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Abstract

In this article we will only touch on a few tiny parts of the field of linear Dio-
phantine equations. Some of the tools introduced, however,will be useful in many
other parts of the subject.

1 Whole Numbers

In number theory, we are usually concerned with the properties of the integers, or
whole numbers:Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}. Let us begin with a very simple
problem that should be familiar to anyone who has studied elementary algebra.

• Suppose that dolls sell for7 dollars each, and toy train sets sell for18 dollars. A store
sells 25 total dolls and train sets, and the total amount received is 208 dollars. How
many of each were sold?

The standard solution is straight-forward: Letx be the number of dolls andy be the
number of train sets. Then we have two equations and two unknowns:

x + y = 25

7x + 18y = 208

The equations above can be solved in many ways, but perhaps the easiest is to note that
the first one can be converted to:x = 25− y and then that value ofx is substituted into
the other equation and solved:

7(25 − y) + 18y = 208

175 − 7y + 18y = 208

−7y + 18y = 208 − 175

11y = 33

y = 3

Then if we substitutey = 3 into either of the original equations, we obtainx = 22,
and it is easy to check that those values satisfy the conditions in the original problem.

Now let’s look at a more interesting problem:

• Suppose that dolls sell for7 dollars each, and toy train sets sell for18 dollars. A store
sells only dolls and train sets, and the total amount received is208 dollars. How many
of each were sold?
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This time there is only one equation:7x+ 18y = 208. We probably learned in algebra
class that you need as many equations as unknowns to solve problems like this, so at
first it seems hopeless, but there is one additional key pieceof information: the number
of dolls and the number of train sets must benon-negative whole numbers. With that in
mind, let’s see what we can do, ignoring for the moment the fact that we already have
a solution, namely:x = 22 andy = 3.

Beginning from our original equation, we can do this:

7x = 208 − 18y

x =
208 − 18y

7
= 29 − 2y +

5 − 4y

7
.

At first, this seems like we haven’t made any progress, but notice that sincey has to be
an integer, the value of(29 − 2y) is a whole number, so also the fraction(5 − 4y)/7
also has to be a whole number. Let’s call ita, and then do some arithmetic with the
resulting equation:

a =
5 − 4y

7
7a = 5 − 4y

4y = 5 − 7a

y =
5 − 7a

4
= 1 − a +

1 − 3a

4
.

As before, we still don’t have a solution, but things look better in a sense: the denomi-
nator in the fraction is smaller: it is now4 instead of7. As before, since we know that
a is a whole number, we know that1 − a is a whole number, and therefore(1 − 3a)/4
must be a whole number which we will callb, and we’ll again repeat the same sort of
algebraic manipulations:

b =
1 − 3a

4
4b = 1 − 3a

3a = 1 − 4b

a =
1 − 4b

3
= −b +

1 − b

3
.

The same reasoning as before tells us that(1 − b)/3 must be a whole number, so we
call it c:

c =
1 − b

3
3c = 1 − b

b = 1 − 3c.

Now we’ve actually made some progress. No matterwhat integer valuec takes,b will
be an integer! Let’s substitute that value ofb back into the previous equation:

a =
1 − 4b

3
=

1 − 4(1 − 3c)

3
=

−3 + 12c

3
= −1 + 4c.
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Now substitute this value ofa to obtainy:

y =
5 − 71

4
=

5 − 7(−1 + 4c)

4
=

12 − 28c

4
= 3 − 7c.

Finally, we can substitute this value ofy into the original equation to obtainx:

x =
208 − 18y

7
=

208 − 18(3 − 7c)

7
=

154 + 126c

4
= 22 + 18c.

Our solution looks a little different from what we obtained in the first problem, but here
it is:

x = 22 + 18c

y = 3 − 7c

If c = 0 we obtain the same solution we did previously:x = 22 andy = 3, but note
thatany integer value ofc will yield another solution. We can see that positive values
of c will yield negative values ofy, but if c = −1, we obtain another solution:x = 4
andy = 10. It’s easy to check that both(x, y) pairs are valid solutions to the original
problem. Ifc is smaller,−2 or less, then thex values become negative, so there are no
additional solutions.

When an equation of this sort is solvable by this method, there is no limit to the number
of steps that need to be taken to obtain the solution. In the example above, we needed
to introduce integersa, b andc, but other equations might require more or fewer of
these intermediate values.

