. 
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Exercises: 
 
In exercises 1-13 a set of objects is given together with operations of addition and scalar 
multiplication. Determine which sets are vector spaces under the given operations. For 
those that are not, list all axioms that fail to hold. 
 
1. The set of all triples of real numbers (x, y, z) with the operations 

and(x, y,z)+(x , y ,z )= (x+ x , y + y ,z + z ) k(x, y,z)= (kx, y,z)′ ′ ′ ′ ′ ′  
 
2. The set of all triples of real numbers (x, y, z) with the operations 

and(x, y,z)+(x , y ,z )= (x+ x , y + y ,z + z ) k(x, y,z)= (0,0,0)′ ′ ′ ′ ′ ′  
 
3. The set of all pairs of real numbers (x, y) with the operations 

and(x, y)+(x , y )= (x+ x , y + y ) k(x, y)= (2kx,2ky)′ ′ ′ ′  
 
4. The set of all pairs of real numbers of the form (x, 0) with the standard operations on 
R2. 
 
5. The set of all pairs of real numbers of the form (x, y), where x 0, with the standard 
operations on R2. 

≥

 
6. The set of all n-tuples of real numbers of the form (x, x, …, x) with the standard 
operations on Rn. 
 
7. The set of all pairs of real numbers (x, y) with the operations. 
    and(x, y)+(x , y )= (x+ x +1, y + y +1) k(x, y)= (kx,ky)′ ′ ′ ′
 

8. The set of all 2x2 matrices of the form 
1

1
a

b
⎡ ⎤
⎢ ⎥
⎣ ⎦

 with matrix addition and scalar 

multiplication. 
 

9. The set of all 2x2 matrices of the form 
0

0
a

b
⎡ ⎤
⎢ ⎥
⎣ ⎦

 with matrix addition and scalar 

multiplication. 
 
10. The set of all pairs of real numbers of the form (1, x) with the operations 

(1, ) (1, ) (1, ) and (1, ) (1, )y y y y k y k′ ′+ = + = y

1 x

 
 
11. The set of polynomials of the form a + bx with the operations 
  and1 1 1 1 1( +a )+( +b )= ( + )+(a +b ) k( +a )= (k )+(ka )0 0 0 0 0 0a x b x a b x a x a
 
12. The set of all positive real numbers with operations x + y = xy and kx = xk 
 
13. The set of all real numbers (x, y) with operations  
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, , , and , ,( x y ) ( x y ) ( xx yy ) k( x y ) ( kx ky )′ ′ ′ ′+ = =  
 
14. Determine which of the following are subspaces of Mnn. 
(a) all n x n matrices A such that tr (A) = 0 
(b) all n x n matrices A such that AT = -A 
(c) all n x n matrices A such that the linear system Ax = 0  has only the trivial solution 
(d) all n x n matrices A such that AB = BA for a fixed n x n matrix B 
 
15. Determine whether the solution space of the system Ax = 0 is a line through the 
origin, a plane through the origin, or the origin only. If it is a plane, find an equation for 
it; if it is a line, find parametric equations for it. 

(a)    (b) 
-1 1 1
3 -1 0
2 -4 -5

⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

A ⎥
⎥

1 -2 3
-3 6 9
-2 4 -6

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A  

 

(c)     (d) 

1 2 3
2 5 3
1 0 8

⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

A ⎥
⎥

1 2 -6
1 4 4
3 10 6

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A  

 
16. Determine if the set “all polynomial in pn such that p(0) = 0” is a subspace of Pn for 
an appropriate value of n. Justify your answer. 
 

17. Let H be the set of all vectors of the form 3
2

s
s
s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. Find a vector v in R3 such that H = 

Span {v}. Why does this show that H is a subspace of R3? 
 

18. Let W be the set of all vectors of the form 

5 2b c
b
c

+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, where b and c are arbitrary. 

Find vectors u and v such that W = Span {u, v}. Why does this show that W is a subspace 
of R3? 
 

19. Let W be the set of all vectors of the form 

3
-

2 -
4

s t
s t
s t
t

+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. Show that W is a subspace of R4. 
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20. Let  

1 2 4
0 1 2 and
-1 3 6 2

, , ,
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 2 3v v v w
3
1 .

⎥
⎥

(a) Is w in {v1, v2, v3}? How many vectors are in {v1, v2, v3}? 
(b) How many vectors are in Span {v1, v2, v3}? 
(c) Is w in the subspace spanned by {v1, v2, v3}? Why? 
 
In exercises 21 and 22, let W be the set of all vectors of the form shown, where a, b and c 
represent arbitrary real numbers. In each case, either find a set S of vectors that spans W 
or give an example to show that W is not a vector space. 
 

21.      22. 
3 +

4
- 5

a b

a b

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

-
-
-

a b
b c
c a

b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
23. Show that w is in the subspace of R4 spanned by v1, v2, v3, where 
 

-9 7 -4 -9
7 -4 5
4 -2 -1
8 9 -7

, , ,

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 2 3w v v v
4
4
-7

-6
3

 

 
24. Determine if y is in the subspace of R4 spanned by the columns of A, where 
 

6 5 -5 -9
7 8 8
1 -5 -9
-4 3 -2 -7

,

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

y A  
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Lecture 21 
 

Null Spaces, Column Spaces, and Linear Transformations 
 
Subspaces arise in as set of all solutions to a system of homogenous linear equations as 
the set of all linear combinations of certain specified vectors. In this lecture, we compare 
and contrast these two descriptions of subspaces, allowing us to practice using the 
concept of a subspace. In applications of linear algebra, subspaces of Rn usually arise in 
one of two ways:  

 as the set of all solutions to a system of homogeneous linear equations or  
 as the set of all linear combinations of certain specified vectors.  

Our work here will provide us with a deeper understanding of the relationships between 
the solutions of a linear system of equations and properties of its coefficient matrix. 
 
Null Space of a Matrix:   
 
Consider the following system of homogeneous equations: 

1 2 3

1 2 3

3 2 0
5 9

x x x
x x x
− − =

− + + = 0

⎤
⎥

       (1) 

In matrix form, this system is written as Ax = 0, where  
1 -3 -2
-5 9 1

= ⎡
⎢
⎣ ⎦

A        (2) 

Recall that the set of all x that satisfy (1) is called the solution set of the system (1). Often 
it is convenient to relate this set directly to the matrix A and the equation Ax = 0. We call 
the set of x that satisfy Ax = 0 the null space of the matrix A. The reason for this name is 
that if matrix A is viewed as a linear operator that maps points of some vector space V 
into itself, it can be viewed as mapping all the elements of this solution space of AX = 0 
into the null element "0". Thus the null space N of A is that subspace of all vectors in V 
which are imaged into the null element “0" by the matrix A. 
 
NULL SPACE 
 
Definition   The null space of an m n×  matrix A, written as Nul A, is the set of all 
solutions to the homogeneous equation Ax = 0. In set notation, 

Nul A = {x: x is in Rn and Ax = 0}  
OR 

( ) { / , 0}Nul A x x Ax= ∀ ∈ =\  
 
A more dynamic description of Nul A is the set of all x in Rn that are mapped into the 
zero vector of Rm via the linear transformation , Where A is a matrix of 
transformation. See Figure1 

→x Ax
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                                                   Figure 1 
 

Example 1:   Let  and let 1 -3 -2
-5 9 1

=
⎡ ⎤
⎢ ⎥
⎣ ⎦

A

5
3 .
-2

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

u  Determine if Nul∈u A . 

Solution:   To test if u satisfies Au = 0, simply compute 

 .  Thus u is in Nul A. 
5

1 -3 -2 5 -9 + 4 0
= 3 = =

-5 9 1 -25 + 27 - 2 0
-2

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

Au

 
Example:  Determine the null space of the following matrix: 

                   
4 0
8 20

A ⎛
= ⎜−⎝ ⎠

⎞
⎟

   
Solution:   To find the null space of A we need to solve the following system of 
equations: 

 
 
 
  
 
  

 
We can find Null space of a matrix with two ways i.e. with matrices or with system of 
linear equations. We have given this in both matrix form and (here first we convert the 
matrix into system of equations) equation form.  In equation form it is easy to see that by 
solving these equations together the only solution is 1 2 0x x= = .  In terms of vectors from 

 the solution consists of the single vector 2R { }0 and hence the null space of A is{ }0 . 
 
Activity: Determine the null space of the following matrices: 

0 

Rm 
Rn 

Nul A 
0 

0
0

1

2

1 2

1 2

1 2 1

1 2 2

4 0 0
8 20 0

4 0 0
8 20 0

4 0 0
8 20 0

x
x

x x
x x

x x x
and x x x

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

+⎛ ⎞ ⎛ ⎞
⇒ =⎜ ⎟ ⎜ ⎟− + ⎝ ⎠⎝ ⎠

⇒ + = ⇒ =
⇒ − + = ⇒ =
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1

2 1

2

4 0 1 0 1~
8 20 8 20 4

1 0
~ 8

0 20

1 0 1~
0 1 20

R

R R

R

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

⎛ ⎞
+⎜ ⎟

⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

1.                 
0 0 0

0 0 0 0
0 0 0

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

2.               
1 5
5 25

M
−⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 
In earlier (previous) lectures, we developed the technique of elementary row operations 
to solve a linear system. We know that performing elementary row operations on an 
augmented matrix does not change the solution set of the corresponding linear system 
Ax=0. Therefore, we can say that it does not change the null space of A.  We state this 
result as a theorem: 
 
Theorem 1:   Elementary row operations do not change the null space of a matrix. 

Or 
Null space N(A) of a matrix A can not be changed (always same) by changing the matrix 

with elementary row operations.  
 
Example:     Determine the null space of the following matrix using the elementary row 
operations: (Taking the matrix from the above Example) 

                   
4 0
8 20

A =
−
⎛ ⎞
⎜ ⎟
⎝ ⎠

Solution:   First we transform the matrix to the reduced row echelon form: 
 
 
 

 
 

  
  
 

 
which corresponds to the system  

1

2

0
0

x
x
=
=

 

Since every column in the coefficient part of the matrix has a leading entry that means 
our system has the trivial solution only:  

 

This means the null space consists only of the zero vector. 
 
We can observe and compare both the above examples which show the same result.  
 

1

2

0
0

x
x
=
=
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Theorem 2:   The null space of an m n×  matrix A is a subspace of Rn. Equivalently, the 
set of all solutions to a system Ax = 0 of m homogeneous linear equations in n unknowns 
is a subspace of Rn. 
 
Or simply, the null space is the space of all the vectors of a Matrix A of any order those 
are mapped (assign) onto zero vector in the space Rn (i.e. Ax = 0). 
Proof:   We know that the subspace of A consists of all the solution to the system 
Ax = 0 .  First, we should point out that the zero vector, 0, in Rn  will be a solution to this 
system and so we know that the null space is not empty.  This is a good thing since a 
vector space (subspace or not) must contain at least one element. 
Now we know that the null space is not empty. Consider u, v be two any vectors 
(elements) (in) from the null space and let c be any scalar.  We just need to show that the 
sum (u+v) and scalar multiple (c.u) of these are also in the null space. 
 
 
Certainly Nul A is a subset of Rn because A has n columns. To show that Nul(A) is the 
subspace, we have to check three conditions whether they are satisfied or not. If Nul(A) 
satisfies the all three condition, we say Nul(A) is a subspace otherwise not. 
First, zero vector “0” must be in the space and subspace. If zero vector does not in the 
space we can not say that is a vector space (generally, we use space for vector space).  
And we know that zero vector maps on zero vector so 0 is in Nul(A).  Now choose  any 
vectors u, v from Null space and using definition of Null space (i.e. Ax=0) 

Au = 0 and Av = 0 
 

Now the other two conditions are vector addition and scalar multiplication. For this we 
proceed as follow:  
Let start with vector addition:  
To show that u + v is in Nul A, we must show that A (u + v) = 0. Using the property of 
matrix multiplication, we find that  
A (u + v) = Au + Av = 0 + 0 = 0 
Thus u + v is in Nul A, and Nul A is closed under vector addition.   
For Matrix multiplication, consider any scalar , say c,   
A (cu) = c (Au) = c (0) = 0 
which shows that cu is in Nul A. Thus Nul A is a subspace of Rn. 
 
Example 2:   The set H, of all vectors in R4 whose coordinates a, b, c, d satisfy the 
equations 
       a – 2b + 5c = d  
       c – a = b 
is a subspace of R4. 
Solution:   Since    a – 2b + 5c = d  
                              c – a = b 
By rearranging the equations, we get 

  
  a - 2b + 5c - d = 0

-a -  b   + c       = 0
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We see that H is the set of all solutions of the above system of homogeneous linear 
equations. 
Therefore from the Theorem 2, H is a subspace of R4. 
 
It is important that the linear equations defining the set H are homogeneous. Otherwise, 
the set of solutions will definitely not be a subspace (because the zero-vector (origin) is 
not a solution of a non- homogeneous system), geometrically means that a line that not 
passes through origin can not be a subspace, because subspace must hold the zero vector 
(origin). Also, in some cases, the set of solutions could be empty. In this case, we can not 
find any solution of a system of linear equations, geometrically says that lines are parallel 
or not intersecting.  
If the null space having more than one vector, geometrically means that the lines intersect 
more than one point and must passes through origin (zero vector) . 
 
An Explicit Description of Nul A: 
   There is no obvious relation between vectors in Nul A and the entries in A. We say that 
Nul A is defined implicitly, because it is defined by a condition that must be checked. No 
explicit list or description of the elements in Nul A is given. However, when we solve the 
equation Ax = 0, we obtain an explicit description of Nul A.  
 
Example 3:   Find a spanning set for the null space of the matrix 

 

 
Solution:   The first step is to find the general solution of Ax = 0 in terms of free 
variables.  
After transforming the augmented matrix [A   0] to the reduced row echelon form and we 
get; 

1 -2 0 -1 3 0
0 0 1 2 -2 0
0 0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

which corresponds to the system 

           
1 2 4 5

3 4 5

x - 2x - x + 3x  = 0
           x  + 2x - 2x  = 0
  0 = 0

 

The general solution is  
1 2 4 5

2

3 4 5

4

5

x  = 2x  + x - 3x
x  = free variable
x  = - 2x  + 2x
x  = free variable
x  = free variable

           

- 3  6 -1  1 - 7
 1 - 2  2  3 - 1
 2 - 4  5  8 - 4

=
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A
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Next, decompose the vector giving the general solution into a linear combination of 
vectors where the weights are the free variables. That is, 
 

2 -3 2 1 -
1 0

-2 2 0 -2 2
0 1
0 0

1 2 4 5

2 2

3 4 5 2 4 5

4 4

5 5

x x + x x
x x
x = x + x = x + x + x
x x
x x

⎡ ⎤ ⎡ ⎤ 3
0

0
1

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥

⎤
⎢ ⎥ ⎢ ⎥ ⎢

⎢ ⎥ ⎢ ⎥
⎥

⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥

⎥
⎢ ⎥ ⎢ ⎥ ⎢

⎢ ⎥ ⎢ ⎥
⎥

⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥

⎥
⎢ ⎥ ⎢ ⎥ ⎢

⎢ ⎥ ⎢ ⎥
⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦ ⎣ ⎦ ⎦
↑ ↑ ↑

                                              u            v            w
 

  2 4 5= x + x + xu v w        (3) 
Every linear combination of u, v and w is an element of Nul A. Thus {u, v, w} is a 
spanning set for Nul A. 
 
Two points should be made about the solution in Example 3 that apply to all problems of 
this type. We will use these facts later.  

1. The spanning set produced by the method in Example 3 is automatically linearly 
independent because the free variables are the weights on the spanning vectors. 
For instance, look at the 2nd, 4th and 5th entries in the solution vector in (3) and 
note that   2 4 5x + x + xu v w  can be 0 only if the weights x2, x4 and x5 are all zero. 

2. When Nul A contains nonzero vector, the number of vectors in the spanning set 
for Nul A equals the number of free variables in the equation Ax = 0. 

 

Example 4:   Find a spanning set for the null space of 

1 -3 2 2 1
0 3 6 0 -3
2 -3 -2 4 4
3 -6 0 6 5
-2 9 2 -4 -5

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A . 

Solution:   The null space of A is the solution space of the homogeneous system 
1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

x - 3x + 2x + 2x + x = 0
0x +3x +6x +0x - 3x = 0
2x - 3x - 2x +4x +4x = 0
3x - 6x +0x +6x +5x = 0
-2x +9x + 2x - 4x - 5x = 0
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 1 -3  2  2  1   0
 0  3  6  0 -3  0
 2 -3 -2  4  4  0
 3 -6  0  6  5  0
-2  9  2 -4 -5  0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 1  -3  2  2  1   0 
 0  3  6  0  -3  0 
 0  3  - 6  0  2  0 
 0  3  - 6  0  2  0 
 0  3  6  0  -3  0 

1 3

1 4

1 5

- 2R + R
-3R + R
2R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 1  -3  2  2  1   0 
 0  1  2  0  -1  0 
 0  3  - 6  0  2  0 
 0  3  - 6  0  2  0 
 0  3  6  0  - 3  0 

2(1/3)R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

  ⎢ ⎥  

1 -3    2    2    1   0
0  1    2    0   -1 
0  0  -12    0    5 
0  0  -12    0    5 
0  0    0    0    0 

 0
 0
 0
 0

2 3

2 4

2 5

- 3R + R
-3R + R
-3R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
 1  -3  2  2  1   0 
 0  1  2  0  -1  0 
 0  0  1  0  - 5/12  0 
 0  0  -12  0  5  0 
 0  0  0  0  0  0 

3(-1/12)R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

   

1 -3  2  2   1   0 
0  1  2  0  -1  0 
0  0  1  0  -5/12  0 
0  0  0  0   0  0 
0  0  0  0   0  0 

3 412R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   

 1  -3  0  2  11/ 6   0 
 0  1  0  0  -1/6  0 
 0  0  1  0  -5/12  0 
 0  0  0  0  0  0 
 0  0  0  0  0  0 

3 2

3 1

- 2R + R
-2R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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1  0  0  2   4/3   0
0  1  0  0  -1/6  0
0  0  1  0  -5/12  0
0  0  0  0   0  0
0  0  0  0   0  0

2 13R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

The reduced row echelon form of the augmented matrix corresponds to the system 

1 4

2 5

3 5

 1 x + 2 x  +(4/3) x = 0
1 x + (-1/6) x = 0

1 x + (-5/12) x = 0
0 = 0
0 = 0

5

5

.  

No equation of this system has a form zero = nonzero; Therefore, the system is 
consistent. The system has infinitely many solutions:  

arbitrary arbitrary
1 4 5 2 5 3

4 5

x = -2 x +(-4/3) x x = +(1/6) x x = +(5/12) x
x = x = 

 

The solution can be written in the vector form:  

= (-2,0,0,1,0) = (-4/3,1/6,5/12,0,1)4 5c c   

Therefore {(-2,0,0,1,0), (-4/3,1/6,5/12,0,1)} is a spanning set for Null space of A. 
 
Activity:     Find an explicit description of Nul A where: 

1.   
3 5 5 3 9
5 1 1 0 3

A ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

2.   

4 1 1 0 1
1 1 2 3 1
1 1 2 0 1
0 0 1 1 1

A

−⎛ ⎞
⎜ ⎟− − −⎜ ⎟=
⎜ ⎟− −
⎜ ⎟
⎝ ⎠

 
The Column Space of a Matrix:   Another important subspace associated with a matrix 
is its column space. Unlike the null space, the column space is defined explicitly via 
linear combinations.  
 
Definition: (Column Space):  The column space of an m n×  matrix A, written as Col A, 
is the set of all linear combinations of the columns of A. If A = [a1   …   an], then  
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Col A = Span {a1 ,… , an } 
 
Since Span {a1, …, an } is a subspace, by Theorem of  lecture 20 i.e. if  are in a 

vector space V , then Span {
1,..., pv v

}1,..., pv v is a subspace of V   . 
The column space of a matrix is that subspace spanned by the columns of the matrix 
(columns viewed as vectors). It is that space defined by all linear combinations of the 
column of the matrix. 
 
Example, in the given matrix, 

     

1 1 3
2 1 4
3 1 5
4 1 6

A

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

The column space ColA is all the linear combination of the first (1, 2, 3, 4), the second (1, 
1, 1, 1) and the third column ( 3, 4, 5, 6). That is, ColA = { a·(1, 2, 3, 4) + b·(1, 1, 1, 1) + 
c·( 3, 4, 5, 6) }. In general, the column space ColA contains all the linear combinations 
of columns of A. 
 
The next theorem follows from the definition of Col A and the fact that the columns of A 
are in Rm. 
 
Theorem 3:   The column space of an m n×  matrix A is a subspace of Rm. 
 
Note that a typical vector in Col A can be written as Ax for some x because the notation 
Ax stands for a linear combination of the columns of A. That is, 

Col A = {b: b = Ax for some x in Rn}  
The notation Ax for vectors in Col A also shows that Col A is the range of the linear 
transformation   .→x Ax

Example 6:   Find a matrix A such that W = Col A. 
6 -

+
-7

a b
= a b : a,bin R

a

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

W  

Solution:    First, write W as a set of linear combinations. 
6 -1 6 -1
1 1 Span 1 , 1
-7 0 -7 0

= a +b : a,b in R =
⎧ ⎫ ⎧⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎨ ⎬ ⎨⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩

W
⎫
⎪
⎬
⎪
⎭

 

Second, use the vectors in the spanning set as the columns of A. Let  
6 -1
1 1
-7 0

= .
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A

Then W = Col A, as desired. 
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We know that the columns of A span Rm if and only if the equation   Ax = b has a 
solution for each b. We can restate this fact as follows: 
The column space of an matrix A is all of Rm if and only if the equation Ax = b has 
a solution for each b in Rm. 

m n×

  
Theorem 4:   A system of linear equations Ax = b is consistent if and only if b in the 
column space of A. 
 
Example 6:   A vector b in the column space of A. Let Ax = b is the linear system 

-1 3 2 1
1 2 -3 = -9
2 1 -2 -3

1

2

3

x
x
x

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

. Show that b is in the column space of A, and express b as a 

linear combination of the column vectors of A. 
Solution:   Augmented Matrix is given by 

  ⎢ ⎥
⎢ ⎥  
-1  3  2   1 
 1  2 -3 -9 
 2  1 -2 -3 

⎡ ⎤

⎢ ⎥⎣ ⎦
1 -3  - 2   -1
0  5  -1  -8
0  7   2  -1

1

1 2

1 3

-1R
-1R + R
-2R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

1 -3 -2   -1
0  1 -1/5  -8/5
0  0  17/5  51/5

2

2 3

1/5R
-7R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

1  -3  0   5
0  1  0 -1
0  0  1  3

3

3 2

3 1

(5/17)R
(1/5)R + R

2R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

0 

x2 

x1 

x3 

W 
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1  0  0   2
0  1  0 -1
0  0  1  3

2 13R + R
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 2 3x = 2,x = -1,x = 3⇒ . Since the system is consistent, b is in the column space of A.  

Moreover,   
-1 3 2 1

2 1 - 2 + 3 -3 = -9
2 1 -2 -3

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 
Example:      Determine whether b is in the column space of A and if so, express b as a 
linear combination of the column vectors of A: 

1 1 2 1
1 0 1 : 0
2 1 3 2

A b
−⎛ ⎞ ⎛

⎜ ⎟ ⎜= =⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎟
⎟
⎠

 

 
Solution:     
 The coefficient matrix Ax b=  is: 

 

The augmented matrix for the linear system that corresponds to the matrix 
equation Ax b=  is: 

1 1 2 1
1 0 1 0
2 1 3 2

⎛ −
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎞

⎞
⎟
⎟
⎟
⎠

 

We reduce this matrix to the Reduced Row Echelon Form:  

1

2

3

1 1 2 1
1 0 1 0
2 1 3 2

x
x
x

−⎛ ⎞⎛ ⎞ ⎛
⎜ ⎟⎜ ⎟ ⎜=⎜ ⎟⎜ ⎟ ⎜

⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝⎝ ⎠
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( )

( )

( )

2 1

3 1

2

3 2

1 1 2 1 1 1 2 1
1 0 1 0 ~ 0 1 1 1 1
2 1 3 2 2 1 3 2

1 1 2 1
~ 0 1 1 1 2

0 1 1 4

1 1 2 1
~ 0 1 1 1 1

0 1 1 4

1 1 2 1
~ 0 1 1 1

0 0 0 3

R R

R R

R

R R

⎛ − ⎞ ⎛ − ⎞
⎜ ⎟ ⎜ ⎟− − + −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ − ⎞
⎜ ⎟− − + −⎜ ⎟
⎜ ⎟− −⎝ ⎠
⎛ − ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟− −⎝ ⎠
⎛ − ⎞
⎜ ⎟− +⎜ ⎟
⎜ ⎟
⎝ ⎠

 

( )

3

2 3

1 3

1 2

1 1 2 1
1~ 0 1 1 1
3

0 0 0 1

1 1 2 1
~ 0 1 1 0

0 0 0 1

1 1 2 0
~ 0 1 1 0

0 0 0 1

1 0 1 0
~ 0 1 1 0 1

0 0 0 1

R

R R

R R

R R

⎛ − ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ − ⎞
⎜ ⎟ +⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟ +⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟ + −⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
The new system for the equation Ax b=  is 

                   
1 3

2 3

0
0

0 1

x x
x x
+ =
+ =

=
Equation 0  cannot be solved, therefore, the system has no solution (i.e. the system is 
inconsistent). 

1=

Since the equation Ax = b has no solution, therefore b is not in the column space of A. 
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Activity:     Determine whether b is in the column space of A and if so, express b as a 
linear combination of the column vectors of A: 
 

1.  
 
 
 
 
 

2. ⎜ ⎟= ⎜ ⎟  
1 1 1 1
1 1 1 ; 2
1 1 1 3

A b
−⎛ ⎞

⎜ ⎟
⎛ ⎞

= −⎜ ⎟
⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟

= =
⎜ ⎟−
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

3. ⎜ ⎟
⎜ ⎟

 

1 1 2 1 1
0 2 0 1 2

;
1 1 1 3 3
0 2 2 1 4

A b

−⎛ ⎞
⎜ ⎟
⎜ ⎟

 
 
 
 
Theorem 5:   If x0 denotes any single solution of a consistent linear system Ax=b and if 

form the solution space of the homogeneous system Ax=0, then every 
solution of Ax=b can be expressed in the form 

, , ,...,1 2 3 kv v v v

1 2 ... kc c c= + + + +0 1 2x x v v vk and, 
conversely, for all choices of scalars , the vector x is a solution of Ax=b. 1 2 3, , ,..., kc c c c
 
General and Particular Solutions:   The vector x0 is called a particular solution of Ax=b 
.The expression x0+ c1 v1 +c2v2+ . . . +ck vk  is called the general solution of Ax=b  , and the 
expression c1 v1 +c2v2+ . . . +ck vk  is called the general solution of Ax=0. 
 
Example 7:   Find the vector form of the general solution of the given linear system  
Ax = b; then use that result to find the vector form of the general solution of Ax=0. 

1 2 3 5

1 2 3 4 5 6

3 4 6

1 2 4 5 6

x +3x - 2x + 2x = 0
2x +6x - 5x - 2x +4x - 3x = -1

5x +10x +15x = 5
2x +6x +8x +4x +18x = 6

 

Solution:   We solve the non-homogeneous linear system. The augmented matrix of this 
system is given by 

1 1 2 5
9 3 1 ; 1
1 1 1 0

A b
−⎛ ⎞

⎜ ⎟= =⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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1  3 -2  0  2   0   0
2  6 -5 -2  4  -3 -1
0  0  5  10  0  15  5
2  6  0  8  4  18  6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 1  3  - 2  0  2  0   0 
 0  0  -1  - 2  0  -3  -1 
 0  0  5  10  0  15  5 
 0  0  4  8  0  18  6 

1 2

1 4

-2R + R
-2R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

2

 1  3  - 2  0  2  0   0 
 0  0  1  2  0  3  1 
 0  0  5  10  0  15  5 
 0  0  4  8  0  18  6 

-1R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 1  3  - 2  0  2  0   0 
 0  0  1  2  0  3  1 
 0  0  0  0  0  0  0 
 0  0  0  0  0  6  2 

2 3

2 4

-5R + R
-4R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

34

 1  3  - 2  0  2  0   0 
 0  0  1  2  0  3  1 
 0  0  0  0  0  6  2 
 0  0  0  0  0  0  0 

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
 1  3  - 2  0  2  0   0 
 0  0  1  2  0  3  1 
 0  0  0  0  0  1  1/3 
 0  0  0  0  0  0  0 

3(1/6)R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 1  3  - 2  0  2  0   0 
 0  0  1  2  0  0  0 
 0  0  0  0  0  1  1/3 
 0  0  0  0  0  0  0 

3 2- 3R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 1  3  0  4  2  0   0 
 0  0  1  2  0  0  0 
 0  0  0  0  0  1  1/3 
 0  0  0  0  0  0  0 

2 12R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

The reduced row echelon form of the augmented matrix corresponds to the system   
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1 2 4 5

3 4

6

1 x +3 x + 4 x +2 x = 0
1 x +2 x = 0

1 x = (1/3) 
0 = 0

 

No equation of this system has a form zero = nonzero; Therefore, the system is 
consistent. The system has infinitely many solutions:  

1 2 4 5 2 3

4 5

4

6

x = -3 x - 4 x - 2 x x = r x = -2 x
x = s x = t x = 1/3

 

1 2

4 5

3

6

x = -3r - 4s - 2t x = r x = -2s
1x = s x = t x =
3

 

This result can be written in vector form as  
-3 - 4 - 2 0 -3 -4 -2

0 1 0
-2 0 0 -2

0 0 1
0 0 0

1 1 0 0
3 3

1

2

3

4

5

6

r s tx
rx
sx

= = + r + s +sx
tx

x

⎡ ⎤ ⎡ ⎤⎡ ⎤
0
0
0
1
0

t

⎡ ⎤ ⎡ ⎤ ⎡⎢ ⎥ ⎢ ⎥⎢ ⎥
⎤

⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎢ ⎥
⎥

⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎢ ⎥
⎥

⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎢ ⎥
⎥

⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎢ ⎥
⎥

⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎢ ⎥
⎥

⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎢ ⎥
⎥

⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎢ ⎥
⎥

⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎦

0

0
1
0

  (A) 

which is the general solution of the given system. The vector x0 in (A) is a particular 

solution of the given system; the linear combination 

-3 -4 -2
1 0
0 -2 0
0 1
0 0
0 0

r + s +t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 in (A) is the 

general solution of the homogeneous system. 
 
Activity: 

1. Suppose that  is a solution of a non-homogenous 
linear system 

1 2 3 41, 2, 4, 3x x x x= − = = = −
Ax b=  and that the solution set of the homogenous system 0Ax =  

is given by this formula: 
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1

2

3

4

3 4 ,
,

,

x r s
x r s
x r
x s

= − +
= −
=
=

 

(a) Find the vector form of the general solution of 0Ax = . 
(b) Find the vector form of the general solution of 0Ax = . 

 
 
Find the vector form of the general solution of the following linear system Ax = b; then 
use that result to find the vector form of the general solution of Ax=0: 

2.                1 2

1 2

2 1
3 9

x x
x x
− =
− = 2

3

3 2
4 5 3 5

x x x x
x x x
x x x
x x x

+ − + =
− − + +
− + − +

− − = −

 

3.            
1
2

x
x
= −
=

   

1 2 3 4

1 2 3 4

1 2 3 4

1 2 4

2 3
3 3

 
 

 
The Contrast between Nul A and Col A: 
   It is natural to wonder how the null space and column space of a matrix are related. In 
fact, the two spaces are quite dissimilar. Nevertheless, a surprising connection between 
the null space and column space will emerge later.   
 

Example 8: Let   
2 4 -2 1

= -2 -5 7 3
3 7 -8 6

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

A ⎥
⎥

(a) If the column space of A is a subspace of Rk, what is k? 
(b) If the null space of A is a subspace of Rk, what is k? 
 
Solution:    
 
(a) The columns of A each have three entries, so Col A is a subspace of Rk, where k = 3. 
(b) A vector x such that Ax is defined must have four entries, so Nul A is a subspace of 
Rk, where k = 4. 
 
When a matrix is not square, as in Example 8, the vectors in Nul A and Col A live in 
entirely different “universes”. For example, we have discussed no algebraic operations 
that connect vectors in R3 with vectors in R4. Thus we are not likely to find any relation 
between individual vectors in Nul A and Col A. 
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Example 9:   If , find a nonzero vector in Col A and a nonzero 

vector in Nul A 

2 4 -2 1
= -2 -5 7 3

3 7 -8 6

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

A ⎥
⎥

Solution:   It is easy to find a vector in Col A. Any column of A will do, say,  To 

find a nonzero vector in Nul A, we have to do some work. We row reduce the augmented 

matrix [A   0] to obtain

2
-2
3

.
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 0 9 0 0
[ ] ~ 0 1 -5 0 0

0 0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A 0 . Thus if x satisfies Ax = 0, 

then 1 3 2 3 4x = -9x , x = 5x , x = 0 , and x3 is free. Assigning a nonzero value to x3 (say), x3 = 
1, we obtain a vector in Nul A, namely, x = (-9, 5, 1, 0). 
 

Example 10: With , let 
2 4 -2 1
-2 -5 7 3
3 7 -8 6

=
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A

3
3

-2
and -1

-1
3

0

= =

⎡ ⎤

.
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎣ ⎦

u v  

(a) Determine if u is in Nul A.  Could u be in Col A? 
(b) Determine if v is in Col A.  Could v be in Nul A? 
Solution:   (a) An explicit description of Nul A is not needed here. Simply compute the 
product 

3
2 4 -2 1 0 0

-2
= -2 -5 7 3 = -3 0

-1
3 7 -8 6 3 0

0

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ≠⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎣ ⎦

Au
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎤
⎥
⎥
⎥⎦

 

Obviously, u is not a solution of Ax = 0, so u is not in Nul A.  
Also, with four entries, u could not possibly be in Col A, since Col A is a subspace of R3. 
(b) Reduce [A   v] to an echelon form: 

2 4 -2 1 3 2 4 -2 1 3
[ ] -2 -5 7 3 -1 0 1 -5 -4 2

3 7 -8 6 3 0 0 0 17 1

⎡ ⎤ ⎡
⎢ ⎥ ⎢= ⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

∼A v    

At this point, it is clear that the equation Ax = v is consistent, so v is in Col A. With only 
three entries, v could not possibly be in Nul A, since Nul A is a subspace of R4. 
 
 
 
The following table summarizes what we have learned about Nul A and Col A. 
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1. Nul A is a subspace of Rn. 
2. Nul A is implicitly defined; i.e. we 

are given only a condition (Ax = 0) 
that vectors in Nul A must satisfy. 

3. It takes time to find vectors in Nul 
A. Row operations on [A   0] are 
required. 

4. There is no obvious relation 
between Nul A and the entries in A. 

 
 
5. A typical vector v in Nul A has the 

property that Av = 0. 
 
6. Given a specific vector v, it is easy 

to tell if v is in Nul A. Just compute 
Av. 

 
7. Nul A = {0} if and only if the 

equation Ax = 0 has only the trivial 
solution. 

8.  Nul A = {0} if and only if the linear 
transformation →x Ax  is one-to-
one. 

 

1. Col A is a subspace of Rm. 
2. Col A is explicitly defined; that is, 

we are told how to build vectors in 
Col A. 

3. It is easy to find vectors in Col A 
The columns of A are displayed; 
others are formed from them. 

4. There is an obvious relation 
between Col A and the entries in 
A, since each column of A is in Col 
A. 

5. A typical vector v in Col A has the 
property that the equation Ax = v 
is consistent. 

6. Given a specific vector v, it may 
take time to tell if v is in Col A. 
Row operations on [A   v] are 
required. 

7. Col A.= Rm if and only if the 
equation Ax = b has a solution for 
every b in Rm. 

8. Col A = Rm if and only if the linear 
transformation →x Ax maps Rn 
onto Rm. 

 
Kernel and Range of A Linear Transformation:    
Subspaces of vector spaces other than Rn are often described in terms of a linear 
transformation instead of a matrix. To make this precise, we generalize the definition 
given earlier in Segment I. 
 
Definition:   A linear transformation T from a vector space V into a vector space W is a 
rule that assigns to each vector x in V a unique vector T (x) in W, such that 

(i)  T (u + v) = T (u) + T (v)  for all u, v in V, and   
 (ii) T (cu) = c T (u)   for all u in V and all scalars c.  
 
The kernel (or null space) of such a T is the set of all u in V such that T (u) = 0 (the zero 
vector in W). The range of T is the set of all vectors in W of the form T (x) for some x in 
V. If T happens to arise as a matrix transformation, say, T (x) = Ax for some matrix A – 
then the kernel and the range of T are just the null space and the column space of A, as 
defined earlier. So if T(x) = Ax, col A = range of T. 
 
 
 
Definition:   If is a linear transformation, then the set of vectors in V that T 
maps into 0 is called the kernel of T; it is denoted by ker(T). The set of all vectors in W 

:T V W→
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that are images under T of at least one vector in V is called the range of T; it is denoted 
by R(T). 
  
Example:    If  is multiplication by the : n

AT →R Rm m n×  matrix A, then from the 
above definition; the kernel of  is the null space of A and the range of  is the column 
space of A. 

AT AT

 
Remarks:   The kernel of T is a subspace of V and the range of T is a subspace of W.  

 
Figure 2 Subspaces associated with a linear transformation. 

 
In applications, a subspace usually arises as either the kernel or the range of an 
appropriate linear transformation. For instance, the set of all solutions of a homogeneous 
linear differential equation turns out to be the kernel of a linear transformation. Typically, 
such a linear transformation is described in terms of one or more derivatives of a 
function. To explain this in any detail would take us too far a field at this point. So we 
present only two examples. The first explains why the operation of differentiation is a 
linear transformation. 
 
Example 11:   Let V be the vector space of all real-valued functions f  defined on an 
interval [a, b] with the property that they are differentiable and their derivatives are 
continuous functions on [a, b]. Let W be the vector space of all continuous functions on 
[a, b] and let : →D V W  be the transformation that changes f  in V into its 
derivative ′f . In calculus, two simple differentiation rules are 
  ( ) ( ) ( ) and ( ) (c c+ = + = )D f g D f D g D f D f  
That is, D is a linear transformation. It can be shown that the kernel of D is the set of 
constant functions of [a, b] and the range of D is the set W of all continuous functions on 
[a, b]. 
 
 
Example 12:   The differential equation 0y w y′′ + =     (4) 
where w is a constant, is used to describe a variety of physical systems, such as the 
vibration of a weighted spring, the movement of a pendulum and the voltage in an 

0 
W 

V  ’
0 

Range 

Kernel 

Domain 

Kernel is a 
subspace of V 

Range is a 
subspace of W 
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inductance – capacitance electrical circuit. The set of solutions of (4) is precisely the 
kernel of the linear transformation that maps a function ( )=y f t  into the 
function ( ) ( )w′′ +f t f t . Finding an explicit description of this vector space is a problem in 
differential equations.  
 

Example 13:   Let  Show that W is a subspace of R3 in 

different ways. 

.
a

= b : a - 3b - c = 0
c

⎧ ⎫⎡ ⎤
⎪⎢ ⎥
⎨⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

W ⎪
⎬

Solution:   First method: W is a subspace of R3 by Theorem 2 because W is the set of all 
solutions to a system of homogeneous linear equations (where the system has only one 
equation). Equivalently, W is the null space of the 1x3 matrix  = [1 - 3 - 1] .A
Second method: Solve the equation a – 3b – c = 0 for the leading variable a in terms of 
the free variables b and c.  

Any solution has the form where b and c are arbitrary, and 
3

,
b + c

b
c

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

⎥
⎥

13 3
1 0
0 1

b+c
b = b +c
c

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

↑ ↑

1 2v v
 

 
This calculation shows that W = Span{v1, v2}. Thus W is a subspace of R3 by Theorem i.e. 
if  are in a vector spaceV , then Span 1,..., pv v { }1,..., pv v is a subspace ofV . We could 
also solve the equation a – 3b – c = 0 for b or c and get alternative descriptions of W as a 
set of linear combinations of two vectors. 
 

Example 14:   Let  
7 -3 5 2 7
-4 1 -5 1 6
-5 2 -4 -1 -3

= , = ,and =
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A v W
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Suppose you know that the equations Ax = v and Ax = w are both consistent. What can 
you say about the equation Ax = v + w? 
Solution:   Both v and w are in Col A. Since Col A is a vector space, v + w must be in Col 
A. That is, the equation Ax = v + w is consistent. 
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Activity:      

1. Let V and W be any two vector spaces. The mapping :T V W→  such that T (v) = 
0 for every v in V is a linear transformation called the zero transformation. Find 
the kernel and range of the zero transformation. 