2 Linear Diophantine Equations

What we have just solved is known as a Diophantine equation – an equation whose
roots are required to be integers. Probably the most famous Diophantine equation is
the one representing Fermat’s last theorem, finally proved hundreds of years after it
was proposed by Andrew Wiles:

If n > 2, there are no non-trivial1 solutions in integers to the equation:

xn + yn = zn.

There are many, many forms of Diophantine equations, but equations of the sort that
we just solved are called “linear Diophantine equations”: all the coefficients of the
variables are integers.

Let’s look a little more closely at the equation we just solved: 7x + 18y = 208. If the
only requirement were that the roots be integers (not necessarily non-negative integers),
then our solution:x = 22 + 18c andy = 3 − 7c represent an infinte set of solutions,
where every different integer value ofc generates another solution.

1The “trivial” solutions are those wherex or y is zero.
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A more geometric view of the problem is this: If we were to graph the equation7x +
18y = 208, the solutions are places where the graph passes through points that have
integer coordinates. In Figure 1 a portion of that line is plotted, and the points where
the graph has integer coordinates are indicated and labeled.

(22,3)(22,3)

(4,10)(4,10)

(-14,17)(-14,17)

(-32,24)(-32,24)

(40,-4)(40,-4)

Figure 1: Graph of7x + 18y = 208

Notice that all the points with integer coordinates are evenly spaced along the line.
In fact, if we begin at any point and add18 to thex-coordinate and at the same time
subtract7 from they-coordinate, we arrive at another point on the graph with integer
coordinates. A quick examination of the original equation should make it obvious why
this is the case. The equation is:

7x + 18y = 208.

If we add18 to thex value, we increase the left side by7 · 18. If we subtract7 from
they value, we decrease the left side by the same amount:18 · 7. The net effect is to
leave the left side unchanged.

Notice that this line has a negative slope and happens to cut through the first quadrant
(quadrant I) and intersect some points with integer coordinates there. This may or may
not be the case for the graphs of other linear Diophantine equations. Lines with positive
slopes can have an infinite number of solutions where both arepositive, and there are
equations where there are none. It’s easy to construct such equations with whatever
characteristics you wish.

Does every equation of the form:

ax + by = c,

wherea, b andc are integers have a solution(x, y), wherex andy are also integers?

The answer is no. For example, what ifa andb are even andc is odd? The left side
must be even, and if the right side is odd, there is no possibility of a solution with
integer values. Similarly, ifa andb are both multiples of3 andc is not, the left side
will be a multiple of3 and the right side is not, so again, there are no possible integer
solutions.

In fact, if the greatest common divisor (GCD) ofa andb does not dividec, then there
are no integer solutions. The amazing thing, however, is that if the GCD ofa andb also
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dividesc, then there are an infinite number of integer solutions, and we will see why
that is the case later on.

Note also that another observation we made about our particular problem will also
apply to a general linear Diophantine equation; namely, that if (x, y) is an integer
solution to:

ax + by = c

then so will be(x + bk, y − ak) wherek is any integer. If we substitutex + bk for x
andy − ak for y, we obtain:

a(x + bk) + b(y − ak) = c

ax + abk + by − abk = c

ax + by = c,

so if (x, y) is a solution, then so also is(x + bk, y − ak).

3 Reducing Fractions

Now we will jump to a problem that at first glance is totally unrelated to linear Dio-
phantine equations, but will turn out to be very similar. Let’s begin with a very ugly
problem:

Reduce the following fraction to lowest terms:

179703941

215237573
.

Recall that to reduce a fraction to lowest terms, you search for numbers that are com-
mon factors of the numerator and denominator and if such numbers exist, the fraction
can be simplified by dividing both numerator and denominatorby that common num-
ber. For example, in the fraction48/66 both the numerator and denominator have a
factor of6, so we have:

48

66
=

6 · 8

6 · 11
=

8

11
.

It’s easy to check that the8 and11 in the fraction8/11 have no other integer common
factors, so8/11 is reduced to its simplest possible form.