 
2. Let V be any vector space. The mapping :I V V→  defined by I(v) = v is called 

the identity operator on V. Find the kernel and range of the identity operator. 
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Exercises: 
 

1. Determine if w =  is in Nul A, where A=
5
-3
2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

5 21 19
13 23 2
8 14 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
In exercises 2 and 3, find an explicit description of Nul A, by listing vectors that span the 
null space. 

2.     3. 
1 3 5 0
0 1 4 -2
⎡ ⎤
⎢
⎣ ⎦

⎥

1 -2 0 4 0
0 0 1 -9 0
0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
In exercises 4-7, either use an appropriate theorem to show that the given set, W is a 
vector space, or find a specific example to the contrary. 
 

4.    5. :
a
b a+b+c = 2
c

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎨⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

⎬ :

a
b a - 2b = 4c
c 2a = c+3d
d

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

 

6.     7.  

- 2
5 +

: rea
+ 3

b d
d

b,d
b d

d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

l
- + 2

- 2 : real
3 - 6

a b
a b a,b
a b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
In exercises 8 and 9, find A such that the given set is Col A. 
 

8.    9. 

2 + 3
- 2

: real
4 +

3 - -

s t
r s t

r,s,t
r s

r s t

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥+⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

-
2 +

: , , real
5 - 4

b c
b c d

b c d
c d

d

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥+⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

 
For the matrices in exercises 10-13, (a) find k such that Nul A is a subspace of Rk, and  
(b) find k such that Col A is a subspace of Rk. 
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10.     11. 

2 -6
-1 3
-4 12
3 -9

⎡ ⎤
⎢ ⎥
⎢=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A ⎥

7 -2 0
-2 0 -5
0 -5 7
-5 7 -2

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A  

 

12. A=    13. A=
4 5 -2 6 0
1 1 0 1 0
⎡ ⎤
⎢
⎣ ⎦

⎥ [ ]1 -3 9 0 -5  

 

14. Let . Determine if w is in Col A. Is w in Nul A? 
-6 12 2

and
-3 6 1
⎡ ⎤ ⎡

= ⎢ ⎥ ⎢
⎣ ⎦ ⎣

A ⎤
= ⎥

⎦
w

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

w

 

15. Let . Determine if w is in Col A. Is w in Nul A? 
-8 -2 -9 2
6 4 8 and 1
4 0 4 -2

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A

 

16. Define T: P2 R2 by T (p) = →
(0)
(1)

⎡ ⎤
⎢ ⎥
⎣ ⎦

p
p

. For instance, if p (t) = 3 + 5t + 7t2, then 

. 
3

15
( ) ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

T p

a. Show that T is a linear transformation. 
b. Find a polynomial p in P2 that spans the kernel of T, and describe the range of T. 
 

17. Define a linear transformation T: P2 R2 by T (p) =→
(0)
(1)

⎡ ⎤
⎢ ⎥
⎣ ⎦

p
p

. Find polynomials p1 

and p2 in P2 that span the kernel of T, and describe the range of T. 
 
18. Let M2x2 be the vector space of all 2x2 matrices, and define T: M2x2  M2x2 by   →

T (A) = A + AT, where . 
a b
c d
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A

(a) Show that T is a linear transformation. 
(b) Let B be any element of M2x2 such that BT=B. Find an A in M2x2 such that T (A) = B. 
(c) Show that the range of T is the set of B in M2x2 with the property that BT=B. 
(d) Describe the kernel of T. 
 
19. Determine whether w is in the column space of A, the null space of A, or both, where 
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(a)  (b) 

1 7 6 -4
1 -5 -1 0
-1 9 -11 7 -3
-3 19 -9 7 1

,

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

w A

1
-2

0
2
3
0

1 -8 5 -2
2 -5 2 1 -
1 10 -8 6 -
0 3 -2 1

,

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢= = ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣

w A

⎦

 

 
20. Let a1, …, a5 denote the columns of the matrix A, where 

5 1 2 2 0
3 3 2 -1 -12
8 4 4 -5 12
2 1 1 0 -2

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A , [ ]= 1 2 4B a a a  

(a) Explain why a3 and a5 are in the column space of B 
(b) Find a set of vectors that spans Nul A 
(c) Let T: R5 R4 be defined by T (x) = Ax. Explain why T is neither one-to-one nor 
onto.   

→
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Lecture 22 
 

Linearly Independent Sets; Bases 
 
First we revise some definitions and theorems from the Vector Space: 
 
Definition:    Let V be an arbitrary nonempty set of objects on which two operations are 
defined, addition and multiplication by scalars.  
 
 If the following axioms are satisfied by all objects u, v, w in V and all scalars l and 
m, then we call V a vector space. 
 
Axioms of Vector Space:  
 For any set of vectors u, v, w in V and scalars l, m, n:  
1. u + v is in V 
2.  u + v = v + u 
3.  u + (v + w) = (u + v) + w 
4.         There exist a zero vector 0 such that  
 0 + u = u + 0 = u 
5. There exist a vector – u in V such that  
             -u + u = 0 = u + (-u) 
6.  (l u) is in V 
7. l (u + v)= l u + l v 
8. m (n u) = (m n) u = n (m u) 
9. (l +m) u= I u+ m u 
10. 1u = u where 1 is the multiplicative identity 
 
    
Definition:   A subset W of a vector space V is called a subspace of V if W itself is a 
vector space under the addition and scalar multiplication defined on V. 
 
Theorem:   If W is a set of one or more vectors from a vector space V, then W is subspace 
of V if and only if the following conditions hold: 
 
(a) If u and v are vectors in W, then u + v is in W 
(b) If k is any scalar and u is any vector in W, then k u is in W. 
 
Definition;   The null space of an  m x n matrix A (Nul A) is the set of all solutions of the 
hom  equation Ax = 0 
 Nul A = {x: x is in Rn and Ax = 0}  
 
Definition:    The column space of an  m x n matrix A (Col A) is the set of all linear 
combinations of the columns of A.  
If A = [a1   …   an],  
then  
Col A = Span { a1,… , an }  
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Since we know that a set of vectors { }1 2 3, , ,... pS v v v v= spans a given vector space V if 
every vector in V is expressible as a linear combination of the vectors in S. In general 
there may be more than one way to express a vector in V as linear combination of vectors 
in a spanning set. We shall study conditions under which each vector in V is expressible 
as a linear combination of the spanning vectors in exactly one way. Spanning sets with 
this property play a fundamental role in the study of vector spaces. 
In this Lecture, we shall identify and study the subspace H as “efficiently” as possible. 
The key idea is that of linear independence, defined as in Rn. 
 
Definition:    An indexed set of vectors {v1,…, vp} in V is said to be linearly 
independent if the vector equation  

1 2 pc +c +...+c = 01 2 pv v v        (1) 
has only the trivial solution, i.e. c1 = 0, … , cp = 0. 
The set {v1,…,vp} is said to be linearly dependent if (1) has a nontrivial solution, that is, 
if there are some weights, c1,…,cp, not all zero, such that (1) holds. In such a case, (1) is 
called a linear dependence relation among v1, … , vp. Alternatively, to say that the v’s 
are linearly dependent is to say that the zero vector 0 can be expressed as a nontrivial 
linear combination of the v’s. 
  
If the trivial solution is the only solution to this equation then the vectors in the set are 
called linearly independent and the set is called a linearly independent set.  If there is 
another solution then the vectors in the set are called linearly dependent and the set is 
called a linearly dependent set. 
 
Just as in Rn, a set containing a single vector v is linearly independent if and only if ≠v 0 . 
Also, a set of two vectors is linearly dependent if and only if one of the vectors is a 
multiple of the other. And any set containing the zero-vector is linearly dependent. 
 
Determining whether a set of vectors is linearly independent is easy when 
one of the vectors is 0: if, say,

1 2 3, , ,... na a a a

1 0a = , then we have a simple solution to 
given by choosing1 1 2 2 3 3 ... 0n nx a x a x a x a+ + + + = 1x to be any nonzero value and putting 

all the other x’s equal to 0. Consequently, if a set of vectors contains the zero vector, it 
must always be linearly dependent. Equivalently, any set of linearly independent vectors 
cannot contain the zero vector. 
   
Another situation in which it is easy to determine linear independence is when there are 
more vectors in the set than entries in the vectors. If n > m, then the n vectors 

 in Rm are columns of an 1 2 3, , ,... na a a a m n× matrix A. The vector equation 
 is equivalent to the matrix equation Ax = 0 whose 

corresponding linear system has more variables than equations. Thus there must be at 
least one free variable in the solution, meaning that there are nontrivial solutions 

1 1 2 2 3 3 ... 0n nx a x a x a x a+ + + + =
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to : If n > m, then the set 1 1 2 2 3 3 ... 0n nx a x a x a x a+ + + + = { }1 2 3, , ,... na a a a of vectors in Rm 
must be linearly dependent.  
When n is small we have a clear geometric picture of the relation amongst linearly 
independent vectors. For instance, the case n = 1 produces the equation , and as 
long as , we only have the trivial solution

1 1 0x a =

1 0a ≠ 1 0x = . A single nonzero vector always 
forms a linearly independent set. 
When n = 2, the equation takes the form 1 1 2 2 0x a x a+ = . If this were a linear dependence 
relation, then one of the x’s, say 1x , would have to be nonzero. Then we could solve the 
equation for  and obtain a relation indicating that  is a scalar multiple of . 
Conversely, if one of the vectors is a scalar multiple of the other, we can express this in 
the form . Thus, a set of two nonzero vectors is linearly dependent if and 
only if they are scalar multiples of each other. 

1a 1a 2a

1 1 2 2 0x a x a+ =

 
Example:      (linearly independent set)  
Show that the following vectors are linearly independent:  
 

                                 
1 2 3

2 2
1 , 1 , 0
1 2

v v v
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0

1
Solution:    Let there exist scalars  in R such that 1 2 3, ,c c c

1 1 3 2 3 3 0c v c v c v+ + =  
Therefore, 

                   1 2 3

2 2 0
1 1 0
1 2 1

c c c
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⇒ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0=

=                   
1 2

1 2

31 2

2 2 0
0 0

2

c c
c c

cc c

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⇒ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦ ⎣ ⎦

                 
1 2

1 2

1 2 3

2 2 0
0
02

c c
c c
c c c

− +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⇒ +⎢ ⎥ = ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + ⎣ ⎦⎣ ⎦

 

The above can be written as: 
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1 2 1 2

1 2

1 2 3

1 2

1 2

1

2 1

2

2 2 0 ........(1) 0........(4) ( 2 (1))
0 .......(2)

2 0 ......(3)
(2) (4) :

0
0 (2) :

__________ 0 0
0 2 0 0

0

c c c c dividing by onboth sides of
c c
c c c
Solving and implies

c c
Sol

c c Solving implies
c

c c
c

− + = ⇒ − + =
+ =
− + =

+ =
− + =

+ =
+ = ⇒ =
⇒ =

3

3

1 2 3 1 2 3

1 2 3

(3) :
0 0 0

0

0 ; , ,
  The system has trivial solution.

, , .

ving implies
c
c

c c c scalars c c c R are all zero

Hence the given vectors v v v are linearly independent

+ + =

⇒ =

⇒ = = = ∈
∴

 

 
Example:      (linearly dependent set) 
If { } { } { }1 2 32, 1,0,3 , 1,2,5, 1 7, 1,5,8v and v= − = − = −v , then the set of vectors 

{ }1 2 3, ,S v v v= is linearly dependent, since 1 2 33 0v v v+ − =  
 
Example;      (linearly dependent set) 
The polynomials  form a linearly 
dependent set in 

2
1 2 31, 2 3 5, 3 1p x p x x and p x x= − + = − + + = − + +2

2p  since . 1 2 33 2p p p− + = 0
 
Note: The linearly independent or linearly dependent sets can also be determined using 
the Echelon Form or the Reduced Row Echelon Form methods. 
 
Theorem 1:   An indexed set { v1, … , vp } of two or more vectors, with , is 
linearly dependent if and only if some vj (with ) is a linear combination of the 
preceding vectors, v1, … , vj-1. 

≠1v 0
1j >

 
The main difference between linear dependence in Rn and in a general vector space is that 
when the vectors are not n – tuples, the homogeneous equation (1) usually cannot be 
written as a system of n linear equations. That is, the vectors cannot be made into the 
columns of a matrix A in order to study the equation Ax = 0. We must rely instead on the 
definition of linear dependence and on Theorem 1. 
 
Example 1:   Let p1 (t) = 1, p 2(t) = t and p 3 (t) = 4 – t. Then { p 1, p 2, p 3} is linearly 
dependent in P because       p3 = 4p1 – p2. 
 
Example 2:   The set {Sin t, Cos t} is linearly independent in C [0, 1] because Sin t and 
Cos t are not multiples of one another as vectors in C [0, 1]. That is, there is no scalar c 
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such that Cos t = c. Sin t for all t in [0, 1]. (Look at the graphs of Sin t and Cos t.) 
However,  {Sin t Cos t, Sin 2t} is linearly dependent because of he identity:  
Sin 2t = 2 Sin t Cos t, for all t. 
 
Useful results: 

• A set containing the zero vector is linearly dependent. 
• A set of two vectors is linearly dependent if and only if one is a multiple of the 

other. 
• A set containing one nonzeoro vector is linearly independent. i.e. consider the set 

containing one nonzeoro vector { }1v  so { }1v  is linearly independent when 1 0v ≠ . 
• A set of two vectors is linearly independent if and only if neither of the vectors is 

a multiple of the other. 
 
Activity:     Determine whether the following sets of vectors are linearly independent or 
linearly dependent: 
 

1. ( ) ( ) ( )1,0,0,0 , 0,1,0,0 , 0,0,0,1i j k= = =  in 4R . 
2. ( ) ( ) ( ) ( )1 2 3 42,0, 1 , 3, 2, 5 , 6,1, 1 , 7,0,2v v v v= − = − − − = − − = −  in 3�R�.   

3. ( ) ( ) ( )1,0,0,...,0 , 0,1,0,...,0 , 0,0,0,...,1i j k= = =  in mR�. 

4. 7x+ + in 2
2 2 2 23 3 1, 4 , 3 6 5, 2x x x x x x x+ + + + + − p  

  
Definition:   Let H be a subspace of a vector space V. An indexed set of vectors B = 
{b1,…, bp} in V is a basis for H if  
  

(i) B is a linearly independent set, and  
(ii) the subspace spanned by B coincides with H; that is, 

H = Span {b1,...,bp } 
The definition of a basis applies to the case when H = V, because any vector space is a 
subspace of itself. Thus a basis of V is a linearly independent set that spans V. Observe 
that when ≠H V , condition (ii) includes the requirement that each of the vectors b1,...,bp 
must belong to H, because Span { b1,...,bp } contains  b1,…,bp, as we saw in lecture 21. 
 
Example 3:   Let A be an invertible n n×  matrix – say, A = [a1 … an]. Then the columns 
of A form a basis for Rn because they are linearly independent and they span Rn, by the 
Invertible Matrix Theorem. 
 
Example 4:   Let e1,…, en be the columns of the n n×  identity matrix, In. That is, 
 

1 0
0 1

, , ...

0 0

= =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 2 ne e e

0
0

1
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The set {e1, …, en} is called the standard basis for R n (Fig. 1). 

 
Figure 1 - The standard basis for R3 

 

Example 5: Let v v  Determine if {v1, v2, v3} is a basis 

for R3. 

3 -4 -
0 , 1 ,and 1 .
-6 7 5

= = =
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 2 3

2
v

Solution:   Since there are exactly three vectors here in R3, we can use one of any 
methods to determine whether they are basis for or not. For this, let solve with help of 
matrices. First form a matrix of vectors i.e. matrix A = [v1   v2    v3]. If this matrix is 
invertible (i.e. |A| ≠ 0 determinant should be non zero).  

3

For instance, a simple computation shows that det A = 6 0≠ . Thus A is invertible. As in 
example 3, the columns of A form a basis for R3.  
 
Example 6:   Let S = {1, t, t2, …, tn}. Verify that S is a basis for Pn. This basis is called 
the standard basis for Pn. 
 
Solution:   Certainly S spans Pn. To show that S is linearly independent, suppose that  
c0,…, cn satisfy 

c0.1 + c1t + c2t2 + ….. + cntn = 0 (t)     (2) 
This equality means that the polynomial on the left has the same values as the zero 
polynomial on the right. A fundamental theorem in algebra says that the only polynomial 
in Pn with more than n zeros is the zero polynomial. That is, (2) holds for all t only if      
c0 = …= cn = 0. This proves that S is linearly independent and hence is a basis for Pn. See 
Figure 2. 

x1 

x2 

x3 

e1 
e2 

e3 
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Figure 2 – The standard basis for P2 
 
Problems involving linear independence and spanning in Pn are handled best by a 
technique to be discussed later. 
 
Example 7:   Check whether the set of vectors {(2, -3, 1), (4, 1, 1), (0, -7, 1)} is basis for 
R3? 
Solution:   The set S = {v1, v2, v3} of vectors in R3 spans V = R3 if  

c1v1 + c2v2 + c3v3 = d1w1 + d2w2 + d3w3    (*)  
with w1 = (1,0,0), w2 = (0,1,0) , w3 = (0,0,1) has at least one solution for every set of 
values of the coefficients d1, d2, d3. Otherwise (i.e., if no solution exists for at least some 
values of d1, d2, d3), S does not span V. With our vectors v1, v2, v3, (*) becomes 

c1(2,-3,1) + c2(4,1,1) + c3(0,-7,1) =  d1(1,0,0) + d2(0,1,0) + d3(0,0,1) 
Rearranging the left hand side yields   

1 2 3 1 2

1 2 3 1 2

1 2 3 1 2

2 c  +4 c  +0 c = 1 d  +0 d  +0 d
-3 c  +1 c -7 c = 0 d  +1 d  +0 d
1 c  +1 c  +1 c = 0 d  +0 d  +1 d

3

3

3

     (A) 

2 4 0
-3 1 -7
1 1 1

1 1

2 2

3 3

c d
c d
c d

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥⇒ =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

We now find the determinant of coefficient matrix 
2 4 0
-3 1 -7
1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 to determine whether the 

system is consistent (so that S spans V), or inconsistent (S does not span V). 

y=1 

y=t 
y=t2 

y 

t 
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Now   det  = 2(8) – 4(4) +0 = 0   
2 4 0
-3 1 -7
1 1 1

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

⎥
⎥

Therefore, the system (A) is inconsistent, and, consequently, the set S does not span the 
space V. 
  
Example 8:   Check whether the set of vectors  
{-4  + 1 t + 3 t2 ,  6  + 5 t + 2 t2 ,  8  + 4 t + 1 t2} is a basis for P2? 
Solution   The set S = {p1 (t), p2 (t), p3 (t)} of vectors in P2 spans V = P2 if  

c1 p1 (t) + c2 p2 (t) + c3 p3 (t) = d1 q1 (t) + d2 q2 (t) + d3 q3 (t)  (*)  
with q1(t) = 1  + 0 t  + 0 t 2  , q2(t) = 0  + 1 t  + 0 t 2  , q3(t) = 0  + 0 t  + 1 t 2 has at least 
one solution for every set of values of the coefficients d1, d2, d3. Otherwise (i.e., if no 
solution exists for at least some values of d1, d2, d3), S does not span V. With our vectors 
p1(t), p2(t), p3(t), (*) becomes: 

c1 (-4 + 1 t + 3 t2) + c2 (6 + 5 t + 2 t2) + c3 (8 + 4 t + 1 t2) = 
d1 (1  + 0 t  + 0 t 2 )  +  d2 (0  + 1 t  + 0 t 2 )  +  d3 (0  + 0 t  + 1 t 2 ) 

 Rearranging the left hand side yields  
(-4 c1 +6 c2 +8 c3)1  + (1 c1 +5 c2 +4 c3) t + (3 c1 +2 c2 +1 c3) t2 = 
(1 d1 +0 d2 +0 d3)1 + (0 d1 +1 d2 +0 d3) t + (0 d1 +0 d2 +1 d3) t2  

In order for the equality above to hold for all values of t, the coefficients corresponding to 
the same power of t on both sides of the equation must be equal. This yields the 
following system of equations: 

1 2 3 1 2

1 2 3 1 2 3

1 2 3 1 2 3

-4 c +6 c +8 c = 1 d +0 d +0 d
1 c +5 c +4 c = 0 d +1 d +0 d
3 c +2 c +1 c = 0 d +0 d +1 d

3

     (A) 

- 4 6 8
1 5 4
3 2 1

1 1

2 2

3 3

c d
c d
c d

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥⇒ =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

We now find the determinant of coefficient matrix 
- 4 6 8
1 5 4
3 2 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 to determine whether the 

system is consistent (so that S spans V), or inconsistent (S does not span V). 