With a computer, or with a heck of a lot of effort by hand or evenwith a calculator,
we can search for common factors of the numerator and denominator of our original
problem, but that could require a great amount of effort. In fact, you will need to test
hundreds of possible factors before you arrive at the following:

179703941

215237573
=

185071 · 971

185071 · 1163
=

971

1163
,

and even then, a bit more work must be done to assure that971 and1163 have no
common factors.
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What we would like to do is have a method to find the GCD (greatest common divisor)
of the numerator and denominator, and then eliminate that from the numerator and
denominator, yielding the fraction reduced to simplest form.

Let’s try the following approach, which, except for some slightly ugly arithmetic,
should seem quite familiar:

215237573 = 179703941 · 1 + 35533632.

Notice that if some number does divide215237573 and179703941 then it must also
divide35533632. That means that:

GCD(215237573, 179703941) = GCD(179703941, 35533632).

Thus we have reduced the size of the numbers in our problem.

We can continue in the same way:

179703941 = 35533632 · 5 + 2035781

35533632 = 2035781 · 17 + 925355

2035781 = 925355 · 2 + 185071

925355 = 185071 · 5 + 0.

In every case, any number that divides the two leftmost numbers in the equations above
must also divide the rightmost, and in the final line, we observe that185071 must be
the GCD of those numbers. Once we know that185071 divides the numerator and
denominator and in fact is the largest number to do so, we can divide the numerator
and denominator of our original fraction by that number to obtain the form971/1163
as the simplest form.

This method to obtain the GCD of any two numbers is known as Euclid’s algorithm.

4 Euclid’s Algorithm and Diophantine Equations

Now let’s use the Euclidean algorithm on two of the numbers from the original Dio-
phantine equation we solved in Section 1:7x + 18y = 208.

18 = 7 · 2 + 4

7 = 4 · 1 + 3

4 = 3 · 1 + 1

3 = 1 · 3 + 0

In this example, the final number is1, so the GCD of18 and7 is 1 (in other words,
18 and7 are relatively prime), but the interesting thing to note is that the numbers in
the GCD calculation:18, 7, 4, 3, 1 are the same numbers that we got as denominators
and as the coefficients of the variables in the numerators in the fractions when we were
solving the Diophantine equation7x + 18y = 208. The only oddball numbers were
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the constants in the numerators, and that’s not surprising:we never used the number
208 when we were using the Euclidean algorithm to find the GCD of18 and7. If you
check the arithmetic calculations that are being done in each case, it will be clear why
the numbers generated in both examples must be the same.

Suppose that the original Diophantine equation had had a1 instead of the208. To make
sure you understand the technique we used to solve our Diophantine equation it would
be a good exercise to solve the following equation by yourself before reading on:

7x + 18y = 1

Here’s the solution (but just the equations: the textual arguments are omitted):

7x + 18y = 1

x =
1 − 18y

7
= −2y +

1 − 4y

7

a =
1 − 4y

7

y =
1 − 7a

4
= −a +

1 − 3a

4

b =
1 − 3a

4

a =
1 − 4b

3
= −b +

1 − b

3

c =
1 − b

3
b = 1 − 3c

The nice thing about the1 in place of the208 is that it remains constant throughout
the calculation, whereas the208 was reduced as various of the denominators divided
it evenly. In this calculation, all the other coefficients are the same as the numbers
generated in the straight-forward calculation of the GCD of7 and18.

To complete the solution, we need to back-substitute theb = 1 − 3c and after a few
steps we obtain:x = −5 + 18c andy = 2 − 7c, wherec is an arbitrary integer.
(Obviously this equation will have no solutions where bothx andy are positive.)

Thus when you do a GCD calculation ofa andb, and that GCD turns out to be1, you’ve
done a lot of the work toward solving the Diophantine equation

ax + by = 1.

So if we can do the Euclidean algorithm, we can find with almostno effort other than
a little arithmetic the coefficients we need to solve a linearDiophantine equation of the
form ax + by = 1. Of course we’d like to be able to solve equations where the1 is
replaced by an arbitrary numberc, but that is actually not too difficult.

As as example, let’s find solutions for7x + 18y = 208 assuming that we’ve solved
7x + 18y = 1. The solutions for the latter equation arex = −5 + 18c andy = 2− 7c,

7



wherec is an arbitrary integer. An easy solution is simply to setc = 0 and obtain
x = −5 andy = 2 as a particular solution. But if we multiplyx andy by 208, then the
left side will be increased by a factor of208 so if we increase the right side by the same
factor, we’ll have an(x, y) pair that satisfies our original equation7x + 18y = 208.

Thus a solution is this:x = −5 · 208 = −1040 andy = 2 · 208 = 416. It’s easy to
plug these numbers in to check that they are valid.

But we also noticed that adding any multiple of18 to x while at the same time adding
that same multiple of−7 to y will yield the other solutions, so the general solution to
our original problem is:x = −1040 + 18k andy = 416− 7k. If k = 58, for example,
this yields the solutionx = 4 andy = 10.

We have seen that if we have any solution to one of these linearDiophantine equations,
we can obtain all the others by adding constant multiples of the opposite coefficients to
the given solution, all we really need is one solution.

In the previous examples, once we got to the point where we hadb = 1− 3c, we back-
substituted and carefully kept track of the coefficient ofc in the calculations. But since
any solution will generate all the others, why not letc = 0? Then we just need to track
a single number.

5 Putting It All Together

Let’s use the techniques above, but in their most simplified form, to solve another
Diophantine equation. Here’s the problem:

• In a pet shop, rats cost 5 dollars, guppies cost 3 dollars and crickets cost 10 cents.
One hundred animals are sold, and the total receipts are 100 dollars. How many rats,
guppies and crickets were sold?

If r, g andc represent the number of rats, guppies and crickets, respectively, we’ve got
two equations (but three unknowns):

r + g + c = 100

5r + 3g + .1c = 100

To turn the problem into a purely integer problem, multiply the second equation by10:

r + g + c = 100

50r + 30g + c = 1000

If we subtract the first equation from the second we obtain thefamiliar looking linear
Diophantine equation in two variables:

49r + 29g = 900.

Luckily, the GCD for49 and 29 is 1 which divides900 so there will be solutions
(although possibly not solutions where all the values are non-negative.

(This problem is probably much easier to solve using “guess and check” techniques:
we know that the number of crickets must be a multiple of 10, soyou could just try 0,
10, 20, ..., 100 of them.)
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Let’s find the GCD of49 and29, using the Euclidean algorithm:

49 = 29 · 1 + 20

29 = 20 · 1 + 9

20 = 9 · 2 + 2

9 = 2 · 4 + 1

2 = 1 · 2 + 0

Since we’ve used the variablec for the number of crickets, andg for the number of
guppies, let’s use variablesi, j, k, et cetera for the integer values of fractions that we
get as we step through the solution of the Diophantine equation. We will a particular
solution to the simpler equation:

49r + 29g = 1

and then multiply bothr andg by 900 for a solution to the original problem.

Without doing any calculations, but just reading the valuesobtained from the Euclidean
algorithm used to calculate the GCD of49 and29 and the variablesi, j, k and l as
the integer values of fractions, we can just write down the relationships among them
(expressed both ways). For the purposes of finding a solutionto the equation, only the
expressions on the right are important. Note how the numbersin the fractions (other
than the1, of course) are exactly the same as the numbers on the left in the execution
of the Euclidean algorithm to find the GCD of49 and29 above.

r =
1 − 29g

49
g =

1 − 49r

29

i =
1 − 20r

29
r =

1 − 29i

20

j =
1 − 9i

20
i =

1 − 20j

9

k =
1 − 2j

9
j =

1 − 9k

2

l =
1 − k

2
k = 1 − 2l

From the last line, clearlyk = 2l for arbitrary integersl, so just setl = 0 to obtain a
particular solution. Ifl = 0, thenk = 1. If k = 1 thenj = −4. If j = −4, theni = 9.
If i = 9 thenr = −13. And if r = −13, theng = 22.

It’s easy to check our work; namely, thatr = −13 andg = 22 is a solution to:

49r + 29g = 1.

To obtain a particular solution to the original equation, multiply by 900: r = −11700
andg = 19800. From previous considerations, we know that the general solution to
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the original equation will be:

r = −11700 + 29k

g = 19800− 49k

We’re looking for non-negative values ofr andg, so divide29 into 11700 and we find
that if k = 404 we obtain the valuesr = 16 andg = 4. If k = 403 or k = 405, either
r or g is negative.

Since there are100 total animals,c = 80, and it’s easy to check thatr = 16, g = 4 and
c = 80 solves the problem.
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