Now   det  = -26 0. Therefore, the system (A) is consistent, and, 

consequently, the set S spans the space V. 

- 4 6 8
1 5 4
3 2 1

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

⎥
⎥ ≠

 
The set S = {p1 (t), p2 (t), p3 (t)} of vectors in P2 is linearly independent if the only 
solution of  

c1 p1 (t) + c2 p2 (t) + c3 p3 (t) = 0      (**) 
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is c1, c2, c3 = 0. In this case, the set S forms a basis for span S. Otherwise (i.e., if a 
solution with at least some nonzero values exists), S is linearly dependent. With our 
vectors p1 (t), p2 (t), p3 (t), (2) becomes: c1 (-4 + 1 t + 3 t2) + c2 (6 + 5 t + 2 t2) + c3 (8 + 
4 t + 1 t2) = 0 Rearranging the left hand side yields  

(-4 c1 +6 c2 +8 c3)1  + (1 c1 +5 c2 +4 c3) t + (3 c1 +2 c2 +1 c3) t2 = 0  
This yields the following homogeneous system of equations:  

1 2 3

1 2 3

1 2 3

-4 c +6 c +8 c = 0
1 c  +5 c  +4 c = 0
3 c  +2 c  +1 c = 0

 
- 4 6 8
1 5 4
3 2 1

1

2

3

c 0
c 0

0c

⎡ ⎤⎡ ⎤ ⎡
⎢ ⎥

⎤
⎢ ⎥ ⎢⇒ ⎢ ⎥

⎥=⎢ ⎥ ⎢
⎢ ⎥

⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣⎣ ⎦ ⎦

⎥
⎥

  

As   det  = -26 0. Therefore the set S = {p1 (t), p2 (t), p3 (t)} is linearly 

independent. Consequently, the set S forms a basis for span S. 

- 4 6 8
1 5 4
3 2 1

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

≠

 

Example 9:   The set  is a basis for the vector 

space V of all 2 x 2 matrices.  

1 0 0 1 0 0 0 0
= , , ,

0 0 0 0 1 0 0 1
⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

S

Solution:   To verify that S is linearly independent, we form a linear combination of the 
vectors in S and set it equal to zero: 

 c1 + c2 + c3 
1 0
0 0
⎡ ⎤
⎢
⎣ ⎦

⎥ ⎥
0 1
0 0
⎡ ⎤
⎢
⎣ ⎦

0 0
1 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

+ c4 
0 0
0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

= 
0 0
0 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

  

This gives , which implies that c1 = c2 = c3 = c4 = 0. Hence S is  
0 0
0 0

1 2

3 4

c c
=

c c
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢

⎣ ⎦⎣ ⎦
⎥

linearly independent.  

To verify that S spans V we take any vector 
a b
c d
⎡ ⎤
⎢ ⎥
⎣ ⎦

 in V and we must find scalars c1, c2, 

 c3, and c4 such that    

c1 + c2 + c3 + c4 
1 0
0 0
⎡ ⎤
⎢
⎣ ⎦

⎥ ⎥ ⎥
0 1
0 0
⎡ ⎤
⎢
⎣ ⎦

0 0
1 0
⎡ ⎤
⎢
⎣ ⎦

0 0
0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

=
a b
c d
⎡ ⎤
⎢ ⎥
⎣ ⎦

⇒ 1 2

3 4

c c a b
=

c c c d
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 

We find that c1 = a, c2 = b, c3 = c, and c4 = d so that S spans V. 
  
The basis S in this example is called the standard basis for M22. More generally, the 
standard basis for Mmn consists of mn different matrices with a single 1 and zeros for the 
remaining entries 
  
Example 10:   Show that the set of vectors  

3 6 0 -1 0 -8 1 0
, , ,

3 -6 -1 0 -12 -4 -1 2
⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣⎩ ⎭

⎤
⎥
⎦

 

 
 is a basis for the vector space V of all 2 x 2 matrices (i.e. M22).  
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Solution:   The set S = {v1, v2, v3, v4} of vectors in M22 spans V = M22 if  

c1 v1 + c2 v2 + c3 v3 + c4 v4 = d1 w1 + d2 w2 + d3 w3 + d4 w4  (*)  

with   w1 = , w2 = 
1 0
0 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

0 1
0 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

, w3 =
0 0
1 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

, w4 =  
0 0
0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

has at least one solution for every set of values of the coefficients d1, d2, d3, d4. Otherwise 
(i.e., if no solution exists for at least some values of d1, d2, d3, d4), S does not span V. 
With our vectors v1, v2, v3, v4, (*) becomes:  

c1  + c2 
3 6
3 -
⎡ ⎤
⎢ ⎥
⎣ ⎦6

10 -
-1 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

+ c3
0 -
-12 -4

8⎡ ⎤
⎢ ⎥
⎣ ⎦

 + c4
1 0
-1 2
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

= d1  + d2 
1 0
0 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

0 1
0 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

+ d3
0 0
1 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

+ d4
0 0
0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

  

Rearranging the left hand side yields  

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

3 c +0c +0c  +1c   6c -1c -8c +0c   
3 c -1c -12c -1c     -6c +0c -4 c +2c
⎡ ⎤
⎢ ⎥
⎣ ⎦

=

  1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 d  +0 d  +0 d  +0 d     0 d  +1 d  +0 d  +0 d
0 d  +0 d  +1 d  +0 d     0 d  +0 d  +0 d  +1 d
⎡ ⎤
⎢ ⎥
⎣ ⎦

The matrix equation above is equivalent to the following system of equations  

1 2 3 4 1 2 3

1 2 3 4 1 2 3

1 2 3 4 1 2 3

1 2 3 4 1 2 3

3 c + 0 c + 0 c +1 c = 1 d +0 d +0 d +0 d
6 c - 1 c - 8 c +0 c = 0 d +1 d +0 d +0 d
3 c - 1 c -12 c - 1 c = 0 d +0 d +1 d +0 d
-6 c +0 c - 4 c + 2 c = 0 d +0 d +0 d +1 d

4

4

4

4

 

3 0 0 1
6 -1 -8 0
3 -1 -12 -1
-6 0 -4 2

1 1

2 2

3 3

4 4

c d
c d
c d
c d

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⇒ =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

We now find the determinant of coefficient matrix 

3 0 0 1
6 -1 -8 0
3 -1 -12 -1
-6 0 -4 2

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 to determine 

whether the system is consistent (so that S spans V), or inconsistent (S does not span V). 
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Now   det (A) = 48≠ 0. Therefore, the system (A) is consistent, and, consequently, the set 
S spans the space V. 
Now, the set S = {v1, v2, v3, v4} of vectors in M22 is linearly independent if the only 
solution of    c1v1 + c2v2 + c3v3 + c4v4 = 0   is c1, c2, c3, c4 = 0. In this case the set S forms 
a basis for span S. Otherwise (i.e., if a solution with at least some nonzero values exists), 
S is linearly dependent. With our vectors v1, v2, v3, v4, we have   

c1 + c2 + c3
3 6
3 -
⎡ ⎤
⎢ ⎥
⎣ ⎦6

1 80 -
-1 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

0 -
-12 -4
⎡ ⎤
⎢ ⎥
⎣ ⎦

+ c4
1 0
-1 2
⎡ ⎤
⎢ ⎥
⎣ ⎦

=   
0 0
0 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

Rearranging the left hand side yields  
1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

3 c  +0 c  +0 c  +1 c     6 c -1 c - 8 c  +0 c
3 c -1 c -12 c -1 c                - 6 c  +0 c - 4 c  +2 c
⎡ ⎤
⎢ ⎥
⎣ ⎦

=  
0 0
0 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

The matrix equation above is equivalent to the following homogeneous equation. 

3 0 0 1 0
6 -1 -8 0 0
3 -1 -12 -1 0
-6 0 -4 2 0

1

2

3

4

c
c
c
c

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  

As  det (A) = 48≠ 0   

Therefore the set S = {v1, v2, v3, v4} is linearly independent.  Consequently, the set S 
forms a basis for span S. 
 

Example 11:   Let   
1 -3 - 4
-2 5 5 and { , , }.
-3 7 6

= , = , = , Span
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 2 3 1 2v v v H v v 3v

Note that v3 = 5v1 + 3v2 and show that Span {v1, v2, v3} = Span {v1, v2}. Then find a basis 
for the subspace H. 
Solution:   Every vector in Span {v1, v2} belongs to H because 

c1 v1 + c2 v2 = c1 v1 + c2 v2 + 0 v3 
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Now let x be any vector in H – say, x = c1v1 + c2v2 + c3v3. Since v3 = 5v1 + 3v2, we may 
substitute 

x = c1v1 + c2v2 + c3 (5v1 + 3v2) 
   = (c1 + 5c3) v1 + (c2 + 3c3) v2 

Thus x is in Span {v1, v2}, so every vector in H already belongs to Span {v1, v2}. We 
conclude that H and Span {v1, v2} are actually the same set of vectors. It follows that  
{v1, v2} is a basis of H since {v1, v2} is obviously linearly independent. 
 
Activity:     Show that the following set of vectors is basis for  : 3R�
 
 

1.   

2.  

  

   

 

 
The Spanning Set Theorem: 
As we will see, a basis is an “efficient” spanning set that contains no unnecessary vectors. 
In fact, a basis can be constructed from a spanning set by discarding unneeded vectors. 

 
Theorem 2: (The Spanning Set Theorem) Let S = {v1, … , vp} be a set in V and let  
H = Span {v1, …, vp}. 

a. If one of the vectors in S – say, vk – is a linear combination of the 
remaining vectors in S, then the set formed from S by removing vk still 
spans H. 

b. If { }≠H 0 , some subset of S is a basis for H. 
 

v3 

x2 

x1 

x3 

v1 
v2 

( ) ( ) ( )1 2 11, 2, 3 , 0, 1, 1 , 0, 1, 3v v v= = =

( ) ( ) ( )1 2 11, 0, 0 , 0, 2, 1 , 3, 0, 1v v v= = =
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Since we know that span is the set of all linear combinations of some set of vectors and 
basis is a set of linearly independent vectors whose span is the entire vector space. The 
spanning set is a set of vectors whose span is the entire vector space. "The Spanning set 
theorem" is that a spanning set of vectors always contains a subset that is a basis. 
 
  
Remark:   Let V = Rm and let S = {v1 , v2,…, vn} be a set of nonzero vectors in V. 
 
Procedure: 
         The procedure for finding a subset of S that is a basis for W = span S is as follows: 
Step 1   Write the Equation,   

c1v1 + c2v2 + …+ cn vn =0      (3) 
Step 2   Construct the augmented matrix associated with the homogeneous system of  
Equation (1) and transforms it to reduced row echelon form. 
Step 3   The vectors corresponding to the columns containing the leading 1’s form a basis 
 for W = span S.  
Thus if S = {v1, v2,…, v6} and the leading 1’s occur in columns 1, 3, and 4, then { v1 , v3 , v4} is a 
basis for span S. 
 
Note   In step 2 of the procedure above, it is sufficient to transform the augmented matrix to row 
echelon form. 
 
Example 12:   Let S = {v1, v2, v3, v4, v5} be a set of vectors in R4, where 
v1 = (1,2,-2,1), v2 = (-3,0,-4,3), v3 = (2,1,1,-1), v4 = (-3,3,-9,6), and v5 = (9,3,7,-6). 
Find a subset of S that is a basis for W = span S. 
Solution:   Step 1 Form Equation (3),  
c1 (1,2, -2,1) + c2(-3,0,-4,3) + c3(2,1,1,-1)+ c4(-3,3,-9,6) + c5(9,3.7,-6) = (0,0,0,0). 
Step 2 Equating corresponding components, we obtain the homogeneous system 

   

1 2 3 4 5

1 3 4 5

1 2 3 4 5

1 2 3 4 5

 c  - 3c + 2c  - 3c  +9c  = 0
2c   +  c  + 3c  + 3c = 0
-2c  - 4c +  c  -  9c  + 7c  = 0
 c  + 3c  -  c  + 6c  - 6c  = 0

The reduced row echelon form of the associated augmented matrix is 
1 0  ½   3/2  3/2   :  0
0 1 -1/2   3/2 -5/2   :  0
0 0  0   0  0      :  0
0 0  0   0  0      :  0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Step 3   The leading 1’s appear in columns 1 and 2, so {v1, v2} is a basis for W = span S. 
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Two Views of a Basis When the Spanning Set Theorem is used, the deletion of 
vectors from a spanning set must stop when the set becomes linearly independent. If 
an additional vector is deleted, it will not be a linear combination of the remaining 
vectors and hence the smaller set will no longer span V. Thus a basis is a spanning set 
that is as small as possible. 
A basis is also a linearly independent set that is as large as possible. If S is a basis for V, 
and if S is enlarged by one vector – say, w – from V, then the new set cannot be linearly 
independent, because S spans V, and w is therefore a linear combination of the elements 
in S. 
 
Example 13: The following three sets in R3 show how a linearly independent set can be 
enlarged to a basis and how further enlargement destroys the linear independence of the 
set. Also, a spanning set can be shrunk to a basis, but further shrinking destroys the 
spanning property. 
 
 

1 2 1 2 4 1 2 4 7
0 , 3 0 , 3 , 5 0 , 3 , 5 , 8
0 0 0 0 6 0 0 6 9

⎧ ⎫ ⎧ ⎫ ⎧⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎨ ⎬ ⎨ ⎬ ⎨⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭ ⎩

⎫
⎪
⎬
⎪
⎭

 

 
      Linearly independent A basis    Spans R3 but is 
      but does not span R3  for R3     linearly dependent 
 

Example 14:  Let  and 
1 0
0 1
0 0

= , =
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1 2v v , : s in .
0

s
s R

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥= ⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

H  then every vector in H is a 

linear combination of v1 and v2 because
1 0
0

0 0

s
s s s 1

0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢= + ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. Is {v1, v2} a basis for H?  

Solution:   Neither v1 nor v2 is in H, so {v1, v2} cannot a basis for H. In fact, {v1, v2} is a 
basis for the plane of all vectors of the form (c1, c2, 0), but H is only a line. 
 
 
Activity:     Find a Basis for the subspace W in  spanned by the following sets of 
vectors: 

3R�

 
1. ( ) ( ) ( ) ( )1 2 3 41,0,2 , 3,2,1 , 1,0,6 , 3,2,1v v v v= = = =  

  
2. ( ) ( ) ( ) ( )1 2 3 41,2,2 , 3,2,1 , 1,1,7 , 7 ,6,4v v v v= = = =  
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Exercises: 
 
Determine which set in exercises 1-4 are bases for R2 or R3. Of the sets that are not bases, 
determine which one are linearly independent and which ones span R2 or R3. Justify your 
answers. 
 

1.     2. 

1 3 -3
0 2 -5
-2 -4 1

, ,
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 -2 0 0
-3 9 0 -3
0 0 0 5

, , ,
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

3.      4. 
1 -4
2 -5
-3 6

,
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1 0 3 0
-4 3 -5 2
3 -1 4 -2

, , ,
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
5. Find a basis for the set of vectors in R3 in the plane x + 2y + z = 0. 
 
6. Find a basis for the set of vectors in R2 on the line y = 5x. 
 
7. Suppose R4 = Span {v1, v2, v3, v4}. Explain why {v1, v2, v3, v4} is a basis for R4. 
 
8. Explain why the following sets of vectors are not bases for the indicated vector spaces. 
(Solve this problem by inspection). 
(a) u1 = (1, 2), u2 = (0, 3), u3 = (2, 7) for R2 
(b) u1 = (-1, 3, 2), u2 = (6, 1, 1) for R3 
(c) p1 = 1 + x + x2, p2 = x – 1 for P2 

(d)  for M22 
1 1 6 0 3 0 5 1 7 1
2 3 -1 4 1 7 4 2 2 9

, , , ,⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
= = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

A B C D E ⎤
⎥
⎦

 
9. Which of the following sets of vectors are bases for R2? 
(a) (2, 1), (3, 0) (b) (4, 1), (-7, -8) (c) (0, 0), (1, 3) (d) (3, 9), (-4, -12) 
 
10. Let V be the space spanned by v1 = Cos2 x, v2 = Sin2x, v3 = cos 2x.  
(a) Show that S = {v1, v2, v3} is not a basis for V (b) Find a basis for V 
 
In exercises 11-13, determine a basis for the solution space of the system. 
 

11. 
1 2 3

1 2 3

1 3

x + x - x = 0
-2x - x + 2x = 0
- x + x = 0

   12. 
1 2 3

1 3

2 3

2x + x 3x = 0
x + 5x = 0

x + x = 0

+
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13. 

x+ y + z = 0
3x+ 2y - 2z = 0
4x+3y - z = 0
6x+5y + z = 0

 

 
14. Determine bases for the following subspace of R3 
(a) the plane 3x – 2y + 5z = 0  (b) the plane x – y = 0 
(c) the line x = 2t, y = -t, z = 4t (d) all vectors of the form (a, b, c), where b = a + c 
 
15. Find a standard basis vector that can be added to the set {v1, v2} to produce a basis for 
R3. 
(a) v1 = (-1, 2, 3), v2 = (1, -2, -2) (b) v1 = (1, -1, 0), v2 = (3, 1, -2) 
 
16. Find a standard basis vector that can be added to the set {v1, v2} to produce a basis for 
R4. 
 v1 = (1, -4, 2, -3), v2 = (-3, 8, -4, 6)   
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Lecture No.23 
Coordinate System 

OBJECTIVES: 
  
The objectives of the lecture are to learn about: 

•  Unique representation theorem. 
• Coordinate of the element of a vector space relative to the basis B. 
• Some examples in which B- coordinate vector is uniquely determined using basis 

of a vector space. 
• Graphical interpretation of coordinates. 
• Coordinate Mapping 

 
 
Theorem: 
                  Let { }1 2, ,..., nB b b b= be a basis for a vector space V. Then for each x  in V, 
there exist a unique set of scalars  such that 1 2, ,..., nc c c

1 1 2 2, ,..., n nx c b c b c b= …………… (1) 
Proof: 
            Since B is a basis for a vector space V, then by definition of basis every element 
of V can be written as a linear combination of basis vectors. That is if x V∈ , then  

1 1 2 2, ,..., n nx c b c b c b= . Now, we show that this representation for x  is unique. 
For this, suppose that we have two representations for x . 
i.e. 

1 1 2 2, ,..., n nx c b c b c b= …………… (2) 
and 

1 1 2 2, ,..., n nx d b d b d b= ………….. (3) 
We will show that the coefficients are actually equal. To do this, subtracting (3) from (2), 
we have 

1 1 1 2 2 20 ( ) ( ) ... ( )n nc d b c d b c d b= − + − + + − n . 
Since B is a basis, it is linearly independent set. Thus the coefficients in the last linear 
combination must all be zero. That is 

1 1,..., n nc d c d= = . 
Thus the representation for x is unique. 
  
Definition (B-Coordinate of x ): 
 
Suppose that the set { }1 2, ,..., nB b b b= is a basis for V and x   is in V. The coordinates of x  
relative to basis B (or the B-coordinate of x ) are the weights  such that 1 2, ,..., nc c c
                                              1 1 2 2, ,..., n nx c b c b c b= . 
 
Note: 
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             If  are the B- coordinates of1 2, ,..., nc c c x , then the vector in nR , [ ]  is the 

coordinate vector of 

1

2

.

.

.

B

n

c
c

x

c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x (relative to B) or B- coordinates of x . 
 
Example 1: 
 

                        Consider a basis { }1 2,B b b=  for 2R  , where 1

1
0

b ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

and . 2

1
2

b ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Suppose an x  in 2R  has the coordinate vector [ ] 2
3B

x
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 . Find x  

Solution: 
                Using above definition x is uniquely determined using coordinate vector and 
the basis. That is 

                             

1 1 2 2

1 2

,
( 2) (3)

1 1
( 2) 3

0 2

2 3
0 6

1
6

x c b c b
b b

x

=
= − +

⎡ ⎤ ⎡ ⎤
= − +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
−⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Example 2: 
                       Let S = {v1, v2, v3} be the basis for R3, where v1 = (1, 2, 1), v2 = (2, 9, 0), 
and v3 = (3, 3, 4). 

(a) Find the coordinates vector of v = (5, -1, 9) with respect to S. 

(b) Find the vector v in R3 whose coordinate vector with respect to the basis S is  

[v]s = (-1, 3, 2) 

Solution: 

Since S is a basis for R3, Thus 
                       1 1 2 2 3 3x c v c v c v= + + . 
Further 
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1 2 3(5, 1,9) (1,2,1) (2,9,0) (3,3,4)c c c− = + + ………….. (A) 
To find the coordinate vector of v, we have to find scalars .  1 2 3, ,c c c
 For this equating corresponding components in (A) gives 

( )

(1)
(2)
(3)

(1) (2)

(4)

1 2 3

1 2 3

1 3

1 2 3

1 3

1

3 2 3

2 3

3

c  + 2c +3 c  = 5
2c  + 9c +3 c  = -1
c  + 4 c  = 9

Now find values of c , c and c from these equations.
From equation (3)
c 9 4c
Put this value of c in equations and
9 4c  + 2c +3 c  = 5
2c c 4
and
2 9 4c

= −

−

− = −

−

(5)

2 3

3 2 3

2 3

 + 9c +3 c  = -1
18 - 8c 9c 3c 1
9c 5c 19

+ + = −

− = −

 

(4)

2 3

Multiply equation by 5
10c 5c 20− = −

 

(5)

(4)

(3)

2 3

2 3

2

2 3

3

3

3

3 1

1

1

Subtract equation from above equation
10c 5c 20

9c 5c 19
________________
c 1
Put value of c in equation to get c
2(-1) c 4

2 c 4
c 4 2 2
Put value of c in equation to get c
c  +4 (2) = 9
c 9 8 1

− = −

± =

= −

− = −

− − = −

= − =

= − =

∓ ∓

 

Thus, we obtain c1 = 1, c2 = -1, c3 = 2  
Therefore, [v]s = (1, -1, 2) 
 

Figure 2 Using the definition of coordinate vector, we have 
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1 1 2 2 3 3

1 2 3( 1) 3 2
( 1)(1,2,1) 3(2,9,0) 2(3,3,4)
( 1 6 6, 2 27 6, 1 0 8)
(11,31,7)

v c v c v c v
v v v

= + +
= − + +

= − + +
= − + + − + + − + +
=

 

 
Therefore 
                  (11,31,7)v =
  
Example 3: 
                   Find the coordinates vector of the polynomial p = a0 + a1x + a2x2 relative to 
the basis S = {1, x, x2} for p2. 
Solution: 
 
To find the coordinator vector of the polynomial , we write it as a linear combination of 
the basis set . That is  

p
S

2 2
0 1 2 1 2 3

1 0 2 1 3 2

(1) ( ) ( )
, ,

a a x a x c c x c x
c a c a c a
+ + = + +

⇒ = = =
 

Therefore 
0 1 2[ ] ( , , )sp a a a=  

 
Example 4: 
 
                   Find the coordinates vector of the polynomial p = 5 – 4x + 3x2 relative to the 
basis S = {1, x, x2} for p2. 
Solution: 
 
To find the coordinator vector of the polynomial , we write it as a linear combination of 
the basis set . That is  

p
S

2 2
1 2 3

1 2 3

5 4 3 (1) ( ) ( )
5, 4, 3

x x c c x c x
c c c
− + = + +

⇒ = = − =
 

Therefore 
[ ] (5, 4,3)sp = −  

 

 
Example 5: 
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                   Find the coordinate vector of A relative to the basis S = {A1, A2, A3, A4} 
2 0 -1 1 1 1 0 0 0

; ; ; ;
-1 3 0 0 0 0 1 0 0 1

= = = = =⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 2 3 4A A A A A
0

 

Solution: 
                  To find the coordinator vector of A , we write it as a linear combination of the 
basis set . That is  S

A= c1 A1+ c2 A2+ c3 A3+ c4 A4 

2 0 -1 1 1 1 0 0 0
-1 3 0 0 0 0 1 0 0 1

0 0 0 0-
0 00 0 0 0

0 0 0 0
0 0 0 0 0 0

1 2 3 4

1 1 2 2

3 4

1 2 1 2

3 4

= c +c c c

c c c c
+

c c

c c c c
c c

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
− + + + + + +⎡ ⎤

= ⎢ ⎥+ + + + + +⎣ ⎦

0

 

2 0
-1 3

1 2 1 2

3 4

-c +c c +c
=

c c
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
 

(1)
(2)
(3)
(4)

1 2

1 2

3

4

-c +c = 2 
c +c = 0
c = -1
c = 3

 

Adding (1) and (2), gives  

2c2 = 2 ⇒  c2 = 1 

Putting the value of c2 in (2) to get c1,   c1 = -1 

So  c1 = -1, c2 = 1, c3 = -1, c4 = 3 
Therefore,  [v]s = (-1, 1, -1, 3) 
Graphical Interpretation of Coordinates    

A coordinate system on a set consists of a one-to-one mapping of the points in the 
set into Rn. For example, ordinary graph paper provides a coordinate system for the plane 
when one selects perpendicular axes and a unit of measurement on each axis. Figure 1 
shows the standard basis {e1, e2}, the vectors  
b1 (= e1) and b2 from Example 1, that is,  

1

1
0

= ⎡ ⎤
⎢ ⎥
⎣ ⎦

b 2

1
.

2
= ⎡ ⎤
⎢ ⎥
⎣ ⎦

b and  
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b1 

b2 

x 

0 

 Vector , the coordinates 1 and 6 give the location of x relative to the standard 

basis: 1 unit in the e1 direction and 6 units in the e2 direction. 

1
6

= ⎡ ⎤
⎢ ⎥
⎣ ⎦

x

 
 
 
 
 
 
 
 
 
 

                       
                                               Figure 1   

   
Figure 2 shows the vectors b1, b2, and x from Figure 1. (Geometrically, the three 

vectors lie on a vertical line in both figures.) However, the standard coordinate grid was 
erased and replaced by a grid especially adapted to the basis B in Example 1. The 

coordinate vector [ ]  gives the location of x on this new coordinate system: – 2 

units in the b1 direction and 3 units in the b2 direction.  

-2
3

= ⎡ ⎤
⎢ ⎥
⎣ ⎦B

x

 
 
 
 
 
 
 
 
 
 
 
 
                  Figure 2    

 
Example 6:    

In crystallography, the description of a crystal lattice is aided by choosing a basis 
{u, v, w} for R3 that corresponds to three adjacent edges of one “unit cell” of the crystal. 
An entire lattice is constructed by stacking together many copies of one cell. There are 
fourteen basic types of unit cells; three are displayed in Figure 3. 
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Figure 3 – Examples of unit cells 

 
The coordinates of atoms within the crystal are given relative to the basis for the lattice. 

For instance, 
1 2
1 2
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 identifies the top face-centered atom in the cell in Figure 3(b). 

 
Coordinates in Rn    When a basis B for Rn is fixed, the B-coordinate vector of a 
specified x is easily found, as in the next example. 
 

Example 7:    Let  and B = {b1 , b2}.  
2 -1
1 1

= , = , =⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 2b b x
4
5

,

4
5

⎤
⎥
⎦

Find the coordinate vector [x]B of x relative to B. 
Solution The B – coordinates c1 , c2 of x satisfy  

2 -1
1 11 2c + c =
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

                               b1              b2           x 
 

or        (3) 
2 -1 4
1 1 5

1

2

c
=

c
⎡ ⎤⎡ ⎤ ⎡
⎢ ⎥⎢ ⎥ ⎢

⎣ ⎦ ⎣⎣ ⎦
    b1        b2                       x 

Now, inverse of matrix  =
2 -1
1 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

1 1
1 11 3 3
-1 2 1 23

3 3

⎡ ⎤
⎢ ⎥⎡ ⎤

= ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 

From equation (3) we get  

0 

u 
v 

w 

0 

u 
v 

w 

0 

u 
v 

w 

(a) Body centered 
cubic 

(b) Face centered 
orthorhombic 

(c) Simple 
monoclinic 
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1 1
43 3

1 2 5
3 3
1 1( 4 ) ( 5 ) 33 3
1 2( 4 ) ( 5 )

3 3

1

2

c
=

c

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤+⎢ ⎥

2
⎡ ⎤

= =⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎢ ⎥+⎢ ⎥⎣ ⎦

 

 
Thus, c1 = 3, c2 = 2. 
(Equation (3) can also be solved by row operations on an augmented matrix. Try it 
yourself ) 

Thus x = 3b1 + 2b2 and 
3

[ ]
2

1

2

c
= =

c
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
Bx  

 
Figure 4 – The B-coordinate vector of x is (3,2) 

 
The matrix in (3) changes the B-coordinates of a vector x into the standard coordinates 
for x. An analogous change of coordinates can be carried out in Rn for a basis  
B = {b1 , b2 , … , bn}.   
Let  [ ]= ...B 1 2 nP b b b  
Then the vector equation  1 2 n= c +c +...+c1 2x b b bn

Bis equivalent to                 (4) [ ]= Bx P x
 
We call PB the change-of-coordinates matrix from B to the standard basis in Rn.  
Left-multiplication by PB transforms the coordinate vector [  into x. The change-of-
coordinates equation (4) is important and will be needed at several points in next lectures. 

]Bx

 

b1 b2 

x 



23- Coordinate System                                                                                                                                 VU 
 

                                                  
                                                   ©Virtual University Of Pakistan                                                            303 

Since the columns of PB form a basis for Rn, PB is invertible (by the Invertible Matrix 
Theorem). Left-multiplication by 1−

BP  converts x into its B-coordinate vector: 
1 [ ]− =B BP x x  

The correspondence  produced here by [ ]→ Bx x 1−
BP , is the coordinate mapping 

mentioned earlier. Since 1−
BP  is an invertible matrix, the coordinate mapping is a one-to-

one linear transformation from Rn onto Rn, by the Invertible Matrix Theorem. (See also 
Theorem 3 in lecture 10) This property of the coordinate mapping is also true in a general 
vector space that has a basis, as we shall see. 
 
The Coordinate Mapping   Choosing a basis B = {b1, b2 , … , bn} for a vector space V 
introduces a coordinate system in V. The coordinate mapping  connects the 
possibly unfamiliar space V to the familiar space Rn. See Figure 5. Points in V can now 
be identified by their new “names”. 

[ ]→ Bx x

 

 
Figure 5 – The coordinate mapping from V onto Rn 

 
Theorem 2:   Let B = {b1, b2 , … , bn} be a basis for a vector space V. Then the 
coordinate mapping  is a one-to-one linear transformation from V onto Rn. [ ]→ Bx x
Proof   Take two typical vectors in V, say 

 1 2 n

1 2 n

= c +c +...+c
= d +d +...+d

1 2 n

1 2

u b b b
w b b b

 
n

n

]B

( ) nb

Then, using vector operations,  ( ) ( ) ( )1 1 2 2 n n+ = c +d + c +d +...+ c +d1 2u w b b b

It follows that   
1 1 1 1

[ ] [ ] [

n n n n

c d c d

c d c d

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ = = + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦

B Bu w u w# # #

Thus the coordinate mapping preserves addition. If r is any scalar, then 
   1 2 1 2( ) ( ) ( )n nr r c c c rc rc rc= + + + = + + +" "1 2 n 1 2u b b b b b

V 

x 

[  ]B 

[x]B 

Rn 
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So   
1 1

[ ] [ ]

n n

rc c
r r

rc c

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

B Bu u# # r

[ ]

Thus the coordinate mapping also preserves scalar multiplication and hence is a linear 
transformation. It can be verified that the coordinate mapping is one-to-one and maps V 
onto Rn. 
 
The linearity of the coordinate mapping extends to linear combinations, just as in lecture 

9. If u1 , u2 , … , up are in V and if c1 , c2 , … , cp are scalars, then 
[ ] [ ] [ ]1 2 p 1 2 pc + c + ...+ c = c + c + ...+ c1 2 p B 1 B 2 B p Bu u u u u u                       (5) 

 
In words, (5) says that the B-coordinate vector of a linear combination of u1, u2 , … , up is 
the same linear combination of their coordinate vectors. 
 
The coordinate mapping in Theorem 2 is an important example of an isomorphism from 
V onto Rn. In general, a one-to-one linear transformation from a vector space V onto a 
vector space W is called an isomorphism from V onto W (iso from the Greek for “the 
same”, and morph from the Greek for “form” or “structure”). The notation and 
terminology for V and W may differ, but the two spaces are indistinguishable as vector 
spaces. Every vector space calculation in V is accurately reproduced in W, and vice versa.  
  
Example 8:   Let B be the standard basis of the space P3 of polynomials; that is, let B = 
{1,  t,  t2, t3}. A typical element p of P3 has the form p (t) = a0 + a1 t + a2 t2 + a3 t3 
Since p is already displayed as a linear combination of the standard basis vectors, we 

conclude that . Thus the coordinate mapping  is an isomorphism 

from P3 onto R4. All vector space operations in P3 correspond to operations in R4. 

0

1

2

3

[ ]

a
a
a
a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Bp [ ]→ Bp p

 
If we think of P3 and R4 as displays on two computer screens that are connected via the 
coordinate mapping, then every vector space operation in P3 on one screen is exactly 
duplicated by a corresponding vector operation in R4 on the other screen. The vectors on 
the P3 screen look different from those on the R4 screen, but they “act” as vectors in 
exactly the same way. See Figure 6. 
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Figure 6 – The space P3 is isomorphic to R4 

 
 
Example 9:   Use coordinate vector to verify that the polynomials 1 + 2t2,  4 + t + 5t2 
and 3 + 2t are linearly dependent in P2. 
Solution:   The coordinate mapping from Example 8 produces the coordinate vectors (1, 
0, 2), (4, 1, 5) and   (3, 2, 0), respectively. Writing these vectors as the columns of a 
matrix A, we can determine their independence by row reducing the augmented matrix 

for Ax = 0:  
1 4 3 0 1 4 3 0
0 1 2 0 0 1 2 0
2 5 0 0 0 0 0 0

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

∼
⎤
⎥
⎥
⎥⎦

The columns of A are linearly dependent, so the corresponding polynomials are linearly 
dependent. In fact, it is easy to check that column 3 of A is 2 times column 2 minus 5 
times column 1. The corresponding relation for the polynomials is 

3 + 2t = 2(4 + t + 5t2) – 5(1 + 2t2) 
 

Example 10:   Let  and B = {v1, v2}. Then B is a 

basis for H = Span {v1, v2}. Determine if x is in H and if it is, find the coordinate vector 
of x relative to B. 

3 -1
6 0
2 1

= , = , =
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 2v v x
3

12
7

,

 
Solution:   If x is in H, then the following vector equation is consistent. 

3 -1 3
6 0 = 1
2 1

1 2c +c
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2
7

 

The scalars, c1 and c2, if they exist, are the B – coordinates of x.  

P3 
 
R4

a0+a1t+a2t2+a3 t3 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

3

2

1

0

a
a
a
a
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Using row operations, we obtain 
3 -1 3 1 0 2
6 0 12 0 1 3
2 1 7 0 0 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∼ . 

 

Thus c1 = 2, c2 = 3 and 
2

[ ] .
3

= ⎡ ⎤
⎢ ⎥
⎣ ⎦

Bx  The coordinate system on H determined by B is 

shown in Figure 7.  
 

 
 

Figure 7 – A coordinate system on a plane H in R3 
 
If a different basis for H were chosen, would the associated coordinate system also make 
H isomorphic to R2? Surely, this must be true. We shall prove it in the next lecture. 
 

Example 11:   Let b b  and 
1 -3

= 0 , = 4 , = -6 ,
0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 2 3

3

3
b

-8
2 .
3

=
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x  

a. Show that the set B = {b1, b2, b3} is a basis of R3. 
b. Find the change-of-coordinates matrix from B to the standard basis. 
c. Write the equation that relates x in R3 to [x]B. 
d. Find [x]B, for the x given above. 

Solution: 
a. It is evident that the matrix PB = [b1   b2   b3] is row equivalent to the 

identity matrix. By the Invertible Matrix Theorem, PB is invertible and its 
columns form a basis for R3. 

v1 
2v1 

0 

v2 

2v2 

3v2 

x=2v1+3v2 
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b. From part (a), the change-of-coordinates matrix is  
1 -3 3
0 4 -6
0 0 3

=
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

BP .

c. . [ ]= B Bx P x
 
d. To solve part (c), it is probably easier to row reduce an augmented matrix 

instead of computing 1−
BP . We have 

 
1 -3 3 -8 1 0 0 -5
0 4 -6 2 0 1 0 2
0 0 3 3 0 0 1 1

[ ]

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

∼

B B

⎤
⎥
⎥
⎥⎦

P x I x

 

Hence  
-5

[ ] 2
1

=
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Bx

 
Example 12:   The set B = {1 + t , 1 + t2, t + t2} is a basis for P2. Find the coordinate 
vector of  p(t) = 6 + 3t – t2 relative to B. 
Solution:   The coordinates of p (t) = 6 + 3t – t2 with respect to B satisfy 

2 2 2
1 1 2 2 3 3

2 2 2
1 2 1 3 2 3

2 2
1 2 1 3 2 3

6 3

6 3

( ) ( ) 6 3

1 2 3c ( + )+ c ( + )+ c ( + ) = + 3 -

c c t c c t c t c t t t

c c c t c t c t c t t t

c c c c t c c t t t

+ + + + + = + −

+ + + + + = + −

+ + + + + = + −

2 21 t 1 t t t 6 t t 2

 

Equating coefficients of like powers of t, we have 
(1)

(2)
-(3)

  (2)  (1)  

(3)

1 2

1 3

2 3

2 3

2

2

c  +  c        =     6 - - - - - - - - - - - - - -
c         + c  =    3 - - - - - - - - - - - - - -

c  + c  =  -1- - - - - - - - - - - - -
Subtract equation from we get
c c 6 3 3
Add this equation with equation
2c 1 3 2

c 1

− = − =

= − + =
⇒ =

(3)2

3

3

Put value of c in equation
1 + c  =  -1

c 2⇒ = −
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(1)

1 2

1

From equation we have
c  +  c = 6
c 6 1 5= − =

Solving, we find that c1 = 5, c2 = 1, c3 = –2, and 
5

[ ] 1
-2

=
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Bp . 

 
 
 
Exercises: 
 
In exercises 1 and 2, find the vector x determined by the given coordinate vector [x]B and 
the given basis B. 
 

1.   2. 
3 -4 5

[ ]
-5 6 3

, ,
⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= =⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

BB x
41 5 3
-7 [ ]-4 2 0
03 -2 -1

, , ,
⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎩ ⎭

BB x   

 
In exercises 3-6, find the coordinate vector [x]B of x relative to the given basis B = {b1, 
b2, …, bn}. 
 

3.   4. 
1 2
-3 -5 1

, ,
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 2b b x
-2 41 5

-2 -6 0
, ,⎡ ⎤ ⎡ ⎤ ⎡

= = =
⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣

1 2b b x
⎦

8

3
-5
4

⎬

 

 

5.    
21 -3
-2-1 4 -9
4-3 9 6

, , ,
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

1 2 3b b b x

 

6.   
11 2
-10 1
23 8

, , ,
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

1 2 3b b b x

 
In exercises 7 and 8, find the change of coordinates matrix from B to standard basis in 
Rn. 
 

7.     8. 
2 1
-9 8

⎧ ⎫⎡ ⎤ ⎡ ⎤
= ⎨⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎩ ⎭
B ,

3 2 8
-1 , 0 , -2
4 -5 7

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

B  
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In exercises 9 and 10, use an inverse matrix to find [x]B for the given x and B. 
 

9.    10. 
4 6 2

, ,
5 7 0

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭
B x =

3 -4 2
, ,

-5 6 -6
⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= =⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

B x  

 
11. The set B = {1 + t2, t + t2, 1 + 2t + t2} is a basis for P2. Find the coordinate vector of  
p (t) = 1 + 4t + 7t2 relative to B. 
 

12. The vectors  span R2 but do not form a basis. Find 

two different ways to express  as a linear combination of v1, v2, v3. 

1 2 3

1 2
, ,

-3 -8 7
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

v v v
-3

⎬

5

7

3

1
1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

13. Let . Since the coordinate mapping determined by B is a linear 

transformation from R2 into R2, this mapping must be implemented by some 2 x 2 matrix 
A. Find it. 

1 -2
,

-4 9
⎧ ⎫⎡ ⎤ ⎡ ⎤

= ⎨⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎩ ⎭

B

 
In exercises 14-16, use coordinate vectors to test the linear independence of the sets of 
polynomials. 
 
14. 1 + t3, 3 + t – 2t2, - t + 3t2 – t3   15. (t-1)2, t3 – 2, (t – 2)3 
 
16. 3 + 7t, 5 + t – 2t3, t – 2t2, 1 + 16t – 6t2 + 2t3 
 
17. Let H = Span {v1, v2} and B = {v1, v2}. Show that x is in H and find the B-coordinate 

vector of x, for . 1 2

11 14 19
-5 -8 -13

, ,
10 13 18
7 10 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

v v x

 
18. Let H = Span {v1, v2, v3} and B = {v1, v2, v3}. Show that B is a basis for H and x is in 

H, and find the B-coordinate vector of x, for 1 2

-6 8 -9 4
4 -3 5

, ,
-9 7 -8 -8
4 -3 3

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢= = = = ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

3v v v , x

⎦

. 
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Lecture 24 
 

Dimension of a Vector Space 
 

In this lecture, we will focus over the dimension of the vector spaces. The 
dimension of a vector space V is the cardinality or the number of vectors in the basis B of 
the given vector space. If the basis B has n (say) elements then this number n (called the 
dimension) is an intrinsic property of the space V. That is it does not depend on the 
particular choice of basis rather, all the bases of V will have the same cardinality. Thus, 
we can say that the dimension of a vector space is always unique. The discussion of 
dimension will give additional insight into properties of bases. 
The first theorem generalizes a well-known result about the vector space Rn. 
Note: 
 A vector space V with a basis B containing n vectors is isomorphic to Rn i.e., there exist 
a one-to-one linear transformation from V to Rn.  
 
Theorem 1:   If a vector space V has a basis B = {b1, …, bn}, then any set in V containing 
more than n vectors must be linearly dependent. 
 
Theorem 2:   If a vector space V has a basis of n vectors, then every basis of V must 
consist of exactly n vectors. 
 
Finite and infinite dimensional vector spaces: 
 
   If the vector space V is spanned or generated by a finite set, then V is said to be 
finite-dimensional, and the dimension of V, written as dim V, is the number of vectors 
in a basis for V.. If V is not spanned by a finite set, then V is said to be infinite-
dimensional. That is, if we are unable to find a finite set that is able to generate the 
whole vector space, then such a vector space is called infinite dimensional. 
 
Note: 
(1) The dimension of the zero vector space {0} is defined to be zero. 
(2) Every finite dimensional vector space contains a basis. 
 
 
Example 1:   The set of real numbers of n dimension Rn, set of polynomials of order n 
Pn, and set of matrices of order m n×   Mmn are  all finite- dimensional vector spaces.. 
However, the vector spaces  
F (- ,∞ ), C (- ,∞ ), and Cm (-∞ ∞ ∞ ,∞ ) are infinite- dimensional. 
 
Example 2:  
(a)   Any pair of non-parallel vectors a, b in the xy-plane, which are necessarily linearly 
independent, can be regarded as a basis of the subspace R2. In particular the set of unit 
vectors {i, j} forms a basis for R2. Therefore, dim (R2) = 2. 
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Any set of three non coplanar vectors {a, b, c} in ordinary (physical) space, which will be 
necessarily linearly independent, spans the space R3. Therefore any set of such vectors forms a 
basis for R3. In particular the set of unit vectors {i, j, k} forms a basis of R3. This basis is called 
standard basis for R3. Therefore dim (R3) = 3. 
 
The set of vectors {e1, e2, …, en} where 

e1 = (1, 0, 0, 0, …, 0), 
e2 = (0, 1, 0, 0, …, 0), 
e3 = (0, 0, 1, 0, …, 0), 

… 
… 
… 

en = (0, 0, 0, 0, …, 1) 
is linearly independent.  
Moreover, any vector x = (x1, x2, …, xn) in Rn can be expressed as a linear combination of these 
vectors as  

x = x1e1 + x2e2 + x3e3 +…+ xnen. 
Hence, the set {e1, e2, … , en} forms a basis for Rn. It is called the standard basis of Rn, therefore 
dim (Rn) = n. Any other set of n linearly independent vectors in Rn will form a non-standard 
basis. 
 
(b)   The set B = {1, x, x2, … ,xn} forms a basis for the vector space Pn of polynomials of degree 
< n. It is called the standard basis with dim (Pn) = n + 1. 
 
(c)   The set of 2 x 2 matrices with real entries (elements) {u1, u2, u3, u4} where 

u1 = , u2 = 
1 0
0 0
⎡ ⎤
⎢
⎣ ⎦

⎥
0 1
0 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

, u3 = 
0 0
1 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

, u4 = 
0 0
0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

is a linearly independent and every 2 x 2 matrix with real entries can be expressed as their linear 
combination. Therefore, they form a basis for the vector space M2X2. This basis is called the 
standard basis for M2X2 with dim (M2X2) = 4. 

Note: 

(1) dim (Rn) = n  { The standard basis has n vectors}. 

(2) dim (Pn) = n + 1  { The standard basis has n+1 vectors}. 

(3) dim (Mm× n) = mn  { The standard basis has mn vectors.} 
 
Example 3:   Let W be the subspace of the set of all (2 x 2) matrices defined by 

W = {A = : 2a – b + 3c + d = 0}. 
a b
c d
⎡
⎢
⎣ ⎦

⎤
⎥

Determine the dimension of W. 
Solution:   The algebraic specification for W can be rewritten as d = -2a + b – 3c.  
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Now   A =  
a b
c d
⎡ ⎤
⎢ ⎥
⎣ ⎦

 Substituting the value of d, it becomes 
 

A=  
-2 + - 3

a b
c a  b c
⎡ ⎤
⎢ ⎥
⎣ ⎦

This can be written as  

A= + +
0

0 -2
a

a 
⎡ ⎤
⎢ ⎥
⎣ ⎦

0
0

b
b 

⎡ ⎤
⎢ ⎥
⎣ ⎦

0 0
- 3c  c

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

= a 
1 0
0 -2 
⎡ ⎤
⎢ ⎥
⎣ ⎦

 + b
0 1
0  1 
⎡ ⎤
⎢ ⎥
⎣ ⎦

 + c
0 0
1  - 3
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

= a A1 + bA2 + cA3 

where  A1 = , A2 = 
1 0
0 2
⎡
⎢ −⎣ ⎦

⎤
⎥

0 1
0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

, and A3 =
0 0
1 3
⎡ ⎤
⎢ ⎥−⎣ ⎦

 

The matrix A is in W if and only if A = aA1 + bA2 + cA3, so {A1, A2, A3} is a spanning set for W.  
Now, check whether if this set is a basis for W or not, we will see whether {A1, A2, A3} is linearly 
independent or not. For this purpose, we will see that {A1, A2, A3} is linearly independent if 
 i.e., 1 2 3aA  + bA  + cA =0 a=b=c=0⇒

1 0 0 1 0 0 0 0
0 -2 0  1 1  - 3 0 0

0 0 0 0 0 0
0 -2 0 - 3 0 0

0 0
2 3 0 0

a b c

a b
a  b c  c

a b
c a b c

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡

+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥− + −⎣ ⎦ ⎣ ⎦

⎤
⎥
⎦

⎤
⎥
⎦  

Equating the elements, we get 
0, 0, 0a b c= = =  

This implies {A1, A2, A3} is a linearly independent set that spans W. Hence, it’s the basis of W 
with dim( W)= 3. 
 

Example 4:   Let H = Span {v1, v2}, where 
3
6
2

=
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1v  and 
-1
0 .
1

=
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2v  Then H is the plane 

studied in Example 10 of lecture 23. A basis for H is {v1, v2}, since v1 and v2 are not 
multiples and hence are linearly independent. Thus, dim H = 2.   
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A coordinate system on a plane H in R3 
 
Example 5: Find the dimension of the subspace 

- 3 + 6
5 + 4

- 2 -
5

a b c
a d

= : a,b,c,
b c d

d

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥ ∈⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

H d R  

Solution: The representative vector of H can be written as 
3 6 1 3 6 0

5 4 5 0 0 4
2 0 1 2
5 0 0 0

a b c
a d

a b c d
b c d

d

− + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + + +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1
5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

0

-1
5

2

 

Now, it is easy to see that H is the set of all linear combinations of the vectors  
 
 

1 -3 6
5 0 0 4
0 1 -2
0 0 0

= , = , = , =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 2 3 4v v v v  

 
Clearly,  is not a multiple of v1, but v3 is a multiple of v2. By the Spanning Set 
Theorem, we may discard v3 and still have a set that spans H. Finally; v4 is not a linear 
combination of v1 and v2. So {v1, v2, v4} is linearly independent and hence is a basis for H. 
Thus dim H = 3. 

,≠1v 0 v

v1 
2v1 

0 

v2 

2v2 

3v2 

x=2v1+3v2 
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Example 6:   The subspaces of R3 can be classified by its/various dimensions as shown 
in Fig. 1.  
0-dimensional subspaces:  

The only 0-dimensional subspace of R3 is zero subspace. 
 
1-dimensional subspaces:  

1-dimensional subspaces include any subspace spanned by a single non-zero 
vector. Such subspaces are lines through the origin. 
 
2-dimensional subspaces:  

Any subspace spanned by two linearly independent vectors. Such subspaces are 
planes through the origin. 
 
3-dimensional subspaces: 

The only 3-dimensional subspace is R3 itself. Any three linearly independent 
vectors in R3 span all of R3, by the Invertible Matrix Theorem. 
 

x1 

3 dim 

2 dim 

x3 

0 dim 

x1 

x3 

x2 
1 dim 

 
 

Figure 1 – Sample subspaces of R3 
 
Bases for Nul A and Col A:   We already know how to find vectors that span the null 
space of a matrix A. The discussion in Lecture 21 pointed out that our method always 
produces a linearly independent set. Thus the method produces a basis for Nul A. 
 

Example 7:   Find a basis for the null space of

2 2 -1 0 1
-1 -1 2 -3 1
1 1 -2 0 -1
0 0 1 1 1

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

A . 
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Solution:   The null space of A is the solution space of homogeneous system 
1 2 3 5

1 2 3 4 5

1 2 3 5

3 4 5

2x + 2x - x + x = 0
- x - x + 2x - 3x + x = 0

x + x - 2x - x = 0
x + x + x = 0

 

The most appropriate way to solve this system is to reduce its augmented matrix into 
reduced echelon form. 
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4 2 3 1

3 1 3 2

 2  2 -1  0  1   0
-1 -1  2 -3  1  0

,
 1  1 -2  0 -1  0
 0  0  1  1  1  0

1  1 -2  0 -1  0
 0  0  1  1  1  0

2 , 3
 2  2 -1  0  1   0
-1 -1  2 -3  1  0 

1  1 -2  0 -

R R R R

R R R R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥ − −
⎢ ⎥
⎢ ⎥
⎣ ⎦

∼ ∼

∼

∼ 3 2

3

1  0
 0  0  1  1  1  0

3
 0  0 3  0  3   0
-1 -1  2 -3  1  0 

1  1 -2  0 -1  0
0  0  1  1  1  0 1
0  0 0 -3  0   0 3
-1 -1  2 -3  1  0 

1  1 -2  0 -1  0
0  0  1  1  1  0
0  0 0 1 

R R

R

⎡ ⎤
⎢ ⎥
⎢ ⎥ −
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥ −
⎢ ⎥
⎢ ⎥
⎣ ⎦

∼

∼ 4 1

4 3

1

 0   0
-1 -1  2 -3  1  0 

1  1 -2  0 -1  0
0  0  1  1  1  0

3
0  0 0 1  0   0
0 0  0 -3  0  0 

1  1 -2  0 -1  0
0  0  1  1  1  0
0  0 0 1  0   0
0 0  0 0  0  0 

R R

R R

R

⎡ ⎤
⎢ ⎥
⎢ ⎥ +
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥ +
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∼

∼ 22R+
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2 3 1

1  1 0  2 1  0
0  0  1  1  1  0

, 2
0  0 0 1  0   0
0 0  0 0  0  0 

1  1 0  0 1  0
0  0  1  0  1  0
0  0 0 1  0   0
0 0  0 0  0  0 

3R R R R

⎡ ⎤
⎢ ⎥
⎢ ⎥ − −
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∼

∼

 

Thus, the reduced row echelon form of the augmented matrix is  
1  1  0  0  1   0
0  0  1  0  1  0
0  0  0  1  0  0
0  0  0  0  0  0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

which corresponds to the system  
1 2 5

3 5

4

 1x +1 x + 1 x = 0
1 x + 1 x = 0

1 x = 0
0 = 0

 

No equation of this system has a form zero = nonzero. Therefore, the system is 
consistent. Since the number of unknowns is more than the number of equations, we will 
assign some arbitrary value to some variables. This will lead to infinite many solutions of 
the system. 

1 2

2

3 5

4

5

5x = - 1x -1x
x = s
x = - 1x
x = 0
x = t

 

The general solution of the given system is 
x1 = - s - t   ,   x2 = s  ,   x3 = - t  ,    x4 = 0   ,    x5 = t 

Therefore, the solution vector can be written as 
1

2

3

4

5

x -s - t -s -t -1 -1
x s s 0 1
x = = + = s +t-t 0 -t 0 -1
x 0 0 0 0

0

0
x t 0 t 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ 1
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which shows that the vectors 

-1 -1
1 0
0 and -1
0 0
0 1

= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

1 2v v

⎦

 span the solution space .Since they 

are also linearly independent,{v1,v2} is a basis for Nul A. 
 
The next two examples describe a simple algorithm for finding a basis for the column 
space. 
 

Example 8:   Find a basis for Col B, where 

1 4 0 2 0
0 0 1 -1 0

[ , ]
0 0 0 0 1
0 0 0 0 0

= ..., =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 2 5B b b b  

Solution:   Each non-pivot column of B is a linear combination of the pivot columns. 
Infact, b2 = 4b1 and b4 = 2b1 – b3. By the Spanning Set Theorem, we may discard b2 and 
b4 and {b1, b3, b5} will still span Col B. Let 

1 0 0
0 1 0

{ } , ,
0 0 1
0 0 0

= , , =

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

1 3 5S b b b  

Since b1 0 and no vector in S is a linear combination of the vectors that precede it, S is 
linearly independent. Thus S is a basis for Col B. 

≠

 
               What about a matrix A that is not in reduced echelon form? Recall that any 
linear dependence relationship among the columns of A can be expressed in the form Ax 
= 0, where x is a column of weights. (If some columns are not involved in a particular 
dependence relation, then their weights are zero.) When A is row reduced to a matrix B, 
the columns of B are often totally different from the columns of A. However, the 
equations Ax = 0 and Bx = 0 have exactly the same set of solutions. That is, the columns 
of A have exactly the same linear dependence relationships as the columns of B. 
 
Elementary row operations on a matrix do not affect the linear dependence relations 
among the columns of the matrix. 
 
Example 9: It can be shown that the matrix 

1 4 0 2 -1
3 12 1 5 5

[ ]
2 8 1 3 2
5 20 2 8 8

= ... =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 2 5A a a a  

is row equivalent to the matrix B in Example 8. Find a basis for Col A. 
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Solution:   In Example 8, we saw that  = 4 and = 2 -2 1 4 1b b b b 3b

3aso we can expect that . This is indeed the case. 
Thus, we may discard a2 and a4 while selecting a minimal spanning set for Col A. Infact, 
{a1, a3, a5} must be linearly independent because any linear dependence relationship 
among a1, a3, a5 would imply a linear dependence relationship among b1, b3, b5. But we 
know that {b1, b3, b5} is a linearly independent set. Thus {a1, a3, a5} is a basis for Col A. 
The columns we have used for this basis are the pivot columns of A. 

= 4 and = 2 -2 1 4 1a a a a

 
Examples 8 and 9 illustrate the following useful fact. 
 
Theorem 3:   The pivot columns of a matrix A form a basis for Col A. 
 
Proof:   The general proof uses the arguments discussed above. Let B be the reduced 
echelon form of A. The set of pivot columns of B is linearly independent, for no vector in 
the set is a linear combination of the vectors that precede it. Since A is row equivalent to 
B, the pivot columns of A are linearly independent too, because any linear dependence 
relation among the columns of A corresponds to a linear dependence relation among the 
columns of B. For this same reason, every non-pivot column of A is a linear combination 
of the pivot columns of A. Thus the non-pivot columns of A may be discarded from the 
spanning set for Col A, by the Spanning Set Theorem. This leaves the pivot columns of A 
as a basis for Col A. 
 
Note: Be careful to use pivot columns of A itself for the basis of Col A. The columns of 
an echelon form B are often not in the column space of A. For instance, the columns of 
the B in Example 8 all have zeros in their last entries, so they cannot span the column 
space of the A in Example 9. 
 

Example 10:   Let  Determine if {v1, v2} is a basis for R3. Is {v1, 

v2} a basis for R2? 

1 -
-2 and 7 .
3 -

= =
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1 2v v
2

9

Solution: Let A = [v1   v2]. Row operations show that
1 -2 1 -2
-2 7 0 3
3 -9 0 0

A=
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∼ . Not every 

row of A contains a pivot position. So the columns of A do not span R3, by Theorem 4 in 
Lecture 6. Hence {v1, v2} is not a basis for R3. Since v1 and v2 are not in R2, they cannot 
possibly be a basis for R2. However, since v1 and v2 are obviously linearly independent, 
they are a basis for a subspace of R3, namely, Span {v1, v2}. 
 

Example 11:  Let  Find a basis for the subspace 

W spanned by {v1, v2, v3, v4}.  

1 6 2 -
-3 2 -2 -8 .
4 -1 3

= , = , = , =
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 2 3 4v v v v
4

9
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Solution: Let A be the matrix whose column space is the space spanned by {v1, v2, v3, v4},  
1 6 2 -4
-3 2 -2 -8
4 -1 3 9

=
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  

 Reduce the matrix A into its echelon form in order to find its pivot columns. 

                        2 1 3

2 3 3

1 6 2 -4
-3 2 -2 -8
4 -1 3 9

1 6 2 -4
0 20 4 -20 3 , 4
0 -25 -5 25

1 6 2 -4
1 10 5 1 -5 , ,
4 5

0 0 0 0

=

by R R R R

by R R R R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥ + −⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥ − −⎢ ⎥
⎢ ⎥⎣ ⎦

∼

∼

A

1

2

 

The first two columns of A are the pivot columns and hence form a basis of Col A = W. 
Hence {v1, v2} is a basis for W. 
Note that the reduced echelon form of A is not needed in order to locate the pivot 
columns. 
 
Procedure: 
 Basis and Linear Combinations 
Given a set of vectors S = {v1, v2, …,vk} in Rn, the following procedure produces a subset 
of these vectors that form a basis for span (S) and expresses those vectors of S that are 
not in the basis as linear combinations of the basis vector. 
Step1: Form the matrix A having v1, v2,..., vk as its column vectors. 
Step2: Reduce the matrix A to its reduced row echelon form R, and let 

 w1, w2,…, wk be the column vectors of R. 
Step3:  Identify the columns that contain the leading entries i.e., 1’s in R. The 

corresponding column vectors of A are the basis vectors for span (S). 
Step4: Express each column vector of R that does not contain a leading entry as  

a linear combination of preceding column vector that do contain leading entries 
(we will be able to do this by inspection). This yields a set of dependency 
equations involving the column vectors of R. The corresponding equations for the 
column vectors of A express the vectors which are not in the basis as linear 
combinations of basis vectors.  

 
Example 12: Basis and Linear Combinations 
(a) Find a subset of the vectors v1 = (1, -2, 0, 3), v2 = (2, -4, 0, 6), v3 = (-1, 1, 2, 0) and 
      v4 = (0, -1, 2, 3) that form a basis for the space spanned by these vectors. 
(b) Express each vector not in the basis as a linear combination of the basis vectors. 
Solution:  
(a) We begin by constructing a matrix that has v1, v2, v3, v4 as its column vectors 
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          (A) 

1 2 -1 0
-2 -4 1 -1
0 0 2 2
3 6 0 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
↑ ↑ ↑ ↑

1 2 3 4v v v v
Finding a basis for column space of this matrix can solve the first part of our problem. 
Transforming Matrix to Reduced Row Echelon Form: 

    

 1  2 -1  0
-2 -4  1 -1
 0  0  2  2
 3  6  0  3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
 1  2  -1  0 
 0  0  -1  -1 
 0  0  2  2 
 0  0  3  3 

1 2

1 4

2 R + R
-3R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∼  

 1  2  -1  0 
 0  0  1  1 
 0  0  2  2 
 0  0  3  3 

2-1R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∼  

 1  2  -1  0 
 0  0  1  1 
 0  0  0  0 
 0  0  0  0 

2 3

2 4

-2R + R
-3R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∼  

1  2  0  1
0  0  1  1
0  0  0  0
0  0  0  0

2 1R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∼  

Labeling the column vectors of the resulting matrix as w1, w2, w3 and w4 yields 
1  2  0  1
0  0  1  1
0  0  0  0
0  0  0  0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎣ ⎦

↑↑ ↑ ↑

31 2 4ww w w

⎥      (B) 
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The leading entries occur in column 1 and 3 so {w1, w3} is a basis for the column space of 
(B) and consequently {v1, v3} is the basis for column space of (A). 
(b) We shall start by expressing w2 and w4 as linear combinations of the basis vector w1 
and w3. The simplest way of doing this is to express w2 and w4 in term of basis vectors 
with smaller subscripts. Thus we shall express w2 as a linear combination of w1, and we 
shall express w4 as a linear combination of w1 and w3. By inspection of (B), these linear 
combinations are w2 = 2w1 and w4 = w1 + w3. We call them the dependency equations. 
The corresponding relationship of (A) are v3 = 2v1 and v5 = v1 + v3. 
 
Example 13: Basis and Linear Combinations 
(a) Find a subset of the vectors v1 = (1, -1, 5, 2), v2 = (-2, 3, 1, 0), v3 = (4, -5, 9, 4),  
v4 = (0, 4, 2, -3) and v5 = (-7, 18, 2, -8) that form a basis for the space spanned by these 
vectors. 
(b) Express each vector not in the basis as a linear combination of the basis vectors 
Solution: 
 (a) We begin by constructing a matrix that has v1, v2, ... , v5  as its column vectors 

 1 -2  4  0   - 7 
-1  3 -5  4  18 
 5  1  9  2    2 
 2  0  4 -3   -8 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎣ ⎦

↑ ↑↑ ↑ ↑

3 51 2 4v vv v v

⎥     (A) 

Finding a basis for column space of this matrix can solve the first part of our problem. 
Transforming Matrix to Reduced Row Echelon Form: 

 1 -2  4  0   - 7 
-1  3 -5  4  18 
 5  1  9  2    2 
 2  0  4 -3   -8 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 1  - 2  4  0  - 7 
 0  1  -1  4  11 
 0  11  -11  2  37 
 0  4  - 4  -3  6 

1 2

1 3

1 4

R + R
-5R + R
-2R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 1  - 2  4  0  - 7 
 0  1  -1  4  11 
 0  0  0  - 42  -84 
 0  0  0  -19  -38 

2 3

2 4

-11R + R
-4R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 1  - 2  4  0  - 7 
 0  1  -1  4  11 
 0  0  0  1  2 
 0  0  0  -19  -38 

3(-1/42)R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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 1  - 2  4  0  - 7 
 0  1  -1  4  11 
 0  0  0  1  2 
 0  0  0  0  0 

3 419R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
 1  - 2  4  0  - 7 
 0  1  -1  0  3 
 0  0  0  1  2 
 0  0  0  0  0 

3 2(-4)R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

   

 1  0  2  0  -1 
 0  1  -1  0  3 
 0  0  0  1  2 
 0  0  0  0  0 

2 12R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Denoting the column vectors of the resulting matrix by w1 , w2 , w3, w4, and w5 yields 
 1  0  2  0  -1 
 0  1  -1  0  3 
 0  0  0  1  2 
 0  0  0  0  0 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎣ ⎦

↑ ↑↑ ↑ ↑

3 51 2 4w ww w w

⎥      (B) 

The leading entries occur in columns 1,2 and 4 so that {w1, w2, w4} is a basis for the 
column space of  (B) and consequently {v1, v2, v4} is the basis for column space of (A). 
(b) We shall start by expressing w3 and w5 as linear combinations of the basis vector w1, 
w2, w4. The simplest way of doing this is to express w3 and w5 in term of basis vectors 
with smaller subscripts. Thus we shall express w3 as a linear combination of w1 and w2, 
and we shall express w5 as a linear combination of w1, w2, and w4. By inspection of (B), 
these linear combination are w3 = 2w1 – w2 and w5 = -w1 + 3w2 + 2w4. 
The corresponding relationship of (A) are v3 = 2v1 – v2 and v5 = -v1 + 3v2 + 2v4. 
 
Example 14: Basis and Linear Combinations 
(a) Find a subset of the vectors v1 = (1, -2, 0, 3), v2 = (2, -5, -3, 6), v3 = (0, 1, 3, 0), 
 v4 = (2, -1, 4, -7) and v5 = (5 , -8, 1, 2) that form a basis for the space spanned by these 
vectors. 
(b) Express each vector not in the basis as a linear combination of the basis vectors. 
Solution:  
(a) We begin by constructing a matrix that has v1, v2, ... , v5  as its column vectors 
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          (A) 

1 2 0 2 5
-2 -5 1 -1 -8
0 -3 3 4 1
3 6 0 -7 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
↑ ↑ ↑ ↑ ↑

1 2 3 4v v v v v5

⎥

Finding a basis for column space of this matrix can solve the first part of our problem. 
 Reducing the matrix to reduced-row echelon form and denoting the column vectors of 
the resulting matrix by w1, w2, w3, w4, and w5 yields 

 1  0 2  0       1 
 0  1 -1  0       1
  0  0  0  1       1
 0  0  0   0       0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎣ ⎦

↑ ↑↑ ↑ ↑

3 51 2 4w ww w w

     (B) 

The leading entries occur in columns 1, 2 and 4 so {w1, w2, w4} is a basis for the column 
space of (B) and consequently {v1, v2, v4} is the basis for column space of (A). 
(b) Dependency equations are  w3 = 2w1 – w2 and w5 = w1 + w2 + w4 
The corresponding relationship of (A) are v3 = 2v1 – v2 and v5 = v1 + v2 + v4 
 
Subspaces of a Finite-Dimensional Space:   The next theorem is a natural counterpart to 
the Spanning Set Theorem. 
 
Theorem 5:   Let H be a subspace of a finite-dimensional vector space V. Any linearly 
independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-
dimensional and dim dim≤H V . 
 
When the dimension of a vector space or subspace is known, the search for a basis is 
simplified by the next theorem. It says that if a set has the right number of elements, then 
one has only to show either that the set is linearly independent or that it spans the space. 
The theorem is of critical importance in numerous applied problems (involving 
differential equations or difference equations, for example) where linear independence is 
much easier to verify than spanning. 
 
Theorem 5: (The Basis Theorem)   Let V be a p-dimensional vector space, p> 1. Any 
linearly independent set of exactly p elements in V is automatically a basis for V. Any set 
of exactly p elements that spans V is automatically a basis for V. 
 
The Dimensions of Nul A and Col A:   Since the pivot columns of a matrix A form a 
basis for Col A, we know the dimension of Col A as soon as we know the pivot columns. 
The dimension of Nul A might seem to require more work, since finding a basis for Nul 
A usually takes more time than a basis for Col A. Yet, there is a shortcut. 
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Let A be an  matrix, and suppose that the equation Ax = 0 has k free variables. 
From lecture 21, we know that the standard method of finding a spanning set for Nul A 
will produce exactly k linearly independent vectors say, u1, … , uk, one for each free 
variable. So {u1, … , uk} is a basis for Nul A, and the number of free variables determines 
the size of the basis. Let us summarize these facts for future reference. 

m n×

 
The dimension of Nul A is the number of free variables in the equation Ax = 0, and the 
dimension of Col A is the number of pivot columns in A. 
 
Example 15:   Find the dimensions of the null space and column space of 

-3 6 -1 1 -7
1 -2 2 3 -1
2 -4 5 8 -4

=
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  

Solution:   Row reduce the augmented matrix [A   0] to echelon form and obtain 
1 -2 2 3 -1 0
0 0 1 2 -2 0
0 0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Writing it in equations form, we get 

1 2 3 4 5

3 4 5

2 2 3
2 2 0

x x x x x
x x x
− + + − =
+ − =

0
 

Since the number of unknowns is more than the number of equations, we will introduce 
free variables here (say) x2, x4 and x5. Hence the dimension of Nul A is 3. Also dim Col A 
is 2 because A has two pivot columns. 
 
Example 16:   Decide whether each statement is true or false, and give a reason for each 
answer. Here V is a non-zero finite-dimensional vector space. 

1. If dim V = p and if S is a linearly dependent subset of V, then S contains more than 
p vectors. 
2. If S spans V and if T is a subset of V that contains more vectors than S, then T is 
linearly dependent. 

Solution: 
1. False. Consider the set {0}. 
2. True. By the Spanning Set Theorem, S contains a basis for V; call that basis ′S . 

Then T will contain more vectors than ′S . By Theorem 1, T is linearly dependent.  
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Exercises: 
 
For each subspace in exercises 1-6, (a) find a basis and (b) state the dimension. 
 

1. 
2

: , in
3

s t
s t s t
t

⎧ − ⎫⎡ ⎤
⎪⎢ ⎥+⎨⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

⎪
⎬R     2. 

2

: , , in
3
2

c
a b

a b c
b c
a b

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥−⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥−⎪ ⎪⎢ ⎥⎪ ⎪+⎣ ⎦⎩ ⎭

R  

 

3. 

4 2
2 5 4

: , , in
2

3 7 6

a b c
a b c

a b c
a c
a b c

⎧ − − ⎫⎡ ⎤
⎪ ⎪⎢ ⎥+ −⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥− +⎪ ⎪⎢ ⎥⎪ ⎪− + +⎣ ⎦⎩ ⎭

R   4. 

3 6
6 2 2

: , , in
9 5 3
3

a b c
a b c

a b c
a b c
a b c

⎧ + −⎡ ⎤ ⎫
⎪ ⎪⎢ ⎥− −⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥− + +⎪ ⎪⎢ ⎥⎪ ⎪− + +⎣ ⎦⎩ ⎭

R   

 
5. {(a, b, c): a – 3b + c = 0, b – 2c = 0, 2b – c = 0} 
 
6 {(a, b, c, d): a - 3b + c = 0} 
 
7. Find the dimension of the subspace H of R2 spanned by 

2 4
, ,

5 10 6
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

3

⎥
⎥

 

 
8. Find the dimension of the subspace spanned by the given vectors. 

1 3 9 7
0 , 1 , 4 , 3
2 1 2 1

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
Determine the dimensions of Nul A and Col A for the matrices shown in exercises 9 to 
12. 
 

9.    10. 

1 6 9 0 2
0 1 2 4 5
0 0 0 5 1
0 0 0 0 0

− −⎡ ⎤
⎢ ⎥−⎢=
⎢
⎢ ⎥
⎣ ⎦

A

1 3 4 2 1 6
0 0 1 3 7 0
0 0 0 1 4 3
0 0 0 0 0 0

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

A  

 

11.    12. 
1 0 9 5
0 0 1 4
⎡ ⎤

= ⎢ −⎣ ⎦
A ⎥

1 1 0
0 4 7
0 0 5

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A  
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13. The first four Hermite polynomials are 1, 2t, -2 + 4t2, and -12t + 8t3. These 
polynomials arise naturally in the study of certain important differential equations in 
mathematical physics. Show that the first four Hermite polynomials form a basis of P3. 
 
14. Let B be the basis of P3 consisting of the Hermite polynomials in exercise 13, and let 
p (t) = 7 – 12 t – 8 t2 + 12 t3. Find the coordinate vector of p relative to B. 
 
15. Extend the following vectors to a basis for R5: 

9 9 6
7 4 7

8 , 1 , 8
5 6 5

7 7

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 2 3v v v

7

−  
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Lecture 25 
 

Rank 
 

With the help of vector space concepts, for a matrix several interesting and useful 
relationships in matrix rows and columns have been discussed.  
For instance, imagine placing 2000 random numbers into a 40 x 50 matrix A and then 
determining both the maximum number of linearly independent columns in A and the 
maximum number of linearly independent columns in AT (rows in A). Remarkably, the 
two numbers are the same. Their common value is called the rank of the matrix. To 
explain why, we need to examine the subspace spanned by the subspace spanned by the 
rows of A. 
 
The Row Space:   If A is an  matrix, each row of A has n entries and thus can be 
identified with a vector in Rn. The set of all linear combinations of the row vectors is 
called the row space of A and is denoted by Row A. Each row has n entries, so Row A is 
a subspace of Rn. Since the rows of A are identified with the columns of AT, we could 
also write Col AT in place of Row A. 

m n×

Example 1:   Let  

-2 -5 8 0 -17
1 3 -5 1 5

and
3 11 -19 7 1
1 7 -13 5 -3

= (-2,-5,8,0,-17)
= (1,3,-5,1,5)

=
= (3,11,-19,7,1)
= (1,7,-13,5,-3)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1

2

3

4

r
r

A
r
r

The row space of A is the subspace of R5 spanned by {r1, r2, r3, r4}. That is, Row A = 
Span {r1, r2, r3, r4}. Naturally, we write row vectors horizontally; however, they could 
also be written as column vectors 
Example: Let   

 

 
That is Row A=Span {r1, r2}. 
 
                     We could use the Spanning Set Theorem to shrink the spanning set to a 
basis. 
Some times row operation on a matrix will not give us the required information but row 
reducing certainly worthwhile, as the next theorem shows  
 
Theorem 1:   If two matrices A and B are row equivalent, then their row spaces are the 
same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A 
as well as B. 
 
Theorem 2:   If A and B are row equivalent matrices, then 

2 1 0
and

3 -1 4

= (2,1,0)
= (3,-1,4)

=
⎡ ⎤
⎢ ⎥
⎣ ⎦

1

2

r
r

A
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(a) A given set of column vectors of A is linearly independent if and only if the 
corresponding column vectors of B are linearly independent. 
(b) A given set of column vector of A forms a basis for the column space of A if and only 
if the corresponding column vector of B forms a basis for the column space of B. 
 
 
 
Example 2: (Bases for Row and Column Spaces) 

Find the bases for the row and column spaces of 

1 -3 4 -2 5 4
2 -6 9 -1 8 2
2 -6 9 -1 9 7
-1 3 -4 2 -5 -4

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

A . 

Solution:   We can find a basis for the row space of A by finding a basis for the row 
space of any row-echelon form of A.  

Now   

 1  - 3  4  - 2  5   4
 2  - 6  9  -1  8   2
 2  - 6  9  -1  9   7
-1   3 -4   2 -5  - 4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
 1  - 3  4  - 2  5  4 
 0  0  1  3  - 2  - 6 
 0  0  1  3  -1  -1 
 0  0  0  0  0  0 

1 2

1 3

1 4

-2 R + R
-2 R + R

R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 1  -3  4  - 2  5  4 
 0  0  1  3  - 2  - 6 
 0  0  0  0  1  5 
 0  0  0  0  0  0 

2 3- 1R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Row-echelon form of A:  

1 -3 4 -2 5 4
0 0 1 3 -2 -6
0 0 0 0 1 5
0 0 0 0 0 0

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

R

Here Theorem 1 implies that that the non zero rows are the basis vectors of the matrix.  
So these bases vectors are 

[ ]
[ ]
[ ]

1 -3 4 -2 5 4

0 0 1 3 -2 -6

0 0 0 0 1 5

=

=

=

1

2

3

r

r

r

 

 A and R may have different column spaces, we cannot find a basis for the column space 
of A directly from the column vectors of R. however, it follows from the theorem (2b) if 
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we can find a set of column vectors of R that forms a basis for the column space of R, 
then the corresponding column vectors of A will form a basis for the column space of A. 
 
The first, third, and fifth columns of R contains the leading 1’s of the row vectors, so 

    

1 4
0 1
0 0
0 0

1 = = =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ′ ′
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

3 5c c c

5
-2
1
0

5
8
9

form a basis for the column space of R, thus the corresponding column vectors of A 

namely,    

1 4
2 9
2 9
-1 -4 -5

= = =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 3 5c c c

form a basis for the column space of A. 
 
Example: 
The matrix  
 

 

 
 
 
 
 

0
0
1
0

is in row-echelon form. 
The vectors  

form a basis for the row space of R, and the vectors 
1 -2
0 1

, ,
0 0
0 0

c = c = c =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 2 3  

form a basis for the column space of R. 
 
 
 
 

1 -2 5 0 3
0 1 3 0 0
0 0 0 1 0
0 0 0 0 0

R =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

[ ]
[ ]
[ ]

1 -2 5 0 3

0 1 3 0 0

0 0 0 1 0

=

=

=

1

2

3

r

r

r
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Example 3: (Basis for a Vector Space using Row Operation) 
Find bases for the space spanned by the vectors 

    
= (1,-2,0,0,3) = (2,-5,-3,-2,6)
= (0,5,15,10,0) = (2,6,18,8,6)

1 2

3 4

v v
v v

Solution: The space spanned by these vectors is the row space of the matrix 

       

1 -2 0 0 3
2 -5 -3 -2 6
0 5 15 10 0
2 6 18 8 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Transforming Matrix to Row Echelon Form: 
 

1  - 2    0    0    3
2  -5   - 3   - 2    6
0   5  15  10    0
2   6  18    8    6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 1  - 2  0  0  3 
 0  1  3  2  0 
 0  5  15  10  0 
 0  10  18  8  0 

1 2

1 4

2

(-2)R + R
(-2)R + R

(-1)R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 1  - 2  0  0  3 
 0  1  3  2  0 
 0  0  0  0  0 
 0  0  -12  -12  0 

2 3

2 4

(-5)R + R
(-10)R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 1  - 2  0  0  3 
 0  1  3  2  0 
 0  0  -12  -12  0 
 0  0  0  0  0 

34R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 1  - 2  0  0  3 
 0  1  3  2  0 
 0  0  1  1  0 
 0  0  0  0  0 

3(-1/12)R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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Therefore,   

1 -2 0 0 3
0 1 3 2 0
0 0 1 1 0
0 0 0 0 0

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

R

The non-zero row vectors in this matrix are  
= (1,-2,0,0,3), = (0,1,3,2,0), = (0,0,1,1,0)1 2 3w w w  

These vectors form a basis for the row space and consequently form a basis for the 
subspace of R5 spanned by v1, v2, v3. 
 
Example 4: (Basis for the Row Space of a Matrix) 

Find a basis for the row space of 

1 -2 0 0 3
2 -5 -3 -2 6
0 5 15 10 0
2 6 18 8 6

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

A  consisting entirely of row 

vectors from A. 
Solution:   We find AT; then we will use the method of example (2) to find a basis for the 
column space of AT; and then we will transpose again to convert column vectors back to 
row vectors. Transposing A yields 

1 2 0 2
-2 -5 5 6
0 -3 15 18
0 -2 10 8
3 6 0 6

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

TA  

Transforming Matrix to Row Echelon Form: 
 1   2   0     2
-2  -5   5     6
 0  -3  15   18
 0  - 2  10     8
 3   6   0     6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 1  2  0  2 
 0  -1  5  10 
 0  -3  15  18 
 0  - 2  10  8 
 0  0  0  0 

1 2

1 5

2 R + R
(-3)R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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 1  2  0  2 
 0  1  -5  -10 
 0  -3  15  18 
 0  - 2  10  8 
 0  0  0  0 

2(-1)R  

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 1  2  0  2 
 0  1  -5  -10 
 0  0  0  -12 
 0  0  0  -12 
 0  0  0  0 

2 3

2 4

(3)R + R
(2)R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 1  2  0  2 
 0  1  -5  -10 
 0  0  0  1 
 0  0  0  -12 
 0  0  0  0 

3(-1/12)R  

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 1  2  0  2 
 0  1  -5  -10 
 0  0  0  1 
 0  0  0  0 
 0  0  0  0 

3 412 R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Now    

1 2 0 2
0 1 -5 -10
0 0 0 1
0 0 0 0
0 0 0 0

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

R

The first, second and fourth columns contain the leading 1’s, so the corresponding 
column vectors in AT form a basis for the column space of AT; these are 

1 2
-2 -5 6

and0 -3
0 -2
3 6

= , = =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 2 4c c c

2

18
8
6

 

Transposing again and adjusting the notation appropriately yields the basis vectors 
[ ] [ ] [ ]1 -2 0 0 3 2 -5 -3 -2 6 2 6 18 8 6= , = and =1 2 4r r r  

for the row space of A. 
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The following example  shows how one sequence of row operations on A leads to bases 
for the three spaces: Row A, Col A, and Nul A. 
  
 
 
Example 5:   Find bases for the row space, the column space and the null space of the 
matrix  

 
 
 
 
 
 

 
Solution:   To find bases for the row space and the column space, row reduce A to an 

echelon form:  

1 3 -5 1 5
0 1 -2 2 -7
0 0 0 -4 20
0 0 0 0 0

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∼A B

By Theorem (1), the first three rows of B form a basis for the row space of A (as well as 
the row space of B). Thus Basis for Row A:  

{(1, 3, -5, 1, 5), (0, 1, -2, 2, -7), (0, 0, 0, -4, 20)} 
For the column space, observe from B that the pivots are in columns 1, 2 and 4. Hence 
columns 1, 2 and 4 of A (not B) form a basis for Col A: 

-2 -5 0
1 3 1

Basis for Col : , ,
3 11 7
1 7 5

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

A  

Any echelon form of A provides (in its nonzero rows) a basis for Row A and also 
identifies the pivot columns of A for Col A. However, for Nul A, we need the reduced 
echelon form. Further row operations on B yield 

1 0 1 0 1
0 1 -2 0 3
0 0 0 1 -5
0 0 0 0 0

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∼ ∼A B C  

The equation Ax = 0 is equivalent to Cx = 0, that is, 
1 3 5

2 3 5

4 5

x +           x            +  x  = 0
        x  - 2x            + 3x  = 0
 x     - 5x  = 0

 

-2 -5 8 0 -17
1 3 -5 1 5
3 11 -19 7 1
1 7 -13 5 -3

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

A
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So x1 = -x3 – x5, x2 = 2x3 – 3x5, x4 = 5x5, with x3 and x5 free variables. The usual 
calculations (discussed in lecture 21) show that 

-1 -1
2 -3

Basis for Nul : ,1 0
0 5
0 1

⎧ ⎫⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎨ ⎬
⎢ ⎥ ⎢ ⎥⎪ ⎪
⎢ ⎥ ⎢ ⎥⎪ ⎪
⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

A  

 
Observe that, unlike the bases for Col A, the bases for Row A and Nul A have no simple 
connection with the entries in A itself. 
 
Note:  
1.  Although the first three rows of B in Example (5) are linearly independent, it is wrong   

to conclude that the first three rows of A are linearly independent. (In fact, the third 
row of A is 2 times the first row plus 7 times the second row). 

 2.  Row operations do not preserve the linear dependence relations among the rows of a 
matrix. 

 
Definition:   The rank of A is the dimension of the column space of A. 
Since Row A is the same as Col AT, the dimension of the row space of A is the rank of 
AT. The dimension of the null space is sometimes called the nullity of A. 
 
Theorem 3: (The Rank Theorem) The dimensions of the column space and the row 
space of an m  matrix A are equal. This common dimension, the rank of A, also equals 
the number of pivot positions in A and satisfies the equation 

n×

rank A + dim Nul A = n 
 
Example 6: 
(a) If A is a  matrix with a two – dimensional null space, what is the rank of A? 7 9×
(b). Could a  matrix have a two – dimensional null space? 6 9×
Solution:   
 (a) Since A has 9 columns, (rank A) + 2 = 9 and hence rank A = 7. 
 (b) No, If a 6  matrix, call it B, had a two – dimensional null space, it would have to 
have rank 7, by the Rank Theorem. But the columns of B are vectors in R6 and so the 
dimension of Col B cannot exceed 6; that is, rank B cannot exceed 6. 

9×

 
The next example provides a nice way to visualize the subspaces we have been studying. 
Later on, we will learn that Row A and Nul A have only the zero vector in common and 
are actually “perpendicular” to each other. The same fact will apply to Row AT (= Col A) 
and Nul AT. So the figure in Example (7) creates a good mental image for the general 
case.  
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Example 7: Let 
3 0 1
3 0 1
4 0 5

−⎡ ⎤
⎢ ⎥= −⎢
⎢ ⎥⎣ ⎦

A ⎥ . It is readily checked that Nul A is the x2 – axis, Row A 

is the x1x3 – plane, Col A is the plane whose equation is x1 – x2 = 0 and Nul AT is the set 
of all multiples of (1, -1, 0). Figure 1 shows Nul A and Row A in the domain of the linear 
transformation  the range of this mapping, Col A, is shown in a separate copy of 
R3, along with Nul AT. 

;→x Ax

 
Figure 1 – Subspaces associated with a matrix A 

 
Applications to Systems of Equations: 
   The Rank Theorem is a powerful tool for processing information about systems of 
linear equations. The next example simulates the way a real-life problem using linear 
equations might be stated, without explicit mention of linear algebra terms such as 
matrix, subspace and dimension. 
 
 Example 8:   A scientist has found two solutions to a homogeneous system of 40 
equations in 42 variables. The two solutions are not multiples and all other solutions can 
be constructed by adding together appropriate multiples of these two solutions. Can the 
scientist be certain that an associated non-homogeneous system (with the same 
coefficients) has a solution?  
Solution:   Yes. Let A be the 40 42×  coefficient matrix of the system. The given 
information implies that the two solutions are linearly independent and span Nul A. So 
dim Nul A = 2. By the Rank Theorem, dim Col A = 42 – 2 = 40. Since R40 is the only 
subspace of R40 whose dimension is 40, Col A must be all of R40. This means that every 
non-homogeneous equation Ax = b has a solution. 
 

x2 
x1 

x3 

0 

Row A 

Nul A x2 

x1 

0 

Col A 

Nul AT 

x3 

R3 
R3 
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Example 9:   Find the rank and nullity of the matrix 

-1 2 0 4 5 -3
3 -7 2 0 1 4
2 -5 2 4 6 1
4 -9 2 -4 -4 7

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

A . 

Verify that values obtained verify the dimension theorem. 

Solution  

 -1  2  0  4  5  -3 
 3  - 7  2  0  1  4 
 2  -5  2  4  6  1 
 4  -9  2  - 4  - 4  7 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  

 1  - 2  0  - 4  -5  3 
 3  - 7  2  0  1  4 
 2  -5  2  4  6  1 
 4  -9  2  - 4  - 4  7 

1(-1)R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

   

 1  - 2  0  - 4  -5  3 
 0  -1  2  12  16  -5 
 0  -1  2  12  16  -5 
 0  -1  2  12  16  -5 

1 2

1 3

1 4

(-3)R + R
(-2)R + R
(-4)R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
 1  - 2  0  - 4  -5  3 
 0  1  - 2  -12  -16  5 
 0  -1  2  12  16  -5 
 0  -1  2  12  16  -5 

2(-1)R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

  

 1  - 2  0  - 4  -5  3 
 0  1  - 2  -12  -16  5 
 0  0  0  0  0  0 
 0  0  0  0  0  0 

2 3

2 4

R + R
R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 1  0  - 4  - 28  -37  13 
 0  1  - 2  -12  -16  5 
 0  0  0  0  0  0 
 0  0  0  0  0  0 

2 12R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

The reduced row-echelon form of A is 
1 0 -4 -28 -37 13
0 1 -2 -12 -16 5
0 0 0 0 0 0
0 0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎥      (1) 
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The corresponding system of equations will be 
1 3 4 5 6

2 3 4 5 6

x  - 4x  - 28x  - 37x  + 13x  = 0
x  - 2x  -12x  - 16x  +  5x  = 0

 

or, on solving for the leading variables, 
1 3 4 5

2 3 4 5

6

6

x  = 4x  - 28x  + 37x  - 13x
x  = 2x  +12x  + 16x  - 5x       (2) 

it follows that the general solution of the system is  
1

2

3

4

5

6

x  = 4r + 28s + 37t - 13u
x  = 2r + 12s + 16t -  5u
x  = r
x  = s
x  = t
x  = u

 

or equivalently,     (3) 

1

2

3

4

5

6

x 4 28 37 -1
x 2 12 16 -5
x 1 0 0 0

= r + s +t +u
x 0 1 0 0
x 0 0 1 0
x 0 0 0 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

3

The four vectors on the right side of (3) form a basis for the solution space, so  

nullity (A) = 4. The matrix  has 6 columns,  

-1 2 0 4 5 -3
3 -7 2 0 1 4
2 -5 2 4 6 1
4 -9 2 -4 -4 7

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

A

so rank(A) + nullity(A) = 2 + 4 = 6 = n 
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Example 10:   Find the rank and nullity of the matrix; then verify that the values obtained 

satisfy the dimension theorem 

1 -3 2 2 1
0 3 6 0 -3
2 -3 -2 4 4
3 -6 0 6 5
-2 9 2 -4 -5

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  

Solution:   Transforming Matrix to the Reduced Row Echelon Form: 
 1  -3  2  2  1 
 0  3  6  0  - 3 
 2  -3  - 2  4  4 
 3  - 6  0  6  5 
 - 2  9  2  - 4  - 5 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

   

 1  -3  2  2  1 
 0  3  6  0  -3 
 0  3  - 6  0  2 
 0  3  - 6  0  2 
 0  3  6  0  -3 

1 3

1 4

1 5

(-2)R + R
(-3)R + R

2R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
 1  -3  2  2  1 
 0  1  2  0  -1 
 0  3  - 6  0  2 
 0  3  - 6  0  2 
 0  3  6  0  - 3 

2(1/3)R   

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

   

 1  -3  2  2  1 
 0  1  2  0  -1 
 0  0  -12  0  5 
 0  0  -12  0  5 
 0  0  0  0  0 

2 3

2 4

2 5

(-3) R  + R
(-3) R + R
(-3)R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
 1  -3  2  2  1 
 0  1  2  0  -1 
 0  0  1  0  -5/12 
 0  0  -12  0  5 
 0  0  0  0  0 

3(-1/12)R   

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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 1  -3  2  2  1 
 0  1  2  0  -1 
 0  0  1  0  -5/12 
 0  0  0  0  0 
 0  0  0  0  0 

3 412R + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   

 1  -3  0  2  11/6 
 0  1  0  0  -1/6 
 0  0  1  0  - 5/12 
 0  0  0  0  0 
 0  0  0  0  0 

3 2

3 1

(-2 ) R  + R
(-2 ) R  + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

     (1) 

 1  0  0  2  4/3 
 0  1  0  0  -1/6 
 0  0  1  0  - 5/12 
 0  0  0  0  0 
 0  0  0  0  0 

2(3) R  + R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1⎥

Since there are three nonzero rows (or equivalently, three leading 1’s) the row space and 
column space are both three dimensional so rank (A) = 3. 
 To find the nullity of A, we find the dimension of the solution space of the linear system 
Ax = 0. The system can be solved by reducing the augmented matrix to reduced row 
echelon form. The resulting matrix will be identical to (1), except with an additional last 
column of zeros, and the corresponding system of equations will be 

 

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

4x + 0x + 0x + 2x + x = 0
3

10x + x + 0x + 0x - x = 0
6
50x + 0x + x + 0x - x = 0

12

  

The system has infinitely many solutions:  

x1 = -2 x4+(-4/3) x5  x2 = (1/6) x5 

x3  = (5/12) x5   x4 = s 

x5 = t 

The solution can be written in the vector form:  

c4 = (-2, 0, 0, 1, 0)  c5 = (-4/3, 1/6, 5/12,0,1) 
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Therefore the null space has a basis formed by the set  

{(-2, 0, 0, 1, 0), (-4/3, 1/6, 5/12,0,1)} 

The nullity of the matrix is 2. Now Rank (A) + nullity (A) = 3 + 2 =5 = n 
 
Theorem 4:   If A is an m x n, matrix, then 
(a) rank (A) = the number of leading variables in the solution of Ax = 0 
(b) nullity (A) = the number of parameters in the general solution of Ax = 0 
 
Example 11:   Find the number of parameters in the solution set of Ax = 0 if A is a 5 7×  
matrix of rank 3. 
Solution: nullity (A) = n – rank (A) = 7-3 =4 
Thus, there are four parameters. 
 
Example (not in handouts) Find the number of parameters in the solution set of Ax = 0 if 
A is a  matrix of rank 0. 4 4×
Solution nullity (A) = n – rank (A) = 4-0 =4 
Thus, there are four parameters. 
 
Theorem 5:   If A is any matrix, then rank (A) = rank (AT) 
 
Four fundamental matrix spaces: 

   If we consider a matrix A and its transpose AT together, then there are six 
vectors spaces of interest: 
Row space of A  row space of AT 

Column space of A  column space of AT 

Null space of A null space of AT 

However, transposing a matrix converts row vectors into column vectors and column 
vectors into row vectors, so that, except for a difference in notation, the row space of AT 
is the same as the column space of A and the column space of AT is the same as row 
space of of A. 
This leaves four vector spaces of interest: 
Row space of A  column space of A  
Null space of A  null space of AT 
These are known as the fundamental matrix spaces associated with A, if A is an m x n 
matrix, then the row space of A and null space of A are subspaces of Rn and the column 
space of A and the null space of AT are subspaces of Rm. 
 
Suppose now that A is an m x n matrix of rank r, it follows from theorem (5) that AT is an 
n x m matrix of rank r . Applying theorem (3) on A and AT yields 

Nullity (A)=n-r, nullity (AT)=m-r 
From which we deduce the following table relating the dimensions of the four 
fundamental spaces of an m x n matrix A of rank r. 
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Fundamental space      Dimension 
Row space of A      r 
Column space of A      r 
Null space of A     n-r 
Null space of AT      m-r 
 
Example 12:   If A is a 7 x 4 matrix, then the rank of A is at most 4 and, consequently, 
the seven row vectors must be linearly dependent. If A is a 4 x 7 matrix, then again the 
rank of A is at most 4 and, consequently, the seven column vectors must be linearly 
dependent. 
 
Rank and the Invertible Matrix Theorem:   The various vector space concepts 
associated with a matrix provide several more statements for the Invertible Matrix 
Theorem. We list only the new statements here, but we reference them so they follow the 
statements in the original Invertible Matrix Theorem in lecture 13. 
 
Theorem 6:   The Invertible Matrix Theorem (Continued) 
Let A be an n x n matrix. Then the following statements are each equivalent to the 
statement that A is an invertible matrix. 

m. The columns of A form a basis of Rn. 
n. Col A = Rn. 
o. dim Col A = n 
p. rank A = n 
q. Nul A = {0} 
r. dim Nul A = 0 

 
Proof:   Statement (m) is logically equivalent to statements (e) and (h) regarding linear 
independence and spanning. The other statements above are linked into the theorem by 
the following chain of almost trivial implications: 

( ) ( ) ( ) ( ) ( ) ( ) ( )g n o p r q d⇒ ⇒ ⇒ ⇒ ⇒ ⇒  
Only the implication (p) ⇒  (r) bears comment. It follows from the Rank Theorem 
because A is . Statements (d) and (g) are already known to be equivalent, so the 
chain is a circle of implications. 

n n×

 
We have refrained from adding to the Invertible Matrix Theorem obvious statements 
about the row space of A, because the row space is the column space of AT. Recall from 
(1) of the Invertible Matrix Theorem that A is invertible if and only if AT is invertible. 
Hence every statement in the Invertible Matrix Theorem can also be stated for AT.  
 
Numerical Note: 
                 Many algorithms discussed in these lectures are useful for understanding 
concepts and making simple computations by hand. However, the algorithms are often 
unsuitable for large-scale problems in real life.  
Rank determination is a good example. It would seem easy to reduce a matrix to echelon 
form and count the pivots. But unless exact arithmetic is performed on a matrix whose 
entries are specified exactly, row operations can change the apparent rank of a matrix.                              
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For instance, if the value of x in the matrix 
5 7
5 x
⎡ ⎤
⎢ ⎥
⎣ ⎦

 is not stored exactly as 7 in a 

computer, then the rank may be 1 or 2, depending on whether the computer treats x – 7 as 
zero. 
In practical applications, the effective rank of a matrix A is often determined from the 
singular value decomposition of A. 
 
Example 13:  The matrices below are row equivalent 

2 -1 1 -6 8 1 -2 -4 3 -2
1 -2 -4 3 -2 0 3 9 -12 12
-7 8 10 3 -10 0 0 0 0 0
4 -5 -7 0 4 0 0 0 0 0

= , =

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎣ ⎦ ⎣

A B

⎤
⎥
⎥
⎥
⎥
⎦

 

1. Find rank A and dim Nul A. 
2. Find bases for Col A and Row A. 
3. What is the next step to perform if one wants to find a basis for Nul A? 
4. How many pivot columns are in a row echelon form of AT? 

Solution: 
1. A has two pivot columns, so rank A = 2. Since A has 5 columns altogether, dim 

Nul A = 5 – 2 = 3. 
2. The pivot columns of A are the first two columns. So a basis for Col A is 

2 -1
1 -2

,
-7 8
4 -5

{ , }=

⎧ ⎫⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥
⎪⎢ ⎥ ⎢ ⎥⎨⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

1 2a a ⎪
⎬                                                                                                                 

The nonzero rows of B form a basis for Row A, namely {(1, –2, –4, 3, –2), (0, 3, 
9, –12, 12)}. In this particular example, it happens that any two rows of A form a 
basis for the row space, because the row space is two-dimensional and none of the 
rows of A is a multiple of another row. In general, the nonzero rows of an echelon 
form of A should be used as a basis for Row A, not the rows of A itself. 

3. For Nul A, the next step is to perform row operations on B to obtain the reduced 
echelon form of A. 

4. Rank AT = rank A, by the Rank Theorem, because Col AT = Row A. So AT has 
two pivot positions. 

 
Exercises: 
 
In exercises 1 to 4, assume that the matrix A is row equivalent to B. Without calculations, 
list rank A and dim Nul A. Then find bases for Col A, Row A, and Nul A. 
 

1.   
1 4 9 7 1 0 1 5
1 2 4 1 , 0 2 5 6

5 6 10 7 0 0 0 0

− − −⎡ ⎤ ⎡
⎢ ⎥ ⎢= − − = − −⎢ ⎥ ⎢
⎢ ⎥ ⎢−⎣ ⎦ ⎣

A B
⎤
⎥
⎥
⎥⎦
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2.  

1 3 4 1 9 1 3 0 5 7
2 6 6 1 10 0 0 2 3 8

,
3 9 6 6 3 0 0 0 0 5

3 9 4 9 0 0 0 0 0 0

− − −⎡ ⎤ ⎡
⎢ ⎥ ⎢− − − − −⎢ ⎥ ⎢=
⎢ ⎥ ⎢− − − −
⎢ ⎥ ⎢−⎣ ⎦ ⎣

A B =

− ⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

− ⎤
⎥− ⎥
⎥
⎥
⎥
⎥⎦

 

3.  

2 3 6 2 5 2 3 6 2 5
2 3 3 3 4 0 0 3 1 1

,
4 6 9 5 9 0 0 0 1 3
2 3 3 4 1 0 0 0 0 0

− −⎡ ⎤ ⎡
⎢ ⎥ ⎢− − − − −⎢ ⎥ ⎢= =
⎢ ⎥ ⎢−
⎢ ⎥ ⎢− −⎣ ⎦ ⎣

A B

 

4.  

1 1 3 7 9 9 1 1 3 7 9 9
1 2 4 10 13 12 0 1 1 3 4 3

,1 1 1 1 1 3 0 0 0 1 1 2
1 3 1 5 7 3 0 0 0 0 0 0
1 2 0 0 5 4 0 0 0 0 0 0

− − −⎡ ⎤ ⎡
⎢ ⎥ ⎢− − −⎢ ⎥ ⎢
⎢ ⎥ ⎢= =− − − − −
⎢ ⎥ ⎢− − −⎢ ⎥ ⎢
⎢ ⎥ ⎢− − −⎣ ⎦ ⎣

A B

 
5. If a 3 x 8 matrix A has rank 3, find dim Nul A, dim Row A, and rank AT. 
 
6. If a 6 x 3 matrix A has rank 3, find dim Nul A, dim Row A, and rank AT. 
 
7. Suppose that a 4 x 7 matrix A has four pivot columns. Is Col A = R4? Is Nul A = R3? 
Explain your answers. 
 
8. Suppose that a 5 x 6 matrix A has four pivot columns. What is dim Nul A? Is Col A = 
R4? Why or why not?  
 
9. If the null space of a 5 x 6 matrix A is 4-dimensional, what is the dimension of the 
column space of A? 
 
10. If the null space of a 7 x 6 matrix A is 5-dimensional, what is the dimension of the 
column space of A? 
 
11. If the null space of an 8 x 5 matrix A is 2-dimensional, what is the dimension of the 
row space of A? 
 
12. If the null space of a 5 x 6 matrix A is 4-dimensional, what is the dimension of the 
row space of A? 
 
13. If A is a 7 x 5 matrix, what is the largest possible rank of A? If A is a 5 x 7 matrix, 
what is the largest possible rank of A? Explain your answers. 
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14. If A is a 4 x 3 matrix, what is the largest possible dimension of the row space of A? If 
A is a 3 x 4 matrix, what is the largest possible dimension of the row space of A? Explain. 
 
15. If A is a 6 x 8 matrix, what is the smallest possible dimension of Nul A? 
 
16. If A is a 6 x 4 matrix, what is the smallest possible dimension of Nul A? 
 
 


